Removal of heavy metals from wastewater using CFB-c

Journal of Hazardous Materials 173, 581-588 DOI: 10.1016/j.jhazmat.2009.08.126

Citation Report

#	Article	IF	CITATIONS
1	The Outcomes of the 2-Decade Monthly Monitoring of Fly Ash-Composition in a Lignite-Fired Power Station. Waste and Biomass Valorization, 2010, 1, 431-437.	3.4	8
2	Comparative uptake study of toxic elements from aqueous media by the different particle-size-fractions of fly ash. Journal of Hazardous Materials, 2010, 183, 787-792.	12.4	67
3	Size fraction characterization of highly-calcareous fly ash. Fuel Processing Technology, 2010, 91, 1558-1563.	7.2	54
4	Geochemical controls on leaching of lignite-fired combustion by-products from Greece. Applied Geochemistry, 2011, 26, 1599-1606.	3.0	37
5	Review on cadmium removal from aqueous solutions. International Journal of Engineering, Science and Technology, 2011, 2, .	0.6	62
7	Influence of flue gas SO2 on the toxicity of heavy metals in municipal solid waste incinerator fly ash after accelerated carbonation stabilization. Journal of Hazardous Materials, 2011, 192, 1609-1615.	12.4	18
8	Synthesis of CFB-Coal Fly Ash Clay Bricks and Their Characterisation. Waste and Biomass Valorization, 2011, 2, 87-94.	3.4	28
9	Effect of pH, ionic strength and temperature on sorption of Pb(II) on NKF-6 zeolite studied by batch technique. Chemical Engineering Journal, 2011, 168, 86-93.	12.7	91
10	Numerical investigation of the grid spatial resolution and the anisotropic character of EMMS in CFB multiphase flow. Chemical Engineering Science, 2011, 66, 3979-3990.	3.8	29
11	Heavy metal characterization of CFB-derived coal fly ash. Fuel Processing Technology, 2011, 92, 441-446.	7.2	93
12	Synthesis of sulphonated microcapsules of P(St–DVB) containing di(2-ethylhexyl)phosphoric acid. Reactive and Functional Polymers, 2011, 71, 891-898.	4.1	10
13	Physico-Chemical Processes. Water Environment Research, 2011, 83, 994-1091.	2.7	6
14	Study on Modified Zeolite Synthesized from Coal Fly Ash in Adsorption and Desorption of Ammonia Nitrogen. Advanced Materials Research, 2012, 573-574, 99-109.	0.3	0
15	Effects of sintering atmosphere on cement clinkers produced from chromium-bearing sludge. Journal of the Air and Waste Management Association, 2012, 62, 587-593.	1.9	7
16	Application of Modified Coal Fly Ash as an Absorbent for Ammonia-Nitrogen Wastewater Treatment. Advanced Materials Research, 0, 518-523, 2380-2384.	0.3	13
17	The Impairment of River Systems by Metal Mine Contamination: A Review Including Remediation Options. Critical Reviews in Environmental Science and Technology, 2012, 42, 2017-2077.	12.8	140
18	Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non-ionizable organic compounds. Journal of Hazardous Materials, 2012, 231-232, 57-63.	12.4	105
19	Optimization of copper adsorption by chemically modified fly ash using response surface methodology modeling. Desalination and Water Treatment, 2012, 49, 218-226.	1.0	24

