Progress in probability density function methods for tu

Progress in Energy and Combustion Science 36, 168-259 DOI: 10.1016/j.pecs.2009.09.003

Citation Report

#	Article	IF	CITATIONS
1	Interaction of radiation with turbulence - Application to a combustion system. Journal of Thermophysics and Heat Transfer, 1987, 1, 56-62.	0.9	88
2	Conservative mixing, competitive mixing and their applications. Physica Scripta, 2010, T142, 014054.	1.2	7
3	Comparison of the stochastic fields method and DQMoM-IEM as turbulent reaction closures. Chemical Engineering Science, 2010, 65, 5429-5441.	1.9	23
4	Stochastic Shell Model for Turbulent Mixing of Multiple Scalars with Mean Gradients and Differential Diffusion. Flow, Turbulence and Combustion, 2010, 85, 689-709.	1.4	1
5	Convergence to a Model in Sparse-Lagrangian FDF Simulations. Flow, Turbulence and Combustion, 2010, 85, 567-591.	1.4	18
6	On the transient radiative transfer in a one-dimensional planar medium subjected to radiative equilibrium. International Journal of Heat and Mass Transfer, 2010, 53, 5682-5691.	2.5	16
7	Hydrogen assisted diesel combustion. International Journal of Hydrogen Energy, 2010, 35, 4382-4398.	3.8	140
8	Large Eddy Simulation of Turbulent Premixed Combustion at Moderate Damköhler Numbers Stabilized in a High-Speed Flow. Combustion Science and Technology, 2011, 183, 645-664.	1.2	11
9	A detailed quantitative analysis of sparse-Lagrangian filtered density function simulations in constant and variable density reacting jet flows. Physics of Fluids, 2011, 23, 115102.	1.6	54
10	Transported Probability Density Function Methods for Reynolds-Averaged and Large-Eddy Simulations. Fluid Mechanics and Its Applications, 2011, , 119-142.	0.1	26
11	Multiple Mapping Conditioning: A New Modelling Framework for Turbulent Combustion. Fluid Mechanics and Its Applications, 2011, , 143-173.	0.1	9
12	Large-eddy simulations for internal combustion engines – a review. International Journal of Engine Research, 2011, 12, 421-451.	1.4	234
13	On the predictability of chemical kinetics for the description of the combustion of simple fuels. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2011, 33, 492-505.	0.8	11
14	Nongray EWB and WSGG Radiation Modeling in Oxy-Fuel Environments. , 0, , .		0
15	The Corresponding Relationship Between Heat, Mass Transfer Coefficients and the Flow Regime in Dual-Contact-Flow Absorption Tower. , 2011, , .		0
16	Extending the Langevin model to variable-density pressure-gradient-driven turbulence. Journal of Turbulence, 2011, 12, N19.	0.5	10
17	Accuracy of Scalar PDF Method for Turbulent Nonpremixed Combustion (Evaluation of Reynolds) Tj ETQq0 0 0 rg Engineers Series B B-hen, 2011, 77, 2454-2467.	BT /Overlc 0.2	ock 10 Tf 50 0
18	Simple models of turbulent flows. Physics of Fluids, 2011, 23, .	1.6	70

#	Article	IF	CITATIONS
19	Turbulent burning velocity predictions using transported PDF methods. Proceedings of the Combustion Institute, 2011, 33, 1277-1284.	2.4	16
20	A coupled CFD-population balance approach for nanoparticle synthesis in turbulent reacting flows. Chemical Engineering Science, 2011, 66, 3792-3805.	1.9	64
21	Numerical implementation of mixing and molecular transport in LES/PDF studies of turbulent reacting flows. Journal of Computational Physics, 2011, 230, 6916-6957.	1.9	42
22	Formation of nascent soot and other condensed-phase materials in flames. Proceedings of the Combustion Institute, 2011, 33, 41-67.	2.4	936
23	Bounded stochastic shell mixing model for turbulent mixing of multiple scalars with arbitrary diffusivities. Physics of Fluids, 2011, 23, 065107.	1.6	0
24	Compressible Scalar Filtered Mass Density Function Model for High-Speed Turbulent Flows. AIAA Journal, 2011, 49, 2130-2143.	1.5	44
25	CFD Numerical Simulation on Swirl-Flow Combustion in Freon Decomposition Burner. Applied Mechanics and Materials, 0, 195-196, 791-794.	0.2	0
26	HYBRID LARGE EDDY SIMULATION/LAGRANGIAN STOCHASTIC MODEL FOR TURBULENT PASSIVE AND REACTIVE SCALAR DISPERSION IN A PLANE JET. Chemical Engineering Communications, 2012, 199, 435-460.	1.5	9
27	Propagation speed of combustion and invasion waves in stochastic simulations with competitive mixing. Combustion Theory and Modelling, 2012, 16, 679-714.	1.0	11
28	Modelling of Non-Premixed Turbulent Combustion of Hydrogen using Conditional Moment Closure Method. IOP Conference Series: Materials Science and Engineering, 2012, 36, 012036.	0.3	4
29	- Phenomenology of Premixed Turbulent Combustion. , 2012, , 130-165.		0
30	- Modeling of Premixed Burning in Turbulent Flows. , 2012, , 324-445.		0
31	The pollution of pristine material in compressible turbulence. Journal of Fluid Mechanics, 2012, 700, 459-489.	1.4	8
32	Differential Diffusion Modelling in LES with RCCE-Reduced Chemistry. Flow, Turbulence and Combustion, 2012, 89, 311-328.	1.4	25
33	Application of the conditional source-term estimation model for turbulence–chemistry interactions in a premixed flame. Combustion Theory and Modelling, 2012, 16, 301-320.	1.0	35
34	Joint Gas-Phase Velocity-Scalar PDF Modeling for Turbulent Evaporating Spray Flows. Combustion Science and Technology, 2012, 184, 1664-1679.	1.2	10
35	Transported PDF Modeling of Nonpremixed Turbulent CO/H ₂ /N ₂ Jet Flames. Combustion Science and Technology, 2012, 184, 676-693.	1.2	13
36	LES of a turbulent premixed swirl burner using the Eulerian stochastic field method. Combustion and Flame, 2012, 159, 3079-3095.	2.8	80

#	Article	IF	CITATIONS
37	On the structure of the near field of oxy-fuel jet flames using Raman/Rayleigh laser diagnostics. Combustion and Flame, 2012, 159, 3342-3352.	2.8	29
38	Modeling of turbulent dilute spray combustion. Progress in Energy and Combustion Science, 2012, 38, 846-887.	15.8	276
39	Comparisons of Lagrangian and Eulerian PDF methods in simulations of non-premixed turbulent jet flames with moderate-to-strong turbulence-chemistry interactions. Combustion Theory and Modelling, 2012, 16, 435-463.	1.0	49
40	Progress Toward Affordable High Fidelity Combustion Simulations for High-Speed Flows in Complex Geometries. , 2012, , .		4
41	A Hybrid-LES-RANS Transported PDF Combustion Model for Non-Premixed Flames. , 2012, , .		2
42	Comparison and Standardization of Numerical Approaches for the Prediction of Non-reacting and Reacting Diesel Sprays. , 0, , .		31
43	Mixing, entropy and competition. Physica Scripta, 2012, 85, 068201.	1.2	12
44	Reactive parametrized scalar profiles (R-PSP) mixing model for partially premixed combustion. Combustion and Flame, 2012, 159, 734-747.	2.8	5
45	Application of PDF mixing models to premixed flames with differential diffusion. Combustion and Flame, 2012, 159, 2398-2414.	2.8	44
46	Radiation Combined with Conduction and Convection. , 2013, , 724-778.		3
47	Stochastic-field cavitation model. Physics of Fluids, 2013, 25, .	1.6	23
48	Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combustion and Flame, 2013, 160, 2083-2102.	2.8	129
49	Large-eddy simulations of turbulent flows in internal combustion engines. International Journal of Heat and Mass Transfer, 2013, 60, 781-796.	2.5	63
50	A model for turbulent mixing based on shadow-position conditioning. Physics of Fluids, 2013, 25, .	1.6	51
51	Diesel diffusion flame simulation using reduced n-heptane oxidation mechanism. Applied Energy, 2013, 105, 223-228.	5.1	15
52	Numerical Simulation with an Extinction Database for Use with the Eddy Dissipation Concept for Turbulent Combustion. Flow, Turbulence and Combustion, 2013, 91, 319-346.	1.4	36
53	What is mixing and can it be complex?. Physica Scripta, 2013, T155, 014047.	1.2	9
54	An investigation of mixing in a three-stream turbulent jet. Physics of Fluids, 2013, 25, 105105.	1.6	23

