Design, construction, and ocean testing of a taut-moore converter with a linear generator power take-off

Renewable Energy 35, 348-354 DOI: 10.1016/j.renene.2009.04.028

Citation Report

#	Article	IF	CITATIONS
1	A novel maximum power point tracking algorithm for ocean wave energy devices. , 2009, , .		21
2	Ocean wave power data generation for grid integration studies. , 2010, , .		19
3	Design and testing of a non-linear power take-off simulator for a bottom-hinged plate wave energy converter. Ocean Engineering, 2011, 38, 1331-1337.	1.9	13
4	Ocean wave energy absorption in response to wave period and amplitude – offshore experiments on a wave energy converter. IET Renewable Power Generation, 2011, 5, 465.	1.7	28
5	An application of the Fast Fourier Transform to the short-term prediction of sea wave behaviour. Renewable Energy, 2011, 36, 1685-1692.	4.3	34
6	Selection of design power of wave energy converters based on wave basin experiments. Renewable Energy, 2011, 36, 3124-3132.	4.3	20
7	Assessment of the potential of renewables for Brunei Darussalam. Renewable and Sustainable Energy Reviews, 2011, 15, 427-437.	8.2	53
8	Estimating the Energy Production Capacity of a Taut-Moored Dual-Body Wave Energy Conversion System Using Numerical Modeling and Physical Testing. Journal of Offshore Mechanics and Arctic Engineering, 2011, 133, .	0.6	3
9	Furthering the study of real-time life extending control for ocean energy conversion. , 2012, , .		4
10	Evaluating Constant DC-Link Operation of Wave Energy Converter. , 2012, , .		1
11	Temperature Measurements in a Linear Generator and Marine Substation for Wave Power. Journal of Offshore Mechanics and Arctic Engineering, 2012, 134, .	0.6	6
12	Laboratory experiment on using non-floating body to generate electrical energy from water waves. Frontiers in Energy, 2012, 6, 361-365.	1.2	10
13	Overview of the Alternative Topologies of Linear Generators in Wave Energy Conversion Systems. Materials Science Forum, 0, 721, 281-286.	0.3	4
14	Wave energy: a Pacific perspective. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370, 481-501.	1.6	4
15	Wave energy potential along the northern coasts of the Gulf of Oman, Iran. Renewable Energy, 2012, 40, 90-97.	4.3	82
16	Azimuth-inclination angles and snatch load on a tight mooring system. Ocean Engineering, 2012, 40, 40-49.	1.9	18
17	Wave energy resource assessment in Lanzarote (Spain). Renewable Energy, 2013, 55, 480-489.	4.3	61
18	Optimal Constant DC Link Voltage Operation of a Wave Energy Converter. Energies, 2013, 6, 1993-2006.	1.6	25

ATION REPO

#	Article	IF	CITATIONS
19	Time Series-, Time-Frequency- and Spectral Analyses of Sensor Measurements in an Offshore Wave Energy Converter Based on Linear Generator Technology. Energy and Power Engineering, 2013, 05, 70-91.	0.5	5
20	Analysis of linear wave power generator model with real sea experimental results. IET Renewable Power Generation, 2013, 7, 574-581.	1.7	23
21	Experimental investigation and ANN modeling on improved performance of an innovative method of using heave response of a non-floating object for ocean wave energy conversion. Frontiers in Energy, 2013, 7, 279-287.	1.2	6
22	Experimental testing and model validation for ocean wave energy harvesting buoys. , 2013, , .		7
23	Performance Enhancements and Validations of a Generic Ocean-Wave Energy Extractor. Journal of Offshore Mechanics and Arctic Engineering, 2013, 135, .	0.6	14
24	Non-Linear Model Predictive Control Applied to a Generic Ocean-Wave Energy Extractor. , 2013, , .		6
25	Physical and numerical large-scale wave basin modeling of fluid-structure interaction and wave impact phenomena. Marine Systems and Ocean Technology, 2014, 9, 29-47.	0.5	0
26	Nonlinear Model Predictive Control Applied to a Generic Ocean-Wave Energy Extractor1. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136, .	0.6	22
27	Power Absorption Modeling and Optimization of a Point Absorbing Wave Energy Converter Using Numerical Method. Journal of Energy Resources Technology, Transactions of the ASME, 2014, 136, .	1.4	43
28	Evaluating Constant DC-Link Operation of Wave Energy Converter. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2014, 136, .	0.9	8
29	Deep ocean wave energy systems (DOWES): experimental investigations. Journal of Naval Architecture and Marine Engineering, 2014, 11, 139-146.	0.9	8
30	Preliminary study on a kinetic energy recovery system for sailing yachts. Renewable Energy, 2014, 62, 216-225.	4.3	11
31	Research on a permanent magnet tubular linear generator for direct drive wave energy conversion. IET Renewable Power Generation, 2014, 8, 281-288.	1.7	54
32	Frequency and time domain modeling and power output for a heaving point absorber wave energy converter. International Journal of Energy and Environmental Engineering, 2014, 5, 1.	1.3	37
33	Confirmation of a Nonlinear Model Predictive Control Strategy Applied to a Permanent Magnet Linear Generator for Wave-Energy Conversion. , 2014, , .		3
35	Experimental investigation on an ocean kinetic energy harvester for underwater gliders. , 2015, , .		12
36	DC-link stress analysis for the grid connection of point absorber type wave energy converters. , 2015, , .		1
37	Fuzzy logic based an improved controller for wave energy conversion systems. , 2015, , .		2

