Engineering a platform for photosynthetic isoprene pro Synechocystis as the model organism

Metabolic Engineering 12, 70-79 DOI: 10.1016/j.ymben.2009.10.001

Citation Report

#	Article	IF	CITATIONS
1	TECHNOLOGY UPDATE: Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Industrial Biotechnology, 2010, 6, 152-163.	0.5	184
2	Algal Photosynthesis as the Primary Driver for a Sustainable Development in Energy, Feed, and Food Production. Marine Biotechnology, 2010, 12, 619-629.	1.1	39
3	Engineering cyanobacteria for fuels and chemicals production. Protein and Cell, 2010, 1, 207-210.	4.8	42
4	Reconstruction and analysis of genome-scale metabolic model of a photosynthetic bacterium. BMC Systems Biology, 2010, 4, 156.	3.0	100
5	A perspective: Photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnology Advances, 2010, 28, 742-746.	6.0	103
6	The Metabolic Network of <i>Synechocystis</i> sp. PCC 6803: Systemic Properties of Autotrophic Growth Â. Plant Physiology, 2010, 154, 410-422.	2.3	173
7	Synthetic Biology Guides Biofuel Production. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-9.	3.0	59
8	Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13654-13659.	3.3	304
9	Engineered cyanobacteria: Teaching an old bug new tricks. Bioengineered Bugs, 2011, 2, 136-149.	2.0	92
10	Synthetic Biology in Cyanobacteria. Methods in Enzymology, 2011, 497, 539-579.	0.4	184
11	Cyanobacterial genomics for ecology and biotechnology. Current Opinion in Microbiology, 2011, 14, 608-614.	2.3	64
12	The production of the sesquiterpene β-caryophyllene in a transgenic strain of the cyanobacterium Synechocystis. Journal of Plant Physiology, 2011, 168, 848-852.	1.6	89
13	Metabolic engineering of algae for fourth generation biofuels production. Energy and Environmental Science, 2011, 4, 2451.	15.6	286
14	Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chemical Biology, 2011, 7, 445-452.	3.9	984
15	Engineering cyanobacteria to generate high-value products. Trends in Biotechnology, 2011, 29, 95-103.	4.9	443
16	Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metabolic Engineering, 2011, 13, 656-665.	3.6	307
17	Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography–mass spectrometry. Journal of Chromatography A, 2011, 1218, 8289-8293.	1.8	32
18	Flux coupling and transcriptional regulation within the metabolic network of the photosynthetic bacterium <i>Synechocystis</i> sp. PCC6803. Biotechnology Journal, 2011, 6, 330- <u>342</u> .	1.8	51

#	Article	IF	CITATIONS
19	Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Applied Microbiology and Biotechnology, 2011, 90, 1915-1922.	1.7	136
20	Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Applied Microbiology and Biotechnology, 2011, 91, 471-490.	1.7	273
21	Reconstruction and verification of a genome-scale metabolic model for Synechocystis sp. PCC6803. Applied Microbiology and Biotechnology, 2011, 92, 347-358.	1.7	62
22	From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Applied Microbiology and Biotechnology, 2011, 92, 909-919.	1.7	105
23	Engineering microbes to produce biofuels. Current Opinion in Biotechnology, 2011, 22, 388-393.	3.3	38
24	Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metabolic Engineering, 2011, 13, 169-176.	3.6	224
25	Computation of metabolic fluxes and efficiencies for biological carbon dioxide fixation. Metabolic Engineering, 2011, 13, 150-158.	3.6	66
26	Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metabolic Engineering, 2011, 13, 353-363.	3.6	352
27	Enhancing Isoprene Production by Genetic Modification of the 1-Deoxy- <scp>d</scp> -Xylulose-5-Phosphate Pathway in <i>Bacillus subtilis</i> . Applied and Environmental Microbiology, 2011, 77, 2399-2405.	1.4	103
28	An experimentally anchored map of transcriptional start sites in the model cyanobacterium <i>Synechocystis</i> sp. PCC6803. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2124-2129.	3.3	364
29	Metabolic Engineering of Cyanobacteria for Direct Conversion of CO2 to Hydrocarbon Biofuels. Progress in Botany Fortschritte Der Botanik, 2012, , 81-93.	0.1	15
30	Perspectives for Photobiology in Molecular Solar Fuels. Australian Journal of Chemistry, 2012, 65, 643.	0.5	3
31	Application of synthetic biology in cyanobacteria and algae. Frontiers in Microbiology, 2012, 3, 344.	1.5	149
32	Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production. Journal of Biotechnology, 2012, 162, 67-74.	1.9	51
33	Expanding the chemical palate of cells by combining systems biology and metabolic engineering. Metabolic Engineering, 2012, 14, 289-297.	3.6	131
34	Cyanobacterial biofuel production. Journal of Biotechnology, 2012, 162, 50-56.	1.9	243
35	Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. Journal of Biotechnology, 2012, 162, 134-147.	1.9	141
36	An expression system for regulated protein production in Synechocystis sp. PCC 6803 and its application for construction of a conditional knockout of the ferrochelatase enzyme. Journal of Biotechnology, 2012, 162, 75-80.	1.9	22

#	Article	IF	Citations
37	Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metabolic Engineering, 2012, 14, 394-400.	3.6	127
38	Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria. Energy and Environmental Science, 2012, 5, 8318.	15.6	64
39	ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6018-6023.	3.3	327
40	Engineering a Cyanobacterial Cell Factory for Production of Lactic Acid. Applied and Environmental Microbiology, 2012, 78, 7098-7106.	1.4	170
41	DIRECTED EVOLUTION: SELECTION OF THE HOST ORGANISM. Computational and Structural Biotechnology Journal, 2012, 2, e201209012.	1.9	49
42	Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae. Plant Science, 2012, 185-186, 9-22.	1.7	179
43	Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy and Environmental Science, 2012, 5, 9857-9865.	15.6	337
44	Isoprene Production Via the Mevalonic Acid Pathway in Escherichia coli (Bacteria). Bioenergy Research, 2012, 5, 814-828.	2.2	104
45	Metabolic engineering: enabling technology of a bio-based economy. Current Opinion in Chemical Engineering, 2012, 1, 355-362.	3.8	19
46	Effects of fatty acid activation on photosynthetic production of fatty acid-based biofuels in Synechocystis sp. PCC6803. Biotechnology for Biofuels, 2012, 5, 17.	6.2	44
47	Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803. Biotechnology for Biofuels, 2012, 5, 68.	6.2	89
48	Metabolic Pathways in Green Algae with Potential Value for Biofuel Production. Cellular Origin and Life in Extreme Habitats, 2012, , 399-422.	0.3	5
49	Mono-, Di-, and Oligosaccharides as Precursors for Polymer Synthesis. , 2012, , 59-82.		10
50	Pine oleoresin: tapping green chemicals, biofuels, food protection, and carbon sequestration from multipurpose trees. Food and Energy Security, 2012, 1, 81-93.	2.0	72
51	Hydrogen Production by Cyanobacteria. , 2012, , 15-28.		24
52	The Future of Biofuels, Biofuels of the Future. , 2012, , 261-268.		3
53	Photosynthetic production of 2-methyl-1-butanol from CO2 in cyanobacterium Synechococcus elongatus PCC7942 and characterization of the native acetohydroxyacid synthase. Energy and Environmental Science, 2012, 5, 9574.	15.6	99
54	Microbial Technologies in Advanced Biofuels Production. , 2012, , .		20

	CITATION	Report	
#	ARTICLE	IF	CITATIONS
55	The Science of Algal Fuels. Cellular Origin and Life in Excreme Habitats, 2012, , .	0.3	19
56	Photosynthesis-to-fuels: from sunlight to hydrogen, isoprene, and botryococcene production. Energy and Environmental Science, 2012, 5, 5531-5539.	15.6	161
57	Identification of Functional Differences in Metabolic Networks Using Comparative Genomics and Constraint-Based Models. PLoS ONE, 2012, 7, e34670.	1.1	41
58	Reconstruction and Comparison of the Metabolic Potential of Cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. PLoS ONE, 2012, 7, e48285.	1.1	79
59	Upregulation of Plasmid Genes during Stationary Phase in Synechocystis sp. Strain PCC 6803, a Cyanobacterium. Applied and Environmental Microbiology, 2012, 78, 5448-5451.	1.4	27
60	Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nature Chemical Biology, 2012, 8, 536-546.	3.9	639
61	Design, Engineering, and Construction of Photosynthetic Microbial Cell Factories for Renewable Solar Fuel Production. Ambio, 2012, 41, 163-168.	2.8	49
62	Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli. Bioresource Technology, 2012, 104, 642-647.	4.8	86
63	Isoprene hydrocarbons production upon heterologous transformation of Saccharomyces cerevisiae. Journal of Applied Microbiology, 2012, 113, 52-65.	1.4	39
64	Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in Biotechnology, 2012, 30, 198-205.	4.9	266
65	Diffusionâ€based process for carbon dioxide uptake and isoprene emission in gaseous/aqueous twoâ€phase photobioreactors by photosynthetic microorganisms. Biotechnology and Bioengineering, 2012, 109, 100-109.	1.7	102
66	Identification of differentially expressed proteins of Arthrospira (Spirulina) plantensis-YZ under salt-stress conditions by proteomics and qRT-PCR analysis. Proteome Science, 2013, 11, 6.	0.7	30
67	Engineering cyanobacteria to improve photosynthetic production of alka(e)nes. Biotechnology for Biofuels, 2013, 6, 69.	6.2	175
68	Green metrics evaluation of isoprene production by microalgae and bacteria. Green Chemistry, 2013, 15, 2854-2864.	4.6	47
69	Biological conversion of carbon dioxide to photosynthetic fuels and electrofuels. Energy and Environmental Science, 2013, 6, 2892.	15.6	74
70	Paradigm of Monoterpene (β-phellandrene) Hydrocarbons Production via Photosynthesis in Cyanobacteria. Bioenergy Research, 2013, 6, 917-929.	2.2	69
71	ERG9 and COQ1 disruption reveals isoprenoids biosynthesis is closely related to mitochondrial function in Saccharomyces cerevisiae. Integrative Biology (United Kingdom), 2013, 5, 1282.	0.6	7
72	Carbon partitioning in photosynthesis. Current Opinion in Chemical Biology, 2013, 17, 453-456.	2.8	88