#	Article	IF	CITATIONS
20	Investigation of proper modeling of very dense granular flows in the recirculation system of CFBs. Particuology, 2012, 10, 699-709.	3.6	32
21	Steam- and carbon dioxide-gasification of coal combustion ash for liquid phase cadmium removal by adsorption. Chemical Engineering Journal, 2012, 207-208, 66-71.	12.7	26
22	Environmental geochemistry of the feed coals and their combustion by-products from two coal-fired power plants in Xinjiang Province, Northwest China. Fuel, 2012, 95, 446-456.	6.4	101
23	Preparation of molecular sieve X from coal fly ash for the adsorption of volatile organic compounds. Microporous and Mesoporous Materials, 2012, 156, 36-39.	4.4	17
24	Evaluation of the use of an alkali modified fly ash as a potential adsorbent for the removal of metals from acid mine drainage. Applied Water Science, 2013, 3, 567-576.	5.6	59
25	Synthesis of Zeolite/Aluminum Oxide Hydrate from Coal Fly Ash: A New Type of Adsorbent for Simultaneous Removal of Cationic and Anionic Pollutants. Industrial & Engineering Chemistry Research, 2013, 52, 14890-14897.	3.7	39
26	Simple in situ functionalizing magnetite nanoparticles by reactive blue-19 and their application to the effective removal of Pb2+ ions from water samples. Chemosphere, 2013, 90, 542-547.	8.2	49
27	Synthesis of highly selective zeolite topology molecular sieve for adsorption of benzene gas. Solid State Sciences, 2013, 16, 39-44.	3.2	8
28	α-Fe2O3 nanowires deposited diatomite: highly efficient absorbents for the removal of arsenic. Journal of Materials Chemistry A, 2013, 1, 7729.	10.3	67
29	Study on the nonylphenol removal from aqueous solution using magnetic molecularly imprinted polymers based on fly-ash-cenospheres. Chemical Engineering Journal, 2013, 223, 824-832.	12.7	33
30	Chitosan modified zeolite as a versatile adsorbent for the removal of different pollutants from water. Fuel, 2013, 103, 480-485.	6.4	95
31	Zeolites formation by hydrothermal alkali activation of coal fly ash from thermal power station "Maritsa 3â€, Bulgaria. Fuel, 2013, 103, 533-541.	6.4	53
32	Modification of Fly Ash and its Application State Research in Wastewater Treatment. Advanced Materials Research, 2013, 726-731, 2455-2460.	0.3	0
33	Effect of Mechanochemical Processing on Adsorptive Properties of Blast Furnace Slag. Journal of Environmental Engineering, ASCE, 2013, 139, 1446-1453.	1.4	9
34	The Influence of Modification Conditions on Activation of Coal Fly Ash. Advanced Materials Research, 0, 813, 471-474.	0.3	2
35	Evaluation of sodium lignosulphonate for the remediation of chromium-contaminated soil and water. International Journal of Innovation and Sustainable Development, 2013, 7, 289.	0.4	3
36	Radiocesium Adsorption By Zeolitic Materials Synthesized From Coal Fly Ash. Nova Biotechnologica Et Chimica, 2014, 13, .	0.1	9
37	Recycling of Coal Fly Ash for the Fabrication of Porous Mullite/Alumina Composites. Materials, 2014, 7, 5982-5991.	2.9	14

#	Article	IF	CITATIONS
38	MnO2 nanowires in situ grown on diatomite: Highly efficient absorbents for the removal of Cr(VI) and As(V). Microporous and Mesoporous Materials, 2014, 200, 27-34.	4.4	47
39	Lead immobilization by geopolymers based on mechanically activated fly ash. Ceramics International, 2014, 40, 8479-8488.	4.8	92
40	Organic compounds in water extracts of coal: links to Balkan endemic nephropathy. Environmental Geochemistry and Health, 2014, 36, 1-17.	3.4	30
41	Removal of Mn from aqueous solution using fly ash and its hydrothermal synthetic zeolite. Journal of Environmental Management, 2014, 137, 16-22.	7.8	43
42	Zeolites from coal fly ash as efficient sorbents for cadmium ions. Clean Technologies and Environmental Policy, 2014, 16, 1551-1564.	4.1	41
43	The bonding of heavy metals on nitric acid-etched coal fly ashes functionalized with 2-mercaptoethanol or thioglycolic acid. Materials Chemistry and Physics, 2014, 143, 1469-1480.	4.0	13
44	Synthesis of merlinoite from Chinese coal fly ashes and its potential utilization as slow release K-fertilizer. Journal of Hazardous Materials, 2014, 265, 242-252.	12.4	59
45	Reuse options for coal fired power plant bottom ash and fly ash. Reviews in Environmental Science and Biotechnology, 2014, 13, 467-486.	8.1	152
46	Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury. Journal of the Air and Waste Management Association, 2014, 64, 1013-1020.	1.9	13
47	Deeper insights into fractal concepts applied to liquid-phase adsorption dynamics. Fuel Processing Technology, 2014, 128, 412-416.	7.2	19
48	Opportunities and challenges in the use of coal fly ash for soil improvements – A review. Journal of Environmental Management, 2014, 145, 249-267.	7.8	219
49	Arsenic stabilization in coal fly ash through the employment of waste materials. Journal of Environmental Chemical Engineering, 2014, 2, 1352-1357.	6.7	15
50	Investigation of the sorption of mercury vapour from exhaust gas by an Ag-X zeolite. Clay Minerals, 2015, 50, 31-40.	0.6	38
51	Investigation of the effect of pH, ionic strength, foreign ions, temperature, soil humic substances on the sorption of 152+154Eu(III) onto NKF-6 zeolite. Journal of Radioanalytical and Nuclear Chemistry, 2015, 309, 717.	1.5	2
52	A novel conversion process for waste residue: Synthesis of zeolite from electrolytic manganese residue and its application to the removal of heavy metals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470, 258-267.	4.7	81
53	Post-combustion CO2 adsorption on activated carbons with different textural properties. Microporous and Mesoporous Materials, 2015, 209, 157-164.	4.4	54
54	Mobility of trace elements in fly ash and in zeolitised coal fly ash. Fuel, 2015, 144, 369-379.	6.4	44
55	Characterization and comparison of leaching behaviors of fly ash samples from three different power plants in Turkey. Fuel Processing Technology, 2015, 137, 240-249.	7.2	34

