Restoration of foothills rough fescue grassland followin southwestern Alberta

Journal of Environmental Management 91, 2763-2770 DOI: 10.1016/j.jenvman.2010.08.006

Citation Report

#	Article	IF	CITATIONS
1	An Unexpected Response of a Bunch Grass (Rough Fescue) to Arbuscular Mycorrhizae Fungi. Ecological Restoration, 2012, 30, 165-168.	0.8	0
2	Natural Recovery of Rough Fescue (Festuca hallii(Vasey) Piper) Grassland After Disturbance by Pipeline Construction in Central Alberta, Canada. Natural Areas Journal, 2013, 33, 91-98.	0.5	19
3	Predicting Grassland Recovery with a State and Transition Model in a Natural Area, Central Alberta, Canada. Natural Areas Journal, 2014, 34, 429-442.	0.5	7
4	A RANGELAND MANAGEMENT PATTERN BASED ON FUNCTIONAL CLASSIFICATION IN THE NORTHERN TIBETAN REGION OF CHINA. Land Degradation and Development, 2014, 25, 193-201.	3.9	9
5	Rangeland Health Assessment: A Useful Tool for Linking Range Management and Grassland Bird Conservation?. Rangeland Ecology and Management, 2014, 67, 88-98.	2.3	21
6	The effects of pipeline construction disturbance on soil properties and restoration cycle. Environmental Monitoring and Assessment, 2014, 186, 1825-1835.	2.7	18
7	Quantifying the Effects of Pipeline Installation on Agricultural Productivity in West China. Agronomy Journal, 2015, 107, 524-531.	1.8	4
8	The vegetation recovery pattern and affecting factors after pipeline disturbance in northwest China. Journal for Nature Conservation, 2016, 29, 114-122.	1.8	6
9	Relative performance of native cultivar and wild collected seed for grassland restoration. Ecological Engineering, 2017, 103, 141-145.	3.6	5
10	A review of the impact of pipelines and power lines on biodiversity and strategies for mitigation. Biodiversity and Conservation, 2017, 26, 1801-1815.	2.6	38
11	Use of Modelled Soil Data Ranges to Explore Post-Reclamation Soil Suitability Ratings for 30 Alberta Soil Series. Canadian Journal of Soil Science, 2017, , .	1.2	2
12	Arthropods of Canadian grasslands: a retrospective of a 40-year project of the Biological Survey of Canada. Canadian Entomologist, 2017, 149, 702-717.	0.8	2
13	Restoring Industrial Disturbances with Native Hay in Mixedgrass Prairie in Alberta. Ecological Restoration, 2017, 35, 228-236.	0.8	1
14	Importance of species diversity in the revegetation of Alberta's northern fescue prairies. Biodiversity and Conservation, 2018, 27, 665-680.	2.6	4
15	<i>Festuca campestris</i> density and defoliation regulate abundance of the rhizomatous grass <i>Poa pratensis</i> in a fallow field. Restoration Ecology, 2018, 26, 82-90.	2.9	4
16	Transplanting Following Non-Native Plant Control in Rocky Mountain Foothills Fescue Grassland Restoration. Ecological Restoration, 2018, 36, 19-27.	0.8	1
17	Access Matting Reduces Mixedgrass Prairie Soil and Vegetation Responses to Industrial Disturbance. Environmental Management, 2019, 64, 497-508.	2.7	4
18	Change in plant species composition on powerline corridor: a case study. Environmental Monitoring and Assessment, 2019, 191, 200.	2.7	8

CITATION REPORT

#	Article	IF	CITATIONS
19	Stable pack abundance and distribution in a harvested wolf population. Journal of Wildlife Management, 2019, 83, 577-590.	1.8	9
20	Restoration of mixed soils along pipelines in the western Rio Grande Plains, Texas, USA. Journal of Arid Environments, 2019, 161, 25-34.	2.4	5
21	Pipeline Impacts and Recovery of Dry Mixed-Grass Prairie Soil and Plant Communities. Rangeland Ecology and Management, 2020, 73, 619-628.	2.3	13
22	Wildlife forage cover and composition on pipeline corridors in Alberta: Implications for wildlife conservation. Forest Ecology and Management, 2020, 468, 118189.	3.2	12
23	Environmental and social factors influencing wolf (<i>Canis lupus</i>) howling behavior. Ethology, 2020, 126, 890-899.	1.1	4
24	Response of grizzly bears (Ursus arctos) to pipelines in Alberta. Environmental Management, 2021, 67, 1158-1170.	2.7	0
25	Monitoring the Structure of Regenerating Vegetation Using Drone-Based Digital Aerial Photogrammetry. Remote Sensing, 2021, 13, 1942.	4.0	6
26	Promising Results Restoring Grassland Disturbances with Native Hay (Alberta). Ecological Restoration, 2011, 29, 215-219.	0.5	8
27	Promising results in central Alberta with rough fescue (Festuca hallii) seeding following disturbance. Native Plants Journal, 2013, 14, 25-32.	0.2	1
28	Influence of pipelines and environmental factors on the endangered plant,Halimolobos virgata(Nutt.) O.E. Schultz over a 10 year period. Botany, 2020, 98, 735-746.	1.0	0
29	Recovery of plains rough fescue grasslands on reclaimed well sites. Journal for Nature Conservation, 2022, 66, 126122.	1.8	6
30	Plains rough fescue grassland restoration using natural regeneration after pipeline disturbances. Restoration Ecology, 2023, 31, .	2.9	4
31	Pipeline installation effects on soils and plants: A review and quantitative synthesis. , 2022, 5, .		4
32	Soil degradation and crop yield declines persist 5 years after pipeline installations. Soil Science Society of America Journal, 2023, 87, 350-364.	2.2	1
33	Native and Dryland Pasture Seed Mixes Impact Revegetation 12 Years after Pipeline Construction in Southern Alberta. Land, 2023, 12, 921.	2.9	3
34	Residual effects of pipeline construction on agricultural soils of the Canadian prairie. Land Degradation and Development, 0, , .	3.9	0
36	Grazing and right-of-way affect native rangeland 12 years after pipeline construction in southern Alberta. Ecoscience, 0, , 1-13.	1.4	1