#	Article	IF	CITATIONS
73	Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metabolic Engineering, 2013, 20, 101-108.	3.6	128
74	Measuring dimethylallyl diphosphate available for isoprene synthesis. Analytical Biochemistry, 2013, 435, 27-34.	1.1	36
76	SHARP: genome-scale identification of gene–protein–reaction associations in cyanobacteria. Photosynthesis Research, 2013, 118, 181-190.	1.6	6
77	Analysis of carbohydrate storage granules in the diazotrophic cyanobacterium Cyanothece sp. PCC 7822. Photosynthesis Research, 2013, 118, 25-36.	1.6	14
78	Development of Synechocystis sp. PCC 6803 as a Phototrophic Cell Factory. Marine Drugs, 2013, 11, 2894-2916.	2.2	112
79	Integrated transcriptomic and metabolomic analysis of the central metabolism of <i>Synechocystis</i> sp. PCC 6803 under different trophic conditions. Biotechnology Journal, 2013, 8, 571-580.	1.8	56
80	Metabolic engineering of microorganisms for the synthesis of plant natural products. Journal of Biotechnology, 2013, 163, 166-178.	1.9	194
81	Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. Journal of Proteomics, 2013, 78, 326-345.	1.2	108
82	On the Use of Metabolic Control Analysis in the Optimization of Cyanobacterial Biosolar Cell Factories. Journal of Physical Chemistry B, 2013, 117, 11169-11175.	1.2	67
83	Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy and Environmental Science, 2013, 6, 2672.	15.6	143
84	Synthetic Biology and Metabolic Engineering Approaches To Produce Biofuels. Chemical Reviews, 2013, 113, 4611-4632.	23.0	155
85	Thylakoid Terminal Oxidases Are Essential for the Cyanobacterium <i>Synechocystis</i> sp. PCC 6803 to Survive Rapidly Changing Light Intensities Â. Plant Physiology, 2013, 162, 484-495.	2.3	97
86	Metabolic Engineering: Past and Future. Annual Review of Chemical and Biomolecular Engineering, 2013, 4, 259-288.	3.3	254
87	Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. Metabolic Engineering, 2013, 16, 68-77.	3.6	149
88	Next generation biofuel engineering in prokaryotes. Current Opinion in Chemical Biology, 2013, 17, 462-471.	2.8	139
89	Algal biofuels. Photosynthesis Research, 2013, 117, 207-219.	1.6	82
90	Photosynthetic approaches to chemical biotechnology. Current Opinion in Biotechnology, 2013, 24, 1031-1036.	3.3	42
91	Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Current Opinion in Biotechnology, 2013, 24, 405-413.	3.3	341

#	ARTICLE	IF	CITATIONS
92	Application of the FLP/FRT recombination system in cyanobacteria for construction of markerless mutants. Applied Microbiology and Biotechnology, 2013, 97, 6373-6382.	1.7	32
93	Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends in Biotechnology, 2013, 31, 134-138.	4.9	178
94	Reduced light-harvesting antenna: Consequences on cyanobacterial metabolism and photosynthetic productivity. Algal Research, 2013, 2, 188-195.	2.4	49
95	Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metabolic Engineering, 2013, 19, 17-25.	3.6	104
96	Combustion and emissions characterization of terpenes with a view to their biological production in cyanobacteria. Fuel, 2013, 111, 670-688.	3.4	48
97	Genetic engineering of multispecies microbial cell factories as an alternative for bioenergy production. Trends in Biotechnology, 2013, 31, 521-529.	4.9	69
98	Recent advances in liquid biofuel production from algal feedstocks. Applied Energy, 2013, 102, 1371-1381.	5.1	324
99	Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microbial Cell Factories, 2013, 12, 117.	1.9	103
100	Biocommodities from photosynthetic microorganisms. Environmental Progress and Sustainable Energy, 2013, 32, 989-1001.	1.3	20
101	Draft Genome Sequence of Marine Cyanobacterium <i>Synechococcus</i> sp. Strain NKBG15041c. Genome Announcements, 2013, 1, .	0.8	11
102	Flux Balance Analysis of Cyanobacterial Metabolism: The Metabolic Network of Synechocystis sp. PCC 6803. PLoS Computational Biology, 2013, 9, e1003081.	1.5	219
103	Metabolic Engineering of Hydrocarbon Biosynthesis for Biofuel Production. , 0, , .		3
104	Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1249-1254.	3.3	341
105	Computational evaluation of <i>Synechococcus</i> sp. PCC 7002 metabolism for chemical production. Biotechnology Journal, 2013, 8, 619-630.	1.8	58
107	Utilization of Lactic Acid Bacterial Genes in <i>Synechocystis</i> sp. PCC 6803 in the Production of Lactic Acid. Bioscience, Biotechnology and Biochemistry, 2013, 77, 966-970.	0.6	31
108	Toward systems metabolic engineering in cyanobacteria. Bioengineered, 2013, 4, 158-163.	1.4	31
109	Proteomic analysis and qRT-PCR verification ofArthrospira platensisstrain YZ under dark stress. Phycologia, 2013, 52, 538-549.	0.6	1
110	Electrochemical Reduction of Nitrite to Ammonia for Use in a Bioreactor. Journal of the Electrochemical Society, 2013, 160, G19-G26.	1.3	8

#	Article	IF	CITATIONS
111	Cyanobacteria as a Platform for Biofuel Production. Frontiers in Bioengineering and Biotechnology, 2013, 1, 7.	2.0	172
112	Synthetic biology of cyanobacteria: unique challenges and opportunities. Frontiers in Microbiology, 2013, 4, 246.	1.5	243
114	Production of Squalene in Synechocystis sp. PCC 6803. PLoS ONE, 2014, 9, e90270.	1.1	99
115	Cyanobacteria as an Experimental Platform for Modifying Bacterial and Plant Photosynthesis. Frontiers in Bioengineering and Biotechnology, 2014, 2, 7.	2.0	24
116	Alkane Biosynthesis Genes in Cyanobacteria and Their Transcriptional Organization. Frontiers in Bioengineering and Biotechnology, 2014, 2, 24.	2.0	52
117	Engineered Transcriptional Systems for Cyanobacterial Biotechnology. Frontiers in Bioengineering and Biotechnology, 2014, 2, 40.	2.0	61
118	Molar-Based Targeted Metabolic Profiling of Cyanobacterial Strains with Potential for Biological Production. Metabolites, 2014, 4, 499-516.	1.3	69
119	Carbon Dioxide Capture and Utilization using Biological Systems: Opportunities and Challenges. Journal of Bioprocessing & Biotechniques, 2014, 04, .	0.2	21
121	Metabolic engineering of a cyanobacterium to convert CO2, water, and light into a long-chained alkene. , 2014, , .		0
122	Inducible expression system for the marine cyanobacterium Synechococcus sp. strain NKBG 15041c. International Journal of Hydrogen Energy, 2014, 39, 19382-19388.	3.8	4
123	Comparative Analysis of the Primary Transcriptome of Synechocystis sp. PCC 6803. DNA Research, 2014, 21, 527-539.	1.5	233
124	Development of bio-based fine chemical production through synthetic bioengineering. Microbial Cell Factories, 2014, 13, 173.	1.9	42
125	Engineering pathways to biofuels in photoautotrophic microorganisms. Biofuels, 2014, 5, 67-78.	1.4	5
126	Biofuel production: an odyssey from metabolic engineering to fermentation scale-up. Frontiers in Microbiology, 2014, 5, 344.	1.5	62
127	Structure–function of cyanobacterial outerâ€membrane protein, Slr1270: Homolog of <i>Escherichia coli</i> drug export/colicin import protein, TolC. FEBS Letters, 2014, 588, 3793-3801.	1.3	17
128	Genetically engineering cyanobacteria to convert CO2, water, and light into the long-chain hydrocarbon farnesene. Applied Microbiology and Biotechnology, 2014, 98, 9869-9877.	1.7	102
129	Production of optically pure d-lactate from CO2 by blocking the PHB and acetate pathways and expressing d-lactate dehydrogenase in cyanobacterium Synechocystis sp. PCC 6803. Process Biochemistry, 2014, 49, 2071-2077.	1.8	31
130	Combinational biosynthesis of isoprene by engineering the MEP pathway in Escherichia coli. Process Biochemistry, 2014, 49, 2078-2085.	1.8	13