#	Article	IF	CITATIONS
56	Zeolite development from fly ash and utilization in lignite mine-water treatment. International Journal of Mineral Processing, 2015, 139, 43-50.	2.6	31
57	Solid transformation synthesis of zeolites from fly ash. RSC Advances, 2015, 5, 100743-100749.	3.6	25
58	Removal of basic dye (methylene blue) from aqueous solution using zeolite synthesized from electrolytic manganese residue. Journal of Industrial and Engineering Chemistry, 2015, 23, 344-352.	5.8	117
59	Supercritical hydrothermal synthesis of zeolites from coal fly ash for mercury removal from coal derived gas. Fuel Processing Technology, 2015, 136, 96-105.	7.2	45
60	Long-term brine impacted fly ash. Part 1: chemical and mineralogical composition of the ash residues. International Journal of Environmental Science and Technology, 2015, 12, 551-562.	3.5	4
61	New synthetic mercaptoethylamino homopolymer-modified maghemite nanoparticles for effective removal of some heavy metal ions from aqueous solution. Journal of Industrial and Engineering Chemistry, 2015, 21, 1160-1166.	5.8	60
62	Application of graphitic carbon nitride for the removal of Pb(II) and aniline from aqueous solutions. Chemical Engineering Journal, 2015, 260, 469-477.	12.7	331
63	Review of the Natural, Modified, and Synthetic Zeolites for Heavy Metals Removal from Wastewater. Environmental Engineering Science, 2016, 33, 443-454.	1.6	152
64	Effective Dye Removal from Waste Water Using a Novel Low-Cost NaOH-Modified Fly Ash. Clays and Clay Minerals, 2016, 64, 695-705.	1.3	10
65	The synthesis and application of zeolitic material from fly ash by one-pot method at low temperature. Green Energy and Environment, 2016, 1, 166-171.	8.7	18
66	Synthesis of zeolite/hydrous metal oxide composites from coal fly ash as efficient adsorbents for removal of methylene blue from water. International Journal of Mineral Processing, 2016, 148, 32-40.	2.6	47
67	Developing a zero liquid discharge process for zeolitization of coal fly ash to synthetic NaP zeolite. Fuel, 2016, 171, 195-202.	6.4	41
68	Removal of oil from simulated oilfield wastewater using modified coal fly ashes. Desalination and Water Treatment, 2016, 57, 9644-9650.	1.0	7
69	Synthetic zeolite from coal bottom ash and its application in cadmium and nickel removal from acidic wastewater. Desalination and Water Treatment, 2016, 57, 26089-26100.	1.0	9
70	Fly ash zeolites for water treatment applications. Journal of Environmental Chemical Engineering, 2016, 4, 1460-1472.	6.7	168
71	Preparation of zeolitic imidazolate framework-8 /graphene oxide composites with enhanced VOCs adsorption capacity. Microporous and Mesoporous Materials, 2016, 225, 488-493.	4.4	98
72	Thermal behavior and physical characteristics of synthetic zeolite from CFB-coal fly ash. Microporous and Mesoporous Materials, 2016, 220, 155-162.	4.4	38
73	Improved removal of Cr(VI) from aqueous solution using zeolite synthesized from coal fly ash via mechanoâ€chemical treatment. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 259-267.	1.5	18