#	Article	IF	CITATIONS
55	Small scales, many species and the manifold challenges of turbulent combustion. Proceedings of the Combustion Institute, 2013, 34, 1-31.	2.4	267
56	A dynamic model for the Lagrangian stochastic dispersion coefficient. Physics of Fluids, 2013, 25, 125108.	1.6	10
57	Dynamic adaptive chemistry for turbulent flame simulations. Combustion Theory and Modelling, 2013, 17, 167-183.	1.0	51
58	PDF modeling and simulations of pulverized coal combustion – Part 1: Theory and modeling. Combustion and Flame, 2013, 160, 384-395.	2.8	45
59	Turbulence-radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames. Proceedings of the Combustion Institute, 2013, 34, 1281-1288.	2.4	69
60	Transported probability density function modelling of the vapour phase of an n-heptane jet at diesel engine conditions. Proceedings of the Combustion Institute, 2013, 34, 3039-3047.	2.4	88
61	An abstraction layer for efficient memory management of tabulated chemistry and flamelet solutions. Combustion Theory and Modelling, 2013, 17, 411-430.	1.0	19
62	A transported probability density function/photon Monte Carlo method for high-temperature oxy–natural gas combustion with spectral gas and wall radiation. Combustion Theory and Modelling, 2013, 17, 354-381.	1.0	29
63	Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame. Proceedings of the Combustion Institute, 2013, 34, 1241-1249.	2.4	67
64	A Comprehensive Study of Effects of Mixing and Chemical Kinetic Models on Predictions of n-heptane Jet Ignitions with the PDF Method. Flow, Turbulence and Combustion, 2013, 91, 249-280.	1.4	70
65	Large Eddy Simulation of Premixed Turbulent Flames Using the Probability Density Function Approach. Flow, Turbulence and Combustion, 2013, 90, 645-678.	1.4	44
66	Conditional dissipation of scalars in homogeneous turbulence: Closure for MMC modelling. Combustion Theory and Modelling, 2013, 17, 707-748.	1.0	7
67	Direct Numerical Simulation and Conditional Statistics of Hydrogen/Air Turbulent Premixed Flames. Energy & Fuels, 2013, 27, 549-560.	2.5	13
68	Investigation of conditional source-term estimation applied to a non-premixed turbulent flame. Combustion Theory and Modelling, 2013, 17, 960-982.	1.0	19
69	A cavitation model based on Eulerian stochastic fields. IOP Conference Series: Materials Science and Engineering, 2013, 52, 012003.	0.3	0
70	Complex competitive systems and competitive thermodynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120244.	1.6	12
71	Numerical Simulation of Reactive Planar Jet by Combining the Probability Density Function Method with Direct Numerical Simulation. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2013, 79, 2434-2445.	0.2	0
72	Aspects of 0D and 3D Modeling of Soot Formation for Diesel Engines. Combustion Science and Technology, 2014, 186, 1517-1535.	1.2	29

#	Article	IF	CITATIONS
73	Numerical Investigation of Ignition in a Transient Turbulent Jet by Means of a PDF Method. Combustion Science and Technology, 2014, 186, 1582-1596.	1.2	18
74	Influence of EGR on Post-Injection Effectiveness in a Heavy-Duty Diesel Engine Fuelled with n-Heptane. SAE International Journal of Engines, 2014, 7, 1851-1862.	0.4	11
75	A cost-effective backward Lagrangian method for simulation of pollutant formation in gas turbine combustors by post-processing of complex 3D calculations. International Journal of Sustainable Aviation, 2014, 1, 160.	0.1	1
76	Towards the Use of Eulerian Field PDF Methods for Combustion Modeling in IC Engines. SAE International Journal of Engines, 0, 7, 286-296.	0.4	6
77	The determination of turbulence-model statistics from the velocity–acceleration correlation. Journal of Fluid Mechanics, 2014, 757, .	1.4	5
78	Two-phase filtered mass density function for LES of turbulent reacting flows. Journal of Fluid Mechanics, 2014, 760, 243-277.	1.4	14
79	Influence of turbulence–chemistry interaction for <i>n</i> -heptane spray combustion under diesel engine conditions with emphasis on soot formation and oxidation. Combustion Theory and Modelling, 2014, 18, 330-360.	1.0	55
80	Numerical Investigation of MILD Combustion Using Multi-Environment Eulerian Probability Density Function Modeling. International Journal of Spray and Combustion Dynamics, 2014, 6, 357-386.	0.4	8
81	Effects of small-scale turbulence on NOx formation in premixed flame fronts. Fuel, 2014, 115, 241-247.	3.4	15
82	Transported PDF modeling of pulverized coal jet flames. Combustion and Flame, 2014, 161, 1866-1882.	2.8	60
83	A multiple mapping conditioning model for differential diffusion. Physics of Fluids, 2014, 26, .	1.6	17
84	The use of dynamic adaptive chemistry and tabulation in reactive flow simulations. Combustion and Flame, 2014, 161, 127-137.	2.8	60
85	A review of hydrogen and natural gas addition in diesel HCCI engines. Renewable and Sustainable Energy Reviews, 2014, 32, 739-761.	8.2	120
86	Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows. Physics of Fluids, 2014, 26, .	1.6	72
87	Large eddy simulation/probability density function simulations of bluff body stabilized flames. Combustion and Flame, 2014, 161, 3100-3133.	2.8	28
88	Interaction of Flame Propagation and Pressure Waves During Knocking Combustion in Spark-Ignition Engines. Combustion Science and Technology, 2014, 186, 192-209.	1.2	55
89	Large Eddy Simulation of Mild Combustion Using PDF-Based Turbulence–Chemistry Interaction Models. Combustion Science and Technology, 2014, 186, 1138-1165.	1.2	26
90	Fundamental Physics and Model Assumptions in Turbulent Combustion Models for Aerospace Propulsion. , 2014, , .		4

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
91	Detailed computational modeling of laminar and turbulent sooting flames. , 2014, , .		0
92	Ensemble retrieval of atmospheric temperature profiles from AIRS. Advances in Atmospheric Sciences, 2014, 31, 559-569.	1.9	14
93	Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method. Combustion Theory and Modelling, 2014, 18, 388-413.	1.0	51
94	Large Eddy Simulation of Supersonic Turbulent Combustion with FMDF. , 2014, , .		5
95	Conditional reaction rate in a lifted turbulent H2/N2 flame using direct numerical simulation. International Journal of Hydrogen Energy, 2014, 39, 2703-2714.	3.8	2
96	Experimental investigation on gas–liquid flow, heat and mass transfer characteristics in a dual-contact-flow absorption tower. Chemical Engineering Research and Design, 2014, 92, 13-24.	2.7	8
97	A DNS evaluation of mixing models for transported PDF modelling of turbulent nonpremixed flames. Combustion and Flame, 2014, 161, 2085-2106.	2.8	35
98	Implicit and explicit schemes for mass consistency preservation in hybrid particle/finite-volume algorithms for turbulent reactive flows. Journal of Computational Physics, 2014, 257, 352-373.	1.9	16
99	Large eddy simulation of spray atomization with a probability density function method. International Journal of Multiphase Flow, 2014, 63, 11-22.	1.6	46
100	Numerical simulation of turbulent combustion: Scientific challenges. Science China: Physics, Mechanics and Astronomy, 2014, 57, 1495-1503.	2.0	17
101	Diffusion in random velocity fields with applications to contaminant transport in groundwater. Advances in Water Resources, 2014, 69, 114-133.	1.7	24
102	Aerosol nucleation in a turbulent jet using Large Eddy Simulations. Chemical Engineering Science, 2014, 116, 383-397.	1.9	10
103	Effects of radiation in turbulent channel flow: analysis of coupled direct numerical simulations. Journal of Fluid Mechanics, 2014, 753, 360-401.	1.4	19
104	A Pareto-efficient combustion framework with submodel assignment for predicting complex flame configurations. Combustion and Flame, 2015, 162, 4208-4230.	2.8	60
105	Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows. Physical Review E, 2015, 92, 053020.	0.8	11
106	A Fidelity Adaptive Modeling Framework for Combustion Systems Based on Model Trust-Region. , 2015, •	, 	0
107	Spark Ignition Engine Simulation Using a Flamelet Based Combustion Model. , 2015, , .		6
108	Mathematical and Numerical Modeling of Turbulent Flows. Anais Da Academia Brasileira De Ciencias, 2015, 87, 1195-1232.	0.3	9

#	Article	IF	CITATIONS
109	Combustion Modeling in Heavy Duty Diesel Engines Using Detailed Chemistry and Turbulence-Chemistry Interaction. , 0, , .		10
110	Ignition by transient hot turbulent jets: An investigation of ignition mechanisms by means of a PDF/REDIM method. Proceedings of the Combustion Institute, 2015, 35, 2191-2198.	2.4	48
111	Probability density function estimation by positive quartic C ² -spline functions. , 2015, , .		5
112	Advances in the Simulation of Turbulent Combustion. , 2015, , .		3
113	Large eddy simulation of turbulent spray combustion. Combustion and Flame, 2015, 162, 431-450.	2.8	85
114	Filtered Tabulated Chemistry for non-premixed flames. Proceedings of the Combustion Institute, 2015, 35, 1183-1190.	2.4	5
115	Stabilization and liftoff length of a non-premixed methane/air jet flame discharging into a high-temperature environment: An accelerated transported PDF method. Combustion and Flame, 2015, 162, 408-419.	2.8	29
116	Turbulence–chemistry interactions in a heavy-duty compression–ignition engine. Proceedings of the Combustion Institute, 2015, 35, 3053-3060.	2.4	31
117	Partial premixing and stratification in turbulent flames. Proceedings of the Combustion Institute, 2015, 35, 1115-1136.	2.4	131
118	Assessment of Turbulence-Chemistry Interaction Models in MILD Combustion Regime. Flow, Turbulence and Combustion, 2015, 94, 439-478.	1.4	45
119	Multi-environment probability density function approach for turbulent CH4/H2 flames under the MILD combustion condition. Combustion and Flame, 2015, 162, 1464-1476.	2.8	29
120	Lagrangian Mixing Models for Turbulent Combustion: Review and Prospects. Flow, Turbulence and Combustion, 2015, 94, 643-689.	1.4	30
121	A PDF projection method: A pressure algorithm for stand-alone transported PDFs. Combustion Theory and Modelling, 2015, 19, 188-222.	1.0	4
122	Modelling n-dodecane spray and combustion with the transported probability density function method. Combustion and Flame, 2015, 162, 2006-2019.	2.8	118
123	Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames. Flow, Turbulence and Combustion, 2015, 94, 3-42.	1.4	79
124	Rate-Controlled Constrained Equilibrium (RCCE) simulations of turbulent partially premixed flames (Sandia D/E/F) and comparison with detailed chemistry. Combustion and Flame, 2015, 162, 2256-2271.	2.8	34
125	Study of mass consistency LES/FDF techniques for chemically reacting flows. Combustion Theory and Modelling, 2015, 19, 465-494.	1.0	4
126	Comparison of accuracy and computational expense of radiation models in simulation of non-premixed turbulent iet flames. Combustion and Flame. 2015. 162. 2487-2495.	2.8	45