#	Article	IF	CITATIONS
131	¹³ C-MFA delineates the photomixotrophic metabolism of <i>Synechocystis</i> sp. PCC 6803 under light- and carbon-sufficient conditions. Biotechnology Journal, 2014, 9, 684-692.	1.8	72
132	Improved production of fatty alcohols in cyanobacteria by metabolic engineering. Biotechnology for Biofuels, 2014, 7, 94.	6.2	71
133	Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002. Frontiers in Bioengineering and Biotechnology, 2014, 2, 21.	2.0	230
134	Engineering an Isoprenoid Pathway in Escherichia coli for Production of 2-Methyl-3-buten-2-ol: A Potential Biofuel. Molecular Biotechnology, 2014, 56, 516-523.	1.3	6
135	Metabolic engineering of volatile isoprenoids in plants and microbes. Plant, Cell and Environment, 2014, 37, 1753-1775.	2.8	110
136	Functional expression of an Arabidopsis p450 enzyme, p-coumarate-3-hydroxylase, in the cyanobacterium Synechocystis PCC 6803 for the biosynthesis of caffeic acid. Journal of Applied Phycology, 2014, 26, 219-226.	1.5	39
137	Transcriptomic response to prolonged ethanol production in the cyanobacterium Synechocystis sp. PCC6803. Biotechnology for Biofuels, 2014, 7, 21.	6.2	54
138	Metabolic design for cyanobacterial chemical synthesis. Photosynthesis Research, 2014, 120, 249-261.	1.6	118
139	Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metabolic Engineering, 2014, 23, 53-61.	3.6	83
140	Growing green electricity: Progress and strategies for use of Photosystem I for sustainable photovoltaic energy conversion. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1553-1566.	0.5	119
141	9.15 Synthetic Biology Approaches for Organic Synthesis. , 2014, , 390-420.		3
142	Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production. RSC Advances, 2014, 4, 49672-49722.	1.7	76
144	Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous β-phellandrene production in Escherichia coli cultures. Archives of Microbiology, 2014, 196, 853-861.	1.0	24
145	Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy. Journal of Biotechnology, 2014, 186, 128-136.	1.9	75
146	Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1653-1664.	0.5	154
147	Biofuel toxicity and mechanisms of biofuel tolerance in three model cyanobacteria. Algal Research, 2014, 5, 121-132.	2.4	30
148	Improved oxygen tolerance of the Synechocystis sp. PCC 6803 bidirectional hydrogenase by site-directed mutagenesis of putative residues of the gas diffusion channel. International Journal of Hydrogen Energy, 2014, 39, 16872-16884.	3.8	16
149	Engineered Cyanobacteria. , 2014, , 389-406.		4

#	Article	IF	CITATIONS
150	Regulation of β-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants. Planta, 2014, 240, 309-324.	1.6	63
151	Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942. Photosynthesis Research, 2014, 120, 301-310.	1.6	101
152	Heterologous Expression of the Mevalonic Acid Pathway in Cyanobacteria Enhances Endogenous Carbon Partitioning to Isoprene. Molecular Plant, 2014, 7, 71-86.	3.9	170
153	Engineering cyanobacteria for the production of a cyclic hydrocarbon fuel from CO ₂ and H ₂ O. Green Chemistry, 2014, 16, 3175-3185.	4.6	98
154	Prerequisite for highly efficient isoprenoid production by cyanobacteria discovered through the over-expression of 1-deoxy-d-xylulose 5-phosphate synthase and carbon allocation analysis. Journal of Bioscience and Bioengineering, 2014, 118, 20-28.	1.1	29
155	Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metabolic Engineering, 2014, 22, 10-21.	3.6	95
156	Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. Metabolic Engineering, 2014, 21, 60-70.	3.6	127
157	Specific photosynthetic rate enhancement by cyanobacteria coated onto paper enables engineering of highly reactive cellular biocomposite "leaves― Biotechnology and Bioengineering, 2014, 111, 1993-2008.	1.7	30
158	Engineering of cyanobacteria for the photosynthetic production of limonene from CO2. Journal of Biotechnology, 2014, 185, 1-7.	1.9	105
159	A synthetic biochemistry molecular purge valve module that maintains redox balance. Nature Communications, 2014, 5, 4113.	5.8	93
161	Marine Microalgae: Exploring the Systems through an Omics Approach for Biofuel Production. , 2015, , 168-181.		3
162	Efficient surface-display of autotransporter proteins in cyanobacteria. Algal Research, 2015, 12, 337-340.	2.4	14
163	Challenges and opportunities for microalgaeâ€mediated CO ₂ capture and biorefinery. Biotechnology and Bioengineering, 2015, 112, 1281-1296.	1.7	51
164	Systems and Photosystems: Cellular Limits of Autotrophic Productivity in Cyanobacteria. Frontiers in Bioengineering and Biotechnology, 2015, 3, 1.	2.0	200
165	Photosynthetic Constraints on Fuel from Microbes. Frontiers in Bioengineering and Biotechnology, 2015, 3, 36.	2.0	22
166	A Computational Analysis of Stoichiometric Constraints and Trade-Offs in Cyanobacterial Biofuel Production. Frontiers in Bioengineering and Biotechnology, 2015, 3, 47.	2.0	40
167	Lauric Acid Production in a Glycogen-Less Strain of Synechococcus sp. PCC 7002. Frontiers in Bioengineering and Biotechnology, 2015, 3, 48.	2.0	25
168	Molecular Structure of Photosynthetic Microbial Biofuels for Improved Engine Combustion and Emissions Characteristics. Frontiers in Bioengineering and Biotechnology, 2015, 3, 49.	2.0	11

#	Article	IF	CITATIONS
169	Cyanobacteria as Cell Factories to Produce Plant Secondary Metabolites. Frontiers in Bioengineering and Biotechnology, 2015, 3, 57.	2.0	44
170	Metabolic Engineering and Comparative Performance Studies of Synechocystis sp. PCC 6803 Strains for Effective Utilization of Xylose. Frontiers in Microbiology, 2015, 6, 1484.	1.5	8
171	Advances in Metabolic Engineering of Cyanobacteria for Photosynthetic Biochemical Production. Metabolites, 2015, 5, 636-658.	1.3	71
172	Cyanobacteria: Photoautotrophic Microbial Factories for the Sustainable Synthesis of Industrial Products. BioMed Research International, 2015, 2015, 1-9.	0.9	116
173	Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Scientific Reports, 2014, 4, 4500.	1.6	112
174	Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, 2015, , .	0.6	30
175	Terpenoids and Their Biosynthesis in Cyanobacteria. Life, 2015, 5, 269-293.	1.1	132
177	Enhancing the light-driven production of d-lactate by engineering cyanobacterium using a combinational strategy. Scientific Reports, 2015, 5, 9777.	1.6	49
178	Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803. Metabolic Engineering, 2015, 30, 179-189.	3.6	53
179	Perspectives on Algal Engineering for Enhanced Biofuel Production. , 2015, , 73-101.		0
180	Production of Industrially Relevant Isoprenoid Compounds in Engineered Microbes. Microbiology Monographs, 2015, , 303-334.	0.3	20
181	<i>Synechocystis</i> sp. PCC6803 metabolic models for the enhanced production of hydrogen. Critical Reviews in Biotechnology, 2015, 35, 184-198.	5.1	7
182	Isoprene. Advances in Biochemical Engineering/Biotechnology, 2015, 148, 289-317.	0.6	21
183	The Development and Characterization of an Exogenous Green-Light-Regulated Gene Expression System in Marine Cyanobacteria. Marine Biotechnology, 2015, 17, 245-251.	1.1	25
184	Algal biofuels in Canada: Status and potential. Renewable and Sustainable Energy Reviews, 2015, 44, 620-642.	8.2	48
185	Reconstructing the chemical diversity of labdane-type diterpene biosynthesis in yeast. Metabolic Engineering, 2015, 28, 91-103.	3.6	66
186	Isoprene production in Synechocystis under alkaline and saline growth conditions. Journal of Applied Phycology, 2015, 27, 1089-1097.	1.5	25
187	Cyanofuels: biofuels from cyanobacteria. Reality and perspectives. Photosynthesis Research, 2015, 125, 329-340.	1.6	86

