Processing of poly(lactic acid): Characterization of chen and mechanical properties

Polymer Degradation and Stability 95, 116-125 DOI: 10.1016/j.polymdegradstab.2009.11.045

Citation Report

CITATI	ON R	FDODT

#	Article	IF	CITATIONS
1	Effect of the Recycling and Annealing on the Mechanical and Fracture Properties of Poly(Lactic Acid). Journal of Polymers and the Environment, 2010, 18, 654-660.	5.0	49
2	Kinetics of the thermal decomposition of processed poly(lactic acid). Polymer Degradation and Stability, 2010, 95, 2508-2514.	5.8	66
3	Study on modification of polylactide by functional polymer. , 2011, , .		2
4	Poly(L-lactic acid) Microfiltration Membrane Formation via Thermally Induced Phase Separation with Drying. Journal of Chemical Engineering of Japan, 2011, 44, 467-475.	0.6	20
6	Hydroxyapatite Supported Lewis Acid Catalysts for the Transformation of Trioses in Alcohols. Chinese Journal of Catalysis, 2011, 32, 70-73.	14.0	10
7	Mechanical characteristics of composites of polylactide and nanosized calcium phosphates formed in supercritical carbon dioxide. Russian Journal of Physical Chemistry B, 2011, 5, 1189-1194.	1.3	1
8	Processing of poly(lactic acid)/organomontmorillonite nanocomposites: Microstructure, thermal stability and kinetics of the thermal decomposition. Chemical Engineering Journal, 2011, 178, 451-460.	12.7	69
9	Mechanism of high thermal stability of commercial polyesters and polyethers conjugated with bioâ€based caffeic acid. Journal of Polymer Science Part A, 2011, 49, 3152-3162.	2.3	17
10	Study on flameâ€retardancy and thermal degradation behaviors of intumescent flameâ€retardant polylactide systems. Polymer International, 2011, 60, 1541-1547.	3.1	34
11	Influence of crystallinity on the fracture toughness of poly(lactic acid)/montmorillonite nanocomposites prepared by twinâ€screw extrusion. Journal of Applied Polymer Science, 2011, 120, 896-905.	2.6	34
12	Quantification of thermal material degradation during the processing of biomedical thermoplastics. Journal of Applied Polymer Science, 2011, 120, 2872-2880.	2.6	17
13	The effects of reprocessing cycles on the structure and properties of isotactic polypropylene/cloisite 15A nanocomposites. Polymer Degradation and Stability, 2011, 96, 1064-1073.	5.8	74
14	Fracture behavior of quenched poly(lactic acid). EXPRESS Polymer Letters, 2011, 5, 82-91.	2.1	47
15	Synthesis of Polylactic Acid from Fermentative Lactic Acid by Direct Polycondensation for Materials Application. Advanced Materials Research, 2012, 626, 495-499.	0.3	0
16	Cellular biocomposites from polylactide and microfibrillated cellulose. Journal of Cellular Plastics, 2012, 48, 445-458.	2.4	36
17	Accelerated Weathering-Induced Degradation of Poly(Lactic Acid) Fiber Studied by Near-Infrared (NIR) Hyperspectral Imaging. Applied Spectroscopy, 2012, 66, 470-474.	2.2	30
18	Thermal behavior of drawn poly(lactic acid)-nanocomposite fiber probed by near-infrared hyperspectral imaging based on roundtrip temperature scan. Analytical Methods, 2012, 4, 2259.	2.7	3
19	Hygrothermal ageing of reprocessed polylactide. Polymer Degradation and Stability, 2012, 97, 1881-1890.	5.8	61

#	Article	IF	CITATIONS
20	Compatibility and physical properties of poly(lactic acid)/poly(ethylene terephthalate glycol) blends. Macromolecular Research, 2012, 20, 1300-1306.	2.4	17
21	Synergistic Effect of Polyhedral Oligomeric Silsesquioxane on the Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Polylactide. Combustion Science and Technology, 2012, 184, 456-468.	2.3	16
22	Changes in the hierarchical protein polymer structure: urea and temperature effects on wheat gluten films. RSC Advances, 2012, 2, 11908.	3.6	22
23	Biological Lactate-Polymers Synthesized by One-Pot Microbial Factory: Enzyme and Metabolic Engineering. ACS Symposium Series, 2012, , 213-235.	0.5	8
24	Chemical Treatment of Poly(lactic acid) Fibers to Enhance the Rate of Thermal Depolymerization. ACS Applied Materials & Interfaces, 2012, 4, 503-509.	8.0	55
25	Preparation of lignin–silica hybrids and its application in intumescent flame-retardant poly(lactic) Tj ETQq1 1 ().784314 rg 1.8	gBT /Overloc
26	Improving lactic acid melt polycondensation: The role of co atalyst. Journal of Applied Polymer Science, 2013, 128, 2145-2151.	2.6	8
27	Control of thermal degradation of polylactide/clay nanocomposites during melt processing by chain extension reaction. Polymer Degradation and Stability, 2012, 97, 2010-2020.	5.8	112
28	Plasticization of poly(lactide) by sorption of volatile organic compounds at low concentration. Polymer Degradation and Stability, 2012, 97, 1871-1880.	5.8	27
29	Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polymer Degradation and Stability, 2012, 97, 1898-1914.	5.8	622
30	The Influences of Elastomer toward Crystallization of Poly(lactic acid). Procedia Chemistry, 2012, 4, 164-171.	0.7	9
31	Modification of lignin and its application as char agent in intumescent flameâ€retardant poly(lactic) Tj ETQq1 1	0.784314 i 3.1	rgBT /Overloo 146
32	Incorporation of polyfluorenes into poly(lactic acid) films for sensor and optoelectronics applications. Polymer International, 2012, 61, 1023-1030.	3.1	9
33	Synthesis of polylactideâ€based thermoset resin and its curing kinetics. Polymer International, 2012, 61, 1492-1502.	3.1	29
34	Crystallization behavior of poly(lactic acid)/elastomer blends. Journal of Polymer Research, 2012, 19, 1.	2.4	22
35	Mechanical and thermal properties of coconut shell powder filled polylactic acid biocomposites: effects of the filler content and silane coupling agent. Journal of Polymer Research, 2012, 19, 1.	2.4	115
36	In vitro synthesis of polyhydroxyalkanoate (PHA) incorporating lactate (LA) with a block sequence by using a newly engineered thermostable PHA synthase from Pseudomonas sp. SG4502 with acquired LA-polymerizing activity. Applied Microbiology and Biotechnology, 2012, 94, 365-376.	3.6	27
37	Cellulose acetate-poly{[9,9-bis(6′-N,N,N-trimethylammonium)hexyl]fluorene-phenylene} bromide blends: Preparation, characterization and transport properties. Reactive and Functional Polymers, 2012, 72, 420-426.	4.1	3

#	Article	IF	CITATIONS
38	Material valorisation of amorphous polylactide. Influence of thermo-mechanical degradation on the morphology, segmental dynamics, thermal and mechanical performance. Polymer Degradation and Stability, 2012, 97, 670-678.	5.8	106
39	Influence of fiber diameter and crystallinity on the stability of electrospun poly(l-lactic acid) membranes to hydrolytic degradation. Polymer Testing, 2012, 31, 770-776.	4.8	25
40	Crystalline structure and mechanical property of poly(lactic acid) nanocomposite probed by near-infrared (NIR) hyperspectral imaging. Vibrational Spectroscopy, 2012, 60, 50-53.	2.2	13
41	Wood flour/polylactide biocomposites toughened with polyhydroxyalkanoates. Journal of Applied Polymer Science, 2012, 124, 1831-1839.	2.6	28
42	Effect of the unidirectional drawing on the thermal and mechanical properties of PLA films with different <scp>L</scp> â€isomer content. Journal of Applied Polymer Science, 2013, 127, 2661-2669.	2.6	31
43	The effect of different organic modified montmorillonites (OMMTs) on the thermal properties and flammability of PLA/MCAPP/lignin systems. Journal of Applied Polymer Science, 2013, 127, 4967-4973.	2.6	66

Effect of Poly(Vinyl Acetate) on Mechanical Properties and Characteristics of Poly(Lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 502 Td (

45	Crosslinked blends of poly(lactic acid) and polyacrylates: AFM, DSC and XRD studies. Journal of Polymer Research, 2013, 20, 1.	2.4	57
46	Enhanced the thermal stability and crystallinity of polylactic acid (PLA) by incorporated reactive PS-b-PMMA-b-PGMA and PS-b-PGMA block copolymers as chain extenders. Polymer, 2013, 54, 1860-1866.	3.8	43
47	Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 2013, 98, 651-658.	5.8	160
48	Surface modification of coconut shell powder filled polylactic acid biocomposites. Journal of Thermoplastic Composite Materials, 2013, 26, 809-819.	4.2	59
49	Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic acid) driven by random scission. Polymer Testing, 2013, 32, 937-945.	4.8	47
50	Enhancement of Flame Retardant Performance of Bio-Based Polylactic Acid Composites with the Incorporation of Aluminum Hypophosphite and Expanded Graphite. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 255-269.	2.2	56
51	Mechanical, thermal and morphological properties of poly(lactic acid)/natural rubber nanocomposites. Journal of Reinforced Plastics and Composites, 2013, 32, 1656-1667.	3.1	34
52	Comparative thermal, biological and photodegradation kinetics of polylactide and effect on crystallization rates. Polymer Degradation and Stability, 2013, 98, 771-784.	5.8	55
53	Thermal stability of copolymer derived from l-lactic acid and poly(tetramethylene) glycol through direct polycondensation. Journal of Thermal Analysis and Calorimetry, 2013, 111, 633-646.	3.6	19
54	Miscibility and properties of poly(l-lactic acid)/poly(butylene terephthalate) blends. European Polymer Journal, 2013, 49, 3309-3317.	5.4	40
55	Mechanical, thermal, and fire properties of polylactide/starch blend/clay composites. Journal of Thermal Analysis and Calorimetry, 2013, 113, 703-712.	3.6	43

#	Article	IF	CITATIONS
56	The effect of process variables on the properties of melt-spun poly(lactic acid) fibres for potential use as scaffold matrix materials. Journal of Materials Science, 2013, 48, 3055-3066.	3.7	24
57	The influence of modified polyhexamethylene guanidine PHMG on the biodegradation of polylactide. International Biodeterioration and Biodegradation, 2013, 84, 97-103.	3.9	21
58	Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. Journal of Food Engineering, 2013, 117, 113-123.	5.2	132
59	Effect of 1,3,5â€ŧrialkylâ€benzenetricarboxylamide on the crystallization of poly(lactic acid). Journal of Applied Polymer Science, 2013, 130, 1328-1336.	2.6	19
60	Comparison of the effects of commercial nucleation agents on the crystallization and melting behaviour of polylactide. Polymer Testing, 2013, 32, 15-21.	4.8	57
61	Degradation and Stability of Poly(lactic Acid). , 2013, , 247-299.		5
62	Microbial Plastic Factory: Synthesis and Properties of the New Lactate-Based Biopolymers. ACS Symposium Series, 2013, , 175-197.	0.5	2
63	Mechanical Properties of P34HB/PLA Binary Blendsafter Thermal-Oxidative and Hydrothermal Aging. Advanced Materials Research, 0, 647, 798-801.	0.3	1
64	Processing and characterization of poly(lactic acid) based bioactive composites for biomedical scaffold application. EXPRESS Polymer Letters, 2013, 7, 767-777.	2.1	42
65	Characterisation of low-odour emissive polylactide/cellulose fibre biocomposites for car interior. EXPRESS Polymer Letters, 2013, 7, 787-804.	2.1	31
66	Effects of Multi-Walled Carbon Nanotubes (MWCNTS) on the Mechanical and Thermal Properties of Plasticized Polylactic Acid Nanocomposites. Advanced Materials Research, 0, 812, 181-186.	0.3	8
67	Deterioration of metal–organic framework crystal structure during fabrication of poly(<scp>l</scp> â€lactic acid) mixedâ€matrix membranes. Polymer International, 2013, 62, 1144-1151.	3.1	21
68	Properties of coconut shell powderâ€filled polylactic acid ecocomposites: Effect of maleic acid. Polymer Engineering and Science, 2013, 53, 1109-1116.	3.1	63
69	Preparation of siloxane-containing vaterite particles with red-blood-cell-like morphologies and incorporation of calcium-salt polylactide for bone regenerative medicine. Journal of the Ceramic Society of Japan, 2013, 121, 792-796.	1.1	5
70	Ceramic sheet hybrid kenaf reinforced polypropylene biocomposites. Journal of Applied Polymer Science, 2013, 130, 1917-1922.	2.6	1
71	Recent advances in high performance poly(lactide): from "green―plasticization to super-tough materials via (reactive) compounding. Frontiers in Chemistry, 2013, 1, 32.	3.6	129
72	Effect of Chain Extension on the Rheological Property and Thermal Behaviour of Poly(lactic acid) Foams. Frontiers in Forests and Global Change, 2013, 32, 343-368.	1.1	19
73	Preparation and characterization of poly(lactic acid)/elastomer blends prepared by melt blending technique. Journal of Elastomers and Plastics, 2014, 46, 253-268.	1.5	6