		CITATION REPORT		
#	Article		IF	Citations
74	Study of detailed geochemistry of hazardous elements in weathered coal ashes. Fuel, 2	017, 193, 343-350.	6.4	18
75	Effects of an iron-silicon material, a synthetic zeolite and an alkaline clay on vegetable u and Cd from a polluted agricultural soil and proposed remediation mechanisms. Environ Geochemistry and Health, 2017, 39, 353-367.	iptake of As hmental	3.4	44
76	Synergistic Sintering of Lignite Fly Ash and Steelmaking Residues towards Sustainable Ceramics. Advances in Materials Science and Engineering, 2017, 2017, 1-8.	Compacted	1.8	3
77	Microwave digestion and alkali fusion assisted hydrothermal synthesis of zeolite from c for enhanced adsorption of Cd(II) in aqueous solution. Journal of Central South Univers 9-20.		3.0	28
78	Mechanism of Mn(II) Absorption and Desorption with CFBC Fly Ash Modified by Alkalin Milling. Materials Science Forum, 0, 914, 151-159.	e Wet Ball	0.3	1
79	Silver Nanoparticles Impregnated Zeolites Derived from Coal Fly Ash: Effect of the Silve Adsorption of Mercury (II). Proceedings (mdpi), 2018, 2, 647.	r Loading on	0.2	3
80	High-efficiency extraction of bromocresol purple dye and heavy metals as chromium fro effluent by adsorption onto a modified surface of zeolite: Kinetics and equilibrium stud Environmental Management, 2018, 225, 120-132.	ım industrial y. Journal of	7.8	270
81	Zeolite Synthesized from Coal Fly Ash Produced by a Gasification Process for Ni2+ Rem Water. Minerals (Basel, Switzerland), 2018, 8, 116.	oval from	2.0	31
82	Analysis of bauxite residue components responsible for copper removal and related rea products. Chemosphere, 2018, 207, 209-217.	ction	8.2	13
83	Simple and energy-saving modifications of coal fly ash to remove simultaneously six to cations from mine effluents. Journal of Environmental Chemical Engineering, 2018, 6, 5	kic metal 498-5509.	6.7	21
84	A Unique Interactive Nanostructure Knitting based Passive Sampler Adsorbent for Mon in Water. Sensors, 2019, 19, 3432.	itoring of Hg2+	3.8	9
85	Adsorption Characteristic of Cr(VI) onto Different Activated Coal Fly Ashes: Kinetics, Th Application Feasibility, and Error Analysis. Water, Air, and Soil Pollution, 2019, 230, 1.	ermodynamic,	2.4	13
86	One-step synthesis of rod-shaped phillipsite using circulating fluidized bed fly ash and it for removal heavy metal. Ferroelectrics, 2019, 547, 51-58.	s application	0.6	4
87	A review on heavy metal pollution, toxicity and remedial measures: Current trends and perspectives. Journal of Molecular Liquids, 2019, 290, 111197.	future	4.9	855
88	Utilization of coal fly and bottom ash pellet for phosphorus adsorption: Sustainable ma evaluation. Resources, Conservation and Recycling, 2019, 149, 372-380.	nagement and	10.8	60
89	Evaluation of Co and Zn competitive sorption by zeolitic material synthesized from fly a and 65Zn as radioindicators. Journal of Radioanalytical and Nuclear Chemistry, 2019, 3		1.5	15
90	Porous adsorbents derived from coal fly ash as cost-effective and environmentally-frien of aluminosilicate for sequestration of aqueous and gaseous pollutants: A review. Journ Production, 2019, 208, 1131-1147.		9.3	92
91	A review on the influence of chemical modification on the performance of adsorbents. I Environment and Sustainability, 2020, 1, 100001.	Resources,	5.9	49