ARTICLE IF CITATIONS # Photosynthetic terpene hydrocarbon production for fuels and chemicals. Plant Biotechnology 188 4.1 45 Journal, 2015, 13, 137-146. Integrated Bio- and Chemocatalytic Processing for Biorenewable Chemicals and Fuels., 2015, , 157-177. 189 Metabolic Engineering of <i>Synechocystis</i> sp. PCC 6803 for Production of the Plant Diterpenoid 190 1.9 113 Manoyl Oxide. ACS Synthetic Biology, 2015, 4, 1270-1278. Hydrogen production using photobiological methods., 2015, , 289-317. 191 Production of C3 platform chemicals from CO₂ by genetically engineered cyanobacteria. 193 4.6 46 Green Chemistry, 2015, 17, 3100-3110. 194 An ancient Chinese wisdom for metabolic engineering: Yin-Yang. Microbial Cell Factories, 2015, 14, 39. An overview on biofuel and biochemical production by photosynthetic microorganisms with 195 understanding of the metabolism and by metabolic engineering together with efficient cultivation 2.0 41 and downstream processing. Bioresources and Bioprocessing, 2015, 2, . Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using 196 1.6 265 light and CO2. Scientific Reports, 2015, 5, 8132. Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future 197 6.0 93 trends. Biotechnology Advances, 2015, 33, 1228-1245. 2-Methyl-3-buten-2-ol (MBO) synthase expression in<i>Nostoc punctiforme</i>leads to over 198 1.4 production of phytols. Bioengineered, 2015, 6, 33-41. Engineering of genetic control tools in Synechocystis sp. PCC 6803 using rational design techniques. 199 1.9 40 Journal of Biotechnology, 2015, 216, 36-46. Photosynthetic production of enantioselective biocatalysts. Microbial Cell Factories, 2015, 14, 53. 200 Identification of novel isoprene synthases through genome mining and expression in Escherichia coli. 201 3.6 32 Metabolic Engineering, 2015, 31, 153-162. A bioenergetic assessment of photosynthetic growth of Synechocystis sp. PCC 6803 in continuous cultures. Biotechnology for Biofuels, 2015, 8, 133. 6.2 A phycocyanin·phellandrene synthase fusion enhances recombinant protein expression and 203 β-phéllandrene (monoterpene) hydrocarbons production in Synechocystis (cyanobacteria). Metabolic 3.6 80 Engineering, 2015, 32, 116-124. Quantitative proteomics analysis of an ethanol- and a lactate-producing mutant strain of 204 44 Synechocystis sp. PCC6803. Biotechnology for Biofuels, 2015, 8, 111. 205 Algal Biorefinery: An Integrated Approach., 2015, , . 32 GABA Accumulation in Response to Different Nitrogenous Compounds in Unicellular Cyanobacterium Synechocystis sp. PCC 6803. Current Microbiology, 2015, 70, 96-102.

#	Article	IF	CITATIONS
207	Microorganisms in Biorefineries. Microbiology Monographs, 2015, , .	0.3	3
208	Metabolic engineering of strains: from industrial-scale to lab-scale chemical production. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 423-436.	1.4	50
209	Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective. Molecular BioSystems, 2015, 11, 60-70.	2.9	51
210	Toward a photosynthetic microbial platform for terpenoid engineering. Photosynthesis Research, 2015, 123, 265-284.	1.6	78
211	Engineering cyanobacteria for direct biofuel production from CO2. Current Opinion in Biotechnology, 2015, 33, 8-14.	3.3	182
212	Cyanobacteria as Chassis for Industrial Biotechnology: Progress and Prospects. Life, 2016, 6, 42.	1.1	72
213	Strain Engineering for Improved Bio-Fuel Production. Current Metabolomics, 2016, 4, 38-48.	0.5	5
214	Isoprene Production on Enzymatic Hydrolysate of Peanut Hull Using Different Pretreatment Methods. BioMed Research International, 2016, 2016, 1-8.	0.9	7
215	A tightly inducible riboswitch system in <i>Synechocystis</i> sp. PCC 6803. Journal of General and Applied Microbiology, 2016, 62, 154-159.	0.4	45
216	Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Frontiers in Microbiology, 2016, 7, 529.	1.5	434
217	Photosynthetic Platform Strain Selection. , 2016, , 385-406.		1
219	Combinatorial pathway optimization in <i>Escherichia coli</i> by directed coâ€evolution of rateâ€limiting enzymes and modular pathway engineering. Biotechnology and Bioengineering, 2016, 113, 2661-2669.	1.7	55
221	Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts. Microbial Cell Factories, 2016, 15, 214.	1.9	74
222	Cpf1 Is A Versatile Tool for CRISPR Genome Editing Across Diverse Species of Cyanobacteria. Scientific Reports, 2016, 6, 39681.	1.6	228
223	12. Fungal cell factories and their applications. , 2016, , 269-308.		0
224	Enhanced growth at low light intensity in the cyanobacterium Synechocystis PCC 6803 by overexpressing phosphoenolpyruvate carboxylase. Algal Research, 2016, 16, 275-281.	2.4	13
225	Fuelling the future: microbial engineering for the production of sustainable biofuels. Nature Reviews Microbiology, 2016, 14, 288-304.	13.6	476
226	Pigment-targeted light wavelength and intensity promotes efficient photoautotrophic growth of Cyanobacteria. Bioresource Technology, 2016, 216, 579-586.	4.8	33

#	Article	IF	CITATIONS
227	A systems biology approach to reconcile metabolic network models with application to Synechocystis sp. PCC 6803 for biofuel production. Molecular BioSystems, 2016, 12, 2552-2561.	2.9	19
228	Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from <scp>CO</scp> ₂ in <i><scp>S</scp>ynechococcus elongatus </i> <scp>PCC</scp> 7942 under light and aerobic condition. Plant Biotechnology Journal, 2016, 14, 1768-1776.	4.1	62
229	Cyanobacteria: A metabolic power house for harvesting solar energy to produce bio-electricity and biofuels. Biomass and Bioenergy, 2016, 90, 187-201.	2.9	47
230	Fusion of Ferredoxin and Cytochrome P450 Enables Direct Light-Driven Biosynthesis. ACS Chemical Biology, 2016, 11, 1862-1869.	1.6	67
231	State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: The distinctive contribution of chemical catalysis and biotechnology. Journal of Catalysis, 2016, 343, 2-45.	3.1	276
232	Enhancement of poly-3-hydroxybutyrate production in Synechocystis sp. PCC 6803 by overexpression of its native biosynthetic genes. Bioresource Technology, 2016, 214, 761-768.	4.8	103
233	Molecular genetic improvements of cyanobacteria to enhance the industrial potential of the microbe: A review. Biotechnology Progress, 2016, 32, 1357-1371.	1.3	29
234	Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli. Metabolic Engineering, 2016, 38, 401-408.	3.6	48
235	â€~Direct Conversion'. Advances in Botanical Research, 2016, 79, 43-62.	0.5	11
236	Introducing extra NADPH consumption ability significantly increases the photosynthetic efficiency and biomass production of cyanobacteria. Metabolic Engineering, 2016, 38, 217-227.	3.6	62
237	Review: Biofuel production from plant and algal biomass. International Journal of Hydrogen Energy, 2016, 41, 17257-17273.	3.8	264
239	Engineering microbes for isoprene production. Metabolic Engineering, 2016, 38, 125-138.	3.6	82
240	Role of isopentenyl-diphosphate isomerase in heterologous cyanobacterial (Synechocystis) isoprene production. Photosynthesis Research, 2016, 130, 517-527.	1.6	30
241	Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nature Communications, 2016, 7, 12851.	5.8	175
242	Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Scientific Reports, 2016, 6, 36640.	1.6	122
243	Genetic tools for advancement of Synechococcus sp. PCC 7002 as a cyanobacterial chassis. Microbial Cell Factories, 2016, 15, 190.	1.9	78
244	Photon management for augmented photosynthesis. Nature Communications, 2016, 7, 12699.	5.8	200
245	CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microbial Cell Factories, 2016, 15, 115.	1.9	181

#	Article	IF	CITATIONS
246	Cyanobacterial chemical production. Journal of Biotechnology, 2016, 231, 106-114.	1.9	48
247	A novel MVA-mediated pathway for isoprene production in engineered E. coli. BMC Biotechnology, 2016, 16, 5.	1.7	52
248	Insights into isoprene production using the cyanobacterium Synechocystis sp. PCC 6803. Biotechnology for Biofuels, 2016, 9, 89.	6.2	49
249	Two unexpected promiscuous activities of the iron–sulfur protein IspH in production of isoprene and isoamylene. Microbial Cell Factories, 2016, 15, 79.	1.9	14
250	Quantitative target analysis and kinetic profiling of acyl-CoAs reveal the rate-limiting step in cyanobacterial 1-butanol production. Metabolomics, 2016, 12, 26.	1.4	28
251	From cyanochemicals to cyanofactories: a review and perspective. Microbial Cell Factories, 2016, 15, 2.	1.9	55
252	Characteristics of extracellular hydrocarbon-rich microalga Botryococcus braunii for biofuels production: Recent advances and opportunities. Process Biochemistry, 2016, 51, 1866-1875.	1.8	42
253	2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption. Metabolic Engineering, 2016, 36, 28-36.	3.6	39
254	Expression of holo-proteorhodopsin in Synechocystis sp. PCC 6803. Metabolic Engineering, 2016, 35, 83-94.	3.6	18
255	Potential of Synechocystis PCC 6803 as a novel cyanobacterial chassis for heterologous expression of enzymes in the trans-resveratrol biosynthetic pathway. Protein Expression and Purification, 2016, 121, 163-168.	0.6	9
256	Recent advances and challenges of the use of cyanobacteria towards the production of biofuels. Renewable and Sustainable Energy Reviews, 2016, 60, 1-10.	8.2	38
257	Engineering the methylerythritol phosphate pathway in cyanobacteria for photosynthetic isoprene production from CO ₂ . Energy and Environmental Science, 2016, 9, 1400-1411.	15.6	212
258	Sustainable heterologous production of terpene hydrocarbons in cyanobacteria. Photosynthesis Research, 2016, 130, 123-135.	1.6	60
259	A droplet microfluidics platform for rapid microalgal growth and oil production analysis. Biotechnology and Bioengineering, 2016, 113, 1691-1701.	1.7	56
260	High-throughput evaluation of synthetic metabolic pathways. Technology, 2016, 04, 9-14.	1.4	2
261	Prospecting for new bacterial metabolites: a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products. Natural Product Reports, 2016, 33, 54-72.	5.2	109
262	Marine phototrophic consortia transfer electrons to electrodes in response to reductive stress. Photosynthesis Research, 2016, 127, 347-354.	1.6	15
263	Heterologous synthesis of geranyllinalool, a diterpenol plant product, in the cyanobacterium Synechocystis. Applied Microbiology and Biotechnology, 2017, 101, 2791-2800.	1.7	38