#	Article	IF	CITATIONS
74	Development and Characterization of Poly (lactic acid)/Fish Water Soluble Protein Composite Sheets: A Potential Approach for Biodegradable Packaging. Energy Procedia, 2014, 56, 280-288.	1.8	10
75	Comparison of Solvent-Casting and Melt-Compounding Blended Biomedical (Polylactide)-(Polyethylene) Tj ETQq1	1,0,78431 0.3	4 rgBT /Ove
76	Effect of Vetiver Grass Fiber on Soil Burial Degradation of Natural Rubber and Polylactic Acid Composites. International Polymer Processing, 2014, 29, 379-388.	0.5	8
77	Influence of the processing parameters and composition on the thermal stability of PLA/nanoclay bioâ€nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	2.6	19
78	Elaboration of poly(lactic acid)/halloysite nanocomposites by means of water assisted extrusion: structure, mechanical properties and fire performance. RSC Advances, 2014, 4, 57553-57563.	3.6	58
79	Effect of combining ethylene/methyl acrylate/glycidyl methacrylate terpolymer and an organoclay on the toughening of poly(lactic acid). Polymer Engineering and Science, 2014, 54, 1922-1930.	3.1	16
80	Thermomechanical properties of poly(lactic acid) films reinforced with hydroxyapatite and regenerated cellulose microfibers. Journal of Applied Polymer Science, 2014, 131, .	2.6	2
81	Structural and Thermomechanical Evaluation of Bionanocomposites Obtained from Biodegradable Polymers with a Organoclay. Materials Science Forum, 0, 775-776, 178-182.	0.3	1
82	Enhanced general analytical equation for the kinetics of the thermal degradation of poly(lactic) Tj ETQq0 0 0 rgBT 2014, 101, 52-59.	/Overlock 5.8	10 Tf 50 42 22
83	Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Applied Clay Science, 2014, 88-89, 144-150.	5.2	89
84	A Facile Method for Generating Designer Block Copolymers from Functionalized Lignin Model Compounds. ACS Sustainable Chemistry and Engineering, 2014, 2, 569-573.	6.7	125
85	Hot-melt extrusion $\hat{a} \in \hat{a}$ basic principles and pharmaceutical applications. Drug Development and Industrial Pharmacy, 2014, 40, 1133-1155.	2.0	115
86	Understanding the aggregation of bis(benzoxazolyl)stilbene in PLA/PBS blends: a combined spectrofluorimetric, calorimetric and solid state NMR approach. Polymer Chemistry, 2014, 5, 828-835.	3.9	17
87	Biodegradation assessment of PLA and its nanocomposites. Environmental Science and Pollution Research, 2014, 21, 9477-9486.	5.3	23
88	Combustion properties and thermal degradation behaviors of biobased polylactide composites filled with calcium hypophosphite. RSC Advances, 2014, 4, 8985.	3.6	78
89	Influence of melt processing conditions on poly(lactic acid) degradation: Molar mass distribution and crystallization. Polymer Degradation and Stability, 2014, 110, 353-363.	5.8	53
90	From Nutraceutics to Materials: Effect of Resveratrol on the Stability of Polylactide. ACS Sustainable Chemistry and Engineering, 2014, 2, 1534-1542.	6.7	43
91	The Effects of Thermomechanical Cycles on the Properties of PLA/TPS Blends. Advances in Polymer Technology, 2014, 33, .	1.7	26

#	Article	IF	CITATIONS
92	Modelling of PLA melt rheology and batch mixing energy balance. European Polymer Journal, 2014, 60, 273-285.	5.4	14
93	Synthesis and Characterization of Lactic Acid Oligomers: Evaluation of Performance as Poly(Lactic) Tj ETQq1 1 0.	784314 rg	gBT_/Overlock
94	Biodegradable Poly(butylene succinate) and Poly(butylene adipate-co-terephthalate) Blends: Reactive Extrusion and Performance Evaluation. Journal of Polymers and the Environment, 2014, 22, 336-349.	5.0	99
95	Effects of biodegradable imidazolium-based ionic liquid with ester group on the structure and properties of PLLA. Macromolecular Research, 2014, 22, 583-591.	2.4	18
96	Morphology, mechanical properties, and shape memory effects of poly(lactic acid)/ thermoplastic polyurethane blend scaffolds prepared by thermally induced phase separation. Journal of Cellular Plastics, 2014, 50, 361-379.	2.4	45
97	Small punch test on the analysis of fracture behaviour of PLA-nanocomposite films. Polymer Testing, 2014, 33, 21-29.	4.8	27
98	Improvement of the thermal stability of branched poly(lactic acid) obtained by reactive extrusion. Polymer Degradation and Stability, 2014, 104, 40-49.	5.8	24
99	Thermal Behavior of Poly(lactic acid)-Nanocomposite Studied by Near-Infrared Imaging Based on Roundtrip Temperature Scan. Applied Spectroscopy, 2014, 68, 371-378.	2.2	10
101	Current progress in the production of PLA–ZnO nanocomposites: Beneficial effects of chain extender addition on key properties. Journal of Applied Polymer Science, 2015, 132, .	2.6	58
102	Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. Journal of Applied Polymer Science, 2015, 132, .	2.6	122
103	Porous Polylactic Acid-Silica Hybrids: Preparation, Characterization, and Study of Mesenchymal Stem Cell Osteogenic Differentiation. Macromolecular Bioscience, 2015, 15, 262-274.	4.1	7
104	Cinética de degradación térmica de poliácido láctico en múltiples extrusiones. Ingenieria Y Universidad, 2015, 19, 189.	0.5	12
105	Financial Cost Comparison of Acrylonitrile Butadiene Styrene (ABS) and BioABS. Journal of Biobased Materials and Bioenergy, 2015, 9, 244-251.	0.3	1
106	Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid). Polymer Degradation and Stability, 2015, 119, 217-227.	5.8	97
107	Effect of aliphatic diacyl adipic dihydrazides on the crystallization of poly(lactic acid). Journal of Applied Polymer Science, 2015, 132, .	2.6	5
108	Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Polymer Testing, 2015, 45, 93-100.	4.8	142
109	Enhanced thermal decomposition kinetics of poly(lactic acid) sacrificial polymer catalyzed by metal oxide nanoparticles. RSC Advances, 2015, 5, 101745-101750.	3.6	16
110	Barrier properties of polypropylene carbonate and poly(lactic acid) cast films. European Polymer Journal, 2015, 63, 217-226.	5.4	29

#	Article	IF	CITATIONS
111	Time-resolved rheology as a tool to monitor the progress of polymer degradation in the melt state – Part I: Thermal and thermo-oxidative degradation of polyamide 11. Polymer, 2015, 72, 134-141.	3.8	54
112	Structure effect of phosphite on the chain extension in PLA. Polymer Degradation and Stability, 2015, 120, 283-289.	5.8	26
113	Biosynthesis, Properties, and Biodegradation of Lactate-Based Polymers. ACS Symposium Series, 2015, , 113-131.	0.5	3
114	Improving the Hydrolysis Resistance of Poly(lactic acid) Fiber by Hydrophobic Finishing. Industrial & Engineering Chemistry Research, 2015, 54, 2599-2605.	3.7	22
115	Development of Cellulose-Reinforced Poly(Lactic Acid) (PLA) for Engineering Applications. Materials Science Forum, 0, 812, 59-64.	0.3	2
116	Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: enhanced barrier and mechanical properties. Cellulose, 2015, 22, 1201-1226.	4.9	78
117	Thermal Degradation of Bio-nanocomposites. Engineering Materials, 2015, , 221-245.	0.6	3
118	Thermal Degradation of Polymer Blends, Composites and Nanocomposites. Engineering Materials, 2015, , 1-16.	0.6	8
119	Kinetics of the thermal degradation of poly(lactic acid) obtained by reactive extrusion: Influence of the addition of montmorillonite nanoparticles. Polymer Testing, 2015, 48, 69-81.	4.8	12
120	Evaluating The Extent of Bio-Polyester Polymerization in Solid Wood by Thermogravimetric Analysis. Journal of Wood Chemistry and Technology, 2015, 35, 325-336.	1.7	16
121	Biological Oxidative Mechanisms for Degradation of Poly(lactic acid) Blended with Thermoplastic Starch. ACS Sustainable Chemistry and Engineering, 2015, 3, 2756-2766.	6.7	50
122	Plasma treatment of the surface of poly(hydroxybutyrate) foil and non-woven fabric and assessment of the biological properties. Reactive and Functional Polymers, 2015, 95, 71-79.	4.1	28
123	Bioâ€based diblock copolymers prepared from poly(lactic acid) and natural rubber. Journal of Applied Polymer Science, 2015, 132, .	2.6	13
124	A comparison study on thermal decomposition behavior of poly(l-lactide) with different kinetic models. Journal of Thermal Analysis and Calorimetry, 2015, 119, 2015-2027.	3.6	32
125	Effect of Poly(para-dioxanone) on the Hydrolytic Degradation of Poly(l-lactide). Journal of Polymers and the Environment, 2015, 23, 156-164.	5.0	6
126	Bio-Based Polymers with Potential for Biodegradability. Polymers, 2016, 8, 262.	4.5	190
127	Synthesis and Enzymatic Degradation of Soft Aliphatic Polyesters. Macromolecular Bioscience, 2016, 16, 207-213.	4.1	16
128	Enhancing the thermoâ€oxidative stability of PLA through the use of hybrid organic–inorganic coatings. Journal of Applied Polymer Science, 2016, 133, .	2.6	2

#	Article	IF	CITATIONS
129	Characterization of poly(L-lactide/Propylene glycol) based polyurethane films using ATR-FTIR spectroscopy. , 2016, , .		5
130	The effect of beta-tricalcium phosphate on mechanical and thermal performances of poly(lactic acid). Journal of Composite Materials, 2016, 50, 4189-4198.	2.4	23
131	Cyclic pressure on compression-moulded bioresorbable phosphate glass fibre reinforced composites. Materials and Design, 2016, 100, 141-150.	7.0	12
132	Electrospun composite nanofiber membrane of poly(I -lactide) and surface grafted chitin whiskers: Fabrication, mechanical properties and cytocompatibility. Carbohydrate Polymers, 2016, 147, 216-225.	10.2	55
133	Complex poly(lactic acid)-based biomaterial for urinary catheters: I. Influence of AgNP on properties. Bioinspired, Biomimetic and Nanobiomaterials, 2016, 5, 132-151.	0.9	4
134	Characterization of polylactide/poly(ethylene glycol) blends via direct pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2016, 122, 315-322.	5.5	8
135	Effect of different mechanical recycling processes on the hydrolytic degradation of poly(l-lactic) Tj ETQq0 0 0 rgB	ST Overloc	k 10 Tf 50 5
137	Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer, 2016, 105, 1-9.	3.8	100
138	Silk nanocrystals stabilized melt extruded poly (lactic acid) nanocomposite films: Effect of recycling on thermal degradation kinetics and optimization studies. Thermochimica Acta, 2016, 643, 41-52.	2.7	31
139	Mechanical and Thermal Behavior of PLA/PEgAA Blends. Macromolecular Symposia, 2016, 367, 82-89.	0.7	7
140	Thermal degradation behavior of PLA composites containing bis DOPO phosphonates. Thermochimica Acta, 2016, 639, 84-90.	2.7	29
141	Characterization of biaxial strain of poly(<scp>l</scp> â€lactide) tubes. Polymer International, 2016, 65, 133-141.	3.1	14
142	Influence of different sterilization processes on the properties of commercial poly(lactic acid). Materials Science and Engineering C, 2016, 69, 661-667.	7.3	53
143	Life Cycle Assessment of Poly(Lactic Acid) (PLA): Comparison Between Chemical Recycling, Mechanical Recycling and Composting. Journal of Polymers and the Environment, 2016, 24, 372-384.	5.0	153
144	Reinforcement of poly-l-lactic acid electrospun membranes with strontium borosilicate bioactive glasses for bone tissue engineering. Acta Biomaterialia, 2016, 44, 168-177.	8.3	53
145	Mechanical recycling of polylactide, upgrading trends and combination of valorization techniques. European Polymer Journal, 2016, 84, 22-39.	5.4	102
146	Effects of material thickness and processing method on poly(lactic-co-glycolic acid) degradation and mechanical performance. Journal of Materials Science: Materials in Medicine, 2016, 27, 154.	3.6	13

