Experimental and simulation study on wind affecting p

Solar Energy 84, 263-270 DOI: 10.1016/j.solener.2009.11.005

Citation Report

#	Article	IF	CITATIONS
1	Numerical study on combined free-forced convection heat loss of solar cavity receiver under wind environments. International Journal of Thermal Sciences, 2012, 60, 182-194.	2.6	45
2	A review of studies on central receiver solar thermal power plants. Renewable and Sustainable Energy Reviews, 2013, 23, 12-39.	8.2	533
3	Effect of wind direction on heat loss of a fully open cylindrical cavity with only the bottom wall heated. , 2013, , .		0
4	Simulation and experimental study on a spiral solid particle solar receiver. Applied Energy, 2014, 113, 178-188.	5.1	37
5	Optimization of the optical particle properties for a high temperature solar particle receiver. Solar Energy, 2014, 99, 299-311.	2.9	15
6	Optical and thermal performance of a high-temperature spiral solar particle receiver. Solar Energy, 2014, 109, 200-213.	2.9	32
7	Technology Advancements for Next Generation Falling Particle Receivers. Energy Procedia, 2014, 49, 398-407.	1.8	97
8	System Design of a 1 MW North-facing, Solid Particle Receiver. Energy Procedia, 2015, 69, 340-349.	1.8	10
9	Experimental Study on The Effect of Wind on Heat Losses from a Fully Open Cylindrical Cavity with only Bottom Wall Heated. International Journal of Green Energy, 2015, 12, 1244-1254.	2.1	4
10	Assessment of a falling solid particle receiver with numerical simulation. Solar Energy, 2015, 115, 505-517.	2.9	55
11	On-sun testing of an advanced falling particle receiver system. AIP Conference Proceedings, 2016, , .	0.3	46
12	Performance Evaluation of a High-Temperature Falling Particle Receiver. , 2016, , .		14
13	Recirculating metallic particles for the efficiency enhancement of concentrated solar receivers. Renewable Energy, 2016, 96, 850-862.	4.3	10
14	A review of high-temperature particle receivers for concentrating solar power. Applied Thermal Engineering, 2016, 109, 958-969.	3.0	293
15	Wind Effect on Combined Convection and Surface Radiation Heat Losses of a Fully Open Cylindrical Cavity With Insulation. Heat Transfer Engineering, 2016, 37, 456-467.	1.2	6
16	Characterization of Particle Flow in a Free-Falling Solar Particle Receiver. Journal of Solar Energy Engineering, Transactions of the ASME, 2017, 139, .	1.1	67
17	Advances in central receivers for concentrating solar applications. Solar Energy, 2017, 152, 38-56.	2.9	280
18	Highlights of the high-temperature falling particle receiver project: 2012 - 2016. AIP Conference Proceedings, 2017, , .	0.3	28

#	Article	IF	CITATIONS
19	A new generation of solid particle and other high-performance receiver designs for concentrating solar thermal (CST) central tower systems. , 2017, , 107-128.		9
20	A study of granular flow through horizontal wire mesh screens for concentrated solar power particle heating receiver applications – Part I: Experimental studies and numerical model development. Solar Energy, 2018, 169, 1-10.	2.9	18
21	An experimental and numerical study of granular flows through a perforated square lattice for central solar receiver applications. Solar Energy, 2018, 174, 463-473.	2.9	9
22	On-Sun Performance Evaluation of Alternative High-Temperature Falling Particle Receiver Designs. Journal of Solar Energy Engineering, Transactions of the ASME, 2019, 141, .	1.1	24
23	A comprehensive review on solid particle receivers of concentrated solar power. Renewable and Sustainable Energy Reviews, 2019, 116, 109463.	8.2	79
24	Properties of solid particles as heat transfer fluid in a gravity driven moving bed solar receiver. Solar Energy Materials and Solar Cells, 2019, 200, 110007.	3.0	39
25	Progress in heat transfer research for high-temperature solar thermal applications. Applied Thermal Engineering, 2021, 184, 116137.	3.0	67
26	Thermal performance analysis of free-falling solar particle receiver and heat transfer modelling of multiple particles. Applied Thermal Engineering, 2021, 187, 116567.	3.0	26
27	Study on Spectral Radiative Heat Transfer Characteristics of a Windowed Receiver with Particle Curtain. Energies, 2021, 14, 2801.	1.6	1
28	Optical and radiative characterisation of alumina–silica based ceramic materials for high-temperature solar thermal applications. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 272, 107754.	1.1	11
29	Optical characterisation of alumina–mullite materials for solar particle receiver applications. Solar Energy Materials and Solar Cells, 2021, 230, 111170.	3.0	16
30	Modeling the Thermal Performance of Falling Particle Receivers Subject to External Wind. , 2019, , .		6
31	Numerical modelling of radiative heat transfer in a polydispersion of ceramic particles under direct high-flux solar irradiation. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 278, 108008.	1.1	6
32	Design Evaluation of a Next-Generation High-Temperature Particle Receiver for Concentrating Solar Thermal Applications. Energies, 2022, 15, 1657.	1.6	14
33	Solid particle solar receivers in the nextâ€generation concentrated solar power plant. EcoMat, 2022, 4,	6.8	14
34	Direct measurements and prediction of the particle egress from a vortex-based solar cavity receiver with an open aperture. Solar Energy, 2022, 235, 105-117.	2.9	2
35	High-temperature optical and radiative properties of alumina–silica-based ceramic materials for solar thermal applications. Solar Energy Materials and Solar Cells, 2022, 242, 111710.	3.0	14
36	Heat transfer in directly-irradiated high-temperature solid–gas flows laden with polydisperse particles. Applied Mathematical Modelling, 2022, 110, 698-722.	2.2	3

#	Article	IF	CITATIONS
37	A review of directly irradiated solid particle receivers: Technologies and influencing parameters. Renewable and Sustainable Energy Reviews, 2022, 167, 112682.	8.2	6
38	Numerical study on influence of wind on thermal performance of a solid particle solar receiver. Frontiers in Energy Research, 0, 10, .	1.2	0
39	Opportunities and challenges in using particle circulation loops for concentrated solar power applications. Progress in Energy and Combustion Science, 2023, 94, 101056.	15.8	31