The return of a forgotten polymerâ $\ref{eq:polycaprolactone}$

Progress in Polymer Science 35, 1217-1256 DOI: 10.1016/j.progpolymsci.2010.04.002

Citation Report

#	Article	IF	CITATIONS
1	Repair of Calvarial Defects with Customized Tissue-Engineered Bone Grafts I. Evaluation of Osteogenesis in a Three-Dimensional Culture System. Tissue Engineering, 2003, 9, 113-126.	4.9	121
2	A Poly(Lactic Acid-Co-Caprolactone)–Collagen Hybrid for Tissue Engineering Applications. Tissue Engineering - Part A, 2009, 15, 1667-1675.	1.6	47
3	Engineered Human Skin Fabricated Using Electrospun Collagen–PCL Blends: Morphogenesis and Mechanical Properties. Tissue Engineering - Part A, 2009, 15, 2177-2187.	1.6	232
4	Renewable Rosin Acid-Degradable Caprolactone Block Copolymers by Atom Transfer Radical Polymerization and Ring-Opening Polymerization. Macromolecules, 2010, 43, 8747-8754.	2.2	85
5	Bioactivity of a Chitosan Based Nanocomposite. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 0, 10, 95-106.	0.7	8
6	Design, fabrication and characterization of PCL electrospun scaffolds—a review. Journal of Materials Chemistry, 2011, 21, 9419.	6.7	499
7	Mechanistic Insights of the Initiation Process of the Ring-Opening Polymerization of ε-Caprolactone by Divalent Sm(BH ₄) ₂ (THF) ₂ with DFT: Concerted or Oxidative Reaction?. Organometallics, 2011, 30, 4482-4485.	1.1	15
8	Blending of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and polycaprolactone: Characterization and degradation studies. , 2011, , .		0
9	Degradable Rosin-Ester–Caprolactone Graft Copolymers. Biomacromolecules, 2011, 12, 2171-2177.	2.6	105
10	High performance additive manufactured scaffolds for bone tissue engineering application. Soft Matter, 2011, 7, 8013.	1.2	29
11	Synthesis, characterization, fluorescence labeling and cellular internalization of novel amine-functionalized poly(ethylene glycol)-block-poly(Îμ-caprolactone) amphiphilic block copolymers. Polymer Chemistry, 2011, 2, 1331.	1.9	32
12	A New Insight for an Old System: Protein-PEG Colocalization in Relation to Protein Release from PCL/PEG Blends. Molecular Pharmaceutics, 2011, 8, 2173-2182.	2.3	19
13	Bioprinting of hybrid tissue constructs with tailorable mechanical properties. Biofabrication, 2011, 3, 021001.	3.7	347
14	Elastic properties of polycaprolactone at small strains are significantly affected by strain rate and temperature. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2011, 225, 1015-1020.	1.0	23
15	Stem Cell Differentiation Depending on Different Surfaces. Advances in Biochemical Engineering/Biotechnology, 2011, 126, 263-283.	0.6	17
16	Polymeric Scaffolds in Tissue Engineering Application: A Review. International Journal of Polymer Science, 2011, 2011, 1-19.	1.2	1,277
17	Polymerization of É›-caprolactone using ruthenium(II) mixed metallocene catalysts and isopropyl alcohol: Living character and mechanistic study. Journal of Molecular Catalysis A, 2011, 346, 102-110.	4.8	9
18	Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites. Materials Science and Engineering C, 2011, 31, 1526-1533.	3.8	88

#	Article	IF	Citations
19	Improvement of tensile properties and tuning of the biodegradation behavior of polycaprolactone by addition of electrospun fibers. Polymer, 2011, 52, 4054-4060.	1.8	49
20	Effect of TiO2 morphology on in vitro bioactivity of polycaprolactone/TiO2 nanocomposites. Materials Letters, 2011, 65, 2530-2533.	1.3	24
21	Antibacterial electrospun poly(É›-caprolactone)/ascorbyl palmitate nanofibrous materials. International Journal of Pharmaceutics, 2011, 416, 346-355.	2.6	41
22	Recent Developments in Ring-Opening Polymerization of Lactones. Advances in Polymer Science, 2011, , 173-217.	0.4	114
23	Investigation of PLLA/PCL Blends and Paclitaxel Release Profiles. AAPS PharmSciTech, 2011, 12, 1442-1453.	1.5	45
24	Triggered disassembly of hierarchically assembled onion-like micelles into the pristine core–shell micelles via a small change in pH. Acta Biomaterialia, 2011, 7, 3729-3737.	4.1	32
25	Synthesis and characterization of poly(Îμ-caprolactone) reinforced with aligned hybrid electrospun PMMA/nano-Al2O3 fibre mats by film stacking. Journal of Materials Science, 2011, 46, 6124-6130.	1.7	15
26	Preparation and characterization of electrospun PCL/PLGA membranes and chitosan/gelatin hydrogels for skin bioengineering applications. Journal of Materials Science: Materials in Medicine, 2011, 22, 2207-2218.	1.7	73
27	Novel Biodegradable Polycaprolactone Occlusion Device Combining Nanofibrous PLGA/Collagen Membrane for Closure of Atrial Septal Defect (ASD). Annals of Biomedical Engineering, 2011, 39, 2759-2766.	1.3	29
28	Nitrogen grafting onto polycarprolactone by a simple surface modification with atmospheric pressure glow discharge (Ar-APGD) and promoted neonatal human fibroblast growth. Macromolecular Research, 2011, 19, 1134-1141.	1.0	10
29	Curcumin implants for continuous systemic delivery: safety and biocompatibility. Drug Delivery and Translational Research, 2011, 1, 332-341.	3.0	16
30	Synthesis of repeating sequence copolymers of lactic, glycolic, and caprolactic acids. Journal of Polymer Science Part A, 2011, 49, 1847-1855.	2.5	39
31	Synthesis, characterization, and properties of poly(esterâ€phosphoester)s by lanthanum triphenolate atalyzed ringâ€opening copolymerization. Journal of Polymer Science Part A, 2011, 49, 4987-4992.	2.5	11
32	Titanium complexes based on aminodiol ligands for the ringâ€opening polymerization of εâ€caprolactone, <i>rac</i> â€Î²â€butyrolactone, and trimethylene carbonate. Journal of Polymer Science Part A, 2011, 49, 5176-5185.	2.5	21
33	An Electrospun Degradable Scaffold Based on a Novel Hydrophilic Polyester for Tissueâ€Engineering Applications. Macromolecular Bioscience, 2011, 11, 1684-1692.	2.1	15
34	Design of Bimodal PCL and PCLâ€HA Nanocomposite Scaffolds by Two Step Depressurization During Solidâ€state Supercritical CO ₂ Foaming. Macromolecular Rapid Communications, 2011, 32, 1150-1156.	2.0	68
35	Synthesis of Dendrigraft Poly(ϵ aprolactone)s Using Side Hydroxyl Groups for the Grafting of Branch Chains. Macromolecular Rapid Communications, 2011, 32, 1839-1845.	2.0	6
36	Polymers in Drug Delivery—State of the Art and Future Trends. Advanced Engineering Materials, 2011, 13, B61.	1.6	105

		CITATION REPORT		
#	Article		IF	CITATIONS
37	Direct Writing By Way of Melt Electrospinning. Advanced Materials, 2011, 23, 5651-5	657.	11.1	622
38	Poly(epsilon-caprolactone)/clay nanocomposites via "click―chemistry. European I 2011, 47, 937-941.	Polymer Journal,	2.6	53
39	Chitosan/Poly(É>-caprolactone) blend scaffolds for cartilage repair. Biomaterials, 2011,	32, 1068-1079.	5.7	204
40	In-vitro release of anti-proliferative paclitaxel from novel balloon-expandable polycapro stents. Materials Science and Engineering C, 2011, 31, 1129-1135.	actone	3.8	9
41	Solid-state supercritical CO2 foaming of PCL and PCL-HA nano-composite: Effect of co thermal history and foaming process on foam pore structure. Journal of Supercritical F 158-167.	mposition, luids, 2011, 58,	1.6	88
42	Electrospraying, a Reproducible Method for Production of Polymeric Microspheres for Applications. Polymers, 2011, 3, 131-149.	Biomedical	2.0	262
43	Selective laser sintering and its application in biomedical engineering. MRS Bulletin, 20	011, 36, 998-1005.	1.7	69
45	Fabrication of an Electrically-Resistive, Varistor-Polymer Composite. International Journ Molecular Sciences, 2012, 13, 15640-15652.	al of	1.8	11
46	Preparation of Electrospun Poly(ε-caprolactone)/Poly(trimethylene carbonate) Blend S <i>In Situ</i> Vascular Tissue Engineering. Advanced Materials Research, 2012, 629, 6	Scaffold for 0-63.	0.3	0
47	Nanocomposite Fibre Fabrication via in situ Monomer Grafting and Bonding on Laser-g Nanoparticles. Journal of Laser Micro Nanoengineering, 2012, 7, 21-27.	enerated	0.4	15
48	Controlled-release systemic delivery - a new concept in cancer chemoprevention. Carci 2012, 33, 1608-1615.	nogenesis,	1.3	37
49	Preparation and In Vitro Characterization of Polycaprolactone and Demineralized Bone Scaffolds. Materials Research Society Symposia Proceedings, 2012, 1417, 30.	Matrix	0.1	0
50	Multifunctional aliphatic polyester nanofibers for tissue engineering. Biomatter, 2012,	2, 202-212.	2.6	39
51	A Tissue Engineering Solution for Segmental Defect Regeneration in Load-Bearing Long Translational Medicine, 2012, 4, 141ra93.	g Bones. Science	5.8	301
52	Polycaprolactone–starch blends with corn-based coupling agent: physical properties vitro analysis. Proceedings of the Institution of Mechanical Engineers, Part H: Journ Engineering in Medicine, 2012, 226, 693-698.		1.0	7
53	Synthesis and Characterization of PCL/TiO ₂ Nanocomposites C by <i> In Situ</i> Polymerization. Applied Mechanics and Materials, 0, 182-1	Dbtained 83, 194-197.	0.2	0
54	Synthesis of Block Copolymers of Varying Architecture Through Suppression of Transe during Coordinated Anionic Ring Opening Polymerization. International Journal of Bior 2012, 1-11.	sterification naterials, 2012,	1.1	9
55	Biodegradable Polymeric Biomaterials. , 2012, , 5-1-5-38.			1

#	Article	IF	CITATIONS
56	Isothermal Crystallization Kinetics, Morphology, and Dynamic Mechanical Properties of Biodegradable Poly(ε-caprolactone) and Octavinyl–Polyhedral Oligomeric Silsesquioxanes Nanocomposites. Industrial & Engineering Chemistry Research, 2012, 51, 3203-3208.	1.8	39
57	Electrospun Azido-PCL Nanofibers for Enhanced Surface Functionalization by Click Chemistry. ACS Applied Materials & Interfaces, 2012, 4, 6499-6504.	4.0	55
58	Uniaxial Tensile Deformation of Poly(ε-caprolactone) Studied with SAXS and WAXS Techniques Using Synchrotron Radiation. Macromolecules, 2012, 45, 8752-8759.	2.2	71
59	Advances and future directions for management of trauma patients with musculoskeletal injuries. Lancet, The, 2012, 380, 1109-1119.	6.3	124
60	Synthesis and Properties of Degradable Copolymers Composed of Poly(<i>ε</i> â€caprolactone) and 3,4â€Dihydroxycinnamic Acid. Chinese Journal of Chemistry, 2012, 30, 2445-2452.	2.6	4
61	The Development of Novel Biodegradable Bifurcation Stents for the Sustainable Release of Anti-Proliferative Sirolimus. Annals of Biomedical Engineering, 2012, 40, 1961-1970.	1.3	4
62	Oxygen plasma-induced graft polymerization of acrylic acid on polycaprolactone monofilament. European Polymer Journal, 2012, 48, 1940-1948.	2.6	28
63	Electrospraying of polymers with therapeutic molecules: State of the art. Progress in Polymer Science, 2012, 37, 1510-1551.	11.8	363
64	Anisotropic Fibrous Scaffolds for Articular Cartilage Regeneration. Tissue Engineering - Part A, 2012, 18, 2073-2083.	1.6	135
65	Synthesis and evaluation of triazole-linked poly(ε-caprolactone)-graft-poly(2-methyl-2-oxazoline) copolymers as potential drug carriers. Chemical Communications, 2012, 48, 2879.	2.2	56
66	Layered Double Hydroxides as Nano Additives in Poly(ϵ-caprolactone). Molecular Crystals and Liquid Crystals, 2012, 556, 114-123.	0.4	8
67	Production and Characterization of Anisotropic Particles from Biodegradable Materials. Langmuir, 2012, 28, 3756-3765.	1.6	28
68	Biodegradable Optode-Based Nanosensors for in Vivo Monitoring. Analytical Chemistry, 2012, 84, 5787-5793.	3.2	41
69	Surface modification of polycaprolactone substrates using collagen-conjugated poly(methacrylic) Tj ETQq1 1 0.7 Chemistry, 2012, 22, 13039.	84314 rgf 6.7	3T /Overlock 78
70	Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Biomedical Microdevices, 2012, 14, 1115-1127.	1.4	118
71	Effect of Cross-Linking Methods on Structure and Properties of Poly(Îμ-caprolactone) Stabilized Hydrogels Containing Biopolymers. Biomacromolecules, 2012, 13, 2263-2272.	2.6	19
72	Embedded enzymatic biomaterial degradation: Flow conditions & relative humidity. Polymer, 2012, 53, 3454-3461.	1.8	19
73	Synergistic reinforcement of nanoclay and mesoporous silicate fillers in polycaprolactone: The effect of nanoclay on the compatibility of the components, Polymer, 2012, 53, 3741-3748.	1.8	15

		CITATION R	EPORT	
#	Article		IF	CITATIONS
74	Additive manufacturing of tissues and organs. Progress in Polymer Science, 2012, 37, 2	1079-1104.	11.8	997
75	Regulating MC3T3-E1 Cells on Deformable Poly(ε-caprolactone) Honeycomb Films Pre Surfactant-Free Breath Figure Method in a Water-Miscible Solvent. ACS Applied Materi Interfaces, 2012, 4, 4966-4975.		4.0	94
76	Polymeric Modification and Its Implication in Drug Delivery: Poly-ε-caprolactone (PCL) Polymer. Molecular Pharmaceutics, 2012, 9, 2365-2379.	as a Model	2.3	159
77	Performance of electrospun poly(ε-caprolactone) fiber meshes used with mineral triox in a pulp capping procedure. Acta Biomaterialia, 2012, 8, 2986-2995.	ide aggregates	4.1	33
78	Poly(É›-caprolactone)nanocapsules as carrier systems for herbicides: Physico-chemical characterization and genotoxicity evaluation. Journal of Hazardous Materials, 2012, 23	1-232, 1-9.	6.5	194
79	Biocomposites based on polycaprolactone reinforced with alfa fibre mats. Composites Science and Manufacturing, 2012, 43, 742-747.	Part A: Applied	3.8	23
80	Coaxially Electrospun Scaffolds Based on Hydroxyl-Functionalized Poly(ε-caprolactone with VEGF for Tissue Engineering Applications. Biomacromolecules, 2012, 13, 3650-36		2.6	49
81	Properties of recycled polycaprolactoneâ€based thermoplastic polyurethane filled with montmorillonites. Journal of Applied Polymer Science, 2013, 128, 2186-2196.		1.3	3
82	Bustin' Bunnies: An Adaptable Inquiry-Based Approach Introducing Molecular Weig Properties. Journal of Chemical Education, 2012, 89, 928-932.	;ht and Polymer	1.1	17
83	Ring-Opening Polymerization of Cyclic Esters. , 2012, , 761-778.			10
84	Label-free magnetic resonance imaging to locate live cells in three-dimensional porous Journal of the Royal Society Interface, 2012, 9, 2321-2331.	scaffolds.	1.5	9
85	Bone tissue engineering: from bench to bedside. Materials Today, 2012, 15, 430-435.		8.3	144
86	Integrating sol–gel with cold plasmas modified porous polycaprolactone membranes drug-release of silver-sulfadiazine and ketoprofen. Applied Surface Science, 2012, 262,		3.1	27
87	Melting behavior of biodegradable polyesters in carbon dioxide at high pressures. Jourr Supercritical Fluids, 2012, 72, 278-287.	al of	1.6	33
88	Preparation and characterization of crosslinked poly(ε-caprolactone)/polyhedral oligor silsesquioxane nanocomposites by electron beam irradiation. Nuclear Instruments & M Physics Research B, 2012, 287, 141-147.	neric ethods in	0.6	5
89	Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extrac Degradation and Stability, 2012, 97, 1621-1632.	tion. Polymer	2.7	68
90	Preparation of open porous polycaprolactone microspheres and their applications as el carriers in hydrogel system. Materials Science and Engineering C, 2012, 32, 2589-2595	fective cell	3.8	28
91	Physical Tuning of Cellulose-Polymer Interactions Utilizing Cationic Block Copolymers & and Quaternized PDMAEMA. ACS Applied Materials & amp; Interfaces, 2012, 4, 6796-6	Based on PCL 807.	4.0	29

#	Article	IF	CITATIONS
92	Catalyst-Free Plasma-Assisted Copolymerization of Poly(Îμ-caprolactone)-poly(ethylene glycol) for Biomedical Applications. ACS Macro Letters, 2012, 1, 764-767.	2.3	45
93	Cationic polyesters bearing pendent amino groups prepared by thiol–ene chemistry. Polymer Chemistry, 2012, 3, 362-368.	1.9	41
94	A biocompatible, metal-free catalyst and its application in microwave-assisted synthesis of functional polyesters. Polymer Chemistry, 2012, 3, 384-389.	1.9	18
95	An Alternative Solvent System for Blend Electrospinning of Polycaprolactone/Chitosan Nanofibres. Macromolecular Symposia, 2012, 321-322, 71-75.	0.4	25
96	Nano thick poly(ε-caprolactone)-poly(ethylene glycol) coatings developed by catalyst-free plasma assisted copolymerization process for biomedical applications. RSC Advances, 2012, 2, 9114.	1.7	22
97	In-depth study on aminolysis of poly(É›-caprolactone): Back to the fundamentals. Science China Chemistry, 2012, 55, 2419-2427.	4.2	40
98	Injectable Biodegradable Polycaprolactone–Sebacic Acid Gels for Bone Tissue Engineering. Tissue Engineering - Part A, 2012, 18, 137-146.	1.6	26
99	Easily synthesized novel biodegradable copolyesters with adjustable properties for biomedical applications. Soft Matter, 2012, 8, 5466.	1.2	43
100	Tissue Engineering III: Cell - Surface Interactions for Tissue Culture. Advances in Biochemical Engineering/Biotechnology, 2012, , .	0.6	8
102	Determining early adhesion of cells on polysaccharides/PCL surfaces by a quartz crystal microbalance. Journal of Materials Science: Materials in Medicine, 2012, 23, 3067-3073.	1.7	6
103	Small-diameter tissue engineered vascular graft made of electrospun PCL/lecithin blend. Journal of Materials Science: Materials in Medicine, 2012, 23, 2639-2648.	1.7	47
104	Electrospun matrices for localised controlled drug delivery: release of tetracycline hydrochloride from layers of polycaprolactone and poly(ethylene-co-vinyl acetate). Drug Delivery and Translational Research, 2012, 2, 477-488.	3.0	43
105	Scaffolds for Growth Factor Delivery as Applied to Bone Tissue Engineering. International Journal of Polymer Science, 2012, 2012, 1-25.	1.2	73
107	Development of a total atherosclerotic occlusion with cell-mediated calcium deposits in a rabbit femoral artery using tissue-engineering scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 193-204.	1.3	6
108	Block and random copolymerization of εâ€caprolactone, <i>L</i> â€, and <i>rac</i> â€lactide using titanium complex derived from aminodiol ligand. Journal of Polymer Science Part A, 2012, 50, 2161-2171.	2.5	60
109	Crystallization behavior of poly(ϵâ€caprolactone)/Tio ₂ nanocomposites obtained by in situ polymerization. Polymer Engineering and Science, 2012, 52, 1047-1057.	1.5	13
110	Double proteinâ€coated polyâ€Îµâ€caprolactone scaffolds: Successful 2D to 3D transfer. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1783-1791.	2.1	18
111	<i>In vitro</i> mineralization and bone osteogenesis in poly(εâ€caprolactone)/gelatin nanofibers. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3008-3019.	2.1	55

#	Article	IF	CITATIONS
112	Porous polycaprolactone/nanohydroxyapatite tissue engineering scaffolds fabricated by combining NaCl and PEG as coâ€porogens: Structure, property, and chondrocyte–scaffold interaction <i>in vitro</i> . Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 956-966.	1.6	32
113	A Versatile Synthetic Platform for a Wide Range of Functionalized Biomaterials. Advanced Functional Materials, 2012, 22, 2812-2820.	7.8	41
114	Temperatureâ€Memory Effect of Copolyesterurethanes and their Application Potential in Minimally Invasive Medical Technologies. Advanced Functional Materials, 2012, 22, 3057-3065.	7.8	132
115	A comparative study of TiO ₂ and surfaceâ€treated TiO ₂ nanoparticles on thermal and mechanical properties of poly(εâ€caprolactone) nanocomposites. Journal of Applied Polymer Science, 2012, 125, 3871-3879.	1.3	22
116	Production and characterization of polycaprolactone nanofibers via forcespinningâ,,¢ technology. Journal of Applied Polymer Science, 2012, 126, 473-479.	1.3	108
117	Preparation of porous polycaprolactone tubular matrix by salt leaching process. Journal of Applied Polymer Science, 2012, 126, 1505-1510.	1.3	10
118	Evolutionary design of bone scaffolds with reference to material selection. International Journal for Numerical Methods in Biomedical Engineering, 2012, 28, 789-800.	1.0	14
119	Next Generation Nerve Guides: Materials, Fabrication, Growth Factors, and Cell Delivery. Tissue Engineering - Part B: Reviews, 2012, 18, 116-128.	2.5	181
120	Treatment of long bone defects and non-unions: from research to clinical practice. Cell and Tissue Research, 2012, 347, 501-519.	1.5	72
121	Radiolabeled gelatin type B analogues can be used for non-invasive visualisation and quantification of protein coatings on 3D porous implants. Journal of Materials Science: Materials in Medicine, 2012, 23, 1961-1969.	1.7	4
122	Polymeric Nanoparticles Affect the Intracellular Delivery, Antiretroviral Activity and Cytotoxicity of the Microbicide Drug Candidate Dapivirine. Pharmaceutical Research, 2012, 29, 1468-1484.	1.7	74
123	Engineering of vascularized adipose constructs. Cell and Tissue Research, 2012, 347, 747-757.	1.5	45
124	Stem cell-based tissue engineering in veterinary orthopaedics. Cell and Tissue Research, 2012, 347, 677-688.	1.5	27
125	Musculoskeletal tissue engineering by endogenous stem/progenitor cells. Cell and Tissue Research, 2012, 347, 665-676.	1.5	30
126	Micro/nanoscale technologies for the development of hormone-expressing islet-like cell clusters. Biomedical Microdevices, 2012, 14, 779-789.	1.4	15
127	Electroactive porous tubular scaffolds with degradability and non-cytotoxicity for neural tissue regeneration. Acta Biomaterialia, 2012, 8, 144-153.	4.1	105
128	Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Acta Biomaterialia, 2012, 8, 302-312.	4.1	69
129	Hot melt poly-ε-caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin. Acta Biomaterialia, 2012, 8, 1507-1518.	4.1	57