Plasticizing effect of glyceryl tribenzoate, dipropylene glycol dibenzoate, and glyceryl triacetate on
 poly(lactic acid). Polymer Engineering and Science, 2016, 56, 1399-1406.
 3.1

#	Article	IF	CITATIONS
149	Physical and mechanical characterization of PLLA interference screws produced by two stage injection molding method. Progress in Biomaterials, 2016, 5, 183-191.	4.5	10
150	Biodegradable Polymer for Food Packaging: Degradation and Waste Management. Food Preservation Technology, 2016, , 531-547.	0.0	0
151	Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 2016, 107, 367-392.	13.7	1,957
152	Influence of density and environmental factors on decomposition kinetics of amorphous polylactide – Reactive molecular dynamics studies. Journal of Molecular Graphics and Modelling, 2016, 67, 54-61.	2.4	13
153	InÂvitro synthesis of polyhydroxyalkanoates using thermostable acetyl-CoA synthetase, CoA transferase, and PHA synthase from thermotorelant bacteria. Journal of Bioscience and Bioengineering, 2016, 122, 660-665.	2.2	25
154	Controlled biodegradation of polymers using nanoparticles and its application. RSC Advances, 2016, 6, 67449-67480.	3.6	62
155	Mechanisms and kinetics studies on the thermal decomposition of micron Poly (methyl methacrylate) and polystyrene. Journal of Loss Prevention in the Process Industries, 2016, 40, 139-146.	3.3	40
156	The role of shear and stabilizer on PLA degradation. Polymer Testing, 2016, 51, 109-116.	4.8	77
157	Microstructures and mechanical properties of polylactic acid prepared by a cold rolling process. Journal of Materials Processing Technology, 2016, 232, 184-194.	6.3	17
158	Thermal degradation of polylactide and its electrospun fiber. Fibers and Polymers, 2016, 17, 66-73.	2.1	13
159	N,N′-Bis(benzoyl) adipic acid dihydrazide and talc: nucleating agents for poly(l-lactic acid). Journal of Polymer Engineering, 2016, 36, 381-390.	1.4	3
160	Enhanced Thermal Stability of Polylactide by Terminal Conjugation Groups. Journal of Electronic Materials, 2016, 45, 2388-2394.	2.2	6
161	Chain extension and oxidation stabilization of Triphenyl Phosphite (TPP) in PLA. Polymer Degradation and Stability, 2016, 124, 112-118.	5.8	28
162	Poly(butylene succinate)-based polyesters for biomedical applications: A review. European Polymer Journal, 2016, 75, 431-460.	5.4	272
163	Mechanical Properties of Hybrid Fibers-Reinforced Polymer Composite: A Review. Polymer-Plastics Technology and Engineering, 2016, 55, 626-642.	1.9	195
164	Banana/sisal fibers reinforced poly(lactic acid) hybrid biocomposites; influence of chemical modification of BSF towards thermal properties. Polymer Composites, 2017, 38, 1053-1062.	4.6	27
165	Flax fiber-reinforced polylactide stereocomplex composites with enhanced heat resistance and mechanical properties. Polymer Composites, 2017, 38, 472-478.	4.6	11
166	Long-term properties and end-of-life of polymers from renewable resources. Polymer Degradation and Stability, 2017, 137, 35-57.	5.8	82

#	Article	IF	CITATIONS
167	Microstructure analysis of polylactic acid-based composites during degradation in soil. International Biodeterioration and Biodegradation, 2017, 122, 53-60.	3.9	42
168	Mechanical properties and state of miscibility in poly(racD,L-lactide-co-glycolide)/(L-lactide-co-ε-caprolactone) blends. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 372-382.	3.1	12
169	Photodegradation of Polymer Materials Used for Film Coatings of Controlledâ€Release Fertilizers. Chemical Engineering and Technology, 2017, 40, 1611-1618.	1.5	11
170	Application of β-Cyclodextrin/2-Nonanone Inclusion Complex as Active Agent to Design of Antimicrobial Packaging Films for Control of Botrytis cinerea. Food and Bioprocess Technology, 2017, 10, 1585-1594.	4.7	31
171	Thermal degradation of poly(lactic acid) and acrylonitrile-butadiene-styrene bioblends: Elucidation of reaction mechanisms. Thermochimica Acta, 2017, 654, 157-167.	2.7	14
172	Effect of annealing on gas permeability and mechanical properties of polylactic acid/talc composite films. Journal of Plastic Film and Sheeting, 2017, 33, 361-383.	2.2	17
173	Quantitative determination of volatile organic compounds formed during Polylactide processing by MHS-SPME. Polymer Degradation and Stability, 2017, 136, 80-88.	5.8	21
174	Quantitative electron tomography of PLA/clay nanocomposites to understand the effect of the clays in the thermal stability. Journal of Applied Polymer Science, 2017, 134, .	2.6	8
175	Crystallization of itaconic anhydride grafted poly(lactic acid) during annealing. Journal of Applied Polymer Science, 2017, 134, .	2.6	12
176	Near-Infrared Spectroscopic Evaluation of the Water Content of Molded Polylactide under the Effect of Crystallization. Applied Spectroscopy, 2017, 71, 1300-1309.	2.2	10
177	Investigating impact of five build parameters on the maximum flexural force in FDM specimens – a definitive screening design approach. Rapid Prototyping Journal, 2017, 23, 1088-1098.	3.2	43
178	Development and characterization of polyvinyl alcohol stabilized polylactic acid/ZnO nanocomposites. Materials Research Express, 2017, 4, 105019.	1.6	25
179	Phytic acid–lignin combination: A simple and efficient route for enhancing thermal and flame retardant properties of polylactide. European Polymer Journal, 2017, 94, 270-285.	5.4	98
180	PLA-Based Nanocomposites Reinforced with CNC for Food Packaging Applications: From Synthesis to Biodegradation. , 2017, , 265-300.		6
181	Design of biobased PLLA triblock copolymers for sustainable food packaging: Thermo-mechanical properties, gas barrier ability and compostability. European Polymer Journal, 2017, 95, 289-303.	5.4	44
182	Hydrolysis and Biodegradation of Poly(lactic acid). Advances in Polymer Science, 2017, , 119-151.	0.8	74
183	Poly(lactic acid)-Based Materials for Automotive Applications. Advances in Polymer Science, 2017, , 177-219.	0.8	26
184	Effect of initiators on synthesis of poly(L-lactide) by ring opening polymerization. IOP Conference Series: Materials Science and Engineering, 2017, 213, 012022.	0.6	21

#	Article	IF	CITATIONS
185	Effect of Mg content on the thermal stability and mechanical behaviour of PLLA/Mg composites processed by hot extrusion. Materials Science and Engineering C, 2017, 72, 18-25.	7.3	41
186	Effects of Diisocyanate and Polymeric Epoxidized Chain Extenders on the Properties of Recycled Poly(Lactic Acid). Journal of Polymers and the Environment, 2017, 25, 983-993.	5.0	49
187	Engineering of Poly Lactic Acids (PLAs) for melt processing: Material structure and thermal properties. Journal of Applied Polymer Science, 2017, 134, .	2.6	5
188	Production and Application ofÂPolylactides. , 2017, , 633-653.		2
189	Poly(lactic acid)/Organo-Montmorillonite Nanocomposites: Synthesis, Structures, Permeation Properties and Applications. Polymer Science - Series A, 2017, 59, 891-901.	1.0	10
190	Thermomechanical Properties of Polylactic Acid-Graphene Composites: A State-of-the-Art Review for Biomedical Applications. Materials, 2017, 10, 748.	2.9	73
191	Influence of Controlled Cooling in Bimodal Scaffold Fabrication Using Polymers with Different Melting Temperatures. Materials, 2017, 10, 640.	2.9	18
192	Performance of Poly(lactic acid) Surface Modified Films for Food Packaging Application. Materials, 2017, 10, 850.	2.9	15
193	Biopolymer Composites With High Dielectric Performance: Interface Engineering. , 2017, , 27-128.		124
194	Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure. Applied Sciences (Switzerland), 2017, 7, 579.	2.5	161
195	Characterization of Extruded Poly(lactic acid)/Pecan Nutshell Biocomposites. International Journal of Polymer Science, 2017, 2017, 1-12.	2.7	15
196	Repeated Mechanical Recycling of Polylactic Acid Filled with Chalk. Progress in Rubber, Plastics and Recycling Technology, 2017, 33, 1-16.	1.8	16
197	PLA scaffolds production from Thermally Induced Phase Separation: Effect of process parameters and development of an environmentally improved route assisted by supercritical carbon dioxide. Journal of Supercritical Fluids, 2018, 136, 123-135.	3.2	38
198	A material length scale–based methodology to assess static strength of notched additively manufactured polylactide (PLA). Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 2071-2098.	3.4	48
199	Effects of Compressed CO ₂ and Cotton Fibers on the Crystallization and Foaming Behaviors of Polylactide. Industrial & Engineering Chemistry Research, 2018, 57, 2094-2104.	3.7	29
200	High voltage, solvent-free solid polymer electrolyte based on a star-comb PDLLA–PEG copolymer for lithium ion batteries. RSC Advances, 2018, 8, 6373-6380.	3.6	30
201	Effect of TiO2 Nanofiller Concentration on the Mechanical, Thermal and Biological Properties of HDPE/TiO2 Nanocomposites. Journal of Materials Engineering and Performance, 2018, 27, 2166-2181.	2.5	35
202	Poly(lactic acid) and acrylonitrileâ^butadieneâ^styrene blends: Influence of adding ABSâ^gâ^MAH compatibilizer on the kinetics of the thermal degradation. Polymer Testing, 2018, 67, 468-476.	4.8	10