#	Article	IF	CITATIONS
127	Spontaneous ignition of isolated n-heptane droplets at low, intermediate, and high ambient temperatures from a mixture-fraction perspective. Combustion and Flame, 2015, 162, 2544-2560.	2.8	31
128	Flame index and its statistical properties measured to understand partially premixed turbulent combustion and Flame, 2015, 162, 2808-2822.	2.8	32
129	Mixing Modelling Framework Based on Multiple Mapping Conditioning for the Prediction of Turbulent Flame Extinction. Flow, Turbulence and Combustion, 2015, 95, 501-517.	1.4	13
130	Computational Modeling of Multiphase Reactors. Annual Review of Chemical and Biomolecular Engineering, 2015, 6, 347-378.	3.3	45
131	A new framework for simulating forced homogeneous buoyant turbulent flows. Theoretical and Computational Fluid Dynamics, 2015, 29, 225-244.	0.9	0
132	A Fokker–Planck approach for probability distributions of species concentrations transported in heterogeneous media. Journal of Computational and Applied Mathematics, 2015, 289, 241-252.	1.1	19
133	Effects of fuel cetane number on the structure of diesel spray combustion: An accelerated Eulerian stochastic fields method. Combustion Theory and Modelling, 2015, 19, 549-567.	1.0	27
134	Survey of Turbulent Combustion Models for Large-Eddy Simulations of Propulsive Flowfields. , 2015, ,		5
135	Experimental assessment of presumed filtered density function models. Physics of Fluids, 2015, 27, 065107.	1.6	4
136	A numerical approach to investigate the maximum permissible nozzle diameter in explosion by hot turbulent jets. Journal of Loss Prevention in the Process Industries, 2015, 36, 539-543.	1.7	7
137	A-priori validation of a second-order moment combustion model via DNS database. International Journal of Heat and Mass Transfer, 2015, 86, 415-425.	2.5	7
138	Specific volume coupling and convergence properties in hybrid particle/finite volume algorithms for turbulent reactive flows. Journal of Computational Physics, 2015, 294, 110-126.	1.9	30
139	Quantitative acetylene measurements in laminar and turbulent flames using 1D Raman/Rayleigh scattering. Combustion and Flame, 2015, 162, 2248-2255.	2.8	14
140	On Lagrangian stochastic methods for turbulent polydisperse two-phase reactive flows. Progress in Energy and Combustion Science, 2015, 50, 1-62.	15.8	79
141	LES–Lagrangian particle method for turbulent reactive flows based on the approximate deconvolution model and mixing model. Journal of Computational Physics, 2015, 294, 127-148.	1.9	12
142	Near wall combustion modeling in spark ignition engines. Part B: Post-flame reactions. Energy Conversion and Management, 2015, 106, 1439-1449.	4.4	4
143	Entropy Filtered Density Function for Large Eddy Simulation of Turbulent Flows. AIAA Journal, 2015, 53, 2571-2587.	1.5	15
144	Massively Parallel FDF Simulation of Turbulent Reacting Flows. Mathematical Engineering, 2015, , 175-192.	0.1	5

#	Article	IF	Citations
145	An analysis of the basic assumptions of turbulent combustion models with emphasis on high-speed flows. , 2015, , .		3
146	Filtered density function simulation of a realistic swirled combustor. Proceedings of the Combustion Institute, 2015, 35, 1433-1442.	2.4	23
147	Influence of synthetic inlet turbulence on the prediction of low Mach number flows. Computers and Fluids, 2015, 106, 135-153.	1.3	17
148	The generalized coalescence/redispersion micromixing model. A multiscale approach. Chemical Engineering Science, 2015, 122, 161-172.	1.9	2
149	Prediction of NO in premixed high-pressure lean methane flames with a MMC-partially stirred reactor. Proceedings of the Combustion Institute, 2015, 35, 1517-1525.	2.4	19
150	Transport and Mixing in Liquid Phase Using Large Eddy Simulation: A Review. , 0, , .		1
151	Flame structure of nozzles offsetting opposite flows. Journal of Physics: Conference Series, 2016, 745, 032030.	0.3	0
152	Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method. SAE International Journal of Fuels and Lubricants, 0, 9, 100-107.	0.2	11
153	Application of Conditional Source-term Estimation to two turbulent non-premixed methanol flames. Combustion Theory and Modelling, 2016, 20, 765-797.	1.0	10
154	LES/PDF for premixed combustion in the DNS limit. Combustion Theory and Modelling, 2016, 20, 834-865.	1.0	24
155	Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame. Physics of Fluids, 2016, 28, .	1.6	60
156	Micromixing model performance for nonreacting flows using a consistent Monte Carlo method. Numerical Heat Transfer, Part B: Fundamentals, 2016, 70, 517-536.	0.6	2
157	Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing. Physics of Fluids, 2016, 28, .	1.6	16
158	A hybrid DG-Monte Carlo FDF simulator. Computers and Fluids, 2016, 140, 158-166.	1.3	12
159	On the merits of extrapolation-based stiff ODE solvers for combustion CFD. Combustion and Flame, 2016, 174, 1-15.	2.8	39
160	Towards a filtered density function approach for reactive transport in groundwater. Advances in Water Resources, 2016, 90, 83-98.	1.7	13
161	Large-eddy simulation of methanol pool fires using an accelerated stochastic fields method. Combustion and Flame, 2016, 173, 89-98.	2.8	18
162	The method of distributions for dispersive transport in porous media with uncertain hydraulic properties. Water Resources Research, 2016, 52, 4700-4712.	1.7	38

#	Article	IF	CITATIONS
163	LES/PDF modeling of autoignition in a lifted turbulent flame: Analysis of flame sensitivity to differential diffusion and scalar mixing time-scale. Combustion and Flame, 2016, 171, 69-86.	2.8	43
164	Survey of Turbulent Combustion Models for Large-Eddy Simulations of Propulsive Flowfields. AIAA Journal, 2016, 54, 2930-2946.	1.5	21
165	Evaluations of SGS Combustion, Scalar Flux and Stress Models in a Turbulent Jet Premixed Flame. Flow, Turbulence and Combustion, 2016, 97, 1147-1164.	1.4	2
166	On the influence of the correlation between enthalpy defect and mixture fraction in sooting turbulent jet flames. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 184, 68-75.	1.1	2
167	Statistical descriptions of polydisperse turbulent two-phase flows. Physics Reports, 2016, 665, 1-122.	10.3	36
168	An a priori DNS study of the shadow-position mixing model. Combustion and Flame, 2016, 165, 223-245.	2.8	11
169	A Fractal Dynamic SGS Combustion Model for Large Eddy Simulation of Turbulent Premixed Flames. Combustion Science and Technology, 2016, 188, 1472-1495.	1.2	6
170	Consistent Behavior of Eulerian Monte Carlo fields at Low Reynolds Numbers. Flow, Turbulence and Combustion, 2016, 96, 503-512.	1.4	26
171	The Physics of Scalar Gradients in Turbulent Premixed Combustion and Its Relevance to Modeling. Combustion Science and Technology, 2016, 188, 1376-1397.	1.2	21
172	A direct approach to generalised multiple mapping conditioning for selected turbulent diffusion flame cases. Combustion Theory and Modelling, 2016, 20, 735-764.	1.0	16
173	LES–Lagrangianâ€particlesâ€simulation of turbulent reactive flows at high Sc number using approximate deconvolution model. AICHE Journal, 2016, 62, 2912-2922.	1.8	6
174	Scalar Mixing Study at High-Schmidt Regime in a Turbulent Jet Flow Using Large-Eddy Simulation/Filtered Density Function Approach. Journal of Fluids Engineering, Transactions of the ASME, 2016, 138, .	0.8	6
175	Simulations of sooting turbulent jet flames using a hybrid flamelet/stochastic Eulerian field method. Combustion Theory and Modelling, 2016, 20, 221-257.	1.0	24
176	Transported scalar PDF modeling of oxygen-enriched turbulent jet diffusion flames: Soot production and radiative heat transfer. Fuel, 2016, 178, 37-48.	3.4	23
177	Computational assessment of methane-air reduced chemical kinetic mechanisms for soot production studies. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38, 2225-2244.	0.8	4
178	Turbulent atomization subgrid model for two-phase flow large eddy simulation (theoretical) Tj ETQq1 1 0.78431	4 rgBT /Ov	erlock 10 Tf
179	Micro-scale Mixing in Turbulent Constant Density Reacting Flows and Premixed Combustion. Flow, Turbulence and Combustion, 2016, 96, 547-571.	1.4	24
180	Effects of soot absorption coefficient–Planck function correlation on radiative heat transfer in oxygen-enriched propane turbulent diffusion flame. Journal of Quantitative Spectroscopy and Radiative Transfer, 2016, 172, 50-57.	1.1	18