#	Article	IF	CITATIONS
264	Solar-to-chemical and solar-to-fuel production from CO 2 by metabolically engineered microorganisms. Current Opinion in Biotechnology, 2017, 45, 1-7.	3.3	71
265	Life cycle analysis of a large-scale limonene production facility utilizing filamentous N2-fixing cyanobacteria. Algal Research, 2017, 23, 1-11.	2.4	21
266	Identifying the Metabolic Differences of a Fast-Growth Phenotype in Synechococcus UTEX 2973. Scientific Reports, 2017, 7, 41569.	1.6	56
267	Physical, chemical, and metabolic state sensors expand the synthetic biology toolbox for <i>Synechocystis</i> sp. PCC 6803. Biotechnology and Bioengineering, 2017, 114, 1561-1569.	1.7	37
269	Synthetic biology approaches for the production of plant metabolites in unicellular organisms. Journal of Experimental Botany, 2017, 68, 4057-4074.	2.4	42
270	Biological Routes for the Synthesis of Platform Chemicals from Biomass Feedstocks. , 2017, , 153-166.		5
271	Function and Structure of Cyanobacterial Photosystem I. , 2017, , 111-168.		3
272	Cannabis sativa L Botany and Biotechnology. , 2017, , .		78
273	Building a bio-based industry in the Middle East through harnessing the potential of the Red Sea biodiversity. Applied Microbiology and Biotechnology, 2017, 101, 4837-4851.	1.7	10
274	Cannabinoids: Biosynthesis and Biotechnological Applications. , 2017, , 183-206.		15
275	Effect of codon optimization on the enhancement of the β-carotene contents in rice endosperm. Plant Biotechnology Reports, 2017, 11, 171-179.	0.9	14
276	Overexpression of endogenous 1-deoxy-d-xylulose 5-phosphate synthase (DXS) in cyanobacterium Synechocystis sp. PCC6803 accelerates protein aggregation. Journal of Bioscience and Bioengineering, 2017, 123, 590-596.	1.1	12
277	Systems analysis of ethanol production in the genetically engineered cyanobacterium Synechococcus sp. PCC 7002. Biotechnology for Biofuels, 2017, 10, 56.	6.2	64
278	Biofuel production: Challenges and opportunities. International Journal of Hydrogen Energy, 2017, 42, 8450-8461.	3.8	465
279	Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae. Metabolic Engineering, 2017, 39, 257-266.	3.6	71
280	Versatility of hydrocarbon production in cyanobacteria. Applied Microbiology and Biotechnology, 2017, 101, 905-919.	1.7	35
281	The plasticity of cyanobacterial carbon metabolism. Current Opinion in Chemical Biology, 2017, 41, 12-19.	2.8	65
282	Direct Conversion of CO ₂ to α-Farnesene Using Metabolically Engineered <i>Synechococcus elongatus</i> PCC 7942. Journal of Agricultural and Food Chemistry, 2017, 65, 10424-10428	2.4	49

#	Article	IF	CITATIONS
283	The Impact of Microalgae in Food Science and Technology. JAOCS, Journal of the American Oil Chemists' Society, 2017, 94, 1333-1350.	0.8	136
284	Structural and Chemical Biology of Terpenoid Cyclases. Chemical Reviews, 2017, 117, 11570-11648.	23.0	720
285	Engineering Isoprene Synthase Expression and Activity in Cyanobacteria. ACS Synthetic Biology, 2017, 6, 2281-2292.	1.9	66
286	Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases. Metabolic Engineering Communications, 2017, 5, 45-53.	1.9	62
287	Contaminations in mass cultivation of cyanobacteria: Highly resilient Colpoda steinii leads to rapid crash of Synechocystis sp. cultures and is inhibited by partially anoxic conditions. Algal Research, 2017, 28, 229-234.	2.4	20
288	Exploration of the 1-deoxy-d-xylulose 5-phosphate synthases suitable for the creation of a robust isoprenoid biosynthesis system. Journal of Bioscience and Bioengineering, 2017, 123, 300-307.	1.1	14
289	Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives. Microbial Biotechnology, 2017, 10, 103-124.	2.0	57
290	Fueling the future with biomass: Processes and pathways for a sustainable supply of hydrocarbon fuels and biogas. Engineering in Life Sciences, 2017, 17, 14-26.	2.0	20
291	Cyanobacterial factories for the production of green energy and value-added products: An integrated approach for economic viability. Renewable and Sustainable Energy Reviews, 2017, 69, 578-595.	8.2	86
292	Volatile Metabolites Emission by In Vivo Microalgae—An Overlooked Opportunity?. Metabolites, 2017, 7, 39.	1.3	61
293	Microbial Production of Isoprenoids. , 2017, , 359-382.		6
294	C1 Gas Refinery. , 2017, , 501-516.		0
295	Responses of Synechocystis sp. PCC 6803 to heterologous biosynthetic pathways. Microbial Cell Factories, 2017, 16, 140.	1.9	19
296	Production of isoprene, one of the high-density fuel precursors, from peanut hull using the high-efficient lignin-removal pretreatment method. Biotechnology for Biofuels, 2017, 10, 297.	6.2	15
297	Boosting isoprene production via heterologous expression of the Kudzu isoprene synthase gene (klspS) into Bacillus spp. cell factory. AMB Express, 2017, 7, 161.	1.4	13
298	Engineering isoprene synthesis in cyanobacteria. FEBS Letters, 2018, 592, 2059-2069.	1.3	30
299	Discovery and characterization of Synechocystis sp. PCC 6803 light-entrained promoters in diurnal light:dark cycles. Algal Research, 2018, 30, 121-127.	2.4	6
300	Heterologous Leader Sequences in Fusion Constructs Enhance Expression of Geranyl Diphosphate Synthase and Yield of β-Phellandrene Production in Cyanobacteria (<i>Synechocystis</i>). ACS Synthetic Biology, 2018, 7, 912-921.	1.9	30

		CITATION REPOR	ет	
# 301	ARTICLE Synthetic and Semisynthetic Metabolic Pathways for Biofuel Production. , 2018, , 421-432.	IF		Citations 2
302	A review on sustainable microalgae based biofuel and bioenergy production: Recent developmen Journal of Cleaner Production, 2018, 181, 42-59.	ts. 4.0	6	313
303	Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels a biomaterials by chemoautotrophs: Opportunities and challenges. Bioresource Technology, 2018, 478-490.	nd 256, 4.8	3	126
304	Photosynthesis and Its Metabolic Engineering Applications. , 2018, , 121-165.			0
305	Methods for enhancing cyanobacterial stress tolerance to enable improved production of biofuel and industrially relevant chemicals. Applied Microbiology and Biotechnology, 2018, 102, 1617-16	s 1.7 528. 1.7	7	16
306	Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. col Synechocystis reveals contrasting expansion potential. Metabolic Engineering, 2018, 45, 223-23	i and 3.6 6.	5	38
307	Photosynthetic Production of Sunscreen Shinorine Using an Engineered Cyanobacterium. ACS Synthetic Biology, 2018, 7, 664-671.	1.9)	59
308	Toolboxes for cyanobacteria: Recent advances and future direction. Biotechnology Advances, 20 1293-1307.	18, 36, 6.0	D	104
309	Sorbitol production and optimization of photosynthetic supply in the cyanobacterium Synechocy PCC 6803. Journal of Biotechnology, 2018, 276-277, 25-33.	ystis 1.9)	20
310	Efficiency of Photosynthesis and Photoelectrochemical Cells. Springer Series in Chemical Physics 2018, , 111-122.	0.:	2	0
311	Energy Conversion in Natural and Artificial Photosynthesis. Springer Series in Chemical Physics, 2 , .	018, 0.:	2	11
312	Metabolic pathway rewiring in engineered cyanobacteria for solar-to-chemical and solar-to-fuel production from CO2. Bioengineered, 2018, 9, 2-5.	1.4	ŧ	2
313	Synechocystis PCC 6803 cells heterologously expressing bacterial tyrosine ammonia lyase can us exogenous tyrosine for p-coumaric acid production. Journal of Plant Biochemistry and Biotechnology, 2018, 27, 118-122.	;e 0.0	9	2
314	Characterization of Seven Species of Cyanobacteria for High-Quality Biomass Production. Arabia Journal for Science and Engineering, 2018, 43, 109-121.	ן ז 1.7		42
315	Cyanobacteria: Promising biocatalysts for sustainable chemical production. Journal of Biological Chemistry, 2018, 293, 5044-5052.	1.6	5	184
316	Systems and synthetic biology for the biotechnological application of cyanobacteria. Current Op in Biotechnology, 2018, 49, 94-99.	nion 3.3	3	90
317	Tailored carbon partitioning for phototrophic production of (E)-α-bisabolene from the green microalga Chlamydomonas reinhardtii. Metabolic Engineering, 2018, 45, 211-222.	3.6	5	125
318	Metabolic engineering of microorganisms for biofuel production. Renewable and Sustainable Ene Reviews, 2018, 82, 3863-3885.	rgy 8.2	2	124