	Citation Re	CITATION REPORT		
Article		IF	Citations	
A mini-review on coal fly ash properties, utilization and synthesis of zeolites. Internatio Coal Preparation and Utilization, 2022, 42, 1968-1990.	nal Journal of	2.1	22	
Synthesis of Zeolite from Electrolytic Manganese Residue: Investigation on the Variatio Propert of Zeolite during the Conversion Process. Journal of Chemistry, 2020, 2020, 1-	on of the 9.	1.9	0	
Various water-treatment technologies for inorganic contaminants: current status and aspects. , 2020, , 273-295.	future		20	
A novel diatomite supported layered double hydroxide as reusable adsorbent for efficie acidic dyes. International Journal of Environmental Analytical Chemistry, 2022, 102, 18	ent removal of 49-1865.	3.3	10	
Synthesis of zeolite Na-P1 from coal fly ash produced by gasification and its application for removal of Cr(VI) from water. Frontiers of Chemical Science and Engineering, 2021	n as adsorbent , 15, 518-527.	4.4	23	
Removal of Heavy Metals from Polluted Solutions by Zeolitic Adsorbents: a Review. Env Processes, 2021, 8, 7-35.	vironmental	3.5	56	
Effect of acid and alkali solutions on micro-components of coal. Journal of Molecular Li 329, 115518.	quids, 2021,	4.9	27	
Optimization of removal of lead and cadmium from industrial wastewater by ethylened single-walled carbon nanotubes. International Journal of Environmental Science and Te 2022, 19, 2747-2760.		3.5	7	
Hydrothermal synthesis of zeolitic material from circulating fluidized bed combustion f highly efficient removal of lead from aqueous solution. Chinese Journal of Chemical Eng 2022, 47, 193-205.	ly ash for the gineering,	3.5	9	
Bioashes and their potential for reuse to sustain ecosystem services and underpin circu Renewable and Sustainable Energy Reviews, 2021, 151, 111540.	ular economy.	16.4	8	
Effect of Surface Treatment and Particle Loading on the Mechanical Properties of CFB Reinforced Thermoset Composite. International Journal of Chemical Engineering and A (IJCEA), 2015, 6, 6-11.	Fly Ash pplications	0.3	11	
Effect of Particle Loading, Temperature and Surface Treatment on Moisture Absorption Reinforced Thermoset Composite. International Journal of Chemical Engineering and A (IJCEA), 2015, 6, 12-17.		0.3	2	
Applicability of ANN in Adsorptive Removal of Cd(II) from Aqueous Solution. Advances Computational Intelligence and Robotics Book Series, 2016, , 523-560.	in	0.4	0	
Utilization of natural and synthetic zeolitic materials as soil amendments in abandoned Bulletin of the Geological Society of Greece, 2018, 53, 78.	d mine sites.	0.5	2	
Applicability of ANN in Adsorptive Removal of Cd(II) from Aqueous Solution. , 2020, , 1	453-1491.		0	

108	Soil stabilization. , 2022, , 475-500.		2
109	A review of the synthesis and application of zeolites from coal-based solid wastes. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1-21.	4.9	48
110	Physicochemical characterization of unconventional fly ashes. Fuel, 2022, 316, 123318.	6.4	11

#

92

94

96

98

100

103

105

107

#	Article	IF	CITATIONS
111	Phosphorus and potassium recovery from anaerobically digested olive mill wastewater using modified zeolite, fly ash and zeolitic fly ash: a comparative study. Journal of Chemical Technology and Biotechnology, 2022, 97, 1860-1873.	3.2	5
112	Fly-ash derived Na-P1, natural zeolite tuffs and diatomite in motor oil retention. Cleaner Materials, 2022, 4, 100063.	5.1	5
113	Structural features promoting adsorption of contaminants of emerging concern onto TiO2 P25: experimental and computational approaches. Environmental Science and Pollution Research, 2022, 29, 87628-87644.	5.3	2
114	Lignite fly ash utilization for acid mine drainage neutralization and clean-up. Cleaner Materials, 2022, 6, 100142.	5.1	4
115	Porous g-C ₃ N ₄ modified with phenanthroline diamide for efficient and ultrafast adsorption of palladium from simulated high level liquid waste. Environmental Science: Nano, 2023, 10, 295-310.	4.3	5
116	Chitosan-Based Polymer Nanocomposites for Environmental Remediation of Mercury Pollution. Polymers, 2023, 15, 482.	4.5	17
117	Characterization and reactivity of size-fractionated unconventional fly ashes. Materials and Structures/Materiaux Et Constructions, 2023, 56, .	3.1	3
118	Research progress on synthesis of zeolites from coal fly ash and environmental applications. Frontiers of Environmental Science and Engineering, 2023, 17, .	6.0	4
119	Environmental impacts of Indian coal thermal power plants and associated human health risk to the nearby residential communities: A potential review. Chemosphere, 2023, 341, 140103.	8.2	2
120	The potential of zeolite nanocomposites in removing microplastics, ammonia, and trace metals from wastewater and their role in phytoremediation. Environmental Science and Pollution Research, 0, , .	5.3	0
121	A comparative study of coal fly and bottom ashes as sustainable electroactive vibration damping materials. Environmental Engineering Research, 2024, 29, 230561-0.	2.5	0