#	Article	IF	CITATIONS
203	Heterogeneous wettable cotton based superhydrophobic Janus biofabric engineered with PLA/functionalized-organoclay microfibers for efficient oil–water separation. Journal of Materials Chemistry A, 2018, 6, 7457-7479.	10.3	159
204	Crystallization, Mechanical and Flame-retardant Properties of Poly(lactic acid) Composites with DOPO and DOPO-POSS. Chinese Journal of Polymer Science (English Edition), 2018, 36, 871-879.	3.8	32
205	Investigating the properties of poly (lactic acid)/exfoliated graphene based nanocomposites fabricated by versatile coating approach. International Journal of Biological Macromolecules, 2018, 113, 1080-1091.	7.5	33
206	Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic) Tj ETQq1 1 0.78	34314 rgB ⁻ 7.8	T /Qverlock
207	Long-term hydrolytic degradation study on polymer-based embroidered scaffolds for ligament tissue engineering. Journal of Industrial Textiles, 2018, 47, 1305-1320.	2.4	6
208	Biodegradation in Soil of PLA/PBAT Blends Compatibilized with Chain Extender. Journal of Polymers and the Environment, 2018, 26, 330-341.	5.0	118
209	Evaluation of thermal resistance and mechanical properties of injected molded stereocomplex of poly(<scp>l</scp> â€lactic acid) and poly(<scp>d</scp> â€lactic acid) with various molecular weights. Advances in Polymer Technology, 2018, 37, 1674-1681.	1.7	16
210	Mechanical recycling simulation of polylactide using a chain extender. Advances in Polymer Technology, 2018, 37, 2053-2060.	1.7	23
211	Effect of expandable graphite on thermal and flammability properties of poly(lactic) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 42 3.1	22 Td (acid)á
212	Triggered release of hexanal from an imidazolidine precursor encapsulated in poly(lactic acid) and ethylcellulose carriers. Journal of Materials Science, 2018, 53, 2221-2235.	3.7	31
213	The crystallization behavior of poly(lactic acid) with different types of nucleating agents. International Journal of Biological Macromolecules, 2018, 106, 955-962.	7.5	84
214	Visualization of hydrolysis in polylactide using nearâ€infrared hyperspectral imaging and chemometrics. Journal of Applied Polymer Science, 2018, 135, 45898.	2.6	16
215	Reactive toughening of injection-molded polylactide pieces using maleinized hemp seed oil. European Polymer Journal, 2018, 98, 402-410.	5.4	56
216	Multilayer coextrusion of graphene polymer nanocomposites with enhanced structural organization and properties. Journal of Applied Polymer Science, 2018, 135, 46041.	2.6	19
217	PLA based biocomposites reinforced with Posidonia oceanica leaves. Composites Part B: Engineering, 2018, 139, 1-11.	12.0	79
218	Dielectric thermally conductive and stable poly(arylene ether nitrile) composites filled with silver nanoparticles decorated hexagonal boron nitride. Ceramics International, 2018, 44, 2021-2029.	4.8	42
219	The effects of processing parameters on the morphology of PLA/PEG melt electrospun fibers. Polymer International, 2018, 67, 178-188.	3.1	24
220	The effect of surface modification of glass fiber on the performance of poly(lactic acid) composites: Graphene oxide vs. silane coupling agents. Applied Surface Science, 2018, 435, 1046-1056.	6.1	56

#	Article	IF	CITATIONS
221	Recovery of yerba mate (Ilex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 2018, 111, 317-328.	5.2	73
222	Characterization of poly(lactic acid) biocomposites filled with chestnut shell waste. Journal of Material Cycles and Waste Management, 2018, 20, 914-924.	3.0	37
223	Photodegradation of films based on polylactide-polyethylene blends. AIP Conference Proceedings, 2018, , .	0.4	0
224	Consistency analysis of mechanical properties of elements produced by FDM additive manufacturing technology. Revista Materia, 2018, 23, .	0.2	31
225	Development of hyperbranched crosslinkers from bio-derived platform molecules for the synthesis of epoxidised soybean oil based thermosets. RSC Advances, 2018, 8, 37267-37276.	3.6	7
226	Suitability of Blends from Virgin and Reprocessed Polylactide: Performance and Energy Valorization Kinetics. Journal of Renewable Materials, 2018, 6, 370-382.	2.2	11
227	Estudo comparativo entre PETG e PLA para Impressão 3D através de caracterização térmica, quÃmica e mecânica. Revista Materia, 2018, 23, .	0.2	20
228	Degradation Classification of 3D Printing Thermoplastics Using Fourier Transform Infrared Spectroscopy and Artificial Neural Networks. Applied Sciences (Switzerland), 2018, 8, 1224.	2.5	18
229	Use of Candida rugosa lipase as a biocatalyst for L-lactide ring-opening polymerization and polylactic acid production. Biocatalysis and Agricultural Biotechnology, 2018, 16, 683-691.	3.1	32
230	Filler effect on the degradation of γ-processed PLA/vinyl POSS hybrid. Radiation Physics and Chemistry, 2018, 153, 188-197.	2.8	25
231	Poly(lactic acid)-starch/Expandable Graphite (PLA-starch/EG) Flame Retardant Composites. Journal of Renewable Materials, 2018, 6, 26-37.	2.2	9
232	Polylactide-based self-reinforced composites biodegradation: Individual and combined influence of temperature, water and compost. Polymer Degradation and Stability, 2018, 158, 40-51.	5.8	35
233	The mechanical, thermal and morphological properties of γ-irradiated PLA/TAIC and PLA/OvPOSS. Radiation Physics and Chemistry, 2018, 153, 214-225.	2.8	39
234	Study of the influence of initiator content in the polymerization reaction of a thermoplastic liquid resin for advanced composite manufacturing. Advances in Polymer Technology, 2018, 37, 3579-3587.	1.7	19
235	High Molecular Weight Poly(lactic acid) Synthesized with Apposite Catalytic Combination and Longer time. Oriental Journal of Chemistry, 2018, 34, 1984-1990.	0.3	21
236	Thermomechanical properties of alumina-filled plasticized polylactic acid: Effect of alumina loading percentage. Ceramics International, 2018, 44, 22767-22776.	4.8	36
237	Industrial Applications of Poly(lactic acid). Advances in Polymer Science, 2018, , .	0.8	51
238	Biological Compatibility of a Polylactic Acid Composite Reinforced with Natural Chitosan Obtained from Shrimp Waste. Materials, 2018, 11, 1465.	2.9	35

#	Article	IF	CITATIONS
239	Enhanced durability of sustainable poly (lactic acid)-based composites with renewable starch and wood flour. Journal of Cleaner Production, 2018, 203, 328-339.	9.3	25
240	A new model to pyrolysis capacity quantification using thermogravimetric data for polymers reprocessed. IngenierÃa Y Desarrollo, 2018, 36, 138-154.	0.1	1
241	Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. Resources, Conservation and Recycling, 2018, 136, 418-435.	10.8	282
242	Influence of the material properties of a poly(D,L-lactide)/β-tricalcium phosphate composite on the processability by selective laser sintering. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 267-278.	3.1	28
243	The Effect of Acetylation on the Hydrolytic Degradation of PLA/Clay Nanocomposites. Journal of Polymers and the Environment, 2018, 26, 4131-4140.	5.0	7
244	Enhancement of Mechanical Properties of FDMâ€₽LA Parts via Thermal Annealing. Macromolecular Materials and Engineering, 2018, 303, 1800169.	3.6	133
245	Close-looped recycling of polylactic acid used in 3D printing: An experimental investigation and life cycle assessment. Journal of Cleaner Production, 2018, 197, 1046-1055.	9.3	133
246	PLA Melt Stabilization by High-Surface-Area Graphite and Carbon Black. Polymers, 2018, 10, 139.	4.5	23
247	Modifying an Active Compound's Release Kinetic Using a Supercritical Impregnation Process to Incorporate an Active Agent into PLA Electrospun Mats. Polymers, 2018, 10, 479.	4.5	22
248	Improved model and experimental validation of deformation in fused filament fabrication of polylactic acid. Progress in Additive Manufacturing, 2018, 3, 193-203.	4.8	22
249	Polylactic acid nanocomposites toughened with nanofibrillated cellulose: microstructure, thermal, and mechanical properties. Iranian Polymer Journal (English Edition), 2018, 27, 785-794.	2.4	18
250	Bio-Composites Based on Poly(lactic acid) Containing Mallow and Eucalyptus Surface Modified Natural Fibers. Journal of Polymers and the Environment, 2018, 26, 3785-3801.	5.0	5
251	Bio-resorbable polymer stents: a review of material progress and prospects. Progress in Polymer Science, 2018, 83, 79-96.	24.7	123
252	Effect of branching on flow-induced crystallization of poly (lactic acid). European Polymer Journal, 2019, 119, 410-420.	5.4	31
253	Influence of Annealing and Biaxial Expansion on the Properties of Poly(l-Lactic Acid) Medical Tubing. Polymers, 2019, 11, 1172.	4.5	14
254	Why Is Crystalline Poly(lactic acid) Brittle at Room Temperature?. Macromolecules, 2019, 52, 5429-5441.	4.8	114
255	Dual effect of dynamic vulcanization of biobased unsaturated polyester: Simultaneously enhance the toughness and fire safety of Poly(lactic acid). Composites Part B: Engineering, 2019, 175, 107069.	12.0	33
256	Investigation on the environmentalâ€friendly poly(lactic acid) composites based on precipitated barium sulfate: Mechanical, thermal properties, and kinetic study of thermal degradation. Journal of Applied Polymer Science, 2019, 136, 47995.	2.6	4

		CITATION R	EPORT	
#	Article		IF	CITATIONS
257	Green Polymer Composites Based on Polylactic Acid (PLA) and Fibers. Materials Horizor	ıs, 2019, , 29-54.	0.6	5
258	Investigation on absorption and release of mercaptopurine anticancer drug from modif acid as polymer carrier by molecular dynamic simulation. Materials Science and Enginee 105, 110010.	ied polylactic ering C, 2019,	7.3	23
259	Poly(Lactic Acid) Additives and Processing Aids. , 2019, , 273-305.			3
260	Degradation and Stability of Poly(Lactic Acid). , 2019, , 227-272.			0
261	Exploring thermal annealing and graphene-carbon nanotube additives to enhance cryst thermal, electrical and tensile properties of aged poly(lactic) acid-based filament for 3D Composites Science and Technology, 2019, 181, 107712.		7.8	63
262	Green Biopolymers and their Nanocomposites. Materials Horizons, 2019, , .		0.6	11
263	Poly(Lactic Acid): Flow-Induced Crystallization. Advances in Polymer Science, 2019, , 87	7-117.	0.8	12
264	Development and Characterization of a Biodegradable PLA Food Packaging Hold Monoterpene–Cyclodextrin Complexes against Alternaria alternata. Polymers, 2019,	11, 1720.	4.5	38
265	A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and A Frontiers in Bioengineering and Biotechnology, 2019, 7, 259.	pplications.	4.1	285
266	Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stent Nanomaterials, 2019, 9, 1548.	S.	4.1	31
267	Characterization and laser-induced degradation of a medical grade polylactide. Polymer and Stability, 2019, 169, 108991.	Degradation	5.8	11
268	Crystallinity and Property Enhancements in Neat Polylactic Acid by Chilled Extrusion: So Shear Pulverization and Solidâ€State/Melt Extrusion. Polymer Engineering and Science,	blidâ€ 5 tate , 2019, 59, E286.	3.1	12
269	Crystallization kinetics as a sensitive tool to detect degradation in poly(lactide)/poly(ε PCL-co-PC copolymers blends. Polymer Degradation and Stability, 2019, 168, 108939.	-caprolactone)/	5.8	13
270	Electrohydrodynamic Atomization (EHDA) Technique for the Health Sector of Polylactic Nanoparticles. , 2019, , .	: Acid (PLA)		Ο
271	Use of microperlite in direct polymerization of lactic acid. International Journal of Polymand Characterization, 2019, 24, 142-149.	ıer Analysis	1.9	1
272	Poly(lactic acid) biocomposites with mango waste and organoâ€montmorillonite for pa of Applied Polymer Science, 2019, 136, 47512.	ackaging. Journal	2.6	29
273	Synthesis of Bioresorbable Poly(Lactic-co-Clycolic Acid)s Through Direct Polycondensat Economical Substitute for the Synthesis of Polyglactin via ROP of Lactide and Clycolide Polymers, 2019, 20, 887-895.		2.1	6
274	Improving the ductility of polylactic acid parts produced by fused deposition modeling polyhydroxyalkanoate additions. Journal of Applied Polymer Science, 2019, 136, 48154	through	2.6	25