#	Article	IF	CITATIONS
181	Numerical methods for the weakly compressible Generalized Langevin Model in Eulerian reference frame. Journal of Computational Physics, 2016, 314, 93-106.	1.9	5
182	Gasoline engine simulations using zero-dimensional spark ignition stochastic reactor model and three-dimensional computational fluid dynamics engine model. International Journal of Engine Research, 2016, 17, 76-85.	1.4	21
183	Modeling of Fine-Particle Formation in Turbulent Flames. Annual Review of Fluid Mechanics, 2016, 48, 159-190.	10.8	82
184	Transported PDF Modeling of Ethanol Spray in Hot-Diluted Coflow Flame. Flow, Turbulence and Combustion, 2016, 96, 469-502.	1.4	38
185	Influence of turbulent fluctuations on radiation heat transfer, NO and soot formation under ECN Spray A conditions. Proceedings of the Combustion Institute, 2017, 36, 3551-3558.	2.4	26
186	A PDF approach to thin premixed flamelets using multiple mapping conditioning. Proceedings of the Combustion Institute, 2017, 36, 1937-1945.	2.4	18
187	Advances and challenges in modeling high-speed turbulent combustion in propulsion systems. Progress in Energy and Combustion Science, 2017, 60, 26-67.	15.8	84
188	Modelling emission turbulence-radiation interaction by using a hybrid flamelet/stochastic Eulerian field method. AIP Conference Proceedings, 2017, , .	0.3	0
189	Discontinuous Galerkin-Monte Carlo Solver for Large Eddy Simulation of Compressible Turbulent Flows. , 2017, , .		3
190	Simulation of turbulent reactive flows using a hybrid LES / PDF methodology - Advances in particle density control for normalized variables. , 2017, , .		0
191	Direct Numerical Simulations of NOx formation in spatially developing turbulent premixed Bunsen flames with mixture inhomogeneity. , 2017, , .		2
192	Effect of the turbulence modeling in large-eddy simulations of nonpremixed flames undergoing extinction and reignition. , 2017, , .		6
193	A spray flamelet/progress variable approach combined with a transported joint PDF model for turbulent spray flames. Combustion Theory and Modelling, 2017, 21, 575-602.	1.0	27
194	Modeling combustion under engine combustion network Spray A conditions with multiple injections using the transported probability density function method. International Journal of Engine Research, 2017, 18, 6-14.	1.4	26
195	Langevin Simulation of Turbulent Combustion. , 2017, , 39-53.		3
196	DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modelling. Combustion and Flame, 2017, 177, 109-122.	2.8	31
197	A mixing timescale model for TPDF simulations of turbulent premixed flames. Combustion and Flame, 2017, 177, 171-183.	2.8	27
198	On wall fire interaction in a small pool fire: A large-eddy simulation study. Fire Safety Journal, 2017, 92, 199-209.	1.4	10

			2
#	ARTICLE	IF	CITATIONS
199	PDF Simulations of the Ignition of Hydrogen/Air, Ethylene/Air and Propane/Air Mixtures by Hot Transient Jets. Zeitschrift Fur Physikalische Chemie, 2017, 231, 1773-1796.	1.4	9
200	Stratified turbulent flames: Recent advances in understanding the influence of mixture inhomogeneities on premixed combustion and modeling challenges. Progress in Energy and Combustion Science, 2017, 62, 87-132.	15.8	88
201	A multiple mapping conditioning mixing model with a mixture-fraction like reference variable. Part 1: Model derivation and ideal flow test cases. Combustion and Flame, 2017, 181, 342-353.	2.8	14
202	Analysis of operator splitting errors for near-limit flame simulations. Journal of Computational Physics, 2017, 335, 578-591.	1.9	31
203	Numerical investigation of the ignition of diethyl ether/air and propane/air mixtures by hot jets. Journal of Loss Prevention in the Process Industries, 2017, 49, 832-838.	1.7	7
204	Large eddy simulation of bluff body flames close to blow-off using an Eulerian stochastic field method. Combustion and Flame, 2017, 181, 1-15.	2.8	20
205	Simulation of industrial-scale gas quenching process for partial oxidation of nature gas to acetylene. Chemical Engineering Journal, 2017, 329, 238-249.	6.6	10
206	Assessment of mixing time scales for a sparse particle method. Combustion and Flame, 2017, 179, 280-299.	2.8	43
207	Effects of molecular transport in LES/PDF of piloted turbulent dimethyl ether/air jet flames. Combustion and Flame, 2017, 176, 451-461.	2.8	25
208	An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows. Physics of Fluids, 2017, 29, .	1.6	26
209	Understanding the separation of particles in a hydrocyclone by force analysis. Powder Technology, 2017, 322, 471-489.	2.1	58
210	Large Eddy Simulations of a Pressurized, Partially-Premixed Swirling Flame With Finite-Rate Chemistry. , 2017, , .		0
211	Gradients estimation from random points with volumetric tensor in turbulence. Journal of Computational Physics, 2017, 350, 518-529.	1.9	10
212	Turbulent-combustion closure for the chemical source terms using the linear-eddy model. , 2017, , .		1
213	Effect of turbulence on NOx emission in a lean perfectly-premixed combustor. Fuel, 2017, 208, 160-167.	3.4	14
214	Development of a multiphase photon Monte Carlo method for spray combustion and its application in high-pressure conditions. International Journal of Heat and Mass Transfer, 2017, 115, 453-466.	2.5	12
215	Tabulation of combustion chemistry via Artificial Neural Networks (ANNs): Methodology and application to LES-PDF simulation of Sydney flame L. Combustion and Flame, 2017, 185, 245-260.	2.8	107
216	Evaluation of the flame propagation within an SI engine using flame imaging and LES. Combustion Theory and Modelling, 2017, 21, 1080-1113.	1.0	9

#	Article	IF	CITATIONS
217	Effect of burner geometry on swirl stabilized methane/air flames: A joint LES/OH-PLIF/PIV study. Fuel, 2017, 207, 533-546.	3.4	33
218	Multi-environment Probability Density Function Modeling for Turbulent CH ₄ Flames under Moderate or Intense Low-Oxygen Dilution Combustion Conditions with Recirculated Flue Gases. Energy & Fuels, 2017, 31, 8685-8697.	2.5	4
219	Transported Joint Probability Density Function Simulation of Turbulent Spray Flames Combined with a Spray Flamelet Model Using a Transported Scalar Dissipation Rate. Combustion Science and Technology, 2017, 189, 322-339.	1.2	13
220	Combustion and Engine-Core Noise. Annual Review of Fluid Mechanics, 2017, 49, 277-310.	10.8	92
221	Performance of transported PDF mixing models in a turbulent premixed flame. Proceedings of the Combustion Institute, 2017, 36, 1987-1995.	2.4	30
222	Large eddy simulation of hydrogen combustion in supersonic flows using an Eulerian stochastic fields method. International Journal of Hydrogen Energy, 2017, 42, 1264-1275.	3.8	39
223	Automatic reduction and optimisation of chemistry for turbulent combustion modelling: Impact of the canonical problem. Combustion and Flame, 2017, 175, 60-79.	2.8	30
224	Toward Efficient Chemistry Calculations in Engine Simulations Through Static Adaptive Acceleration. Combustion Science and Technology, 2017, 189, 623-642.	1.2	8
225	The influence of mixing on fast precipitation processes – A coupled 3D CFD-PBE approach using the direct quadrature method of moments (DQMOM). Chemical Engineering Science, 2017, 169, 284-298.	1.9	30
226	Auto-thermal reforming (ATR) of natural gas: An automated derivation of optimised reduced chemical schemes. Proceedings of the Combustion Institute, 2017, 36, 3321-3330.	2.4	15
227	Particles in Wall-Bounded Turbulent Flows: Deposition, Re-Suspension and Agglomeration. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2017, , .	0.3	11
228	Models of Turbulent Flows and Particle Dynamics. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2017, , 97-150.	0.3	8
229	LES of Delft Jet-in-Hot Coflow burner to investigate the effect of preferential diffusion on autoignition of <mml:math altimg="si26.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml="http: 1998="" altimg="si26.gif" math="" mathml"="" overflow="scroll" www.w3.org=""><mml:mrow><mml="http: 1998="" altimg="si26.gif" math="" mathml"="" overflow="scroll" www.w3.org=""><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>ow^{3;4}mml:</td><td>mn²4</td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml="http:></mml:mrow></mml="http:></mml:mrow></mml:math>	ow ^{3;4} mml:	mn²4
231	Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model. , 2017, , .		15
232	Optimization of an Advanced Combustion Strategy Towards 55% BTE for the Volvo SuperTruck Program. SAE International Journal of Engines, 0, 10, 1217-1227.	0.4	16
233	Sensitivity of Flamelet Combustion Model to Flame Curvature for IC Engine Application. , 2017, , .		1
234	Experimental Study on the Atomization and Chemiluminescence Characteristics of Ethanol Flame. Journal of Spectroscopy, 2017, 2017, 1-8.	0.6	0
235	A LES-CMC formulation for premixed flames including differential diffusion. Combustion Theory and Modelling, 2018, 22, 411-431.	1.0	14

