Power plant post-combustion carbon dioxide capture: A

Journal of Membrane Science 359, 126-139 DOI: 10.1016/j.memsci.2009.10.041

Citation Report

#	Article	IF	CITATIONS
1	Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO ₂ capture. Nanotechnology, 2010, 21, 395301.	1.3	202
2	Can Metal–Organic Framework Materials Play a Useful Role in Large‣cale Carbon Dioxide Separations?. ChemSusChem, 2010, 3, 879-891.	3.6	556
4	A Highâ€Performance Gasâ€Separation Membrane Containing Submicrometerâ€Sized Metal–Organic Framework Crystals. Angewandte Chemie - International Edition, 2010, 49, 9863-9866.	7.2	603
5	Carbonate–ceramic dual-phase membrane for carbon dioxide separation. Journal of Membrane Science, 2010, 357, 122-129.	4.1	153
6	Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO2 capture. Journal of Membrane Science, 2010, 362, 265-278.	4.1	155
7	Gas permeability of cross-linked poly(ethylene-oxide) based on poly(ethylene glycol) dimethacrylate and a miscible siloxane co-monomer. Polymer, 2010, 51, 5734-5743.	1.8	28
8	Nanostructured membrane material designed for carbon dioxide separation. Journal of Membrane Science, 2010, 350, 124-129.	4.1	215
9	Influence of TRIS-based co-monomer on structure and gas transport properties of cross-linked poly(ethylene oxide). Journal of Membrane Science, 2010, 359, 25-36.	4.1	31
10	Multi-stage gas separation membrane processes used in post-combustion capture: Energetic and economic analyses. Journal of Membrane Science, 2010, 359, 160-172.	4.1	165
11	Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN. Journal of Membrane Science, 2010, 359, 149-159.	4.1	111
12	Peculiarity of a CO2-philic block copolymer confined in thin films with constrained thickness: "a super membrane for CO2-capture― Energy and Environmental Science, 2011, 4, 4656.	15.6	56
13	Greening Coal: Breakthroughs and Challenges in Carbon Capture and Storage. Environmental Science & Technology, 2011, 45, 8597-8604.	4.6	110
14	Liquidlike Poly(ethylene glycol) Supported in the Organic–Inorganic Matrix for CO2Removal. Macromolecules, 2011, 44, 5268-5280.	2.2	41
15	Techno-economic evaluation of cryogenic CO2 capture—A comparison with absorption and membrane technology. International Journal of Greenhouse Gas Control, 2011, 5, 1559-1565.	2.3	116
16	Carbon capture in metal–organic frameworks—a comparative study. Energy and Environmental Science, 2011, 4, 2177.	15.6	354
17	Effect of End Groups and Grafting on the CO ₂ Separation Performance of Poly(ethylene) Tj ETQq1 1	0,784314 2.2	rgBT /Over
18	Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chemical Communications, 2011, 47, 10275.	2.2	303
19	Understanding the High Solubility of CO ₂ in an Ionic Liquid with the Tetracyanoborate Anion. Journal of Physical Chemistry B, 2011, 115, 9789-9794.	1.2	132

#	Article	IF	CITATIONS
20	Analysis and Status of Post-Combustion Carbon Dioxide Capture Technologies. Environmental Science & Technology, 2011, 45, 8624-8632.	4.6	386
21	Recent developments on membranes for post-combustion carbon capture. Current Opinion in Chemical Engineering, 2011, 1, 47-54.	3.8	63
22	CO ₂ Capture from Dilute Gases as a Component of Modern Global Carbon Management. Annual Review of Chemical and Biomolecular Engineering, 2011, 2, 31-52.	3.3	227
23	Advancing coal conversion technologies: materials challenges. , 0, , 117-126.		0
24	Polymer nanosieve membranes for CO2-captureÂapplications. Nature Materials, 2011, 10, 372-375.	13.3	732
25	Maxwell–Stefan modeling of slowing-down effects in mixed gas permeation across porous membranes. Journal of Membrane Science, 2011, 383, 289-300.	4.1	78
26	Economic Comparison of Three Gas Separation Technologies for CO2 Capture from Power Plant Flue Gas. Chinese Journal of Chemical Engineering, 2011, 19, 615-620.	1.7	39
27	Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynthesis Research, 2011, 109, 231-247.	1.6	186
28	Membrane performance requirements for carbon dioxide capture using hydrogen-selective membranes in integrated gasification combined cycle (IGCC) power plants. Journal of Membrane Science, 2011, 367, 233-239.	4.1	83
29	Improvement of CO2/N2 separation characteristics of polyvinylamine by modifying with ethylenediamine. Journal of Membrane Science, 2011, 378, 425-437.	4.1	121
30	Highly hydrophilic, rubbery membranes for CO2 capture and dehydration of flue gas. International Journal of Greenhouse Gas Control, 2011, 5, 26-36.	2.3	83
31	Membrane processes and postcombustion carbon dioxide capture: Challenges and prospects. Chemical Engineering Journal, 2011, 171, 782-793.	6.6	195
32	Recent developments on carbon capture and storage: An overview. Chemical Engineering Research and Design, 2011, 89, 1446-1460.	2.7	604
33	A modular framework for the analysis and optimization of power generation systems with CCS. Energy Procedia, 2011, 4, 2082-2089.	1.8	5
34	Carbon molecular sieve membranes derived from pseudo-interpenetrating polymer networks for gas separation and carbon capture. Carbon, 2011, 49, 2104-2112.	5.4	43
35	Liquid CO2 droplet extraction from gases. Energy, 2011, 36, 2961-2967.	4.5	6
36	Testing of nanostructured gas separation membranes in the flue gas of a post-combustion power plant. International Journal of Greenhouse Gas Control, 2011, 5, 37-48.	2.3	32
37	Pushing the limits of block copolymer membranes for CO2 separation. Journal of Membrane Science, 2011, 378, 479-484.	4.1	97

	CITATION	CITATION REPORT	
#	Article	IF	Citations
38	Development, performance and stability of sulfur-free, macrovoid-free BSCF capillaries for high temperature oxygen separation from air. Journal of Membrane Science, 2011, 372, 239-248.	4.1	41
39	Opportunities for membranes in sustainable energy. Journal of Membrane Science, 2011, 373, 1-4.	4.1	8
40	Synthesis and CO ₂ sorption in poly(1-trimethylsilyl-1-propyne) and polyvinyltrimethylsilane containing ethylene oxide groups and N-butylimidazol-based "ionic liquids―groups. Desalination and Water Treatment, 2011, 35, 255-262.	1.0	0
41	Polymeric membranes for post-combustion carbon dioxide (CO 2) capture. , 2011, , 160-183.		1
42	Membranes for Environmentally Friendly Energy Processes. Membranes, 2012, 2, 706-726.	1.4	109
43	Materials challenges in carbon-mitigation technologies. MRS Bulletin, 2012, 37, 431-438.	1.7	15
44	Beyond 1,3-difunctionalized imidazolium cations. Nanomaterials and Energy, 2012, 1, 237-242.	0.1	17
45	Carbon Dioxide Separation with a Two-Dimensional Polymer Membrane. ACS Applied Materials & Interfaces, 2012, 4, 3745-3752.	4.0	131
46	Membrane gas separations and post-combustion carbon dioxide capture: Parametric sensitivity and process integration strategies. Chemical Engineering Journal, 2012, 211-212, 122-132.	6.6	71
47	Post–combustion Carbon Dioxide Capture using Membrane Processes: A Sensitivity Analysis. Procedia Engineering, 2012, 44, 1191-1195.	1.2	5
48	Hybrid Membrane Cryogenic Process for Post–combustion Co2 Capture. Procedia Engineering, 2012, 44, 417-422.	1.2	5
49	REMOVED: Stability of Pebax® or Polyactive® Blended with Low Molecular Weight PEG as Materials for CO2 Selective Membranes. Procedia Engineering, 2012, 44, 1422-1423.	1.2	0
50	REMOVED: Nanocomposite Membrane of a Polymer of Intrinsic Microporosity and Zeolitic Imidazolate Frameworks for Gas Separation. Procedia Engineering, 2012, 44, 33-36.	1.2	0
51	Membrane Processes Applied to Carbon Capture in Coal-Fired Power Plants: From Modelling to Multi-Stage Design. Procedia Engineering, 2012, 44, 1278-1280.	1.2	1
52	Parametric Analysis of a Novel Cryogenic CO ₂ Capture System Based on Stirling Coolers. Environmental Science & Technology, 2012, 46, 12735-12741.	4.6	28
53	Evaluation of Stirling cooler system for cryogenic CO2 capture. Applied Energy, 2012, 98, 491-501.	5.1	84
54	Design and economics of a hybrid membrane–temperature swing adsorption process for upgrading biogas. Journal of Membrane Science, 2012, 413-414, 17-28.	4.1	44
55	Hybrid membrane cryogenic process for post-combustion CO2 capture. Journal of Membrane Science, 2012, 415-416, 424-434.	4.1	109

#	Article	IF	CITATIONS
56	High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas. Green Chemistry, 2012, 14, 1052.	4.6	189
57	Advances in high permeability polymeric membrane materials for CO ₂ separations. Energy and Environmental Science, 2012, 5, 7306-7322.	15.6	451
58	Feasibility of zeolitic imidazolate framework membranes for clean energy applications. Energy and Environmental Science, 2012, 5, 7637.	15.6	154
59	Integrated CO2 capture and enzymatic bioconversion in supported ionic liquid membranes. Separation and Purification Technology, 2012, 97, 34-41.	3.9	47
60	Gas transport properties of Pebax®/room temperature ionic liquid gel membranes. Separation and Purification Technology, 2012, 97, 73-82.	3.9	223
61	Effect of different additives on the physical and chemical CO2 absorption in polyetherimide hollow fiber membrane contactor system. Separation and Purification Technology, 2012, 98, 472-480.	3.9	48
62	Membrane processes for carbon capture from coal-fired power plant flue gas: A modeling and cost study. Journal of Membrane Science, 2012, 421-422, 299-310.	4.1	140
63	Formation–structure–performance correlation of thin film composite membranes prepared by interfacial polymerization for gas separation. Journal of Membrane Science, 2012, 421-422, 327-341.	4.1	67
64	A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas. Journal of Membrane Science, 2012, 423-424, 302-313.	4.1	67
65	Natural gas purification and olefin/paraffin separation using cross-linkable dual-layer hollow fiber membranes comprising β-Cyclodextrin. Journal of Membrane Science, 2012, 423-424, 392-403.	4.1	42
66	Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes. RSC Advances, 2012, 2, 10745.	1.7	155
68	Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation. , 2012, , 265-275.		1
69	Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chemical Communications, 2012, 48, 735-737.	2.2	328
70	Inorganic membranes for carbon dioxide and nitrogen separation. Reviews in Chemical Engineering, 2012, 28, .	2.3	51
71	Membrane Operations for Industrial Applications. , 2012, , .		0
72	Industrial Emission Treatment Technologies. , 2012, , .		1
73	Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 724-781.	23.0	5,612
74	Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas. AICHE Journal, 2012, 58, 1550-1561.	1.8	33

#	Article	IF	CITATIONS
75	Technicoâ€economical assessment of MFlâ€ŧype zeolite membranes for CO ₂ capture from postcombustion flue gases. AICHE Journal, 2012, 58, 3183-3194.	1.8	30
76	Water and beyond: Expanding the spectrum of largeâ€scale energy efficient separation processes. AICHE Journal, 2012, 58, 2624-2633.	1.8	151
77	Cascaded Membrane Processes for Postâ€Combustion CO ₂ Capture. Chemical Engineering and Technology, 2012, 35, 489-496.	0.9	27
78	Systems membranes – combining the supramolecular and dynamic covalent polymers for gas-selective dynameric membranes. Chemical Communications, 2012, 48, 7398.	2.2	22
79	Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	30
80	Progress Towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems. Journal of Electronic Materials, 2012, 41, 1622-1631.	1.0	13
81	Integrated membrane operations in the ethylene oxide production. Clean Technologies and Environmental Policy, 2012, 14, 475-485.	2.1	10
82	Evaluation of mass transfer characteristics of non-porous and microporous membrane contactors for the removal of CO2. Chemical Engineering Journal, 2012, 195-196, 122-131.	6.6	22
83	An energetic analysis of CO2 capture on a gas turbine combining flue gas recirculation and membrane separation. Energy, 2012, 38, 167-175.	4.5	30
84	Optimisation of the connection of membrane CCS installation with a supercritical coal-fired power plant. Energy, 2012, 38, 118-127.	4.5	46
85	Carbon dioxide capture with membranes at an IGCC power plant. Journal of Membrane Science, 2012, 389, 441-450.	4.1	234
86	Combustion-assisted CO2 capture using MECC membranes. Journal of Membrane Science, 2012, 401-402, 323-332.	4.1	29
87	Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2012, 403-404, 169-178.	4.1	124
88	High-performance membranes comprising polyaniline nanoparticles incorporated into polyvinylamine matrix for CO2/N2 separation. Journal of Membrane Science, 2012, 403-404, 203-215.	4.1	71
89	Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science, 2012, 38, 156-214.	15.8	810
90	Recent developments in membrane-based technologies for CO2 capture. Progress in Energy and Combustion Science, 2012, 38, 419-448.	15.8	439
91	Synthesis and gas permeability of membranes of Poly(vinyl ether)s bearing oxyethylene segments. Polymer, 2012, 53, 1659-1664.	1.8	15
92	Absorption of NO by using aqueous KMnO ₄ /(NH ₄) ₂ CO ₃ solutions. Environmental Progress and Sustainable Energy, 2013, 32, 564-568.	1.3	11

#	Article	IF	CITATIONS
93	<scp>PVAm–PIP/PS</scp> Composite Membrane with High Performance for <scp><scp>CO</scp></scp> ₂ / <scp><scp>N</scp></scp> ₂ Separation. AICHE Journal, 2013, 59, 215-228.	1.8	254
94	Developing cross-linked poly(ethylene oxide) membrane byÂthe novel reaction system for H2 purification. International Journal of Hydrogen Energy, 2013, 38, 5122-5132.	3.8	47
95	CO ₂ capture and H ₂ purification: Prospects for CO ₂ â€selective membrane processes. AICHE Journal, 2013, 59, 1033-1045.	1.8	134
96	A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation. Chemical Communications, 2013, 49, 8513.	2.2	78
97	Amine-functionalized SBA-15 in poly(styrene-b-butadiene-b-styrene) (SBS) yields permeable and selective nanostructured membranes for gas separation. Journal of Materials Chemistry A, 2013, 1, 11853.	5.2	45
98	High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation. Journal of Membrane Science, 2013, 443, 156-169.	4.1	129
99	Membrane-Based Oxygen-Enriched Combustion. Industrial & Engineering Chemistry Research, 2013, 52, 10820-10834.	1.8	66
100	The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids. RSC Advances, 2013, 3, 15518.	1.7	127
101	Techno-economic analysis and optimization models for carbon capture and storage: a survey. Energy Systems, 2013, 4, 315-353.	1.8	41
102	A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture. Applied Energy, 2013, 111, 710-720.	5.1	413
103	A parametric study of the impact of membrane materials and process operating conditions on carbon capture from humidified flue gas. Journal of Membrane Science, 2013, 431, 139-155.	4.1	86
104	Post-combustion CO2 capture using super-hydrophobic, polyether ether ketone, hollow fiber membrane contactors. Journal of Membrane Science, 2013, 430, 79-86.	4.1	56
105	Na2CO3-Based Sorbents Coated on Metal Foil: Post Testing Analysis. Topics in Catalysis, 2013, 56, 1944-1951.	1.3	5
106	Post-combustion Carbon Capture with a Gas Separation Membrane: Parametric Study, Capture Cost, and Exergy Analysis. Energy & Fuels, 2013, 27, 4137-4149.	2.5	76
107	Preliminary Studies of CO ₂ Removal from Precombustion Syngas through Pressure Swing Membrane Absorption Process with Ionic Liquid as Absorbent. Industrial & Engineering Chemistry Research, 2013, 52, 8783-8799.	1.8	23
108	Carbon capture from stationary power generation sources: A review of the current status of the technologies. Korean Journal of Chemical Engineering, 2013, 30, 1497-1526.	1.2	128
109	Investigating the influence of sweep gas on CO2/N2 membranes for post-combustion capture. International Journal of Greenhouse Gas Control, 2013, 13, 180-190.	2.3	34
110	Synthesis and characterization of crosslinked poly(vinyl) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 67 To for CO2/N2 separation. Journal of Membrane Science, 2013, 446, 383-394.	d (alcohol)/poly 4.1	e(allylamine 43

	CITATION	N REPORT	
#	Article	IF	CITATIONS
111	Opportunities and challenges in carbon dioxide capture. Journal of CO2 Utilization, 2013, 1, 69-87.	3.3	379
114	Cost competitive membrane—cryogenic post-combustion carbon capture. International Journal of Greenhouse Gas Control, 2013, 17, 341-348.	2.3	71
115	Energy-efficient polymeric gas separation membranes for a sustainable future: AÂreview. Polymer, 2013, 54, 4729-4761.	1.8	1,144
116	Molecular Motions of Adsorbed CO ₂ on a Tetrazole-Functionalized PIM Polymer Studied with ¹³ C NMR. Journal of Physical Chemistry C, 2013, 117, 22995-22999.	1.5	8
117	Electrochemical CO ₂ Capture Using Resin-Wafer Electrodeionization. Industrial & Engineering Chemistry Research, 2013, 52, 15177-15186.	1.8	59
118	Investigation of gas permeation behavior in facilitated transport membranes: Relationship between gas permeance and partial pressure. Chemical Engineering Journal, 2013, 225, 744-751.	6.6	48
119	Modeling of CO ₂ Stripping in a Hollow Fiber Membrane Contactor for CO ₂ Capture. Energy & Fuels, 2013, 27, 6887-6898.	2.5	40
120	Influence of the PEO length in gas separation properties of segregating aromatic–aliphatic copoly(ether-imide)s. Chemical Engineering Science, 2013, 104, 574-585.	1.9	16
121	Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation. Journal of Membrane Science, 2013, 434, 137-147.	4.1	171
122	Facilitated transport behavior of humidified gases through thin-film composite polyamide membranes for carbon dioxide capture. Journal of Membrane Science, 2013, 429, 349-354.	4.1	25
123	Effect of composition and nanostructure on CO2/N2 transport properties of supported alkyl-imidazolium block copolymer membranes. Journal of Membrane Science, 2013, 430, 312-320.	4.1	47
124	Deposition CO ₂ Capture Process Using a Free Piston Stirling Cooler. Industrial & Engineering Chemistry Research, 2013, 52, 14936-14943.	1.8	9
125	High performance polymer membranes for CO2 separation. Current Opinion in Chemical Engineering, 2013, 2, 238-244.	3.8	84
126	The role of membranes in post-combustion CO ₂ capture. , 2013, 3, 318-337.		69
127	Highly permeable membrane materials for CO2 capture. Journal of Materials Chemistry A, 2013, 1, 13769.	5.2	64
128	Physically Gelled Room-Temperature Ionic Liquid-Based Composite Membranes for CO ₂ /N ₂ Separation: Effect of Composition and Thickness on Membrane Properties and Performance. Industrial <u>& Engineering Chemistry Research, 2013, 52, 8812-8821</u> .	1.8	49
129	Review of recent advances in carbon dioxide separation and capture. RSC Advances, 2013, 3, 22739.	1.7	632
130	Cost-effective CO2 capture based on in silico screening of zeolites and process optimization. Physical Chemistry Chemical Physics, 2013, 15, 17601.	1.3	118

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
131	A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO ₂ separation from flue gas. Energy and Environmental Science, 2013, 6, 539-551.	15.6	96
132	Gas separation membrane with CO ₂ -facilitated transport highway constructed from amino carrier containing nanorods and macromolecules. Journal of Materials Chemistry A, 2013, 1, 246-249.	5.2	79
133	Synthesis and sonication-induced assembly of Si-DDR particles for close-packed oriented layers. Chemical Communications, 2013, 49, 7418.	2.2	20
134	Analytical representation of micropores for predicting gas adsorption in porous materials. Microporous and Mesoporous Materials, 2013, 167, 188-197.	2.2	17
135	Na2CO3-based sorbents coated on metal foil: CO2 capture performance. International Journal of Greenhouse Gas Control, 2013, 15, 65-69.	2.3	31
136	Technical viability and exergy analysis of membrane crystallization: Closing the loop of CO2 sequestration. International Journal of Greenhouse Gas Control, 2013, 12, 450-459.	2.3	39
137	Long-term CO2 capture tests of Pd-based composite membranes with module configuration. International Journal of Hydrogen Energy, 2013, 38, 7896-7903.	3.8	22
138	CO2 capture by sub-ambient membrane operation. Energy Procedia, 2013, 37, 993-1003.	1.8	40
139	Comparative Investigation of Polymer Membranes for Post-combustion Capture. Energy Procedia, 2013, 37, 1125-1134.	' 1.8	16
140	Polyvinyl acetate/poly(amide-12-b-ethylene oxide) blend membranes for carbon dioxide separation. Journal of Energy Chemistry, 2013, 22, 837-844.	7.1	23
141	Hydrogen permeation properties of Pd-coated V89.8Cr10Y0.2 alloy membrane using WGS reaction gases. International Journal of Hydrogen Energy, 2013, 38, 6085-6091.	3.8	9
142	Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. Journal of Membrane Science, 2013, 436, 121-131.	4.1	94
143	Effects of O2 enrichment and CO2 dilution on laminar methane flames. Energy, 2013, 55, 1055-1066.	4.5	54
144	Hollow fiber carbon membranes: From material to application. Chemical Engineering Journal, 2013, 215-216, 440-448.	6.6	56
145	Membrane Systems Engineering for Post-combustion Carbon Capture. Energy Procedia, 2013, 37, 976-5	985. 1.8	15
146	The Effects of Membrane-based CO2 Capture System on Pulverized Coal Power Plant Performance and Cost. Energy Procedia, 2013, 37, 1117-1124.	1.8	11
147	Modelling and Multi-stage Design of Membrane Processes Applied to Carbon Capture in Coal-fired Power Plants. Energy Procedia, 2013, 37, 932-940.	1.8	17
148	Synthesis and characterization of thin ceramic-carbonate dual-phase membranes for carbon dioxide separation. Journal of Membrane Science, 2013, 444, 402-411.	4.1	66

#	Article	IF	CITATIONS
149	Improved CO2 separation performance with additives of PEG and PEG–PDMS copolymer in poly(2,6-dimethyl-1,4-phenylene oxide)membranes. Journal of Membrane Science, 2013, 432, 13-24.	4.1	44
150	Membrane processes for a sustainable industrial growth. RSC Advances, 2013, 3, 5694.	1.7	177
151	Membranes and Molten Carbonate Fuel Cells to Capture CO ₂ and Increase Energy Production in Natural Gas Power Plants. Industrial & Engineering Chemistry Research, 2013, 52, 8755-8764.	1.8	26
152	Gas Separation Properties of Metal Organic Framework (MOF-5) Membranes. Industrial & Engineering Chemistry Research, 2013, 52, 1102-1108.	1.8	165
153	Purification of flue gas by ionic liquids: Carbon monoxide capture in [bmim][Tf ₂ N]. AICHE Journal, 2013, 59, 3886-3891.	1.8	41
154	Gamma-Alumina Supported Carbon Molecular Sieve Membrane for Propylene/Propane Separation. Industrial & Engineering Chemistry Research, 2013, 52, 4297-4305.	1.8	91
155	Large-Scale Screening of Zeolite Structures for CO ₂ Membrane Separations. Journal of the American Chemical Society, 2013, 135, 7545-7552.	6.6	105
156	Surface Cross-Linking of ZIF-8/Polyimide Mixed Matrix Membranes (MMMs) for Gas Separation. Industrial & Engineering Chemistry Research, 2013, 52, 6991-7001.	1.8	178
157	Molecular Simulation of CO ₂ Adsorption in the Presence of Water in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 13479-13491.	1.5	70
158	From Charge-Mosaic to Micelle Self-Assembly: Block Copolymer Membranes in the Last 40 Years. Industrial & Engineering Chemistry Research, 2013, 52, 993-1003.	1.8	88
159	Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture. Journal of Membrane Science, 2013, 436, 221-231.	4.1	174
160	Recent progress in the design of advanced PEO-containing membranes for CO2 removal. Progress in Polymer Science, 2013, 38, 1089-1120.	11.8	259
161	Dehydration of natural gas using membranes. Part II: Sweep/countercurrent design and field test. Journal of Membrane Science, 2013, 432, 106-114.	4.1	48
162	CO2 capture for gas turbines: an integrated energy-efficient process combining combustion in oxygen-enriched air, flue gas recirculation, and membrane separation. Chemical Engineering Science, 2013, 97, 256-263.	1.9	28
163	Techno-Economic Assessment of Polymer Membrane Systems for Postcombustion Carbon Capture at Coal-Fired Power Plants. Environmental Science & Technology, 2013, 47, 3006-3014.	4.6	103
164	Selective Exhaust Gas Recycle with Membranes for CO ₂ Capture from Natural Gas Combined Cycle Power Plants. Industrial & Engineering Chemistry Research, 2013, 52, 1150-1159.	1.8	108
165	Measurement of the three-phase (vapour+liquid+solid) equilibrium conditions of semi-clathrates formed from mixtures of CO2, CO and H2. Journal of Chemical Thermodynamics, 2013, 56, 149-152.	1.0	26
166	Simulation of membrane-based CO2 capture in a coal-fired power plant. Journal of Membrane Science, 2013, 427, 451-459.	4.1	57