ARTICLE IF CITATIONS Thermal and thermooxidative degradation., 2019,, 99-126. 275 2 Physicochemical and mechanical properties of CO2 laser-modified biodegradable polymers for medical 276 5.8 applications. Polymer Degradation and Stability, 2019, 165, 182-195. Study of thermal and rheological properties of PLA loaded with carbon and halloysite nanotubes for 277 3.2 19 additive manufacturing. Rapid Prototyping Journal, 2019, 25, 738-743. Glass transition temperatures, melting temperatures, water contact angles and dimensional precision of simple fused deposition model 3D prints and 3D printed channels constructed from a range of commercially available filaments. Chemical Data Collections, 2019, 22, 100244. Sustainable Agriculture Reviews 34. Sustainable Agriculture Reviews, 2019, , . 279 1.1 5 Date Palm Waste: An Efficient Source for Production of Glucose and Lactic Acid. Sustainable 280 1.1 Agriculture Reviews, 2019, , 155-178. The Influence of Low Shear Microbore Extrusion on the Properties of High Molecular Weight 281 4.5 11 Poly(l-Lactic Acid) for Medical Tubing Applications. Polymers, 2019, 11, 710. Insight on the influence of nano zinc oxide on the thermal, dynamic mechanical, and flow characteristics of Poly(lactic acid)– zinc oxide composites. Polymer Engineering and Science, 2019, 59, 3.1 1242-1249. Dynamics of the α-relaxation during the crystallization of PLLA and the effect of thermal annealing 283 5.8 11 under humid atmosphere. Polymer Degradation and Stability, 2019, 164, 90-101. Polyhydroxybutyrate/hemp biocomposite: tuning performances by process and compatibilisation. 284 2.1 Green Materials, 2019, 7, 194-204. Thermal, Mechanical, Viscoelastic and Morphological Properties of Poly(lactic acid) based 285 2.9 24 Biocomposites with Potato Pulp Powder Treated with Waxes. Materials, 2019, 12, 990. One step bulk modification of poly(L-lactic acid) composites with functional additives to improve mechanical and biological properties for cardiovascular implant applications. Colloids and Surfaces B: Biointerfaces, 2019, 179, 161-169. 5.0 Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering 287 7.3 86 of bone tissue engineering scaffolds. Materials Science and Engineering C, 2019, 101, 660-673. Effect of Accelerated Weathering on Physico-Mechanical Properties of Polylactide Bio-Composites. Journal of Polymers and the Environment, 2019, 27, 942-955. 5.0 Production and investigation of structure and properties of polyethylene \hat{e} "polylactide composites. 289 9 2.6 Journal of Applied Polymer Science, 2019, 136, 47598. Mechanical and thermal properties of spent coffee bean filler/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites: Effect of recycling. Chemical Engineering Research and Design, 2019, 124, 187-195. 28 Thermal and thermo-oxidative degradation kinetics and characteristics of poly (lactic acid) and its 291 7.4 46 composites. Waste Management, 2019, 87, 335-344. Effects of processing conditions on mechanical properties of PLA printed parts. Rapid Prototyping 3.2 Journal, 2019, 26, 381-389.

#	Article	IF	CITATIONS
293	Impact of UV treatment on polylactide–polyethylene film properties. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012043.	0.6	4
294	Eco-friendly polymer materials for agricultural purposes. MATEC Web of Conferences, 2019, 298, 00130.	0.2	Ο
295	Thermal Properties of Bio-based Polymers. Advances in Polymer Science, 2019, , .	0.8	9
296	Mechanical, rheological and anaerobic biodegradation behavior of a Poly(lactic acid) blend containing a Poly(lactic acid)-co-poly(glycolic acid) copolymer. Polymer Degradation and Stability, 2019, 170, 109018.	5.8	21
297	The Production Possibility of the Antimicrobial Filaments by Co-Extrusion of the PLA Pellet with Chitosan Powder for FDM 3D Printing Technology. Polymers, 2019, 11, 1893.	4.5	23
298	Development of Bioepoxy Resin Microencapsulated Ammonium-Polyphosphate for Flame Retardancy of Polylactic Acid. Molecules, 2019, 24, 4123.	3.8	27
299	Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding. Polymers, 2019, 11, 1908.	4.5	74
300	Obtaining and Characterization of the PLA/Chitosan Foams with Antimicrobial Properties Achieved by the Emulsification Combined with the Dissolution of Chitosan by CO2 Saturation. Molecules, 2019, 24, 4532.	3.8	16
301	Study on Aging and Recover of Poly (Lactic) Acid Composite Films with Graphene and Carbon Nanotubes Produced by Solution Blending and Extrusion. Coatings, 2019, 9, 359.	2.6	11
302	Evaluation of commercially available polylactic acid (PLA) filaments for 3D printing applications. Journal of Thermal Analysis and Calorimetry, 2019, 137, 555-562.	3.6	41
303	Phenomenon of LCST-type phase behavior in SAN/PMMA systems and its effect on the PLLA/ABS blend compatibilized by PMMA-type polymers: Interface stabilization or micelle formation. Polymer, 2019, 163, 36-47.	3.8	10
304	Preparation and characterization of antistatic packaging for electronic components based on poly(lactic acid)/carbon black composites. Journal of Applied Polymer Science, 2019, 136, 47273.	2.6	55
305	Interlayer fracture energy of 3D-printed PLA material. International Journal of Advanced Manufacturing Technology, 2019, 101, 1959-1965.	3.0	12
306	Influence of Nanoparticle Pretreatment on the Thermal, Rheological and Mechanical Properties of PLA-PBSA Nanocomposites Incorporating Cellulose Nanocrystals or Montmorillonite. Nanomaterials, 2019, 9, 29.	4.1	20
307	Deterioration in the Physico-Mechanical and Thermal Properties of Biopolymers Due to Reprocessing. Polymers, 2019, 11, 58.	4.5	44
308	Understanding the development of interfacial bonding within PLA/wood-based thermoplastic sandwich composites. Industrial Crops and Products, 2019, 127, 129-134.	5.2	40
309	Structural, topographical, and mechanical characteristics of purified polyhydroxyoctanoate polymer. Journal of Applied Polymer Science, 2019, 136, 47192.	2.6	28
310	Utilization of linseed cake as a postagricultural functional filler for poly(lactic acid) green composites. Journal of Applied Polymer Science, 2019, 136, 47152.	2.6	24

#	Article	IF	CITATIONS
311	A new methodology for rapidly assessing interfacial bonding within fibre-reinforced thermoplastic composites. International Journal of Adhesion and Adhesives, 2019, 89, 66-71.	2.9	14
312	Electrospinning production of nanofibrous membranes. Environmental Chemistry Letters, 2019, 17, 767-800.	16.2	103
313	Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 37-49.	3.4	104
314	Effect of alkyl group on the chain extension of phosphites in polylactide. Journal of Vinyl and Additive Technology, 2019, 25, 144-148.	3.4	1
315	Study on the effects of polyhedral oligomeric silsesquioxane on compatibility, crystallization behavior and thermal stability of polylactic acid/polycaprolactone blends. Polymer Bulletin, 2020, 77, 585-598.	3.3	11
316	Recycling of Polylactide. , 2020, , 282-295.		1
317	Compatibilization of poly(lactic acid)/epoxidized natural rubber blend with maleic anhydride. Journal of Applied Polymer Science, 2020, 137, 48297.	2.6	11
318	Production of Biodegradable Film Based on Polylactic Acid, Modified with Lycopene Pigment and TiO2 and Studying Its Physicochemical Properties. Journal of Polymers and the Environment, 2020, 28, 433-444.	5.0	74
319	Anisotropic rate-dependent mechanical behavior of Poly(Lactic Acid) processed by Material Extrusion Additive Manufacturing. Additive Manufacturing, 2020, 31, 100968.	3.0	19
320	Mechanical and biological properties of chitin/polylactide (PLA)/hydroxyapatite (HAP) composites cast using ionic liquid solutions. International Journal of Biological Macromolecules, 2020, 151, 1213-1223.	7.5	34
321	Facile fabrication of fully biodegradable and biorenewable poly (lactic acid)/poly (butylene) Tj ETQq0 0 0 rgBT /Ov excellent heat resistance. Polymer Degradation and Stability, 2020, 171, 109044.	verlock 10 5.8	Tf 50 347 Td 33
322	Influence of the Degradation Medium on Water Uptake, Morphology, and Chemical Structure of Poly(Lactic Acid)-Sisal Bio-Composites. Materials, 2020, 13, 3974.	2.9	17
323	Bio-based copolyesters poly(butylene 2,6-naphthalate-co-butylene furandicarboxylate) derived from 2,5-furandicarboxylic acid (FDCA): Synthesis, characterization, and properties. Polymer Testing, 2020, 91, 106771.	4.8	12
324	Effect of Extrusion Screw Speed and Plasticizer Proportions on the Rheological, Thermal, Mechanical, Morphological and Superficial Properties of PLA. Polymers, 2020, 12, 2111.	4.5	25
325	Closed-form orthotropic constitutive model for aligned square array mesostructure. Additive Manufacturing, 2020, 36, 101463.	3.0	2
326	Effects of functionalization and annealing in enhancing the interfacial bonding and mechanical properties of 3D printed fiber-reinforced composites. Materials Today Communications, 2020, 25, 101365.	1.9	18
327	Direct Preparation of High Thermal Stable PLAâ€Based Nanocomposite via Extra‣ow Loading of In Situ Exfoliated Ultrathin MWW Zeolite Nanosheets. Macromolecular Materials and Engineering, 2020, 305, 2000406.	3.6	3
328	Crystallization of polylactide-based green composites filled with oil-rich waste fillers. Journal of Polymer Research, 2020, 27, 1.	2.4	21

#	Article	IF	Citations
329	Bonding Wood Veneer with Biobased Poly(Lactic Acid) Thermoplastic Polyesters: Potential Applications for Consolidated Wood Veneer and Overlay Products. Fibers, 2020, 8, 50.	4.0	5
330	Production and Characterization of Green Flame Retardant Poly(lactic acid) Composites. Journal of Polymers and the Environment, 2020, 28, 2837-2850.	5.0	7
331	The influence of oil content within lignocellulosic filler on thermal degradation kinetics and flammability of polylactide composites modified with linseed cake. Polymer Composites, 2020, 41, 4503-4513.	4.6	8
332	Organic acids under pressure: elastic properties, negative mechanical phenomena and pressure induced phase transitions in the lactic, maleic, succinic and citric acids. Materials Advances, 2020, 1, 1399-1426.	5.4	25
333	Synthesis and properties of UV-curable polyester acrylate resins from biodegradable poly(l-lactide) and poly(Îμ-caprolactone). Reactive and Functional Polymers, 2020, 155, 104695.	4.1	18
334	Altering the Elastic Properties of 3D Printed Poly-Lactic Acid (PLA) Parts by Compressive Cyclic Loading. Materials, 2020, 13, 4456.	2.9	10
335	Synthesis and Biological Application of Polylactic Acid. Molecules, 2020, 25, 5023.	3.8	198
336	The Influence of Sub-Zero Conditions on the Mechanical Properties of Polylactide-Based Composites. Materials, 2020, 13, 5789.	2.9	5
337	Agricultural materials based on eco-friendly polymers. IOP Conference Series: Materials Science and Engineering, 2020, 971, 032022.	0.6	1
338	Elastoplastic Properties of Polylactide Composites with Finely Divided Fillers. Materials Science, 2020, 56, 319-326.	0.9	7
339	Impact of environmental factors on agrofibers based on "green―polymers. IOP Conference Series: Materials Science and Engineering, 2020, 921, 012026.	0.6	0
340	Morphological characteristics and properties of TPS/PLA/cassava pulp biocomposites. Polymer Testing, 2020, 88, 106522.	4.8	33
341	<scp>3Dâ€printed</scp> polymer packing structures: Uniformity of morphology and mechanical properties via microprocessing conditions. Journal of Applied Polymer Science, 2020, 137, 49381.	2.6	9
342	Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 2020, 179, 109226.	5.8	58
343	Effect of infill on resulting mechanical properties of additive manufactured bioresorbable polymers for medical devices. Materialia, 2020, 12, 100732.	2.7	16
344	Compatibility, crystallinity and mechanical properties of poly(lactic acid)â€poly(etherâ€ <i>block</i> â€amide) based copper nanocomposites. Polymer International, 2020, 69, 1024-1037.	3.1	2
345	Biodegradable Polymers for Biomedical Additive Manufacturing. Applied Materials Today, 2020, 20, 100700.	4.3	86
346	Correlation between Processing Parameters and Degradation of Different Polylactide Grades during Twin-Screw Extrusion. Polymers, 2020, 12, 1333.	4.5	41