#	Article	IF	CITATIONS
236	Detailed SCS atomization model and its implementation to two-phase flow LES. Combustion and Flame, 2018, 195, 232-252.	2.8	20
237	Simulating turbulence–radiation interactions using a presumed probability density function method. International Journal of Heat and Mass Transfer, 2018, 121, 911-923.	2.5	9
238	One-step combustion synthesis of porous CNTs/C/NiMoO4 composites for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2018, 745, 135-146.	2.8	19
239	Multi-environment PDF modeling for non-catalytic partial oxidation process under MILD oxy-combustion condition. International Journal of Hydrogen Energy, 2018, 43, 5486-5500.	3.8	4
240	The impacts of three flamelet burning regimes in nonlinear combustion dynamics. Combustion and Flame, 2018, 195, 170-182.	2.8	28
241	Turbulent Spray Combustion. Energy, Environment, and Sustainability, 2018, , 277-312.	0.6	0
242	Numerical Simulation of Turbulent Combustion in Internal Combustion Engines. Energy, Environment, and Sustainability, 2018, , 513-541.	0.6	0
243	Soot and spectral radiation modeling for high-pressure turbulent spray flames. Combustion and Flame, 2018, 190, 402-415.	2.8	42
244	Turbulent Mixing Simulation via a Quantum Algorithm. AIAA Journal, 2018, 56, 687-699.	1.5	22
245	Experimental and numerical study on bluff-body and swirl stabilized diffusion flames. Fuel, 2018, 217, 352-364.	3.4	43
246	Modelling of diesel spray flames under engine-like conditions using an accelerated Eulerian Stochastic Field method. Combustion and Flame, 2018, 193, 363-383.	2.8	25
247	A stochastic multiple mapping conditioning computational model in OpenFOAM for turbulent combustion. Computers and Fluids, 2018, 172, 410-425.	1.3	36
248	Modeling of molecular diffusion and thermal conduction with multi-particle interaction in compressible turbulence. Physics of Fluids, 2018, 30, .	1.6	8
249	The combustion mitigation of methane as a non-CO 2 greenhouse gas. Progress in Energy and Combustion Science, 2018, 66, 176-199.	15.8	51
250	A Posteriori Assessment of Algebraic Scalar Dissipation Models for RANS Simulation of Premixed Turbulent Combustion. Flow, Turbulence and Combustion, 2018, 100, 39-73.	1.4	10
251	Model form uncertainty quantification in turbulent combustion simulations: Peer models. Combustion and Flame, 2018, 187, 137-146.	2.8	13
252	Transported Probability Density Function Method for MILD Combustion. Energy, Environment, and Sustainability, 2018, , 397-427.	0.6	0
253	Large-Eddy Simulation of Nonpremixed Flames by Explicit Filtering. Energy, Environment, and Sustainability, 2018, , 429-445.	0.6	2

#	Article	IF	CITATIONS
254	Nonpremixed and premixed flamelets LES of partially premixed spray flames using a two-phase transport equation of progress variable. Combustion and Flame, 2018, 188, 227-242.	2.8	41
255	An energy-consistency-preserving large eddy simulation-scalar filtered mass density function (LES-SFMDF) method for high-speed flows. Combustion Theory and Modelling, 2018, 22, 1-37.	1.0	15
256	Modeling and numerical study of H2/N2 jet flame in vitiated co-flow using Eulerian PDF transport approach. Mechanics and Industry, 2018, 19, 504.	0.5	0
257	Probability Density Function Modeling of Turbulence/Chemistry Interactions in Methane Flame Enrichment by Hydrogen. Theoretical Foundations of Chemical Engineering, 2018, 52, 1019-1028.	0.2	1
258	Consistency and convergence of Eulerian Monte Carlo field method for solving transported probability density function equation in turbulence modeling. Physics of Fluids, 2018, 30, .	1.6	10
259	Prediction of Combustion and Heat Release Rates in Non-Premixed Syngas Jet Flames Using Finite-Rate Scale Similarity Based Combustion Models. Energies, 2018, 11, 2464.	1.6	5
260	RANS modelling of a lifted hydrogen flame using eulerian/lagrangian approaches with transported PDF method. Energy, 2018, 164, 1242-1256.	4.5	5
261	Flameless combustion and its potential towards gas turbines. Progress in Energy and Combustion Science, 2018, 69, 28-62.	15.8	149
262	Simulation of turbulent reactive flows using a FDF methodology – Advances in particle density control for normalized variables. Computers and Fluids, 2018, 170, 128-140.	1.3	11
263	A two-phase MMC–LES model for turbulent spray flames. Combustion and Flame, 2018, 193, 424-439.	2.8	22
264	Dynamic adaptive combustion modeling of spray flames based on chemical explosive mode analysis. Combustion and Flame, 2018, 195, 30-39.	2.8	34
265	Large Eddy Simulation of a Pressurized, Partially Premixed Swirling Flame With Finite-Rate Chemistry. Journal of Engineering for Gas Turbines and Power, 2018, 140, .	0.5	3
266	Combustion performance of nozzles with multiple gas orifices in large ladles for temperature uniformity. Journal of Iron and Steel Research International, 2018, 25, 387-397.	1.4	3
267	Causes and mitigation of gas temperature deviation in tangentially fired tower-type boilers. Applied Thermal Engineering, 2018, 139, 135-143.	3.0	32
268	Joint probability density function models for multiscalar turbulent mixing. Combustion and Flame, 2018, 193, 344-362.	2.8	11
269	Use of Modified Temperature-Composition PDF Formulation in Modeling of Flame Dynamics in Diesel Engine Combustion. International Journal of Nonlinear Sciences and Numerical Simulation, 2018, 19, 643-667.	0.4	0
270	A LES/PDF simulator on block-structured meshes. Combustion Theory and Modelling, 2019, 23, 1-41.	1.0	14
271	Mind the gap: Turbulent combustion model validation and future needs. Proceedings of the Combustion Institute, 2019, 37, 2091-2107.	2.4	19

#	Article	IF	CITATIONS
272	Coupling of simplified chemistry with mixing processes in PDF simulations of turbulent flames. Proceedings of the Combustion Institute, 2019, 37, 2183-2190.	2.4	16
273	A DNS evaluation of mixing and evaporation models for TPDF modelling of nonpremixed spray flames. Proceedings of the Combustion Institute, 2019, 37, 3363-3372.	2.4	11
274	Effects of combustion models on soot formation and evolution in turbulent nonpremixed flames. Proceedings of the Combustion Institute, 2019, 37, 985-992.	2.4	19
275	Algorithmic Aspects of the LES-PBE-PDF Method for Modeling Soot Particle Size Distributions in Turbulent Flames. Combustion Science and Technology, 2019, 191, 766-796.	1.2	10
276	Subgrid Reaction-Diffusion Closure for Large Eddy Simulations Using the Linear-Eddy Model. Flow, Turbulence and Combustion, 2019, 103, 389-416.	1.4	2
277	Large Eddy Simulation of lifted turbulent flame in cold air using Doubly Conditional Source-term Estimation. Combustion and Flame, 2019, 208, 420-435.	2.8	11
278	OpenFOAM based conditional moment closure (CMC) model for solving non-premixed turbulent combustion: Integration and validation. Computers and Fluids, 2019, 190, 362-373.	1.3	9
279	A self-contained composition space solution method for strained and curved premixed flamelets. Combustion and Flame, 2019, 207, 342-355.	2.8	19
280	Simulation of methane/air non-premixed turbulent flames based on REDIM simplified chemistry. Flow, Turbulence and Combustion, 2019, 103, 963-984.	1.4	5
281	Turbulent Combustion Modelling and Experiments: Recent Trends and Developments. Flow, Turbulence and Combustion, 2019, 103, 847-869.	1.4	46
282	Large Eddy Simulation of Supersonic Combustion Using the Eulerian Stochastic Fields Method. Flow, Turbulence and Combustion, 2019, 103, 943-962.	1.4	4
283	A hybrid stochastic/fixed-sectional method for solving the population balance equation. Chemical Engineering Science, 2019, 209, 115198.	1.9	15
284	Quantum algorithm for the computation of the reactant conversion rate in homogeneous turbulence. Combustion Theory and Modelling, 2019, 23, 1090-1104.	1.0	9
285	Investigation of Reactive Scalar Mixing in Transported PDF Simulations of Turbulent Premixed Methane-Air Bunsen Flames. Flow, Turbulence and Combustion, 2019, 103, 667-697.	1.4	12
286	Turbulent electric current in the marine convective atmospheric boundary layer. Atmospheric Research, 2019, 228, 86-94.	1.8	5
287	Modeling and simulation of turbulent nuclear flames in Type Ia supernovae. Progress in Aerospace Sciences, 2019, 108, 156-179.	6.3	13
288	A combined PPAC-RCCE-ISAT methodology for efficient implementation of combustion chemistry. Combustion Theory and Modelling, 2019, 23, 1021-1053.	1.0	7
289	Combustion and NO _{<i>x</i>} Emission Characteristics of a Bluff Body Hydrogen Burner. Energy & Fuels, 2019, 33, 4598-4610.	2.5	5