#	Article	IF	CITATIONS
130	Self-assembled nano-wire of an amphiphilic biodegradable oligosaccharide-based graft copolymer in water. Carbohydrate Polymers, 2012, 87, 2306-2312.	5.1	7
131	Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloids and Surfaces B: Biointerfaces, 2012, 93, 226-234.	2.5	177
132	Preparation and characterization of polycaprolactone/forsterite nanocomposite porous scaffolds designed for bone tissue regeneration. Composites Science and Technology, 2012, 72, 716-723.	3.8	101
133	FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury, 2012, 43, 553-572.	0.7	598
134	Surface properties of amino-functionalized poly(Îμ-caprolactone) membranes and the improvement of human mesenchymal stem cell behavior. Journal of Colloid and Interface Science, 2012, 368, 64-69.	5.0	11
135	Controllable mineral coatings on PCL scaffolds as carriers for growth factor release. Biomaterials, 2012, 33, 713-721.	5.7	87
136	Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials, 2012, 33, 2880-2891.	5.7	265
137	Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing inÂvivo. Biomaterials, 2012, 33, 3375-3387.	5.7	143
138	InÂvivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone). Biomaterials, 2012, 33, 4309-4318.	5.7	217
139	A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials, 2012, 33, 5560-5573.	5.7	199
140	Formation and size distribution of pores in poly(É›-caprolactone) foams prepared by pressure quenching using supercritical CO2. Journal of Supercritical Fluids, 2012, 61, 175-190.	1.6	57
141	Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers—A review. Progress in Polymer Science, 2012, 37, 715-765.	11.8	181
142	Poly-Ñ"-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 2012, 158, 15-33.	4.8	794
143	Design and Fabrication of Tubular Scaffolds via Direct Writing in a Melt Electrospinning Mode. Biointerphases, 2012, 7, 13.	0.6	176
144	Optimization of Extrusion Parameters for Preparing PCLâ€Layered Silicate Nanocomposites Supported by Modeling of Twinâ€Screw Extrusion. Macromolecular Materials and Engineering, 2013, 298, 210-220.	1.7	6
145	Surface modification of polycaprolactone monofilament by low pressure oxygen plasma. Journal of Applied Polymer Science, 2013, 127, 1744-1750.	1.3	7
146	Biodegradation study on poly(<i>ε</i> â€εaprolactone) with bimodal molecular weight distribution. Journal of Applied Polymer Science, 2013, 127, 4726-4735.	1.3	23
147	Determination of intrinsic birefringence values of polycaprolactone filaments. Polymer International, 2013, 62, 49-53.	1.6	11

	CITATION RE	PORT	
#	Article	IF	CITATIONS
148	Synthesis and characterization of poly(É›-caprolactone)/Fe3o4 nanocomposites by in situ polymerization. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1011-1021.	2.0	8
149	Facile preparation of poly(ε-caprolactone)/Fe3O4@graphene oxide superparamagnetic nanocomposites. Polymer Bulletin, 2013, 70, 2359-2371.	1.7	32
150	Influence of scaffold forming techniques on stress relaxation behavior of polycaprolactone scaffolds. Journal of Applied Polymer Science, 2013, 130, 4237-4244.	1.3	6
151	Protected N-heterocyclic carbenes as latent pre-catalysts for the polymerization of ε-caprolactone. Polymer Chemistry, 2013, 4, 4172.	1.9	67
152	Thermal and mechanical properties of semiâ€interpenetrating polymer networks composed of diisocyanateâ€bridged, fourâ€armed, starâ€shaped εâ€caprolactone oligomers and poly(εâ€caprolactone). Jour of Applied Polymer Science, 2013, 130, 4229-4236.	nals	1
153	Isothermal crystallization kinetics and mechanical properties of polycaprolactone composites with zinc oxide, oleic acid, and glycerol monooleate. Journal of Applied Polymer Science, 2013, 130, 1259-1275.	1.3	16
154	Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs. Nanoscale, 2013, 5, 7528.	2.8	21
155	Engineered Spider Silk Proteinâ€ <scp>B</scp> ased Composites for Drug Delivery. Macromolecular Bioscience, 2013, 13, 1431-1437.	2.1	38
156	1H NMR relaxometry and X-ray study of PCL/nevirapine hybrids. Polymer Testing, 2013, 32, 553-566.	2.3	32
158	Injectable and thermogelling hydrogels of PCL-g-PEG: mechanisms, rheological and enzymatic degradation properties. Journal of Materials Chemistry B, 2013, 1, 1249.	2.9	41
159	Development and Evaluation of Sustained-Release Etoposide-Loaded Poly(ε-Caprolactone) Implants. AAPS PharmSciTech, 2013, 14, 890-900.	1.5	27
160	Morphology, crystallization and mechanical properties of poly(É›-caprolactone)/graphene oxide nanocomposites. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1148-1160.	2.0	40
161	Potential of biodegradable microneedles as a transdermal delivery vehicle for lidocaine. Biotechnology Letters, 2013, 35, 1351-1363.	1.1	39
162	Tissue growth into threeâ€dimensional composite scaffolds with controlled microâ€features and nanotopographical surfaces. Journal of Biomedical Materials Research - Part A, 2013, 101, 2796-2807.	2.1	44
163	Controlled ring-opening polymerization of cyclic esters with phosphoric acid as catalysts. Colloid and Polymer Science, 2013, 291, 2155-2162.	1.0	27
164	A clean and sustainable route towards the design and fabrication of biodegradable foams by means of supercritical CO2/ethyl lactate solid-state foaming. RSC Advances, 2013, 3, 17355.	1.7	21
165	Ring-Opening (ROP) versus Ring-Expansion (REP) Polymerization of ε-Caprolactone To Give Linear or Cyclic Polycaprolactones. Macromolecules, 2013, 46, 6388-6394.	2.2	75
166	Copolymerisation of ε-caprolactone and trimethylene carbonate catalysed by methanesulfonic acid. European Polymer Journal, 2013, 49, 4025-4034.	2.6	17

ARTICLE IF CITATIONS Nucleation as a new concept for morphology adjustment of crystalline thermosetting epoxy 167 2.0 19 polymers. Reactive and Functional Polymers, 2013, 73, 1038-1045. Bioglass®-based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery. Ceramics International, 2013, 39, 7517-7522. 168 2.3 Development of intra-vaginal matrices from polycaprolactone for sustained release of antimicrobial 169 1.2 20 agents. Journal of Biomaterials Applications, 2013, 28, 74-83. In vitro cell-biological performance and structural characterization of selective laser sintered and plasma surface functionalized polycaprolactone scaffolds for bone regeneration. Materials Science and Engineering C, 2013, 33, 3404-3412. 170 Hydrophobic Polymers from Food Waste: Resources and Synthesis. Polymer Reviews, 2013, 53, 627-694. 171 5.3 74 Porous Copolymers of \hat{l}_{μ} -Caprolactone as Scaffolds for Tissue Engineering. Macromolecules, 2013, 46, 2.2 8136-8143. Dynamics in Crystallites of Poly(ε-caprolactone) As Investigated by Solid-State NMR. Macromolecules, 173 2.2 52 2013, 46, 7818-7825. Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold 174 3.8 66 with surface deposited nano-hydroxyapatite. Materials Science and Engineering C, 2013, 33, 2376-2385. Hardystonite improves biocompatibility and strength of electrospun polycaprolactone nanofibers 175 3.8 56 over hydroxyapatite: A comparative stúdy. Materials Science and Engineering C, 2013, 33, 2926-2936. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication, 2013, 5, 035007. Optimization of 1±-tocopherol loaded nanocapsules by the nanoprecipitation method. Industrial Crops 177 2.5 48 and Products, 2013, 50, 896-903. Enhanced Hydrolytic Degradation of Heterografted Polyglycidols: Phosphonoethylated Monoester and Polycaprolactone Grafts. Biomacromolecules, 2013, 14, 3985-3996. 2.6 Effect of Temperature and Pressure on the Behavior of Poly(Îμ-caprolactone) in the Presence of Supercritical Carbon Dioxide. Industrial & amp; Engineering Chemistry Research, 2013, 52, 15594-15601. 179 1.8 45 Characterisation of PCL and PCL/PLA Scaffolds for Tissue Engineering. Procedia CIRP, 2013, 5, 110-114. 1.0 133 Control on molecular weight reduction of $poly(\hat{\mu}-caprolactone)$ during melt spinning $\hat{a} \in$ " A way to 181 3.8 35 produce high strength biodegradable fibers. Materials Science and Engineering C, 2013, 33, 4213-4220. Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly- $\hat{\mu}$ -caprolactone 59 scaffolds in osteogenic tissue engineering. Acta Biomaterialia, 2013, 9, 7699-7708. A facile synthesis of polyaniline/polyethylene glycol/polyaniline terpolymers: preparation of electrospun conducting nanofibers by blending of the terpolymers with polycaprolactone. Polymer 183 1.7 14 Bulletin, 2013, 70, 3529-3545. Fabrication and biocompatibility of novel bilayer scaffold for skin tissue engineering applications. 184 1.2 Journal of Biomaterials Applications, 2013, 27, 605-615.

#	Article	IF	CITATIONS
185	A road map for a tissue engineering concept for restoring structure and function after limb loss. Journal of Materials Science: Materials in Medicine, 2013, 24, 2659-2663.	1.7	9
186	Development of biodegradable polycaprolactone film as an internal fixation material to enhance tendon repair: an in vitro study. BMC Musculoskeletal Disorders, 2013, 14, 246.	0.8	9
187	Nanoencapsulation of water-soluble drug, lamivudine, using a double emulsion spray-drying technique for improving HIV treatment. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	20
188	A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomaterialia, 2013, 9, 5630-5642.	4.1	176
189	Crystallization Kinetics and Morphology of Novel Miscible Crystalline/Amorphous Polymer Blends of Biodegradable Poly(butylene succinate- <i>co</i> -butylene carbonate) and Poly(vinyl phenol). Industrial & Engineering Chemistry Research, 2013, 52, 10198-10205.	1.8	13
190	A comparative analysis of mass losses of some aliphatic polyesters upon enzymatic degradation. Polymer Testing, 2013, 32, 209-214.	2.3	28
191	Crystallization and melting of poly(glycerol adipate)â€based graft copolymers with single and double crystallizable side chains. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1581-1591.	2.4	20
192	Rational design of nanofiber scaffolds for orthopedic tissue repair and regeneration. Nanomedicine, 2013, 8, 1459-1481.	1.7	65
193	One-step Synthesis of PCL-Urethane Networks using a Crosslinking/de-crosslinking Agent. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 728-737.	1.2	13
194	Polymer Chemistry in an Undergraduate Curriculum. ACS Symposium Series, 2013, , 113-127.	0.5	Ο
195	Singleâ€step lipaseâ€catalyzed functionalization of mediumâ€chainâ€length polyhydroxyalkanoates. Journal of Chemical Technology and Biotechnology, 2013, 88, 1328-1335.	1.6	19
196	Imidodiphosphoric acid as a bifunctional catalyst for the controlled ring-opening polymerization of Î-valerolactone and Îμ-caprolactone. Polymer Chemistry, 2013, 4, 5432.	1.9	51
197	Synthesis and characterization of graft copolymers able to form polymersomes and worm-like aggregates. Soft Matter, 2013, 9, 10364.	1.2	22
198	Effect of porosity on long-term degradation of poly (Îμ-caprolactone) scaffolds andÂtheir cellular response. Polymer Degradation and Stability, 2013, 98, 209-218.	2.7	59
199	Recent Advances in the Production, Recovery and Applications of Polyhydroxyalkanoates. Journal of Polymers and the Environment, 2013, 21, 580-605.	2.4	105
200	Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds. Acta Biomaterialia, 2013, 9, 5997-6005.	4.1	156
201	Synthesis, characterization and enzymatic degradation of novel biodegradable copolymers of 5-allyloxy-1,3-dioxan-2-one with Îμ-caprolactone. Polymer Degradation and Stability, 2013, 98, 325-330.	2.7	5
202	Preparation of oil-modified polycaprolactone and its further modification with benzoxazine for coating purposes. Progress in Organic Coatings, 2013, 76, 137-146.	1.9	22

#	Article	IF	CITATIONS
203	How smart do biomaterials need to be? A translational science and clinical point of view. Advanced Drug Delivery Reviews, 2013, 65, 581-603.	6.6	429
204	Hydrolytic degradation of composites of poly(L-lactide-co-ɛ-caprolactone) 70/30 and β-tricalcium phosphate. Journal of Biomaterials Applications, 2013, 28, 529-543.	1.2	13
205	Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 2013, 34, 8-37.	2.0	553
206	Poly(ε-caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers. Acta Biomaterialia, 2013, 9, 8232-8244.	4.1	16
207	Influence of polymer processing technique on long term degradation of poly(ε-caprolactone) constructs. Polymer Degradation and Stability, 2013, 98, 44-51.	2.7	22
208	Fabrication and <i>in vitro</i> characterization of bioactive glass composite scaffolds for bone regeneration. Biofabrication, 2013, 5, 045005.	3.7	81
209	Light scattering behavior and the kinetics of pressure-induced phase separation in solutions of poly(ε-caprolactone) in acetoneÂ+ÂCO2 binary fluid mixtures. Polymer, 2013, 54, 5719-5732.	1.8	2
210	Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation. Biomaterials, 2013, 34, 7016-7032.	5.7	112
211	Partially crystalline polyols lead to morphology changes and improved mechanical properties of cationically polymerized epoxy resins. European Polymer Journal, 2013, 49, 167-176.	2.6	31
212	Recent advances in ring-opening polymerization strategies toward α,ï‰-hydroxy telechelic polyesters and resulting copolymers. European Polymer Journal, 2013, 49, 768-779.	2.6	64
213	Effects of Surface Topography, Hydrophilicity and Chemistry of Surface-treated PCL Scaffolds on Chondrocyte Infiltration and ECM Production. Procedia Engineering, 2013, 59, 158-165.	1.2	33
214	Poly(ϵ-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opinion on Drug Delivery, 2013, 10, 623-638.	2.4	186
215	Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles – a review. Journal of Materials Chemistry B, 2013, 1, 1994.	2.9	92
216	Release behaviour of carbamazepine-loaded poly(Îμ-caprolactone)/poly(ethylene oxide) microspheres. Journal of Microencapsulation, 2013, 30, 151-160.	1.2	15
217	Effect of topology on the adhesive forces between electrospun polymer fibers using a T-peel test. Polymer Engineering and Science, 2013, 53, 2219-2227.	1.5	13
218	Synthesis and degradation behavior of miktoarm poly(É›-caprolactone)2-b-poly(L-lactone)2 microspheres. Polymer Journal, 2013, 45, 420-426.	1.3	7
219	Crystallinity and domain size of cured urea–formaldehyde resin adhesives with different formaldehyde/urea mole ratios. European Polymer Journal, 2013, 49, 532-537.	2.6	87
220	Immune system targeting by biodegradable nanoparticles for cancer vaccines. Journal of Controlled Release, 2013, 168, 179-199.	4.8	212

#	Article	IF	CITATIONS
221	Aspirin-loaded electrospun poly(ε-caprolactone) tubular scaffolds: potential small-diameter vascular grafts for thrombosis prevention. Journal of Materials Science: Materials in Medicine, 2013, 24, 523-532.	1.7	48
222	Development of novel aligned nanofibrous composite membranes for guided bone regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 24, 9-20.	1.5	79
223	Controlled release of metronidazole from composite poly-ε-caprolactone/alginate (PCL/alginate) rings for dental implants. Dental Materials, 2013, 29, 656-665.	1.6	45
224	Influence of amorphous block on the thermal behavior of well-defined block copolymers based on ε-caprolactone. Journal of Thermal Analysis and Calorimetry, 2013, 112, 1277-1287.	2.0	13
225	Organogelation behavior, thermal and mechanical properties of polymer network formed by the Diels–Alder reaction of furan- and maleimide-terminated four-arm star-shaped ε-caprolactone oligomers. Polymer, 2013, 54, 3206-3216.	1.8	25
226	Intramolecular Cyclization for Stimuli-Controlled Depolymerization of Polycaprolactone Particles Leading to Disassembly and Payload Release. ACS Macro Letters, 2013, 2, 432-435.	2.3	50
227	Direct Adhesion of Endothelial Cells to Bioinspired Poly(dopamine) Coating Through Endogenous Fibronectin and Integrin α ₅ 1² ₁ . Macromolecular Bioscience, 2013, 13, 483-493.	2.1	67
228	Low temperature extruded implants based on novel hydrophilic multiblock copolymer for long-term protein delivery. European Journal of Pharmaceutical Sciences, 2013, 49, 578-587.	1.9	40
229	Modification of tricomponent and dicomponent poly(εâ€caprolactone)â€coâ€poly(ethylene glycol) with methotrexate and folic acid. Journal of Applied Polymer Science, 2013, 129, 721-734.	1.3	5
230	Aminolysis-based surface modification of polyesters for biomedical applications. RSC Advances, 2013, 3, 2509-2519.	1.7	119
231	Toward tunable amphiphilic copolymers via CuAAC click chemistry of oligocaprolactones onto starch backbone. Carbohydrate Polymers, 2013, 96, 259-269.	5.1	23
232	Antibacterial performance of solvent cast polycaprolactone (PCL) films containing essential oils. Food Control, 2013, 34, 214-220.	2.8	48
233	Synthesis and characterization of functionalized poly(É›-caprolactone). Journal of Polymer Science Part A, 2013, 51, 3375-3382.	2.5	13
234	Compostable Polymer Materials. , 2013, , 189-211.		6
235	Development of bilayer and trilayer nanofibrous/microfibrous scaffolds for regenerative medicine. Biomaterials Science, 2013, 1, 942.	2.6	37
236	Biomimetic Three-Dimensional Anisotropic Geometries by Uniaxial Stretch of Poly(É>-Caprolactone) Films for Mesenchymal Stem Cell Proliferation, Alignment, and Myogenic Differentiation. Tissue Engineering - Part C: Methods, 2013, 19, 538-549.	1.1	48
237	Functionalised polycaprolactone films and 3D scaffolds via gamma irradiation-induced grafting. Journal of Materials Chemistry B, 2013, 1, 4171.	2.9	37
238	The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer. 2013. 54. 4333-4350.	1.8	154

		CITATION REPORT		
#	Article		IF	CITATIONS
239	Processing strategies in bionanocomposites. Progress in Polymer Science, 2013, 38, 1	543-1589.	11.8	186
240	Efficacy of methotrexate-loaded poly(ε-caprolactone) implants in Ehrlich solid tumor-b Drug Delivery, 2013, 20, 168-179.	pearing mice.	2.5	22
241	Facile synthesis of poly(ε-caprolactone) micro and nanospheres using different types of polyelectrolytes as stabilizers under ambient and elevated temperature. Composites Pachgineering, 2013, 45, 1471-1479.		5.9	15
242	Poly(ɛ-caprolactone), Eudragit® RS 100 and poly(ɛ-caprolactone)/Eudragit® RS 10 particles for the sustained release of the antiretroviral efavirenz. Colloids and Surfaces Biointerfaces, 2013, 102, 441-449.		2.5	85
243	Dynamic and structural evaluation of poly(3-hydroxybutyrate) layered nanocomposites Testing, 2013, 32, 165-174.	s. Polymer	2.3	18
244	Phosphonoethylated Polyglycidols: A Platform for Tunable Enzymatic Grafting Density. Macromolecules, 2013, 46, 3708-3718.		2.2	6
245	Thin Polymer Brush Decouples Biomaterial's Micro-/Nanotopology and Stem Cell A 2013, 29, 13843-13852.	dhesion. Langmuir,	1.6	31
246	Biodegradable poly(butylene-carbonate) porous membranes for guided bone regeneration in vivo studies. Journal of Bioactive and Compatible Polymers, 2013, 28, 621-636.	tion: In vitro and	0.8	3
247	Degradation of Poly (ε-caprolactone)/Calcium Sulfate Whisker Nanocomposites. Adva Research, 2013, 821-822, 1043-1046.	nced Materials	0.3	0
248	Customized biomimetic scaffolds created by indirect three-dimensional printing for tise engineering. Biofabrication, 2013, 5, 045003.	sue	3.7	125
249	The Effect of the Hydrophilic/Hydrophobic Ratio of Polymeric Micelles on their Endocyt into Cells. Macromolecular Bioscience, 2013, 13, 789-798.	osis Pathways	2.1	41
250	Challenges in the Characterization of Plasma-Processed Three-Dimensional Polymeric S Biomedical Applications. ACS Applied Materials & Interfaces, 2013, 5, 9312-9321.	caffolds for	4.0	22
251	Thermoplastic starch and poly(ε-caprolactone) blends: morphology and mechanical pr function of relative humidity. Journal of Polymer Research, 2013, 20, 1.	operties as a	1.2	32
252	Degradation and Stability of Poly(lactic Acid). , 2013, , 247-299.			5
253	General Protocol for the Culture of Cells on Plasma-Coated Electrospun Scaffolds. Met Molecular Biology, 2013, 1058, 119-131.	hods in	0.4	16
254	Current Trends in Cartilage Science. Cartilage, 2013, 4, 273-280.		1.4	1
255	Design and fabrication of scaffold-based tissue engineering. BioNanoMaterials, 2013, 2	14, .	1.4	24
256	Preparation of 3DP Hydroxyapatite Composite by Single and Double Pass Poly(ε-capro Infiltration. Key Engineering Materials, 0, 545, 69-73.	plactone)	0.4	0

#	Article	IF	CITATIONS
257	Laser sintered porous polycaprolacone scaffolds loaded with hyaluronic acid and gelatin-grafted thermoresponsive hydrogel for cartilage tissue engineering. Bio-Medical Materials and Engineering, 2013, 23, 533-543.	0.4	7
258	Can Bone Tissue Engineering Contribute to Therapy Concepts after Resection of Musculoskeletal Sarcoma?. Sarcoma, 2013, 2013, 1-10.	0.7	23
259	Preparation of 3DP Hydroxyapatite/Polycaprolactone Composite by a Novel Sequential Infiltration Technique. Advanced Materials Research, 2013, 747, 170-173.	0.3	1
260	Biomimetic scaffolds for skin tissue and wound repair. , 2013, , 153-180.		1
261	Polycaprolactone-Hydroxyapatite Composite Membrane Scaffolds for Bone Tissue Engineering. Materials Research Society Symposia Proceedings, 2013, 1502, 1.	0.1	6
262	Selective Laser Sintering and Its Biomedical Applications. Biological and Medical Physics Series, 2013, , 83-109.	0.3	7
263	Melt electrospinning writing of threeâ€dimensional star poly(ϵ aprolactone) scaffolds. Polymer International, 2013, 62, 893-900.	1.6	51
264	<i>In vitro</i> / <i>i>in vivo</i> comparison of cefuroxime release from poly(ε aprolactone)–calcium sulfate implants for osteomyelitis treatment. Biotechnology and Applied Biochemistry, 2013, 60, 603-616.	1.4	7
265	Intramolecular cyclization assistance for fast degradation of ornithineâ€based poly(ester amide)s. Journal of Polymer Science Part A, 2013, 51, 3783-3790.	2.5	26
266	Biocompatibility studies and characterization of poly(3â€hydroxybutyrateâ€ <i>co</i> â€3â€hydroxyhexanoate)/polycaprolactone blends. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 752-761.	1.6	32
267	Nano―to Macroscale Remodeling of Functional Tissueâ€Engineered Bone. Advanced Healthcare Materials, 2013, 2, 546-551.	3.9	17
268	A fiveâ€patient prospective pilot study of a polycaprolactone based dermal filler for hand rejuvenation. Journal of Cosmetic Dermatology, 2013, 12, 73-77.	0.8	34
269	Environmentally friendly polymer nanocomposites using polymer matrices from fossil fuel sources. , 2013, , 157-207.		0
270	Hemocompatibility of polymeric nanostructured surfaces. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1529-1548.	1.9	48
271	Acute and Subchronic Toxicity Evaluation of Poly(É›-Caprolactone) Lipid-Core Nanocapsules in Rats. Toxicological Sciences, 2013, 132, 162-176.	1.4	53
273	Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective. Bone Research, 2013, 1, 216-248.	5.4	625
274	Chitosan microlayer on the photografting modified surface of PLA, PCL and PLA/PCL bioextruder scaffolds. , 2013, , 183-187.		0
275	Research concerning fabrication of fibrous osteoconductive plga/hap nanocomposite material using the method of electrospinning from polymer solution. Autex Research Journal, 2013, 13, 57-66.	0.6	2