#	Article	IF	CITATIONS
347	Highly biodegradable, ductile all-polylactide blends. Polymer, 2020, 193, 122371.	3.8	17
348	Investigation of 3Dâ€printed PLA–stainlessâ€steel polymeric composite through fused deposition modellingâ€based additive manufacturing process for biomedical applications. Medical Devices & Sensors, 2020, 3, e10080.	2.7	8
349	Influence of Controlled Cooling on Crystallinity of Poly(L-Lactic Acid) Scaffolds after Hydrolytic Degradation. Materials, 2020, 13, 2943.	2.9	3
350	The Analysis of 3D Printer Dust for Forensic Applications,,. Journal of Forensic Sciences, 2020, 65, 1480-1496.	1.6	10
351	Effects of Filament Extrusion, 3D Printing and Hot-Pressing on Electrical and Tensile Properties of Poly(Lactic) Acid Composites Filled with Carbon Nanotubes and Graphene. Nanomaterials, 2020, 10, 35.	4.1	46
352	Recent developments in polymers/polymer nanocomposites for additive manufacturing. Progress in Materials Science, 2020, 111, 100638.	32.8	299
353	Effects of divinylbenzeneâ€maleic anhydride copolymer hollow microspheres on crystallization behaviors, mechanical properties and heat resistance of poly(lâ€lactide acid). Polymers for Advanced Technologies, 2020, 31, 817-826.	3.2	10
354	Effects of thermal annealing and solvent-induced crystallization on the structure and properties of poly(lactic acid) microfibres produced by high-speed electrospinning. Journal of Thermal Analysis and Calorimetry, 2020, 142, 581-594.	3.6	17
355	Development of polylactide composites with improved thermomechanical properties by simultaneous use of basalt powder and a nucleating agent. Polymer Composites, 2020, 41, 2947-2957.	4.6	26
356	Preparation and Properties of Stereocomplex of Poly(lactic acid) and Its Amphiphilic Copolymers Containing Glucose Groups. Polymers, 2020, 12, 760.	4.5	6
357	Synthesis and characterization of lignin-poly lactic acid film as active food packaging material. Materials Technology, 2021, 36, 585-593.	3.0	25
358	Role of the chemical modification of titanium dioxide surface on the interaction with silver nanoparticles and the capability to enhance antimicrobial properties of poly(lactic acid) composites. Polymer Bulletin, 2021, 78, 2765-2790.	3.3	8
359	An observation of the evolution of equilibrium stress on poly(lactic acid) and poly(lactic) Tj ETQq0 0 0 rgBT /Over Journal of Mechanical Engineering Science, 2021, 235, 1026-1044.	lock 10 Tf 2.1	50 267 Td (a 2
360	Ultrahigh Thermoresistant Lightweight Bioplastics Developed from Fermentation Products of Cellulosic Feedstock. Advanced Sustainable Systems, 2021, 5, 2000193.	5.3	16
361	In-process monitoring of part geometry in fused filament fabrication using computer vision and digital twins. Additive Manufacturing, 2021, 37, 101609.	3.0	28
362	Thermal degradation kinetics study of molten polylactide based on Raman spectroscopy. Polymer Engineering and Science, 2021, 61, 201-210.	3.1	26
363	Study on properties of polylactic acid/lemongrass fiber biocomposites prepared by fused deposition modeling. Polymer Composites, 2021, 42, 973-986.	4.6	31
364	Optimizing crystallinity of engineered poly(lactic acid)/poly(butylene succinate) blends: The role of single and multiple nucleating agents. Journal of Applied Polymer Science, 2021, 138, app50236.	2.6	4

#	Article	IF	CITATIONS
365	Thermal Stability of Bioâ€Based Aliphaticâ€5emiaromatic Copolyester for Meltâ€5pun Fibers with Excellent Mechanical Properties. Macromolecular Rapid Communications, 2021, 42, e2000498.	3.9	11
366	Recent advances in plastic stents: a comprehensive review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 54-74.	3.4	17
367	Poly(lactic acid) polymers containing silver and titanium dioxide nanoparticles to be used as scaffolds for bioengineering. Journal of Materials Research, 2021, 36, 406-419.	2.6	7
368	Mechanical characteristics and hydrophobicity of alkyl ketene dimer compatibilized hybrid biopolymer composites. Polymer Composites, 2021, 42, 2324-2333.	4.6	9
369	Role of Hybrid Nano-Zinc Oxide and Cellulose Nanocrystals on the Mechanical, Thermal, and Flammability Properties of Poly (Lactic Acid) Polymer. Journal of Composites Science, 2021, 5, 43.	3.0	25
370	Elaborating Mechanisms behind the Durability of Tough Polylactide Monofilaments under Elevated Temperature and Humidity Conditions. ACS Applied Polymer Materials, 2021, 3, 1406-1414.	4.4	6
371	Mechanical properties of thermoplastic parts produced by fused deposition modeling:a review. Rapid Prototyping Journal, 2021, 27, 537-561.	3.2	42
372	Chemically modified poly(lactic acid): structural approach employing two distinct monomers. Journal of Polymer Research, 2021, 28, 1.	2.4	2
373	Production of Green Star/Linear PLA Blends by Extrusion and Injection Molding: Tailoring Rheological and Mechanical Performances of Conventional PLA. Macromolecular Materials and Engineering, 2021, 306, 2000805.	3.6	10
374	Toward morphology development and impact strength of Co-continuous supertough dynamically vulcanized rubber toughened PLA blends: Effect of sulfur content. Polymer, 2021, 217, 123439.	3.8	32
375	Combining bioresorbable polyesters and bioactive glasses: Orthopedic applications of composite implants and bone tissue engineering scaffolds. Applied Materials Today, 2021, 22, 100923.	4.3	18
376	Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods, 2021, 10, 683.	4.3	35
377	Ecovio®-based nanofibers as a potential fast transdermal releaser of aceclofenac. Journal of Molecular Liquids, 2021, 325, 115206.	4.9	15
378	Toughening of polylactide by in-situ reactive compatibilization with an isosorbide-containing copolyester. Polymer Testing, 2021, 95, 107136.	4.8	5
379	Effect of bubble nucleating agents derived from biochar on the foaming mechanism of poly lactic acid foams. Applied Surface Science Advances, 2021, 3, 100059.	6.8	2
380	Materials and Manufacturing Techniques for Polymeric and Ceramic Scaffolds Used in Implant Dentistry. Journal of Composites Science, 2021, 5, 78.	3.0	24
381	Plasma Mediated Chlorhexidine Immobilization onto Polylactic Acid Surface via Carbodiimide Chemistry: Antibacterial and Cytocompatibility Assessment. Polymers, 2021, 13, 1201.	4.5	3
383	Evaluation of the Technical Viability of Distributed Mechanical Recycling of PLA 3D Printing Wastes. Polymers, 2021, 13, 1247.	4.5	50

		PORT	
#	Article	IF	CITATIONS
384	Storage stability of the oxygen plasma-modified PLA film. Bulletin of Materials Science, 2021, 44, 1.	1.7	11
385	Adding Value in Production of Multifunctional Polylactide (PLA)–ZnO Nanocomposite Films through Alternative Manufacturing Methods. Molecules, 2021, 26, 2043.	3.8	10
386	Avaliação das propriedades térmicas de misturas PLA/SEBS com moringa submetidas a degradação em ambiente marinho. Research, Society and Development, 2021, 10, e12210413249.	0.1	1
387	Resistance of Polylactide Materials to Water Mediums of the Various Natures. Chemistry and Chemical Technology, 2021, 15, 191-197.	1.1	4
388	On the Post-Processing of 3D-Printed ABS Parts. Polymers, 2021, 13, 1559.	4.5	27
389	Study of the Influence of Magnetite Nanoparticles Supported on Thermally Reduced Graphene Oxide as Filler on the Mechanical and Magnetic Properties of Polypropylene and Polylactic Acid Nanocomposites. Polymers, 2021, 13, 1635.	4.5	8
390	Surface Modification of Poly(l-lactic acid) through Stereocomplexation with Enantiomeric Poly(d-lactic acid) and Its Copolymer. Polymers, 2021, 13, 1757.	4.5	2
391	Synthesis and characterization of bioâ€based polyesters derived from 1,10â€decanediol. Journal of Applied Polymer Science, 2021, 138, 51163.	2.6	6
392	Aprovechamiento de residuos en la construcción de galpones como alternativa de sostenibilidad en el corregimiento El Prodigio, en San Luis, Antioquia-Colombia. Tecno Lógicas, 2021, 24, e1830.	0.3	0
393	Annealing Effect on Pla/Eva Blends Performance. Journal of Polymers and the Environment, 2022, 30, 541-554.	5.0	22
394	Hot-Melt Extrusion: a Roadmap for Product Development. AAPS PharmSciTech, 2021, 22, 184.	3.3	10
395	The influence of porosity, crystallinity and interlayer adhesion on the tensile strength of 3D printed polylactic acid (PLA). Rapid Prototyping Journal, 2021, 27, 1327-1336.	3.2	16
396	Electrospun poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT) nanofibers for the controlled release of cilostazol. International Journal of Biological Macromolecules, 2021, 182, 333-342.	7.5	12
397	Glycidyl methacrylate functionalized star-shaped polylactide for electron beam modification of polylactic acid: Synthesis, irradiation effects and microwave-resistant studies. Polymer Degradation and Stability, 2021, 189, 109619.	5.8	9
398	Biomimetic Hierarchical Structuring of PLA by Ultra-Short Laser Pulses for Processing of Tissue Engineered Matrices: Study of Cellular and Antibacterial Behavior. Polymers, 2021, 13, 2577.	4.5	11
399	The Development of Design and Manufacture Techniques for Bioresorbable Coronary Artery Stents. Micromachines, 2021, 12, 990.	2.9	12
400	Additive manufacturing of polymer nanocomposites: Needs and challenges in materials, processes, and applications. Journal of Materials Research and Technology, 2021, 14, 910-941.	5.8	95
401	End of Life of Biodegradable Plastics: Composting versus Re/Upcycling. ChemSusChem, 2021, 14, 4167-4175.	6.8	49

#	Article	IF	CITATIONS
402	Development and characterisation of packaging film from Napier cellulose nanowhisker reinforced polylactic acid (PLA) bionanocomposites. International Journal of Biological Macromolecules, 2021, 187, 43-53.	7.5	42
403	Super Tough Polylactic Acid Plasticized with Epoxidized Soybean Oil Methyl Ester for Flexible Food Packaging. ACS Applied Polymer Materials, 2021, 3, 5087-5095.	4.4	46
404	Processing of sustainable thermoplastic based biocomposites: A comprehensive review on performance enhancement. Journal of Cleaner Production, 2021, 316, 128068.	9.3	10
405	Microfibrous cyclodextrin boosts flame retardancy of poly(lactic acid). Polymer Degradation and Stability, 2021, 191, 109655.	5.8	21
406	Effect of the Micronization of Pulp Fibers on the Properties of Green Composites. Molecules, 2021, 26, 5594.	3.8	16
407	Polylactic acid production from biotechnological routes: A review. International Journal of Biological Macromolecules, 2021, 186, 933-951.	7.5	69
408	Study of the Properties of Compositions Based on Polylactic Acid and Thermoplastic Starch. Key Engineering Materials, 0, 899, 164-171.	0.4	1
409	Accelerated Alkaline Attack of 3D Printing Polymers to Assess Their Durability in Geopolymer-Based Matrices. Journal of Materials in Civil Engineering, 2021, 33, 04021327.	2.9	4
410	Core-shell nanoparticles based on zirconia covered with silver as an advantageous perspective for obtaining antimicrobial nanocomposites with good mechanical properties and less cytotoxicity. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104726.	3.1	2
411	The Application of Cellulose Nanocrystals Modified with Succinic Anhydride under the Microwave Irradiation for Preparation of Polylactic Acid Nanocomposites. Journal of Renewable Materials, 2021, 9, 1127-1142.	2.2	6
412	Rotational Molding of Poly(Lactic Acid)/Polyethylene Blends: Effects of the Mixing Strategy on the Physical and Mechanical Properties. Polymers, 2021, 13, 217.	4.5	13
413	A micro-spray-based high-throughput screening system for bioplastic-degrading microorganisms. Green Chemistry, 2021, 23, 5429-5436.	9.0	12
414	Biodegradable poly(lactic acid)/celluloseâ€based superabsorbent hydrogel composite material as water and fertilizer reservoir in agricultural applications. Journal of Applied Polymer Science, 2019, 136, 47546.	2.6	44
415	Thermal stability of natural fibers and their polymer composites. Iranian Polymer Journal (English) Tj ETQq1 1	0.784314 rgBT	lOyerlock
416	Investigation of Long Cellulose Fibre Reinforced and Injection Moulded Poly(lactic acid) Biocomposites. Acta Technica Jaurinensis, 2018, 11, 150-164.	1.1	6
417	Physicomechanical behavior of composites of polypropylene, and mineral fillers with different process cycles. DYNA (Colombia), 2018, 85, 260-268.	0.4	2
418	On the Recycling of a Biodegradable Polymer: Multiple Extrusion of Poly (Lactic Acid). Materials Research, 2020, 23, .	1.3	16
419	UV Stability of Poly(Lactic Acid) Nanocomposites. Journal of Materials Science and Engineering B, 2013,	0.3	9