#	Article	IF	CITATIONS
167	Transforming biogas into biomethane using membrane technology. Renewable and Sustainable Energy Reviews, 2013, 17, 199-212.	8.2	225
168	Preparation of Zeolite T Membranes by a Two-Step Temperature Process for CO2 Separation. Industrial & Engineering Chemistry Research, 2013, 52, 16364-16374.	1.8	36
169	Techno-economic Analysis of Hybrid Processes for Biogas Upgrading. Industrial & Engineering Chemistry Research, 2013, 52, 16929-16938.	1.8	85
170	Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics. Nanoscale, 2013, 5, 9984.	2.8	155
171	Evaluation of a Carbonic Anhydrase Mimic for Industrial Carbon Capture. Environmental Science & Technology, 2013, 47, 10049-10055.	4.6	68
172	Estimation of diffusion anisotropy in microporous crystalline materials and optimization of crystal orientation in membranes. Journal of Chemical Physics, 2013, 139, 124703.	1.2	5
175	Tuning Gasâ€Diffusion through Dynameric Membranes: Toward Rubbery Organic Frameworks (ROFs). Israel Journal of Chemistry, 2013, 53, 97-101.	1.0	9
176	Theoretical and Experimental Investigations of Flat Sheet Membrane Module Types for High Capacity Gas Separation Applications. Chemie-Ingenieur-Technik, 2013, 85, 1210-1220.	0.4	32
177	Simulations of Membrane Gas Separation: Chemical Solvent Absorption Hybrid Plants for Pre- and Post-Combustion Carbon Capture. Separation Science and Technology, 2013, 48, 1954-1962.	1.3	18
178	Uniform Siâ€CHA Zeolite Layers Formed by a Selective Sonicationâ€Assisted Deposition Method. Angewandte Chemie - International Edition, 2013, 52, 5280-5284.	7.2	31
179	An Experimental Analysis of a Nano Structured Inorganic Ceramic Membrane for Carbon Capture Applications in Energy Security Challenges. Energy and Environment Research, 2014, 4, .	0.1	2
180	Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions. Scientific World Journal, The, 2014, 2014, 1-34.	0.8	278
181	Gas Permeability of Poly(tetrahydrofuran) Ionenes and Evaluation as CO2 Separation Membrane. Kobunshi Ronbunshu, 2014, 71, 255-257.	0.2	1
182	Membrane Separation Processes for Post-Combustion Carbon Dioxide Capture: State of the Art and Critical Overview. Oil and Gas Science and Technology, 2014, 69, 1005-1020.	1.4	28
183	Multi-stage Membrane Processes for CO2 Capture from Cement Industry. Energy Procedia, 2014, 63, 6476-6483.	1.8	28
184	High-Permeance Room-Temperature Ionic-Liquid-Based Membranes for CO ₂ /N ₂ Separation. Industrial & Engineering Chemistry Research, 2014, 53, 20064-20067.	1.8	63
185	Enhancing Membrane Permeability for CO2 Capture Through Blending Commodity Polymers with Selected PEO and PEO-PDMS Copolymers and Composite Hollow Fibres. Energy Procedia, 2014, 63, 202-209.	1.8	29
186	Upgrading Carbon Dioxide/Methane Mixtures by using a Hybrid Membrane–Condensed Rotational Separation Process. Energy Technology, 2014, 2, 874-876.	1.8	2

#	Article	IF	CITATIONS
187	Analysis and optimal design of membrane-based CO2 capture processes for coal and natural gas-derived flue gas. Energy Procedia, 2014, 63, 225-234.	1.8	16
188	Development of Mixed Matrix Membranes Containing Zeolites for Post-combustion Carbon Capture Energy Procedia, 2014, 63, 160-166.	1.8	43
189	Energy Efficient Process for CO2 Capture from Flue gas with Novel Fixed-site-carrier Membranes. Energy Procedia, 2014, 63, 174-185.	1.8	37
190	Effect of air-gap length on carbon dioxide stripping performance of a surface modified polysulfone hollow fiber membrane contactor. RSC Advances, 2014, 4, 59519-59527.	1.7	4
191	Synthesis and Characterisation of ETS-10/Acetate-based Ionic Liquid/Chitosan Mixed Matrix Membranes for CO2/N2 Permeation. Membranes, 2014, 4, 287-301.	1.4	51
192	A Systematic Method for Membrane CO2 Capture Modeling and Analysis. Energy Procedia, 2014, 63, 217-224.	1.8	18
193	Effect of CO2 Capture on Combined Cycle Gas Turbine Efficiency Using Membrane Separation, EGR and OEA Effects on Combustion Characteristics. , 2014, , .		1
194	Post-combustion CO2 Capture from Natural Gas Combined Cycles by Solvent Supported Membranes. Energy Procedia, 2014, 63, 7389-7397.	1.8	21
195	An introduction to the utilization of membrane technology in the production of clean and renewable power. , 2014, , 3-43.		2
196	Influence of temperature upon properties of tailor-made PEBAX® MH 1657 nanocomposite membranes for post-combustion CO2 capture. Journal of Membrane Science, 2014, 469, 344-354.	4.1	37
198	Chemical Vapor Deposition on Chabazite (CHA) Zeolite Membranes for Effective Post-Combustion CO ₂ Capture. Environmental Science & Technology, 2014, 48, 14828-14836.	4.6	36
199	Dense composite electrolyte hollow fibre membranes for high temperature CO2 separation. Separation and Purification Technology, 2014, 132, 712-718.	3.9	26
200	The Advances of Post-combustion CO2 Capture with Chemical Solvents: Review and Guidelines. Energy Procedia, 2014, 63, 1339-1346.	1.8	74
201	Highly selective CO2 capture by S-doped microporous carbon materials. Carbon, 2014, 66, 320-326.	5.4	230
202	Facilitated Transport in Hydroxideâ€Exchange Membranes for Post ombustion CO ₂ Separation. ChemSusChem, 2014, 7, 114-116.	3.6	15
203	Editorial Overview - Separation engineering: Recent developments on separation science and technology. Current Opinion in Chemical Engineering, 2014, 4, vii-ix.	3.8	0
204	Carbon dioxide emission reduction using molten carbonate fuel cell systems. Renewable and Sustainable Energy Reviews, 2014, 32, 178-191.	8.2	69
205	CO2-permselective membranes of crosslinked poly(vinyl ether)s bearing oxyethylene chains. Polymer, 2014, 55, 1459-1466.	1.8	15

#	Article	IF	CITATIONS
206	Porous Al2O3/TiO2 tubes in combination with 1-ethyl-3-methylimidazolium acetate ionic liquid for CO2/N2 separation. Separation and Purification Technology, 2014, 122, 440-448.	3.9	78
207	CO2 separation using thermally stable crosslinked poly(vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. Journal of Membrane Science, 2014, 460, 126-138.	4.1	67
208	Membrane gas separation processes for CO2 capture from cement kiln flue gas. International Journal of Greenhouse Gas Control, 2014, 24, 78-86.	2.3	40
209	Perfluorocyclobutyl polymer thin-film composite membranes for CO2 separations. Journal of Membrane Science, 2014, 450, 478-486.	4.1	39
210	Pressure ratio and its impact on membrane gas separation processes. Journal of Membrane Science, 2014, 463, 33-40.	4.1	129
211	Porous Materials for Carbon Dioxide Capture. Green Chemistry and Sustainable Technology, 2014, , .	0.4	19
212	Consideration of a nitrogen-selective membrane for postcombustion carbon capture through process modeling and optimization. Journal of Membrane Science, 2014, 465, 177-184.	4.1	32
213	Ending Aging in Super Glassy Polymer Membranes. Angewandte Chemie - International Edition, 2014, 53, 5322-5326.	7.2	275
214	Integrated membrane material and process development for gas separation. Current Opinion in Chemical Engineering, 2014, 4, 54-61.	3.8	32
215	Chemical potential analysis for directing the optimal design of gas membrane separation frameworks. Chemical Engineering Science, 2014, 107, 245-255.	1.9	12
216	Porous Inorganic Membranes for CO ₂ Capture: Present and Prospects. Chemical Reviews, 2014, 114, 1413-1492.	23.0	481
217	Soft polymeric nanoparticle additives for next generation gas separation membranes. Journal of Materials Chemistry A, 2014, 2, 4999.	5.2	71
218	Engineering evaluation of CO2 separation by membrane gas separation systems. Journal of Membrane Science, 2014, 454, 305-315.	4.1	81
219	Post-combustion carbon capture technologies: Energetic analysis and life cycle assessment. International Journal of Greenhouse Gas Control, 2014, 27, 289-298.	2.3	78
220	Zeolitic Imidazolate Frameworks: Nextâ€Generation Materials for Energyâ€Efficient Gas Separations. ChemSusChem, 2014, 7, 3202-3240.	3.6	235
222	The effect of soft nanoparticles morphologies on thin film composite membrane performance. Journal of Materials Chemistry A, 2014, 2, 17751-17756.	5.2	50
223	Modular polymerized ionic liquid block copolymer membranes for CO ₂ /N ₂ separation. Journal of Materials Chemistry A, 2014, 2, 7967-7972.	5.2	47
224	CO2 separation enhancement of the membrane by modifying the polymer with a small molecule containing amine and ester groups. RSC Advances, 2014, 4, 21313.	1.7	19

#	Article	IF	CITATIONS
225	Fabrication of high-performance facilitated transport membranes for CO ₂ separation. Chemical Science, 2014, 5, 2843-2849.	3.7	106
226	3-Dimensionally disordered mesoporous silica (DMS)-containing mixed matrix membranes for CO2 and non-CO2 greenhouse gas separations. Separation and Purification Technology, 2014, 136, 286-295.	3.9	37
227	High permeability hydrogel membranes of chitosan/poly ether-block-amide blends for CO2 separation. Journal of Membrane Science, 2014, 469, 198-208.	4.1	103
228	Graphene-based membranes – a new opportunity for CO ₂ separation. Carbon Management, 2014, 5, 251-253.	1.2	16
229	Evaluating different classes of porous materials for carbon capture. Energy and Environmental Science, 2014, 7, 4132-4146.	15.6	186
230	Thermal Structural Transitions and Carbon Dioxide Adsorption Properties of Zeolitic Imidazolate Framework-7 (ZIF-7). Journal of the American Chemical Society, 2014, 136, 7961-7971.	6.6	102
231	Membrane selective exchange process for dilute methane recovery. Journal of Membrane Science, 2014, 469, 11-18.	4.1	7
232	Effects of coexistent gaseous components and fine particles in the flue gas on CO2 separation by flat-sheet polysulfone membranes. Journal of Membrane Science, 2014, 470, 237-245.	4.1	38
233	A review of the protection strategies against internal corrosion for the safe transport of supercritical CO 2 via steel pipelines for CCS purposes. International Journal of Greenhouse Gas Control, 2014, 29, 185-199.	2.3	80
234	Novel CO2-Selective Cross-Linked Poly(vinyl alcohol)/Polyvinylpyrrolidone Blend Membrane Containing Amine Carrier for CO2–N2 Separation: Synthesis, Characterization, and Gas Permeation Study. Industrial & Engineering Chemistry Research, 2014, 53, 19736-19746.	1.8	23
235	Carbon Dioxide Adsorption onto Polyethylenimine-Functionalized Porous Chitosan Beads. Energy & Fuels, 2014, 28, 6467-6474.	2.5	50
236	Dramatically Enhanced Oxygen Fluxes in Fluorite-Rich Dual-Phase Membrane by Surface Modification. Chemistry of Materials, 2014, 26, 4387-4394.	3.2	52
237	Gas Separation Membrane Materials: A Perspective. Macromolecules, 2014, 47, 6999-7013.	2.2	920
238	High-Performance Composite Membrane with Enriched CO ₂ -philic Groups and Improved Adhesion at the Interface. ACS Applied Materials & Interfaces, 2014, 6, 6654-6663.	4.0	61
239	Amine modification on kaolinites to enhance CO2 adsorption. Journal of Colloid and Interface Science, 2014, 436, 47-51.	5.0	54
241	Effects of Minor SO ₂ on the Transport Properties of Fixed Carrier Membranes for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2014, 53, 7758-7767.	1.8	29
242	CO2-selective membranes for hydrogen production and CO2 capture – Part I: Membrane development. Journal of Membrane Science, 2014, 457, 149-161.	4.1	140
243	Gas/gas membrane contactors – An emerging membrane unit operation. Journal of Membrane Science, 2014, 462, 131-138.	4.1	13

#	Article	IF	CITATIONS
244	A comparative study of CO2 sorption properties for different oxides. Materials for Renewable and Sustainable Energy, 2014, 3, 1.	1.5	94
245	Synthesis of polyvinyltrimethylsilane-graft-poly(ethylene glycol) copolymers and properties of gas-separating membranes formed on their basis. Polymer Science - Series B, 2014, 56, 282-289.	0.3	1
246	Enhancing the overall efficiency of a lignite-fired oxyfuel power plant with CFB boiler and membrane-based air separation unit. Energy Conversion and Management, 2014, 80, 20-31.	4.4	39
247	Polyimide polydimethylsiloxane triblock copolymers for thin film composite gas separation membranes. Journal of Polymer Science Part A, 2014, 52, 3372-3382.	2.5	34
248	Hybrid FSC membrane for CO ₂ removal from natural gas: Experimental, process simulation, and economic feasibility analysis. AICHE Journal, 2014, 60, 4174-4184.	1.8	38
249	Estimating gas permeability and permselectivity of microporous polymers. Journal of Membrane Science, 2014, 468, 259-268.	4.1	40
250	Sub-ambient temperature flue gas carbon dioxide capture via Matrimid® hollow fiber membranes. Journal of Membrane Science, 2014, 465, 49-55.	4.1	39
251	lonic conducting ceramic–carbonate dual phase hollow fibre membranes for high temperature carbon dioxide separation. Journal of Membrane Science, 2014, 458, 58-65.	4.1	43
252	High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation. International Journal of Hydrogen Energy, 2014, 39, 5043-5053.	3.8	116
253	Experimental Study of CO2 Mineralization in Ca2+-Rich Aqueous Solutions Using Tributylamine as an Enhancing Medium. Energy & Fuels, 2014, 28, 2047-2053.	2.5	21
254	Tröger's Base-Based Microporous Polyimide Membranes for High-Performance Gas Separation. ACS Macro Letters, 2014, 3, 597-601.	2.3	170
255	Thin Ionic Liquid Membranes Based on Inorganic Supports with Different Pore Sizes. Industrial & Engineering Chemistry Research, 2014, 53, 8045-8056.	1.8	65
256	Advancing Adsorption and Membrane Separation Processes for the Gigaton Carbon Capture Challenge. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 479-505.	3.3	79
257	Enhanced Pressure Swing Membrane Absorption Process for CO2 Removal from Shifted Syngas with Dendrimer–Ionic Liquid Mixtures as Absorbent. Industrial & Engineering Chemistry Research, 2014, 53, 3305-3320.	1.8	22
258	Stability of blended polymeric materials for CO2 separation. Journal of Membrane Science, 2014, 467, 269-278.	4.1	48
259	Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. Journal of Membrane Science, 2014, 467, 162-174.	4.1	238
260	Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor. Applied Energy, 2014, 119, 43-56.	5.1	78
261	Coâ€extruded polymeric films for gas separation membranes. Journal of Applied Polymer Science, 2014, 131, .	1.3	18

		CITATION REPORT		
#	Article		IF	Citations
262	Investigation of a Hybrid System for Post-Combustion Capture. Energy Procedia, 2014	63, 1756-1772.	1.8	30
263	Techno-economic Performance of a Hybrid Membrane – Liquefaction Process for Pos CO2 Capture. Energy Procedia, 2014, 61, 1244-1247.	t-combustion	1.8	32
264	Integrating Carbon Capture and Storage with Energy Production from Saline Aquifers: Offset the Energy Cost of CCS. Energy Procedia, 2014, 63, 7349-7358.	A Strategy to	1.8	6
266	Designing ultrathin film composite membranes: the impact of a gutter layer. Scientific 15016.	Reports, 2015, 5,	1.6	98
267	Effect of Cross‣ink Density on Carbon Dioxide Separation in Polydimethylsiloxaneâ€ Membranes. ChemSusChem, 2015, 8, 3595-3604.	Norbornene	3.6	21
268	Effect of single and blended amine carriers on CO2 separation from CO2/N2 mixtures of crosslinked thin-film poly(vinyl alcohol) composite membrane. International Journal of Gas Control, 2015, 39, 27-38.	ising Greenhouse	2.3	27
269	Efficient ceramic zeolite membranes for CO ₂ /H ₂ separation. Materials Chemistry A, 2015, 3, 12500-12506.	Journal of	5.2	63
270	Emerging CO2 capture systems. International Journal of Greenhouse Gas Control, 201	5, 40, 126-166.	2.3	352
271	H2 Selective Membranes for Precombustion Carbon Capture. , 2015, , 177-206.			1
272	Fabrication of thermally rearranged (TR) polybenzoxazole hollow fiber membranes with CO2/N2 separation performance. Journal of Membrane Science, 2015, 490, 129-138.	superior	4.1	56
273	The optimal point within the Robeson upper boundary. Chemical Engineering Research 97, 109-119.	and Design, 2015,	2.7	13
274	Enhanced adsorption of carbon dioxide on surface-modified mesoporous silica-support tetraethylenepentamine: Role of surface chemical structure. Microporous and Mesopo 2015, 215, 76-83.	ed ous Materials,	2.2	26
275	Ca–Cu looping process for CO2 capture from a power plant and its comparison with oxy-combustion and amine-based CO2 capture processes. International Journal of Gree Control, 2015, 43, 198-212.	Ca-looping, nhouse Gas	2.3	40
276	Electrochemical separation of CO2 from a simulated flue gas with high-temperature ceramic–carbonate membrane: New observations. Journal of Membrane Science, 202	.5, 477, 1-6.	4.1	35
277	Production of energy from saline aquifers: A method to offset the energy cost of carbo storage. International Journal of Greenhouse Gas Control, 2015, 34, 97-105.	n capture and	2.3	21
278	Hydrodynamics and mass transfer performance of a microreactor for enhanced gas sep processes. Chemical Engineering Journal, 2015, 266, 258-270.	aration	6.6	82
279	Innovative Use of Membrane Contactor as Condenser for Heat Recovery in Carbon Car Environmental Science & Technology, 2015, 49, 2532-2540.	ture.	4.6	47
280	Membrane system design and process feasibility analysis for CO2 capture from flue ga fixed-site-carrier membrane. Chemical Engineering Journal, 2015, 268, 1-9.	with a	6.6	79

#	Article	IF	CITATIONS
281	Synthesis of MIL-88B(Fe)/Matrimid mixed-matrix membranes with high hydrogen permselectivity. RSC Advances, 2015, 5, 7253-7259.	1.7	37
282	Gas–Gas Separation byÂMembranes. , 2015, , 557-584.		6
283	Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO ₂ capture?. Chemical Society Reviews, 2015, 44, 2421-2454.	18.7	732
284	Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes. Scientific Reports, 2015, 5, 7823.	1.6	168
285	Separation of CO2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes. Journal of Membrane Science, 2015, 492, 257-262.	4.1	54
286	Diffusion mechanism of CO ₂ in a crystalline polymer membrane studied using model gases. Molecular Simulation, 2015, 41, 974-979.	0.9	5
287	Conceptual Design of Post-Combustion CO2 Capture Processes - Packed Columns and Membrane Technologies. Computer Aided Chemical Engineering, 2015, , 1223-1228.	0.3	7
288	Membrane-integrated oxy-fuel combustion of coal: Process design and simulation. Journal of Membrane Science, 2015, 492, 461-470.	4.1	17
289	Investigating the influence of the pressure distribution in a membrane module on the cascaded membrane system for post-combustion capture. International Journal of Greenhouse Gas Control, 2015, 39, 194-204.	2.3	25
290	Anionic surfactant-doped Pebax membrane with optimal free volume characteristics for efficient CO 2 separation. Journal of Membrane Science, 2015, 493, 460-469.	4.1	34
291	Cyclodextrin-based supramolecular polymeric nanoparticles for next generation gas separation membranes. Journal of Materials Chemistry A, 2015, 3, 14876-14886.	5.2	53
292	Fixed-site-carrier facilitated transport of carbon dioxide through ionic-liquid-based epoxy-amine ion gel membranes. Journal of Membrane Science, 2015, 492, 303-311.	4.1	52
293	The impact of water vapor on CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 2015, 492, 471-477.	4.1	29
294	Bendable Zeolite Membranes: Synthesis and Improved Gas Separation Performance. Langmuir, 2015, 31, 6894-6901.	1.6	22
295	Substantial Oxygen Flux in Dual-Phase Membrane of Ceria and Pure Electronic Conductor by Tailoring the Surface. ACS Applied Materials & amp; Interfaces, 2015, 7, 14699-14707.	4.0	34
296	Polymer functionalization to enhance interface quality of mixed matrix membranes for high CO ₂ /CH ₄ gas separation. Journal of Materials Chemistry A, 2015, 3, 15202-15213.	5.2	125
297	Membrane Modules and Process Design. , 2015, , 221-240.		1
298	An experimental investigation of mesoporous MgO as a potential pre-combustion CO2 sorbent. Materials for Renewable and Sustainable Energy, 2015, 4, 1.	1.5	17

#	Article	IF	CITATIONS
	Pilot scale investigations of the removal of carbon dioxide from hydrocarbon gas streams using poly		
299	of Membrane Science, 2015, 489, 237-247.	4.1	40
300	Expanded Porphyrins as Two-Dimensional Porous Membranes for CO ₂ Separation. ACS Applied Materials & amp; Interfaces, 2015, 7, 13073-13079.	4.0	62
301	High-Performance Multilayer Composite Membranes with Mussel-Inspired Polydopamine as a Versatile Molecular Bridge for CO ₂ Separation. ACS Applied Materials & Interfaces, 2015, 7, 15481-15493.	4.0	117
302	Mixed-Matrix Membranes for CO ₂ /N ₂ Separation Comprising a Poly(vinylamine) Matrix and Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2015, 54, 5139-5148.	1.8	64
303	Facilitated transport membranes containing amino-functionalized multi-walled carbon nanotubes for high-pressure CO2 separations. Journal of Membrane Science, 2015, 490, 18-28.	4.1	139
304	Fabrication of zeolite/polymer multilayer composite membranes for carbon dioxide capture: Deposition of zeolite particles on polymer supports. Journal of Colloid and Interface Science, 2015, 452, 203-214.	5.0	14
305	Membrane pilot plant trials of CO ₂ separation from flue gas. , 2015, 5, 229-237.		32
306	Polymeric ionic liquid-based membranes: Influence of polycation variation on gas transport and CO2 selectivity properties. Journal of Membrane Science, 2015, 486, 40-48.	4.1	92
307	Chemically and thermo-mechanically stable LSM–YSZ segmented oxygen permeable ceramic membrane. Journal of Membrane Science, 2015, 486, 222-228.	4.1	32
308	Analytical Diffusion Mechanism (ADiM) model combining specular, Knudsen and surface diffusion. Journal of Membrane Science, 2015, 485, 1-9.	4.1	18
309	Membrane evaporation of amine solution for energy saving in post-combustion carbon capture: Wetting and condensation. Separation and Purification Technology, 2015, 146, 60-67.	3.9	35
310	Application of Gas Separation Membranes. , 2015, , 241-287.		7
311	Gas Separation Membranes. , 2015, , .		173
312	Computational Modeling of bio-MOFs for CO2/CH4 separations. Chemical Engineering Science, 2015, 130, 120-128.	1.9	30
313	Thermally Rearranged Poly(benzoxazole- <i>co</i> -imide) Membranes with Superior Mechanical Strength for Gas Separation Obtained by Tuning Chain Rigidity. Macromolecules, 2015, 48, 2194-2202.	2.2	98
314	CO2-selective membranes for hydrogen production and CO2 capture – Part II: Techno-economic analysis. Journal of Membrane Science, 2015, 493, 794-806.	4.1	79
315	Highâ€performance thin film composite membranes with wellâ€defined poly(dimethylsiloxane)â€ <i>b</i> â€poly(ethylene glycol) copolymer additives for CO ₂ separation. Journal of Polymer Science Part A, 2015, 53, 1500-1511.	2.5	31
316	Carbon capture and reuse in an industrial district: A technical and economic feasibility study. Journal of CO2 Utilization, 2015, 10, 23-29.	3.3	37

