Identification of substructure properties of railway trace measurements and simulations

Journal of Sound and Vibration 329, 3999-4016

DOI: 10.1016/j.jsv.2010.04.015

Citation Report

#	Article	IF	CITATIONS
1	A Remote Sensing Approach for Landslide Hazard Assessment on Engineered Slopes. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50, 1048-1056.	6.3	25
4	Receptance of railway tracks at low frequency: Numerical and experimental approaches. Transportation Geotechnics, 2016, 9, 1-16.	4.5	27
5	Overview and outlook on railway track stiffness measurement. Journal of Modern Transportation, 2016, 24, 89-102.	2.5	47
6	Measurement of vertical geometry variations in railway turnouts exposed to different operating conditions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230, 486-501.	2.0	14
7	Effect of track defects on vibration from high speed train. Procedia Engineering, 2017, 199, 2681-2686.	1.2	18
8	Effects of railway track design on the expected degradation: Parametric study on energy dissipation. Journal of Sound and Vibration, 2018, 419, 281-301.	3.9	15
9	Transient Vibrations of Railway Track Elements and the Influence of Support Conditions. Lecture Notes in Networks and Systems, 2018, , 724-738.	0.7	0
10	Numerical simulations to improve the use of under sleeper pads at transition zones to railway bridges. Engineering Structures, 2018, 164, 169-182.	5.3	48
11	Short soil–binder columns in railway track reinforcement: three–dimensional numerical studies considering the train–track interaction. Computers and Geotechnics, 2018, 98, 8-16.	4.7	9
12	The influence of spatial variation of railroad track stiffness on the fatigue life. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232, 824-831.	2.0	4
13	A new method for estimation of critical speed for railway tracks on soft ground. International Journal of Rail Transportation, 2018, 6, 203-217.	2.7	11
14	The role of track stiffness and its spatial variability on long-term track quality deterioration. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233, 16-32.	2.0	30
15	A wave number based approach for the evaluation of the Green's function of a one-dimensional railway track model. European Journal of Mechanics, A/Solids, 2019, 78, 103854.	3.7	2
16	The role of stiffness variation in switches and crossings: Comparison of vehicle–track interaction models with field measurements. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234, 1184-1197.	2.0	8
17	Prognosis of railway ballast degradation for turnouts using track-side accelerations. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2020, 234, 601-610.	0.7	3
18	Continuous Evaluation of Track Modulus from a Moving Railcar Using ANN-Based Techniques. Vibration, 2020, 3, 149-161.	1.9	7
19	Fast and robust identification of railway track stiffness from simple field measurement. Mechanical Systems and Signal Processing, 2021, 152, 107431.	8.0	23
20	Transition radiation in an infinite one-dimensional structure interacting with a moving oscillatorâ€"the Green's function method. Journal of Sound and Vibration, 2021, 492, 115804.	3.9	12

#	Article	IF	CITATIONS
21	Experimental Evaluation of Railway Crew Impact on Tension Rails. International Journal of Mechanical Engineering and Robotics Research, 2021, , 261-269.	1.0	3
22	Substructural Identification Methods for Parameter Estimation of Railway Track Dynamic Systems. Journal of Aerospace Engineering, 2021, 34, 04021014.	1.4	0
23	Behavior Characteristics of a Booted Sleeper Track System According to Substructure Deformation. Applied Sciences (Switzerland), 2021, 11, 4507.	2.5	2
24	Analysis of Dynamic Properties and Movement Safety of Bogies with Diagonal Links and Rubber-Metal Vibration Absorbers Between the Rubbing Elements of Freight Cars. Journal of Machine Engineering, 2021, , .	1.8	2
25	Prediction of mud pumping in railway track using in-service train data. Transportation Geotechnics, 2021, 31, 100651.	4.5	9
26	Ground-Borne Vibration due to Railway Traffic: A Review of Excitation Mechanisms, Prediction Methods and Mitigation Measures. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2015, , 253-287.	0.3	65
28	Some aspects of the experimental assessment of dynamic behavior of the railway track. Journal of Theoretical and Applied Mechanics, 0, , 421.	0.5	8
29	Shock-impulse diagnosis of railway. , 2018, , .		3
30	The Influence of Local Irregularities on the Vehicle–Track Interaction. Lecture Notes in Civil Engineering, 2022, , 245-256.	0.4	0
31	Effect of Degraded Subgrade Stiffness on Rail Geometry and Train Vibration in High-Speed Railways. Lecture Notes in Civil Engineering, 2022, , 219-230.	0.4	0
32	Assessment technologies of rail systems' structural adequacy â€" A review from mechanical engineering perspectives. Science Progress, 2022, 105, 003685042210998.	1.9	0
33	Track Vertical Stiffness –Value, Measurement Methods, Effective Parameters and Challenges: A review. Transportation Geotechnics, 2022, 37, 100833.	4.5	7
34	Review of Data Analytics for Condition Monitoring of Railway Track Geometry. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 22737-22754.	8.0	4
35	Mechanical Behavior Analysis of Excavation and Retaining Piles in Gravel Formation along Adjacent Railways: A Comparative 3D FEM Study with Monitoring Data. Applied Sciences (Switzerland), 2023, 13, 397.	2.5	0
36	Multiple-axle box acceleration measurements at railway transition zones. Measurement: Journal of the International Measurement Confederation, 2023, 213, 112688.	5.0	4
37	A Computational Approach to Smoothen the Abrupt Stiffness Variation along Railway Transitions. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2023, 149, .	3.0	2
38	Broadband Acoustoelectric Conversion Based on Oriented Polyacrylonitrile Nanofibers and Slit Electrodes for Generating Power from Airborne Noise. ACS Applied Materials & Samp; Interfaces, 2023, 15, 29127-29139.	8.0	1
39	A methodology for control and design of required ground reinforcement measures regarding train-induced ground vibrations. Transportation Geotechnics, 2023, 42, 101038.	4.5	0

3

#	Article	IF	CITATIONS
40	Evaluating railway track stiffness using axle box accelerations: A digital twin approach. Mechanical Systems and Signal Processing, 2023, 204, 110730.	8.0	2
41	Vold–Kalman filter order tracking of axle box accelerations for track stiffness assessment. Mechanical Systems and Signal Processing, 2023, 204, 110817.	8.0	0
42	On railway track receptance. Soil Dynamics and Earthquake Engineering, 2024, 177, 108331.	3.8	1
43	Experimental Study on In-plane Stiffness of Track in a Turnout of the Railway in Vietnam. Open Construction and Building Technology Journal, 2023, 17, .	0.7	0
44	Development of Structural Carbon Nanotube–Based Sensing Cement Composite for Rock Bed Defects. Lecture Notes in Civil Engineering, 2024, , 85-95.	0.4	0