#	Article	IF	CITATIONS
38	Review of Oscillating Water Column Converters. IEEE Transactions on Industry Applications, 2015, , 1-1.	3.3	26
39	System design and optimization study of axial flow turbine applied in an overtopping wave energy convertor. Sadhana - Academy Proceedings in Engineering Sciences, 2015, 40, 2313-2331.	0.8	5
40	Modeling of a Permanent Magnet Linear Generator for Wave-Energy Conversion. , 2015, , .		2
41	Design, Fabrication, Simulation and Testing of a Novel Ocean Wave Energy Converter. , 2015, , .		1
42	Experimental investigation on electromagnetic transduction characteristic of linear oscillation electrical machine. International Journal of Applied Electromagnetics and Mechanics, 2015, 47, 33-43.	0.3	2
43	Experimental and numerical comparisons of self-reacting point absorber wave energy converters in regular waves. Ocean Engineering, 2015, 104, 370-386.	1.9	121
44	Experimental results on power absorption from a wave energy converter at the Lysekil wave energy research site. Renewable Energy, 2015, 77, 9-14.	4.3	71
45	Design of wave energy converter (WEC): A prototype installed in Sicily. , 2015, , .		17
46	Electrical damping of linear generators for wave energy converters—A review. Renewable and Sustainable Energy Reviews, 2015, 42, 116-128.	8.2	56
47	Three-Dimensional Oscillation Dynamics of the In Situ Piston Rod Transmission Between Buoy Line and the Double Hinge-Connected Translator in an Offshore Linear Wave Energy Converter. Journal of Offshore Mechanics and Arctic Engineering, 2016, 138, .	0.6	2
48	Efficient Dynamic Analysis of a Nonlinear Wave Energy Harvester Model. Journal of Offshore Mechanics and Arctic Engineering, 2016, 138, .	0.6	21
49	Effect of mooring-line stiffness on the performance of a dual coaxial-cylinder Wave-Energy Converter. Applied Ocean Research, 2016, 59, 577-588.	1.8	10
50	Study on energy conversion and storage system for a prototype buoys-array wave energy converter. Energy for Sustainable Development, 2016, 34, 100-110.	2.0	31
51	On The Dynamics and Design of a Two-body Wave Energy Converter. Journal of Physics: Conference Series, 2016, 744, 012074.	0.3	1
52	Enhancement of rolling energy conversion of a boat using an eccentric rotor revolving in a hula-hoop motion. Ocean Engineering, 2016, 116, 21-31.	1.9	10
53	Experimental Confirmation of Nonlinear-Model- Predictive Control Applied Offline to a Permanent Magnet Linear Generator for Ocean-Wave Energy Conversion. IEEE Journal of Oceanic Engineering, 2016, 41, 281-295.	2.1	24
54	Review of ocean tidal, wave and thermal energy technologies. Renewable and Sustainable Energy Reviews, 2017, 72, 590-604.	8.2	314
55	Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier. Ocean Engineering, 2017, 136, 190-200.	1.9	110