	Сітаті	on Report	
#	Article	IF	CITATIONS
317	Using modified Avrami kinetic and two component isotherm equation for modeling of CO 2 /N 2 adsorption over a 13X zeolite bed. Journal of Natural Gas Science and Engineering, 2015, 27, 831-841.	2.1	21
318	Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nature Communications, 2015, 6, 8335.	5.8	214
319	Performance of a hybrid solvent of amino acid and ionic liquid for CO 2 capture. International Journal of Greenhouse Gas Control, 2015, 42, 400-404.	2.3	19
320	Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate. Journal of Membrane Science, 2015, 496, 48-57.	4.1	94
321	Study of the separation properties of FAU membranes constituted by hierarchically assembled nanozeolites. Separation and Purification Technology, 2015, 156, 321-327.	3.9	20
322	Ultrathin membranes of single-layered MoS ₂ nanosheets for high-permeance hydrogen separation. Nanoscale, 2015, 7, 17649-17652.	2.8	130
323	Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 2015, 495, 130-168.	4.1	229
324	A high performance PVAm–HT membrane containing high-speed facilitated transport channels for CO ₂ separation. Journal of Materials Chemistry A, 2015, 3, 16746-16761.	5.2	62
325	Comparison of thin film composite and microporous membrane contactors for CO 2 absorption into monoethanolamine. International Journal of Greenhouse Gas Control, 2015, 42, 66-74.	2.3	53
326	New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas. Journal of Membrane Science, 2015, 495, 415-423.	4.1	101
327	Simulation and feasibility study of using thermally rearranged polymeric hollow fiber membranes for various industrial gas separation applications. Journal of Membrane Science, 2015, 496, 229-241.	4.1	19
328	Influence of Poly(ethylene glycol) Segment Length on CO ₂ Permeation and Stability of PolyActive Membranes and Their Nanocomposites with PEG POSS. ACS Applied Materials & Interfaces, 2015, 7, 12289-12298.	4.0	58
329	Membrane gas absorption for CO 2 capture from flue gas containing fine particles and gaseous contaminants. International Journal of Greenhouse Gas Control, 2015, 33, 10-17.	2.3	34
330	Analysis of hybrid membrane and chemical absorption systems for CO2 capture. Korean Journal of Chemical Engineering, 2015, 32, 383-389.	1.2	9
331	A synergistic strategy via the combination of multiple functional groups into membranes towards superior CO2 separation performances. Journal of Membrane Science, 2015, 476, 243-255.	4.1	50
332	Membrane-based carbon capture from flue gas: a review. Journal of Cleaner Production, 2015, 103, 286-300.	4.6	288
333	Surface modification of polysulfone hollow fiber membrane spun under different air-gap lengths for carbon dioxide absorption in membrane contactor system. Chemical Engineering Journal, 2015, 264, 453-461.	6.6	39
334	Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption. Carbon, 2015, 82, 297-303.	5.4	126

#	Article	IF	CITATIONS
335	A complete transport validated model on a zeolite membrane for carbon dioxide permeance and capture. Applied Thermal Engineering, 2015, 74, 36-46.	3.0	14
336	Metal organic framework membranes for carbon dioxide separation. Chemical Engineering Science, 2015, 124, 3-19.	1.9	195
337	Rigid and microporous polymers for gas separation membranes. Progress in Polymer Science, 2015, 43, 1-32.	11.8	377
338	Enhanced CO2 separation properties by incorporating poly(ethylene glycol)-containing polymeric submicrospheres into polyimide membrane. Journal of Membrane Science, 2015, 473, 310-317.	4.1	47
339	Tailoring the water structure and transport in nanotubes with tunable interiors. Nanoscale, 2015, 7, 121-132.	2.8	46
340	Anthropogenic <scp>CO₂</scp> as a feedstock for the production of algalâ€based biofuels. Biofuels, Bioproducts and Biorefining, 2015, 9, 72-81.	1.9	14
341	Membrane evaporation of amine solution for energy saving in post-combustion carbon capture: Performance evaluation. Journal of Membrane Science, 2015, 473, 274-282.	4.1	37
342	A general framework for the assessment of solar fuel technologies. Energy and Environmental Science, 2015, 8, 126-157.	15.6	293
343	Novel Multilayered Structures and Applications. , 2016, , 190-220.		2
344	Membrane-Cryogenic Post-Combustion Carbon Capture of Flue Gases from NGCC. Technologies, 2016, 4, 14.	3.0	13
345	Crosslinked PEG and PEBAX Membranes for Concurrent Permeation of Water and Carbon Dioxide. Membranes, 2016, 6, 1.	1.4	71
346	Separations Versus Sustainability. , 2016, , 35-65.		1
347	Metalâ€organic framework membrane process for high purity CO ₂ production. AICHE Journal, 2016, 62, 3836-3841.	1.8	68
348	Carbon Capture and Storage: introductory lecture. Faraday Discussions, 2016, 192, 9-25.	1.6	45
349	Role of Facilitated Transport Membranes and Composite Membranes for Efficient CO ₂ Capture – A Review. ChemBioEng Reviews, 2016, 3, 68-85.	2.6	97
350	Modeling and Simulation of a Tube Bundle Adsorber for the Capture of CO ₂ from Flue Gases. Chemie-Ingenieur-Technik, 2016, 88, 336-345.	0.4	16
351	Ultrathin carbon molecular sieve membrane for propylene/propane separation. AICHE Journal, 2016, 62, 491-499.	1.8	85
352	Carbon dioxide in an ionic liquid: Structural and rotational dynamics. Journal of Chemical Physics, 2016, 144, 104506.	1.2	49

#	Article	IF	CITATIONS
353	High-permeance crosslinked PTMSP thin-film composite membranes as supports for CO2 selective layer formation. Green Energy and Environment, 2016, 1, 235-245.	4.7	39
355	Integrated Bench-Scale Parametric Study on CO ₂ Capture Using a Carbonic Anhydrase Promoted K ₂ CO ₃ Solvent with Low Temperature Vacuum Stripping. Industrial & Engineering Chemistry Research, 2016, 55, 12452-12459.	1.8	15
356	Gas–liquid membrane contactors for carbon dioxide capture from gaseous streams. Petroleum Chemistry, 2016, 56, 889-914.	0.4	29
357	Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free―Ionic Liquid Content: Platform Membrane Materials for CO ₂ /Light Gas Separations. Accounts of Chemical Research, 2016, 49, 724-732.	7.6	182
358	Advances in high permeability polymer-based membrane materials for CO ₂ separations. Energy and Environmental Science, 2016, 9, 1863-1890.	15.6	612
359	High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas. Journal of Membrane Science, 2016, 514, 376-384.	4.1	92
360	Rapid and high yield synthesis method of colloidal nano faujasite. Microporous and Mesoporous Materials, 2016, 230, 89-99.	2.2	12
361	CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. Journal of Membrane Science, 2016, 515, 54-62.	4.1	81
362	CO 2 /N 2 separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures. Chinese Journal of Chemical Engineering, 2016, 24, 1513-1521.	1.7	23
363	Property impacts on Carbon Capture and Storage (CCS) processes: A review. Energy Conversion and Management, 2016, 118, 204-222.	4.4	228
364	Elastic free-standing RTIL composite membranes for CO2/N2 separation based on sphere-forming triblock/diblock copolymer blends. Journal of Membrane Science, 2016, 511, 170-179.	4.1	19
365	Impact of Fly Ash on the Membrane Performance in Postcombustion Carbon Capture Applications. Industrial & Engineering Chemistry Research, 2016, 55, 4711-4719.	1.8	7
366	Ternary mixed-gas separation for flue gas CO2 capture using high performance thermally rearranged (TR) hollow fiber membranes. Journal of Membrane Science, 2016, 510, 472-480.	4.1	42
367	The enhancement of chain rigidity and gas transport performance of polymers of intrinsic microporosity via intramolecular locking of the spiro-carbon. Chemical Communications, 2016, 52, 6553-6556.	2.2	53
368	Progress in Applications of Polymer-Based Membranes in Gas Separation Technology. Polymer-Plastics Technology and Engineering, 2016, 55, 1282-1298.	1.9	45
369	Facile Preparation of Graphene Oxide Membranes for Gas Separation. Chemistry of Materials, 2016, 28, 2921-2927.	3.2	203
371	Tuning graphene for energy and environmental applications: Oxygen reduction reaction and greenhouse gas mitigation. Journal of Power Sources, 2016, 328, 472-481.	4.0	16
373	Post combustion carbon capture: Does optimization of the processing system based on energy and utility requirements warrant the lowest possible costs?. Energy, 2016, 112, 353-363.	4.5	6

#	Article	IF	CITATIONS
374	Food Packaging. , 2016, , 790-790.		0
375	Interplay of inlet temperature and humidity on energy penalty for CO2 post-combustion capture: Rigorous analysis and simulation of a single stage gas permeation process. Energy, 2016, 116, 517-525.	4.5	4
376	Flat Sheet Membrane Photocatalytic Reactor. , 2016, , 778-780.		0
377	Plasticization resistant crosslinked polyurethane gas separation membranes. Journal of Materials Chemistry A, 2016, 4, 17431-17439.	5.2	57
378	Polyvinylidene fluoride hollow fiber mixed matrix membrane contactor incorporating modified ZSM-5 zeolite for carbon dioxide absorption. RSC Advances, 2016, 6, 78865-78874.	1.7	10
379	Pilot scale separation of CO 2 from power plant flue gases by membrane technology. International Journal of Greenhouse Gas Control, 2016, 53, 56-64.	2.3	63
380	Carbon dioxide capture by [emim][Ac] ionic liquid in a polysulfone hollow fiber membrane contactor. International Journal of Greenhouse Gas Control, 2016, 52, 401-409.	2.3	39
381	The progressive routes for carbon capture and sequestration. Energy Science and Engineering, 2016, 4, 99-122.	1.9	136
382	Optimization of multi-stage membrane systems for CO 2 capture from flue gas. International Journal of Greenhouse Gas Control, 2016, 53, 371-390.	2.3	76
383	Catalyst-free ceramic-carbonate dual phase membrane reactor for hydrogen production from gasifier syngas. Journal of Membrane Science, 2016, 520, 907-913.	4.1	29
384	Facilitated Pervaporation. , 2016, , 761-762.		0
385	Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review. Green Energy and Environment, 2016, 1, 102-128.	4.7	215
386	Highâ€Performance Polymers for Membrane CO ₂ /N ₂ Separation. Chemistry - A European Journal, 2016, 22, 15980-15990.	1.7	112
387	Food Processing by Membrane Operations. , 2016, , 793-794.		0
388	Blends of Fluorinated Additives with Highly Selective Thin-Film Composite Membranes to Increase CO ₂ Permeability for CO ₂ /N ₂ Gas Separation Applications. Industrial & Engineering Chemistry Research, 2016, 55, 8364-8372.	1.8	27
389	Polymeric composite membrane fabricated by 2-aminoterephthalic acid chemically cross-linked polyvinylamine for CO2 separation under high temperature. Journal of Membrane Science, 2016, 518, 60-71.	4.1	26
390	Evaluating the Energy Performance of a Hybrid Membrane-Solvent Process for Flue Gas Carbon Dioxide Capture. Industrial & Engineering Chemistry Research, 2016, 55, 11329-11337.	1.8	4
391	Mono-dispersed DDR zeolite particles by seeded growth and their CO 2 , N 2 , and H 2 O adsorption properties. Chemical Engineering Journal, 2016, 306, 876-888.	6.6	18

#	Article	IF	CITATIONS
392	Integration of multi-stage membrane carbon capture processes to coal-fired power plants using highly permeable polymers. Green Energy and Environment, 2016, 1, 211-221.	4.7	15
393	Flat Sheet Membrane Module. , 2016, , 778-778.		0
394	Thermally rearranged (TR) bismaleimide-based network polymers for gas separation membranes. Chemical Communications, 2016, 52, 13556-13559.	2.2	55
395	CO2 Capture, Transportation, and Storage Technology. , 2016, , 343-358.		3
396	Physical aging in glassy mixed matrix membranes; tuning particle interaction for mechanically robust nanocomposite films. Journal of Materials Chemistry A, 2016, 4, 10627-10634.	5.2	62
397	Gas permeation and selectivity of poly(dimethylsiloxane)/graphene oxide composite elastomer membranes. Journal of Membrane Science, 2016, 518, 131-140.	4.1	73
398	A review on Zeolite-Reinforced Polymeric Membranes: Salient Features and Applications. Polymer-Plastics Technology and Engineering, 2016, 55, 1971-1987.	1.9	18
399	Synthesis of chabazite/polymer composite membrane for CO2/N2 separation. Microporous and Mesoporous Materials, 2016, 230, 208-216.	2.2	17
400	Energy Technology Roadmaps of Japan. , 2016, , .		13
401	Structural and Rotational Dynamics of Carbon Dioxide in 1-Alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide Ionic Liquids: The Effect of Chain Length. Journal of Physical Chemistry B, 2016, 120, 6698-6711.	1.2	27
402	Effect of the reactive amino and glycidyl ether terminated polyethylene oxide additives on the gas transport properties of Pebax® bulk and thin film composite membranes. RSC Advances, 2016, 6, 11763-11772.	1.7	24
403	Copoly(alkyl ether imide) membranes as promising candidates for CO2 capture applications. Separation and Purification Technology, 2016, 161, 53-60.	3.9	10
404	Energy and exergy analyses of a novel power cycle using the cold of LNG (liquefied natural gas) and low-temperature solar energy. Energy, 2016, 95, 324-345.	4.5	107
405	Surface monofunctionalized polymethyl pentene hollow fiber membranes by plasma treatment and hemocompatibility modification for membrane oxygenators. Applied Surface Science, 2016, 362, 355-363.	3.1	32
406	Process intensification characteristics of a microreactor absorber for enhanced CO2 capture. Applied Energy, 2016, 162, 416-427.	5.1	43
407	Few-layered ultrathin covalent organic framework membranes for gas separation: a computational study. Journal of Materials Chemistry A, 2016, 4, 124-131.	5.2	83
408	Energetic and economic evaluation of membrane-based carbon capture routes for power plant processes. International Journal of Greenhouse Gas Control, 2016, 44, 124-139.	2.3	36
409	Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes. Industrial & Engineering Chemistry Research, 2016, 55, 3383-3419.	1.8	205

#	Article	IF	CITATIONS
410	Synthesis and characterization of nanoporous polyethersulfone membrane as support for composite membrane in CO2 separation: From lab to pilot scale. Journal of Membrane Science, 2016, 510, 58-71.	4.1	42
411	Ultra-thin film composite mixed matrix membranes incorporating iron(<scp>iii</scp>)–dopamine nanoparticles for CO ₂ separation. Nanoscale, 2016, 8, 8312-8323.	2.8	62
412	Simultaneous CO ₂ /SO ₂ adsorption performance of carbide slag in adsorption/desorption cycles. Canadian Journal of Chemical Engineering, 2016, 94, 33-40.	0.9	26
413	Adjusting carrier microenvironment in CO2 separation fixed carrier membrane. Journal of Membrane Science, 2016, 511, 9-19.	4.1	16
414	Membrane properties required for post-combustion CO2 capture at coal-fired power plants. Journal of Membrane Science, 2016, 511, 250-264.	4.1	93
415	Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO ₂ Separation. Chemistry of Materials, 2016, 28, 1277-1285.	3.2	541
416	High performance MoS ₂ membranes: effects of thermally driven phase transition on CO ₂ separation efficiency. Energy and Environmental Science, 2016, 9, 1224-1228.	15.6	106
417	Molecular Design of High CO ₂ Reactivity and Low Viscosity Ionic Liquids for CO ₂ Separative Facilitated Transport Membranes. Industrial & Engineering Chemistry Research, 2016, 55, 2821-2830.	1.8	25
418	Study of Formation of Bicarbonate Ions in CO ₂ -Loaded Aqueous Single 1DMA2P and MDEA Tertiary Amines and Blended MEA–1DMA2P and MEA–MDEA Amines for Low Heat of Regeneration. Industrial & Engineering Chemistry Research, 2016, 55, 3710-3717.	1.8	60
419	Towards the potential of cyano and amino acid-based ionic liquid mixtures for facilitated CO2 transport membranes. Journal of Membrane Science, 2016, 510, 174-181.	4.1	28
420	Ionic liquid-based materials: a platform to design engineered CO ₂ separation membranes. Chemical Society Reviews, 2016, 45, 2785-2824.	18.7	347
421	Graphene-based membranes: status and prospects. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150024.	1.6	100
422	Fabrication of zeolite/polymer composite membranes in a roller assembly. Microporous and Mesoporous Materials, 2016, 223, 247-253.	2.2	19
423	Energy efficiency of a hybrid membrane/condensation process for VOC (Volatile Organic Compounds) recovery from air: A generic approach. Energy, 2016, 95, 291-302.	4.5	140
424	Strategies for the simulation of multi-component hollow fibre multi-stage membrane gas separation systems. Journal of Membrane Science, 2016, 497, 458-471.	4.1	25
425	A novel cross-linked nano-coating for carbon dioxide capture. Energy and Environmental Science, 2016, 9, 434-440.	15.6	92
426	Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology, 2016, 157, 102-111.	3.9	37
427	Multi-objective optimisation of a hybrid vacuum swing adsorption and low-temperature post-combustion CO2 capture. Journal of Cleaner Production, 2016, 111, 193-203.	4.6	48

#	Article	IF	CITATIONS
428	Enhancement of molecular-sieving properties by constructing surface nano-metric layer via vapor cross-linking. Journal of Membrane Science, 2016, 497, 248-258.	4.1	44
429	Multilayer polymer/zeolite Y composite membrane structure for CO2 capture from flue gas. Journal of Membrane Science, 2016, 498, 1-13.	4.1	55
430	Thermally rearranged poly(benzoxazole -co- imide) hollow fiber membranes for CO 2 capture. Journal of Membrane Science, 2016, 498, 125-134.	4.1	45
431	Development of novel fluorinated additives for high performance CO2 separation thin-film composite membranes. Journal of Membrane Science, 2016, 499, 191-200.	4.1	63
432	CO ₂ -Tolerant SrFe _{0.8} Nb _{0.2} O _{3â^î^} –Carbonate Dual-Phase Multichannel Hollow Fiber Membrane for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2016, 55, 3300-3307.	1.8	22
433	Amine-containing polymer/zeolite Y composite membranes for CO2/N2 separation. Journal of Membrane Science, 2016, 497, 21-28.	4.1	101
434	Phosphonium-based poly(Ionic liquid) membranes: The effect of cation alkyl chain length on light gas separation properties and Ionic conductivity. Journal of Membrane Science, 2016, 498, 408-413.	4.1	74
435	Carbon dioxide capture using a superhydrophobic ceramic hollow fibre membrane for gas-liquid contacting process. Journal of Cleaner Production, 2017, 140, 1731-1738.	4.6	60
436	Environmental assessment of biomass gasification combined heat and power plants with absorptive and adsorptive carbon capture units in Norway. International Journal of Greenhouse Gas Control, 2017, 57, 162-172.	2.3	48
437	Fabrication of polyimide and functionalized multi-walled carbon nanotubes mixed matrix membranes by in-situ polymerization for CO 2 separation. Separation and Purification Technology, 2017, 177, 327-336.	3.9	80
438	Study on the alkaline stability of imidazolium and benzimidazolium based polyelectrolytes for anion exchange membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42, 5315-5326.	3.8	37
439	Scale-up of PEEK hollow fiber membrane contactor for post-combustion CO2 capture. Journal of Membrane Science, 2017, 527, 92-101.	4.1	50
440	Carbon Capture and Utilization Update. Energy Technology, 2017, 5, 834-849.	1.8	424
441	New approach for the fabrication of double-network ion-gel membranes with high CO2/N2 separation performance based on facilitated transport. Journal of Membrane Science, 2017, 530, 166-175.	4.1	67
442	Impact of tuning CO2-philicity in polydimethylsiloxane-based membranes for carbon dioxide separation. Journal of Membrane Science, 2017, 530, 213-219.	4.1	31
443	Ion-Gated Gas Separation through Porous Graphene. Nano Letters, 2017, 17, 1802-1807.	4.5	109
444	Reducing the energy consumption of membrane-cryogenic hybrid CO2 capture by process optimization. Energy, 2017, 124, 29-39.	4.5	94
445	Automated process synthesis for optimal flowsheet design of a hybrid membrane cryogenic carbon capture process. Journal of Cleaner Production, 2017, 150, 309-323.	4.6	31

#	Article	IF	CITATIONS
446	Shear-aligned graphene oxide laminate/Pebax ultrathin composite hollow fiber membranes using a facile dip-coating approach. Journal of Materials Chemistry A, 2017, 5, 7732-7737.	5.2	61
447	Pushing CO ₂ -philic membrane performance to the limit by designing semi-interpenetrating networks (SIPN) for sustainable CO ₂ separations. Energy and Environmental Science, 2017, 10, 1339-1344.	15.6	175
448	Mass Transfer Analysis of CO ₂ Capture by PVDF Membrane Contactor and Ionic Liquid. Chemical Engineering and Technology, 2017, 40, 678-690.	0.9	11
449	Continuous Flow Processing of ZIF-8 Membranes on Polymeric Porous Hollow Fiber Supports for CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 5678-5682.	4.0	74
450	Poly (ethylene oxide) composite membrane synthesized by UV-initiated free radical photopolymerization for CO 2 separation. Journal of Membrane Science, 2017, 531, 129-137.	4.1	26
451	CO ₂ separation membranes with high permeability and CO ₂ /N ₂ selectivity prepared by electrostatic self-assembly of polyethylenimine on reverse osmosis membranes. RSC Advances, 2017, 7, 14678-14687.	1.7	12
452	Enhancement of CO2 permeability of poly(vinyl ether)s having oxyethylene chains by the sequence control of crosslinking sites. RSC Advances, 2017, 7, 13879-13885.	1.7	3
453	On our rapidly shrinking capacity to comply with the planetary boundaries on climate change. Scientific Reports, 2017, 7, 42061.	1.6	17
454	The Economics of Helium Separation and Purification by Gas Separation Membranes. Industrial & Engineering Chemistry Research, 2017, 56, 5014-5020.	1.8	50
455	CO 2 capture from natural gas combined cycles by CO 2 selective membranes. International Journal of Greenhouse Gas Control, 2017, 61, 168-183.	2.3	43
456	A strategy to enhance CO2 permeability of well-defined hyper-branched polymers with dense polyoxyethylene comb graft. Journal of Membrane Science, 2017, 535, 239-247.	4.1	12
457	Membrane process optimization for carbon capture. International Journal of Greenhouse Gas Control, 2017, 62, 1-12.	2.3	32
458	Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO ₂ separation. Journal of Materials Chemistry A, 2017, 5, 10968-10977.	5.2	127
459	Increasing both selectivity and permeability of mixed-matrix membranes: Sealing the external surface of porous MOF nanoparticles. Journal of Membrane Science, 2017, 535, 350-356.	4.1	75
460	Gas separation mechanism of CO ₂ selective amidoxime-poly(1-trimethylsilyl-1-propyne) membranes. Polymer Chemistry, 2017, 8, 3341-3350.	1.9	25
461	The effect of monoethanolamine on conductivity and efficiency of electrodialysis of acid and salt solutions. Russian Journal of Electrochemistry, 2017, 53, 391-397.	0.3	6
462	CO 2 separation of polymer membranes containing silica nanoparticles with gas permeable nano-space. Journal of Membrane Science, 2017, 536, 148-155.	4.1	57
463	An oriented, siliceous deca-dodecasil 3R (DDR) zeolite film for effective carbon capture: insight into its hydrophobic effect. Journal of Materials Chemistry A, 2017, 5, 11246-11254.	5.2	52

#	Article	IF	CITATIONS
464	Recent progress on submicron gas-selective polymeric membranes. Journal of Materials Chemistry A, 2017, 5, 8860-8886.	5.2	68
465	Selective flue gas recirculation using membranes in coal-fired power plants. , 2017, 7, 756-770.		1
466	Graphene and graphene oxide membranes for gas separation applications. Current Opinion in Chemical Engineering, 2017, 16, 39-47.	3.8	93
467	Enhancing CO ₂ Capture using Robust Superomniphobic Membranes. Advanced Materials, 2017, 29, 1603524.	11.1	68
468	Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 2017, 356, .	6.0	1,864
469	Mixedâ€Matrixâ€Membranen. Angewandte Chemie, 2017, 129, 9420-9439.	1.6	69
470	Effects of oxidant distribution mode and burner configuration on oxy-fuel combustion characteristics in a 600 MWe utility boiler. Applied Thermal Engineering, 2017, 124, 781-794.	3.0	15
471	Membranes for artificial photosynthesis. Energy and Environmental Science, 2017, 10, 1320-1338.	15.6	65
472	Cost-optimal CO 2 capture ratio for membrane-based capture from different CO 2 sources. Chemical Engineering Journal, 2017, 327, 618-628.	6.6	59
473	Alternative materials in technologies for Biogas upgrading via CO2 capture. Renewable and Sustainable Energy Reviews, 2017, 79, 1414-1441.	8.2	125
474	Enhancing Mixed-Matrix Membrane Performance with Metal–Organic Framework Additives. Crystal Growth and Design, 2017, 17, 4467-4488.	1.4	123
476	Mixedâ€Matrix Membranes. Angewandte Chemie - International Edition, 2017, 56, 9292-9310.	7.2	545
477	An automated lab-scale flue gas permeation membrane testing system at the National Carbon Capture Center. Journal of Membrane Science, 2017, 533, 28-37.	4.1	6
478	High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chemical Communications, 2017, 53, 4254-4257.	2.2	116
479	SO2 interference on separation performance of amine-containing facilitated transport membranes for CO2 capture from flue gas. Journal of Membrane Science, 2017, 534, 33-45.	4.1	38
480	Biobased Polycarbonate as a Gas Separation Membrane and "Breathing Glass―for Energy Saving Applications. Advanced Materials Technologies, 2017, 2, 1700026.	3.0	50
481	Ionic Polyurethanes as a New Family of Poly(ionic liquid)s for Efficient CO ₂ Capture. Macromolecules, 2017, 50, 2814-2824.	2.2	49
482	Perspectives on water-facilitated CO ₂ capture materials. Journal of Materials Chemistry A, 2017, 5, 6794-6816.	5.2	56