#	Article	IF	CITATIONS
276	A Microfluidic Chip Using Phenol Formaldehyde Resin for Uniform-Sized Polycaprolactone and Chitosan Microparticle Generation. Molecules, 2013, 18, 6521-6531.	1.7	14
277	Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering. International Journal of Nanomedicine, 2014, 9, 183.	3.3	64
278	Poly ε-caprolactone nanoparticles loaded with Uncaria tomentosa extract: preparation, characterization, and optimization using the Box–Behnken design. International Journal of Nanomedicine, 2013, 8, 431.	3.3	18
279	Amelioration of Blood Compatibility and Endothelialization of Polycaprolactone Substrates by Surface-Initiated Atom Transfer Radical Polymerization. , 0, , .		11
280	Overview on Biocompatibilities of Implantable Biomaterials. , 0, , .		27
281	Breast Reconstruction Using Biofabrication-Based Tissue Engineering Strategies. , 2013, , 183-216.		9
282	Enhancement of Mechanical and Thermal Properties of Polylactic Acid/Polycaprolactone Blends by Hydrophilic Nanoclay. Indian Journal of Materials Science, 2013, 2013, 1-11.	0.6	32
283	Tissue Engineering and Ureter Regeneration: Is it Possible?. International Journal of Artificial Organs, 2013, 36, 392-405.	0.7	33
284	Monitoring Fibrous Scaffold Guidance of Three-Dimensional Collagen Organisation Using Minimally-Invasive Second Harmonic Generation. PLoS ONE, 2014, 9, e89761.	1.1	30
285	Fabrication of nanoadjuvant with poly-e-caprolactone (PCL) for developing a single-shot vaccine providing prolonged immunity. International Journal of Nanomedicine, 2014, 9, 937.	3.3	7
286	Poly (â^Š-caprolactone) Fiber: An Overview. Journal of Engineered Fibers and Fabrics, 2014, 9, 155892501400900.	0.5	52
288	Thermally Initiated Trans-esterification in Poly(ε-caprolactone) and Its Dependence on Molecular Weight. Journal of Polymers and the Environment, 2014, 22, 479-487.	2.4	4
289	Analysis of degradation rate for dimensionless surface area of well-interconnected PCL scaffold via in-vitro accelerated degradation experiment. Tissue Engineering and Regenerative Medicine, 2014, 11, 446-452.	1.6	26
290	Covalent immobilisation of VEGF on plasma-coated electrospun scaffolds for tissue engineering applications. Colloids and Surfaces B: Biointerfaces, 2014, 123, 724-733.	2.5	67
291	Effect of organically modified clay on mechanical properties, cytotoxicity and bactericidal properties of poly(ϵ-caprolactone) nanocomposites. Materials Research Express, 2014, 1, 045302.	0.8	12
292	Evaluation of the cytocompatibility hemocompatibility <i>in vivo</i> bone tissue regenerating capability of different PCL blends. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 487-503.	1.9	39
293	Scaffold Design and Fabrication. , 2014, , 311-346.		32
294	Development of functionalized nanoparticles for vaccine delivery to dendritic cells: a mechanistic approach. Nanomedicine, 2014, 9, 2639-2656.	1.7	37

#	Article	IF	CITATIONS
295	Polymers in oral insulin delivery. , 2014, , 257-310.		10
297	Poly (ε -caprolactone) nanocapsules for oral delivery of raloxifene: process optimization by hybrid design approach, <i>in vitro</i> and <i>in vivo</i> evaluation. Journal of Microencapsulation, 2014, 31, 508-518.	1.2	16
298	In Vitro Degradation of Poly(caprolactone)/nHA Composites. Journal of Nanomaterials, 2014, 2014, 1-8.	1.5	94
299	The Fabrication and Characterization of PCL/Rice Husk Derived Bioactive Glass-Ceramic Composite Scaffolds. Journal of Nanomaterials, 2014, 2014, 1-9.	1.5	10
300	Increased Adipogenic and Decreased Chondrogenic Differentiation of Adipose Derived Stem Cells on Nanowire Surfaces. Materials, 2014, 7, 2605-2630.	1.3	24
301	Fabrication and Characterization of PCL/GE-Based Electrospun Nanofibers for Tissue Engineering and Drug Delivery Application. Applied Mechanics and Materials, 0, 695, 195-198.	0.2	0
302	The Tissue Response and Degradation of Electrospun Poly(ε-caprolactone)/Poly(trimethylene-carbonate) Scaffold in Subcutaneous Space of Mice. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	11
303	Production of Drug-Loaded Polymeric Nanoparticles by Electrospraying Technology. Journal of Biomedical Nanotechnology, 2014, 10, 2200-2217.	0.5	34
304	Influence of the Processing Parameters on the Electrospinning of Biopolymeric Fibers. Journal of Renewable Materials, 2014, 2, 23-34.	1.1	30
306	Characterization of a synthetic bioactive polymer by nonlinear optical microscopy. Biomedical Optics Express, 2014, 5, 149.	1.5	4
307	Electrospun Cellulose Nanocrystals/Polycaprolactone Nanocomposite Fiber Mats. Journal of Macromolecular Science - Physics, 2014, 53, 820-828.	0.4	31
308	Hyperthermia Induced in Magnetic Scaffolds for Bone Tissue Engineering. IEEE Transactions on Magnetics, 2014, 50, 1-7.	1.2	56
309	3D tissue-engineered model of Ewing's sarcoma. Advanced Drug Delivery Reviews, 2014, 79-80, 155-171.	6.6	39
310	Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites. Journal of Biomaterials Applications, 2014, 29, 675-687.	1.2	13
311	Biomimetic threeâ€dimensional anisotropic geometries by uniaxial stretching of poly(ε aprolactone) films: Degradation and mesenchymal stem cell responses. Journal of Biomedical Materials Research - Part A, 2014, 102, 2197-2207.	2.1	21
312	Synthesis and Characterization of Combâ€Like Copolymers Based on Poly(εâ€caprolactone) and Poly(αâ€olefin). Macromolecular Chemistry and Physics, 2014, 215, 733-741.	1.1	0
313	ɛ aprolactone and lactide polymerization promoted by an ionic titanium(IV)/iron(III) polynuclear haloâ€alkoxide. Journal of Polymer Science Part A, 2014, 52, 2509-2517.	2.5	7
314	Synthesis, characterization and biodegradation studies of chain-coupled polyesters based on tartaric acid. Polymer International, 2014, 63, 680-688.	1.6	11

#	Article	IF	CITATIONS
315	Polymers for medical and tissue engineering applications. Journal of Chemical Technology and Biotechnology, 2014, 89, 1793-1810.	1.6	118
316	Dielectric Characterization of Biopolymer/Poly(ϵ-Caprolactone) Hydrogels. International Journal of Polymer Analysis and Characterization, 2014, 19, 234-244.	0.9	1
317	Engineered polycaprolactone–magnesium hybrid biodegradable porous scaffold for bone tissue engineering. Progress in Natural Science: Materials International, 2014, 24, 561-567.	1.8	58
318	Anomalous impact strength for layered double hydroxideâ€palmitate/poly(εâ€caprolactone) nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	1.3	8
319	25th Anniversary Article: Designer Hydrogels for Cell Cultures: A Materials Selection Guide. Advanced Materials, 2014, 26, 125-148.	11.1	368
320	Electrospinning of gelatin for tissue engineering – molecular conformation as one of the overlooked problems. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 2009-2022.	1.9	67
321	Semiâ€interpenetrating polymer networks composed of diisocyanateâ€bridged 4â€arm starâ€shaped <scp>l</scp> â€lactide oligomers and poly(εâ€caprolactone). Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 1420-1428.	2.4	11
322	Transdifferentiation of autologous bone marrow cells on a collagen-poly(Îμ-caprolactone) scaffold for tissue engineering in complete lack of native urothelium. Journal of the Royal Society Interface, 2014, 11, 20140233.	1.5	11
323	Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration. Nanotechnology, 2014, 25, 485101.	1.3	84
324	Fabrication of BSA Loaded Poly (Caprolactone) (PCL)/Hydroxyapatite (HA) Composite Microsphere for Tissue Engineering Application. Advanced Materials Research, 2014, 1030-1032, 82-85.	0.3	0
325	Cellulolytic Enzyme Lignin Efficiently Blended with Polycaprolactone: Thermal, Mechanical Properties and Morphological Evaluation. Advanced Materials Research, 0, 1070-1072, 100-106.	0.3	0
326	MECHANICAL PROPERTIES OF ELECTROSPUN PCL SCAFFOLD UNDER IN VITRO AND ACCELERATED DEGRADATION CONDITIONS. Biomedical Engineering - Applications, Basis and Communications, 2014, 26, 1450043.	0.3	6
327	Antimicrobial and conducting polymer substrate derived from hybrid structures of silver nanoparticles and multiwall carbon nanotubes. Materials Technology, 2014, 29, B59-B63.	1.5	9
328	Spray-dried didanosine-loaded polymeric particles for enhanced oral bioavailability. Colloids and Surfaces B: Biointerfaces, 2014, 123, 515-523.	2.5	17
329	Preparation of Cylinder-Shaped Porous Sponges of Poly(L-lactic acid), Poly(DL-lactic-co-glycolic acid), and Poly(Îμ-caprolactone). BioMed Research International, 2014, 2014, 1-8.	0.9	13
330	Melt Processed Polymer Blends for Potential Regenerative Medicine Applications. Applied Mechanics and Materials, 0, 679, 92-100.	0.2	0
331	Stem cells, tissue engineering and periodontal regeneration. Australian Dental Journal, 2014, 59, 117-130.	0.6	138
332	Electrospinning and characterization of chitin nanofibril/polycaprolactone nanocomposite fiber mats. Carbohydrate Polymers, 2014, 101, 68-74.	5.1	64

#	Article	IF	CITATIONS
333	Characterization of antioxidant methylcellulose film incorporated with α-tocopherol nanocapsules. Food Chemistry, 2014, 159, 529-535.	4.2	129
334	Synthesis of poly(É>-caprolactone) nanospheres in the presence of the protective agent poly(glutamic) Tj ETQq1 Colloids and Surfaces B: Biointerfaces, 2014, 117, 414-424.	1 0.78431 2.5	4 rgBT /Ove 11
335	Control and prediction of degradation of biopolymer based hydrogels with poly(É›-caprolactone) subunits. International Journal of Biological Macromolecules, 2014, 71, 147-154.	3.6	8
336	Plasma-functionalized electrospun matrix for biograft development and cardiac function stabilization. Acta Biomaterialia, 2014, 10, 2996-3006.	4.1	61
337	Preparation of polysaccharide derivates chitosan-graft-poly(É›-caprolactone) amphiphilic copolymer micelles for 5-fluorouracil drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 116, 745-750.	2.5	71
338	In vivo toxicological evaluation of polymeric nanocapsules after intradermal administration. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 86, 167-177.	2.0	35
339	Effect of interface on mechanical properties and biodegradation of PCL HAp supramolecular nano-composites. Journal of Materials Science: Materials in Medicine, 2014, 25, 23-35.	1.7	17
340	Preparation of electrospun nanofibers of star-shaped polycaprolactone and its blends with polyaniline. Journal of Materials Science, 2014, 49, 4844-4854.	1.7	11
341	A facile route to realize the copolymerization of l-lactic acid and Îμ-caprolactone: sulfonic acid-functionalized BrÃ,nsted acidic ionic liquids as both solvents and catalysts. Green Chemistry, 2014, 16, 2234-2241.	4.6	22
342	Endothelial cell thrombogenicity is reduced by ATRP-mediated grafting of gelatin onto PCL surfaces. Journal of Materials Chemistry B, 2014, 2, 485-493.	2.9	27
343	Synthetic biodegradable functional polymers for tissue engineering: a brief review. Science China Chemistry, 2014, 57, 490-500.	4.2	441
344	Predicting the Elastic Properties of Selective Laser Sintered PCL/β-TCP Bone Scaffold Materials Using Computational Modelling. Annals of Biomedical Engineering, 2014, 42, 661-677.	1.3	33
345	The behavior of poly($\hat{l}\mu$ \$\$ oldsymbol{upvarepsilon} \$\$ -caprolactone) and poly(ethylene) Tj ETQq0 0 0 rgBT /Ovb backbone at the air/water interface. Colloid and Polymer Science, 2014, 292, 1199-1208.	erlock 10 ⁻ 1.0	Tf 50 267 To 12
346	Highâ€Performance Biodegradable/Transient Electronics on Biodegradable Polymers. Advanced Materials, 2014, 26, 3905-3911.	11.1	359
347	Tensile behavior and dynamic mechanical analysis of novel poly(lactide/δ-valerolactone) statistical copolymers. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 35, 39-50.	1.5	19
348	Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	153
349	In vitro degradation of porous PLLA/pearl powder composite scaffolds. Materials Science and Engineering C, 2014, 38, 227-234.	3.8	49
350	Characteristics and release profiles of MPEG-PCL-MPEG microspheres containing immunoglobulin G. Colloids and Surfaces B: Biointerfaces, 2014, 117, 487-496.	2.5	34

#	Article	IF	CITATIONS
351	Synthesis, characterization and properties of telechelic hybrid biodegradable polymers containing polyhedral oligomeric silsesquioxane (POSS). RSC Advances, 2014, 4, 21435-21449.	1.7	25
352	Biphasic calcium phosphate loading on polycaprolactone/poly(lacto- <i>co</i> -glycolic acid) membranes for improved tensile strength, inÂvitro biocompatibility, and inÂvivo tissue regeneration. Journal of Biomaterials Applications, 2014, 28, 1164-1179.	1.2	6
353	Polycaprolactone–thiopheneâ€conjugated carbon nanotube meshes as scaffolds for cardiac progenitor cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1553-1561.	1.6	42
354	New porous polycaprolactone–silica composites for bone regeneration. Materials Science and Engineering C, 2014, 40, 418-426.	3.8	34
355	Characterization of Poly(ε-caprolactone)-Based Nanocomposites Containing Hydroxytyrosol for Active Food Packaging. Journal of Agricultural and Food Chemistry, 2014, 62, 2244-2252.	2.4	50
356	PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: Morphology, mechanical properties and bioactivity. Materials Science and Engineering C, 2014, 34, 437-445.	3.8	103
357	Synthetic Biomaterials for Regenerative Medicine Applications. , 2014, , 81-99.		39
358	Electronic, electric and electrochemical properties of bioactive nanomembranes made of polythiophene:thermoplastic polyurethane. Polymer Chemistry, 2014, 5, 1248-1257.	1.9	24
359	Low density biodegradable shape memory polyurethane foams for embolic biomedical applications. Acta Biomaterialia, 2014, 10, 67-76.	4.1	155
360	Characterization of multi-injected poly(Î μ -caprolactone). Polymer Testing, 2014, 33, 116-120.	2.3	17
361	Evaluation of polycaprolactone matrices for the intravaginal delivery of metronidazole in the treatment of bacterial vaginosis. Journal of Biomaterials Applications, 2014, 29, 354-363.	1.2	18
362	Poly(É›-caprolactone) Electrospun Scaffolds Filled with Nanoparticles. Production and Optimization According to Taguchi's Methodology. Journal of Macromolecular Science - Physics, 2014, 53, 781-799.	0.4	18
363	Nanomaterials: the next step in injectable bone cements. Nanomedicine, 2014, 9, 1745-1764.	1.7	41
364	Influence of expansion cooling regime on morphology of poly(<i>ε</i> â€caprolactone) foams prepared by pressure quenching using supercritical CO ₂ . Polymers for Advanced Technologies, 2014, 25, 1349-1355.	1.6	4
365	Resorbable Polymer Membranes for Medical Applications. Journal of Biomimetics, Biomaterials, and Tissue Engineering, 0, 19, 99-108.	0.7	4
366	Analysis of the Mechanical Properties of Solvent Cast Blends of PLA/PCL. Applied Mechanics and Materials, 0, 679, 50-56.	0.2	11
367	<i>In vitro</i> and <i>in vivo</i> evaluation of porous PCL-PLLA 3D polymer scaffolds fabricated via salt leaching method for bone tissue engineering applications. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 150-167.	1.9	45
368	Micro and nano polycaprolactone particles preparation by pulsed back-and-forward cross-flow batch membrane emulsification for parenteral administration. International Journal of Pharmaceutics, 2014, 477, 344-350.	2.6	12

# 369	ARTICLE In Situ Controlled Release of rhBMP-2 in Gelatin-Coated 3D Porous Poly(ε-caprolactone) Scaffolds for Homogeneous Bone Tissue Formation. Biomacromolecules, 2014, 15, 84-94.	lF 2.6	CITATIONS 38
370	A novel Bruch's membrane-mimetic electrospun substrate scaffold for human retinal pigment epithelium cells. Biomaterials, 2014, 35, 9777-9788.	5.7	117
371	Polycaprolactone(PCL)/Gelati(Ge)-Based Electrospun Nanofibers for Tissue Engineering and Drug Delivery Application. Applied Mechanics and Materials, 0, 554, 57-61.	0.2	9
372	Fabrication and evaluation of electrospun PCL–gelatin micro-/nanofiber membranes for anti-infective GTR implants. Journal of Materials Chemistry B, 2014, 2, 6867-6877.	2.9	90
373	Random copolymerisations catalysed by simple titanium α-amino acid complexes. RSC Advances, 2014, 4, 5254.	1.7	16
374	Synthesis and structure of a ferric complex of 2,6-di(1H-pyrazol-3-yl)pyridine and its excellent performance in the redox-controlled living ring-opening polymerization of Îμ-caprolactone. Dalton Transactions, 2014, 43, 8282.	1.6	47
375	Effect of biodegradable poly(ethylene adipate) with low molecular weight as an efficient plasticizer on the significantly enhanced crystallization rate and mechanical properties of poly(l-lactide). RSC Advances, 2014, 4, 51411-51417.	1.7	19
376	ROS-cleavable proline oligomer crosslinking of polycaprolactone for pro-angiogenic host response. Journal of Materials Chemistry B, 2014, 2, 7109-7113.	2.9	50
377	A bioactive "self-fitting―shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta Biomaterialia, 2014, 10, 4597-4605.	4.1	154
378	New directions in the chemistry of shape memory polymers. Polymer, 2014, 55, 5849-5872.	1.8	167
379	Resorcinarene-centered amphiphilic star-block copolymers: Synthesis, micellization and controlled drug release. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1431-1441.	2.0	20
380	The inÂvitro and inÂvivo degradation behavior of poly (trimethylene carbonate-co-ε-caprolactone) implants. Polymer, 2014, 55, 5111-5124.	1.8	44
381	Preparation and in vivo efficient anti-infection property of GTR/GBR implant made by metronidazole loaded electrospun polycaprolactone nanofiber membrane. International Journal of Pharmaceutics, 2014, 475, 566-577.	2.6	103
382	In vitro evaluation of effects of sustained anti-TNF release from MPEG-PCL-MPEG and PCL microspheres on human rheumatoid arthritis synoviocytes. Journal of Biomaterials Applications, 2014, 29, 524-542.	1.2	17
383	Semi-interpenetrating polymer networks composed of poly(l-lactide) and diisocyanate-bridged 4-arm star-shaped É>-caprolactone oligomers. Polymer, 2014, 55, 5407-5416.	1.8	26
384	Influence of Thermally Reduced Graphene Low-Loadings on the Crystallization Behavior and Morphology of Biodegradable Poly(ethylene succinate). Industrial & Engineering Chemistry Research, 2014, 53, 498-504.	1.8	28
385	Electrospun poly(butylene carbonate) membranes for guided bone regeneration: In vitro and in vivo studies. Journal of Bioactive and Compatible Polymers, 2014, 29, 486-499.	0.8	9
386	Surface modification of poly(l-lactide) and polycaprolactone bioresorbable polymers using RF plasma discharge with sputter deposition of a hydroxyapatite target. Materials Letters, 2014, 132, 281-284.	1.3	26

#	Article	IF	CITATIONS
387	Poly(ε aprolactone) and Pluronic Diol ontaining Segmented Polyurethanes for Shape Memory Performance. Macromolecular Chemistry and Physics, 2014, 215, 1896-1907.	1.1	9
388	Poly(lactide-co-ε-caprolactone) copolymers prepared using bis-thioetherphenolate group 4 metal complexes: synthesis, characterization and morphology. RSC Advances, 2014, 4, 51262-51267.	1.7	39
389	ENR/PCL Polymer biocomposites from renewable resources. Comptes Rendus Chimie, 2014, 17, 944-951.	0.2	16
390	Collagen surface modified poly(ε-caprolactone) scaffolds with improved hydrophilicity and cell adhesion properties. Materials Letters, 2014, 134, 263-267.	1.3	58
391	Cross-Linked, Biodegradable, Cytocompatible Salicylic Acid Based Polyesters for Localized, Sustained Delivery of Salicylic Acid: An In Vitro Study. Biomacromolecules, 2014, 15, 863-875.	2.6	51
392	Conducive 3D porous mesh of poly(ε-caprolactone) made via emulsion electrospinning. Polymer, 2014, 55, 3970-3979.	1.8	25
393	Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Biofabrication, 2014, 6, 015004.	3.7	55
394	Synthesis of biopolymer-grafted nanodiamond by ring-opening polymerization. Diamond and Related Materials, 2014, 50, 26-32.	1.8	25
395	Structure–Property Relationships for a Series of Poly(ester amide)s Containing Amino Acids. Industrial & Engineering Chemistry Research, 2014, 53, 1452-1460.	1.8	21
396	Phosphazene-catalyzed ring-opening polymerization of Îμ-caprolactone: influence of solvents and initiators. Polymer Chemistry, 2014, 5, 5471-5478.	1.9	65
397	Design of Multistimuli-Responsive Shape-Memory Polymer Materials by Reactive Extrusion. Chemistry of Materials, 2014, 26, 5860-5867.	3.2	64
398	Elaboration and Characterization of Coaxial Electrospun Poly(εâ€Caprolactone)/Gelatin Nanofibers for Biomedical Applications. Advances in Polymer Technology, 2014, 33, .	0.8	9
399	Hybrid Polycaprolactone/Silica Porous Membranes Produced by Solâ€Gel. Macromolecular Symposia, 2014, 341, 34-44.	0.4	9
400	Dual Bioresponsive Mesoporous Silica Nanocarrier as an "AND―Logic Gate for Targeted Drug Delivery Cancer Cells. Advanced Functional Materials, 2014, 24, 6999-7006.	7.8	105
401	The heat–chill method for preparation of self-assembled amphiphilic poly(ε-caprolactone)–poly(ethylene glycol) block copolymer based micellar nanoparticles for drug delivery. Soft Matter, 2014, 10, 2150-2159.	1.2	22
402	Surface Plasma Treatment of Poly(caprolactone) Micro, Nano, and Multiscale Fibrous Scaffolds for Enhanced Osteoconductivity. Tissue Engineering - Part A, 2014, 20, 1689-1702.	1.6	51
403	Ethyl magnesium bromide as an efficient anionic initiator for controlled polymerization of Îμ-caprolactone. Polymer Bulletin, 2014, 71, 111-123.	1.7	7
404	Synthesis of ε-caprolactone-b-l-lactide block copolymers by mean sequential polymerization, using diphenylzinc as initiator. Polymer Bulletin, 2014, 71, 1661-1674.	1.7	5

ARTICLE IF CITATIONS # Enhanced oral bioavailability of the antiretroviral efavirenz encapsulated in 405 1.7 46 poly(epsilon-caprolactone) nanoparticles by a spray-drying method. Nanomedicine, 2014, 9, 1821-1833. Modified Poly(ε-caprolactone)s: An Efficient and Renewable Access via Thia-Michael Addition and 406 2.2 Baeyer–Villiger Oxidation. Macromolecules, 2014, 47, 2842-2846. Polybutylene succinate adipate/starch blends: A morphological study for the design of controlled 407 5.1 32 release films. Carbohydrate Polymers, 2014, 108, 272-280. Delivery of Growth Factors Using a Smart Porous Nanocomposite Scaffold to Repair a Mandibular 408 Bone Defect. Biomacromolecules, 2014, 15, 1019-1030. The Role of Scaffold Architecture and Composition on the Bone Formation by Adipose-Derived Stem 409 1.6 36 Cells. Tissue Engineering - Part A, 2014, 20, 434-444. Biosilicaâ€loaded poly(ϵâ€caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the osteoclastâ€related SaOSâ€2 cells. Biotechnology 1.8 Journal, 2014, 9, 1312-1321. Tailored One-Way and Two-Way Shape Memory Capabilities of Poly(ε-Caprolactone)-Based Systems for 411 1.2 16 Biomedical Applications. Journal of Materials Engineering and Performance, 2014, 23, 2545-2552. Effects of hyperbranched and linear architecture on properties of polymers composed of 0.4 poly(É>-caprolactone) and hydroxycinnamic acid. Polymer Science - Series A, 2014, 56, 256-263. Preparation and properties of a gel polymer electrolyte system based on poly-ε-caprolactone 413 containing 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Journal of Physics and 20 1.9 Chemistry of Solids, 2014, 75, 746-751. Extraordinary Reinforcement Effect of Three-Dimensionally Nanoporous Cellulose Gels in 414 Poly(Îu-caprolactone) Bionanocomposites. ACS Applied Materials & amp; Interfaces, 2014, 6, 7204-7213. State of the art and future direction of additive manufactured scaffolds-based bone tissue 415 1.6 60 engineering. Rapid Prototyping Journal, 2014, 20, 13-26. Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Rapid 1.6 Prototyping Journal, 2014, 20, 145-156. Controlled bulk polymerization of l-lactide and lactones by dual activation with organo-catalytic 417 1.7 41 systems. RSC Advances, 2014, 4, 14725. Meltâ€electrospun polycaprolactone strontiumâ€substituted bioactive glass scaffolds for bone 2.1 regeneration. Journal of Biomedical Materials Research - Part A, 2014, 102, 3140-3153. Surface grafted poly(lµ-caprolactone) prepared using organocatalysed ring-opening polymerisation 419 1.9 19 followed by SI-ATRP. Polymer Chemistry, 2014, 5, 2809-2815. Amine-functionalized multiwall carbon nanotubes impart osteoinductive and bactericidal properties 420 64 in poly(ε-caprolactone) composites. RSC Advances, 2014, 4, 19086-19098. Improved in Vitro Blood Compatibility of Polycaprolactone Nanowire Surfaces. ACS Applied Materials 421 4.0 39 & Interfaces, 2014, 6, 15913-15924. Time-Resolved Fourier Transform Infrared Spectroscopy, Gravimetry, and Thermodynamic Modeling for a Molecular Level Description of Water Sorption in Poly($\hat{\mu}$ -caprolactone). Journal of Physical 1.2 Chemistry B, 2014, 118, 7414-7429.