ARTICLE IF CITATIONS # Large Eddy Simulation-Based Turbulent Combustion Models for Reactive Sprays: Recent Advances and 290 0.9 3 Future Challenges. Journal of the Indian Institute of Science, 2019, 99, 25-41. AUSM scheme: its application to a realistic combustor configuration, the Energy Efficient Engine. 1.0 Shock Waves, 2019, 29, 1009-1021. Filtered Wrinkled Flamelets model for Large-Eddy Simulation of turbulent premixed combustion. 292 2.8 14 Combustion and Flame, 2019, 205, 93-108. Investigation of the Jet-Flame Interaction by Large Eddy Simulation and Proper Decomposition Method. 294 1.2 Combustion Science and Technology, 2019, 191, 956-978. Probabilistic Forecast of Singleâ€Phase Flow in Porous Media With Uncertain Properties. Water 295 1.7 8 Resources Research, 2019, 55, 8631-8645. Effect of multiscalar subfilter PDF models in LES of turbulent flames with inhomogeneous inlets. Proceedings of the Combustion Institute, 2019, 37, 2287-2295. 296 2.4 A simplified CFD model for spectral radiative heat transfer in high-pressure hydrocarbon–air 297 2.4 13 combustion systems. Proceedings of the Combustion Institute, 2019, 37, 4617-4624. A detailed modeling study of radiative heat transfer in a heavy-duty diesel engine. Combustion and Flame, 2019, 200, 325-341. 298 2.8 A hybrid flamelet finite-rate chemistry approach for efficient LES with a transported FDF. Combustion 299 2.8 13 and Flame, 2019, 199, 183-193. A Computationally Efficient Turnkey Approach to Turbulent Combustion Modeling: From Elusive Fantasy to Impending Reality., 2019, , . Accounting for complex chemistry in the simulations of future turbulent combustion systems., 2019,, 301 6 Requirements Towards Predictive Simulations of Turbulent Combustion., 2019, , . 302 Computational Tools for Data-Poor Problems in Turbulent Combustion., 2019,,. 303 1 A transported probability density function method to propagate chemistry uncertainty in reacting 304 flow CFD., 2019,,. Large Eddy Simulation of a supersonic lifted flame using the Eulerian stochastic fields method. 305 2.4 17 Proceedings of the Combustion Institute, 2019, 37, 3693-3701. Emerging trends in numerical simulations of combustion systems. Proceedings of the Combustion 2.4 Institute, 2019, 37, 2073-2089. Large Eddy Simulation of Bluff-Body Flame Approaching Blow-Off: A Sensitivity Study. Combustion 307 1.2 1 Science and Technology, 2019, 191, 1815-1842. Micromixing Models for PDF Simulations of Turbulent Premixed Flames. Combustion Science and 1.2

CITATION REPORT

Technology, 2019, 191, 1430-1455.

#	Article	IF	Citations
309	An experimental/numerical investigation of the role of the quarl in enhancing the blowout limits of swirl-stabilized turbulent non-premixed flames. Fuel, 2019, 236, 1226-1242.	3.4	12
310	A One-Dimensional Turbulence-Based Closure Model for Combustion LES. Combustion Science and Technology, 2020, 192, 78-111.	1.2	5
311	New Dynamic Scale Similarity Based Finite-Rate Combustion Models for LES and a priori DNS Assessment in Non-premixed Jet Flames with High Level of Local Extinction. Flow, Turbulence and Combustion, 2020, 104, 233-260.	1.4	5
312	An exponential distribution scheme for the two-way coupling in transported PDF method for dilute spray combustion. Combustion Theory and Modelling, 2020, 24, 105-128.	1.0	6
313	A priori DNS study of applicability of flamelet concept to predicting mean concentrations of species in turbulent premixed flames at various Karlovitz numbers. Combustion and Flame, 2020, 222, 370-382.	2.8	22
314	An extended flamelet-based presumed probability density function for predicting mean concentrations of various species in premixed turbulent flames. International Journal of Hydrogen Energy, 2020, 45, 31162-31178.	3.8	13
315	A GPU-Accelerated Filtered Density Function Simulator of Turbulent Reacting Flows. International Journal of Computational Fluid Dynamics, 2020, 34, 381-396.	0.5	2
316	Assessment of a model for emission subgrid-scale turbulence-radiation interaction applied to a scaled Sandia flame DD. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 248, 106986.	1.1	4
317	Transient combustion. , 2020, , 159-210.		0
318	Design and numerical simulation modeling. , 2020, , 273-315.		0
320	Probability density function (PDF) models for particle transport in porous media. GEM - International Journal on Geomathematics, 2020, 11, 1.	0.7	3
321	REDIM-PFDF modelling of turbulent partially-premixed flame with inhomogeneous inlets using top-hat function for multi-stream mixing problem. Aerospace Science and Technology, 2020, 107, 106258.	2.5	3
322	Analytical study of an effect of gas compressibility on a burning accident in an obstructed passage. Physics of Fluids, 2020, 32, 073602.	1.6	5
323	Concentration Fluctuations from Localized Atmospheric Releases. Boundary-Layer Meteorology, 2020, 177, 461-510.	1.2	16
324	Mixing in Turbulent Flows: An Overview of Physics and Modelling. Processes, 2020, 8, 1379.	1.3	3
325	Artificial Neural Networks for Chemistry Representation in Numerical Simulation of the Flamelet-Based Models for Turbulent Combustion. IEEE Access, 2020, 8, 80020-80029.	2.6	8
326	Effects of Atwood and Reynolds numbers on the evolution of buoyancy-driven homogeneous variable-density turbulence. Journal of Fluid Mechanics, 2020, 895, .	1.4	25
327	Method of Distributions for Quantification of Geologic Uncertainty in Flow Simulations. Water Resources Research, 2020, 56, e2020WR027643.	1.7	10

#	Article	IF	Citations
328	The Eulerian Stochastic Fields Method Applied to Large Eddy Simulations of a Piloted Flame with Inhomogeneous Inlet. Flow, Turbulence and Combustion, 2020, 105, 837-867.	1.4	15
329	REDIM-PFDF Sub-grid Scale Combustion Modeling for Turbulent Partially-premixed Flame: Assessment of Combustion Modes. Combustion Science and Technology, 2022, 194, 745-767.	1.2	3
330	Mid-latitude convective boundary-layer electricity: A study by large-eddy simulation. Atmospheric Research, 2020, 244, 105035.	1.8	13
331	Large eddy simulation of polydispersed inertial particles using two-way coupled PDF-PBE. International Journal of Heat and Fluid Flow, 2020, 83, 108585.	1.1	2
332	High Fidelity Spectral-FDF-LES of Turbulent Scalar Mixing. Combustion Science and Technology, 2020, 192, 1219-1232.	1.2	3
333	Development and testing of a model for turbulence-radiation interaction effects on the radiative emission. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 245, 106852.	1.1	10
334	Modern Developments in Filtered Density Function. Heat and Mass Transfer, 2020, , 181-200.	0.2	10
335	Analysis of the Soot Particle Size Distribution in a Laminar Premixed Flame: A Hybrid Stochastic/Fixed-Sectional Approach. Flow, Turbulence and Combustion, 2020, 104, 753-775.	1.4	10
336	Physically-derived reduced-order manifold-based modeling for multi-modal turbulent combustion. Combustion and Flame, 2020, 214, 287-305.	2.8	25
337	Investigation of the chemical kinetics process of diesel combustion in a compression ignition engine using the large eddy simulation approach. Fuel, 2020, 270, 117544.	3.4	17
338	Modeling heavy-duty diesel engines using tabulated kinetics in a wide range of operating conditions. International Journal of Engine Research, 2021, 22, 1116-1132.	1.4	11
339	LEoPart: A particle library for FEniCS. Computers and Mathematics With Applications, 2021, 81, 289-315.	1.4	8
340	Evaluation of mean species mass fractions in premixed turbulent flames: A DNS study. Proceedings of the Combustion Institute, 2021, 38, 6413-6420.	2.4	12
341	Modelling of a turbulent premixed flame series using a new MMC-LES model with a shadow position reference variable. Proceedings of the Combustion Institute, 2021, 38, 3057-3065.	2.4	4
342	Chemistry computation without a sub-grid PDF model in LES of turbulent non-premixed flames showing moderate local extinction. Proceedings of the Combustion Institute, 2021, 38, 2655-2663.	2.4	7
343	Optimized chemistry for Large Eddy Simulations of wrinkled flames. Proceedings of the Combustion Institute, 2021, 38, 3097-3106.	2.4	4
344	An evaluation of gas-phase micro-mixing models with differential mixing timescales in transported PDF simulations of sooting flame DNS. Proceedings of the Combustion Institute, 2021, 38, 2731-2739.	2.4	15
345	An improved flamelet/progress variable modeling for supersonic combustion. International Journal of Hydrogen Energy, 2021, 46, 4485-4495.	3.8	9

#	Article	IF	CITATIONS
346	LES/PDF modelling of a one-meter diameter methane fire plume. Proceedings of the Combustion Institute, 2021, 38, 4943-4951.	2.4	3
347	A comprehensive assessment of fractal wrinkling/eddy dissipation based combustion model for simulating conventional turbulent premixed and non-premixed flames. Combustion Theory and Modelling, 2021, 25, 235-268.	1.0	3
348	Validation of an Eulerian Stochastic Fields Solver Coupled with Reaction–Diffusion Manifolds on LES of Methane/Air Non-premixed Flames. Flow, Turbulence and Combustion, 2021, 107, 441-477.	1.4	9
349	Coupling of mixing models with manifold based simplified chemistry in PDF modeling of turbulent reacting flows. Proceedings of the Combustion Institute, 2021, 38, 2645-2653.	2.4	9
350	Transported PDF modeling of compressible turbulent reactive flows by using the Eulerian Monte Carlo fields method. Journal of Computational Physics, 2021, 425, 109899.	1.9	5
351	A process for an efficient heat release prediction at the concepts screening stage of gasoline engine development. International Journal of Engine Research, 2021, 22, 2502-2520.	1.4	1
352	A Fully Consistent Hybrid Les/Rans Conditional Transported Pdf Method for Non-premixed Reacting Flows. Combustion Science and Technology, 2021, 193, 379-418.	1.2	8
353	Characterization of multi-regime reaction zones in a piloted inhomogeneous jet flame with local extinction. Proceedings of the Combustion Institute, 2021, 38, 2571-2579.	2.4	5
354	Solving the population balance equation for non-inertial particles dynamics using probability density function and neural networks: Application to a sooting flame. Physics of Fluids, 2021, 33, .	1.6	14
355	Modeling of turbulent-radiation interaction in turbulent combustion flows using the velocity-frequency-composition joint PDF method. , 2021, , .		0
356	Analysis of wake velocities and pressure fluctuations in a bistable flow using Hilbert–Huang transform and wavelets. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	0.8	0
357	Fully consistent Eulerian Monte Carlo fields method for solving probability density function transport equations in turbulence modeling. Physics of Fluids, 2021, 33, 015118.	1.6	3
358	A conservative and consistent scalar filtered mass density function method for supersonic flows. Physics of Fluids, 2021, 33, 026101.	1.6	6
359	A novel model for incorporation of differential diffusion effects in PDF simulations of non-premixed turbulent flames based on reaction-diffusion manifolds (REDIM). Physics of Fluids, 2021, 33, .	1.6	11
360	A methodology to devise consistent probability density function models for particle dynamics in turbulent dispersed two-phase flows. Physics of Fluids, 2021, 33, .	1.6	5
361	Investigation of scalar–scalar-gradient filtered joint density function for large eddy simulation of turbulent combustion. Physics of Fluids, 2021, 33, 035121.	1.6	2
362	Joint-velocity scalar energy probability density function method for large eddy simulations of compressible flow. Physics of Fluids, 2021, 33, .	1.6	3
363	Numerical Study of Hydrogen Auto-Ignition Process in an Isotropic and Anisotropic Turbulent Field. Energies, 2021, 14, 1869.	1.6	4