#	Article	IF	CITATIONS
483	Chemical process systems analysis using thermodynamic balance equations with entropy generation. Computers and Chemical Engineering, 2017, 107, 3-15.	2.0	7
484	Crosslinked membranes of poly(vinyl ether)s having oxyethylene side chains: The effects of the side chain length and the crosslinkable group on CO2 permeability. Polymer, 2017, 112, 278-287.	1.8	6
485	Carbone dioxide capture and utilization in gas turbine plants via the integration of power to gas. Petroleum, 2017, 3, 127-137.	1.3	9
486	A techno-economic case study of CO2 capture, transport and storage chain from a cement plant in Norway. Journal of Cleaner Production, 2017, 144, 523-539.	4.6	94
487	Preparation and characterization of (Pebax 1657Â+Âsilica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation. Chemical Papers, 2017, 71, 803-818.	1.0	38
488	Membrane Gas Separation Processes from Wet Postcombustion Flue Gases for Carbon Capture and Use: A Critical Reassessment. Industrial & Engineering Chemistry Research, 2017, 56, 591-602.	1.8	18
489	Utilization of blast furnace flue gas: Opportunities and challenges for polymeric membrane gas separation processes. Journal of Membrane Science, 2017, 526, 191-204.	4.1	49
490	Learning from a carbon dioxide capture system dataset: Application of the piecewise neural network algorithm. Petroleum, 2017, 3, 56-67.	1.3	20
491	Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals. Chinese Journal of Chemical Engineering, 2017, 25, 882-891.	1.7	34
492	CO2 capture from natural gas power plants using selective exhaust gas recycle membrane designs. International Journal of Greenhouse Gas Control, 2017, 66, 35-47.	2.3	63
493	Extended field trials of Polaris sweep modules for carbon capture. Journal of Membrane Science, 2017, 542, 217-225.	4.1	76
494	Membrane thinning for efficient CO ₂ capture. Science and Technology of Advanced Materials, 2017, 18, 816-827.	2.8	30
495	Comparative Environmental Life Cycle Assessment of Oxyfuel and Post-combustion Capture with MEA and AMP/PZ - Case Studies from the EDDiCCUT Project. Energy Procedia, 2017, 114, 6604-6611.	1.8	12
496	Low Energy CO2 Capture by Electrodialysis. Energy Procedia, 2017, 114, 1615-1620.	1.8	10
497	Highly selective multi-block poly(ether-urea-imide)s for CO2/N2 separation: Structure-morphology-properties relationships. Polymer, 2017, 131, 56-67.	1.8	30
498	Energy Penalty of a Single Stage Gas Permeation Process for CO2 Capture in Post-combustion: A Rigorous Parametric Analysis of Temperature, Humidity and Membrane Performances. Energy Procedia, 2017, 114, 636-641.	1.8	7
499	Pilot Demonstration-reporting on CO2 Capture from a Cement Plant Using Hollow Fiber Process. Energy Procedia, 2017, 114, 6150-6165.	1.8	69
500	Evaluating the effects of CO 2 capture benchmarks on efficiency and costs of membrane systems for post-combustion capture: A parametric simulation study. International Journal of Greenhouse Gas Control, 2017, 63, 449-461.	2.3	23

#	ARTICLE	IF	CITATIONS
501	Surface modification induced enhanced CO ₂ sorption in cucurbit[6]uril, an organic porous material. Physical Chemistry Chemical Physics, 2017, 19, 25564-25573.	1.3	15
502	Electroreduction and solubility of CO2 in methoxy- and nitrile-functionalized imidazolium (FAP) ionic liquids. Journal of Applied Electrochemistry, 2017, 47, 1251-1260.	1.5	8
503	Investigation of amino and amidino functionalized Polyhedral Oligomeric SilSesquioxanes (POSS®) nanoparticles in PVA-based hybrid membranes for CO2/N2 separation. Journal of Membrane Science, 2017, 544, 161-173.	4.1	28
504	Inorganic/organic composite ion gel membrane with high mechanical strength and high CO2 separation performance. Journal of Membrane Science, 2017, 544, 252-260.	4.1	26
505	Development of CO2 Molecular Gate Membranes for IGCC Process with CO2 Capture. Energy Procedia, 2017, 114, 613-620.	1.8	15
506	A Compararitive Review of Next-generation Carbon Capture Technologies for Coal-fired Power Plant. Energy Procedia, 2017, 114, 2658-2670.	1.8	70
507	A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants. Energy Procedia, 2017, 114, 650-665.	1.8	342
508	Investigation of the Cooling System of a Membrane-based Post-combustion Process. Energy Procedia, 2017, 114, 666-685.	1.8	2
509	Carbon Capture and Utilization in the Industrial Sector. Environmental Science & Technology, 2017, 51, 11440-11449.	4.6	91
510	Poly(vinylbenzyl chloride)-based poly(ionic liquids) as membranes for CO ₂ capture from flue gas. Journal of Materials Chemistry A, 2017, 5, 19808-19818.	5.2	54
511	Studies of the synergistic effects of crosslink density and crosslink inhomogeneity on crosslinked PEO membranes for CO2-selective separations. Journal of Membrane Science, 2017, 544, 25-34.	4.1	36
512	PEO-rich semi-interpenetrating polymer network (s-IPN) membranes for CO2 separation. Journal of Membrane Science, 2017, 544, 143-150.	4.1	32
513	Integrated Carbon Capture and Conversion To Produce Syngas: Novel Process Design, Intensification, and Optimization. Industrial & amp; Engineering Chemistry Research, 2017, 56, 8622-8648.	1.8	42
514	Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation. ACS Applied Materials & Interfaces, 2017, 9, 26483-26491.	4.0	32
515	Post combustion CO2 capture using zeolite membrane. AIP Conference Proceedings, 2017, , .	0.3	20
516	Designing an atmosphere controlling hollow fiber membrane system for mango preservation. Korean Journal of Chemical Engineering, 2017, 34, 2019-2026.	1.2	2
517	CO2-tolerance and oxygen permeability of novel cobalt-free mixed-conductor oxygen-permeable Pr0.6Sr0.4Fe1-Nb O3- membranes. Ceramics International, 2017, 43, 13791-13799.	2.3	15
518	High-performance composite hollow fiber membrane for flue gas and air separations. Journal of Membrane Science, 2017, 541, 367-377.	4.1	118

#	Article	IF	CITATIONS
519	Theoretical Design of Highly Efficient CO ₂ /N ₂ Separation Membranes Based on Electric Quadrupole Distinction. Journal of Physical Chemistry C, 2017, 121, 17925-17931.	1.5	15
520	CO2 aided H2 recovery from water splitting processes. International Journal of Hydrogen Energy, 2017, 42, 21793-21805.	3.8	10
521	Norwegian Waste-to-Energy: Climate change, circular economy and carbon capture and storage. Resources, Conservation and Recycling, 2017, 126, 50-61.	5.3	75
522	Nanoparticles Embedded in Amphiphilic Membranes for Carbon Dioxide Separation and Dehumidification. ChemSusChem, 2017, 10, 4046-4055.	3.6	34
523	Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017, 2, .	19.8	428
524	Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO2-philic agent for highly efficient CO2 capture. Nature Communications, 2017, 8, 2107.	5.8	151
525	Cas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane. ACS Applied Materials & Interfaces, 2017, 9, 43061-43071.	4.0	34
526	China's plans and policies for reducing CO ₂ emission from biomass-fired power plants: Modeling and economic study. Energy Sources, Part B: Economics, Planning and Policy, 2017, 12, 1001-1006.	1.8	14
527	High-Performance Self-Cross-Linked PGP–POEM Comb Copolymer Membranes for CO ₂ Capture. Macromolecules, 2017, 50, 8938-8947.	2.2	28
528	Enhanced CO ₂ Adsorption Performance on Hierarchical Porous ZSM-5 Zeolite. Energy & Fuels, 2017, 31, 13933-13941.	2.5	68
529	ZIF-8-Based Membranes for Carbon Dioxide Capture and Separation. ACS Sustainable Chemistry and Engineering, 2017, 5, 11204-11214.	3.2	129
530	Adsorption of carbon dioxide on TEPA-modified TiO ₂ /titanate composite nanorods. New Journal of Chemistry, 2017, 41, 7870-7885.	1.4	16
531	Separation of CO2-N2 gas mixtures: Membrane combination and temperature influence. Separation and Purification Technology, 2017, 188, 197-205.	3.9	20
532	Membrane separation process for CO2 capture from mixed gases using TR and XTR hollow fiber membranes: Process modeling and experiments. Journal of Membrane Science, 2017, 541, 224-234.	4.1	39
533	lonic-Liquid-Based CO ₂ Capture Systems: Structure, Interaction and Process. Chemical Reviews, 2017, 117, 9625-9673.	23.0	696
534	Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO ₂ Hydrogenation Processes. Chemical Reviews, 2017, 117, 9804-9838.	23.0	1,058
535	Carbon dioxide permeation through ceramic-carbonate dual-phase membrane-effects of sulfur dioxide. Journal of Membrane Science, 2017, 540, 477-484.	4.1	19
536	Effect of physical aging on the gas transport and sorption in PIM-1 membranes. Polymer, 2017, 113, 283-294.	1.8	123

#	Article	IF	CITATIONS
537	The effect of chemical structures of cyclic amino acid type ionic liquids as CO ₂ carriers on facilitated transport membrane performances. Separation Science and Technology, 2017, 52, 209-220.	1.3	7
538	Room-temperature, one-pot process for CO2 capture membranes based on PEMA-g-PPG graft copolymer. Chemical Engineering Journal, 2017, 313, 1615-1622.	6.6	19
539	Hybrid Solvent ([emim][Ac]+water) To Improve the CO ₂ Capture Efficiency in a PVDF Hollow Fiber Contactor. ACS Sustainable Chemistry and Engineering, 2017, 5, 734-743.	3.2	19
540	On the optimal design of membrane-based gas separation processes. Journal of Membrane Science, 2017, 526, 118-130.	4.1	54
541	Process and engineering trends in membrane based carbon capture. Renewable and Sustainable Energy Reviews, 2017, 68, 659-684.	8.2	124
542	Highly efficient post-combustion CO2 capture by low-temperature steam-aided vacuum swing adsorption using a novel polyamine-based solid sorbent. Chemical Engineering Journal, 2017, 307, 273-282.	6.6	55
543	Comparative feasibility study of CO2 capture in hollowfiber membrane processes based on process models and heat exchanger analysis. Chemical Engineering Research and Design, 2017, 117, 659-669.	2.7	10
544	Thin poly(ether-block-amide)/attapulgite composite membranes with improved CO 2 permeance and selectivity for CO 2 /N 2 and CO 2 /CH 4. Chemical Engineering Science, 2017, 160, 236-244.	1.9	55
545	Synthesis of polydopamineâ€mediated <scp>PP</scp> hollow fibrous membranes with good hydrophilicity and antifouling properties. Journal of Applied Polymer Science, 2017, 134, .	1.3	6
546	Nanocellulose-based membranes for CO2 capture. Journal of Membrane Science, 2017, 522, 216-225.	4.1	90
547	Preparation of large, ultra-flexible and free-standing nanomembranes of metal oxide–polymer composite and their gas permeation properties. Clean Energy, 2017, 1, 80-89.	1.5	4
548	Effect of amine structure on CO ₂ capture by polymeric membranes. Science and Technology of Advanced Materials, 2017, 18, 950-958.	2.8	21
549	CO ₂ capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine). Open Physics, 2017, 15, 662-670.	0.8	5
550	1.6 Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes. , 2017, , 120-136.		7
551	CO2-Philic Thin Film Composite Membranes: Synthesis and Characterization of PAN-r-PEGMA Copolymer. Polymers, 2017, 9, 219.	2.0	17
552	Comparison of CO2 Capture Approaches for Fossil-Based Power Generation: Review and Meta-Study. Processes, 2017, 5, 44.	1.3	59
553	Silica Membranes Application for Carbon Dioxide Separation. , 2017, , 265-294.		1
554	Polymeric thin film composite membrane for CO 2 separation. , 2017, , 331-365.		2

#	Article	IF	CITATIONS
555	4.9 Membrane Technology in the Refinery and Petrochemical Field: Research Trends and Recent Progresses. , 2017, , 164-188.		1
556	Modification of Poly(4-Methyl-2-Pentyne) in Supercritical Fluid Medium for Production of CO2-Selective Gas-Separation Membranes. Russian Journal of Physical Chemistry B, 2017, 11, 1276-1282.	0.2	4
557	Aspects of carbon dioxide mitigation in a closed microalgae photo-bioreactor supplied with flue gas. International Journal of Environment and Pollution, 2017, 62, 1.	0.2	2
558	Carbon dioxide capture by facilitated transport membranes: a review. International Journal of Global Warming, 2017, 12, 1.	0.2	4
559	Enhancement of oxygen permeability by copolymerization of silyl group-containing diphenylacetylenes with tert-butyl group-containing diphenylacetylene and desilylation of copolymer membranes. RSC Advances, 2017, 7, 30949-30955.	1.7	10
560	CO2 Adsorption on PIMs Studied with 13C NMR Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 4403-4408.	1.5	8
561	Enhanced CO 2 separation performance for tertiary amineâ€silica membranes via thermally induced local liberation of CH 3 Cl. AICHE Journal, 2018, 64, 1528-1539.	1.8	22
562	Enhancement of separation performance of nano hybrid PES –TiO2 membrane using three combination effects of ultraviolet irradiation, ethanol-acetone immersion, and thermal annealing process for CO2 removal. Journal of Environmental Chemical Engineering, 2018, 6, 2865-2873.	3.3	13
563	Embedded enzymes catalyse capture. Nature Energy, 2018, 3, 359-360.	19.8	1
564	Parametric study of a novel cryogenic-membrane hybrid system for efficient CO2 separation. International Journal of Greenhouse Gas Control, 2018, 72, 74-81.	2.3	20
564 565	Parametric study of a novel cryogenic-membrane hybrid system for efficient CO2 separation. International Journal of Greenhouse Gas Control, 2018, 72, 74-81. Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation. Journal of Materials Chemistry A, 2018, 6, 7668-7674.	2.3 5.2	20 71
564 565 566	Parametric study of a novel cryogenic-membrane hybrid system for efficient CO2 separation. International Journal of Greenhouse Gas Control, 2018, 72, 74-81. Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation. Journal of Materials Chemistry A, 2018, 6, 7668-7674. Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate. Chinese Journal of Chemical Engineering, 2018, 26, 2477-2486.	2.3 5.2 1.7	20 71 11
564 565 566 567	Parametric study of a novel cryogenic-membrane hybrid system for efficient CO2 separation. International Journal of Greenhouse Gas Control, 2018, 72, 74-81. Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation. Journal of Materials Chemistry A, 2018, 6, 7668-7674. Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate. Chinese Journal of Chemical Engineering, 2018, 26, 2477-2486. Development of low mass-transfer-resistance fluorinated TiO 2 -SiO 2 /PVDF composite hollow fiber membrane used for biogas upgrading in gas-liquid membrane contactor. Journal of Membrane Science, 2018, 552, 253-264.	2.3 5.2 1.7 4.1	20 71 11 65
564 565 566 567	Parametric study of a novel cryogenic-membrane hybrid system for efficient CO2 separation. International Journal of Greenhouse Gas Control, 2018, 72, 74-81.Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation. Journal of Materials Chemistry A, 2018, 6, 7668-7674.Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate. Chinese Journal of Chemical Engineering, 2018, 26, 2477-2486.Development of low mass-transfer-resistance fluorinated TiO 2 -SiO 2 /PVDF composite hollow fiber membrane used for biogas upgrading in gas-liquid membrane contactor. Journal of Membrane Science, 2018, 552, 253-264.New polyethersulfone (PESU) hollow fiber membranes for CO 2 capture. Journal of Membrane Science, 2018, 552, 305-314.	2.3 5.2 1.7 4.1 4.1	20 71 11 65 46
 564 565 567 568 569 	Parametric study of a novel cryogenic-membrane hybrid system for efficient CO2 separation. International Journal of Greenhouse Gas Control, 2018, 72, 74-81. Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation. Journal of Materials Chemistry A, 2018, 6, 7668-7674. Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate. Chinese Journal of Chemical Engineering, 2018, 26, 2477-2486. Development of low mass-transfer-resistance fluorinated TiO 2 -SiO 2 /PVDF composite hollow fiber membrane used for biogas upgrading in gas-liquid membrane contactor. Journal of Membrane Science, 2018, 552, 253-264. New polyethersulfone (PESU) hollow fiber membranes for CO 2 capture. Journal of Membrane Science, 2018, 552, 305-314. Preparation of mixed matrix membranes based on polyimide and aminated graphene oxide for CO _{2 Preparation. Polymers for Advanced Technologies, 2018, 29, 1334-1343.}	2.3 5.2 1.7 4.1 4.1 1.6	 20 71 11 65 46 49
 564 565 567 568 569 570 	Parametric study of a novel cryogenic-membrane hybrid system for efficient CO2 separation. International Journal of Greenhouse Gas Control, 2018, 72, 74-81. Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation. Journal of Materials Chemistry A, 2018, 6, 7668-7674. Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate. Chinese Journal of Chemical Engineering, 2018, 26, 2477-2486. Development of low mass-transfer-resistance fluorinated TiO 2 -SiO 2 /PVDF composite hollow fiber membrane used for biogas upgrading in gas-liquid membrane contactor. Journal of Membrane Science, 2018, 552, 253-264. New polyethersulfone (PESU) hollow fiber membranes for CO 2 capture. Journal of Membrane Science, 2018, 552, 305-314. Preparation of mixed matrix membranes based on polyimide and aminated graphene oxide for CO Co ₂ separation. Polymers for Advanced Technologies, 2018, 29, 1334-1343. Gelled Graphene OxideãC ^{ee} Ionic Liquid Composite Membranes with Enriched Ionic Liquid Surfaces for Improved CO	2.3 5.2 1.7 4.1 4.1 1.6 4.0	 20 71 11 65 46 49 79
 564 565 567 568 569 570 571 	Parametric study of a novel cryogenic-membrane hybrid system for efficient CO2 separation. International Journal of Greenhouse Cas Control, 2018, 72, 74-81. Highly permeable thermally rearranged polymer composite membranes with a graphene oxide scaffold for gas separation. Journal of Materials Chemistry A, 2018, 6, 7668-7674. Gas permeation properties of a metallic ion-cross-linked PIM-1 thin-film composite membrane supported on a UV-cross-linked porous substrate. Chinese Journal of Chemical Engineering, 2018, 26, 2477-2486. Development of low mass-transfer-resistance fluorinated TiO 2 -SiO 2 /PVDF composite hollow fiber membrane used for biogas upgrading in gas-liquid membrane contactor. Journal of Membrane Science, 2018, 552, 253-264. New polyethersulfone (PESU) hollow fiber membranes for CO 2 capture. Journal of Membrane Science, 2018, 552, 305-314. Preparation of mixed matrix membranes based on polyimide and aminated graphene oxide for CO _{2 Gelled Graphene OxideãC^{ee} Ionic Liquid Composite Membranes with Enriched Ionic Liquid Surfaces for Improved CO _{2 Effects of O _{2 Effects of O ₂ Separation. ACS Applied Materials & amp; Interfaces, 2018, 32, 2479-2489.}}}	2.3 5.2 1.7 4.1 4.1 1.6 4.0 2.5	20 71 11 65 46 49 79 5

#	Article	IF	CITATIONS
573	Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review. Journal of Polymer Research, 2018, 25, 1.	1.2	84
574	<i>In situ</i> synthesis of polymer grafted ZIFs and application in mixed matrix membrane for CO ₂ separation. Journal of Materials Chemistry A, 2018, 6, 3151-3161.	5.2	111
575	Highly Permeable Oligo(ethylene oxide)―co â€poly(dimethylsiloxane) Membranes for Carbon Dioxide Separation. Advanced Sustainable Systems, 2018, 2, 1700113.	2.7	6
576	Chemical process systems analysis using thermodynamic balance equations with entropy generation. Revaluation and extension. Computers and Chemical Engineering, 2018, 111, 37-42.	2.0	1
577	Carbon Aerogels Synthesizd with Cetyltrimethyl Ammonium Bromide (CTAB) as a Catalyst and its Application for CO ₂ Capture. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 155-160.	0.6	5
578	Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies. Advanced Materials, 2018, 30, 1704953.	11.1	85
579	Synthesis of PVA-g-POEM graft copolymers and their use in highly permeable thin film composite membranes. Chemical Engineering Journal, 2018, 346, 739-747.	6.6	30
580	Fabrication and field testing of spiral-wound membrane modules for CO2 capture from flue gas. Journal of Membrane Science, 2018, 556, 126-137.	4.1	53
581	Water membrane for carbon dioxide separation. Separation and Purification Technology, 2018, 203, 268-273.	3.9	13
582	Pentiptycene-Based Polyurethane with Enhanced Mechanical Properties and CO ₂ -Plasticization Resistance for Thin Film Gas Separation Membranes. ACS Applied Materials & Interfaces, 2018, 10, 17366-17374.	4.0	45
583	A new approach to the identification of high-potential materials for cost-efficient membrane-based post-combustion CO ₂ capture. Sustainable Energy and Fuels, 2018, 2, 1225-1243.	2.5	32
584	Enhanced CO ₂ separation performance by PVA/PEG/silica mixed matrix membrane. Journal of Applied Polymer Science, 2018, 135, 46481.	1.3	31
585	Scale-up of amine-containing thin-film composite membranes for CO2 capture from flue gas. Journal of Membrane Science, 2018, 555, 379-387.	4.1	65
586	Aging of thin-film composite membranes based on PTMSP loaded with porous aromatic frameworks. Journal of Membrane Science, 2018, 554, 211-220.	4.1	47
587	Dry carbonate process for CO2 capture and storage: Integration with solar thermal power. Renewable and Sustainable Energy Reviews, 2018, 82, 1796-1812.	8.2	31
588	Polyurethaneâ€mesoporous silica gas separation membranes. Polymers for Advanced Technologies, 2018, 29, 874-883.	1.6	33
589	Alternative pathways for efficient CO2 capture by hybrid processes—A review. Renewable and Sustainable Energy Reviews, 2018, 82, 215-231.	8.2	236
590	Continuous assembly of a polymer on a metal–organic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy and Environmental Science, 2018, 11, 544-550.	15.6	125

#	Article	IF	CITATIONS
591	Synthesis and CO2 permeation properties of novel sulfonium-substituted poly(diphenylacetylene)s. Polymer Bulletin, 2018, 75, 3011-3022.	1.7	1
592	Ce0.85Sm0.15O2-Sm0.6Sr0.4Al0.3Fe0.7O3 composite for the preparation of dense ceramic-carbonate membranes for CO2 separation. Journal of Membrane Science, 2018, 547, 11-18.	4.1	34
593	A review of gas separation technologies within emission reduction programs in the iron and steel sector: Current application and development perspectives. Separation and Purification Technology, 2018, 194, 425-442.	3.9	100
594	High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer. Journal of Membrane Science, 2018, 550, 198-207.	4.1	95
595	Experimental study on hybrid MSâ€CA system for post ombustion CO ₂ capture. , 2018, 8, 379-392.		2
596	High-performance perfluorodioxolane copolymer membranes for gas separation with tailored selectivity enhancement. Journal of Materials Chemistry A, 2018, 6, 652-658.	5.2	58
597	Organic template-free synthesis of high-quality CHA type zeolite membranes for carbon dioxide separation. Journal of Membrane Science, 2018, 549, 46-59.	4.1	47
598	Techno-economic Comparison of Combined Cycle Gas Turbines with Advanced Membrane Configuration and Monoethanolamine Solvent at Part Load Conditions. Energy & Fuels, 2018, 32, 625-645.	2.5	17
599	Selective-exhaust gas recirculation for CO2 capture using membrane technology. Journal of Membrane Science, 2018, 549, 649-659.	4.1	19
600	Economic assessment of carbon capture by minichannel absorbers. AICHE Journal, 2018, 64, 620-631.	1.8	7
601	Membrane separation system for coalâ€fired flue gas reclamation: Process planning and initial design. Canadian Journal of Chemical Engineering, 2019, 97, 717-726.	0.9	2
602	Optimal Design of a Two-Stage Membrane System for Hydrogen Separation in Refining Processes. Processes, 2018, 6, 208.	1.3	6
603	Thickness Effect on CO2/N2 Separation in Double Layer Pebax-1657®/PDMS Membranes. Membranes, 2018, 8, 121.	1.4	51
604	Microporous polymeric composite membranes with advanced film properties: pore intercalation yields excellent CO ₂ separation performance. Journal of Materials Chemistry A, 2018, 6, 22472-22477.	5.2	30
605	Potential of ultramicroporous metal–organic frameworks in CO ₂ clean-up. Chemical Communications, 2018, 54, 13472-13490.	2.2	49
607	Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 23169-23196.	5.2	109
608	A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries. Energy, Sustainability and Society, 2018, 8, .	1.7	88
609	Design Considerations for Postcombustion CO2 Capture With Membranes. , 2018, , 385-413.		5