ARTICLE IF CITATIONS # Effects of amphiphilic chitosan-g-poly(l̃µ-caprolactone) polymer additives on paclitaxel release from 423 3.8 11 drug eluting implants. Materials Science and Engineering C, 2014, 45, 502-509. Progress in Functionalized Biodegradable Polyesters., 2014, , 167-180. 424 Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Progress in 425 233 1.8 Biomaterials, 2014, 3, 61-102. Thermal characterization of polymer matrix composites containing microencapsulated paraffin in 426 4.4 solid or liquid state. Energy Conversion and Management, 2014, 78, 796-804. Parametric elastic analysis of coupled helical coils for tubular implant applications: Experimental 427 characterization and numerical analysis. Journal of the Mechanical Behavior of Biomedical Materials, 1.5 8 2014, 29, 462-469. Combinatorial scaffold morphologies for zonal articular cartilage engineering. Acta Biomaterialia, 2014, 10, 2065-2075. 4.1 Controlling microencapsulation and release of micronized proteins using poly(ethylene glycol) and 429 2.0 39 electrospraying. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 366-377. Processing and characterization of elastomeric polycaprolactone triolâ€"citrate coatings for 430 1.9 biomedical applications. Progress in Organic Coatings, 2014, 77, 821-829. One-pot synthesis of poly(triazole-graft-caprolactone) via ring-opening polymerization combined with 431 click chemistry as a novel strategy for graft copolymers. Reactive and Functional Polymers, 2014, 75, 2.0 23 51-55. Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polymer Degradation and Stability, 2014, 108, 269-279. Effects of scaffold architecture on cranial bone healing. International Journal of Oral and 433 72 0.7 Maxillofacial Surgery, 2014, 43, 506-513. Development of implantable hydroxypropyl-Î²-cyclodextrin coated polycaprolactone nanoparticles for the controlled delivery of docetaxel to solid tumors. Journal of Inclusion Phenomena and 0.9 Macrocyclic Chemistry, 2014, 80, 9-15. Polymer Powder Processing of Cryomilled Polycaprolactone for Solventâ€Free Generation of 435 5.2 22 Homogeneous Bioactive Tissue Engineering Scaffolds. Small, 2014, 10, 2495-2502. Bioglass[®]/chitosan-polycaprolactone bilayered composite scaffolds intended for 2.1 osteochondral tissue engineering. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a. Differentiation of human adipose-derived stem cells seeded on mineralized electrospun co-axial 438 poly(Îu-caprolactone) (PCL)/gelatin nanofibers. Journal of Materials Science: Materials in Medicine, 2014, 40 1.7 25, 1137-1148. Preparation of uniform poly-caprolactone Microparticles by membrane emulsification/solvent diffusion process. Journal of Membrane Science, 2014, 467, 262-268. Development of hydrophilic nanocarriers for the charged form of the local anesthetic articaine. 440 2.528 Colloids and Surfaces B: Biointerfaces, 2014, 121, 66-73. Injectable controlled release depots for large molecules. Journal of Controlled Release, 2014, 190, 441 4.8 240-253.

#	Article	IF	CITATIONS
442	Fabrication and characterization of hybrid PCL/PEG 3D scaffolds for potential tissue engineering applications. Materials Letters, 2014, 131, 255-258.	1.3	24
443	Multifunctional comb copolymer ethyl cellulose-g-poly(ε-caprolactone)-rhodamine B/folate: Synthesis, characterization and targeted bonding application. European Polymer Journal, 2014, 55, 235-244.	2.6	22
444	Four-armed PCL-b-PDLA diblock copolymer: 1. Synthesis, crystallization and degradation. Polymer Degradation and Stability, 2014, 107, 120-128.	2.7	16
445	Annealing effects on mechanical properties and shape memory behaviors of silicone-coated elastomeric polycaprolactone nanofiber filaments. Materials Letters, 2014, 131, 128-131.	1.3	12
446	Tailored protein release from biodegradable poly(ε-caprolactone-PEG)-b-poly(ε-caprolactone) multiblock-copolymer implants. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 329-337.	2.0	34
448	Surface modification of electrospun polycaprolactone fibers and effect on cell proliferation. Surface Innovations, 2014, 2, 47-59.	1.4	8
449	Nanosensors for Biomedicine. Frontiers in Nanobiomedical Research, 2014, , 413-451.	0.1	0
450	In Vitro Evaluation of Cenderitideâ€Eluting Stent I —An Antirestenosis and Proendothelization Approach. Journal of Pharmaceutical Sciences, 2014, 103, 3631-3640.	1.6	7
451	Establishment of a threeâ€dimensional culture system of gastric stem cells supporting mucous cell differentiation using microfibrous polycaprolactone scaffolds. Cell Proliferation, 2014, 47, 553-563.	2.4	5
452	Control of hydration and degradation properties of triblock copolymers polycaprolactoneâ€ <i>b</i> â€polydimethylsiloxaneâ€ <i>b</i> â€polycaprolactone. Journal of Applied Polymer Science, 2014, 131, .	1.3	7
453	Modular and Versatile Spatial Functionalization of Tissue Engineering Scaffolds through Fiberâ€Initiated Controlled Radical Polymerization. Advanced Functional Materials, 2015, 25, 5748-5757.	7.8	35
454	Polymeric and Solid Lipid Nanoparticles for Sustained Release of Carbendazim and Tebuconazole in Agricultural Applications. Scientific Reports, 2015, 5, 13809.	1.6	141
456	Repairing calvarial defects with biodegradable polycaprolactone–chitosan scaffolds fabricated using the melt stretching and multilayer deposition technique. Bio-Medical Materials and Engineering, 2015, 25, 347-360.	0.4	7
457	The Effect of Rotating Collector Design on Tensile Properties and Morphology of Electrospun Polycaprolactone Fibres. MATEC Web of Conferences, 2015, 27, 02002.	0.1	12
458	Fabrication of Polycaprolactone/ <i>Centella asiatica</i> Extract Biopolymer Nanofiber by Electrospinning. Applied Mechanics and Materials, 2015, 804, 151-154.	0.2	7
459	Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering. Bioengineering, 2015, 2, 15-34.	1.6	51
460	Fabrication of a Bioactive, PCL-based "Self-fitting" Shape Memory Polymer Scaffold. Journal of Visualized Experiments, 2015, , e52981.	0.2	16
461	Fully degradable antibacterial poly(esterâ€phosphoester)s by ringâ€opening polymerization, "click― chemistry, and quaternization. Journal of Applied Polymer Science, 2015, 132, .	1.3	6

#	Article	IF	CITATIONS
462	A Biâ€enzymatic Convergent Cascade for εâ€Caprolactone Synthesis Employing 1,6â€Hexanediol as a â€~Doubleâ€Smart Cosubstrate'. ChemCatChem, 2015, 7, 2442-2445.	1.8	55
463	Electrical Stimulation of Human Mesenchymal Stem Cells on Conductive Nanofibers Enhances their Differentiation toward Osteogenic Outcomes. Macromolecular Rapid Communications, 2015, 36, 1884-1890.	2.0	50
464	Biodegradable DNAâ€Brush Block Copolymer Spherical Nucleic Acids Enable Transfection Agentâ€Free Intracellular Gene Regulation. Small, 2015, 11, 5360-5368.	5.2	64
465	Optimization of the activation and nucleation steps in the precipitation of a calcium phosphate primer layer on electrospun poly(É>â€caprolactone). Journal of Biomedical Materials Research - Part A, 2015, 103, 511-524.	2.1	5
466	Amphiphilic block copolymer selfâ€assemblies of poly(NVP)â€ <i>b</i> â€poly(MDOâ€ <i>co</i> â€vinyl esters): Tunable dimensions and functionalities. Journal of Polymer Science Part A, 2015, 53, 2699-2710.	2.5	16
467	Biomimetic phantom for the validation of diffusion magnetic resonance imaging. Magnetic Resonance in Medicine, 2015, 73, 299-305.	1.9	57
468	Advances in Functional Assemblies for Regenerative Medicine. Advanced Healthcare Materials, 2015, 4, 2500-2519.	3.9	4
469	Initial design and physical characterization of a polymeric device for osmosisâ€driven delayed burst delivery of vaccines. Biotechnology and Bioengineering, 2015, 112, 1927-1935.	1.7	8
470	He/O ₂ Atmospheric Pressure Plasma Jet Treatments of PCL Scaffolds for Tissue Engineering and Regenerative Medicine. Plasma Processes and Polymers, 2015, 12, 1451-1458.	1.6	18
471	Bioactive Electrospun Fibers of Poly(glycerol sebacate) and Poly(εâ€caprolactone) for Cardiac Patch Application. Advanced Healthcare Materials, 2015, 4, 2012-2025.	3.9	69
472	Crystallization and melting behavior of poly(εâ€caprolactoneâ€coâ€Î´â€valerolactone) and poly(εâ€caprolactoneâ€coâ€Lâ€lactide) copolymers with novel chain microstructures. Journal of Applied Polymer Science, 2015, 132, .	1.3	13
473	Synthesis of Grafted Block Copolymers Based on εâ€Caprolactone: Influence of Branches on Their Thermal Behavior. Macromolecular Chemistry and Physics, 2015, 216, 2331-2343.	1.1	16
474	Biodegradable Polymeric Films and Membranes Processing and Forming for Tissue Engineering. Macromolecular Materials and Engineering, 2015, 300, 858-877.	1.7	41
475	Crystallization kinetics and affecting parameters on polycaprolactone composites with inorganic and organic additives. Journal of Vinyl and Additive Technology, 2015, 21, 174-182.	1.8	16
476	Additive electrospraying: a route to process electrospun scaffolds for controlled molecular release. Polymers for Advanced Technologies, 2015, 26, 1359-1369.	1.6	45
477	Oxime functionalization strategy for iodinated poly(epsilon-caprolactone) X-ray opaque materials. Journal of Polymer Science Part A, 2015, 53, 2421-2430.	2.5	12
478	Coaxial Electrospinning as a Process to Engineer Biodegradable Polymeric Scaffolds as Drug Delivery Systems for Anti-Inflammatory and Anti- Thrombotic Pharmaceutical Agents. Clinical & Experimental Pharmacology, 2015, 05, .	0.3	26
479	Development, Characterization and Cell Cultural Response of 3D Biocompatible Micro-Patterned Poly-ε-Caprolactone Scaffolds Designed and Fabricated Integrating Lithography and Micromolding Fabrication Techniques. Journal of Tissue Science & Engineering, 2015, 06, .	0.2	3

#	Article	IF	CITATIONS
480	Fabrication, Mercury Intrusion Porosimetry Characterization and In Vitro Qualitative Analysis of Biocompatibility of Various Porosities Polycaprolactone Scaffolds. Journal of Tissue Science & Engineering, 2015, 06, .	0.2	3
481	The influence of substrate topography and biomaterial substance on skin wound healing. Anatomy and Cell Biology, 2015, 48, 251.	0.5	20
482	Highly efficient mesenchymal stem cell proliferation on poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles. International Journal of Nanomedicine, 2015, 10, 7307.	3.3	43
483	Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Frontiers in Chemistry, 2015, 3, 61.	1.8	41
484	An Assessment of Cell Culture Plate Surface Chemistry for in Vitro Studies of Tissue Engineering Scaffolds. Journal of Functional Biomaterials, 2015, 6, 1054-1063.	1.8	7
485	A Novel Biodegradable Polycaprolactone Fixator for Osteosynthesis Surgery of Rib Fracture: In Vitro and in Vivo Study. Materials, 2015, 8, 7714-7722.	1.3	10
486	Pcl/Peg Electrospun Fibers as Drug Carriers for the Controlled Delivery of Dipyridamole. Journal of in Silico & in Vitro Pharmacology, 2015, 01, .	0.2	4
487	Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization. International Journal of Nanomedicine, 2015, 10, 4763.	3.3	15
488	A Resorbable Antibiotic-Eluting Polymer Composite Bone Void Filler for Perioperative Infection Prevention in a Rabbit Radial Defect Model. PLoS ONE, 2015, 10, e0118696.	1.1	17
489	Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants. PLoS ONE, 2015, 10, e0132971.	1.1	132
490	Scaffolds in vascular regeneration: current status. Vascular Health and Risk Management, 2015, 11, 79.	1.0	70
491	Magnetically stimulated ciprofloxacin release from polymeric microspheres entrapping iron oxide nanoparticles. International Journal of Nanomedicine, 2015, 10, 4447.	3.3	27
492	<i>In Vitro</i> Behavior of Human Adipose Tissue-Derived Stem Cells on Poly(<i>Îμ</i> -caprolactone) Film for Bone Tissue Engineering Applications. BioMed Research International, 2015, 2015, 1-12.	0.9	13
493	Porous PCL/Chitosan and nHA/PCL/Chitosan Scaffolds for Tissue Engineering Applications: Fabrication and Evaluation. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	28
494	Frontal Cryosectioning: An Improved Protocol for Sectioning Large Areas of Fibrous Scaffolds. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	0
495	PreliminaryIn VitroAssessment of Stem Cell Compatibility with Cross-Linked Poly(ε-caprolactone) Tj ETQq1 1 0.7 2015, 1-8.	'84314 rgE 1.2	3T /Overloc 27
496	Chemical and Enzymatic Hydrolysis of Polyurethane/Polylactide Blends. International Journal of Polymer Science, 2015, 2015, 1-8.	1.2	20
497	Biodegradable Mineralized Collagen Plug for the Reconstruction of Craniotomy Burr-Holes: A Report of Three Cases. Translational Neuroscience and Clinics, 2015, 1, 3-9.	0.1	9

#	Article	IF	CITATIONS
498	Preliminary Investigation and Characterization of Electrospun Polycaprolactone and Manuka Honey Scaffolds for Dermal Repair. Journal of Engineered Fibers and Fabrics, 2015, 10, 155892501501000.	0.5	12
500	Dual-Microstructured Porous, Anisotropic Film for Biomimicking of Endothelial Basement Membrane. ACS Applied Materials & Interfaces, 2015, 7, 13445-13456.	4.0	26
501	Coextruded, Aligned, and Gradient-Modified Poly(Î μ -caprolactone) Fibers as Platforms for Neural Growth. Biomacromolecules, 2015, 16, 860-867.	2.6	45
502	Polymorphic solidification of Linezolid confined in electrospun PCL fibers for controlled release in topical applications. International Journal of Pharmaceutics, 2015, 490, 32-38.	2.6	24
503	Characterization of Material–Process–Structure Interactions in the 3D Bioplotting of Polycaprolactone. 3D Printing and Additive Manufacturing, 2015, 2, 20-31.	1.4	18
504	Sustained regeneration of high-volume adipose tissue for breast reconstruction using computer aided design and biomanufacturing. Biomaterials, 2015, 52, 551-560.	5.7	98
505	Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification. Biomacromolecules, 2015, 16, 2049-2058.	2.6	69
506	Raman spectroscopy and the material study of nanocomposite membranes from poly(ε-caprolactone) with biocompatibility testing in osteoblast-like cells. Analyst, The, 2015, 140, 2311-2320.	1.7	40
507	Biodegradable PEG-Based Amphiphilic Block Copolymers for Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2015, 1, 463-480.	2.6	139
508	Study on physiochemical structure and <i>in vitro</i> release behaviors of doxycyclineâ€loaded PCL microspheres. Journal of Applied Polymer Science, 2015, 132, .	1.3	13
509	Electrospun polycaprolactone nanofibers as a potential oromucosal delivery system for poorly water-soluble drugs. European Journal of Pharmaceutical Sciences, 2015, 75, 101-113.	1.9	139
510	On the relationship between the basicity of a surface and its ability to catalyze transesterification in liquid and gas phases: the case of MgO. Physical Chemistry Chemical Physics, 2015, 17, 14168-14176.	1.3	20
511	Crystallization of Poly(ϵ-caprolactone) composites with graphite nanoplatelets: Relations between nucleation and platelet thickness. Thermochimica Acta, 2015, 612, 25-33.	1.2	35
512	Study of p-Layer Doping Density and Surface Band Bending on the Indium Tin Oxide/Hydrogenated Amorphous Silicon Heterojunction Solar Cells. Acta Physica Polonica A, 2015, 127, 767-769.	0.2	4
513	Design and fabrication of functional polycaprolactone. E-Polymers, 2015, 15, 3-13.	1.3	40
514	Chitosan-g-oligo(epsilon-caprolactone) polymeric micelles: microwave-assisted synthesis and physicochemical and cytocompatibility characterization. Journal of Materials Chemistry B, 2015, 3, 4853-4864.	2.9	28
515	Multifunctional REDV-conjugated zwitterionic polycarboxybetaine–polycaprolactone hybrid surfaces for enhanced antibacterial activity, anti-thrombogenicity and endothelial cell proliferation. Journal of Materials Chemistry B, 2015, 3, 8088-8101.	2.9	20
516	Directional and temporal variation of the mechanical properties of robocast scaffold during resorption. Journal of Materials Science: Materials in Medicine, 2015, 26, 229.	1.7	2

#	Article	IF	CITATIONS
517	Collagen-based hybrid 3-D matrices. , 2015, , .		0
518	Poly(Caprolactone)/chitosan-based scaffold using freeze drying technique for bone tissue engineering application. , 2015, , .		1
519	Supercritical CO 2 foamed polycaprolactone scaffolds for controlled delivery of 5-fluorouracil, nicotinamide and triflusal. International Journal of Pharmaceutics, 2015, 496, 654-663.	2.6	33
520	A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication, 2015, 7, 045008.	3.7	127
521	Evaluate of Different Bioactive Glass on Mechanical Properties of Nanocomposites Prepared Using Electrospinning Method. , 2015, 11, 196-201.		18
522	A Review on the Recent Research of Polycaprolactone (PCL). Advanced Materials Research, 0, 1134, 249-255.	0.3	130
523	A Novel Melt Electrospinning System for Studying Cell Substrate Interactions. , 2015, , .		5
524	Investigation of Polycaprolactone Matrices for Intravaginal Delivery of Doxycycline. Journal of Pharmaceutical Sciences, 2015, 104, 4217-4222.	1.6	12
525	Melt Electrospinning and Its Technologization in Tissue Engineering. Tissue Engineering - Part B: Reviews, 2015, 21, 187-202.	2.5	180
526	Recent developments in micellar drug carriers featuring substituted poly(ε-caprolactone)s. Polymer Chemistry, 2015, 6, 2369-2381.	1.9	85
527	Multifunctional ATRP based pH responsive polymeric nanoparticles for improved doxorubicin chemotherapy in breast cancer by proton sponge effect/endo-lysosomal escape. Polymer Chemistry, 2015, 6, 2115-2132.	1.9	54
528	Addition–fragmentation reaction of thionoesters compounds in free-radical polymerisation (methyl,) Tj ETQq1	1 8:78431	4 rgBT /Ove
529	<i>In Vivo</i> Evaluation of Electrospun Polycaprolactone Graft for Anterior Cruciate Ligament Engineering. Tissue Engineering - Part A, 2015, 21, 1228-1236.	1.6	49
530	InÂvitro enzymatic degradation of the cross-linked poly(Îμ-caprolactone) implants. Polymer Degradation and Stability, 2015, 112, 10-19.	2.7	41
531	Osteogenic poly(ϵ-caprolactone)/poloxamine homogeneous blends prepared by supercritical foaming. International Journal of Pharmaceutics, 2015, 479, 11-22.	2.6	10
532	Porous electrospun polycaprolactone (PCL) fibres by phase separation. European Polymer Journal, 2015, 69, 284-295.	2.6	204
533	A randomized, prospective, blinded, splitâ€face, singleâ€center study comparing polycaprolactone to hyaluronic acid for treatment of nasolabial folds. Journal of Cosmetic Dermatology, 2015, 14, 27-32.	0.8	34
534	Design and <i>in vivo</i> assessment of polyester copolymers based on trimethylene carbonate and εâ€caprolactone. Journal of Applied Polymer Science, 2015, 132, .	1.3	2

#	Article	IF	CITATIONS
535	Chemical Functionalization of Graphene To Augment Stem Cell Osteogenesis and Inhibit Biofilm Formation on Polymer Composites for Orthopedic Applications. ACS Applied Materials & Interfaces, 2015, 7, 3237-3252.	4.0	170
536	<scp><i>I</i></scp> <i>n vitro</i> and <i>in vivo</i> evaluation of doxycyclineâ€chondroitin sulfate/ <scp>PCL</scp> microspheres for intraarticular treatment of osteoarthritis. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1238-1248.	1.6	17
537	Nanofiber protein adsorption affected by electrospinning physical processing parameters. Journal of the Iranian Chemical Society, 2015, 12, 1089-1097.	1.2	26
538	Highly fluorescent polycaprolactones decorated with di(thiopheneâ€2â€yl)â€diketopyrrolopyrrole: A covalent strategy of tuning fluorescence properties in solid states. Journal of Polymer Science Part A, 2015, 53, 1032-1042.	2.5	18
539	Polymers in Drug Delivery: Fundamentals. , 2015, , 319-339.		1
540	Core–shell hybrid nanocapsules for oral delivery of camptothecin: formulation development, in vitro and in vivo evaluation. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	44
541	Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1580-1593.	1.6	45
542	Electrical conduction and rheological behaviour of composites ofÂpoly(ε-caprolactone) and MWCNTs. Polymer, 2015, 58, 209-221.	1.8	62
543	Functionalized mesoporous silica-coated magnetic graphene oxide by polyglycerol-g-polycaprolactone with pH-responsive behavior: Designed for targeted and controlled doxorubicin delivery. Journal of Industrial and Engineering Chemistry, 2015, 28, 45-53.	2.9	50
544	Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering. Journal of Materials Science: Materials in Medicine, 2015, 26, 5352.	1.7	72
545	Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer, 2015, 58, A1-A36.	1.8	439
546	Influence of water addition on the structure of plasma-deposited allyl alcohol polymer films. Journal of Adhesion Science and Technology, 2015, 29, 965-980.	1.4	18
547	Thermo-mechanical properties of poly Îμ-caprolactone/poly l -lactic acid blends: Addition of nalidixic acid and polyethylene glycol additives. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 45, 154-165.	1.5	15
548	The effect of urea and urea-modified halloysite on performance of PCL. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1283-1291.	2.0	14
549	Characterization of polycaprolactone/collagen fibrous scaffolds by electrospinning and their bioactivity. International Journal of Biological Macromolecules, 2015, 76, 94-101.	3.6	88
550	Neocollagenesis in human tissue injected with a polycaprolactone-based dermal filler. Journal of Cosmetic and Laser Therapy, 2015, 17, 99-101.	0.3	58
551	Effect of starch content on the biodegradation of polycaprolactone/starch composite for fabricating in situ pore-forming scaffolds. Polymer Testing, 2015, 43, 94-102.	2.3	33
552	Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications. Acta Biomaterialia, 2015, 24, 53-63.	4.1	32