		CITATION R	EPORT	
#	Article		IF	CITATIONS
319	Synthetic Biology Advances for Enrichment of Bioactive Molecules in Plants. , 2018, , 1	17-145.		3
320	Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Natu Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from In Reports, 2018, 8, 16632.	rally Idia. Scientific	1.6	91
322	Biorefining of protein waste for production of sustainable fuels and chemicals. Biotech Biofuels, 2018, 11, 256.	inology for	6.2	58
323	Terpenoid Metabolic Engineering in Photosynthetic Microorganisms. Genes, 2018, 9, 5	520.	1.0	67
324	Cyanobacteria as photoautotrophic biofactories of high-value chemicals. Journal of CC 2018, 28, 335-366.	12 Utilization,	3.3	71
325	Recombinant Synechococcus elongatus PCC 7942 for improved zeaxanthin productio light conditions. Algal Research, 2018, 36, 139-151.	n under natural	2.4	42
326	Bio-production of gaseous alkenes: ethylene, isoprene, isobutene. Biotechnology for B 234.	iofuels, 2018, 11,	6.2	14
327	Recent developments in synthetic biology and metabolic engineering in microalgae to production. Biotechnology for Biofuels, 2018, 11, 185.	wards biofuel	6.2	172
328	Cyanobacterial pigments: Perspectives and biotechnological approaches. Food and Ch Toxicology, 2018, 120, 616-624.	emical	1.8	100
329	Molecular and biochemical characterization of a novel isoprene synthase from Metrosi polymorpha. BMC Plant Biology, 2018, 18, 118.	deros	1.6	9
330	Gas fermentation of C1 feedstocks: commercialization status and future prospects. Bi Bioproducts and Biorefining, 2018, 12, 1103-1117.	ofuels,	1.9	48
331	Microbial bio-fuels a solution to carbon emissions and energy crisis. Frontiers in Biosci Landmark, 2018, 23, 1789-1802.	ence -	3.0	32
332	Metabolic engineering for the production of isoprene and isopentenol by Escherichia c Microbiology and Biotechnology, 2018, 102, 7725-7738.	oli. Applied	1.7	51
334	Pilot-scale production of poly-β-hydroxybutyrate with the cyanobacterium Synechocyt in a non-sterile tubular photobioreactor. Algal Research, 2018, 34, 116-125.	is sp. CCALA192	2.4	65
335	Systematic overexpression study to find target enzymes enhancing production of terp Synechocystis PCC 6803, using isoprene as a model compound. Metabolic Engineering	enes in g, 2018, 49, 164-177.	3.6	84
336	Fremyella diplosiphon as a Biodiesel Agent: Identification of Fatty Acid Methyl Esters v Microwave-Assisted Direct In Situ Transesterification. Bioenergy Research, 2018, 11, 5	ia 28-537.	2.2	13
337	Expanding the toolbox for Synechocystis sp. PCC 6803: validation of replicative vector characterization of a novel set of promoters. Synthetic Biology, 2018, 3, ysy014.	's and	1.2	43
338	Biotechnology of cyanobacterial isoprene production. Applied Microbiology and Biotec 102, 6451-6458.	chnology, 2018,	1.7	44

#	Article	IF	Citations
339	Chasing bacterial <i>chassis</i> for metabolic engineering: a perspective review from classical to nonâ€ŧraditional microorganisms. Microbial Biotechnology, 2019, 12, 98-124.	2.0	193
340	Development of novel on-line capillary gas chromatography-based analysis method for volatile organic compounds produced by aerobic fermentation. Journal of Bioscience and Bioengineering, 2019, 127, 121-127.	1.1	4
341	Bio-solar cell factories for photosynthetic isoprenoids production. Planta, 2019, 249, 181-193.	1.6	22
342	Algae: A New Biomass Resource. , 2019, , 165-197.		2
343	Process synthesis and economic analysis of cyanobacteria biorefineries: A superstructure-based approach. Applied Energy, 2019, 253, 113625.	5.1	16
344	Synechococcus elongatus as a model of photosynthetic bioreactor for expression of recombinant Î ² -glucosidases. Biotechnology for Biofuels, 2019, 12, 174.	6.2	6
345	Modular engineering for efficient photosynthetic biosynthesis of 1-butanol from CO ₂ in cyanobacteria. Energy and Environmental Science, 2019, 12, 2765-2777.	15.6	119
346	Artificial bioconversion of carbon dioxide. Chinese Journal of Catalysis, 2019, 40, 1421-1437.	6.9	23
347	Mevalonate Pathway Promiscuity Enables Noncanonical Terpene Production. ACS Synthetic Biology, 2019, 8, 2238-2247.	1.9	22
348	Improving the production of isoprene and 1,3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways. Applied Microbiology and Biotechnology, 2019, 103, 2597-2608.	1.7	15
349	A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products. Journal of CO2 Utilization, 2019, 33, 131-147.	3.3	303
350	iMet: A graphical user interface software tool to merge metabolic networks. Heliyon, 2019, 5, e01766.	1.4	1
351	Manipulation of Microalgal Lipid Production: A Genetic Engineering Aspect. , 2019, , 179-209.		3
352	Carbon dioxide capture and bioenergy production using biological system – A review. Renewable and Sustainable Energy Reviews, 2019, 110, 143-158.	8.2	152
353	CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax. Plant Physiology, 2019, 180, 39-55.	2.3	123
354	Photosynthetic generation of heterologous terpenoids in cyanobacteria. Biotechnology and Bioengineering, 2019, 116, 2041-2051.	1.7	32
355	The fourth generation of biofuel. , 2019, , 557-597.		24
356	Introduction to algal fuels. , 2019, , 1-31.		9

#	ARTICLE	IF	CITATIONS
357	Multiâ€modular engineering for renewable production of isoprene via mevalonate pathway in <i>Escherichia coli</i> . Journal of Applied Microbiology, 2019, 126, 1128-1139.	1.4	14
358	Introducing an Arabidopsis thaliana Thylakoid Thiol/Disulfide-Modulating Protein Into Synechocystis Increases the Efficiency of Photosystem II Photochemistry. Frontiers in Plant Science, 2019, 10, 1284.	1.7	2
359	Cyanobacterial Secretion Systems: Understanding Fundamental Mechanisms Toward Technological Applications. , 2019, , 359-381.		9
360	Cyanobacterial Bioenergy and Biofuels Science and Technology: A Scientometric Overview. , 2019, , 419-442.		2
361	<i>Anabaena</i> sp. strain PCC 7120: Laboratory Maintenance, Cultivation, and Heterocyst Induction. Current Protocols in Microbiology, 2019, 52, e71.	6.5	15
362	Ten years of algal biofuel and bioproducts: gains and pains. Planta, 2019, 249, 195-219.	1.6	57
363	Integrated Product Recovery Will Boost Industrial Cyanobacterial Processes. Trends in Biotechnology, 2019, 37, 454-463.	4.9	9
364	Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels. Renewable and Sustainable Energy Reviews, 2020, 119, 109562.	8.2	56
365	Mathematical modeling for the design of evolution experiments to study the genetic instability of metabolically engineered photosynthetic microorganisms. Algal Research, 2020, 52, 102093.	2.4	1
366	Fermentative production of Vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control. Nature Communications, 2020, 11, 5155.	5.8	46
367	Microbial production of limonene and its derivatives: Achievements and perspectives. Biotechnology Advances, 2020, 44, 107628.	6.0	55
368	Metabolic engineering of phosphite metabolism in Synechococcus elongatus PCC 7942 as an effective measure to control biological contaminants in outdoor raceway ponds. Biotechnology for Biofuels, 2020, 13, 119.	6.2	26
369	Cyanobacteria: A perspective paradigm for agriculture and environment. , 2020, , 215-224.		5
370	PATH ^{cre8} : A Tool That Facilitates the Searching for Heterologous Biosynthetic Routes. ACS Synthetic Biology, 2020, 9, 3217-3227.	1.9	7
371	Metabolic Engineering and Synthetic Biology of Cyanobacteria for Carbon Capture and Utilization. Biotechnology and Bioprocess Engineering, 2020, 25, 829-847.	1.4	12
372	Isoprene flux from permeable carbonate sediments on the Great Barrier Reef. Marine Chemistry, 2020, 225, 103856.	0.9	5
375	A rapid and low-cost method for genomic DNA extraction from the cyanobacterium Synechocystis. Biology Methods and Protocols, 2020, 5, bpaa011.	1.0	2
376	Cyanobacterial Production of Biopharmaceutical and Biotherapeutic Proteins. Frontiers in Plant Science, 2020, 11, 237.	1.7	16