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
610	Already Used and Candidate Polymeric Membranes for CO2 Separation Plants. , 2018,	, 51-73.		2
611	Gas Separation Membrane Composed of Polyimide and Surface-modified Nanoparticle Surface-modification Structures on Gas Permeation Properties. Journal of Photopolyme Technology = [Fotoporima Konwakai Shi], 2018, 31, 593-598.	s: Influence of er Science and	0.1	1
612	Membrane Technology in IGCC Processes for Precombustion CO2 Capture. , 2018, , 3.	29-357.		6
613	Technology Evolution in Membrane-Based CCS. Energies, 2018, 11, 3153.		1.6	22
614	Cleaning and Poly-generation of Coal-fired Flue Gas Integrated with a LNG Station. IOF Series: Earth and Environmental Science, 2018, 189, 052062.	' Conference	0.2	0
615	Effects of tertiary amines and quaternary ammonium halides in polysulfone on membr separation properties. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1	ane gas 239-1250.	2.4	9
616	Nanotube-reinforced facilitated transport membrane for CO2/N2 separation with vacu Journal of Membrane Science, 2018, 567, 261-271.	um operation.	4.1	71
617	CO ₂ Capture from Cement Plants and Steel Mills Using Membranes. Indu Engineering Chemistry Research, 2018, 57, 15963-15970.	istrial &	1.8	69
618	China baseline coal-fired power plant with post-combustion CO2 capture: 2. Techno-ec International Journal of Greenhouse Gas Control, 2018, 78, 429-436.	conomics.	2.3	28
619	Initial Steps toward the Development of Grafted Ionic Liquid Membranes for the Select of CO ₂ . Industrial & Engineering Chemistry Research, 2018, 57, 160	tive Transport 27-16040.	1.8	15
620	CO2-Selective Membranes. , 2018, , 75-102.			2
621	Ultrathin Metal–Organic Framework Nanosheets as a Gutter Layer for Flexible Comp Separation Membranes. ACS Nano, 2018, 12, 11591-11599.	oosite Gas	7.3	118
622	Inherent potential of steelmaking to contribute to decarbonisation targets via industri capture and storage. Nature Communications, 2018, 9, 4422.	al carbon	5.8	78
623	Mixing Effect of Ligand on Carbon Dioxide Capture Behavior of Zeolitic Imidazolate Framework/Poly(amide-b-ethylene oxide) Mixed Matrix Membranes. ACS Sustainable C Engineering, 2018, 6, 15341-15348.	hemistry and	3.2	22
624	Technoeconomic Assessment of Polymeric, Ceramic, and Metallic Membrane Integratic Advanced IGCC Process for CO2 Separation and Capture. , 2018, , 511-549.	on in an		5
625	Recent advances on the membrane processes for CO2 separation. Chinese Journal of C Engineering, 2018, 26, 2280-2291.	Chemical	1.7	66
626	Coal with Carbon Capture and Sequestration is not as Land Use Efficient as Solar Phot Technology for Climate Neutral Electricity Production. Scientific Reports, 2018, 8, 134	ovoltaic 76.	1.6	27
627	Defect control for large-scale thin-film composite membrane and its bench-scale demo Journal of Membrane Science, 2018, 566, 374-382.	nstration.	4.1	14

ARTICLE IF CITATIONS Optimization of multistage membrane gas separation processes. Example of application to CO2 capture 628 4.1 57 from blast furnace gas. Journal of Membrane Science, 2018, 566, 346-366. High-performance multiple-layer PIM composite hollow fiber membranes for gas separation. Journal 629 4.1 of Membrane Science, 2018, 563, 93-106. Thermal rearrangement of <i>ortho</i>allyloxypolyimide membranes and the effect of the degree of 630 1.9 25 functionalization. Polymer Chemistry, 2018, 9, 3987-3999. MOF Scaffold for a Highâ€Performance Mixedâ€Matrix Membrane. Angewandte Chemie - International 631 Edition, 2018, 57, 8597-8602. Adsorption of carbon dioxide on solid amine-functionalized sorbents: A dual kinetic model. 632 3.9 29 Separation and Purification Technology, 2018, 204, 13-20. MOF Scaffold for a Highâ€Performance Mixedâ€Matrix Membrane. Angewandte Chemie, 2018, 130, 8733-8738. 1.6 Scale-up of zeolite-Y/polyethersulfone substrate for composite membrane fabrication in CO2 634 4.1 26 separation. Journal of Membrane Science, 2018, 562, 56-66. Towards High Performance Metal–Organic Framework–Microporous Polymer Mixed Matrix Membranes: Addressing Compatibility and Limiting Aging by Polymer Doping. Chemistry - A European 1.7 24 Journal, 2018, 24, 12796-12800. Automated process design and optimization of membrane-based CO2 capture for a coal-based power 636 4.1 36 plant. Journal of Membrane Science, 2018, 563, 820-834. Simple Fabrication Method for Mixed Matrix Membranes with in Situ MOF Growth for Gas Separation. ACS Applied Materials & amp; Interfaces, 2018, 10, 24784-24790. Carbon-Based Nanocomposite Membrane for Acidic Gas Separation., 2018, , 233-260. 638 1 Recent progress in ionic liquid membranes for gas separation. Journal of Molecular Liquids, 2018, 266, 2.3 146 330-341. Advanced membranes containing star macromolecules with C60 core for intensification of propyl 640 2.7 11 acetate production. Chemical Engineering Research and Design, 2018, 135, 197-206. CO 2 â€"Capture and Storage. , 2018, , 61-130. 641 Recent advances in polymeric membranes for CO2 capture. Chinese Journal of Chemical Engineering, 642 123 1.7 2018, 26, 2238-2254. Gas permeation and supported liquid membranes., 2018, , 103-151. 643 Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 644 4.1 69 separation. Journal of Membrane Science, 2018, 564, 878-886. CO2 Capture by Alkaline Solution for Carbonate Production: A Comparison between a Packed Column 645 1.3 38 and a Membrane Contactor. Applied Sciences (Switzerland), 2018, 8, 996.

#	Article	IF	CITATIONS
646	Role of Amine Type in CO2 Separation Performance within Amine Functionalized Silica/Organosilica Membranes: A Review. Applied Sciences (Switzerland), 2018, 8, 1032.	1.3	46
647	Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO2 Separation: A Review. Membranes, 2018, 8, 24.	1.4	52
648	Structure Manipulation of Carbon Aerogels by Managing Solution Concentration of Precursor and Its Application for CO2 Capture. Processes, 2018, 6, 35.	1.3	9
649	CO ₂ Selective PolyActive Membrane: Thermal Transitions and Gas Permeance as a Function of Thickness. ACS Applied Materials & Interfaces, 2018, 10, 26733-26744.	4.0	22
650	Multifunctional Amine-Containing PVA- <i>g</i> -POEM Graft Copolymer Membranes for CO ₂ Capture. Macromolecules, 2018, 51, 5646-5655.	2.2	11
651	Healing of Microdefects in SSZ-13 Membranes via Filling with Dye Molecules and Its Effect on Dry and Wet CO ₂ Separations. Chemistry of Materials, 2018, 30, 3346-3358.	3.2	48
652	Highly permeable mixed matrix materials comprising ZIF-8 nanoparticles in rubbery amorphous poly(ethylene oxide) for CO2 capture. Separation and Purification Technology, 2018, 205, 58-65.	3.9	67
653	Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. Journal of Membrane Science, 2018, 565, 370-379.	4.1	165
654	Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews, 2018, 118, 8655-8769.	23.0	239
655	Hydrophilic and morphological modification of nanoporous polyethersulfone substrates for composite membranes in CO2 separation. Journal of Membrane Science, 2018, 565, 439-449.	4.1	29
657	Post-combustion and Oxy-combustion Technologies. , 0, , 47-66.		2
658	Multi-objective Optimization of Membrane-based CO 2 Capture. Computer Aided Chemical Engineering, 2018, , 1117-1122.	0.3	8
659	Molecular-Scale Hybrid Membranes Derived from Metal-Organic Polyhedra for Gas Separation. ACS Applied Materials & Interfaces, 2018, 10, 21381-21389.	4.0	55
660	Adsorption sensitivity of Fe decorated different graphene supports toward toxic gas molecules (CO) Tj ETQq1 1 (0.784314 3.1	rgBT /Over o
661	Recent Advances in Poly (Amide-B-Ethylene) Based Membranes for Carbon Dioxide (CO ₂) Capture: A Review. Polymer-Plastics Technology and Materials, 2019, 58, 366-383.	0.6	12
662	<i>In situ</i> bottom–up growth of metal–organic frameworks in a crosslinked poly(ethylene oxide) layer with ultrahigh loading and superior uniform distribution. Journal of Materials Chemistry A, 2019, 7, 20293-20301.	5.2	28
663	Scalable fabrication of graphene-based laminate membranes for liquid and gas separations by crosslinking-induced gelation and doctor-blade casting. Carbon, 2019, 155, 129-137.	5.4	40
664	Highly Polar but Amorphous Polymers with Robust Membrane CO2/N2 Separation Performance. Joule, 2019, 3, 1881-1894.	11.7	60

#	Article	IF	CITATIONS
665	Microstructural control of a SSZ-13 zeolite film via rapid thermal processing. Journal of Membrane Science, 2019, 591, 117342.	4.1	24
666	Integrated design of multi-stage membrane separation for landfill gas with uncertain feed. Journal of Membrane Science, 2019, 590, 117260.	4.1	23
667	Polyvinylamine/graphene oxide/PANI@CNTs mixed matrix composite membranes with enhanced CO2/N2 separation performance. Journal of Membrane Science, 2019, 589, 117246.	4.1	54
668	Liquid-like CNT/SiO ₂ nanoparticle organic hybrid materials as fillers in mixed matrix composite membranes for enhanced CO ₂ -selective separation. New Journal of Chemistry, 2019, 43, 11949-11958.	1.4	28
669	Ionic liquid gated 2D-CAP membrane for highly efficient CO2/N2 and CO2/CH4 separation. Applied Surface Science, 2019, 494, 477-483.	3.1	14
670	Redefining the Robeson upper bounds for CO ₂ /CH ₄ and CO ₂ /N ₂ separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy and Environmental Science, 2019, 12, 2733-2740.	15.6	509
671	Combined heat and mass transfer performance enhancement by nanoemulsion absorbents during the CO2 absorption and regeneration processes. International Journal of Heat and Mass Transfer, 2019, 141, 1196-1204.	2.5	12
672	Tailored CO ₂ -philic Gas Separation Membranes via One-Pot Thiol–ene Chemistry. Macromolecules, 2019, 52, 5819-5828.	2.2	20
673	High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target. Energy and Environmental Science, 2019, 12, 3305-3312.	15.6	100
674	<i>110th Anniversary</i> : Process Developments in Carbon Dioxide Capture Using Membrane Technology. Industrial & Engineering Chemistry Research, 2019, 58, 12868-12875.	1.8	21
675	Systematic Design and Optimization of a Membrane–Cryogenic Hybrid System for CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2019, 7, 17186-17197.	3.2	14
676	A comprehensive review of metal corrosion in a supercritical CO2 environment. International Journal of Greenhouse Gas Control, 2019, 90, 102814.	2.3	43
678	CO ₂ â€Philic Separation Membrane: Deep Eutectic Solvent Filled Graphene Oxide Nanoslits. Small, 2019, 15, e1904145.	5.2	53
680	An Experimental Investigation on the Kinetics of Integrated Methane Recovery and CO2 Sequestration by Injection of Flue Gas into Permafrost Methane Hydrate Reservoirs. Scientific Reports, 2019, 9, 16206.	1.6	35
681	Experimental investigations on spray flames and emissions analysis of diesel and diesel/biodiesel blends for combustion in oxyâ€fuel burner. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2375.	0.8	6
682	An Heteroâ€Epitaxially Grown Zeolite Membrane. Angewandte Chemie, 2019, 131, 18827-18835.	1.6	10
683	An Heteroâ€Epitaxially Grown Zeolite Membrane. Angewandte Chemie - International Edition, 2019, 58, 18654-18662.	7.2	38
684	Membrane-Coated UiO-66 MOF Adsorbents. Industrial & Engineering Chemistry Research, 2019, 58, 1352-1362.	1.8	17

#	Article		CITATIONS
685	Ultra-fast, Selective CO ₂ Permeation by Free-standing Siloxane Nanomembranes. Chemistry Letters, 2019, 48, 1351-1354.	0.7	22
686	Superhigh CO ₂ -Permeable Mixed Matrix Membranes Composed of a Polymer of Intrinsic Microporosity (PIM-1) and Surface-Modified Silica Nanoparticles. ACS Applied Polymer Materials, 2019, 1, 2516-2524.	2.0	27
687	High-throughput computational prediction of the cost of carbon capture using mixed matrix membranes. Energy and Environmental Science, 2019, 12, 1255-1264.	15.6	62
688	Development of novel sub-ambient membrane systems for energy-efficient post-combustion CO2 capture. Applied Energy, 2019, 238, 1060-1073.	5.1	24
689	Integrated hybrid process for solvent-based CO2 capture using a pre-concentrating membrane: A pilot scale study. International Journal of Greenhouse Gas Control, 2019, 82, 204-209.	2.3	7
690	Simulation of Postâ€Combustion CO ₂ Capture, a Comparison among Absorption, Adsorption and Membranes. Chemical Engineering and Technology, 2019, 42, 797-804.	0.9	25
691	A novel cost-effective silica membrane-based process for helium extraction from natural gas. Computers and Chemical Engineering, 2019, 121, 633-638.	2.0	14
692	Tailoring Ultramicroporosity To Maximize CO ₂ Transport within Pyrimidine-Bridged Organosilica Membranes. ACS Applied Materials & Interfaces, 2019, 11, 7164-7173.	4.0	28
693	Solvation Effects on the Permeation and Aging Performance of PIM-1-Based MMMs for Gas Separation. ACS Applied Materials & Interfaces, 2019, 11, 6502-6511.	4.0	43
694	Performance Analysis of Air and Oxy-Fuel Laminar Combustion in a Porous Plate Reactor. Energies, 2019, 12, 1706.	1.6	7
695	Dynamic Simulation and Mass Transfer Study of Carbon Dioxide Capture Using Biochar and MgO-Impregnated Activated Carbon in a Swing Adsorption Process. Energy & Fuels, 2019, 33, 5452-5463.	2.5	18
696	A review of polymeric composite membranes for gas separation and energy production. Progress in Polymer Science, 2019, 97, 101141.	11.8	219
697	Postcombustion Carbon Capture Using Thin-Film Composite Membranes. Accounts of Chemical Research, 2019, 52, 1905-1914.	7.6	60
698	Oxygen permeability and structural stability of CO2-stable SDC–SSCFG dual-phase membrane. Surface Innovations, 2019, 7, 268-277.	1.4	3
699	Iron oxides as efficient sorbents for CO2 capture. Journal of Materials Research and Technology, 2019, 8, 2944-2956.	2.6	31
700	Advanced CO2 Capture Technologies. SpringerBriefs in Energy, 2019, , .	0.2	26
701	Integration of CO2 absorption with biological transformation via using rich ammonia solution as a nutrient source for microalgae cultivation. Energy, 2019, 179, 618-627.	4.5	38
702	A review on heat and mass integration techniques for energy and material minimization during CO2 capture. International Journal of Energy and Environmental Engineering, 2019, 10, 367-387.	1.3	27

#	Article		CITATIONS
703	Highâ€Performance CO ₂ Capture through Polymerâ€Based Ultrathin Membranes. Advanced Functional Materials, 2019, 29, 1900735.	7.8	70
704	Restricting Lattice Flexibility in Polycrystalline Metal–Organic Framework Membranes for Carbon Capture. Advanced Materials, 2019, 31, e1900855.	11.1	122
705	Field test of a pre-pilot scale hollow fiber facilitated transport membrane for CO2 capture. International Journal of Greenhouse Gas Control, 2019, 86, 191-200.	2.3	38
706	Supported molten-salt membranes for carbon dioxide permeation. Journal of Materials Chemistry A, 2019, 7, 12951-12973.	5.2	41
707	Membrane for CO2 Separation. SpringerBriefs in Energy, 2019, , 65-83.	0.2	1
708	Mixed matrix membranes with a thermally rearranged polymer and ZIF-8 for hydrogen separation. Journal of Membrane Science, 2019, 582, 381-390.	4.1	65
709	Highly permeable carbon molecular sieve membranes for efficient CO2/N2 separation at ambient and subambient temperatures. Journal of Membrane Science, 2019, 583, 9-15.	4.1	33
710	Relationships between Electrolyte Concentration and the Supercapacitive Swing Adsorption of CO ₂ . ACS Applied Materials & amp; Interfaces, 2019, 11, 21489-21495.	4.0	8
711	Layer-by-layer assembly of a polymer of intrinsic microporosity: targeting the CO ₂ /N ₂ separation problem. Chemical Communications, 2019, 55, 4347-4350.	2.2	9
712	Polydopamine-Modified Metal–Organic Framework Membrane with Enhanced Selectivity for Carbon Capture. Environmental Science & Technology, 2019, 53, 3764-3772.	4.6	93
713	Enhanced CO selectivity for reverse waterâ€gas shift reaction using Ti 4 O 7 â€doped SrCe 0.9 Y 0.1 O 3â€Î hollow fibre membrane reactor. Canadian Journal of Chemical Engineering, 2019, 97, 1619-1626.	0.9	13
714	Impact of vacuum operation on hydrogen permeation through a palladium membrane tube. International Journal of Hydrogen Energy, 2019, 44, 14434-14444.	3.8	17
715	Review of post-combustion carbon dioxide capture technologies using activated carbon. Journal of Environmental Sciences, 2019, 83, 46-63.	3.2	210
716	Open-cocoon zeolitic imidazolate framework nanoparticles introduce low-resistance path for CO2 transport in crosslinked poly(ethylene oxide) membrane. Separation and Purification Technology, 2019, 217, 299-306.	3.9	10
717	Coal Bed Methane Enhancement Techniques: A Review. ChemistrySelect, 2019, 4, 3585-3601.	0.7	38
718	Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas. Journal of Membrane Science, 2019, 575, 242-251.	4.1	60
719	A molecular dynamics study of the solvation of carbon dioxide and other compounds in the ionic liquids [emim][B(CN)4] and [emim][NTf2]. Fluid Phase Equilibria, 2019, 491, 1-11.	1.4	11
720	Separation of Carbon Dioxide from Real Power Plant Flue Gases by Gas Permeation Using a Supported Ionic Liquid Membrane: An Investigation of Membrane Stability. Membranes, 2019, 9, 35.	1.4	18

#	Article	IF	CITATIONS
721	Study on CO2 absorption performance of lab-scale ceramic hollow fiber membrane contactor by gas/liquid flow direction and module design. Separation and Purification Technology, 2019, 220, 189-196.	3.9	50
722	Carbon nanotubes and graphene oxide-based solvent-free hybrid nanofluids functionalized mixed-matrix membranes for efficient CO2/N2 separation. Separation and Purification Technology, 2019, 221, 421-432.	3.9	47
723	Advanced Membranes and Learning Scale Required for Cost-Effective Post-combustion Carbon Capture. IScience, 2019, 13, 440-451.	1.9	29
724	Membrane-based carbon capture technologies: Membrane gas separation vs. membrane contactor. Journal of Natural Gas Science and Engineering, 2019, 67, 172-195.	2.1	138
725	A sequential approach for the economic evaluation of new CO2 capture technologies for power plants. International Journal of Greenhouse Gas Control, 2019, 84, 219-231.	2.3	27
726	Post-combustion CO2 capture with membrane process: Practical membrane performance and appropriate pressure. Journal of Membrane Science, 2019, 581, 195-213.	4.1	78
727	Design and operations optimization of membrane-based flexible carbon capture. International Journal of Greenhouse Gas Control, 2019, 84, 154-163.	2.3	21
728	Elimination of CO ₂ /N ₂ Langmuir Sorption and Promotion of "N ₂ -Phobicity―within High- <i>T</i> _g Glassy Membranes. Macromolecules, 2019, 52, 1589-1600.	2.2	43
729	Lewis acidic water as a new carrier for facilitating CO ₂ transport. Journal of Materials Chemistry A, 2019, 7, 5190-5194.	5.2	6
730	Synergistic enhancement of gas selectivity in thin film composite membranes of PIM-1. Journal of Materials Chemistry A, 2019, 7, 6417-6430.	5.2	55
731	Characterization of a New Flat Sheet Membrane Module Type for Gas Permeation. Chemie-Ingenieur-Technik, 2019, 91, 30-37.	0.4	2
732	Thin-film composite hollow fiber membranes for ethylene/ethane separation in gas-liquid membrane contactor. Separation and Purification Technology, 2019, 219, 64-73.	3.9	31
733	Best practices and recent advances in CCS cost engineering and economic analysis. International Journal of Greenhouse Gas Control, 2019, 83, 91-104.	2.3	71
734	Dimensioning of ideal membrane cascade systems for the separation of binary gas mixtures for nuclear fusion applications. Fusion Engineering and Design, 2019, 149, 111310.	1.0	0
735	Synthesis and Properties of Poly(1-trimethylsilyl-1-propyne) Containing Quaternary Ammonium Salts with Methyl and Ethyl Substituents. Polymer Science - Series B, 2019, 61, 613-621.	0.3	2
736	High-Efficiency CaO-Based Sorbent Modified by Aluminate Cement and Organic Fiber Through Wet Mixing Method. Industrial & Engineering Chemistry Research, 2019, 58, 22040-22047.	1.8	14
737	A Critical Review of CO2 Capture Technologies and Prospects for Clean Power Generation. Energies, 2019, 12, 4143.	1.6	116
738	Renewable Methanol Synthesis. ChemBioEng Reviews, 2019, 6, 209-236.	2.6	80

	CITATION RI	EPORT	
#	Article	IF	CITATIONS
739	Zeolitic Imidazolate Framework Membranes for Light Olefin/Paraffin Separation. Crystals, 2019, 9, 14.	1.0	23
740	Progress on CO2 capture by porous organic polymers. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 33-38.	3.2	38
741	Novel "loose―GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure. Journal of Membrane Science, 2019, 574, 112-123.	4.1	147
742	Enhancing the CO2 separation performance of SPEEK membranes by incorporation of polyaniline-decorated halloysite nanotubes. Journal of Membrane Science, 2019, 573, 602-611.	4.1	32
743	Subsea natural gas dehydration with membrane processes: Simulation and process optimization. Chemical Engineering Research and Design, 2019, 142, 257-267.	2.7	21
744	Simultaneous effects of temperature and vacuum and feed pressures on facilitated transport membrane for CO2/N2 separation. Journal of Membrane Science, 2019, 573, 476-484.	4.1	68
745	Preparation of carbon molecular sieve membranes from an optimized ionic liquid-regenerated cellulose precursor. Journal of Membrane Science, 2019, 572, 390-400.	4.1	43
746	Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nature Materials, 2019, 18, 163-168.	13.3	172
747	Ordered polymeric membranes using metals. Nature Materials, 2019, 18, 92-93.	13.3	4
748	Metal–organic frameworks in Germany: From synthesis to function. Coordination Chemistry Reviews, 2019, 380, 378-418.	9.5	91
749	Packed and fluidized bed absorber modeling for carbon capture with micro-encapsulated sodium carbonate solution. Applied Energy, 2019, 235, 1192-1204.	5.1	24
750	Indirect CO ₂ Methanation: Hydrogenolysis of Cyclic Carbonates Catalyzed by Ruâ€Modified Zeolite Produces Methane and Diols. Angewandte Chemie, 2019, 131, 567-570.	1.6	8
751	Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation. Progress in Materials Science, 2019, 102, 222-295.	16.0	179
752	Indirect CO ₂ Methanation: Hydrogenolysis of Cyclic Carbonates Catalyzed by Ruâ€Modified Zeolite Produces Methane and Diols. Angewandte Chemie - International Edition, 2019, 58, 557-560.	7.2	28
753	Elucidating the impact of polymer crosslinking and fixed carrier on enhanced water transport during desalination using pervaporation membranes. Journal of Membrane Science, 2019, 575, 135-146.	4.1	49
754	A novel Pebax-C60(OH)24/PAN thin film composite membrane for carbon dioxide capture. Separation and Purification Technology, 2019, 215, 480-489.	3.9	35
755	Chabazite-Type Zeolite Membranes for Effective CO ₂ Separation: The Role of Hydrophobicity and Defect Structure. ACS Applied Materials & Interfaces, 2019, 11, 3946-3960.	4.0	53
756	Global sensitivity analysis for hybrid membrane-cryogenic post combustion carbon capture process. International Journal of Greenhouse Gas Control, 2019, 81, 157-169.	2.3	18

ARTICLE IF CITATIONS Improved CO2 separation performance of composite membrane with the aids of low-temperature 757 4.1 27 plasma treatment. Journal of Membrane Science, 2019, 570-571, 184-193. Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 4.1 capture. Journal of Membrane Science, 2019, 572, 38-60. Crystal Engineering of Metal–Organic Framework Thin Films for Gas Separations. ACS Sustainable 759 3.2 52 Chemistry and Engineering, 2019, 7, 49-69. High-performance microporous polymer membranes prepared by interfacial polymerization for gas separation. Journal of Membrane Science, 2019, 573, 425-438. Optimization of helium extraction processes integrated with nitrogen removal units: A comparative 761 2.0 27 study. Computers and Chemical Engineering, 2019, 121, 354-366. Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges. Renewable and Sustainable Energy Reviews, 2019, 101, 265-278. 8.2 Carbon molecular sieve membranes for CO2/N2 separations: Evaluating subambient temperature 763 4.1 35 performance. Journal of Membrane Science, 2019, 569, 1-6. Designing aminoâ€based ionic liquids for improved carbon capture: One amine binds two 764 1.8 58 CO₂. AICHE Journal, 2019, 65, 230-238. Effect of poly(ethylene glycol) molecular weight on CO2/N2 separation performance of 765 poly(amide-12-b-ethylene oxide)/poly(ethylene glycol) blend membranes. Journal of Energy Chemistry, 7.1 25 2019, 28, 39-45. Marginal cost to increase soil organic carbon using no-till on U.S. cropland. Mitigation and 1.0 Adaptation Strategies for Global Change, 2019, 24, 93-112. Hydrogen permeation enhancement in a Pd membrane tube system under various vacuum degrees. 767 3.8 13 International Journal of Hydrogen Energy, 2020, 45, 7401-7411. Separation behavior of amorphous amino-modified silica nanoparticle/polyimide mixed matrix 4.1 membranes for gas separation. Journal of Membrane Science, 2020, 595, 117542. 769 Block Copolymer Membranes., 2020, , 297-316. 9 Techno-economic comparison of three technologies for pre-combustion CO2 capture from a 2.3 lignite-fired IGCC. Frontiers of Chemical Science and Engineering, 2020, 14, 436-452. Polymer Membranes for Sustainable Gas Separation., 2020, , 265-296. 771 4 A new honeycomb carbon monolith for CO2 capture by rapid temperature swing adsorption using 39 steam regeneration. Chemical Engineering Journal, 2020, 383, 123075. Comparison of pure and mixed gas permeation of the highly fluorinated polymer of intrinsic 773 microporosity PIM-2 under dry and humid conditions: Experiment and modelling. Journal of Membrane 4.1 39 Science, 2020, 594, 117460. Polycrystalline Advanced Microporous Framework Membranes for Efficient Separation of Small 774 11.1 134 Molecules and Ions. Advanced Materials, 2020, 32, e1902009.