#	Article	IF	CITATIONS
364	Soot modeling in turbulent diffusion flames: review and prospects. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	0.8	4
365	Assessment of a flamelet approach to evaluating mean species mass fractions in moderately and highly turbulent premixed flames. Physics of Fluids, 2021, 33, .	1.6	16
366	A Strategy to Couple Thickened Flame Model and Adaptive Mesh Refinement for the LES of Turbulent Premixed Combustion. Flow, Turbulence and Combustion, 2021, 107, 1003-1034.	1.4	4
367	Implementation of a hybrid Lagrangian filtered density function–large eddy simulation methodology in a dynamic adaptive mesh refinement environment. Physics of Fluids, 2021, 33, .	1.6	7
368	Transported and presumed probability density function modeling of the Sandia flames with flamelet generated manifold chemistry. Physics of Fluids, 2021, 33, .	1.6	7
369	Prediction of mean radical concentrations in lean hydrogen-air turbulent flames at different Karlovitz numbers adopting a newly extended flamelet-based presumed PDF. Combustion and Flame, 2021, 226, 248-259.	2.8	18
370	CFD Modeling of Reacting Diesel Sprays with Primary Reference Fuel. SAE International Journal of Advances and Current Practices in Mobility, 0, 3, 2433-2451.	2.0	3
371	Conceptual Limitations of the Probability Density Function Method for Modeling Turbulent Premixed Combustion and Closed-Form Description of Chemical Reactions' Effects. Fluids, 2021, 6, 142.	0.8	2
372	Model Comparisons of Flow and Chemical Kinetic Mechanisms for Methane–Air Combustion for Engineering Applications. Applied Sciences (Switzerland), 2021, 11, 4107.	1.3	9
373	Key parameters for droplet evaporation and mixing at the cloud edge. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 2160-2172.	1.0	5
374	The Utilisation of Reduced Kinetics by Local Self-Similarity Tabulation Approach in 3D Turbulent Reactive Flow Simulation with LES and TPDF. Flow, Turbulence and Combustion, 0, , 1.	1.4	0
375	Application of Scalar Filtered Density Function to Turbulent Flows Under Supercritical Condition. Journal of Energy Resources Technology, Transactions of the ASME, 0, , 1-25.	1.4	0
376	Alternatives to the Beta Distribution in Assumed PDF Methods for Turbulent Reactive Flow. Flow, Turbulence and Combustion, 2022, 108, 433-459.	1.4	3
377	On element mass conservation in Eulerian stochastic fields modeling of turbulent combustion. Combustion and Flame, 2022, 239, 111577.	2.8	2
378	Evaluation of manifold representations of chemistry in stratified, swirl-stabilized flames. Combustion and Flame, 2021, 229, 111418.	2.8	4
379	Coupling the Multiple Mapping Conditioning Mixing Model with Reaction-diffusion Databases in LES of Methane/air Flames. Combustion Science and Technology, 2023, 195, 351-378.	1.2	2
380	Edward E. O'Brien contributions to reactive-flow turbulence. Physics of Fluids, 2021, 33, 080403.	1.6	0
381	The impact of molecular diffusion on auto-ignition in a turbulent flow. Combustion and Flame, 2022, 239, 111665.	2.8	5

#	Article	IF	CITATIONS
382	Modeling the Effects of the Ignition System on the CCV of Ultra-Lean SI Engines using a CFD RANS Approach. , 0, , .		2
384	A minimally invasive, efficient method for propagation ofÂfullâ€field uncertainty in solid dynamics. International Journal for Numerical Methods in Engineering, 2021, 122, 6955-6983.	1.5	4
385	On the Radiative, Diffusion and Chemical Effects of Soot Formation in a Nonsmoking Laminar Ethylene Diffusion Flame. Combustion Science and Technology, 0, , 1-15.	1.2	0
386	A high-order semi-Lagrangian method for the consistent Monte-Carlo solution of stochastic Lagrangian drift–diffusion models coupled with Eulerian discontinuous spectral element method. Computer Methods in Applied Mechanics and Engineering, 2021, 384, 114001.	3.4	5
387	CFD simulation of bubbly flow in a long coaxial heat exchanger. Thermal Science and Engineering Progress, 2021, 25, 100991.	1.3	5
388	Efficient emission modelling in lean premixed flames with pre-tabulated formation characteristics. Fuel, 2021, 301, 121043.	3.4	5
389	CFD analysis of combustion and emission characteristics of primary reference fuels: from transient Diesel spray to heavy-duty engine. Fuel, 2021, 301, 120994.	3.4	11
390	Classification and computation of extreme events in turbulent combustion. Progress in Energy and Combustion Science, 2021, 87, 100955.	15.8	8
391	Assessment of Bray Moss Libby formulation for premixed flame-wall interaction within turbulent boundary layers: Influence of flow configuration. Combustion and Flame, 2021, 233, 111575.	2.8	11
392	Speeding up turbulent reactive flow simulation via a deep artificial neural network: A methodology study. Chemical Engineering Journal, 2022, 429, 132442.	6.6	19
393	Scalar fluctuation and its dissipation in turbulent reacting flows. Physics of Fluids, 2021, 33, .	1.6	4
394	Self-contained filtered density function. Physical Review Fluids, 2017, 2, .	1.0	20
395	Velocity probability distribution scaling in wall-bounded flows at high Reynolds numbers. Physical Review Fluids, 2019, 4, .	1.0	4
396	Deep learning of turbulent scalar mixing. Physical Review Fluids, 2019, 4, .	1.0	39
397	Solution for the statistical moments of scalar turbulence. Physical Review Fluids, 2019, 4, .	1.0	5
398	Numerical Simulation of Turbulent Flames based on a Hybrid RANS/Transported-PDF Method and REDIM Method. Eurasian Chemico-Technological Journal, 2018, 20, 23.	0.3	7
399	Comparison of Conventional and Modified Burners in Performance with Different Fuels using a Linear and a Non-linear Eddy-viscosity Turbulence Model. Journal of Applied Fluid Mechanics, 2019, 12, 2069-2081.	0.4	1
400	Computer Modeling for Fire and Smoke Dynamics in Enclosures: A Help or a Burden?. Fire Safety Science, 2014, 11, 46-65.	0.3	8

#	Article	IF	CITATIONS
401	Multi-Objective Optimization of Fuel Consumption and NOx Emissions with Reliability Analysis Using a Stochastic Reactor Model. , 0, , .		3
402	Validation of Diesel Combustion Models with Turbulence Chemistry Interaction and Detailed Kinetics. , 0, , .		6
403	Modeling the wind circulation around mills with a Lagrangian stochastic approach. SMAI Journal of Computational Mathematics, 0, 2, 177-214.	0.0	7
404	Reynolds Stress and PDF Modeling of Two-Way Coupling and Vaporisation Interaction in a Turbulent Spray Flame. ERCOFTAC Series, 2011, , 133-165.	0.1	0
405	Interactive Exploration of Stress Tensors Used in Computational Turbulent Combustion. Mathematics and Visualization, 2012, , 137-156.	0.4	5
406	Turbulence Radiation Interactions in a Statistically Homogeneous Turbulence With Approximated Coal Type Particulate. , 2012, , .		0
407	DNS–PDF Simulation of Turbulent Mixing in a Reactive Planar Jet. Communications in Computer and Information Science, 2013, , 445-452.	0.4	0
408	Consistency issues in PDF methods. Analele Stiintifice Ale Universitatii Ovidius Constanta, Seria Matematica, 2015, 23, 187-208.	0.1	2
409	Chemically Reacting Turbulent Flows. SpringerBriefs in Applied Sciences and Technology, 2016, , 13-42.	0.2	0
411	Validating a Model for Bluff-Body Burners Using the HM1 Turbulent Nonpremixed Flame. Journal of Advanced Thermal Science Research, 2016, 3, 12-23.	0.4	0
412	SOME ASPECTS OF PRESUMED FILTERED DENSITY FUNCTIONS FORMULATION IN THE CONTEXT OF LARGE EDDY SIMULATION OF TURBULENT REACTING FLOWS. , 2018, , .		0
413	Numerical and analytical solution of the equation for the probability-density function. Politechnical Student Journal, 2018, , .	0.0	0
414	Probability and Filtered Density Function Approaches. Geosystems Mathematics, 2019, , 157-191.	0.0	0
415	Implementation of a 0-D/1-D/3-D Process for the Heat Release Prediction of a Gasoline Engine in the Early Development Stage. , 0, , .		2
416	An a priori DNS analysis of scale similarity based combustion models for LES of non-premixed jet flames. Flow, Turbulence and Combustion, 2020, 104, 605-624.	1.4	4
417	Numerical Simulation of Laminar and Turbulent Methane/Air Flames Based on a DRG-Derived Skeletal Mechanism. Eurasian Chemico-Technological Journal, 2020, 22, 69.	0.3	0
418	Transported PDF Modeling of Jet-in-Hot-Coflow Flames. Green Energy and Technology, 2021, , 439-462.	0.4	0
419	Numerical investigation of glycerol/diesel emulsion combustion in compression ignition conditions using Stochastic Reactor Model. Fuel, 2022, 310, 122246.	3.4	3