CITAT	 Deec	
		ר ער
CILAI	IVEL V	

#	Article	IF	CITATIONS
56	A new linear magnetic gear with adjustable gear ratios and its application for direct-drive wave energy extraction. Renewable Energy, 2017, 105, 199-208.	4.3	14
57	Nonlinear Ocean Wave Models and Laboratory Simulation of High Seastates and Rogue Waves. , 2017, , .		4
58	Conceptual Design and Analysis of a Submerged Wave Energy Device in Shallow Water. , 2017, , .		2
59	Research on a double float system for direct drive wave power conversion. IET Renewable Power Generation, 2017, 11, 1026-1032.	1.7	15
60	On the dynamics and design of a two-body wave energy converter. Renewable Energy, 2017, 101, 265-274.	4.3	88
61	Experimental trials of a sealed ocean kinetic energy harvester for underwater mooring platforms. Advances in Mechanical Engineering, 2017, 9, 168781401771497.	0.8	0
62	Modeling and Sizing of an Undersea Energy Storage System. IEEE Transactions on Industry Applications, 2018, 54, 2727-2739.	3.3	11
63	Oceanographic and biological influences on recruitment of benthic invertebrates to hard substrata on the Oregon shelf. Estuarine, Coastal and Shelf Science, 2018, 208, 1-8.	0.9	6
64	Statistical analysis of power output from a single heaving buoy WEC for different sea states. Marine Systems and Ocean Technology, 2018, 13, 103-110.	0.5	3
65	Comprehensive Modelling of A Slotess Halbach Linear Generator Based Wave Energy Converter. , 2018, , .		4
66	Influence of a Taut Cable on the Performance of a Point-Absorber Wave Energy Converter. , 2018, , .		0
67	Design and Simulation of a Novel Mechanical Power Take-Off for a Two-Body Wave Energy Point Absorber. , 2018, , .		1
68	Numerical Study on the Power Take-Off Effects of the Heaving Buoy Convertor. , 2018, , .		0
69	Economic Feasibility of Wave Energy Farms in Portugal. Energies, 2018, 11, 3149.	1.6	41
70	Evaluating Alternative Linear Vernier Hybrid Machine Topologies for Integration Into Wave Energy Converters. IEEE Transactions on Energy Conversion, 2018, 33, 2007-2017.	3.7	36
71	Interconnection strategies of point absorber type wave energy converters and rectifier units. , 2018, , .		0
72	Ocean Wave Energy Converters: Status and Challenges. Energies, 2018, 11, 1250.	1.6	187
73	Sensitivity Analysis and Optimal Design of a Linear Magnetic Gear for Direct-Drive Wave Energy Conversion. IEEE Access, 2019, 7, 73983-73992.	2.6	8

#	Article	IF	CITATIONS
74	Experimental Study on the Hydrodynamic Performance of a Heaving Buoy Assembled on a Net Cage Platform. Journal of Ocean University of China, 2019, 18, 1031-1040.	0.6	3
75	Full-Scale Measurement of Reaction Force Caused by Level Ice Interaction on a Buoy Connected to a Wave Energy Converter. Journal of Cold Regions Engineering - ASCE, 2019, 33, 04019001.	0.5	2
76	Research on Primary Excitation Fully Superconducting Linear Generators for Wave Energy Conversion. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	17
77	Vitroperm 500F and Supermendur Ferromagnetic Cores Used in a Linear Generator for Oceanic Wave Energy Conversion. , 2019, , .		13
78	Experimental and numerical comparisons of self-reacting point absorber wave energy converters in irregular waves. Ocean Engineering, 2019, 173, 716-731.	1.9	26
79	Water Cooled Chiller Based HVAC System Used in a Linear Generator for Oceanic Wave Energy Conversion. , 2019, , .		3
80	Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber. Sustainability, 2020, 12, 9532.	1.6	1
81	Hydrodynamic performance of a novel WEC-breakwater integrated system consisting of triple dual-freedom pontoons. Energy, 2020, 209, 118463.	4.5	13
82	Performance analysis and tank test validation of a hybrid ocean wave-current energy converter with a single power takeoff. Energy Conversion and Management, 2020, 224, 113268.	4.4	27
83	Ocean Observation Technologies: A Review. Chinese Journal of Mechanical Engineering (English) Tj ETQq1 1 0.78	34314 rgB 1.9	T /Qverlock 1
84	Survey of the mechanisms of power take-off (PTO) devices of wave energy converters. Acta Mechanica Sinica/Lixue Xuebao, 2020, 36, 644-658.	1.5	19
85	Optimum power analysis of a self-reactive wave energy point absorber with mechanically-driven power take-offs. Energy, 2020, 195, 116927.	4.5	41
86	Advancements of wave energy converters based on power take off (PTO) systems: A review. Ocean Engineering, 2020, 204, 107248.	1.9	171
87	Frequency Domain Modeling of a Halbach PM Linear Generator Based Two-Body Point Absorber for Wave Energy Conversion. Frontiers in Energy Research, 2020, 8, .	1.2	6
88	Operation characteristics and methods of the hydraulic power take-off system. Transactions of the Institute of Measurement and Control, 2021, 43, 137-150.	1.1	3
89	Characterization and verification of a two-body wave energy converter with a novel power take-off. Renewable Energy, 2021, 163, 910-920.	4.3	34
90	Tidal and Wave Energy Potential Assessment. Green Energy and Technology, 2021, , 217-236.	0.4	3
91	Design and optimization investigation on hydraulic transmission and energy storage system for a floating-array-buoys wave energy converter. Energy Conversion and Management, 2021, 235, 113998.	4.4	17