#	Article		CITATIONS
775	Dry hydrated potassium carbonate for effective CO ₂ capture. Dalton Transactions, 2020, 49, 3965-3969.		5
776	Hyperthin Membranes for Gas Separations via Layerâ€byâ€Layer Assembly. Chemical Record, 2020, 20, 163-173.	2.9	7
777	CO ₂ Separation via a DDR Membrane: Mutual Influence of Mixed Gas Permeation. Industrial & Engineering Chemistry Research, 2020, 59, 7054-7060.	1.8	14
778	High-performance SAPO-34 membranes for CO2 separations from simulated flue gas. Microporous and Mesoporous Materials, 2020, 292, 109712.	2.2	31
779	Design of Amine-Containing CO ₂ -Selective Membrane Process for Carbon Capture from Flue Gas. Industrial & Engineering Chemistry Research, 2020, 59, 5340-5350.	1.8	32
780	Pilot plants of membrane technology in industry: Challenges and key learnings. Frontiers of Chemical Science and Engineering, 2020, 14, 305-316.	2.3	19
781	High gas permselectivity in ZIFâ€302/polyimide selfâ€consistent mixedâ€matrix membrane. Journal of Applied Polymer Science, 2020, 137, 48513.	1.3	31
782	Carbon nanotube-based mixed-matrix membranes with supramolecularly engineered interface for enhanced gas separation performance. Journal of Membrane Science, 2020, 598, 117794.	4.1	35
783	Enhanced CO2 permeability of thermal crosslinking membrane via sulfonation/desulfonation of phenolphthalein-based cardo poly(arylene ether ketone). Journal of Membrane Science, 2020, 598, 117824.		18
784	Organic–inorganic hybrids for CO2 sensing, separation and conversion. Nanoscale Horizons, 2020, 5, 431-453.	4.1	25
785	Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014–2018). Journal of Cleaner Production, 2020, 253, 119707.	4.6	97
786	Zn(II)-modified imidazole containing polyimide/ZIF-8 mixed matrix membranes for gas separations. Journal of Membrane Science, 2020, 597, 117775.	4.1	68
787	Enhanced CO2-selective behavior of Pebax-1657: A comparative study between the influence of graphene-based fillers. Polymer Testing, 2020, 81, 106264.	2.3	39
788	Post-combustion carbon capture by membrane separation, Review. Separation and Purification Technology, 2020, 238, 116448.	3.9	97
789	Perspective on Gas Separation Membrane Materials from Process Economics Point of View. Industrial & Engineering Chemistry Research, 2020, 59, 556-568.	1.8	44
790	Pushing Rubbery Polymer Membranes To Be Economic for CO ₂ Separation: Embedment with Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets. ACS Applied Materials & Interfaces, 2020, 12, 3984-3992.	4.0	105
791	High CO2 permeability of ceramic-carbonate dual-phase hollow fiber membrane at medium-high temperature. Journal of Membrane Science, 2020, 597, 117770.	4.1	46
792	Hydrogen production with carbon dioxide capture by dual-phase ceramic-carbonate membrane reactor via steam reforming of methane. Journal of Membrane Science, 2020, 598, 117780.	4.1	44

#	Article		CITATIONS
797	Process-integrated design of a sub-ambient membrane process for CO2 removal from natural gas power plants. Applied Energy, 2020, 260, 114255.	5.1	29
798	A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chemical Engineering Journal, 2020, 391, 123575.	6.6	82
799	Treatment of highly sour natural gas stream by hybrid membrane-amine process: Techno-economic study. Separation and Purification Technology, 2020, 237, 116348.	3.9	12
800	Metal–organic frameworks for carbon dioxide capture. MRS Energy & Sustainability, 2020, 7, 1.	1.3	31
801	Tuning surface-interface structures of ZrO2 supported copper catalysts by in situ introduction of indium to promote CO2 hydrogenation to methanol. Applied Catalysis A: General, 2020, 605, 117805.	2.2	26
802	Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent. Energy, 2020, 211, 119035.	4.5	65
803	Fouling of composite water vapor transport membranes by aerosol nanoparticles. Journal of Membrane Science, 2020, 614, 118440.	4.1	3
804	A Review of Technical Advances, Barriers, and Solutions in the Power to Hydrogen (P2H) Roadmap. Engineering, 2020, 6, 1364-1380.	3.2	63
805	CO2 separation from humidified ternary gas mixtures using a polydecylmethylsiloxane composite membrane. Fuel Processing Technology, 2020, 210, 106550.	3.7	11
806	Recent progress on thin film composite membranes for CO2 separation. Journal of CO2 Utilization, 2020, 42, 101296.	3.3	52
807	Ceramic/Metal-Supported, Tubular, Molten Carbonate Membranes for High-Temperature CO2 Separations. Industrial & Engineering Chemistry Research, 2020, 59, 13706-13715.	1.8	7
808	Clicking the Surface of Poly[1-(trimethylsilyl)propyne] (PTMSP) via a Thiol–Ene Reaction: Unexpected CO2/N2 Permeability. Langmuir, 2020, 36, 1768-1772.	1.6	6
809	On the Carbonate Formation in Thermally Stressed Hydroxysodalite – Some Facts to Notice for SOD Application in Separation Processes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1641-1649.	0.6	1
810	CO2 separation with ionic liquid membranes. , 2020, , 291-309.		5
811	Rational design of poly(ethylene oxide) based membranes for sustainable CO ₂ capture. Journal of Materials Chemistry A, 2020, 8, 24233-24252.	5.2	94
812	Recent Progress in the Engineering of Polymeric Membranes for CO2 Capture from Flue Gas. Membranes, 2020, 10, 365.	1.4	42
813	Polymeric membranes: chemistry, physics, and applications. Journal of Polymer Science, 2020, 58, 2433-2434.	2.0	17
814	Fabrication and Performance Evaluation of Industrial Alumina Based Graded Ceramic Substrate for CO ₂ Selective Amino Silicate Membrane. ACS Applied Materials & Interfaces, 2020, 12, 40269-40284.	4.0	11

#	Article		CITATIONS
815	Hybrid Hydrate-Membrane Post-combustion CO ₂ Capture: A Conceptual Process Design and Analyses. Industrial & Engineering Chemistry Research, 2020, 59, 13132-13142.	1.8	20
816	A new concept for generating mechanical work from gas permeation. Journal of Membrane Science, 2020, 614, 118489.	4.1	3
817	Synergistic CO ₂ ‣ieving from Polymer with Intrinsic Microporosity Masking Nanoporous Single‣ayer Graphene. Advanced Functional Materials, 2020, 30, 2003979.	7.8	43
818	Polysulfone metal-activated carbon magnetic nanocomposites with enhanced CO ₂ capture. RSC Advances, 2020, 10, 34595-34604.	1.7	9
819	Dual Anion–Cation Crosslinked Poly(ionic liquid) Composite Membranes for Enhanced CO ₂ Separation. ACS Applied Polymer Materials, 2020, 2, 5067-5076.	2.0	17
820	Poly[3-ethyl-1-vinyl-imidazolium] diethyl phosphate/Pebax® 1657 Composite Membranes and Their Gas Separation Performance. Membranes, 2020, 10, 224.	1.4	4
821	Effect of Water and Organic Pollutant in CO2/CH4 Separation Using Hydrophilic and Hydrophobic Composite Membranes. Membranes, 2020, 10, 405.	1.4	10
822	Synergy of selective gas transport in bilayered membranes. Journal of Physics: Conference Series, 2020, 1696, 012038.	0.3	0
823	What might it cost to increase soil organic carbon using no-till on U.S. cropland?. Carbon Balance and Management, 2020, 15, 26.	1.4	12
824	The Separative Performance of Modules with Polymeric Membranes for a Hybrid Adsorptive/Membrane Process of CO2 Capture from Flue Gas. Membranes, 2020, 10, 309.	1.4	9
825	Modeling and simulation of a reactive separation system for carbon capture and utilization in biogas streams. Chemical Engineering and Processing: Process Intensification, 2020, 156, 108093.	1.8	2
826	Challenges for CO2 capture by membranes. , 2020, , 357-377.		3
827	Modification of Poly(4-methyl-2-pentyne) in the Supercritical Fluid Medium for Selective Membrane Separation of CO2 from Various Gas Mixtures. Polymers, 2020, 12, 2468.	2.0	7
828	Carbon capture technologies for climate change mitigation: A bibliometric analysis of the scientific discourse during 1998–2018. Energy Reports, 2020, 6, 1200-1212.	2.5	66
829	Impact of Uncertainties on the Design and Cost of CCS From a Waste-to-Energy Plant. Frontiers in Energy Research, 2020, 8, .	1.2	22
830	Membrane technologies for exhaust gas cleaning and carbon capture and sequestration. , 2020, , 97-123.		2
831	The performance of a hybrid VSA-membrane process for the capture of CO2 from flue gas. International Journal of Greenhouse Gas Control, 2020, 97, 103037.	2.3	18
832	Thermally stable, homogeneous blends of cross-linked poly(ethylene oxide) and crown ethers with enhanced CO2 permeability. Journal of Membrane Science, 2020, 610, 118253.	4.1	33

	Стл	ation Report	
# 833	ARTICLE Membrane-based technology for carbon dioxide capture and sequestration. , 2020, , 359-368.	IF	Citations
834	Cross-Linked Polyphosphazene Blends as Robust CO ₂ Separation Membranes. ACS Applie Materials & Interfaces, 2020, 12, 30787-30795.	d 4.0	23
835	Negative Charge Confined Amine Carriers within the Nanowire Network for Stable and Efficient Membrane Carbon Capture. Advanced Functional Materials, 2020, 30, 2002804.	7.8	14
836	Amino-decorated organosilica membranes for highly permeable CO2 capture. Journal of Membrane Science, 2020, 611, 118328.	4.1	24
837	Nanometer-Thick Supported Graphene Oxide Membrane for CO ₂ Capture. ACS Applied Na Materials, 2020, 3, 6654-6663.	ano 2.4	9
838	Development of Thinâ€Film Composite Membranes from Aromatic Cardoâ€Type Coâ€Polyimide for Mix Sour Gas Separations from Natural Gas. Global Challenges, 2020, 4, 1900107.	ked and 1.8	13
839	CO2 wetting on pillar-nanostructured substrates. Nanotechnology, 2020, 31, 245403.	1.3	6
840	Flue gas purification with membranes based on the polymer of intrinsic microporosity PIM-TMN-Trip. Separation and Purification Technology, 2020, 242, 116814.	3.9	14
841	MOF-Based Membranes for Gas Separations. Chemical Reviews, 2020, 120, 8161-8266.	23.0	755
842	Water Vapour Promotes CO2 Transport in Poly(ionic liquid)/Ionic Liquid-Based Thin-Film Composite Membranes Containing Zinc Salt for Flue Gas Treatment. Applied Sciences (Switzerland), 2020, 10, 385	59. ^{1.3}	7
843	Sustainable and Regenerable Alkali Metal-Containing Carbons Derived from Seaweed for CO2 Post-Combustion Capture. Sustainable Chemistry, 2020, 1, 33-48.	2.2	4
844	Critical Role of the Molecular Interface in Double-Layered Pebax-1657/PDMS Nanomembranes for Highly Efficient CO ₂ /N ₂ Gas Separation. ACS Applied Materials & Interfaces, 2020, 12, 33196-33209.	4.0	41
845	CO2 capturing, thermo-kinetic principles, synthesis and amine functionalization of covalent organic polymers for CO2 separation from natural gas: A review. Journal of Natural Gas Science and Engineering, 2020, 77, 103203.	2.1	68
846	Carbon black reborn: Structure and chemistry for renewable energy harnessing. Carbon, 2020, 162, 604-649.	5.4	156
847	Pebax® 1041 supported membranes with carbon nanotubes prepared <i>via</i> phase inversion for CO ₂ /N ₂ separation. Dalton Transactions, 2020, 49, 2905-2913.	1.6	12
848	Interpenetrating Polymer Network: Biomedical Applications. , 2020, , .		5
849	No-mixing-loss design of a multistage membrane carbon capture process for off-gas in thermal power plants. Journal of Membrane Science, 2020, 598, 117796.	4.1	10
851	Polymeric amine membrane materials for carbon dioxide (CO ₂)/methane (CH _{4separation. Materialwissenschaft Und Werkstofftechnik, 2020, 51, 66-72.})	6

#		IF	Citations
852	Polyvinylamine/amorphous metakaolin mixed-matrix composite membranes with facilitated transport carriers for highly efficient CO2/N2 separation. Journal of Membrane Science, 2020, 599, 117828.	4.1	26
853	Perspective of mixed matrix membranes for carbon capture. Frontiers of Chemical Science and Engineering, 2020, 14, 460-469.	2.3	7
854	Process intensification technologies for CO2 capture and conversion $\hat{a} \in \hat{a}$ a review. BMC Chemical Engineering, 2020, 2, .	3.4	62
855	The chemical CO2 capture by carbonation-decarbonation cycles. Journal of Environmental Management, 2020, 260, 110054.	3.8	31
856	Top-Down Polyelectrolytes for Membrane-Based Post-Combustion CO2 Capture. Molecules, 2020, 25, 323.	1.7	16
857	Twoâ€Dimensional Membranes: New Paradigms for Highâ€Performance Separation Membranes. Chemistry - an Asian Journal, 2020, 15, 2241-2270.	1.7	36
858	Dendritic silver self-assembly in molten-carbonate membranes for efficient carbon dioxide capture. Energy and Environmental Science, 2020, 13, 1766-1775.	15.6	15
859	Techno-economic evaluation of membrane and enzymatic-absorption processes for CO2 capture from flue-gas. Separation and Purification Technology, 2020, 248, 116941.	3.9	25
860	Hybrid membrane process for post-combustion CO2 capture from coal-fired power plant. Journal of Membrane Science, 2020, 603, 118001.	4.1	24
861	Interpenetrating networks of mixed matrix materials comprising metal-organic polyhedra for membrane CO2 capture. Journal of Membrane Science, 2020, 606, 118122.	4.1	22
862	Influence of vacuum degree on hydrogen permeation through a Pd membrane in different H2/N2 gas mixtures. Renewable Energy, 2020, 155, 1245-1263.	4.3	12
863	Molecular transport in ionic liquid/nanomembrane hybrids. Physical Chemistry Chemical Physics, 2020, 22, 9808-9814.	1.3	9
864	Mixed substituent <scp>etherâ€containing</scp> polyphosphazene/poly(bisâ€phenoxyphosphazene) blends as membranes for <scp>CO₂</scp> separation from <scp>N₂</scp> . Journal of Applied Polymer Science, 2021, 138, 50207.	1.3	5
865	An Extrinsicâ€Pore ontaining Molecular Sieve Film: A Robust, Highâ€Throughput Membrane Filter. Angewandte Chemie - International Edition, 2021, 60, 1323-1331.	7.2	11
866	An Extrinsicâ€Poreâ€Containing Molecular Sieve Film: A Robust, Highâ€Throughput Membrane Filter. Angewandte Chemie, 2021, 133, 1343-1351.	1.6	4
867	Highly CO ₂ Selective Metal–Organic Framework Membranes with Favorable Coulombic Effect. Advanced Functional Materials, 2021, 31, 2006924.	7.8	42
868	Towards the potential of trihexyltetradecylphosphonium indazolide with aprotic heterocyclic ionic liquid as an efficient absorbent for membrane-assisted gas absorption technique for acid gas removal applications. Separation and Purification Technology, 2021, 257, 117835.	3.9	12
869	A new strategy for membrane-based direct air capture. Polymer Journal, 2021, 53, 111-119.	1.3	76

#	Article	IF	Citations
870	Influence of ionic liquid-like cationic pendants composition in cellulose based polyelectrolytes on membrane-based CO2 separation. Carbohydrate Polymers, 2021, 255, 117375.	5.1	9
871	Leveraging Free Volume Manipulation to Improve the Membrane Separation Performance of Amineâ€Functionalized PIMâ€1. Angewandte Chemie - International Edition, 2021, 60, 6593-6599.	7.2	30
872	Field trial of hollow fiber modules of hybrid facilitated transport membranes for flue gas CO2 capture in cement industry. Chemical Engineering Journal, 2021, 413, 127405.	6.6	35
873	Mixed matrix membranes for CO2 separations by incorporating microporous polymer framework fillers with amine-rich nanochannels. Journal of Membrane Science, 2021, 620, 118923.	4.1	53
874	Optimisation of post-combustion carbon dioxide capture by use of a fixed site carrier membrane. International Journal of Greenhouse Gas Control, 2021, 104, 103182.	2.3	11
875	The current status of high temperature electrochemistry-based CO2 transport membranes and reactors for direct CO2 capture and conversion. Progress in Energy and Combustion Science, 2021, 82, 100888.	15.8	49
876	Ionic liquids: Innovative fluids for sustainable gas separation from industrial waste stream. Journal of Molecular Liquids, 2021, 321, 114916.	2.3	27
877	Leveraging Free Volume Manipulation to Improve the Membrane Separation Performance of Amineâ€Functionalized PIMâ€1. Angewandte Chemie, 2021, 133, 6667-6673.	1.6	6
878	Electrochemical carbon dioxide capture to close the carbon cycle. Energy and Environmental Science, 2021, 14, 781-814.	15.6	207
879	Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes. Journal of Membrane Science, 2021, 620, 118968.	4.1	40
880	Improved dispersion performance and interfacial compatibility of covalent-grafted MOFs in mixed-matrix membranes for gas separation. Green Chemical Engineering, 2021, 2, 86-95.	3.3	15
881	Nanocomposite membranes with high-charge and size-screened phosphorylated nanocellulose fibrils for CO2 separation. Green Energy and Environment, 2021, 6, 585-596.	4.7	31
882	Toward the Next Generation of Sustainable Membranes from Green Chemistry Principles. ACS Sustainable Chemistry and Engineering, 2021, 9, 50-75.	3.2	110
883	High performance compatible thiazole-based polymeric blend cellulose acetate membrane as selective CO2 absorbent and molecular sieve. Carbohydrate Polymers, 2021, 252, 117215.	5.1	23
884	Post-combustion carbon capture. Renewable and Sustainable Energy Reviews, 2021, 138, 110490.	8.2	219
885	Inorganic/organic double-network ion gel membrane with a high ionic liquid content for CO2 separation. Polymer Journal, 2021, 53, 137-147.	1.3	19
886	Piperazine-immobilized polymeric membranes for CO2 capture: mechanism of preferential CO2 permeation. Polymer Journal, 2021, 53, 129-136.	1.3	13
887	Cryogenic techniques: an innovative approach for biogas upgrading. , 2021, , 159-186.		0

		CITATION REPO	ORT	
# 888	ARTICLE Efficient Homogeneous Catalysts for Conversion of CO2 to Fine Chemicals. , 2021, , 599-641		F	CITATIONS
889	Membrane Technology for Desalination and Wastewater Recycling. Energy, Environment, and		0.6	1
890	Thermodynamic Assessment of Membrane-Assisted Premixed and Non-Premixed Oxy-Fuel Co Power Cycles. Journal of Energy Resources Technology, Transactions of the ASME, 2021, 143	nbustion	1.4	6
891	Metal-Organic Frameworks for Environmental Applications. Engineering Materials, 2021, , 1-3	9. (0.3	0
892	Metal-organic frameworks and permeable natural polymers for reasonable carbon dioxide fixa 2021, , 417-440.	tion.,		0
893	Unavoidable but minimizable microdefects in a polycrystalline zeolite membrane: its remarkal performance for wet CO ₂ /CH ₄ separation. Journal of Materials Cher 2021, 9, 12593-12605.	ple mistry A, s	5.2	17
894	Post-combustion of Carbon Capture Technologies: Advancements in Absorbents and Nanopa Energy, Environment, and Sustainability, 2021, , 85-97.	rticles. (0.6	0
895	Pebaxâ€based mixed matrix membranes loaded with graphene oxide/core shell <scp>ZIF</scp> â€8@ <scp>ZIF</scp> â€67 nanocomposites improved <scp>CO_{2permeability and selectivity. Journal of Applied Polymer Science, 2021, 138, 50553.}</scp>	>	L.3	24
896	Absorption principle and techno-economic analysis of CO2 absorption technologies: A review Conference Series: Earth and Environmental Science, 2021, 657, 012045.	. IOP (0.2	10
897	Millisecond lattice gasification for high-density CO ₂ - and O ₂ -siev nanopores in single-layer graphene. Science Advances, 2021, 7, .	ing 2	4.7	47
898	Techno-Economic Analysis of a Hybrid System for Flue-Gas Separation: Combining Membrane Enzymatic-Absorption Processes. Chemical Engineering and Processing: Process Intensification 159, 108222.	and n, 2021, 5	1.8	8
899	Efficient synthetic approach for nanoporous adsorbents capable of pre- and post-combustion capture and selective gas separation. Journal of CO2 Utilization, 2021, 45, 101404.	CO2	3.3	36
900	Highly selective laser-induced graphene (LIG)/polysulfone composite membrane for hydrogen purification. Applied Materials Today, 2021, 22, 100971.	2	2.3	5
901	Ultrapermeable Composite Membranes Enhanced Via Doping with Amorphous MOF Nanoshe Central Science, 2021, 7, 671-680.	ets. ACS	5.3	27
902	A mechanically enhanced metal-organic framework/PDMS membrane for CO2/N2 separation. and Functional Polymers, 2021, 160, 104825.	Reactive	2.0	13
903	Oxygen Enrichment Membranes for Kuwait Power Plants: A Case Study. Membranes, 2021, 1	1, 211. 1	l.4	1
904	High-performance porous carbon-zeolite mixed-matrix membranes for CO2/N2 separation. Jou Membrane Science, 2021, 622, 119031.	urnal of	4.1	37
905	Fliect of Operating Parameters on Carbon Dioxide Depressurized Regeneration in Circulating Fluidized Bed Downer using Computational Fluid Dynamics. Journal of Thermal Science, 2021 1057-1067.	, 30,	0.9	3

#	Article	IF	CITATIONS
906	Membrane Processes for Direct Carbon Dioxide Capture From Air: Possibilities and Limitations. Frontiers in Chemical Engineering, 2021, 3, .	1.3	45
907	Constructing Thin and Cross-Linked Polyimide Membranes by Interfacial Reaction for Efficient CO ₂ Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 5546-5556.	3.2	17
908	Membrane technology for CO2 capture: From pilot-scale investigation of two-stage plant to actual system design. Journal of Membrane Science, 2021, 624, 119137.	4.1	62
909	The prospect of synthesis of PES/PEG blend membranes using blendÂNMP/DMF for CO2/N2 separation. Journal of Polymer Research, 2021, 28, 1.	1.2	14
910	Defect Repair of Polyelectrolyte Bilayers Using SDS: The Action of Micelles Versus Monomers. Langmuir, 2021, 37, 5306-5310.	1.6	2
911	Techno-economic assessment of postcombustion carbon capture using high-performance nanoporous single-layer graphene membranes. Journal of Membrane Science, 2021, 624, 119103.	4.1	25
912	Siderite decomposition at room temperature conditions for CO2 capture applications. Brazilian Journal of Chemical Engineering, 2021, 38, 351.	0.7	0
913	A microporous polymer TFC membrane with 2-D MOF nanosheets gutter layer for efficient H2 separation. Separation and Purification Technology, 2021, 261, 118283.	3.9	20
914	Synthesis and Characterization of Macrocyclic Ionic Liquids for CO ₂ Separation. Industrial & Engineering Chemistry Research, 2021, 60, 8218-8226.	1.8	6
915	Integration of hybrid membrane-distillation processes to recover helium from pre-treated natural gas in liquefied natural gas plants. Separation and Purification Technology, 2021, 263, 118355.	3.9	9
916	Analysis of CO ₂ Mass Transfer on Gas Absorption into Phase-Separated Gel. Industrial & Engineering Chemistry Research, 2021, 60, 8236-8243.	1.8	1
917	Performance modeling of Allam cycle integrated with a cryogenic air separation process. Computers and Chemical Engineering, 2021, 148, 107263.	2.0	23
918	Next generation polymers of intrinsic microporosity with tunable moieties for ultrahigh permeation and precise molecular CO2 separation. Progress in Energy and Combustion Science, 2021, 84, 100903.	15.8	43
919	Behavior of Polytrimethylsilylpropyne-Based Composite Membranes in the Course of Continuous and Intermittent Gas Permeability Measurements. Russian Journal of Applied Chemistry, 2021, 94, 616-623.	0.1	3
920	Nitrogen-Doped Microporous Carbon Prepared by One-Step Carbonization: Rational Design of a Polymer Precursor for Efficient CO ₂ Capture. Energy & Fuels, 2021, 35, 8857-8867.	2.5	15
921	Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: A review. Journal of CO2 Utilization, 2021, 47, 101475.	3.3	63
922	Part load operation of natural gas fired power plant with CO2 capture system for selective exhaust gas recirculation. Applied Thermal Engineering, 2021, 190, 116808.	3.0	79
923	Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. Journal of Industrial and Engineering Chemistry, 2021, 98, 103-129.	2.9	154