#	Article	IF	CITATIONS
420	Performance evaluation of paper embossing tools produced by fused deposition modelling additive manufacturing technology. Journal of Graphic Engineering and Design, 2017, 8, 47-54.	0.3	3
422	Biocomposites based on poly(lactic acid)/willow-fiber and their injection moulded microcellular foams. EXPRESS Polymer Letters, 2016, 10, 176-186.	2.1	19
423	The Influence of Poly(Vinyl Alcohol) on Oil Release Behavior of Polylactide- Based Composites Filled with Linseed Cake. Journal of Renewable Materials, 2020, 8, 347-363.	2.2	3
425	CRYSTALLIZATION STRUCTURES AND THERMAL PROPERTIES OF HIGH HEAT-RESISTANCE PLLA/PDLA BLENDS. Acta Polymerica Sinica, 2013, 013, 1006-1012.	0.0	1
426	Influence of Newly Organosolv Lignin-Based Interface Modifier on Mechanical and Thermal Properties, and Enzymatic Degradation of Polylactic Acid/Chitosan Biocomposites. Polymers, 2021, 13, 3355.	4.5	1
427	Fused Filament Fabrication Process: A Review of Numerical Simulation Techniques. Polymers, 2021, 13, 3534.	4.5	47
428	Polylactic acid face masks: Are these the sustainable solutions in times of COVID-19 pandemic?. Science of the Total Environment, 2022, 807, 151084.	8.0	42
429	Physical Properties and Non-Isothermal Crystallisation Kinetics of Primary Mechanically Recycled Poly(l-lactic acid) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Polymers, 2021, 13, 3396.	4.5	3
430	Preparation and properties of foamed cellulose acetate/polylactic acid blends. Polymer Engineering and Science, 2021, 61, 3069-3081.	3.1	5
431	EFFECT OF NUCLEATING AGENT AND ITS ADJUVANT ON CRYSTALLIZATION BEHAVIORS OF POLY(LACTIC ACID). Acta Polymerica Sinica, 2013, 013, 949-955.	0.0	0
432	COMPOSITOS PLA-AMIDO-ALGODÃ ${ m f}$ O COM ALTO TEOR DE FIBRA IN NATURA. , 0, , .		0
433	Estabilidad de procesamiento de polÃmeros: Ãndice de degradación en proceso. Mutis, 2015, 5, 37-45.	0.1	1
434	Effects of Carbon Black Incorporation on Morphological, Mechanical and Thermal Properties of Biodegradable Films. , 2016, , 697-704.		1
436	Bringing New Function to Packaging Materials by Agricultural By-Products. , 2020, , 227-257.		1
437	Effect of Material on the Mechanical Properties of Additive Manufactured Thermoplastic Parts. Annals of Dunarea De Jos University of Galati, Fascicle Xii, Welding Equipment and Technology, 2020, 31, 5-12.	0.5	6
438	Nano-biodegradation of polymers. , 2022, , 213-238.		8
439	Poly(L-lactic acid) Reinforced with Hydroxyapatite and Tungsten Disulfide Nanotubes. Polymers, 2021, 13, 3851.	4.5	4
440	Performance characteristics of polylactide-talc composites. Chemistry Technology and Application of Substances, 2020, 3, 163-168.	0.1	1

#	Article	IF	CITATIONS
441	Kinetics of the Thermal Degradation of Poly(lactic acid) and Polyamide Bioblends. Polymers, 2021, 13, 3996.	4.5	19
442	Ternary Poly(ethylene oxide)/Poly(<scp>l</scp> , <scp>l</scp> -lactide) PEO/PLA Blends as High-Temperature Solid Polymer Electrolytes for Lithium Batteries. ACS Applied Polymer Materials, 2021, 3, 6326-6337.	4.4	19
443	Processing and properties of PLA/Mg filaments for 3D printing of scaffolds for biomedical applications. Rapid Prototyping Journal, 2022, 28, 884-894.	3.2	21
444	Valorization of disposable polylactide (PLA) cups by rotational molding technology: The influence of pre-processing grinding and thermal treatment. Polymer Testing, 2022, 107, 107481.	4.8	14
445	A Study on the Development of Bamboo/PLA Bio-composites for 3D Printer Filament. Journal of the Korean Wood Science and Technology, 2018, 46, 107-113.	3.0	5
446	PREPARATION AND NUMERICAL SIMULATIONS OF DRUG-LOADED HYDROXYAPATITE BIOMATERIALS. Biomedical Engineering - Applications, Basis and Communications, 2022, 34, .	0.6	2
447	General Methodology to Investigate the Effect of Process Parameters on the Vibration Properties of Structures Produced by Additive Manufacturing Using Fused Filament Fabrication. Jom, 2022, 74, 1166-1175.	1.9	2
448	Conventional and Recent Trends of Scaffolds Fabrication: A Superior Mode for Tissue Engineering. Pharmaceutics, 2022, 14, 306.	4.5	37
449	Poly(lactic acid)/thermoplastic cassava starch blends filled with duckweed biomass. International Journal of Biological Macromolecules, 2022, 203, 369-378.	7.5	19
450	Tensile properties of 3D-printed CNT-SGF reinforced PLA composites. Composites Science and Technology, 2022, 230, 109333.	7.8	14
451	Evaluation of the Oil-Rich Waste Fillers' Influence on the Tribological Properties of Polylactide-Based Composites. Materials, 2022, 15, 1237.	2.9	5
452	Science and technology of polylactide. , 2022, , 31-49.		0
453	Reprocessability of PLA through Chain Extension for Fused Filament Fabrication. Journal of Manufacturing and Materials Processing, 2022, 6, 26.	2.2	11
454	Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers, 2022, 14, 829.	4.5	28
455	Influence of Content in D Isomer and Incorporation of SBA-15 Silica on the Crystallization Ability and Mechanical Properties in PLLA Based Materials. Polymers, 2022, 14, 1237.	4.5	9
456	A Review on Printed Electronics with Digital 3D Printing: Fabrication Techniques, Materials, Challenges and Future Opportunities. Journal of Electronic Materials, 2022, 51, 2747-2765.	2.2	27
457	Technological features of obtaining polylactide extrusion products. Chemistry Technology and Application of Substances, 2021, 4, 179-187.	0.1	3
458	Composite Fiber Spun Mat Synthesis and In Vitro Biocompatibility for Guide Tissue Engineering. Molecules, 2021, 26, 7597.	3.8	5

#	Article	IF	CITATIONS
459	Partial Biodegradable Blend with High Stability against Biodegradation for Fused Deposition Modeling. Polymers, 2022, 14, 1541.	4.5	7
460	Bio-Based Plastics Production, Impact and End of Life: A Literature Review and Content Analysis. Sustainability, 2022, 14, 4855.	3.2	25
461	Effect of etching conditions on electroless Ni-P plating of 3D printed polylactic acid. Transactions of the Institute of Metal Finishing, 2022, 100, 166-172.	1.3	1
463	The thermo-mechanical recyclability potential of biodegradable biopolyesters: Perspectives and limits for food packaging application. Polymer Testing, 2022, 111, 107620.	4.8	29
464	A Facile Composite Strategy to Prepare a Biodegradable Polymer Based Radiopaque Raw Material for "Visualizable―Biomedical Implants. ACS Applied Materials & Interfaces, 2022, 14, 24197-24212.	8.0	16
465	Complex Permittivity of 3D-Printing Filaments in the 20 - 50 GHz Frequency Band. , 2022, , .		0
466	Comparative analysis of 3D-printed polylactic acid and acrylonitrile butadiene styrene: Experimental and Materials-Studio-based theoretical studies. Journal of Polymer Research, 2022, 29, .	2.4	3
467	Understanding the PLA–Wood Adhesion Interface for the Development of PLA-Bonded Softwood Laminates. Fibers, 2022, 10, 51.	4.0	2
468	Thermo-induced chain scission and oxidation of isosorbide-based polycarbonates: Degradation mechanism and stabilization strategies. Polymer Degradation and Stability, 2022, 202, 110028.	5.8	9
469	Effects of 3D-printed PLA material with different filling densities on coefficient of friction performance. Rapid Prototyping Journal, 2023, 29, 157-165.	3.2	12
470	Tensile properties of 3D printed structures of polylactide with thermoplastic polyurethane. Journal of Polymer Research, 2022, 29, .	2.4	6
471	On the effective application of star-shaped polycaprolactones with different end functionalities to improve the properties of polylactic acid blend films. European Polymer Journal, 2022, 176, 111402.	5.4	5
472	Engineered polylactide (PLA)–polyamide (PA) blends for durable applications: 1. PLA with high crystallization ability to tune up the properties of PLA/PA12 blends. European Journal of Materials, 2023, 3, 1-36.	2.6	1
473	Polylactide Perspectives in Biomedicine: From Novel Synthesis to the Application Performance. Pharmaceutics, 2022, 14, 1673.	4.5	8
474	Comparative study of green composites using grewia optiva, Himalayan nettle and silk as fiber. Advances in Materials and Processing Technologies, 2024, 10, 157-166.	1.4	0
475	Improvement in thermal stability, elastic modulus, and impact strength of Poly(lactic acid) blends with modified polyketone. Polymer, 2022, 257, 125281.	3.8	7
476	Tensile Behavior of 3D Printed Polylactic Acid (PLA) Based Composites Reinforced with Natural Fiber. Polymers, 2022, 14, 3976.	4.5	24
477	A full-face mask for protection against respiratory infections. BioMedical Engineering OnLine, 2022, 21, .	2.7	2