#	Article	IF	CITATIONS
553	Novel Zinc-Catalytic Systems for Ring-Opening Polymerization of ε-Caprolactone. Molecules, 2015, 20, 2816-2827.	1.7	36
554	Pendant small functional groups on poly(Ϊμ-caprolactone) substrate modulate adhesion, proliferation and differentiation of human mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2015, 134, 322-331.	2.5	30
555	New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties. Materials Science and Engineering C, 2015, 56, 9-21.	3.8	47
556	Polycaprolactone multicore-matrix particle for the simultaneous encapsulation of hydrophilic and hydrophobic compounds produced by membrane emulsification and solvent diffusion processes. Colloids and Surfaces B: Biointerfaces, 2015, 135, 116-125.	2.5	23
557	Polycaprolactone/multi-wall carbon nanotube nanocomposites prepared by in situ ring opening polymerization: Decomposition profiling using thermogravimetric analysis and analytical pyrolysis–gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2015, 115, 125-131.	2.6	14
558	A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nature Materials, 2015, 14, 1065-1071.	13.3	268
559	Mixed Imidazolin-2-iminato–Cp* Thorium(IV) Complexes: Synthesis and Reactivity Toward Oxygen-Containing Substrates. Organometallics, 2015, 34, 2933-2942.	1.1	37
560	The parameters influencing the morphology of poly(É>-caprolactone) microspheres and the resulting release of encapsulated drugs. International Journal of Pharmaceutics, 2015, 494, 152-166.	2.6	21
561	Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering. Journal of Dental Research, 2015, 94, 143S-152S.	2.5	180
562	Controlled release formulations of risperidone antipsychotic drug in novel aliphatic polyester carriers: Data analysis and modelling. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 473-484.	2.0	39
563	Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 2015, 81, 112-121.	1.4	469
564	Enzymatically degradable EMI shielding materials derived from PCL based nanocomposites. RSC Advances, 2015, 5, 17716-17725.	1.7	32
565	Photothermal and morphological characterization of PLA/PCL polymer blends. Applied Physics A: Materials Science and Processing, 2015, 120, 1323-1329.	1.1	7
566	Experimental approaches to vascularisation within tissue engineering constructs. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 683-734.	1.9	52
567	Dipyridamole embedded in Polycaprolactone fibers prepared by coaxial electrospinning as a novel drug delivery system. Journal of Drug Delivery Science and Technology, 2015, 29, 132-142.	1.4	48
568	Local delivery of resveratrol using polycaprolactone nanofibers for treatment of periodontal disease. Journal of Drug Delivery Science and Technology, 2015, 30, 408-416.	1.4	51
569	Enzymatic degradation of polycaprolactone–gelatin blend. Materials Research Express, 2015, 2, 045303.	0.8	18
570	Improved fabrication of melt electrospun tissue engineering scaffolds using direct writing and advanced electric field control. Biointerphases, 2015, 10, 011006.	0.6	67

#	Article	IF	CITATIONS
571	Raman and NMR Spectroscopic Studies on Hydrolytic Degradation of <scp>d</scp> , <scp>l</scp> -Lactideâ^îî-Valerolactone– <scp>d</scp> , <scp>l</scp> -Lactide Copolymer. ACS Sustainable Chemistry and Engineering, 2015, 3, 1381-1393.	3.2	7
572	Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Biofabrication, 2015, 7, 035002.	3.7	296
573	Amino acid-based poly(ester amide) nanofibers for tailored enzymatic degradation prepared by miniemulsion-electrospinning. RSC Advances, 2015, 5, 55006-55014.	1.7	20
574	Dual growth factor-immobilized microspheres for tissue reinnervation:in vitroand preliminaryin vivostudies. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 322-337.	1.9	5
575	Reinforcement of hydrogels using three-dimensionally printed microfibres. Nature Communications, 2015, 6, 6933.	5.8	567
576	Systematic review of "filling―procedures for lip augmentation regarding types of material, outcomes and complications. Journal of Cranio-Maxillo-Facial Surgery, 2015, 43, 883-906.	0.7	31
577	Study on the condensed state physics of poly($\hat{I}\mu$ -caprolactone) nano-aggregates in aqueous dispersions. Journal of Colloid and Interface Science, 2015, 450, 264-271.	5.0	6
578	Degradation product profiles of melt spun in situ cross-linked poly(ε-caprolactone) fibers. Materials Chemistry and Physics, 2015, 156, 82-88.	2.0	11
579	Influences of a Dizinc Catalyst and Bifunctional Chain Transfer Agents on the Polymer Architecture in the Ring-Opening Polymerization of Îμ-Caprolactone. Macromolecules, 2015, 48, 2407-2416.	2.2	25
580	Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2015, 7, 9399-9409.	4.0	127
581	Cellulose acetate core–shell structured electrospun fiber: fabrication and characterization. Cellulose, 2015, 22, 1389-1400.	2.4	46
582	Morphology and thermal degradation studies of melt-mixed poly(hydroxybutyrate-co-valerate) (PHBV)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Journal of Materials Science, 2015, 50, 3812-3824.	1.7	46
583	Preparation, Characterisation, and Controlled-Release of Biodegradable Polyester and Marine-Algae Composite. Journal of Polymers and the Environment, 2015, 23, 356-366.	2.4	9
584	Preparation and characterization of poly(glycerol sebacate)/cellulose nanocrystals elastomeric composites. Journal of Applied Polymer Science, 2015, 132, .	1.3	25
585	Physical and structural properties and thermal behaviour of starch-poly(É›-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 2015, 5, 10-20.	3.3	63
586	Water-Soluble Thin Film Transistors and Circuits Based on Amorphous Indium–Gallium–Zinc Oxide. ACS Applied Materials & Interfaces, 2015, 7, 8268-8274.	4.0	113
587	Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO. Journal of Applied Polymer Science, 2015, 132, .	1.3	59
588	Local Sustained Delivery of 25-Hydroxyvitamin D3 for Production of Antimicrobial Peptides. Pharmaceutical Research, 2015, 32, 2851-2862.	1.7	26

	Сіта	CITATION REPORT	
#	Article	IF	CITATIONS
589	Thermal properties and crystallization kinetics of poly(butylene suberate). Polymer, 2015, 67, 12-19.	1.8	18
590	Bioactive glass reinforced elastomer composites for skeletal regeneration: A review. Materials Science and Engineering C, 2015, 53, 175-188.	3.8	73
591	Near-to-eutectic mixtures as bifunctional catalysts in the low-temperature-ring-opening-polymerization of ε-caprolactone. Green Chemistry, 2015, 17, 3632-364	3. 4.6	27
592	Light-Triggered Intramolecular Cyclization in Poly(lactic- <i>co</i> -glycolic acid)-Based Polymers for Controlled Degradation. Macromolecules, 2015, 48, 3166-3172.	2.2	48
593	Enzyme mimetic-catalyzed ATRP and its application in block copolymer synthesis combined with enzymatic ring-opening polymerization. RSC Advances, 2015, 5, 42728-42735.	1.7	20
594	Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 2015, 6, 4497-4559.	1.9	1,917
595	Biomaterials in Regenerative Medicine. , 2015, , 141-149.		0
596	Biocompatibility of shape-memory polymers for biomedical applications. , 2015, , 77-95.		0
597	Development of thalidomide-loaded biodegradable devices and evaluation of the effect on inhibition of inflammation and angiogenesis after subcutaneous application. Biomedicine and Pharmacotherapy, 2015, 71, 21-28.	2.5	3
598	Photochemically cross-linked poly(ε-caprolactone) with accelerated hydrolytic degradation. European Polymer Journal, 2015, 68, 601-608.	2.6	12
599	Strategies for drug delivery to the central nervous system by systemic route. Drug Delivery, 2015, 22, 243-257.	2.5	51
600	Near-Infrared Light-Responsive Composite Microneedles for On-Demand Transdermal Drug Delivery. Biomacromolecules, 2015, 16, 1598-1607.	2.6	111
601	Radiopaque poly(ε-caprolactone) as additive for X-ray imaging of temporary implantable medical devices. RSC Advances, 2015, 5, 84125-84133.	1.7	20
602	The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol–gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds. Colloids and Surfaces B: Biointerfaces, 2015, 136, 93-98.	2.5	28
603	Physical Characterization and Platelet Interactions under Shear Flows of a Novel Thermoset Polyisobutylene-based Co-polymer. ACS Applied Materials & Interfaces, 2015, 7, 22058-22066.	4.0	18
604	In vitro degradation studies and mechanical behavior of poly(Îμ-caprolactone-co-δ-valerolactone) and poly(Îμ-caprolactone-co-L-lactide) with random and semi-alternating chain microstructures. European Polymer Journal, 2015, 71, 585-595.	2.6	28
605	Physical and Mechanical Characterizations of Oxidized Regenerated Cellulose/Polycaprolactone Composite for Use as a Synthetic Dura Mater. Key Engineering Materials, 2015, 659, 19-23.	0.4	2
606	Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage electrophysiological development of cardiac cells. Acta Biomaterialia, 2015, 28, 109-120.	4.1	130

#ARTICLEIFCITATIONS607Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Advanced
Drug Delivery Reviews, 2015, 94, 77-95.6.6112608Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials: In vitro4.168

CITATION REPORT

Miscibility, crystallization behavior and morphology of novel poly(butylene suberate) and poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

610	Antibacterial Surgical Silk Sutures Using a High-Performance Slow-Release Carrier Coating System. ACS Applied Materials & Interfaces, 2015, 7, 22394-22403.	4.0	86
611	Synthesize of Carboxymethyl Chitosan-Graft-Polycaprolactone (CMCS-g-PCL) and the Preparation of Micelles. Advanced Materials Research, 2015, 1120-1121, 909-914.	0.3	3
612	Stable single device multi-pore electrospraying of polymeric microparticles via controlled electrostatic interactions. RSC Advances, 2015, 5, 87919-87923.	1.7	20
613	Enhancement of thermoplastic starch final properties by blending with poly(É›-caprolactone). Carbohydrate Polymers, 2015, 134, 205-212.	5.1	34
614	Silk as a potential candidate for bone tissue engineering. Journal of Controlled Release, 2015, 215, 112-128.	4.8	135
615	Incorporation of Retinoic Acid Releasing Microspheres into Pluripotent Stem Cell Aggregates for Inducing Neuronal Differentiation. Cellular and Molecular Bioengineering, 2015, 8, 307-319.	1.0	23
616	Microgrooved Polymer Substrates Promote Collective Cell Migration To Accelerate Fracture Healing in an <i>in Vitro</i> Model. ACS Applied Materials & amp; Interfaces, 2015, 7, 23336-23345.	4.0	53
617	Fabrication of uniform-sized poly-É›-caprolactone microspheres and their applications in human embryonic stem cell culture. Biomedical Microdevices, 2015, 17, 105.	1.4	10
618	N ₂ /H ₂ o Plasma Assisted Functionalization of Poly(εâ€caprolactone) Porous Scaffolds: Acidic/Basic Character versus Cell Behavior. Plasma Processes and Polymers, 2015, 12, 786-798.	1.6	14
619	A pragmatic calciumâ€based initiator for the synthesis of polycaprolactone copolymers. Polymer International, 2015, 64, 654-660.	1.6	10
620	Electrospun Polycaprolactone (PCL) and PCL/ nano-hydroxyapatite (PCL/nHA)-based nanofibers for bone tissue engineering application. , 2015, , .		5
621	Influence of PCL molecular weight on mesenchymal stromal cell differentiation. RSC Advances, 2015, 5, 54510-54516.	1.7	29
622	Biofabrication of reinforced 3D-scaffolds using two-component hydrogels. Journal of Materials Chemistry B, 2015, 3, 9067-9078.	2.9	56
623	Long-term Local and Systemic Safety of Poly(<scp>l</scp> -lactide-co-epsilon-caprolactone) after Subcutaneous and Intra-articular Implantation in Rats. Toxicologic Pathology, 2015, 43, 1127-1140.	0.9	44
624	3D patterned substrates for bioartificial blood vessels – The effect of hydrogels on aligned cells on a biomaterial surface. Acta Biomaterialia, 2015, 26, 159-168.	4.1	35

#	Article	IF	CITATIONS
625	New biomaterials from renewable resources – amphiphilic block copolymers from δ-decalactone. Polymer Chemistry, 2015, 6, 7196-7210.	1.9	45
626	High-pressure rheological analysis of CO2-induced melting point depression and viscosity reduction of poly(ε-caprolactone). Polymer, 2015, 69, 17-24.	1.8	46
627	Hierarchical porous polycaprolactone microspheres generated via a simple pathway combining nanoprecipitation and hydrolysis. Chemical Communications, 2015, 51, 15114-15117.	2.2	14
628	The grafting of a thin layer of poly(sodium styrene sulfonate) onto poly(ε-caprolactone) surface can enhance fibroblast behavior. Journal of Materials Science: Materials in Medicine, 2015, 26, 206.	1.7	28
629	In Vitro Model of a Fibrosa Layer of a Heart Valve. ACS Applied Materials & Interfaces, 2015, 7, 20012-20020.	4.0	36
630	An enzyme-catalysed access to amphiphilic triblock copolymer of PCL-b-PEG-b-PCL: synthesis, characterization and self-assembly properties. Designed Monomers and Polymers, 2015, 18, 799-806.	0.7	21
631	Highly Active Yttrium Catalysts for the Ring-Opening Polymerization of ε-Caprolactone and Î-Valerolactone. Organometallics, 2015, 34, 4700-4706.	1.1	36
632	A layered electrospun and woven surgical scaffold to enhance endogenous tendon repair. Acta Biomaterialia, 2015, 26, 124-135.	4.1	60
633	Thermally mendable material based on a furyl-telechelic semicrystalline polymer and a maleimide crosslinker. Journal of Polymer Research, 2015, 22, 1.	1.2	19
634	Polycaprolactone thin-film drug delivery systems: Empirical and predictive models for device design. Materials Science and Engineering C, 2015, 57, 232-239.	3.8	51
635	Triggerable Degradation of Polyurethanes for Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2015, 7, 20377-20388.	4.0	55
636	Sequence-Controlled Copolymers Prepared via Entropy-Driven Ring-Opening Metathesis Polymerization. ACS Macro Letters, 2015, 4, 1039-1043.	2.3	85
637	Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/l2-tricalcium phosphate materials. Medical Engineering and Physics, 2015, 37, 767-776.	0.8	35
638	Degradable Polycaprolactone and Polylactide Homopolymer and Block Copolymer Brushes Prepared by Surface-Initiated Polymerization with Triazabicyclodecene and Zirconium Catalysts. Langmuir, 2015, 31, 10183-10189.	1.6	10
639	Controlled homoand copolymerization of ε-caprolactone and d,l-lactide in the presence of TiIV complexes. Russian Chemical Bulletin, 2015, 64, 181-188.	0.4	10
640	Uranium-mediated ring-opening polymerization of ε-caprolactone: a comparative study. Catalysis Science and Technology, 2015, 5, 5110-5119.	2.1	31
641	Synthesis and characterization of waterborne polyurethane containing poly(3-hydroxybutyrate) as new biodegradable elastomers. Journal of Materials Chemistry B, 2015, 3, 9089-9097.	2.9	27
642	Aliphatic polyesters for medical imaging and theranostic applications. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 97, 350-370.	2.0	58

#	Article	IF	CITATIONS
643	Enhancement of the biomineralization and cellular adhesivity of polycaprolactone-based hollow porous microspheres via dopamine bio-activation for tissue engineering applications. Materials Letters, 2015, 161, 503-507.	1.3	12
644	Mechanism of bubble nucleation in poly(ε-caprolactone) foaming at low temperature. Polymer, 2015, 79, 47-55.	1.8	6
645	Injectable radiopaque and bioactive polycaprolactone eramic composites for orthopedic augmentation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1465-1477.	1.6	19
646	Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1424-1432.	1.6	5
647	Star-Pseudopolyrotaxane Organized in Nanoplatelets for Poly(Îμ-caprolactone)-Based Nanofibrous Scaffolds with Enhanced Surface Reactivity. Macromolecular Rapid Communications, 2015, 36, 292-297.	2.0	15
648	Development and evaluation of biodegradable polymeric nanoparticles for the effective delivery of quercetin using a quality by design approach. LWT - Food Science and Technology, 2015, 61, 330-338.	2.5	68
649	Influence of excipients on characteristics and release profiles of poly(ε-caprolactone) microspheres containing immunoglobulin G. Materials Science and Engineering C, 2015, 48, 391-399.	3.8	9
650	Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cellâ€based bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 2077-2101.	2.1	71
651	Enhancement of chondrocyte proliferation, distribution, and functions within polycaprolactone scaffolds by surface treatments. Journal of Biomedical Materials Research - Part A, 2015, 103, 2322-2332.	2.1	15
652	Formation and stability of flow-induced nucleation precursors in PCL in the presence of a rigid miscible component. Materials Today Communications, 2015, 2, e26-e32.	0.9	1
653	Overcoming drug crystallization in electrospun fibers – Elucidating key parameters and developing strategies for drug delivery. International Journal of Pharmaceutics, 2015, 478, 390-397.	2.6	57
654	Catalytic behaviour in the ring-opening polymerisation of organoaluminiums supported by bulky heteroscorpionate ligands. Dalton Transactions, 2015, 44, 12388-12400.	1.6	35
655	Chitosan silk-based three-dimensional scaffolds containing gentamicin-encapsulated calcium alginate beads for drug administration and blood compatibility. Journal of Biomaterials Applications, 2015, 29, 1314-1325.	1.2	34
656	Polymeric scaffolds as stem cell carriers in bone repair. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1093-1119.	1.3	41
657	Molecular characterization of biodegradable natural resin acid-substituted polycaprolactone. European Polymer Journal, 2015, 62, 43-50.	2.6	18
658	Evaluation of a Thermoresponsive Polycaprolactone Scaffold for In Vitro Three-Dimensional Stem Cell Differentiation. Tissue Engineering - Part A, 2015, 21, 310-319.	1.6	12
659	Highly fluorescent and bioresorbable polymeric nanoparticles with enhanced photostability for cell imaging. Nanoscale, 2015, 7, 889-895.	2.8	46
660	Polycaprolactone/starch composite: Fabrication, structure, properties, and applications. Journal of Biomedical Materials Research - Part A, 2015, 103, 2482-2498.	2.1	94

#	ARTICLE Ternary composite scaffolds with tailorable degradation rate and highly improved colonization by	IF	CITATIONS
661	human bone marrow stromal cells. Journal of Biomedical Materials Research - Part A, 2015, 103, 2394-2404.	2.1	28
662	Improving Electrospun Fibre Stacking with Direct Writing for Developing Scaffolds for Tissue Engineering for Non-load Bearing Bone. IFMBE Proceedings, 2015, , 125-128.	0.2	5
663	Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 861-888.	1.3	115
664	Design, optimization and evaluation of poly- É› -caprolactone (PCL) based polymeric nanoparticles for oral delivery of lopinavir. Drug Development and Industrial Pharmacy, 2015, 41, 131-140.	0.9	51
665	Neuronal growth and differentiation on biodegradable membranes. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 106-117.	1.3	25
666	Additive manufacturing techniques for the production of tissue engineering constructs. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 174-190.	1.3	287
667	Influence of Al2O3 nanofiller on the properties of polymer electrolyte based on poly-ε-caprolactone. Polymer Bulletin, 2015, 72, 61-73.	1.7	7
668	PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydrate Polymers, 2015, 118, 133-142.	5.1	158
669	Preparation of electroactive nanofibers of star-shaped polycaprolactone/polyaniline blends. Colloid and Polymer Science, 2015, 293, 481-491.	1.0	12
670	Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials. Chemical Engineering Science, 2015, 125, 32-57.	1.9	240
671	New Semi-Biodegradable Materials from Semi-Interpenetrated Networks of Poly(ϵ-caprolactone) and Poly(ethyl acrylate). Macromolecular Bioscience, 2015, 15, 229-240.	2.1	7
672	Surface modification on polycaprolactone electrospun mesh and human decalcified bone scaffold with synovium-derived mesenchymal stem cells-affinity peptide for tissue engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 318-329.	2.1	25
673	Thermoplastic variable stiffness composites with embedded, networked sensing, actuation, and control. Journal of Composite Materials, 2015, 49, 1799-1808.	1.2	58
674	Reinvestigating nanoprecipitation via Box–Behnken design: a systematic approach. Journal of Microencapsulation, 2015, 32, 75-85.	1.2	14
675	Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced Drug Delivery Reviews, 2015, 84, 208-221.	6.6	189
676	Tailoring of Architecture and Intrinsic Structure of Electrospun Nanofibers by Process Parameters for Tissue Engineering Applications. , 2016, , .		1
677	Effect of Polymer Concentration, Rotational Speed, and Solvent Mixture on Fiber Formation Using Forcespinning®. Fibers, 2016, 4, 20.	1.8	40
678	Fiber-based hybrid structures as scaffolds and implants for regenerative medicine. , 2016, , 241-256.		6

#	Article	IF	CITATIONS
679	Synthesis, Properties, and In Vitro Hydrolytic Degradation of Poly(d,l-lactide-co-glycolide-co- <i>ε</i> -caprolactone). International Journal of Polymer Science, 2016, 2016, 1-9.	1.2	8
680	3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications. International Journal of Dentistry, 2016, 2016, 1-15.	0.5	90
681	Two Different Approaches for Oral Administration of Voriconazole Loaded Formulations: Electrospun Fibers versus β-Cyclodextrin Complexes. International Journal of Molecular Sciences, 2016, 17, 282.	1.8	47
682	Types of Biodegradable Polymers. , 2016, , 81-151.		17
683	Design and fabrication of nanocomposites for musculoskeletal tissue regeneration. , 2016, , 3-29.		14
684	A bio-artificial poly([D,L]-lactide-co-glycolide) drug-eluting nanofibrous periosteum for segmental long bone open fractures with significant periosteal stripping injuries. International Journal of Nanomedicine, 2016, 11, 941.	3.3	10
685	Antimicrobial Food Packaging Based on Biodegradable Materials. , 2016, , 363-384.		24
686	Biomedical Applications of Biodegradable Polyesters. Polymers, 2016, 8, 20.	2.0	363
687	Breast Cancer Stem Cell Culture and Enrichment Using Poly(ε-Caprolactone) Scaffolds. Molecules, 2016, 21, 537.	1.7	37
688	Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects. International Journal of Molecular Sciences, 2016, 17, 1.	1.8	1,160
689	Surface Modified Multifunctional and Stimuli Responsive Nanoparticles for Drug Targeting: Current Status and Uses. International Journal of Molecular Sciences, 2016, 17, 1440.	1.8	146
690	Fabrication of Gelatin/PCL Electrospun Fiber Mat with Bone Powder and the Study of Its Biocompatibility. Journal of Functional Biomaterials, 2016, 7, 6.	1.8	41
691	Synchrotron-Based in Situ Characterization of the Scaffold Mass Loss from Erosion Degradation. Journal of Functional Biomaterials, 2016, 7, 17.	1.8	3
692	Evaluation of Functionalized Porous Titanium Implants for Enhancing Angiogenesis in Vitro. Materials, 2016, 9, 304.	1.3	5
693	Heterogeneity of Scaffold Biomaterials in Tissue Engineering. Materials, 2016, 9, 332.	1.3	72
694	Fabrication of Cell-Loaded Two-Phase 3D Constructs for Tissue Engineering. Materials, 2016, 9, 887.	1.3	27
695	An Osteoconductive Antibiotic Bone Eluting Putty with a Custom Polymer Matrix. Polymers, 2016, 8, 247.	2.0	5
696	Fabrication of Poly(<mml:math)="" 0.784314="" 1="" etqq1="" rgbt<br="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML">Scaffolds Reinforced with Cellulose Nanofibers, with and without the Addition of Hydroxyapatite Nanoparticles. BioMed Research International. 2016. 2016. 1-10.</mml:math>	Overlock 0.9	2 10 Tf 50 72 53