#	Article	IF	CITATIONS
92	Current Research Status and Challenge for Direct-Drive Wave Energy Conversions. IETE Journal of Research, 2023, 69, 4631-4643.	1.8	1
93	Characterization of the High Graded Magnetic Material Based Linear Generator for Wave Energy Conversion. , 2021, , .		0
94	Theoretical and Experimental Study of A Coaxial Double-Buoy Wave Energy Converter. China Ocean Engineering, 2021, 35, 454-464.	0.6	3
95	Low-RPM Torque Converter (LRTC). Energies, 2021, 14, 5071.	1.6	2
96	Recent Advances in Direct-Drive Power Take-Off (DDPTO) Systems for Wave Energy Converters Based on Switched Reluctance Machines (SRM). Ocean Engineering & Oceanography, 2022, , 487-532.	0.1	4
97	A Set-Up of 7 Laser Triangulation Sensors and a Draw-Wire Sensor for Measuring Relative Displacement of a Piston Rod Mechanical Lead-Through Transmission in an Offshore Wave Energy Converter on the Ocean Floor. , 2012, 2012, 1-32.		6
98	Mathematic Model and Performance Analysis of PMLWG. Journal of Convergence Information Technology, 2012, 7, 677-685.	0.1	0
99	Research of Permanent Magnet Linear Generator for Wave Energy. Journal of Convergence Information Technology, 2012, 7, 694-701.	0.1	4
100	The Frequency Characteristic Analysis of Ocean Rocking Energy Conversion System. Lecture Notes in Computer Science, 2015, , 148-155.	1.0	0
102	Linear Machines: State of the Art with Emphasis on Sustainable Applications. Power Systems, 2019, , 1-23.	0.3	0
103	Superconducting Linear Machines for Electrical Power Generation from the Oceanic Wave. , 2019, , 281-302.		1
104	Dynamics of a hybrid wave-current energy converter with a novel power take-off mechanism. , 2019, , .		0
105	Comprehensive Sensitivity Analysis and Multi-Objective Optimization on a Permanent Magnet Linear Generator for Wave Energy Conversion. SSRN Electronic Journal, 0, , .	0.4	0
106	Optimal design of an axisymmetric two-body wave energy converter with translational hydraulic power take-off system. Renewable Energy, 2022, 183, 586-600.	4.3	9
107	Multiâ€objective optimization of a tubular permanent magnet linear generator with 120° phase belt toroidal windings using response surface method and genetic algorithm. IET Renewable Power Generation, 2022, 16, 352-361.	1.7	3
108	A Critical Review of Power Take-Off Wave Energy Technology Leading to the Conceptual Design of a Novel Wave-Plus-Photon Energy Harvester for Island/Coastal Communities' Energy Needs. Sustainability, 2022, 14, 2354.	1.6	10
109	Power Absorption of A Two-Body Heaving Wave Energy Converter Considering Different Control and Power Take-off Systems. China Ocean Engineering, 2022, 36, 15-27.	0.6	1
110	Experimental and numerical modeling of a piezoelectric floating system for wave energy harvesting. Applied Ocean Research, 2022, 122, 103120.	1.8	1

#	Article	IF	CITATIONS
111	Recent advances in wave energy conversion systems: From wave theory to devices and control strategies. Ocean Engineering, 2022, 252, 111105.	1.9	21
112	Experimental Capture Width Ratio on Unit Module System of Hybrid Wave Energy Converter for Nearshore. Applied Sciences (Switzerland), 2022, 12, 5845.	1.3	0
113	A Review of the Linear Generator Type of Wave Energy Converters' Power Take-Off Systems. Sustainability, 2022, 14, 9936.	1.6	11
114	Comprehensive sensitivity analysis and multi-objective optimization on a permanent magnet linear generator for wave energy conversion. Renewable Energy, 2022, 198, 841-850.	4.3	5
115	Linear Permanent Magnet Vernier Generators for Wave Energy Applications: Analysis, Challenges, and Opportunities. Sustainability, 2022, 14, 10912.	1.6	4
116	Downsizing the Linear PM Generator in Wave Energy Conversion for Improved Economic Feasibility. Journal of Marine Science and Engineering, 2022, 10, 1316.	1.2	7
117	Layout and design optimization of ocean wave energy converters: A scoping review of state-of-the-art canonical, hybrid, cooperative, and combinatorial optimization methods. Energy Reports, 2022, 8, 15446-15479.	2.5	12
118	Concept design of an HTS linear power generator for wave energy conversion. , 2023, 6, 100043.		3
119	Layout optimisation of the two-body heaving wave energy converter array. Renewable Energy, 2023, 205, 410-431.	4.3	6
120	Optimization on Hydrodynamic Performance for First Level Energy-Capturing Enhancement of a Floating Wave Energy Converter System with Flapping-Panel-Slope. Journal of Marine Science and Engineering, 2023, 11, 345.	1.2	1
121	Dynamic Mooring Field Experiment and Design of a WEC Platform Test System. Journal of Offshore Mechanics and Arctic Engineering, 0, , 1-45.	0.6	0