#	Article	IF	CITATIONS
924	Zeolitic imidazolate framework membranes for gas separations: Current state-of-the-art, challenges, and opportunities. Journal of Industrial and Engineering Chemistry, 2021, 98, 17-41.	2.9	40
925	Assembly of Defect-Free Microgel Nanomembranes for CO ₂ Separation. ACS Applied Materials & Interfaces, 2021, 13, 30030-30038.	4.0	18
926	Advances in the Use of Nanocomposite Membranes for Carbon Capture Operations. International Journal of Chemical Engineering, 2021, 2021, 1-22.	1.4	5
927	Application of concurrent grinding in direct aqueous carbonation of magnesium silicates. Journal of CO2 Utilization, 2021, 48, 101516.	3.3	9
928	MXeneâ \in Based Membranes for Separation Applications. Small Science, 2021, 1, 2100013.	5.8	49
929	Pore Structure Controllability and CO2 Permeation Properties of Silica-Derived Membranes with a Dual-Network Structure. Industrial & Engineering Chemistry Research, 2021, 60, 8527-8537.	1.8	3
930	Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine. Journal of Membrane Science, 2021, 628, 119215.	4.1	16
931	Polymeric membranes for CO2 separation and capture. Journal of Membrane Science, 2021, 628, 119244.	4.1	235
932	Postcombustion CO ₂ Capture: A Comparative Techno-Economic Assessment of Three Technologies Using a Solvent, an Adsorbent, and a Membrane. ACS Engineering Au, 2021, 1, 50-72.	2.3	70
933	Disclosing the Role of Defectâ€Engineered Metal–Organic Frameworks in Mixed Matrix Membranes for Efficient CO ₂ Separation: A Joint Experimentalâ€Computational Exploration. Advanced Functional Materials, 2021, 31, 2103973.	7.8	47
934	Investigating best available technique for CO2 chemical absorption: solvent selection based on empirical surrogate model and exergy loss. Clean Technologies and Environmental Policy, 2022, 24, 333-350.	2.1	2
935	Green Techniques for Rapid Fabrication of Unprecedentedly High-Performance PEO Membranes for CO ₂ Capture. ACS Sustainable Chemistry and Engineering, 2021, 9, 10167-10175.	3.2	20
936	Review of Cryogenic Carbon Capture Innovations and Their Potential Applications. Journal of Carbon Research, 2021, 7, 58.	1.4	46
937	The potential of additively manufactured membranes for selective separation and capture of CO2. MRS Communications, 2021, 11, 391-401.	0.8	18
938	A Review of Modeling Rotating Packed Beds and Improving Their Parameters: Gas–Liquid Contact. Sustainability, 2021, 13, 8046.	1.6	18
939	Stable graphene oxide-halloysite composite membrane with enhanced permeability for efficient dye desalination. Separation and Purification Technology, 2021, 266, 118067.	3.9	21
940	Inorganic/Organic Micro-Double-Network Ion Gel-Based Composite Membrane with Enhanced Mechanical Strength and CO ₂ Permeance. Industrial & Engineering Chemistry Research, 2021, 60, 12698-12708.	1.8	7
941	Phase inversion method for the preparation of Pebax® 3533 thin film membranes for CO2/N2 separation. Journal of Environmental Chemical Engineering, 2021, 9, 105624.	3.3	22

#	Article	IF	CITATIONS
942	Ultrathin, Highly Permeable Graphene Oxide/Zeolitic Imidazole Framework Polymeric Mixed-Matrix Composite Membranes: Engineering the CO ₂ -Philic Pathway. ACS Sustainable Chemistry and Engineering, 2021, 9, 11903-11915.	3.2	11
943	Ultrathin covalent organic framework film as membrane gutter layer for high-permeance CO2 capture. Journal of Membrane Science, 2021, 632, 119384.	4.1	32
944	In Situ Thermal Solvent-Free Synthesis of Zeolitic Imidazolate Frameworks with High Crystallinity and Porosity for Effective Adsorption and Catalytic Applications. Crystal Growth and Design, 2021, 21, 5349-5359.	1.4	12
945	Polyphenylsulfone (PPSU)-Based Copolymeric Membranes: Effects of Chemical Structure and Content on Gas Permeation and Separation. Polymers, 2021, 13, 2745.	2.0	17
946	CO2 capturing methods: Chemical looping combustion (CLC) as a promising technique. Science of the Total Environment, 2021, 788, 147850.	3.9	68
947	A critical review on the techno-economic analysis of membrane gas absorption for CO ₂ capture. Chemical Engineering Communications, 2022, 209, 1553-1569.	1.5	10
948	A comprehensive evaluation model for full-chain CCUS performance based on the analytic hierarchy process method. Energy, 2022, 239, 122033.	4.5	21
949	Bottom-up synthesis of graphene films hosting atom-thick molecular-sieving apertures. Proceedings of the United States of America, 2021, 118, .	3.3	14
950	Highly selective hollow fiber membranes for carbon capture via in-situ layer-by-layer surface functionalization. Journal of Membrane Science, 2021, 633, 119381.	4.1	16
951	High-vacuum setup for permeability and diffusivity measurements by membrane techniques. Vacuum, 2021, 191, 110368.	1.6	9
952	Experimental Study on Carbon Capture Performance of Polyimide Hollow Fiber Membrane in Post-combustion Process. Environmental Science and Engineering, 2022, , 621-632.	0.1	0
953	Analysis of energetics and economics of subâ€ambient hybrid <scp>postâ€combustion carbon dioxide</scp> capture. AICHE Journal, 2021, 67, e17403.	1.8	7
954	Polyvinylamine/ZIF-8-decorated metakaolin composite membranes for CO2/N2 separation. Separation and Purification Technology, 2021, 270, 118800.	3.9	22
955	CO2 separation by mixed matrix membranes incorporated with carbon nanotubes: a review of morphological, mechanical, thermal and transport properties. Brazilian Journal of Chemical Engineering, 2021, 38, 777-810.	0.7	1
956	Stratified and Hydrogen Combustion Techniques for Higher Turndown and Lower Emissions in Gas Turbines. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	1.4	11
957	Carbon Capture Systems for Building-Level Heating Systems—A Socio-Economic and Environmental Evaluation. Sustainability, 2021, 13, 10681.	1.6	4
958	Simultaneous exfoliation and functionalization of hexagonal boron nitride in the aqueous phase for the synthesis of high-performance wastewater treatment membrane. Journal of Cleaner Production, 2021, 314, 128083.	4.6	19
959	Techno-economic analysis of membrane-based processes for flexible CO2 capturing from power plants. Energy Conversion and Management, 2021, 246, 114633.	4.4	23

#	Article	IF	CITATIONS
960	Large-scale preparation of multilayer composite membranes for post-combustion CO2 capture. Journal of Membrane Science, 2021, 636, 119595.	4.1	26
961	Highly CO2-selective and moisture-resistant bilayer silicalite-1/SSZ-13 membranes with gradient pores for wet CO2/CH4 and CO2/N2 separations. Journal of Membrane Science, 2021, 636, 119565.	4.1	14
962	Review on the preparation of carbon membranes derived from phenolic resins for gas separation: From petrochemical precursors to bioresources. Carbon, 2021, 183, 12-33.	5.4	38
963	Glutamine functionalized iron oxide nanoparticles for high-performance carbon dioxide absorption. Journal of Natural Gas Science and Engineering, 2021, 94, 104081.	2.1	22
964	Graphene oxide reinforced facilitated transport membrane with poly(ionic liquid) and ionic liquid carriers for CO2/N2 separation. Journal of Membrane Science, 2021, 638, 119652.	4.1	33
965	Systematic design of millisecond gasification reactor for the incorporation of gas-sieving nanopores in single-layer graphene. Journal of Membrane Science, 2021, 637, 119628.	4.1	9
966	The influence of propane and n-butane on the structure and separation performance of cellulose acetate membranes. Journal of Membrane Science, 2021, 638, 119677.	4.1	12
967	Strategic evaluation of limiting factors affecting algal growth – An approach to waste mitigation and carbon dioxide sequestration. Science of the Total Environment, 2021, 796, 149049.	3.9	23
968	On optimisation of N2 and CO2-selective hybrid membrane process systems for post-combustion CO2 capture from coal-fired power plants. Journal of Membrane Science, 2021, 638, 119691.	4.1	22
969	A facile direct spray-coating of Pebax® 1657: Towards large-scale thin-film composite membranes for efficient CO2/N2 separation. Journal of Membrane Science, 2021, 638, 119708.	4.1	31
970	Techno-economic assessment of CO2 capture integrated coal-fired power plant with energetic analysis. Energy, 2021, 236, 121493.	4.5	3
971	Mixed ionic-electronic conducting composite-based ceramic-carbonate dense membranes for CO2/O2 counter-permeation and CO oxidation. Chemical Engineering Science, 2021, 246, 117000.	1.9	1
972	Process intensification of CO2 capture by low-aqueous solvent. Chemical Engineering Journal, 2021, 426, 131240.	6.6	18
973	Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges. Journal of Membrane Science, 2021, 640, 119802.	4.1	48
974	Molecular design and fabrication of PIM-1/polyphosphazene blend membranes with high performance for CO2/N2 separation. Journal of Membrane Science, 2021, 640, 119764.	4.1	20
975	CO2 absorption and desorption using phase-separation gel. Chemical Engineering Journal, 2022, 428, 131126.	6.6	7
976	Performance of Fe-Ni-W exchanged zeolite for NOx reduction with NH3 in a lab-scale circulating fluidized bed. Fuel, 2022, 307, 121807.	3.4	5
977	Boosting CO2 transport of poly (ethylene oxide) membranes by hollow Rubik-like "expressway― channels with anion pillared hybrid ultramicroporous materials. Chemical Engineering Journal, 2022, 427, 130845.	6.6	9

#	Article	IF	CITATIONS
978	Oxygen enrichment of air: Performance guidelines for membranes based on techno-economic assessment. Journal of Membrane Science, 2022, 641, 119883.	4.1	15
979	Clean Coal Conversion Processes–The Present and Future Challenges. , 2021, , 571-592.		0
982	Air Pollution and Climate Change: Sustainability, Restoration, and Ethical Implications. , 2021, , 279-325.		5
983	CO2 Capture by Membrane. , 2015, , 1-28.		2
984	Semi-IPN Systems for Drug Delivery. , 2020, , 205-236.		2
985	The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review. Frontiers of Chemical Science and Engineering, 2021, 15, 464-482.	2.3	43
986	High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes. Chemical Engineering Journal, 2020, 396, 125328.	6.6	78
987	Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Processing Technology, 2020, 206, 106464.	3.7	108
988	Post-combustion CO2 capture with sweep gas in thin film composite (TFC) hollow fiber membrane (HFM) contactor. Journal of CO2 Utilization, 2020, 40, 101266.	3.3	32
989	Computational Evaluation of Carriers in Facilitated Transport Membranes for Postcombustion Carbon Capture. Journal of Physical Chemistry C, 2020, 124, 25322-25330.	1.5	25
990	Microporous polymeric membranes inspired by adsorbent for gas separation. Journal of Materials Chemistry A, 2017, 5, 13294-13319.	5.2	71
994	Carbon Capture From Flue Gas and the Atmosphere: A Perspective. Frontiers in Energy Research, 2020, 8, .	1.2	165
995	Comparison Study of Emim [Tf2N] and Emim [CF3SO3] Effects on Polyethersulfone Membrane for CO2/CH4 Separation. Journal of Applied Sciences, 2014, 14, 1083-1087.	0.1	1
996	CO2-imprinted Sustainable Carbon Derived from Sunflower Heads for Highly Effective Capture of CO2 from Flue Gas. Aerosol and Air Quality Research, 2020, 20, 180-192.	0.9	4
997	Application of Polymeric Membrane in CO ₂ Capture from Post Combustion. Advances in Chemical Engineering and Science, 2012, 02, 336-341.	0.2	8
998	Membrane engineering for environmental protection and sustainable industrial growth: Options for water and gas treatment. Environmental Engineering Research, 2015, 20, 307-328.	1.5	35
999	Carbon Dioxide Capture and Carbonate Synthesis via Carbonation of KOH-Dissolved Alcohol Solution. Daehan Hwan'gyeong Gonghag Hoeji, 2015, 37, 597-606.	0.4	8
1000	A Review on Catalytic Membranes Production and Applications. Bulletin of Chemical Reaction Engineering and Catalysis, 2017, 12, 136-156.	0.5	42

# 1002	ARTICLE Evaluation of Flowsheet Design Approaches to Improve Energy Efficiency in Multistage Membrane Processes to Recover Helium. Industrial & Engineering Chemistry Research, 2021, 60, 2588-2599.	IF 1.8	CITATIONS
1003	Membrane Technologies for Decarbonization. Membranes and Membrane Technologies, 2021, 3, 255-273.	0.6	32
1004	Monosodium glutamate-mediated hierarchical porous formation in LTA zeolite to enhance CO2 adsorption performance. Journal of Sol-Gel Science and Technology, 2021, 100, 360-372.	1.1	7
1005	Recent progress on the smart membranes based on two-dimensional materials. Chinese Chemical Letters, 2022, 33, 2832-2844.	4.8	16
1006	Optimal Design of a Subambient Membrane Separation System with Work and Heat Integration for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2021, 60, 15194-15207.	1.8	3
1007	Designed azo-linked conjugated microporous polymers for CO2 uptake and removal applications. Journal of Polymer Research, 2021, 28, 1.	1.2	19
1008	Use of salt caverns in the energy transition: Application to Power-to-Gas–Oxyfuel. Journal of Energy Storage, 2021, 44, 103333.	3.9	4
1009	Separation and Recovery of Gases, Multistage Process for. , 2013, , 1-3.		0
1011	Functionalized Inorganic Membranes for High-Temperature CO2/N2 Separation. Green Chemistry and Sustainable Technology, 2014, , 223-245.	0.4	0
1012	Resourcing of Methane in the Biogas Using Membrane Process. Clean Technology, 2014, 20, 406-414.	0.1	0
1013	Poly(ionic liquid)s: Designing CO2 Separation Membranes. , 2015, , 267-295.		1
1014	Turning Commercial Ceramic Membranes into a First Stage of Membranes for Post-Combustion CO2 Separation. Journal of Membrane Science & Technology, 2015, 05, .	0.5	0
1015	Separation and Recovery of Gases, Multistage Process for. , 2016, , 1763-1765.		0
1016	Life Cycle Cost and Reliability Analysis to Evaluate Gas Destination. Advances in Intelligent Systems and Computing, 2016, , 55-63.	0.5	0
1017	Fossil Fuels Processing by Membrane Operations. , 2016, , 804-807.		0
1018	CO2 Capture by Membrane. , 2017, , 2405-2432.		0
1019	Investigation of High Selectivity Adsorbent for Carbon Capture. Journal of Advances in Physical Chemistry, 2019, 08, 40-46.	0.1	0
1020	Membrane-based Direct Air Capture Technologies. Membrane Journal, 2020, 30, 173-180.	0.2	2

#	Article	IF	Citations
1021	Carbon Capture, Utilization & Storage: A General Overview. , 2022, , 61-107.		1
1022	Process design of onboard membrane carbon capture and liquefaction systems for LNG-fueled ships. Separation and Purification Technology, 2022, 282, 120052.	3.9	16
1023	A chemically stable La0.2Sr0.8Fe0.9Mo0.1O3-δ-molten carbonate dual-phase membrane for CO2 separation. Separation and Purification Technology, 2022, 280, 119970.	3.9	3
1024	Techno-economic evaluation of a novel membrane-cryogenic hybrid process for carbon capture. Applied Thermal Engineering, 2022, 200, 117688.	3.0	15
1025	Polyazole polymers membranes for high pressure gas separation technology. Journal of Membrane Science, 2022, 642, 119980.	4.1	2
1026	Interface regulation of mixed matrix membranes by ultrathin MOF nanosheet for faster CO2 transfer. Journal of Membrane Science, 2022, 642, 119991.	4.1	17
1027	Water-swollen carboxymethyl chitosan (CMC) /polyamide (PA) membranes with octopus-branched nanostructures for CO2 capture. Journal of Membrane Science, 2022, 642, 119946.	4.1	16
1028	Boosting the CO2 capture efficiency through aromatic bridged organosilica membranes. Journal of Membrane Science, 2022, 643, 120018.	4.1	12
1029	Solar Fuels via Two-Step Thermochemical Redox Cycles. Green Energy and Technology, 2020, , 31-84.	0.4	2
1030	Sustainable Carbon Di-Oxide Sequestration Using Photosynthetic Reactions. , 2020, , 759-770.		0
1031	Air Pollution and Climate Change: Sustainability, Restoration, and Ethical Implications. , 2020, , 1-48.		2
1032	Adsorption behavior of CO ₂ molecule on AlN and silicene—application to gas capture devices. , 0, 2, e3.		2
1033	Ultrahigh permeation of CO2 capture using composite organosilica membranes. Separation and Purification Technology, 2022, 282, 120061.	3.9	11
1035	Preparation and performance characterization of novel PVA blended with fluorinated polyimide membrane for gas separation. High Performance Polymers, 2021, 33, 394-404.	0.8	3
1036	Tinjauan Metode Penangkapan Karbon untuk PLTU Batubara. Jurnal Energi Baru Dan Terbarukan, 2021, 2, 27-35.	0.1	0
1037	Systematic review on sono-assisted CO2 stripping, solvent recovery and energy demand aspects in solvent-based post-combustion carbon dioxide capture process. Chemical Engineering and Processing: Process Intensification, 2022, 170, 108723.	1.8	10
1038	Technical and economic perspectives of hydrate-based carbon dioxide capture. Applied Energy, 2022, 307, 118237.	5.1	31
1039	Synthesis and Comprehensive Study of Quaternary-Ammonium-Based Sorbents for Natural Gas Sweetening. Environments - MDPI, 2021, 8, 134.	1.5	7

			_
#	Article	IF	CITATIONS
1040	A review on materials and processes for carbon dioxide separation and capture. Energy and Environment, 2023, 34, 3-57.	2.7	9
1041	Post-combustion slipstream CO2-capture test facility at Jiangyou Power Plant, Sichuan, China: performance of a membrane separation module under dynamic power-plant operations. Clean Energy, 2021, 5, 742-755.	1.5	2
1042	Performance optimization of imidazole containing copolyimide/functionalized ZIF-8 mixed matrix membrane for gas separations. Journal of Membrane Science, 2022, 644, 120071.	4.1	15
1043	Membranes for Carbon Dioxide Capture from Kuwait Power Stations:Process and Economic Analysis. International Journal of Thermodynamics, 2021, 24, 72-77.	0.4	0
1044	Insight and Comparison of Energy-efficient Membrane Processes for CO2 Capture from Flue Gases in Power Plant and Energy-intensive Industry. Carbon Capture Science & Technology, 2022, 2, 100020.	4.9	35
1045	Exploring the influence of the cation type and polymer support in bis(fluorosulfonyl)imide-based plastic crystal composite membranes for CO2/N2 separation. Journal of Materials Chemistry A, 2021, 9, 26330-26344.	5.2	5
1046	Effect of CO2 on Mechanical Properties of Glassy Polymeric Materials. , 2021, , .		0
1047	Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Progress in Polymer Science, 2022, 126, 101504.	11.8	32
1048	Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. Journal of Membrane Science, 2022, 644, 120140.	4.1	28
1049	Thin-film composite membranes based on hyperbranched poly(ethylene oxide) for CO2/N2 separation. Journal of Membrane Science, 2022, 644, 120184.	4.1	17
1050	Constructing continuous and fast transport pathway by highly permeable polymer electrospun fibers in composite membrane to improve CO2 capture. Separation and Purification Technology, 2022, 285, 120332.	3.9	7
1051	Overcoming the Permeability/Selectivity Trade-Off by Controlled Grafting of Multi-Block Copolymers for CO ₂ Capture Membranes. SSRN Electronic Journal, 0, , .	0.4	0
1052	Preparation of Highâ€Strength and Highâ€Permeability EC/PI/MOF Mixed Matrix Membrane**. ChemistrySelect, 2022, 7, .	0.7	1
1053	Enhanced hydrogen permeance through graphene oxide membrane deposited on asymmetric spinel hollow fiber substrate. International Journal of Hydrogen Energy, 2022, 47, 9616-9626.	3.8	8
1054	MXene-based molecular sieving membranes for highly efficient gas separation. , 2022, , 595-616.		2
1055	Ultrathin DDR Films with Exceptionally High CO ₂ Flux and Uniformly Adjustable Orientations. Advanced Functional Materials, 2022, 32, .	7.8	6
1056	Advanced organic molecular sieve membranes for carbon capture: Current status, challenges and prospects. , 2022, 2, 100028.		8
1057	Metal Nanocomposites—Emerging Advanced Materials for Efficient Carbon Capture. Energy, Environment, and Sustainability, 2022, , 91-127.	0.6	1

#	Article	IF	CITATIONS
1058	A Hybrid Zeolite Membrane-Based Breakthrough for Simultaneous CO ₂ Capture and CH ₄ Upgrading from Biogas. ACS Applied Materials & Interfaces, 2022, 14, 2893-2907.	4.0	11
1059	Nanostructured membranes for gas and vapor separation. , 2022, , 139-201.		0
1060	Highly Selective and Tunable CO ₂ /N ₂ Separation Performance in Ammonium-Based Organic Ionic Plastic Crystal Composite Membranes with Self-Healing Properties. ACS Applied Polymer Materials, 2022, 4, 1487-1496.	2.0	5
1061	The sustainable materials roadmap. JPhys Materials, 2022, 5, 032001.	1.8	24
1062	Membrane materials targeting carbon capture and utilization. , 2022, 2, 100025.		27
1063	Generalized optimization-based synthesis of membrane systems for multicomponent gas mixture separation. Chemical Engineering Science, 2022, 252, 117482.	1.9	8
1064	Tape-casting and freeze-drying gadolinia-doped ceria composite membranes for carbon dioxide permeation. Journal of Membrane Science, 2022, 648, 120355.	4.1	5
1065	Tailor-made microstructures lead to high-performance robust PEO membrane for CO2 capture via green fabrication technique. Green Energy and Environment, 2023, 8, 1389-1397.	4.7	14
1066	Matrimid substrates with bicontinuous surface and macrovoids in the bulk: A nearly ideal substrate for composite membranes in CO2 capture. Applied Energy, 2022, 311, 118624.	5.1	5
1067	Retarded transport properties of graphene oxide based chiral separation membranes modified with dipeptide. Separation and Purification Technology, 2022, 288, 120642.	3.9	9
1068	Effect of Branch Length on the Structural and Separation Properties of Hyperbranched Poly(1,3-dioxolane). Macromolecules, 2022, 55, 382-389.	2.2	7
1069	Bicontinuous Substrates with Reduced Pore Restriction for Co2-Selective Composite Membranes. SSRN Electronic Journal, 0, , .	0.4	0
1070	Direct air capture: process technology, techno-economic and socio-political challenges. Energy and Environmental Science, 2022, 15, 1360-1405.	15.6	176
1071	lonic liquid–based membranes for gas separation. , 2022, , 1-31.		0
1072	Increased CO ₂ /N ₂ selectivity of PTMSP by surface crosslinking. Chemical Communications, 2022, 58, 3557-3560.	2.2	3
1073	Mixed-Matrix Ion Gel Membranes for Gas Separation. ACS Applied Polymer Materials, 2022, 4, 3098-3119.	2.0	10
1074	Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation. Chinese Journal of Chemical Engineering, 2022, 43, 152-160.	1.7	9
1075	Post-combustion carbon capture by polymeric membrane: A review. Materials Today: Proceedings, 2022, 62, 318-324.	0.9	3