#	Article	IF	CITATIONS
697	INCORPORATION AND RELEASE KINETICS OF ALPHA-BISABOLOL FROM PCL AND CHITOSAN/GUAR GUM MEMBRANES. Brazilian Journal of Chemical Engineering, 2016, 33, 453-467.	0.7	13
698	Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry. Biofabrication, 2016, 8, 025020.	3.7	137
699	3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering. Advanced Healthcare Materials, 2016, 5, 2353-2362.	3.9	209
700	Current Status of Tissue-engineered Scaffolds for Rotator Cuff Repair. Techniques in Orthopaedics, 2016, 31, 91-97.	0.1	32
701	Poly(É›â€caprolactone)/gelatin composite electrospun scaffolds with porous craterâ€like structures for tissue engineering. Journal of Biomedical Materials Research - Part A, 2016, 104, 1017-1029.	2.1	68
702	Biological and Tribological Assessment of Poly(Ethylene Oxide Terephthalate)/Poly(Butylene) Tj ETQq1 1 0.78431 Regeneration. Advanced Healthcare Materials, 2016, 5, 232-243.	4 rgBT /O 3.9	verlock 10 T 11
703	Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration. Advanced Healthcare Materials, 2016, 5, 1753-1763.	3.9	62
704	A straightforward synthesis of wellâ€defined difluorophosphonylated terminated poly(εâ€caprolactone) for grafting onto iron oxide magnetic nanoparticles. Journal of Polymer Science Part A, 2016, 54, 2453-2458.	2.5	1
705	Viscoelastic properties of poly(ε aprolactone)/clay nanocomposites in solid and in melt state. Journal of Applied Polymer Science, 2016, 133, .	1.3	5
706	The use of liposomes in the modification of polycaprolactone fibers. Journal of Applied Polymer Science, 2016, 133, .	1.3	3
707	Carbonâ€Quantumâ€Dotsâ€Loaded Mesoporous Silica Nanocarriers with pHâ€Switchable Zwitterionic Surface and Enzymeâ€Responsive Poreâ€Cap for Targeted Imaging and Drug Delivery to Tumor. Advanced Healthcare Materials, 2016, 5, 1401-1407.	3.9	68
708	Towards Resolution Enhancement and Process Repeatability With a Melt Electrospinning Writing Process: Design and Protocol Considerations. , 2016, , .		5
709	End-Capping Strategies for Triggering End-to-End Depolymerization of Polyglyoxylates. Macromolecules, 2016, 49, 9309-9319.	2.2	51
710	Bioactive polymeric scaffolds for tissue engineering. Bioactive Materials, 2016, 1, 93-108.	8.6	336
712	Graphene: An Emerging Carbon Nanomaterial for Bone Tissue Engineering. Carbon Nanostructures, 2016, , 135-158.	0.1	3
713	Graphene-based Materials in Health and Environment. Carbon Nanostructures, 2016, , .	0.1	5
714	Preparation of Polymer Nanoparticles by the Emulsification-Solvent Evaporation Method: From Vanderhoff's Pioneer Approach to Recent Adaptations. , 2016, , 87-121.		11
715	Sustained delivery of recombinant human bone morphogenetic protein-2 from perlecan domain I - functionalized electrospun poly (ε-caprolactone) scaffolds for bone regeneration. Journal of Experimental Orthopaedics, 2016, 3, 25.	0.8	15

ARTICLE IF CITATIONS Functionalization of $poly(l_{\mu}-caprolactone)$ surface with lactose-modified chitosan via alkaline 716 0.6 14 hydrolysis: ToF-SIMS characterization. Biointerphases, 2016, 11, 02A323. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications. 4.1 Acta Biomaterialia, 2016, 34, 73-83 Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Science 718 4.7 461 Advances, 2016, 2, e1501478. Synthesis of Functional Polycaprolactones via Passerini Multicomponent Polymerization of 6-Oxohexanoic Acid and Isocyanides. Macromolecules, 2016, 49, 2592-2600. Stability studies of plasma modification effects of polylactide and polycaprolactone surface layers. 720 3.1 31 Applied Surface Science, 2016, 377, 228-237. Mechanically-enhanced three-dimensional scaffold with anisotropic morphology for tendon regeneration. Journal of Materials Science: Materials in Medicine, 2016, 27, 115. 1.7 Crystallization of Polymer Chains Chemically Attached on a Surface: Lamellar Orientation from 722 1.2 24 Flat-on to Edge-on. Journal of Physical Chemistry B, 2016, 120, 4715-4722. A flexible polymersome system with tunable morphology and release profiles for efficient 723 2.6 intracellular delivery. International Journal of Pharmaceutics, 2016, 508, 34-41. 724 Novel nanocarrier for oral Hepatitis B vaccine. Vaccine, 2016, 34, 3076-3081. 12 1.7 Strain rate and temperature effects on elastic properties of polycaprolactone/starch composite. 1.3 E-Polymers, 2016, 16, 217-223. A new synthetic methodology for the preparation of biocompatible and organo-soluble barbituricand thiobarbituric acid based chitosan derivatives for biomedical applications. Materials Science and 726 32 3.8 Engineering C, 2016, 66, 156-163. A unique cooperative catalytic system carrying metallic iron and 2-hydroxyethyl 2-bromoisobutyrate for the controlled/living ring-opening polymerization of îµ-caprolactone. RSC Advances, 2016, 6, 11400-11406. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration – Effects of organic crosslinker valence, content and molecular weight on mechanical properties. Acta 728 4.1 20 Biomaterialia, 2016, 35, 318-329. Effects of nozzle type atmospheric dry air plasma on L929 fibroblast cells hybrid poly (Îμ-caprolactone)/chitosan/poly (Îμ-caprolactone) scaffolds interactions. Journal of Bioscience and Bioengineering, 2016, 122, 232-239. 1.1 Effect of CO2 plasma exposure on physico-chemical properties of porous polycaprolactone scaffold. 730 8 1.7 Polymer Bulletin, 2016, 73, 1875-1890. No Effect of Rapamycin on Cardiac Adhesion Formation: A Drug-Loaded Bioresorbable Polylactone Patch in a Porcine Cardiac Surgical Model. European Surgical Research, 2016, 56, 76-85. Relationships between Architectures and Properties of Highly Branched Polymers: The Cases of Amorphous Poly(trimethylene carbonate) and Crystalline Poly(lµ-caprolactone). Journal of Physical 732 1.2 16 Chemistry B, 2016, 120, 4078-4090. In vitro characterization of design and compressive properties of 3D-biofabricated/decellularized hybrid grafts for tracheal tissue engineering. Journal of the Mechanical Behavior of Biomedical 1.5 Materials, 2016, 59, 572-585.

#	Article	IF	CITATIONS
734	Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery. Journal of Pharmaceutical Sciences, 2016, 105, 2665-2676.	1.6	197
735	Tailored star poly (ε-caprolactone) wet-spun scaffolds for in vivo regeneration of long bone critical size defects. Journal of Bioactive and Compatible Polymers, 2016, 31, 15-30.	0.8	28
736	Production and physico-chemical characterization of nanocapsules of the essential oil from Lippia sidoides Cham Industrial Crops and Products, 2016, 86, 279-288.	2.5	33
737	Lysozyme-loaded lipid-polymer hybrid nanoparticles: preparation, characterization and colloidal stability evaluation. Drug Development and Industrial Pharmacy, 2016, 42, 1865-1876.	0.9	40
738	Development of bioresorbable bilayered systems for application as affordable wound dressings. Journal of Bioactive and Compatible Polymers, 2016, 31, 624-647.	0.8	3
739	Poly(ε-caprolactone)/triclosan loaded polylactic acid nanoparticles composite: A long-term antibacterial bionanocomposite with sustained release. International Journal of Pharmaceutics, 2016, 508, 10-21.	2.6	27
740	Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Advanced Drug Delivery Reviews, 2016, 107, 247-276.	6.6	342
741	Designing Biomaterials for 3D Printing. ACS Biomaterials Science and Engineering, 2016, 2, 1679-1693.	2.6	581
742	Cartilage Tissue Engineering: Preventing Tissue Scaffold Contraction Using a 3D-Printed Polymeric Cage. Tissue Engineering - Part C: Methods, 2016, 22, 573-584.	1.1	51
743	Ethylene brassylate-co-δ-hexalactone biobased polymers for application in the medical field: synthesis, characterization and cell culture studies. RSC Advances, 2016, 6, 22121-22136.	1.7	22
744	Elements and Materials Improve the FDM Products: A Review. Advanced Engineering Forum, 0, 16, 33-51.	0.3	29
745	Natural and Synthetic Polymers for Designing Composite Materials. , 2016, , 233-286.		22
746	Influence of a low content of PEO segment on the thermal, surface and morphological properties of triblock and diblock PCL copolymers. Macromolecular Research, 2016, 24, 323-335.	1.0	17
747	Polylactides—Methods of synthesis and characterization. Advanced Drug Delivery Reviews, 2016, 107, 3-16.	6.6	135
748	Interface and Confinement Induced Order and Orientation in Thin Films of Poly(ϵ-caprolactone). Macromolecules, 2016, 49, 3442-3451.	2.2	13
749	Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends in Food Science and Technology, 2016, 53, 23-33.	7.8	51
750	PCL–PEG graft copolymers with tunable amphiphilicity as efficient drug delivery systems. Journal of Materials Chemistry B, 2016, 4, 6228-6239.	2.9	38
751	Sub-Micrometer Magnetic Nanocomposites: Insights into the Effect of Magnetic Nanoparticles Interactions on the Optimization of SAR and MRI Performance. ACS Applied Materials & Interfaces, 2016, 8, 25777-25787.	4.0	38

#	Article	IF	CITATIONS
752	Peripheral Nerve Regeneration: Current Status and New Strategies Using Polymeric Materials. Advanced Healthcare Materials, 2016, 5, 2732-2744.	3.9	79
753	Polycaprolactone Microfibrous Scaffolds to Navigate Neural Stem Cells. Biomacromolecules, 2016, 17, 3287-3297.	2.6	60
754	The effect of dipyridamole embedded in a drug delivery system made by electrospun nanofibers on aortic endothelial cells. Journal of Drug Delivery Science and Technology, 2016, 35, 343-352.	1.4	7
755	Tuning the crystallinity and degradability of PCL by organocatalytic copolymerization with δ-hexalactone. Polymer, 2016, 102, 248-255.	1.8	26
756	Building the basis for patient-specific meniscal scaffolds: From human knee MRI to fabrication of 3D printed scaffolds. Bioprinting, 2016, 1-2, 1-10.	2.9	58
757	Poly(É›â€caprolactone)/polyhedral oligomeric silsesquioxane hybrids: Crystallization behavior and thermal degradation. Journal of Applied Polymer Science, 2016, 133, .	1.3	2
759	Biomaterialâ€Based Approaches to Address Vein Graft and Hemodialysis Access Failures. Macromolecular Rapid Communications, 2016, 37, 1860-1880.	2.0	9
760	Amphiphilic block copolymers from a renewable ε-decalactone monomer: prediction and characterization of micellar core effects on drug encapsulation and release. Journal of Materials Chemistry B, 2016, 4, 7119-7129.	2.9	35
761	Encapsulation and Controlled Release of Rapamycin from Polycaprolactone Nanoparticles Prepared by Membrane Micromixing Combined with Antisolvent Precipitation. Langmuir, 2016, 32, 10685-10693.	1.6	25
762	A bio-inspired hybrid nanosack for graft vascularization at the omentum. Acta Biomaterialia, 2016, 41, 224-234.	4.1	10
763	Non-invasive monitoring of the osteogenic differentiation of human mesenchymal stem cells on a polycaprolactone scaffold using Raman imaging. RSC Advances, 2016, 6, 61771-61776.	1.7	7
764	Postpolymerization Modifications of Alkeneâ€Functional Polycarbonates for the Development of Advanced Materials Biomaterials. Macromolecular Bioscience, 2016, 16, 1762-1775.	2.1	34
765	Electrospinning and mechanical properties of polymeric fibers using a novel gap-spinning collector. Fibers and Polymers, 2016, 17, 1025-1032.	1.1	16
766	Effect of particle size and volume fraction of BaTiO 3 powders on the functional properties of BaTiO 3 /poly(Îμ-caprolactone) composites. Materials Chemistry and Physics, 2016, 182, 246-255.	2.0	12
767	Polymerization of trimethylene carbonates using organic phosphoric acids. Polymer Chemistry, 2016, 7, 5526-5535.	1.9	26
768	Effect of molecular weight on the physical properties of poly(ethylene brassylate) homopolymers. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 209-219.	1.5	26
769	Biodegradable fiducial markers for X-ray imaging – soft tissue integration and biocompatibility. Journal of Materials Chemistry B, 2016, 4, 5700-5712.	2.9	16
770	Overview of Polycaprolactone-Based Drug Delivery System. , 2016, , 187-212.		2

#	Article	IF	CITATIONS
771	Biodegradable ECM-coated PCL microcarriers support scalable human early MSC expansion and in vivo bone formation. Cytotherapy, 2016, 18, 1332-1344.	0.3	60
772	Polycaprolactone fiber meshes provide a 3 <scp>D</scp> environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle. Journal of Biomedical Materials Research - Part A, 2016, 104, 26-36.	2.1	10
773	Preparation of Composite Electrospun Membranes Containing Strontium‣ubstituted Bioactive Glasses for Bone Tissue Regeneration. Macromolecular Materials and Engineering, 2016, 301, 972-981.	1.7	11
774	Pore formation of poly(ε-caprolactone) scaffolds with melting point reduction in supercritical CO 2 foaming. Journal of Supercritical Fluids, 2016, 117, 279-288.	1.6	38
775	Raman Line Imaging of Poly(ε-caprolactone)/Carbon Dioxide Solutions at High Pressures: A Combined Experimental and Computational Study for Interpreting Intermolecular Interactions and Free-Volume Effects. Journal of Physical Chemistry B, 2016, 120, 9115-9131.	1.2	7
776	Tissue engineered periodontal products. Journal of Periodontal Research, 2016, 51, 1-15.	1.4	94
777	Highly Fluorescent Polycaprolactones with Tunable Light Emission Wavelengths across Visible to NIR Spectral Window. Advanced Materials Interfaces, 2016, 3, 1600259.	1.9	16
778	The precision structural regulation of PLLA porous scaffold and its influence on the proliferation and differentiation of MC3T3-E1 cells. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 1685-1697.	1.9	13
779	Experimental investigations on the fluid-mechanics of an electrospun heart valve by means of particle image velocimetry. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 229-239.	1.5	9
780	Polymer-based drug delivery systems for cancer treatment. Journal of Polymer Science Part A, 2016, 54, 3525-3550.	2.5	102
781	Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds. International Journal of Biological Macromolecules, 2016, 93, 9-19.	3.6	51
782	Kinetic and mechanistic investigation of the ring-opening polymerization of l-lactide initiated by nBu3SnOnBu using 1H-NMR. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 381-392.	0.8	7
783	Synthesis, characterization and evaluation of in vitro toxicity in hepatocytes of linear polyesters with varied aromatic and aliphatic co-monomers. Journal of Controlled Release, 2016, 244, 214-228.	4.8	4
785	The past, present and future of ligament regenerative engineering. Regenerative Medicine, 2016, 11, 871-881.	0.8	30
786	Lipase-mediated degradation of poly-ε-caprolactone in toluene: Behavior and its action mechanism. Polymer Degradation and Stability, 2016, 133, 182-191.	2.7	23
787	Chemical modifications of graphene and their influence on properties of polyurethane composites: a review. Physica Scripta, 2016, 91, 104003.	1.2	14
788	Use of oxidized regenerated cellulose as bactericidal filler for food packaging applications. Cellulose, 2016, 23, 3209-3219.	2.4	14
789	Electrospun composite matrices of poly(ε-caprolactone)-montmorillonite made using tenside free Pickering emulsions. Materials Science and Engineering C, 2016, 69, 685-691.	3.8	29

ARTICLE IF CITATIONS Coaxial electrospinning of polycaprolactone@chitosan: Characterization and silver nanoparticles 790 2.0 50 incorporation for antibacterial activity. Reactive and Functional Polymers, 2016, 107, 87-92. Polyesters as Biomaterials: Synthesis and Fabrication., 2016, , 6196-6224. 791 Structural Engineering of Biodegradable PCL Block Copolymer Nanoassemblies for Enzyme-Controlled Drug Delivery in Cancer Cells. ACS Biomaterials Science and Engineering, 2016, 2, 792 2.6 34 1926-1941. Fibre pulsing during melt electrospinning writing. BioNanoMaterials, 2016, 17, . 793 109 Preparation and characterization of polycaprolactone microspheres by electrospraying. Aerosol 794 1.5 29 Science and Technology, 2016, 50, 1201-1215. Physico-mechanical and thermal properties of epoxidized natural rubber/polylactide (ENR/PLA) 795 composites reinforced with lignocellulose. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1467-1476. Chlorhexidine Nanocapsule Drug Delivery Approach to the Resin-Dentin Interface. Journal of Dental 796 2.5 38 Research, 2016, 95, 1065-1072. Enhancement of mechanical properties of 3D printed hydroxyapatite by combined low and high molecular weight polycaprolactone sequential infiltration.. Journal of Materials Science: Materials 797 1.7 10 in Medicine, 2016, 27, 171. Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue 798 1.7 60 engineering. Biomedical Materials (Bristol), 2016, 11, 055007. Di-Block PLCL and Tri-Block PLCLG Matrix Polymeric Nanoparticles Enhanced the Anticancer Activity of 799 2.2 Loaded 5-Fluorouracil. IEEE Transactions on Nanobioscience, 2016, 15, 739-747. Biomaterials and Nanotechnology for Tissue Engineering: Neural Regeneration., 2016, , 153-167. 800 0 Hyperelastic $\hat{a} \in \infty$ bone $\hat{a} \in A$ highly versatile, growth factor $\hat{a} \in \hat{c}$ free, osteoregenerative, scalable, and 5.8 300 surgically friendly biomaterial. Science Translational Medicine, 2016, 8, 358ra127. Comparison of Matrigel and Matriderm as a carrier for human amnion-derived mesenchymal stem cells 802 0.7 32 in wound healing. Placenta, 2016, 48, 99-103. Synthesis and meticulous molecular, morphological and thermal characterization of linear and star-shaped polycaprolactones. RSC Advances, 2016, 6, 98117-98127. 1.7 Viscoelastic, physical, and bio-degradable properties of dermal scaffolds and related cell behaviour. 804 1.7 26 Biomedical Materials (Bristol), 2016, 11, 055001. Griffithsin-Modified Electrospun Fibers as a Delivery Scaffold To Prevent HIV Infection. Antimicrobial 1.4 36 Agents and Chemotherapy, 2016, 60, 6518-6531. Enzymatic synthesis and characterization of polycaprolactone by using immobilized lipase onto a 806 0.3 16 surface-modified renewable carrier. Polish Journal of Chemical Technology, 2016, 18, 134-140. An Investigation of the Behavior of Solvent based Polycaprolactone ink for Material Jetting. Scientific 1.6 Reports, 2016, 6, 20852.

# 808	ARTICLE 4D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual and Physical Prototyping, 2016, 11, 263-270.	IF 5.3	CITATIONS
809	Polymer Topology Driven Enzymatic Biodegradation in Polycaprolactone Block and Random Copolymer Architectures for Drug Delivery to Cancer Cells. Macromolecules, 2016, 49, 8098-8112.	2.2	30
810	Transformation of Breast Reconstruction via Additive Biomanufacturing. Scientific Reports, 2016, 6, 28030.	1.6	67
811	Synthesis and shape memory property of segmented poly(ester urethane) with poly(butylene) Tj ETQq1 1 0.7843	14 rgBT /	Overlock 10
812	Tissue Engineering: Biomaterial Application. , 0, , 7901-7932.		0
813	Endotoxin hitchhiking on polymer nanoparticles. Nanotechnology, 2016, 27, 285601.	1.3	17
814	Poly(ε-caprolactone) Dendrimer Cross-Linked via Metal-Free Click Chemistry: Injectable Hydrophobic Platform for Tissue Engineering. ACS Macro Letters, 2016, 5, 1261-1265.	2.3	35
815	Novel Method for Fabrication of Samples for Cell Testing of Bioceramics in Granular form. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 449-454.	0.7	0
816	Biofabrication: The Future of Regenerative Medicine. Techniques in Orthopaedics, 2016, 31, 190-203.	0.1	24
817	Scaffolds: Skin Tissue Engineering. , 2016, , 7124-7137.		0
818	Syntheses, characterization, and hydrolytic degradation of <scp>P</scp> (εâ€caprolactoneâ€coâ€Î′â€valerolactone) copolymers: Influence of molecular weight. Journal of Applied Polymer Science, 2016, 133, .	1.3	8
819	Synthesis and characterization of Mannich base monophenolate lanthanide complexes and their application in ringâ€opening polymerization of εâ€caprolactone. Applied Organometallic Chemistry, 2016, 30, 458-464.	1.7	2
820	Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts. Journal of Biomaterials Applications, 2016, 31, 181-192.	1.2	35
821	Surface functionalization of an osteoconductive filler by plasma polymerization of poly(ε-caprolactone) and poly(acrylic acid) films. Applied Surface Science, 2016, 386, 327-336.	3.1	11
822	A comparative study on Poly(ε-caprolactone) film degradation at extreme pH values. Polymer Degradation and Stability, 2016, 130, 118-125.	2.7	72
823	Bilayer oxidized regenerated cellulose/poly ε-caprolactone knitted fabric-reinforced composite for use as an artificial dural substitute. Journal of Materials Science: Materials in Medicine, 2016, 27, 122.	1.7	16
824	<i>In vitro</i> degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization. Biomedical Materials (Bristol), 2016, 11, 015011.	1.7	84
825	A Tunable, Biodegradable, Thin-Film Polymer Device as a Long-Acting Implant Delivering Tenofovir Alafenamide Fumarate for HIV Pre-exposure Prophylaxis. Pharmaceutical Research, 2016, 33, 1649-1656.	1.7	87

#	Article	IF	CITATIONS
826	Biodegradation of bicomponent PCL/gelatin and PCL/collagen nanofibers electrospun from alternative solvent system. Polymer Degradation and Stability, 2016, 130, 10-21.	2.7	103
827	Blend electrospinning of dye-functionalized chitosan and poly(ε-caprolactone): towards biocompatible pH-sensors. Journal of Materials Chemistry B, 2016, 4, 4507-4516.	2.9	58
828	Poly(p-phenylene)/crosslinked poly(ε-caprolactone) blends as highly electroactive materials. Materials Chemistry and Physics, 2016, 171, 359-366.	2.0	6
829	Synthesis of well-defined carboxyl poly(ε-caprolactone) by fine-tuning the protection group. Polymer Chemistry, 2016, 7, 4630-4637.	1.9	20
830	Physical characteristics and biocompatibility of the polycaprolactone–biphasic calcium phosphate scaffolds fabricated using the modified melt stretching and multilayer deposition. Journal of Biomaterials Applications, 2016, 30, 1460-1472.	1.2	16
831	Electrospun layered double hydroxide/poly (Îμ-caprolactone) nanocomposite scaffolds for adipogenic differentiation of adipose-derived mesenchymal stem cells. Applied Clay Science, 2016, 127-128, 52-63.	2.6	41
832	Three-dimensional hierarchical cultivation of human skin cells on bio-adaptive hybrid fibers. Integrative Biology (United Kingdom), 2016, 8, 775-784.	0.6	16
833	Integrated threeâ€dimensional fiber/hydrogel biphasic scaffolds for periodontal bone tissue engineering. Polymer International, 2016, 65, 631-640.	1.6	36
834	High Molar Mass Poly(1,4-butadiene)- <i>graft</i> -poly(ε-caprolactone) Copolymers by ROMP: Synthesis via the Grafting-From Route and Self-Assembling Properties. Macromolecules, 2016, 49, 4739-4745.	2.2	13
835	Effect of layered silicates on fibril formation and properties of <scp>PCL/PLA</scp> microfibrillar composites. Journal of Applied Polymer Science, 2016, 133, .	1.3	34
836	Morphological, thermal, and mechanical properties of poly(ε aprolactone)/poly(ε aprolactone)â€grafted ellulose nanocrystals mats produced by electrospinning. Journal of Applied Polymer Science, 2016, 133, .	1.3	50
837	Fabrication of a poly(É›â€caprolactone)/starch nanocomposite scaffold with a solventâ€casting/saltâ€leaching technique for bone tissue engineering applications. Journal of Applied Polymer Science, 2016, 133, .	1.3	46
838	Novel Double‣ayered Conduit Containing Highly Bioactive Glass Fibers for Potential Nerve Guide Application. International Journal of Applied Glass Science, 2016, 7, 183-194.	1.0	17
839	Design and characterization of a biodegradable double-layer scaffold aimed at periodontal tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 392-403.	1.3	30
840	Telomerization of 1,3-butadiene with glycerol carbonate and subsequent ring-opening lactone co-polymerization. Comptes Rendus Chimie, 2016, 19, 299-305.	0.2	9
841	Nanocomposite Polymers with "Slimy―Surfaces that Refresh Following Abrasion. ACS Biomaterials Science and Engineering, 2016, 2, 180-187.	2.6	8
842	Synthesis and characterization of high grafting density bottle-brush poly(oxa)norbornene-g-poly(Îμ-caprolactone). Polymer Chemistry, 2016, 7, 1730-1738.	1.9	21
843	Comparison of poly(ε-caprolactone) chain lengths of poly(ε-caprolactone)-co-d-α-tocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBR3 breast cancer cells. European Journal of Pharmaceutics and Biopharmaceutics. 2016. 101. 15-24.	2.0	34