	CITATION RE	PORT	
#	Article	IF	CITATIONS
478	Additive Manufacturing of Anatomical Poly(d,l-lactide) Scaffolds. Polymers, 2022, 14, 4057.	4.5	1
479	Comparing pellet―and filamentâ€based additive manufacturing with conventional processing for <scp>ABS</scp> and <scp>PLA</scp> parts. Journal of Applied Polymer Science, 2022, 139, .	2.6	9
480	Sustainable Polymer Composites Manufacturing through 3D Printing Technologies by Using Recycled Polymer and Filler. Polymers, 2022, 14, 3756.	4.5	16
481	Adsorption Properties of Essential Oils on Polylactic Acid Microparticles of Different Sizes. Materials, 2022, 15, 6602.	2.9	1
482	Dynamically vulcanized polylactic acid/natural rubber/waste rubber blends: effect of the rubber content. Journal of Materials Science, 0, , .	3.7	1
483	Method for the Determination of Solvent Sorption of Polylactic Acid and the Effect of Essential Oils on the Sorption Properties. Crystals, 2022, 12, 1525.	2.2	2
484	Effect of Nucleating Agents Addition on Thermal and Mechanical Properties of Natural Fiber-Reinforced Polylactic Acid Composites. Polymers, 2022, 14, 4263.	4.5	2
485	Influence of Extruder Plasticizing Systems on the Selected Properties of PLA/Graphite Composite. Acta Mechanica Et Automatica, 2022, 16, 316-324.	0.6	1
486	A Review on Three-Dimensional Printed Silicate-Based Bioactive Glass/Biodegradable Medical Synthetic Polymer Composite Scaffolds. Tissue Engineering - Part B: Reviews, 2023, 29, 244-259.	4.8	2
487	Lamellae orientation and structure evolution of reinforced poly(lactic acid) via equal channel angular extrusion. Journal of Applied Polymer Science, 2023, 140, .	2.6	2
488	Effect of clay minerals on the flame retardancy of polylactic acid/ammonium polyphosphate system. Journal of Thermal Analysis and Calorimetry, 2023, 148, 293-304.	3.6	2
489	Tri(3â€alkoxylâ€3â€oxopropyl) phosphine oxides derived from <scp>PH₃</scp> tail gas as a novel phosphorusâ€containing plasticizer for polylactide. Polymers for Advanced Technologies, 2023, 34, 676-690.	3.2	0
490	Fused Filament Fabrication of Short Glass Fiber-Reinforced Polylactic Acid Composites: Infill Density Influence on Mechanical and Thermal Properties. Polymers, 2022, 14, 4988.	4.5	7
491	Synthesis and characterization of hematite (α-Fe2O3) reinforced polylactic acid (PLA) nanocomposites for biomedical applications. Composites Part C: Open Access, 2022, 9, 100331.	3.2	3
492	Degradation of Polymer-Drug Conjugate Nanoparticles Based on Lactic and Itaconic Acid. International Journal of Molecular Sciences, 2022, 23, 14461.	4.1	1
493	Polymers Use as Mulch Films in Agriculture—A Review of History, Problems and Current Trends. Polymers, 2022, 14, 5062.	4.5	25
494	Development and Mechanical Characterization of Short CurauÃ; Fiber-Reinforced PLA Composites Made via Fused Deposition Modeling. Polymers, 2022, 14, 5047.	4.5	5
495	The Influence of Multiple Extrusions on the Properties of High Filled Polylactide/Multiwall Carbon Nanotube Composites. Materials, 2022, 15, 8958.	2.9	0

#	Article	IF	CITATIONS
496	Improvement of the Thermal Stability of Polymer Bioblends by Means of Reactive Extrusion. Polymers, 2023, 15, 105.	4.5	4
497	Melt rheology analysis through experimental and constitutional mechanical models of exfoliated graphene based polylactic acid (PLA) nanocomposites. Journal of Polymer Research, 2023, 30, .	2.4	2
498	The Correlation of Free Ions with the Conduction Phase of 1-Ethyl-3-methylimidazolium Chloride in Gel Polymer Electrolyte-Based PMMA/PLA Blend Doped with LiBOB. Journal of Electronic Materials, 2023, 52, 4247-4260.	2.2	0
499	Mechanical Characterization of Filler Modified ABS 3D Printed Composites Made via Fused Filament Fabrication. Annals of Dunarea De Jos University of Galati, Fascicle Xii, Welding Equipment and Technology, 2022, 33, 27-34.	0.5	1
500	Revisiting the Contribution of Additives to the Long-Term Mechanical Stability and Hydrolytic Resistance of Highly Crystalline Polylactide Fibers. ACS Applied Materials & Interfaces, 2023, 15, 1984-1995.	8.0	0
501	Development of ductile green flame retardant poly(lactic acid) composites using hydromagnesite&huntite and bioâ€based plasticizer. Journal of Vinyl and Additive Technology, 0, , .	3.4	3
502	A pectocellulosic bioplastic from fruit processing waste: robust, biodegradable, and recyclable. Chemical Engineering Journal, 2023, 463, 142452.	12.7	27
503	Composite based on PLA with improved shape stability under high-temperature conditions. Polymer, 2023, 276, 125943.	3.8	2
504	Effects of mechanical cell disruption on the morphology and properties of spirulina-PLA biocomposites. Sustainable Materials and Technologies, 2023, 36, e00591.	3.3	4
505	From Virtual Reconstruction to Additive Manufacturing: Application of Advanced Technologies for the Integration of a 17th-Century Wooden Ciborium. Materials, 2023, 16, 1424.	2.9	4
506	Remediation plan of nano/microplastic toxicity in food. Advances in Food and Nutrition Research, 2023, , 397-442.	3.0	0
507	Transparent, Heat-Resistant, Ductile, and Self-Reinforced Polylactide through Simultaneous Formation of Nanocrystals and an Oriented Amorphous Phase. Macromolecules, 2023, 56, 2454-2464.	4.8	8
508	Reactive Extrusion of Recycled Polycarbonate Using Chain Extenders. Russian Journal of Physical Chemistry B, 2023, 17, 196-205.	1.3	1
509	Effect of Mechanical Recycling on the Mechanical Properties of PLA-Based Natural Fiber-Reinforced Composites. Journal of Composites Science, 2023, 7, 141.	3.0	4
510	Mechanical, chemical, and bio-recycling of biodegradable plastics: A review. Science of the Total Environment, 2023, 882, 163446.	8.0	35
511	Sustainable Immiscible Polylactic Acid (PLA) and Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) (PHBV) Blends: Crystallization and Foaming Behavior. ACS Sustainable Chemistry and Engineering, 2023, 11, 6676-6687.	6.7	3
512	Poly(lactic acid)-Based Blends: A Comprehensive Review. Applied Sciences (Switzerland), 2023, 13, 5148.	2.5	9
513	Review on the Degradation of Poly(lactic acid) during Melt Processing. Polymers, 2023, 15, 2047.	4.5	10

#	Article	IF	CITATIONS
514	Modification of the physicochemical properties of poly (butylene adipate-co-terephthalate) (PBAT)/polylactic acid (PLA)-based electrospun nanofibers using salts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 671, 131604.	4.7	0
515	Application of infrared spectroscopy in the multiscale structure characterization of poly(l-lactic) Tj ETQq1 1 0.78	84314 rgB⊺ 3.8	Г /Qverlock 1
516	Bio-Based Sustainable Polymers and Materials: From Processing to Biodegradation. Journal of Composites Science, 2023, 7, 213.	3.0	3
517	Improved Yield and Electrical Properties of Poly(Lactic Acid)/Carbon Nanotube Composites by Shear and Anneal. Materials, 2023, 16, 4012.	2.9	0
518	Substitution effects of cyano group on the electropolymerization, thermal stability, morphology, and supercapacitor performance of indole based polymers. Synthetic Metals, 2023, 297, 117405.	3.9	0
519	Optimization of Pervaporative Desalination with Zirconia Based Metal Organic Framework Filled Nanocomposite Membrane. Journal of Polymers and the Environment, 0, , .	5.0	0
520	1,12-Dodecanediol-Based Polyesters Derived from Aliphatic Diacids with Even Carbons: Synthesis and Characterization. Journal of Polymers and the Environment, 0, , .	5.0	0
521	Collapse Behavior and Energy Absorbing Characteristics of 3D-Printed Tubes with Different Infill Pattern Structures: An Experimental Study. Fibers and Polymers, 2023, 24, 2609-2622.	2.1	9
522	Influence of crystallization on the shape memory effect of poly (lactic acid). Smart Materials and Structures, 2023, 32, 085016.	3.5	3
523	Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomaterials Science, 2023, 11, 6013-6034.	5.4	2
524	Recent applications on biopolymers electrospinning: strategies, challenges and way forwards. Polymer-Plastics Technology and Materials, 2023, 62, 1754-1775.	1.3	2
525	Electrochemical synthesis of carboxaldehyde functionalized polyindole for highly efficient electrochemical energy storage. Journal of Energy Storage, 2023, 72, 108369.	8.1	0
526	Comprehensive characterization of <scp>3D</scp> â€printed bamboo/poly(lactic acid) bio composites. Polymer Engineering and Science, 2023, 63, 2958-2972.	3.1	6
527	4D printing of shape memory polylactic acid/ethylene-glycidyl methacrylate (PLA/E-GMA) blends. Smart Materials and Structures, 2023, 32, 095015.	3.5	3
528	Positional isomeric effect of nitro group substituted indoles on the electropolymerization and the capacitance performances of their polymers. Journal of Applied Polymer Science, 0, , .	2.6	0
529	Scale-up fabrication of a biodegradable PBAT/PLA composite film compatibilized with a chain extender for industrial agricultural mulch film application. Composites Part C: Open Access, 2023, 12, 100397.	3.2	0
530	Thermal stabilization of recycled PLA for 3D printing by addition of charcoal. Journal of Thermal Analysis and Calorimetry, 0, , .	3.6	0
531	Facile synthesizing the homogeneous hierarchical nanosheets of nickel phyllosilicate to enhance the wear resistance, mechanical response and thermal stability of epoxy composites. Journal of Materials Research and Technology, 2023, 26, 6857-6876.	5.8	1

#	Article	IF	CITATIONS
532	Multiple stimuli-response strategy for on-demand degradable implants: Tannic acid-intercalated polycaprolactone. European Polymer Journal, 2023, 198, 112419.	5.4	0
533	Mechanical Recycling of Thermoplastics: A Review of Key Issues. , 2023, 1, 860-883.		1
534	Hot Melt Extrusion as a Formulation Method of Terpolymer Rods with Aripiprazole: A Preliminary Study. Applied Sciences (Switzerland), 2023, 13, 9521.	2.5	0
535	Structural, morphological, optical and thermoresistive study of the polyaniline/polylactic acid/ZnO films produced by solution blow spraying for temperature sensors. Ceramics International, 2023, , .	4.8	0
536	3D printing of carbon fiber powder/polylactic acid with enhanced electromagnetic interference shielding. Diamond and Related Materials, 2024, 141, 110583.	3.9	1
537	Boosting the selective catalytic pyrolysis of plastic waste polylactic acid to monomer. Journal of Environmental Chemical Engineering, 2023, 11, 111397.	6.7	1
538	Effect of a Self-Assembled Nucleating Agent on the Crystallization Behavior and Spherulitic Morphology of Poly(lactic acid). ACS Omega, 2023, 8, 44093-44105.	3.5	1
539	Comparison of chlorination resistance of biodegradable microplastics and conventional microplastics during the disinfection process in water treatments. Science of the Total Environment, 2024, 908, 168229.	8.0	0
540	Biodegradable polymers: A promising solution for green energy devices. European Polymer Journal, 2024, 204, 112696.	5.4	0
541	Significantly enhanced crystallization of polylactide Ingeo 4032D by polyethylene ionomer. Polymer, 2024, 290, 126557.	3.8	0
542	Poly(L-co-D,L-lactic acid-co-trimethylene carbonate) for extrusion-based 3D printing: Comprehensive characterization and cytocompatibility assessment. Polymer, 2024, 290, 126585.	3.8	0
543	Tacticity Characterization of Biosynthesized Polyhydroxyalkanoates Containing (<i>S</i>)- and (<i>R</i>)-3-Hydroxy-2-Methylpropionate Units. Biomacromolecules, 0, , .	5.4	0
544	An investigation into the stability and degradation of plastics in aquatic environments using a large-scale field-deployment study. Science of the Total Environment, 2024, 917, 170301.	8.0	0
545	Heavy metals/-metalloids (As) phytoremediation with Landoltia punctata and Lemna sp. (duckweeds): coupling with biorefinery prospects for sustainable phytotechnologies. Environmental Science and Pollution Research, 2024, 31, 16216-16240.	5.3	0
546	Enhancement of crystallization and adjustment properties for biocompatible poly(lactide)-based thermoplastic polyurethane via stereocomplexation. Journal of Polymer Research, 2024, 31, .	2.4	0
547	Tuning the mechanical and thermomechanical properties through the combined effect of crosslinking and annealing in poly(lactic acid)/ <scp>acrylonitrileâ€EPDM</scp> â€styrene blends. Journal of Applied Polymer Science, 2024, 141, .	2.6	0