#	Article	IF	CITATIONS
377	Cyanobacterial genome editing toolboxes: recent advancement and future projections for basic and synthetic biology researches. , 2020, , 129-149.		1
378	Production of biofuel through metabolic engineering: Processing, types, and applications. , 2020, , 155-169.		2
379	Physiological aspects of cyanobacterial nitrogen fixation and its applications in modern sciences. , 2020, , 205-217.		0
380	Cyanobacteria as a biofuel source: advances and applications. , 2020, , 269-289.		8
381	Metabolic pathway engineering: Perspectives and applications. Computer Methods and Programs in Biomedicine, 2020, 192, 105436.	2.6	18
382	Engineered EscherichiaÂcoli strains as platforms for biological production of isoprene. FEBS Open Bio, 2020, 10, 780-788.	1.0	7
383	Nitrogen-fixing cyanobacteria as a potential resource for efficient biodiesel production. Fuel, 2020, 279, 118440.	3.4	23
384	Fusion constructs enhance heterologous β-phellandrene production in Synechocystis sp. PCC 6803. Journal of Applied Phycology, 2020, 32, 2889-2902.	1.5	7
385	Cyanobacteria: Review of Current Potentials and Applications. Environments - MDPI, 2020, 7, 13.	1.5	86
386	Regulatory systems for gene expression control in cyanobacteria. Applied Microbiology and Biotechnology, 2020, 104, 1977-1991.	1.7	28
387	Metabolic rewiring of synthetic pyruvate dehydrogenase bypasses for acetone production in cyanobacteria. Plant Biotechnology Journal, 2020, 18, 1860-1868.	4.1	21
388	Photosynthetic Conversion of Carbon Dioxide to Oleochemicals by Cyanobacteria: Recent Advances and Future Perspectives. Frontiers in Microbiology, 2020, 11, 634.	1.5	20
389	Cracking of squalene into isoprene as chemical utilization of algae oil. Green Chemistry, 2020, 22, 3083-3087.	4.6	6
390	The pioneering research on the cyanobacterial photosystems and photosynthesis. , 2020, , 231-243.		0
391	High density cultivation for efficient sesquiterpenoid biosynthesis in Synechocystis sp. PCC 6803. Scientific Reports, 2020, 10, 5932.	1.6	42
392	Post-translational Modifications of Serine/Threonine and Histidine Kinases and Their Roles in Signal Transductions in Synechocystis Sp. PCC 6803. Applied Biochemistry and Biotechnology, 2021, 193, 687-716.	1.4	5
393	Fusion catalyst mediated lignin valorization. , 2021, , 243-266.		0
394	Isoprene fluxes from warm temperate and tropical seagrass communities. Marine Ecology - Progress Series, 2021, 676, 1-17.	0.9	2

#	Article	IF	CITATIONS
395	Biological Methods for Carbon Dioxide Conversion and Utilization. Advances in Science, Technology and Innovation, 2021, , 165-177.	0.2	1
396	Metabolic energy conservation for fermentative product formation. Microbial Biotechnology, 2021, 14, 829-858.	2.0	12
397	Reprogramming Metabolic Networks and Manipulating Circadian Clocks for Biotechnological Applications. , 2021, , 259-296.		1
398	Validation of an insertion-engineered isoprene synthase as a strategy to functionalize terpene synthases. RSC Advances, 2021, 11, 29997-30005.	1.7	1
399	Study on the isoprene-producing co-culture system of Synechococcus elongates–Escherichia coli through omics analysis. Microbial Cell Factories, 2021, 20, 6.	1.9	13
400	Optimization of Light and Nutrients Supply to Stabilize Long-Term Industrial Cultivation of Metabolically Engineered Cyanobacteria: A Model-Based Analysis. Industrial & Engineering Chemistry Research, 2021, 60, 10455-10465.	1.8	1
401	Anaerobic Production of Isoprene by Engineered <i>Methanosarcina</i> Species Archaea. Applied and Environmental Microbiology, 2021, 87, .	1.4	21
402	Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes, 2021, 12, 500.	1.0	17
403	Photosynthetic production of biodiesel in Synechocystis sp. PCC6803 transformed with insect or plant fatty acid methyltransferase. Bioprocess and Biosystems Engineering, 2021, 44, 1433-1439.	1.7	4
404	Recombinant Protein Stability in Cyanobacteria. ACS Synthetic Biology, 2021, 10, 810-825.	1.9	14
408	Multi-Omic Analyses Reveal Habitat Adaptation of Marine Cyanobacterium Synechocystis sp. PCC 7338. Frontiers in Microbiology, 2021, 12, 667450.	1.5	6
409	Exploring the oxygenase function of Form II Rubisco for production of glycolate from CO2. AMB Express, 2021, 11, 65.	1.4	7
410	Impairing photorespiration increases photosynthetic conversion of CO2 to isoprene in engineered cyanobacteria. Bioresources and Bioprocessing, 2021, 8, .	2.0	12
411	Engineering microalgae: transition from empirical design to programmable cells. Critical Reviews in Biotechnology, 2021, 41, 1233-1256.	5.1	28
412	A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chemical Engineering Science, 2021, 236, 116515.	1.9	190
413	Metabolic engineering of Synechocystis sp. PCC 6803 for improved bisabolene production. Metabolic Engineering Communications, 2021, 12, e00159.	1.9	43
414	Catalyst derived from wastes for biofuel production: a critical review and patent landscape analysis. Applied Nanoscience (Switzerland), 2022, 12, 3677-3701.	1.6	25
415	Comparison of alternative integration sites in the chromosome and the native plasmids of the cyanobacterium Synechocystis sp. PCC 6803 in respect to expression efficiency and copy number. Microbial Cell Factories, 2021, 20, 130.	1.9	21

ARTICLE IF CITATIONS Biopolymer production in microbiology by application of metabolic engineering. Polymer Bulletin, O, , 1.7 1 416 1. Escherichia coli AraJ boosts utilization of arabinose in metabolically engineered cyanobacterium 1.4 Synechocystis sp. PCC 6803. AMB Express, 2021, 11, 115. Mangrove Creeks Are a Sink for Isopreneâ€"A Functional Link Between Ecosystems. Journal of 418 0 1.3 Geophysical Research G: Biogeosciences, 2021, 126, e2021JG006418. Bio-conversion of CO2 into biofuels and other value-added chemicals via metabolic engineering. Microbiological Research, 2021, 251, 126813. A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, 420 polysaccharides accumulation strategies, and biofuels production scenarios. Science of the Total 3.9 23 Environment, 2021, 794, 148636. Bioethanol and biodiesel: Bibliometric mapping, policies and future needs. Renewable and Sustainable 8.2 Energy Reviews, 2021, 152, 111677. 422 Metabolic engineering approaches for high-yield hydrocarbon biofuels. , 2022, , 253-270. 2 Metabolic engineering for microbial cell factories., 2021, , 79-94. 424 Metabolic pathways for production of anticancer compounds in cyanobacteria., 2021, , 127-154. 1 Cyanobacteria as a Platform for Direct Photosynthesis-to-Fuel Conversion. SpringerBriefs in Environmental Science, 2015, , 31-38. Microalgal Systems Biology for Biofuel Production., 2015, , 3-21. 426 2 Microbial Production of Isoprenoids., 2016, , 1-24. 428 Microbial Production of Isoprenoids., 2017, , 1-24. 5 C1 Gas Refinery., 2018, , 1-16. 429 Cyanoremediation: A Green-Clean Tool for Decontamination of Synthetic Pesticides from Agro- and 430 25 Aquatic Ecosystems., 2017, , 59-83. Solar-Powered Production of Biofuels and Other Petroleum Substitutes by Cyanobacteria: Stoichiometries of Reducing Equivalents and Chemical Energy, and Energy Conversion Efficiency. Advanced Topics in Science and Technology in China, 2013, , 353-357. Engineering Cyanobacteria for Photosynthetic Production of C3 Platform Chemicals and Terpenoids 432 0.8 6 from CO2. Advances in Experimental Medicine and Biology, 2018, 1080, 239-259. Synthetic Biology Approaches to the Sustainable Production of p-Coumaric Acid and Its Derivatives in Cyanobacteria. Advances in Experimental Medicine and Biology, 2018, 1080, 261-277.

#	Article	IF	CITATIONS
434	Synthetic Gene Regulation in Cyanobacteria. Advances in Experimental Medicine and Biology, 2018, 1080, 317-355.	0.8	11
435	Rewiring of Cyanobacterial Metabolism for Hydrogen Production: Synthetic Biology Approaches and Challenges. Advances in Experimental Medicine and Biology, 2018, 1080, 171-213.	0.8	12
436	Ethanol, glycogen and glucosylglycerol represent competing carbon pools in ethanol-producing cells of Synechocystis sp. PCC 6803 under high-salt conditions. Microbiology (United Kingdom), 2017, 163, 300-307.	0.7	31
437	Inactivation of invertase enhances sucrose production in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology (United Kingdom), 2018, 164, 1220-1228.	0.7	29
439	Enhancing Production of Bio-Isoprene Using Hybrid MVA Pathway and Isoprene Synthase in E. coli. PLoS ONE, 2012, 7, e33509.	1.1	132
440	Biomass Production from Electricity Using Ammonia as an Electron Carrier in a Reverse Microbial Fuel Cell. PLoS ONE, 2012, 7, e44846.	1.1	42
441	Ethylene Synthesis and Regulated Expression of Recombinant Protein in Synechocystis sp. PCC 6803. PLoS ONE, 2012, 7, e50470.	1.1	153
442	Synergy: A Web Resource for Exploring Gene Regulation in Synechocystis sp. PCC6803. PLoS ONE, 2014, 9, e113496.	1.1	4
443	The Regulation of Light Sensing and Light-Harvesting Impacts the Use of Cyanobacteria as Biotechnology Platforms. Frontiers in Bioengineering and Biotechnology, 2014, 2, 22.	2.0	23
444	ToMI-FBA: A genome-scale metabolic flux based algorithm to select optimum hosts and media formulations for expressing pathways of interest. AIMS Bioengineering, 2015, 2, 335-374.	0.6	6
445	Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology. World Journal of Microbiology and Biotechnology, 2021, 37, 201.	1.7	11
446	Synthetic Biology: Its Applications in Biotechnology*. Progress in Biochemistry and Biophysics, 2012, 39, 95-118.	0.3	0
447	Photosynthetic Microorganism-Based CO2 Mitigation System: Integrated Approaches for Global Sustainability. SpringerBriefs in Materials, 2014, , 83-123.	0.1	1
448	Omics Advances of Biosynthetic Pathways of Isoprenoid Production in Microalgae. , 2016, , 35-58.		0
450	Algae: A New Biomass Resource. , 2017, , 1-33.		1
451	Synthetic Biology Enables Photosynthetic Production of Limonene from CO2 and H2O. , 2018, , 163-188.		0
452	Review: Biofuel Production from Plant and Algal Biomass. Alternative Energy and Ecology (ISJAEE), 2019, , 12-31.	0.2	3
454	What Are Model Microorganisms?. Frontiers for Young Minds, 0, 7, .	0.8	0