#	Article	IF	CITATIONS
844	Crystallization and thermal properties of melt-drawn PCL/PLA microfibrillar composites. Journal of Thermal Analysis and Calorimetry, 2016, 124, 799-805.	2.0	20
845	Synthesis of a new poly([R]-3-hydroxybutyrate) RAFT agent. Polymer Chemistry, 2016, 7, 1693-1700.	1.9	28
846	Emulsion electrospun composite matrices of poly(ε-caprolactone)-hydroxyapatite: Strategy for hydroxyapatite confinement and retention on fiber surface. Materials Letters, 2016, 167, 288-296.	1.3	18
847	Functionalization of agglomerating nanodiamonds with biodegradable poly(ε-caprolactone) through surface-initiated polymerization. Diamond and Related Materials, 2016, 62, 14-21.	1.8	18
848	Advancing the field of 3D biomaterial printing. Biomedical Materials (Bristol), 2016, 11, 014102.	1.7	147
849	Melt Extruded Bioresorbable Polymer Composites for Potential Regenerative Medicine Applications. Polymer-Plastics Technology and Engineering, 2016, 55, 432-446.	1.9	10
850	Synthesis and structure-property behavior of polycaprolactone-polydimethylsiloxane-polycaprolactone triblock copolymers. Polymer, 2016, 83, 138-153.	1.8	32
851	Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering. Tissue Engineering - Part A, 2016, 22, 123-132.	1.6	19
852	Use of thiol-ene click chemistry to modify mechanical and thermal properties of polyhydroxyalkanoates (PHAs). International Journal of Biological Macromolecules, 2016, 83, 358-365.	3.6	33
853	Three-Dimensional Printing in Plastic and Reconstructive Surgery. Annals of Plastic Surgery, 2016, 77, 569-576.	0.5	146
854	Electrochemical Investigations of Polycaprolactone-Coated AZ31 Mg Alloy in Earle's Balance Salt Solution and Conventional Simulated Body Fluid. Jom, 2016, 68, 1701-1710.	0.9	14
855	Tunable Thermoplastic Poly(ester–urethane)s Based on Modified Serinol Extenders. Macromolecules, 2016, 49, 2518-2525.	2.2	8
856	A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates. Acta Biomaterialia, 2016, 36, 332-349.	4.1	23
857	Dispersion of Polymers in Metallic Gallium. ChemPhysChem, 2016, 17, 162-169.	1.0	3
858	Facile fabrication of aloe vera containing PCL nanofibers for barrier membrane application. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 692-708.	1.9	44
859	Surface modification of poly-ε-caprolactone electrospun fibrous scaffolds using plasma discharge with sputter deposition of a titanium target. Materials Letters, 2016, 171, 87-90.	1.3	27
860	Morphology and surface chemistry of bicomponent scaffolds in terms of mesenchymal stromal cell viability. Journal of Bioactive and Compatible Polymers, 2016, 31, 423-436.	0.8	5
861	Biodegradable nanofiber-membrane for sustainable release of lidocaine at the femoral fracture site as a periosteal block: In vitro and in vivo studies in a rabbit model. Colloids and Surfaces B: Biointerfaces, 2016, 140, 332-341.	2.5	10

#	Article	IF	CITATIONS
862	Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering. Acta Biomaterialia, 2016, 40, 182-191.	4.1	175
863	Effect of gas plasma on polycaprolactone (PCL) membrane wettability and collagen type I immobilized for enhancing cell proliferation. Materials Letters, 2016, 171, 293-296.	1.3	27
864	Crystallization Behavior of Poly(sodium 4-styrenesulfonate)-Functionalized Carbon Nanotubes Filled Poly(ε-caprolactone) Nanocomposites. Industrial & Engineering Chemistry Research, 2016, 55, 1881-1889.	1.8	14
865	Influence of blending and blend morphology on the thermal properties and crystallization behaviour of PLA and PCL in PLA/PCL blends. Journal of Materials Science, 2016, 51, 4670-4681.	1.7	64
866	Atorvastatin calcium loaded PCL nanoparticles: development, optimization, in vitro and in vivo assessments. RSC Advances, 2016, 6, 16520-16532.	1.7	13
867	Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication, 2016, 8, 014102.	3.7	200
868	Triphasic scaffolds for the regeneration of the bone–ligament interface. Biofabrication, 2016, 8, 015009.	3.7	67
869	A new biodegradable polymeric nanoparticle formulation containing Syzygium cumini: Phytochemical profile, antioxidant and antifungal activity and in vivo toxicity. Industrial Crops and Products, 2016, 83, 400-407.	2.5	38
870	Electrospun fibers of chitosan-grafted polycaprolactone/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) blends. Journal of Materials	2.9	47
	Chemistry B, 2016, 4, 600-612.		
871	Chemistry B, 2016, 4, 600-612. Bioengineered Tissue TMJ TJR. , 2016, , 281-298.		0
871 872		2,9	0 36
	Bioengineered Tissue TMJ TJR. , 2016, , 281-298. Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and	2.9	
872	Bioengineered Tissue TMJ TJR. , 2016, , 281-298. Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. Journal of Materials Chemistry B, 2016, 4, 2017-2027. Enhanced protein retention on poly(caprolactone) via surface initiated polymerization of acrylamide.		36
872 873	 Bioengineered Tissue TMJ TJR., 2016, 281-298. Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. Journal of Materials Chemistry B, 2016, 4, 2017-2027. Enhanced protein retention on poly(caprolactone) via surface initiated polymerization of acrylamide. Applied Surface Science, 2016, 360, 20-27. Vibrational studies of flexible solid polymer electrolyte based on PCL–EC incorporated with proton conducting NH4SCN. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 	3.1	36 5
872 873 874	Bioengineered Tissue TMJ TJR., 2016, 281-298. Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. Journal of Materials Chemistry B, 2016, 4, 2017-2027. Enhanced protein retention on poly(caprolactone) via surface initiated polymerization of acrylamide. Applied Surface Science, 2016, 360, 20-27. Vibrational studies of flexible solid polymer electrolyte based on PCL–EC incorporated with proton conducting NH4SCN. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 161, 44-51. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia	3.1 2.0	36 5 23
872 873 874 875	Bioengineered Tissue TMJ TJR., 2016, 281-298. Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. Journal of Materials Chemistry B, 2016, 4, 2017-2027. Enhanced protein retention on poly(caprolactone) via surface initiated polymerization of acrylamide. Applied Surface Science, 2016, 360, 20-27. Vibrational studies of flexible solid polymer electrolyte based on PCL–EC incorporated with proton conducting NH4SCN. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 161, 44-51. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nature Biotechnology, 2016, 34, 435-440. Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical	3.1 2.0 9.4	36 5 23 182
872 873 874 875 876	Bioengineered Tissue TMJ TJR., 2016, 281-298. Albuminâ€" polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. Journal of Materials Chemistry B, 2016, 4, 2017-2027. Enhanced protein retention on poly(caprolactone) via surface initiated polymerization of acrylamide. Applied Surface Science, 2016, 360, 20-27. Vibrational studies of flexible solid polymer electrolyte based on PCLâ€"EC incorporated with proton conducting NH4SCN. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 161, 44-51. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nature Biotechnology, 2016, 34, 435-440. Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing. Biofabrication, 2016, 8, 015016. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(<scp>-lactide-<1>co.caprolactone) Nanocomposites. Biomacromolecules, 2016, 17,</scp>	3.12.09.43.7	36 5 23 182 37

CIT	TION	u Drei	DODT
ULLA	ATIOT	N KE	PORT

#	Article	IF	CITATIONS
880	The metamorphosis of vascular stents: passive structures to smart devices. RSC Advances, 2016, 6, 2835-2853.	1.7	7
881	The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. Journal of Drug Delivery Science and Technology, 2016, 31, 137-146.	1.4	82
882	Synthesis and properties of ω-pentadecalactone-co-Î ⁻ hexalactone copolymers: a biodegradable thermoplastic elastomer as an alternative to poly(ε-caprolactone). RSC Advances, 2016, 6, 3137-3149.	1.7	20
883	Multiwall carbon nanotubes/polycaprolactone scaffolds seeded with human dental pulp stem cells for bone tissue regeneration. Journal of Materials Science: Materials in Medicine, 2016, 27, 35.	1.7	37
884	Magnetic field responsive methylcellulose-polycaprolactone nanocomposite gels for targeted and controlled release of 5-fluorouracil. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 421-432.	1.8	8
885	Synthesis, characterizations, <i>in vitro</i> and <i>in vivo</i> evaluation of Etoricoxib-loaded Poly (Caprolactone) microparticles – a potential Intra-articular drug delivery system for the treatment of Osteoarthritis. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 303-316.	1.9	37
886	Structural aspects and ring opening polymerization of Îμ-caprolactone using mono- and di-aluminum compounds incorporating bidentate pyrrole-morpholine ligands. Journal of Organometallic Chemistry, 2016, 804, 35-41.	0.8	18
887	Nanocarriers for optimizing the balance between interfollicular permeation and follicular uptake of topically applied clobetasol to minimize adverse effects. Journal of Controlled Release, 2016, 223, 207-214.	4.8	58
888	Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels. Acta Biomaterialia, 2016, 32, 46-56.	4.1	140
889	The effect of rippled graphene sheet roughness on the adhesive characteristics of a collagen–graphene system. International Journal of Adhesion and Adhesives, 2016, 64, 9-14.	1.4	5
890	Nanofibers for Tissue Engineering and Regenerative Medicine. IFMBE Proceedings, 2016, , 319-322.	0.2	7
891	In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. Acta Biomaterialia, 2016, 30, 319-333.	4.1	137
892	Alkynyl-functionalization of hydroxypropyl cellulose and thermoresponsive hydrogel thereof prepared with P(NIPAAm- co -HEMAPCL). Carbohydrate Polymers, 2016, 137, 433-440.	5.1	23
893	Preparation of nano/macroporous polycaprolactone microspheres for an injectable cell delivery system using room temperature ionic liquid and camphene. Journal of Colloid and Interface Science, 2016, 465, 18-25.	5.0	20
894	Enhancing the productivity of the bi-enzymatic convergent cascade for É>-caprolactone synthesis through design of experiments and a biphasic system. Tetrahedron, 2016, 72, 7222-7228.	1.0	37
895	Three-dimensional multilayered fibrous constructs for wound healing applications. Biomaterials Science, 2016, 4, 319-330.	2.6	20
896	Supercritical CO2 sorption kinetics and thymol impregnation of PCL and PCL-HA. Journal of Supercritical Fluids, 2016, 107, 486-498.	1.6	63
897	Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes and Diseases, 2016, 3, 56-71.	1.5	93

#	Article	IF	CITATIONS
898	New heteroscorpionate lanthanide complexes for ring-opening polymerisation of É›-caprolactone and rac-lactide‡. Chemical Papers, 2016, 70, .	1.0	4
899	Synthetic Biology. , 2016, , .		2
900	Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. International Journal of Biological Macromolecules, 2016, 82, 1028-1040.	3.6	188
901	Synthesis and characterization of the antitubercular phenazine lapazine and development of PLGA and PCL nanoparticles for its entrapment. Materials Science and Engineering C, 2016, 58, 458-466.	3.8	29
902	Full factorial design optimization of anti-inflammatory drug release by PCL–PEG–PCL microspheres. Materials Science and Engineering C, 2016, 58, 412-419.	3.8	40
903	Functionalization of polycaprolactone/hydroxyapatite scaffolds with Usnea lethariiformis extract by using supercritical CO 2. Materials Science and Engineering C, 2016, 58, 204-212.	3.8	33
904	Development of low density azithromycin-loaded polycaprolactone microparticles for pulmonary delivery. Drug Development and Industrial Pharmacy, 2016, 42, 776-787.	0.9	5
905	Policaprolactone/polyvinylpyrrolidone/siloxane hybrid materials: Synthesis and in vitro delivery of diclofenac and biocompatibility with periodontal ligament fibroblasts. Materials Science and Engineering C, 2016, 58, 60-69.	3.8	16
906	Electrical properties of FeII -terpyridine-Modified cellulose nanocrystals and polycaprolactone/FeII -CTP nanocomposites. Polymer Composites, 2016, 37, 2734-2743.	2.3	12
907	Uniformly-dispersed nanohydroxapatite-reinforced poly(ε-caprolactone) composite films for tendon tissue engineering application. Materials Science and Engineering C, 2017, 70, 1149-1155.	3.8	30
908	Assessment of polycaprolacton (PCL) nanocomposite scaffold compared with hydroxyapatite (HA) on healing of segmental femur bone defect in rabbits. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 961-968.	1.9	27
909	Anionic Ring Opening Polymerization of ε-Caprolactone Initiated by Lithium Silanolates. Australian Journal of Chemistry, 2017, 70, 106.	0.5	4
910	Evaluation of polycaprolactone â^' poly-D,L-lactide copolymer as biomaterial for breast tissue engineering. Polymer International, 2017, 66, 77-84.	1.6	17
911	A twoâ€step method using air plasma and carbodiimide crosslinking to enhance the biocompatibility of polycaprolactone. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 1658-1666.	1.6	6
912	<i>In vivo</i> evaluation of hybrid patches composed of PLA based copolymers and collagen/chondroitin sulfate for ligament tissue regeneration. , 2017, 105, 1778-1788.		20
913	Investigation of mechanical properties of porous composite scaffolds with tailorable degradation kinetics after <i>in vitro</i> degradation using digital image correlation. Polymer Composites, 2017, 38, 2402-2410.	2.3	11
914	Supramolecular Polymer Networkâ€Mediated Selfâ€Assembly of Semicrystalline Polymers with Excellent Crystalline Performance. Macromolecular Rapid Communications, 2017, 38, 1600702.	2.0	7
915	Improving Internal Cell Colonization of Porous Scaffolds with Chemical Gradients Produced by Plasma Assisted Approaches. ACS Applied Materials & amp; Interfaces, 2017, 9, 4966-4975.	4.0	23

#	Article	IF	Citations
916	Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications. Chemical Communications, 2017, 53, 2198-2217.	2.2	114
917	Organoaluminium Complexes Derived from Anilines or Schiff Bases for the Ringâ€Opening Polymerization of εâ€Caprolactone, Î'â€Valerolactone and <i>rac</i> ‣actide. European Journal of Inorganic Chemistry, 2017, 2017, 1951-1965.	1.0	26
918	Multimetallic Lithium Complexes Derived from the Acids Ph ₂ C(X)CO ₂ H (X=OH,) Tj ETC ChemistrySelect, 2017, 2, 759-768.	Qq0 0 0 rg 0.7	BT /Overlock 11
919	Preparation and properties of poly(lactic acid) melt spun fiber aligned and disordered scaffolds. Materials Letters, 2017, 192, 153-156.	1.3	8
920	Interaction of Tissue Engineering Substrates with Serum Proteins and Its Influence on Human Primary Endothelial Cells. Biomacromolecules, 2017, 18, 413-421.	2.6	28
921	Enzymatic synthesis of poly(ε-caprolactone- co -ε-thiocaprolactone). European Polymer Journal, 2017, 87, 147-158.	2.6	31
922	Poly (glycerol sebacate)-poly (Îμ-caprolactone) blend nanofibrous scaffold as intrinsic bio- and immunocompatible system for corneal repair. Acta Biomaterialia, 2017, 50, 370-380.	4.1	68
924	Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Materials Science and Engineering C, 2017, 74, 525-535.	3.8	96
925	One-step enzymatic synthesis of poly(p-dioxanone-co-butylene-co-succinate) copolyesters with well-defined structure and enhanced degradability. Polymer, 2017, 111, 107-114.	1.8	8
926	Molecular Order in Cold Drawn, Strain-Recrystallized Poly(ε-caprolactone). Macromolecules, 2017, 50, 1056-1065.	2.2	5
927	New application of threeâ€dimensional printing biomaterial in nasal reconstruction. Laryngoscope, 2017, 127, 1036-1043.	1.1	55
928	Substituted Polyesters by Thiol–Ene Modification: Rapid Diversification for Therapeutic Protein Stabilization. Journal of the American Chemical Society, 2017, 139, 1145-1154.	6.6	82
929	Optimized Photoinitiator for Fast Twoâ€Photon Absorption Polymerization of Polyesterâ€Macromers for Tissue Engineering. Advanced Engineering Materials, 2017, 19, 1600686.	1.6	20
930	Synthesis of allyl endâ€block functionalized poly(εâ€caprolactone)s and their facile postâ€functionalization via thiol–ene reaction. Journal of Polymer Science Part A, 2017, 55, 928-939.	2.5	8
931	Degradation of poly(<i>L</i> ″actic acid) coating on permanent coronary metal stent investigated <i>ex vivo</i> by micro Raman spectroscopy. Journal of Raman Spectroscopy, 2017, 48, 711-719.	1.2	20
932	Tunable Volumetric Density and Porous Structure of Spherical Poly-ε-caprolactone Microcarriers, as Applied in Human Mesenchymal Stem Cell Expansion. Langmuir, 2017, 33, 3068-3079.	1.6	17
933	Examinations of a new long-term degradable electrospun polycaprolactone scaffold in three rat abdominal wall models. Journal of Biomaterials Applications, 2017, 31, 1077-1086.	1.2	10
934	Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231, 555-564.	1.0	82

	Сіт	CITATION REPORT	
#	Article	IF	CITATIONS
935	Assessment of different polymers and drug loads for fused deposition modeling of drug loaded implants. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115, 84-93.	2.0	139
936	Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Biofabrication, 2017, 9, 015026.	3.7	85
937	Enhanced crystallization rate and mechanical properties of poly(<scp>l</scp> â€lactic acid) by stereocomplexation with fourâ€armed poly(<i>lµ</i> â€caprolactone)â€ <i>block</i> â€poly(<scp>d<td>cp>â€lactic)IIßETQ</td><td>q0</td></scp>	cp>â€lactic)IIßETQ	q0
938	Compaction and Transmembrane Delivery of pDNA: Differences between I-PEI and Two Types of Amphiphilic Block Copolymers. Biomacromolecules, 2017, 18, 808-818.	2.6	21
939	In situ forming biodegradable poly(ε-caprolactone) microsphere systems: a challenge for transarterial embolization therapy. In vitro and preliminary ex vivo studies. Expert Opinion on Drug Delivery, 2017, 14, 453-465.	2.4	7
940	Effects of different sterilization methods on the physico-chemical and bioresponsive properties of plasma-treated polycaprolactone films. Biomedical Materials (Bristol), 2017, 12, 015017.	1.7	55
941	The study of the pseudo-polyrotaxane architecture as a route for mild surface functionalization by click chemistry of poly(ε-caprolactone)-based electrospun fibers. Journal of Materials Chemistry B, 2017, 5, 2181-2189.	2.9	9
942	Immiscible poly(lactic acid)/poly(ε-caprolactone) for temporary implants: Compatibility and cytotoxicity. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 68, 155-162.	1.5	26
943	Biodegradable poly (ε-caprolactone)/lithium bis(trifluoromethanesulfonyl) imide as gel polymer electrolyte. Ionics, 2017, 23, 2657-2662.	1.2	4
944	Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. , 2017, , 281-311.		27
945	Eco-friendly sol-gel derived sodium-based ormolytes for electrochromic devices. Electrochimica Acta, 2017, 232, 484-494.	2.6	11
946	Nucleation Role of Basalt Fibers during Crystallization of Poly(ε-caprolactone) Composites. Industrial & Engineering Chemistry Research, 2017, 56, 2746-2753.	1.8	14
947	Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Biofabrication, 2017, 9, 012002.	3.7	145
948	Preparation of chitosan–silica/PCL composite membrane as wound dressing with enhanced cell attachment. Polymers for Advanced Technologies, 2017, 28, 1396-1408.	1.6	22
949	Nucleobase-functionalized supramolecular polymer films with tailorable properties and tunable biodegradation rates. Polymer Chemistry, 2017, 8, 1454-1459.	1.9	11
950	Synthesis of Functional Poly(ε-caprolactone)s via Living Ring-Opening Polymerization of ε-Caprolacto Using Functionalized Aluminum Alkoxides as Initiators. Macromolecular Chemistry and Physics, 2017, 218, 1600580.	ne 1.1	9
951	Ring opening polymerization of lactides and lactones by multimetallic alkyl zinc complexes derived from the acids Ph ₂ C(X)CO ₂ H (X = OH, NH ₂). RSC Advances, 20 4510-4517.	017, 7, 1.7	21
952	A review of 4D printing. Materials and Design, 2017, 122, 42-79.	3.3	764

#	Article	IF	CITATIONS
953	Twisting electrospun nanofiber fine strips into functional sutures for sustained co-delivery of gentamicin and silver. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1435-1445.	1.7	49
954	Functionalized Polymeric Membrane with Enhanced Mechanical and Biological Properties to Control the Degradation of Magnesium Alloy. Advanced Healthcare Materials, 2017, 6, 1601269.	3.9	46
955	Synthesis of polyesters by an efficient heterogeneous phosphazene (P1)-Porous Polymeric Aromatic Framework catalyzed-Ring Opening Polymerization of lactones. European Polymer Journal, 2017, 95, 775-784.	2.6	22
956	Polycaprolactone-blended gelatin microspheres and their morphological study. Journal of Polymer Research, 2017, 24, 1.	1.2	9
957	Development and Pre-Clinical Evaluation of Recombinant Human Myelin Basic Protein Nano Therapeutic Vaccine in Experimental Autoimmune Encephalomyelitis Mice Animal Model. Scientific Reports, 2017, 7, 46468.	1.6	22
958	Microchip-based 3D-cell culture using polymer nanofibers generated by solution blow spinning. Analytical Methods, 2017, 9, 3274-3283.	1.3	20
959	Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller localization on structure and properties. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 271-278.	1.5	51
960	Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Materials Science and Engineering C, 2017, 78, 218-229.	3.8	71
961	A mini review: Shape memory polymers for biomedical applications. Frontiers of Chemical Science and Engineering, 2017, 11, 143-153.	2.3	98
962	3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications. Methods in Molecular Biology, 2017, 1577, 209-226.	0.4	33
963	Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials, 2017, 137, 37-48.	5.7	246
964	Polycaprolactone nanocomposite reinforced by bioresource starch-based nanoparticles. International Journal of Biological Macromolecules, 2017, 102, 1304-1311.	3.6	22
965	Photothermal triggered protein release from an injectable polycaprolactone-based microspherical depot. Journal of Materials Chemistry B, 2017, 5, 3634-3639.	2.9	0
967	Poly(butylene succinate-ran-ε-caprolactone) copolyesters: Enzymatic synthesis and crystalline isodimorphic character. European Polymer Journal, 2017, 95, 795-808.	2.6	41
968	Evaluating polymeric biomaterial–environment interfaces by Langmuir monolayer techniques. Journal of the Royal Society Interface, 2017, 14, 20161028.	1.5	28
969	Structure and biocompatibility of highly oriented poly(lactic acid) film produced by biaxial solid hot stretching. Journal of Industrial and Engineering Chemistry, 2017, 52, 338-348.	2.9	25
970	Mechanical properties and state of miscibility in poly(racD,L-lactide-co-glycolide)/(L-lactide-co-ε-caprolactone) blends. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 372-382.	1.5	12
971	Recent advances in aliphatic polyesters for drug delivery applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1446.	3.3	78

ARTICLE IF CITATIONS # Synthesis, properties and biomedical applications of hydrolytically degradable materials based on 972 2.6 261 aliphatic polyesters and polycarbonates. Biomaterials Science, 2017, 5, 9-21. The Immune Response to Implanted Materials and Devices., 2017, , . Post-polymerization functionalization of poly(ethylene oxide)–poly(β-6-heptenolactone) diblock 974 1.9 11 copolymers to tune properties and self-assembly. Polymer Chemistry, 2017, 8, 557-567. Synthesis of well-defined cyclic polyesters via self-accelerating click reaction. Polymer, 2017, 121, 1.8 196-203. Design and fabrication of novel polymeric biodegradable stents for small caliber blood vessels by 976 1.7 28 computer-aided wet-spinning. Biomedical Materials (Bristol), 2017, 12, 035011. Application of Modified Amino Acid-Derived Diols as Chain Extenders in the Synthesis of Novel Thermoplastic Polyesterâ& Urethane Elastomers. ACS Sustainable Chemistry and Engineering, 2017, 5, 3.2 6902-6909. Integrated 3D printed scaffolds and electrical stimulation for enhancing primary human 978 2.9 16 cardiomyocyte cultures. Bioprinting, 2017, 6, 18-24. Raman microscopic imaging of electrospun fibers made from a polycaprolactone and polyethylene 979 1.2 oxide blend. Vibrational Spectroscopy, 2017, 92, 27-34. Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regenerative Medicine, 2017, 12, 431-457. 980 0.8 22 Gradient release of cardiac morphogens by photo-responsive polymer micelles for gradient-mediated variation of embryoid body differentiation. Journal of Material's Chemistry B, 2017, 5, 5206-5217. Morphology and properties of electrically and rheologically percolated PLA/PCL/CNT 982 31 1.3 nanocomposites. Journal of Applied Polymer Science, 2017, 134, 45265. Development of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy. Journal of Materials Science: Materials in Medicine, 2017, 28, 101. Via precise interface engineering towards bioinspired composites with improved 3D printing 985 2.9 23 processability and mechanical properties. Journal of Materials Chemistry B, 2017, 5, 5037-5047. Quaternary ammoniumâ€functionalized polymers in biodegradable matrices: Physicochemical properties, 1.3 morphology, and biodegradability. Journal of Applied Polymer Science, 2017, 134, 45261. Understanding intrinsic plasticizer in vegetable oil-based polyurethane elastomer as enhanced 987 2.0 13 biomaterial. Journal of Thermal Analysis and Calorimetry, 2017, 130, 919-933. Electrical characterization of an ionic conductivity polymer electrolyte based on polycaprolactone and silver nitrate for medical applications. Material's Létters, 2017, 205, 155-157. Effect of fibre laser process on in-vitro degradation rate of a polycaprolactone stent a novel 989 2.7 20 degradation study method. Polymer Degradation and Stability, 2017, 142, 42-49. Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma 3.8 34 cruzi infection. Materials Science and Engineering C, 2017, 77, 1196-1203.