#	Article	IF	CITATIONS
1076	The development of carbon capture and storage (CCS) in India: A critical review. Carbon Capture Science & Technology, 2022, 2, 100036.	4.9	47
1077	Thermodynamic analysis on direct air capture for building air condition system: Balance between adsorbent and refrigerant. Energy and Built Environment, 2023, 4, 399-407.	2.9	8
1078	Polymeric composite membranes in carbon dioxide capture process: a review. Environmental Science and Pollution Research, 2022, 29, 38735-38767.	2.7	15
1079	Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. Advanced Materials, 2022, 34, e2108457.	11.1	58
1080	Bicontinuous substrates with reduced pore restriction for CO2-selective composite membranes. Journal of Membrane Science, 2022, 654, 120547.	4.1	6
1081	Creating Hyperthin Membranes for Gas Separations. Langmuir, 2022, 38, 4490-4493.	1.6	3
1082	Gas separation membranes obtained by partial pyrolysis of polyimides exhibiting polyethylene oxide moieties. Polymer, 2022, 247, 124789.	1.8	4
1083	Moving beyond 90% Carbon Capture by Highly Selective Membrane Processes. Membranes, 2022, 12, 399.	1.4	5
1084	An integrated materials approach to ultrapermeable and ultraselective CO ₂ polymer membranes. Science, 2022, 376, 90-94.	6.0	81
1085	Sono-hollow fiber membrane contactors: A new approach for CO2 separation by physical/chemical absorbents. Journal of Natural Gas Science and Engineering, 2022, 101, 104538.	2.1	13
1086	Designing the feasible membrane systems for CO2 removal from Air-fed Anion-Exchange membrane fuel cells. Separation and Purification Technology, 2022, 289, 120713.	3.9	4
1087	Dynamic response and flexibility analyses of a membrane-based CO2 separation module. International Journal of Greenhouse Gas Control, 2022, 116, 103634.	2.3	3
1088	Engineered graphene-based mixed matrix membranes to boost CO2 separation performance: Latest developments and future prospects. Renewable and Sustainable Energy Reviews, 2022, 160, 112294.	8.2	22
1089	Build up â€~highway' in membrane via solvothermal annealing for high-efficient CO2 capture. Journal of Membrane Science, 2022, 652, 120444.	4.1	9
1090	High performance membranes containing rigid contortion units prepared by interfacial polymerization for CO2 separation. Journal of Membrane Science, 2022, 652, 120459.	4.1	11
1091	A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Science & Technology, 2022, 3, 100044.	4.9	131
1092	Post-combustion CO2 capture via a variety of temperature ranges and material adsorption process: A review. Journal of Environmental Management, 2022, 313, 115026.	3.8	47
1093	The effect of methanol production and application in internal combustion engines on emissions in the context of carbon neutrality: A review. Fuel, 2022, 320, 123902.	3.4	91

~		_
$(IT \Delta^{-}$	TION	REDUBL
		ICLI ORI

#	Article	IF	CITATIONS
1094	Assessment of Membrane Performance for Post-Combustion CO ₂ Capture. Industrial & Engineering Chemistry Research, 2022, 61, 777-785.	1.8	1
1095	Robust, Hyper-Permeable Nanomembrane Composites of Poly(dimethylsiloxane) and Cellulose Nanofibers. ACS Applied Materials & Interfaces, 2021, 13, 61189-61195.	4.0	9
1096	Membranes with FNMs for sustainable development. , 2022, , 355-387.		0
1097	Valuable energy resources and food-grade CO2 from biogas via membrane separation. , 2022, , 437-493.		0
1098	Elastic Forces and Molecular Transport through Polymer Matrices. Macromolecules, 2022, 55, 3762-3768.	2.2	2
1099	Antifouling polysulfone membranes with an amphiphilic triblock additive. Materials Chemistry and Physics, 2022, 285, 126108.	2.0	9
1100	Architecting MOFs-based mixed matrix membrane for efficient CO2 separation: Ameliorating strategies toward non-ideal interface. Chemical Engineering Journal, 2022, 443, 136290.	6.6	19
1104	Membrane for CO2 separation. , 2022, , 121-159.		1
1105	Network Structure Engineering of Organosilica Membranes for Enhanced CO2 Capture Performance. Membranes, 2022, 12, 470.	1.4	2
1107	Application of MXenes for air purification, gas separation and storage: A review. Renewable and Sustainable Energy Reviews, 2022, 164, 112527.	8.2	42
1108	Polystyrene sulfonate (PSS) stabilized polyethylenimine (PEI) membranes fabricated by spray coating for highly effective CO2/N2 separation. Journal of Membrane Science, 2022, 657, 120617.	4.1	5
1109	Porous stainless steel hollow fiber-supported ZIF-8 membranes via FCDS for hydrogen/carbon dioxide separation. Separation and Purification Technology, 2022, 295, 121365.	3.9	7
1110	CO2 Capture by Membrane. , 2022, , 1483-1530.		0
1111	Improvement in Cyclic Co2 Capture Performance and Fluidization Behavior of Eggshell-Derived Caco3 Particles in Calcium Looping Process. SSRN Electronic Journal, 0, , .	0.4	0
1112	Biopolymer-Based Mixed Matrix Membranes (MMMs) for CO2/CH4 Separation: Experimental and Modeling Evaluation. Membranes, 2022, 12, 561.	1.4	11
1113	Experimental Investigation of Mass Transfer Intensification for CO2 Capture by Environment-Friendly Water Based Nanofluid Solvents in a Rotating Packed Bed. Sustainability, 2022, 14, 6559.	1.6	3
1114	Influence of the Surface Chemistry of Metal–Organic Polyhedra in Their Assembly into Ultrathin Films for Gas Separation. ACS Applied Materials & Interfaces, 2022, 14, 27495-27506.	4.0	6
1115	Techno-Economic Optimization of Multistage Membrane Processes with Innovative Hollow Fiber Modules for the Production of High-Purity CO ₂ and CH ₄ from Different Sources. Industrial & Engineering Chemistry Research, 2022, 61, 8149-8165.	1.8	6

#	Article	IF	CITATIONS
1116	Analysis of the Mechanism of Energy Consumption for Co2ÂCapture in a Power System. SSRN Electronic Journal, 0, , .	0.4	0
1117	Synthesis and optimization of high-performance amine-based polymer for CO2 separation. Chinese Journal of Chemical Engineering, 2022, 50, 168-176.	1.7	6
1118	Challenges, Opportunities and Future Directions of Membrane Technology for Natural Gas Purification: A Critical Review. Membranes, 2022, 12, 646.	1.4	12
1119	Analysis and optimal design of membrane processes for flue gas CO2 capture. Separation and Purification Technology, 2022, 298, 121584.	3.9	19
1120	Metalâ€Organic Frameworks (MOFs) and their Applications in CO ₂ Adsorption and Conversion. ChemistrySelect, 2022, 7, .	0.7	23
1121	CO2 capture process through hybrid gas hydrate-membrane technology: Complex approach for the transition from theory to practice. Journal of Environmental Chemical Engineering, 2022, 10, 108104.	3.3	5
1122	MOF-layer composite polyurethane membrane increasing both selectivity and permeability: Pushing commercial rubbery polymer membranes to be attractive for CO2 separation. Separation and Purification Technology, 2022, 297, 121452.	3.9	10
1123	Air plasma assisted spray coating of Pebax-1657 thin-film composite membranes for post-combustion CO2 capture. Journal of Membrane Science, 2022, 658, 120741.	4.1	14
1124	Thin-Film Mixed-Matrix Membranes with Poly(Ethylene Glycol)-Grafted Graphene Oxide for Co2 Separation. SSRN Electronic Journal, 0, , .	0.4	0
1125	Switching gas permeation through smart membranes by external stimuli: a review. Journal of Materials Chemistry A, 2022, 10, 16743-16760.	5.2	13
1126	Controlled grafting of multi-block copolymers for improving membrane properties for CO2 separation. Polymer, 2022, 255, 125164.	1.8	4
1127	Process design and economic analysis of membrane-integrated absorption processes for CO2 capture. Journal of Cleaner Production, 2022, 368, 133180.	4.6	10
1128	Carbon footprint of offshore platform in Indonesia using life cycle approach. Environment, Development and Sustainability, 0, , .	2.7	1
1129	Quaternized polyepichlorohydrin-based membrane as high-selective CO2 sorbent for cost-effective carbon capture. Journal of CO2 Utilization, 2022, 63, 102135.	3.3	7
1130	A comparative study between single gas and mixed gas permeation of polyether-block-amide type copolymer membranes. Journal of Environmental Chemical Engineering, 2022, 10, 108324.	3.3	17
1131	New hybrid membrane vacuum swing adsorption process for CO2 removal from N2/CO2 mixture: modeling and optimization by genetic algorithm. Environmental Science and Pollution Research, 0, , .	2.7	0
1132	Recent advances in Poly(ionic liquids) membranes for CO2 separation. Separation and Purification Technology, 2022, 299, 121784.	3.9	16
1133	The Development of Carbon Dioxide Captures and Biochemical Transformation of Carbon Dioxide. , 0, 6, 372-381.		0

#	Article	IF	CITATIONS
1134	Constructing a CO ₂ -Philic and Highly Permeative Transmission Pathway in Electrospun Fiber Composite Membranes by Introduction of Ether-Oxygen Groups. Industrial & Engineering Chemistry Research, 2022, 61, 11544-11554.	1.8	5
1135	Missingâ€linker Defects in Covalent Organic Framework Membranes for Efficient CO2 Separation. Angewandte Chemie, 0, , .	1.6	3
1136	Experimental Determination of the Effect of Temperature on the Gas Transport Characteristics of Polymeric Gas Separation Fibers Based on Polysulfone. Membranes and Membrane Technologies, 2022, 4, 206-214.	0.6	1
1137	Analysis of the mechanism of energy consumption for CO2 capture in a power system. Energy, 2023, 262, 125103.	4.5	9
1138	A Technology Development Matrix for Carbon Capture: Technology Status and R&D Gap Assessment. Frontiers in Energy Research, 0, 10, .	1.2	2
1139	Missingâ€linker Defects in Covalent Organic Framework Membranes for Efficient CO ₂ Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	47
1140	Recent advances on the modeling and optimization of CO2 capture processes. Computers and Chemical Engineering, 2022, 165, 107938.	2.0	9
1141	Tool for optimization of energy consumption of membrane-based carbon capture. Journal of Environmental Management, 2022, 320, 115913.	3.8	10
1142	Current status and advances in membrane technology for carbon capture. Separation and Purification Technology, 2022, 300, 121863.	3.9	28
1143	Membrane Separation Processes and Post-Combustion Carbon Capture: State of the Art and Prospects. Membranes, 2022, 12, 884.	1.4	13
1144	Simulation of CO2 capture process in gas-solid bubbling fluidized bed by computational mass transfer. Journal of Environmental Chemical Engineering, 2022, 10, 108548.	3.3	3
1145	Technical analysis of CO2 capture pathways and technologies. Journal of Environmental Chemical Engineering, 2022, 10, 108470.	3.3	31
1146	Improvement in cyclic CO2 capture performance and fluidization behavior of eggshell-derived CaCO3 particles modified with acetic acid used in calcium looping process. Journal of CO2 Utilization, 2022, 65, 102207.	3.3	17
1147	Optimization of hollow fiber membrane module for vacuum membrane distillation (VMD) via experimental study. Desalination, 2022, 542, 116068.	4.0	4
1148	ZIF-filler incorporated mixed matrix membranes (MMMs) for efficient gas separation: A review. Journal of Environmental Chemical Engineering, 2022, 10, 108541.	3.3	32
1149	Quaternary Ammonium-Functionalized Polysulfone Sorbent: Toward a Selective and Reversible Trap-Release of Co2. SSRN Electronic Journal, 0, , .	0.4	0
1150	Application of membrane technology for CO2 capture and separation. , 2022, , 257-289.		0
1151	Molecular insight into CO ₂ /N ₂ separation using a 2D-COF supported ionic liquid membrane. Physical Chemistry Chemical Physics, 2022, 24, 23690-23698.	1.3	5

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1152	Advances in metal–organic framework-based membranes. Chemical Society Reviews, 2022, 51, 8300-8350.	18.7	98
1153	High-Flux Co2 Separation Using Thin Film Composite Membranes Fabricated by Transient-Filler Treatment. SSRN Electronic Journal, 0, , .	0.4	0
1154	Evaluation of Economic Performance of Co2 Separation Process Using Mixed Matrix Membrane. Computer Aided Chemical Engineering, 2022, , 265-270.	0.3	0
1155	Hollow Fiber-based Rapid Temperature Swing Adsorption (RTSA) Process for Carbon Capture from Coal-fired Power Plants. Computer Aided Chemical Engineering, 2022, , 1921-1926.	0.3	0
1156	Carbon-dioxide capture, storage and conversion techniques in different sectors – a case study. International Journal of Coal Preparation and Utilization, 2023, 43, 1638-1663.	1.2	6
1157	Membrane Fabrication for Carbon Dioxide Separation: A Critical Review. ChemBioEng Reviews, 2022, 9, 556-573.	2.6	5
1158	Critical Assessment of Membrane Technology Integration in a Coal-Fired Power Plant. Membranes, 2022, 12, 904.	1.4	4
1159	Thin Film Composite Membranes Based on the Polymer of Intrinsic Microporosity PIM-EA(Me2)-TB Blended with Matrimid®5218. Membranes, 2022, 12, 881.	1.4	5
1160	Aqueous carbonation of peridotites for carbon utilisation: a critical review. Environmental Science and Pollution Research, 2022, 29, 75161-75183.	2.7	6
1161	Fast hydrogen purification through graphitic carbon nitride nanosheet membranes. Nature Communications, 2022, 13, .	5.8	21
1162	Recent Progress on Pebax-Based Thin Film Nanocomposite Membranes for CO ₂ Capture: The State of the Art and Future Outlooks. Energy & Fuels, 2022, 36, 12367-12428.	2.5	5
1163	Quaternary ammonium-functionalized polysulfone sorbent: Toward a selective and reversible trap-release of CO2. Journal of CO2 Utilization, 2022, 65, 102259.	3.3	6
1164	Fundamental investigation on the development of composite membrane with a thin ion gel layer for CO2 separation. Journal of Membrane Science, 2022, 663, 121032.	4.1	9
1165	Prediction of biphasic separation on CO2 absorption using molecular surface information-based machine learning model. Environmental Sciences: Processes and Impacts, 0, , .	1.7	0
1166	Sustainability Enhancement of Fossil-Fueled Power Plants by Optimal Design and Operation of Membrane-Based CO2 Capture Process. Atmosphere, 2022, 13, 1620.	1.0	3
1167	Metal Capture and Desorption Abilities of Two Types of Organized Films of Polyguanamine Derivatives with Cyclic Moiety and Bulky or Flexible Linkers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 130479.	2.3	1
1168	Implementation of Artificial Neural Networks in the assessment of CO2 solubility in deep eutectic and ionic liquid solvents – Performance and cost comparison. , 2022, 1, 100007.		1
1169	Amine-Functionalized Diamond Electrode for Boosting CO ₂ Reduction to CO. ACS Sustainable Chemistry and Engineering, 2022, 10, 14685-14692.	3.2	4

#	Article	IF	CITATIONS
1170	Simulation of a novel hybrid membrane-cryogenic process for post-combustion carbon capture. Carbon Capture Science & Technology, 2022, 5, 100075.	4.9	8
1171	Optimization of MIL-178(Fe) and Pebax® 3533 loading in mixed matrix membranes for CO2 capture. International Journal of Greenhouse Gas Control, 2022, 121, 103791.	2.3	14
1172	Small-pore zeolite and zeotype membranes for CO2 capture and sequestration – A review. Journal of Environmental Chemical Engineering, 2022, 10, 108707.	3.3	22
1173	Fabricating Leaf-like hierarchical ZIF-67 as Intra-Mixed matrix membrane microarchitecture for efficient intensification of CO2 separation. Separation and Purification Technology, 2023, 305, 122460.	3.9	9
1174	Introducing amphipathic copolymer into intermediate layer to fabricate ultra-thin Pebax composite membrane for efficient CO2 capture. Journal of Membrane Science, 2023, 667, 121183.	4.1	13
1175	Engineering CO2-philic pathway via grafting poly(ethylene glycol) on graphene oxide for mixed matrix membranes with high CO2 permeance. Chemical Engineering Journal, 2023, 453, 139818.	6.6	6
1176	Multiscale investigation for CO2 capture using membrane with AEEA: Significance of fluid flow and AEEA content to CO2 permeance. International Journal of Heat and Mass Transfer, 2023, 201, 123564.	2.5	0
1177	Ultra-selective membrane composed of charge-stabilized fixed carrier and amino acid-based ionic liquid mobile carrier for highly efficient carbon capture. Chemical Engineering Journal, 2023, 453, 139780.	6.6	1
1178	Relationship between wet coating thickness and nanoparticle loadings based on the performance of mixed matrix composite membranes. Journal of Membrane Science, 2023, 667, 121167.	4.1	3
1179	Fuel Cell Types, Properties of Membrane, and Operating Conditions: A Review. Sustainability, 2022, 14, 14653.	1.6	15
1180	Effect of Packing Nonuniformity at the Fiber Bundle–Case Interface on Performance of Hollow Fiber Membrane Gas Separation Modules. Membranes, 2022, 12, 1139.	1.4	3
1181	Sustainability assessment in the CO2 capture process: Multi-objective optimization. Chemical Engineering and Processing: Process Intensification, 2022, 182, 109207.	1.8	7
1182	Process performance maps for membrane-based CO2 separation using artificial neural networks. International Journal of Greenhouse Gas Control, 2023, 122, 103812.	2.3	4
1183	High-flux CO2 separation using thin-film composite polyether block amide membranes fabricated by transient-filler treatment. Chemical Engineering Journal, 2023, 455, 140883.	6.6	7
1184	Biomimetic hydroxypropyl-β-cyclodextrin (Hβ-CD) / polyamide (PA) membranes for CO2 separation. Journal of Membrane Science, 2023, 668, 121211.	4.1	6
1185	Towards large-scale application of nanoporous materials in membranes for separation of energy-relevant gas mixtures. Separation and Purification Technology, 2023, 308, 122919.	3.9	13
1186	Energy Sector Derived Combustion Products Utilization—Current Advances in Carbon Dioxide Mineralization. Energies, 2022, 15, 9033.	1.6	2
1187	Chloride recovery and simultaneous CO2 mineralization from rare earths high salinity wastewater by the Reaction-extraction-crystallization process. Chemical Engineering Journal, 2023, 455, 140620.	6.6	4

#	Article	IF	CITATIONS
1188	Two-stage membrane-based process utilizing highly CO2-selective membranes for cost and energy efficient carbon capture from coal flue gas: A process simulation study. Journal of Membrane Science, 2023, 669, 121259.	4.1	2
1189	Thin-film composite mixed-matrix membrane with irregular micron-sized UTSA-16 for outstanding gas separation performance. Journal of Membrane Science, 2023, 669, 121295.	4.1	4
1190	Machine learning for membrane design and discovery. Green Energy and Environment, 2024, 9, 54-70.	4.7	10
1191	Integrated membrane material design and system synthesis. Chemical Engineering Science, 2023, 269, 118406.	1.9	1
1192	On the Integration of CO2 Capture Technologies for an Oil Refinery. Energies, 2023, 16, 865.	1.6	10
1193	A method for near-perfect gas separation in two interconnected streams. Journal of Applied Physics, 2023, 133, .	1.1	1
1194	Influence of design and operating parameters for additively manufactured intensified packing devices on CO2-Absorption column cooling and capture efficiency. Chemical Engineering Journal, 2023, 457, 141236.	6.6	1
1195	Mixed matrix composite membranes with MOF-protruding structure for efficient CO2 separation. Journal of Membrane Science, 2023, 669, 121340.	4.1	13
1196	Industrial-scale spiral-wound facilitated transport membrane modules for post-combustion CO2 capture: Development, investigation and optimization. Journal of Membrane Science, 2023, 670, 121368.	4.1	11
1197	Mixed matrix membranes comprising 6FDA-based polyimide blends and UiO-66 with co-continuous structures for gas separations. Separation and Purification Technology, 2023, 310, 123126.	3.9	14
1198	Experimental study on CO2 separation using hydrophobic deep eutectic solvent based supported liquid membranes. Separation and Purification Technology, 2023, 310, 123129.	3.9	6
1199	Synthesis of thin DD3R zeolite membranes on hollow fibers using gradient-centrifuged seeds for CO2/CH4 separation. , 2023, 3, 100038.		0
1200	Mitigating of Thin-Film Composite PTMSP Membrane Aging by Introduction of Porous Rigid and Soft Branched Polymeric Additives. Membranes, 2023, 13, 21.	1.4	1
1201	An insight into the recent developments in membrane-based carbon dioxide capture and utilization. , 2023, , 311-326.		2
1202	Modeling and simulation of membrane-assisted separation of carbon dioxide and hydrogen from syngas. , 2023, , 199-218.		0
1203	Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes. Journal of Carbon Research, 2023, 9, 17.	1.4	4
1204	Curvature Effect in Polydimethylsiloxane Interaction with CO ₂ . Insights from Theory. Journal of Physical Chemistry A, 2023, 127, 876-885.	1.1	0
1205	Carbon Capture: Materials and Process Engineering. , 2012, , 385-429.		1

#	Article	IF	Citations
1206	Polymeric membranes and surfaces for CO2 capture. , 2023, , 17-55.		1
1207	Highly (2 2 2)-oriented flexible hollow fiber-supported metal-organic framework membranes for ultra-permeable and selective H2/CO2 separation. Chemical Engineering Journal, 2023, 461, 141976.	6.6	6
1208	Enhancing carbon capture efficiency of zeolite-embedded polyether sulfone mixed-matrix membranes via annealing process. Journal of Cleaner Production, 2023, 399, 136617.	4.6	6
1209	Model validation and dynamic simulation of post-combustion carbon dioxide separation with membranes. Journal of Membrane Science, 2023, 676, 121586.	4.1	1
1210	Current status of carbon capture, utilization, and storage technologies in the global economy: A survey of technical assessment. Fuel, 2023, 342, 127776.	3.4	57
1211	A critical review in recent progress of hollow fiber membrane contactors for efficient CO2 separations. Chemosphere, 2023, 325, 138300.	4.2	13
1212	Membrane system for management and utilization of indoor CO2. Journal of Industrial and Engineering Chemistry, 2023, 122, 161-168.	2.9	0
1213	Structural engineering on 6FDA-Durene based polyimide membranes for highly selective gas separation. Separation and Purification Technology, 2023, 316, 123786.	3.9	4
1214	Atmospheric water harvesting in semi-arid regions by membranes: A techno-economic assessment. Journal of Membrane Science, 2023, 672, 121437.	4.1	3
1215	The Sustainable Synthesis of Methanol – Renewable Energy, Carbon Dioxide and an Anthropogenic Carbon Cycle. , 2014, , 193-258.		0
1216	New facile process evaluation for membrane-based CO2 capture: Apparent selectivity model. Chemical Engineering Journal, 2023, 460, 141624.	6.6	7
1217	A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency. Energies, 2023, 16, 1482.	1.6	6
1218	Breakthrough analysis for parameter estimation of CO2 adsorption on pelletized flexible metal–organic framework. Chemical Engineering Journal, 2023, 460, 141781.	6.6	5
1219	Two-dimensional materials for gas separation membranes. Current Opinion in Chemical Engineering, 2023, 39, 100901.	3.8	7
1220	A highly permeable porous organic cage composite membrane for gas separation. Journal of Materials Chemistry A, 2023, 11, 6831-6841.	5.2	12
1221	Ultrathin membrane with robust and superior CO2 permeance by precision control of multilayer structures. Chemical Engineering Journal, 2023, 462, 142087.	6.6	10
1222	Membrane Cascade Type of «Continuous Membrane Column» for Power Plant Post-Combustion Carbon Dioxide Capture Part 1: Simulation of the Binary Gas Mixture Separation. Membranes, 2023, 13, 270.	1.4	1
1223	Hydrogen production from biomass gasification with carbon capture and storage. , 2023, , 197-221.		0

#	Article	IF	CITATIONS
1224	Polymer-Infiltrated Metal–Organic Frameworks for Thin-Film Composite Mixed-Matrix Membranes with High Gas Separation Properties. Membranes, 2023, 13, 287.	1.4	4
1225	Investigation CO2 EOR Types with Constrained CO2 Volume and Impurities for a High-Quality Sandstone, Stratified Offshore Newfoundland Reservoir. , 2023, , .		1
1226	Ultrathin ionic COF Membrane via Polyelectrolyteâ€Mediated Assembly for Efficient CO ₂ Separation. Advanced Functional Materials, 2023, 33, .	7.8	21
1227	Biocatalytic Membranes for Carbon Capture and Utilization. Membranes, 2023, 13, 367.	1.4	7
1228	Hybrid membrane-cryogenic CO2 capture technologies: A mini-review. Frontiers in Energy Research, 0, 11, .	1.2	2
1229	Simulation and Economic Investigation of CO2 Separation from Gas Turbine Exhaust Gas by Molten Carbonate Fuel Cell with Exhaust Gas Recirculation and Selective Exhaust Gas Recirculation. Energies, 2023, 16, 3511.	1.6	2
1238	A Review on the Recent Scientific and Commercial Progress on the Direct Air Capture Technology to Manage Atmospheric CO ₂ Concentrations and Future Perspectives. Energy & Fuels, 2023, 37, 10733-10757.	2.5	11
1249	Efficacy of MXene-Based Materials in the Removal of Gases. , 2023, , 207-228.		0
1250	Current status and future scenarios of carbon capture from power plants emission: a review. Reviews in Environmental Science and Biotechnology, 2023, 22, 799-822.	3.9	7
1256	Flow Cells for CO2 Reduction. Green Energy and Technology, 2023, , 199-228.	0.4	0
1259	Covalent organic frameworks for CO ₂ capture: from laboratory curiosity to industry implementation. Chemical Society Reviews, 2023, 52, 6294-6329.	18.7	9
1291	Carbon Capture With Inorganic Membranes. , 2023, , .		0
1297	Carbon Capture With Hybrid Membranes. , 2023, , .		0
1300	Engineering redox-active electrochemically mediated carbon dioxide capture systems. , 2024, 1, 35-44.		2
1307	Hydrogel particles for CO2 capture. Polymer Journal, 0, , .	1.3	0
1310	Machine learning for membrane design in energy production, gas separation, and water treatment: a review. Environmental Chemistry Letters, 2024, 22, 505-560.	8.3	0
1317	Process Design of Hydrate-Membrane Coupled Separation for CO2 Capture from Flue Gas: Energy Efficiency Analysis and Optimization. Lecture Notes in Civil Engineering, 2024, , 370-389.	0.3	0