#	Article	IF	CITATIONS
455	Microbial Factories for Biofuel Production: Current Trends and Future Prospects. Environmental and Microbial Biotechnology, 2021, , 71-97.	0.4	0
456	Exploring ecological diversity and biosynthetic potential of cyanobacteria for biofuel production. , 2022, , 197-230.		Ο
457	Engineering Natural Product Biosynthetic Pathways to Produce Commodity and Specialty Chemicals. , 2020, , 352-376.		0
458	Metabolic engineering of cyanobacteria for production of platform chemicals: A synthetic biology approach. , 2020, , 127-145.		1
459	Synthetic Biology and Future Production of Biofuels and High–Value Products. , 2020, , 271-302.		4
460	Current trends in algal biotechnology for the generation of sustainable biobased products. , 2022, , 213-239.		1
462	Channeling Anabolic Side Products toward the Production of Nonessential Metabolites: Stable Malate Production in Synechocystis sp. PCC6803. ACS Synthetic Biology, 2021, , .	1.9	1
463	Flux balance analysis for overproduction of organic acids by Synechocystis sp. PCC 6803 under dark anoxic condition. Biochemical Engineering Journal, 2022, 178, 108297.	1.8	3
464	Cyanobacteria as a renewable resource for biofuel production. , 2022, , 475-499.		0
466	Expressing 2-keto acid pathway enzymes significantly increases photosynthetic isobutanol production. Microbial Cell Factories, 2022, 21, 17.	1.9	4
467	Thermodynamics contributes to high limonene productivity in cyanobacteria. Metabolic Engineering Communications, 2022, 14, e00193.	1.9	10
469	Cyanobacteria: Model Microorganisms and Beyond. Microorganisms, 2022, 10, 696.	1.6	26
470	Separation of isoprene from biologically-derived gas streams. Separation Science and Technology, 0, , 1-11.	1.3	0
471	Phycocyanin Fusion Constructs for Heterologous Protein Expression Accumulate as Functional Heterohexameric Complexes in Cyanobacteria. ACS Synthetic Biology, 2022, 11, 1152-1166.	1.9	4
472	Heterologous Lactate Synthesis in <i>Synechocystis</i> sp. Strain PCC 6803 Causes a Growth Condition-Dependent Carbon Sink Effect. Applied and Environmental Microbiology, 2022, 88, e0006322.	1.4	3
476	Potential applications of the low-molecular-weight metabolome of Synechocystis aquatilis Sauvageau, 1892 (Cyanophyceae: Merismopediaceae). , 2022, , 347-376.		0
477	Current knowledge on cyanobacterial biobutanol production: advances, challenges, and prospects. Reviews in Environmental Science and Biotechnology, 0, , 1.	3.9	2
478	Advances in metabolic engineering of cyanobacteria for production of biofuels. Fuel, 2022, 322, 124117.	3.4	16

		CITATION REPORT	
#	Article	IF	CITATIONS
479	Utilization of Food Waste for Biofuel Production. Clean Energy Production Technologies, 202	2, , 1-23. 0.3	1
480	A concise review on the cultivation of microalgal biofilms for biofuel feedstock production. Bi Conversion and Biorefinery, 2024, 14, 7219-7236.	omass 2.9	8
482	MICROBIAL isoprene production: an overview. World Journal of Microbiology and Biotechnolo 2022, 38, .	ygy, 1.7	4
484	Rhythm of the Night (and Day): Predictive Metabolic Modeling of Diurnal Growth in <i>Chlamydomonas</i> . MSystems, 2022, 7, .	1.7	2
485	Applications of cyanobacterial compounds in the energy, health, value-added product, and agricultural sectors: A perspective. , 2022, , 149-164.		0
486	Exploring genetic tools for cyanobacteria and their application for biofuels production. , 2022 129-162.	9 3	Ο
487	Exploring the metabolic versatility of cyanobacteria for an emerging carbon-neutral bioecono 2022, , 165-187.	my. ,	0
488	Engineering plant family TPS into cyanobacterial host for terpenoids production. Plant Cell Re 2022, 41, 1791-1803.	ports, 2.8	11
489	Translating advances in microbial bioproduction to sustainable biotechnology. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	7
490	Biosynthesis and potential applications of terpenes produced from microalgae. Bioresource Technology Reports, 2022, 19, 101166.	1.5	5
491	The Molecular Toolset and Techniques Required to Build Cyanobacterial Cell Factories. Advan Biochemical Engineering/Biotechnology, 2022, , .	ces in 0.6	0
493	Quantitative insight into the metabolism of isoprene-producing Synechocystis sp. PCC 6803 steady state 13C-MFA. Photosynthesis Research, 0, , .	using 1.6	3
494	Role of Microorganisms in Production of Biofuels. Clean Energy Production Technologies, 202 65-116.	.22, , 0.3	1
495	Opportunities and Challenges of in vitro Synthetic Biosystem for Terpenoids Production. Biotechnology and Bioprocess Engineering, 2022, 27, 697-705.	1.4	1
496	Role of regulatory pathways and multi-omics approaches for carbon capture and mitigation ir cyanobacteria. Bioresource Technology, 2022, 366, 128104.	4.8	5
497	A combined photobiological–photochemical route to C ₁₀ cycloalkane jet fuel carbon dioxide <i>via</i> isoprene. Green Chemistry, 2022, 24, 9602-9619.	s from 4.6	14
498	Microbial Production of Limonene. , 2022, , 1-29.		0
503	Cyanobacterial phycobilisomes as a platform for the stable production of heterologous enzyn other proteins. Metabolic Engineering, 2023, 77, 174-187.	nes and 3.6	2

#	Article	IF	CITATIONS
504	Engineered production of isoprene from the model green microalga Chlamydomonas reinhardtii. Metabolic Engineering Communications, 2023, 16, e00221.	1.9	10
505	Integrated experimental and photo-mechanistic modelling of biomass and optical density production of fast versus slow growing model cyanobacteria. Algal Research, 2023, 70, 102997.	2.4	2
506	Current Metabolic Engineering Strategies for Photosynthetic Bioproduction in Cyanobacteria. Microorganisms, 2023, 11, 455.	1.6	8
507	Review and Perspectives of Emerging Green Technology for the Sequestration of Carbon Dioxide into Value-Added Products: An Intensifying Development. Energy & Fuels, 2023, 37, 3570-3589.	2.5	12
508	Mapping competitive pathways to terpenoid biosynthesis in Synechocystis sp. PCC 6803 using an antisense RNA synthetic tool. Microbial Cell Factories, 2023, 22, .	1.9	1
509	Geranyl Diphosphate Synthase (CrtE) Inhibition Using Alendronate Enhances Isoprene Production in Recombinant Synechococcus elongatus UTEX 2973: A Step towards Isoprene Biorefinery. Fermentation, 2023, 9, 217.	1.4	6
510	Bioproduction of isoprene and isoprenoids. , 2023, , 265-277.		1
511	Effects of <i>n</i> -butanol production on metabolism and the photosystem in <i>Synecococcus elongatus</i> PCC 7942 based on metabolic flux and target proteome analyses. Journal of General and Applied Microbiology, 2023, 69, 185-195.	0.4	0
512	Metabolic sink engineering in cyanobacteria: Perspectives and applications. Bioresource Technology, 2023, 379, 128974.	4.8	2
513	Recent progress and challenges in CRISPR-Cas9 engineered algae and cyanobacteria. Algal Research, 2023, 71, 103068.	2.4	6
514	Enhanced bio-synthesis of isoprene via modifying mevalonate and methylerythritol phosphate pathways for industrial application: A review. Process Biochemistry, 2023, 130, 256-271.	1.8	8
515	Characterizing isoprene production in cyanobacteria – Insights into the effects of light, temperature, and isoprene on Synechocystis sp. PCC 6803. Bioresource Technology, 2023, 380, 129068.	4.8	6
518	Microbial applications for sustainable space exploration beyond low Earth orbit. Npj Microgravity, 2023, 9, .	1.9	7
519	Microalgae in food and feed: Safety and toxicological aspects. , 2023, , 549-565.		0
523	Photosynthetic conversion of CO2 and H2O to long-chain terpene alcohol by genetically engineered N2-fixing cyanobacteria. , 2023, , 451-461.		1
531	Perspectives of cyanobacterial cell factories. Photosynthesis Research, 0, , .	1.6	3
532	Engineering Microalgae: Transition from Empirical Design to Programmable Cells. , 2023, , 1-31.		0
535	Metabolic engineering of cyanobacteria for biotechnological applications. , 2024, , 491-508.		0

ARTICLE

IF CITATIONS