#	Article	IF	CITATIONS
420	A Zero-Dimensional Velocity-Composition-Frequency Probability Density Function Model for Compression-Ignition Engine Simulation. , 0, , .		1
421	The Monte Carlo Method for Participating Media. , 2022, , 737-773.		Ο
422	Radiation in Chemically Reacting Systems. , 2022, , 819-858.		0
423	Review of Lagrangian stochastic models for turbulent combustion. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1467.	1.5	7
424	Numerical characterization of a novel test bench featuring secondary reactions of methane. Aerospace Science and Technology, 2021, 119, 107203.	2.5	2
425	Turbulent flame-wall interaction of premixed flames using Quadrature-based Moment Methods (QbMM) and tabulated chemistry: An a priori analysis. International Journal of Heat and Fluid Flow, 2022, 93, 108913.	1.1	5
426	Implementation of the Scalar Dissipation Rate in the REDIM Concept and its Validation for the Piloted Non-Premixed Turbulent Jet Flames. Eurasian Chemico-Technological Journal, 2021, 23, 169.	0.3	0
427	Assessment of Finite-Rate Chemistry Effects in a Turbulent Dilute Ethanol Spray Flame. Journal of Propulsion and Power, 2022, 38, 607-622.	1.3	6
428	A fully dynamic mixing timeâ€scale model for the sparse Lagrangian multiple mapping conditioning approach. Combustion and Flame, 2022, 238, 111872.	2.8	4
429	Physics-aware neural network flame closure for combustion instability modeling in a single-injector engine. Combustion and Flame, 2022, 240, 111973.	2.8	5
430	Reaction-Diffusion Manifolds including differential diffusion applied to methane/air combustion in strong extinction regimes. Combustion Theory and Modelling, 0, , 1-31.	1.0	2
431	Dilution of Reactive Plumes: Evolution of Concentration Statistics Under Diffusion and Nonlinear Reaction. Transport in Porous Media, 0, , 1.	1.2	1
432	Large eddy simulation of supersonic mixing layers using a compressible filtered mass density function method. Aerospace Science and Technology, 2022, 124, 107425.	2.5	1
433	A Lagrangian-based flame index for the transported probability density function method. Theoretical and Applied Mechanics Letters, 2021, , 100316.	1.3	3
434	Nonparametric inference for diffusion processes in systems with smooth evolution. Physica A: Statistical Mechanics and Its Applications, 2022, , 127386.	1.2	0
435	Numerical modeling for local flame structure and pollutant formation in biodiesel and n-Dodecane spray jet flames. Fuel, 2022, 321, 124151.	3.4	1
438	Combustion machine learning: Principles, progress and prospects. Progress in Energy and Combustion Science, 2022, 91, 101010.	15.8	77
439	Modelling of soot formation and aggregation in turbulent flows with the LES-PBE-PDF approach and a conservative sectional method. Combustion and Flame, 2022, 242, 112152.	2.8	10

#	Article	IF	CITATIONS
440	A coupled MMC-LES and sectional kinetic scheme for soot formation in a turbulent flame. Combustion and Flame, 2022, 241, 112089.	2.8	5
442	3D-CFD Methodologies for a Fast and Reliable Design of Ultra-Lean SI Engines. , 0, , .		4
443	Predicting jet ignitability using a PDF transport model. Numerical Heat Transfer; Part A: Applications, 2022, 82, 601-618.	1.2	1
444	Using a flamelet generated manifold method in transported probability density function modeling of soot formation and thermal radiation. Computers and Fluids, 2022, , 105567.	1.3	1
445	A mixing timescale model for differential mixing in transported probability density function simulations of turbulent non-premixed flames. Physics of Fluids, 2022, 34, 067122.	1.6	4
446	Assessment of critical species for differential mixing in transported PDF simulations of a non-premixed ethylene DNS flame. Combustion and Flame, 2022, 244, 112240.	2.8	2
447	Intrinsic low-dimensional manifold (ILDM)-based concept for the coupling of turbulent mixing with manifold-based simplified chemistry for the turbulent flame simulation. Physics of Fluids, 2022, 34, .	1.6	2
448	Lagrangian filtered density function modeling of a turbulent stratified flame combined with flamelet approach. Physics of Fluids, 2022, 34, .	1.6	2
450	Increasing the exergetic efficiency in combustion chambers of gas turbines by modelling thermal energy transfer using entropy generation based on gibbs equation PDF-based. Journal of Thermal Analysis and Calorimetry, 2023, 148, 8097-8126.	2.0	0
451	High-temperature air flameless combustion. , 2022, , 81-117.		1
452	Zone-adaptive modeling of turbulent flames with multiple chemical mechanisms. Proceedings of the Combustion Institute, 2022, , .	2.4	0
453	Consistent submodel coupling in hybrid particle/finite volume algorithms for zone-adaptive modelling of turbulent reactive flows. Combustion Theory and Modelling, 2022, 26, 1159-1184.	1.0	1
454	An extended FGM model with transported PDF for LES of spray combustion. Proceedings of the Combustion Institute, 2022, , .	2.4	1
455	Estimation of Parameters on Probability Density Function Using Enhanced GLUE Approach. Computational Intelligence and Neuroscience, 2022, 2022, 1-12.	1.1	1
456	A Most Reactive Mixture Analysis of Ozone- and Temperature-Enhanced <i>n</i> -Heptane Droplet Autoignition and Cool Flame Burning in Microgravity. Combustion Science and Technology, 0, , 1-22.	1.2	0
457	Computational Fluid Dynamics Model for Analysis of the Turbulent Limits of Hydrogen Combustion. Fluids, 2022, 7, 343.	0.8	1
458	PeleLM-FDF large eddy simulator of turbulent reacting flows. Combustion Theory and Modelling, 2023, 27, 1-18.	1.0	2
459	Numerical investigation of AdBlue film formation and NH3 conversion in generic SCR system using Eulerian stochastic fields method. International Journal of Heat and Fluid Flow, 2023, 99, 109096.	1.1	1

#	Article	IF	CITATIONS
460	Application of machine learning in low-order manifold representation of chemistry in turbulent flames. Combustion Theory and Modelling, 2023, 27, 83-102.	1.0	3
461	Investigation of reaction-induced subgrid scalar mixing in LES/FDF simulations of turbulent premixed flames. Physical Review Fluids, 2022, 7, .	1.0	2
462	Radiative Heat Transfer in Turbulent Combustion 2021 Max Jakob Memorial Award Paper. Journal of Heat Transfer, 2023, 145, .	1.2	2
463	The inclusion of scalar dissipation rate in modeling of an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si26.svg"><mml:mi>n</mml:mi>-dodecane spray flame using flamelet generated manifold. Combustion and Flame. 2023. 249. 112610.</mml:math 	2.8	3
464	Cost-constrained adaptive simulations of transient spray combustion in a gas turbine combustor. Combustion and Flame, 2023, 249, 112530.	2.8	3
465	The importance of accurately modelling soot and radiation coupling in laminar and laboratory-scale turbulent diffusion flames. Combustion and Flame, 2023, 258, 112573.	2.8	8
466	On the effect of turbulent fluctuations on precipitation: A direct numerical simulation – population balance study. Chemical Engineering Science, 2023, 270, 118511.	1.9	3
467	Hybrid LES-FDF Simulations of Reactive Flows With Dynamic AMR and detailed Chemistry. , 2023, , .		0
468	A consistent scheme of the high-speed source term in probability density function methods for supersonic flows. AIP Advances, 2023, 13, 015316.	0.6	1
469	Modeling the presumed joint probability density function of conditioning variables in stratified turbulent flames. Combustion and Flame, 2023, 252, 112754.	2.8	0
470	A time-step-robust algorithm to compute particle trajectories in 3-D unstructured meshes for Lagrangian stochastic methods. Monte Carlo Methods and Applications, 2023, 29, 95-126.	0.3	2
471	Non-Catalytic Partial Oxidation of Hydrocarbon Gases to Syngas and Hydrogen: A Systematic Review. Energies, 2023, 16, 2916.	1.6	9
476	Turbulent Hydrogen Flames: Physics and Modeling Implications. Green Energy and Technology, 2023, , 237-266.	0.4	0
479	Investigation of An Ammonia Diesel Dual-Fuel Combustion Process on a Heavy-Duty Single Cylinder Research Engine for the Development of Suitable Simulation Tools for Maritime Applications. Proceedings, 2023, , 24-39.	0.2	0
491	Combustion and Radiation Modeling of Non-premixed Turbulent DLR-A Flame. Lecture Notes in Mechanical Engineering, 2024, , 589-601.	0.3	0
493	Numerical Comparison of Turbulence-Chemistry Interactions Models with Radiation Effect for Non-premixed Flames: Sandia-E and DLR-B. Lecture Notes in Mechanical Engineering, 2024, , 347-358.	0.3	0