#	Article	IF	CITATIONS
991	Engineering a lipase B from Candida antactica with efficient perhydrolysis performance by eliminating its hydrolase activity. Scientific Reports, 2017, 7, 44599.	1.6	18
992	New Chemistry in Functional Aliphatic Polyesters. Industrial & Engineering Chemistry Research, 2017, 56, 4207-4219.	1.8	80
993	Assessment of commercial poly(ε-caprolactone) as a renewable candidate for carbon capture and utilization. Journal of CO2 Utilization, 2017, 19, 185-193.	3.3	20
994	Determining conformational order and crystallinity in polycaprolactone via Raman spectroscopy. Polymer, 2017, 117, 1-10.	1.8	84
995	Steering surface topographies of electrospun fibers: understanding the mechanisms. Scientific Reports, 2017, 7, 158.	1.6	71
996	A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231, 597-616.	1.0	47
997	Review on the current status of polymer degradation: a microbial approach. Bioresources and Bioprocessing, 2017, 4, .	2.0	473
998	Effect of halloysite nanotubes on the thermal degradation behaviour of poly(ε-caprolactone)/poly(lactic acid) microfibrillar composites. Polymer Testing, 2017, 60, 166-172.	2.3	12
999	Aligned Poly(εâ€caprolactone) Nanofibers Guide the Orientation and Migration of Human Pluripotent Stem Cellâ€Derived Neurons, Astrocytes, and Oligodendrocyte Precursor Cells In Vitro. Macromolecular Bioscience, 2017, 17, 1600517.	2.1	22
1000	Physicochemical properties of polycaprolactone/collagen/elastin nanofibers fabricated by electrospinning. Materials Science and Engineering C, 2017, 76, 897-907.	3.8	63
1001	4D Printing of Shape Memoryâ€Based Personalized Endoluminal Medical Devices. Macromolecular Rapid Communications, 2017, 38, 1600628.	2.0	280
1002	Host Response to Synthetic Versus Natural Biomaterials. , 2017, , 81-105.		17
1003	Predictive Methodologies for Design of Bone Tissue Engineering Scaffolds. , 2017, , 453-492.		5
1004	Biomimetic Approaches for Bone Tissue Engineering. Tissue Engineering - Part B: Reviews, 2017, 23, 480-493.	2.5	69
1005	Silver(I)-pyridinyl Schiff base complexes: Synthesis, structural characterization and reactivity in ring-opening polymerisation of ε-caprolactone. Inorganica Chimica Acta, 2017, 457, 160-170.	1.2	14
1006	Correlation between traditional techniques and TD-NMR to determine the morphology of PHB/PCL blends. Polymer Testing, 2017, 58, 159-165.	2.3	35
1007	Application of nanotechnology for the development of microbicides. Nanotechnology, 2017, 28, 052001.	1.3	10
1008	Comparison of 3D-Printed Poly-É›-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix . Tissue Engineering - Part A, 2017, 23, 503-514.	1.6	157

#	Article	IF	Citations
1009	Electrospun composite matrices from tenside-free poly(ε-caprolactone)-grafted acrylic acid/hydroxyapatite oil-in-water emulsions. Journal of Materials Science, 2017, 52, 2254-2262.	1.7	13
1010	Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility. Biomedical Materials (Bristol), 2017, 12, 015008.	1.7	67
1011	Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability. Drug Development and Industrial Pharmacy, 2017, 43, 637-651.	0.9	23
1012	Loading of Drugâ€Polymer Matrices in Microreservoirs for Oral Drug Delivery. Macromolecular Materials and Engineering, 2017, 302, 1600366.	1.7	8
1013	Thermal degradation behavior of Copoly(propylene carbonate ε-caprolactone) investigated using TG/FTIR and Py-GC/MS methodologies. Polymer Testing, 2017, 58, 13-20.	2.3	15
1014	The potential of unsaturated polyesters in biomedicine and tissue engineering: Synthesis, structure-properties relationships and additive manufacturing. Progress in Polymer Science, 2017, 68, 1-34.	11.8	73
1015	Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nature Biomedical Engineering, 2017, 1, .	11.6	147
1016	Triblock copolymers for nano-sized drug delivery systems. Journal of Pharmaceutical Investigation, 2017, 47, 27-35.	2.7	43
1017	Polycaprolactone–Polyaniline Blend: Effects of the Addition of Cysteine on the Structural and Molecular Properties. Journal of Physical Chemistry C, 2017, 121, 863-877.	1.5	14
1018	Bioresponsive polymer coated drug nanorods for breast cancer treatment. Nanotechnology, 2017, 28, 045601.	1.3	15
1019	Bioinks for bioprinting functional meniscus and articular cartilage. Journal of 3D Printing in Medicine, 2017, 1, 269-290.	1.0	23
1020	Biological responses to nanomaterials: understanding nano-bio effects on cell behaviors. Drug Delivery, 2017, 24, 1-15.	2.5	67
1021	Copper(II) Complexes with Tridentate Bis(pyrazolylmethyl)pyridine Ligands: Synthesis, Xâ€ray Crystal Structures and lµâ€Caprolactone Polymerization. ChemistrySelect, 2017, 2, 9815-9821.	0.7	8
1022	Enhancing the grafting amount of Poly(ε-caprolactone) on MgO nanoparticles by modifying with ethylene glycol for improving mechanical properties of Poly(ε-caprolactone). Journal of Polymer Research, 2017, 24, 1.	1.2	2
1023	Squaramide and amine binary H-bond organocatalysis in polymerizations of cyclic carbonates, lactones, and lactides. Polymer Chemistry, 2017, 8, 7054-7068.	1.9	29
1024	Nano-/Microfibrous Cotton-Wool-Like 3D Scaffold with Core–Shell Architecture by Emulsion Electrospinning for Skin Tissue Regeneration. ACS Biomaterials Science and Engineering, 2017, 3, 3563-3575.	2.6	50
1025	Modulating microfibrillar alignment and growth factor stimulation to regulate mesenchymal stem cell differentiation. Acta Biomaterialia, 2017, 64, 148-160.	4.1	49
1026	Coatings on implants: Study on similarities and differences between the PCL coatings for Mg based lab coupons and final components. Materials and Design, 2017, 135, 397-410.	3.3	14

#	Article	IF	CITATIONS
1027	Superior Blends Solid Polymer Electrolyte with Integrated Hierarchical Architectures for All-Solid-State Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 36886-36896.	4.0	106
1028	Electrospun formulations of bevacizumab for sustained release in the eye. Acta Biomaterialia, 2017, 64, 126-136.	4.1	59
1029	Biodegradable zwitterionic sulfobetaine polymer and its conjugate with paclitaxel for sustained drug delivery. Acta Biomaterialia, 2017, 64, 290-300.	4.1	62
1030	Effect of sepiolite organomodification on the performance of PCL/sepiolite nanocomposites. European Polymer Journal, 2017, 97, 198-209.	2.6	32
1031	Tunable intramolecular H-bonding promotes benzoic acid activity in polymerization: inspiration from nature. Polymer Chemistry, 2017, 8, 6398-6406.	1.9	10
1032	Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomaterials Science and Engineering, 2017, 3, 3098-3122.	2.6	99
1033	3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomaterialia, 2017, 64, 377-388.	4.1	117
1034	An enzymatic method for the production of 6-oxohexanoic acid from 6-aminohexanoic acid by an enzyme oxidizing ï‰-amino compounds from Phialemonium sp. AIU 274. Bioscience, Biotechnology and Biochemistry, 2017, 81, 2407-2410.	0.6	0
1035	<i>N</i> -Heterocyclic Olefin-Based (Co)polymerization of a Challenging Monomer: Homopolymerization of ω-Pentadecalactone and Its Copolymers with γ-Butyrolactone, δ-Valerolactone, and ε-Caprolactone. Macromolecules, 2017, 50, 8406-8416.	2.2	76
1036	Multiscale Models of Degradation and Healing of Bone Tissue Engineering Nanocomposite Scaffolds. Journal of Nanomechanics & Micromechanics, 2017, 7, .	1.4	18
1037	System feasibility: Designing a chlorine dioxide self-generating package label to improve fresh produce safety part I: Extrusion approach. Innovative Food Science and Emerging Technologies, 2017, 43, 102-111.	2.7	18
1038	Cocoa Shell Waste Biofilaments for 3D Printing Applications. Macromolecular Materials and Engineering, 2017, 302, 1700219.	1.7	81
1039	Covalent polyester-biomolecule conjugates: advances in their synthesis and applications in biomedicine and nanotechnology. Polymer International, 2017, 66, 1747-1755.	1.6	7
1040	Enhancing the Activity of a <i>Dietzia</i> sp. D5 Baeyerâ€Villiger Monooxygenase towards Cyclohexanone by Saturation Mutagenesis. ChemistrySelect, 2017, 2, 7169-7177.	0.7	7
1041	Injectable methotrexate loaded polycaprolactone microspheres: Physicochemical characterization, biocompatibility, and hemocompatibility evaluation. Materials Science and Engineering C, 2017, 81, 542-550.	3.8	36
1042	5.13 Electrospinning With Polymer Melts – State of the Art and Future Perspectives. , 2017, , 217-235.		10
1043	Biodegradable Shape Memory Polymers in Medicine. Advanced Healthcare Materials, 2017, 6, 1700694.	3.9	136
1044	Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation. Biomaterials, 2017, 149, 51-62.	5.7	178

		OKI	
# 1045	ARTICLE Graphene Oxide/Polymerâ€Based Biomaterials. Advanced Engineering Materials, 2017, 19, 1700627.	IF 1.6	Citations 90
1046	Physico Chemical Characterization of Nanofibrous Poly(Ε-Caprolactone) Electrospun Templates for Cell Adhesion. MRS Advances, 2017, 2, 2689-2694.	0.5	0
1047	Fabrication and Microstructure Evaluation of Fibrous Composite for Acetabular Labrum Implant. Materials Science Forum, 0, 900, 17-22.	0.3	5
1049	Design of patient-specific concentric tube robots using path planning from 3-D ultrasound. , 2017, 2017, 165-168.		14
1050	Environmental performance of bio-based and biodegradable plastics: the road ahead. Chemical Society Reviews, 2017, 46, 6855-6871.	18.7	502
1051	Drug Delivery Nanosystems for Cardiovascular Stents. Materials Today: Proceedings, 2017, 4, 6869-6879.	0.9	7
1052	Spinâ€labeling of polymeric micelles and application in probing micelle swelling using EPR spectroscopy. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1770-1782.	2.4	14
1053	Hydroxyapatite stabilized pickering emulsions of poly(ε-caprolactone) and their composite electrospun scaffolds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 224-230.	2.3	16
1054	Melt electrowriting with additive manufacturing principles. Current Opinion in Biomedical Engineering, 2017, 2, 49-57.	1.8	150
1056	Binding of indocyanine green in polycaprolactone fibers using blend electrospinning for in vivo laserâ€assisted vascular anastomosis. Lasers in Surgery and Medicine, 2017, 49, 928-939.	1.1	9
1057	Preparation and characterization of photocured poly (Îμ-caprolactone) diacrylate/poly (ethylene) Τj ETQq0 0 0 rgB application. Materials Science and Engineering C, 2017, 81, 66-73.	T /Overloc 3.8	2 10 Tf 50 3 72
1059	Facile Fabrication of Composite Electrospun Nanofibrous Matrices of Poly(ε-caprolactone)–Silica Based Pickering Emulsion. Langmuir, 2017, 33, 8062-8069.	1.6	15
1060	The effect of ozone gas sterilization on the properties and cell compatibility of electrospun polycaprolactone scaffolds. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1918-1934.	1.9	11
1061	Biodegradable and Highly Deformable Temperature Sensors for the Internet of Things. Advanced Functional Materials, 2017, 27, 1702390.	7.8	178
1062	Influence of low octavinyl-polyhedral oligomeric silsesquioxanes loadings on the crystallization kinetics and morphology of poly(ethylene suberate). Thermochimica Acta, 2017, 655, 94-100.	1.2	8
1063	Melt Electrospinning Writing of Polyâ€Hydroxymethylglycolideâ€ <i>co</i> â€Îµâ€Caprolactoneâ€Based Scaffolds for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2017, 6, 1700311.	3.9	144
1064	Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds. European Polymer Journal, 2017, 94, 208-221.	2.6	19
1065	Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing. International Journal of Pharmaceutics, 2017, 529, 642-653.	2.6	85

#	Article	IF	CITATIONS
1066	Networks based on biodegradable polyesters: An overview of the chemical ways of crosslinking. Materials Science and Engineering C, 2017, 80, 760-770.	3.8	25
1067	Poly(ε-caprolactone) nanocapsule carriers with sustained drug release: single dose for long-term glaucoma treatment. Nanoscale, 2017, 9, 11754-11764.	2.8	46
1068	Nanoporous Immunoprotective Device for Stem-Cell-Derived β-Cell Replacement Therapy. ACS Nano, 2017, 11, 7747-7757.	7.3	71
1069	Solvent Based 3D Printing of Biopolymer/Bioactive Glass Composite and Hydrogel for Tissue Engineering Applications. Procedia CIRP, 2017, 65, 38-43.	1.0	47
1070	Synthesis and characterization poly(ϵ-caprolactone-b-ethylene glycol-b-ϵ-caprolactone) ABA type block copolymers via "Click―chemistry and ring-opening polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 575-581.	1.2	36
1071	Catalystâ€Free Ring Opening Synthesis of Biodegradable Poly(esterâ€urethane)s Using Isosorbide Bioâ€Based Initiator. Macromolecular Chemistry and Physics, 2017, 218, 1700077.	1.1	11
1073	Preparation of biodegradable polymer microcarriers by ultrasonic emulsification. , 2017, , .		1
1074	Poly(ε-caprolactone)-based membranes with tunable physicochemical, bioactive and osteoinductive properties. Journal of Materials Science, 2017, 52, 12960-12980.	1.7	10
1075	An Integrated Design, Material, and Fabrication Platform for Engineering Biomechanically and Biologically Functional Soft Tissues. ACS Applied Materials & Interfaces, 2017, 9, 29430-29437.	4.0	98
1076	Effect of Needle Diameter on Scaffold Morphology and Strength in E-Jetted Polycaprolactone Scaffolds. , 2017, , .		1
1077	3D Bioprinting for Cartilage and Osteochondral Tissue Engineering. Advanced Healthcare Materials, 2017, 6, 1700298.	3.9	238
1078	Biodegradation of poly(ε-caprolactone) in natural water environments. Polish Journal of Chemical Technology, 2017, 19, 120-126.	0.3	67
1079	Supernucleating Role of Poly(ω-pentadecalactone) during the Crystallization of Poly(ε-caprolactone) Composites. Industrial & Engineering Chemistry Research, 2017, 56, 13725-13733.	1.8	11
1080	Temperature-dependent IR-transition moment orientational analysis applied to thin supported films of poly-îµ-caprolactone. Soft Matter, 2017, 13, 9211-9219.	1.2	7
1081	Incorporation of ciprofloxacin/laponite in polycaprolactone electrospun nanofibers: drug release and antibacterial studies. Materials Research Express, 2017, 4, 125401.	0.8	9
1082	Injectable Polymeric Cytokine-Binding Nanowires Are Effective Tissue-Specific Immunomodulators. ACS Nano, 2017, 11, 11433-11440.	7.3	17
1083	Synthesis of linear and star poly(ε-caprolactone) with controlled and high molecular weights <i>via</i> cyclic trimeric phosphazene base catalyzed ring-opening polymerization. Polymer Chemistry, 2017, 8, 7369-7374.	1.9	35
1084	Enhanced crystallization rate of biodegradable poly(Îμ-caprolactone) by cyanuric acid as an efficient nucleating agent. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1517-1523.	2.0	8

#	Article	IF	CITATIONS
1085	Hollow Polycaprolactone Microspheres with/without a Single Surface Hole by Co-Electrospraying. Langmuir, 2017, 33, 13262-13271.	1.6	28
1086	Electrospun organic–inorganic nanohybrids as sustained release drug delivery systems. Journal of Materials Chemistry B, 2017, 5, 9165-9174.	2.9	31
1087	Sorption of Benzene, Dichloroethane, Dichloromethane, and Chloroform by Poly(ethylene glycol), Polycaprolactone, and Their Copolymers at 298.15 K Using a Quartz Crystal Microbalance. Journal of Chemical & Engineering Data, 2017, 62, 2755-2760.	1.0	8
1088	Carbon nanodot impregnated fluorescent nanofibers for in vivo monitoring and accelerating full-thickness wound healing. Journal of Materials Chemistry B, 2017, 5, 6645-6656.	2.9	27
1089	Analysis of polycaprolactone scaffolds fabricated via precision extrusion deposition for control of craniofacial tissue mineralization. Orthodontics and Craniofacial Research, 2017, 20, 12-17.	1.2	27
1090	Enzymatic ring opening copolymerization of globalide and Îμ-caprolactone under supercritical conditions. Journal of Supercritical Fluids, 2017, 128, 404-411.	1.6	20
1091	d-Poly(e-caprolactone) (530)/siloxane biohybrid films doped with protic ionic liquids. Journal of Electroanalytical Chemistry, 2017, 799, 249-256.	1.9	4
1092	Recent advances on electrospun scaffolds as matrices for tissue-engineered heart valves. Materials Today Chemistry, 2017, 5, 11-23.	1.7	33
1093	Biodegradable polycaprolactone nanofibres with \hat{I}^2 -chitosan and calcium carbonate produce a hemostatic effect. Polymer, 2017, 123, 194-202.	1.8	34
1094	Novel Multiblock Poly(ε-caprolactone) Copolyesters Containing <i>D</i> -Glucose Derivatives with Different Bicyclic Structures. ACS Sustainable Chemistry and Engineering, 2017, 5, 7040-7051.	3.2	9
1095	Ï€-Conjugate Fluorophore-Tagged and Enzyme-Responsive <scp>l</scp> -Amino Acid Polymer Nanocarrier and Their Color-Tunable Intracellular FRET Probe in Cancer Cells. Biomacromolecules, 2017, 18, 2594-2609.	2.6	26
1096	Synergistic effect of electrical conductivity and biomolecules on human meniscal cell attachment, growth, and proliferation in poly- <i>ε</i> -caprolactone nanocomposite scaffolds. Biomedical Materials (Bristol), 2017, 12, 065001.	1.7	26
1097	A novel copper catalyst containing a hydroxyl functional group: a facile strategy to prepare block copolymers of vinyl monomer and Îμ-caprolactone via tandem reverse ATRP and ROP. Polymer Chemistry, 2017, 8, 4752-4760.	1.9	4
1098	Tin(II) n-butyl l-lactate as novel initiator for the ring-opening polymerization of ε-caprolactone: Kinetics and aggregation equilibrium analysis by non-isothermal DSC. Thermochimica Acta, 2017, 655, 337-343.	1.2	9
1099	Flammable carbon nanotube transistors on a nitrocellulose paper substrate for transient electronics. Nano Research, 2017, 10, 87-96.	5.8	37
1100	Synthetic biodegradable medical polyesters. , 2017, , 79-105.		13
1101	Lactobacillus sps. lipase mediated poly (ε-caprolactone) degradation. International Journal of Biological Macromolecules, 2017, 95, 126-131.	3.6	54
1102	Challenges in engineering large customized bone constructs. Biotechnology and Bioengineering, 2017, 114, 1129-1139.	1.7	49

	СПАНОГ	N KEPORT	
#	Article	IF	CITATIONS
1103	Periosteum tissue engineering in an orthotopic inÂvivo platform. Biomaterials, 2017, 121, 193-204.	5.7	80
1104	Degradation behaviour of PCL/PEO/PCL and PCL/PEO block copolymers under controlled hydrolytic, enzymatic and composting conditions. Polymer Testing, 2017, 57, 67-77.	2.3	43
1105	Study on physicochemical properties of poly(ester-urethane) derived from biodegradable poly(ε-caprolactone) and poly(butylene succinate) as soft segments. Polymer Bulletin, 2017, 74, 2245-2261.	1.7	4
1106	3D scaffolds coated with nanofibers displaying bactericidal activity for bone tissue applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 432-442.	1.8	7
1107	Bioresorbable polymers for next-generation cardiac scaffolds. , 2017, , 445-467.		5
1108	Graphene oxide-enriched poly(ε-caprolactone) electrospun nanocomposite scaffold for bone tissue engineering applications. Journal of Bioactive and Compatible Polymers, 2017, 32, 325-342.	0.8	71
1109	Electrical Conductivity Behavior of Biopolymer Composites. , 2017, , 13-25.		13
1110	Thermal Conductivity of Biocomposite Materials. , 2017, , 129-153.		4
1111	Poly(lactic acid)-based particulate systems are promising tools for immune modulation. Acta Biomaterialia, 2017, 48, 41-57.	4.1	96
1112	Influence of Hydrophilicity on the Snβâ€Catalyzed Baeyer–Villiger Oxidation of Cyclohexanone with Aqueous Hydrogen Peroxide. ChemCatChem, 2017, 9, 175-182.	1.8	28
1113	Corrosion and Degradation of Implantable Biomaterials. Indian Institute of Metals Series, 2017, , 253-289.	0.2	3
1114	Synthesis, properties and degradation of polyisobutylene-polyester graft copolymers. Polymer International, 2017, 66, 42-51.	1.6	10
1115	Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. ACS Biomaterials Science and Engineering, 2017, 3, 712-723.	2.6	72
1116	Autologous tendon-derived cell-seeded nanofibrous scaffolds improve rotator cuff repair in an age-dependent fashion. Journal of Orthopaedic Research, 2017, 35, 1250-1257.	1.2	23
1117	Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres. Research on Chemical Intermediates, 2017, 43, 1235-1251.	1.3	40
1118	Fundamentals of MALDI-ToF-MS Analysis. SpringerBriefs in Applied Sciences and Technology, 2017, , .	0.2	11
1119	Fundamentals of Drug Delivery Systems and Application of MALDI-ToF-MS in Drug Delivery. SpringerBriefs in Applied Sciences and Technology, 2017, , 53-66.	0.2	0
1120	Cell response to sterilized electrospun poly(ɛ aprolactone) scaffolds to aid tendon regeneration <i>in vivo</i> . Journal of Biomedical Materials Research - Part A, 2017, 105, 389-397.	2.1	29

#	Article	IF	CITATIONS
1121	Thermal properties and crystallinity of PCL/PBSA/cellulose nanocrystals grafted with PCL chains. Journal of Applied Polymer Science, 2017, 134, .	1.3	27
1122	Regenerative Engineering of the Anterior Cruciate Ligament. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 391-410.	0.7	1
1123	Preparation of single-site tin(IV) compounds and their use in the polymerization of ε-caprolactone. Designed Monomers and Polymers, 2017, 20, 89-96.	0.7	9
1124	A coarse-grained model for PCL: conformation, self-assembly of MePEG-b-PCL amphiphilic diblock copolymers. Molecular Simulation, 2017, 43, 92-101.	0.9	13
1125	Recent advances in multiaxial electrospinning for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112, 1-17.	2.0	211
1126	Degradation behaviors of geometric cues and mechanical properties in a 3D scaffold for tendon repair. Journal of Biomedical Materials Research - Part A, 2017, 105, 1138-1149.	2.1	27
1127	Clinoptilolite/PCL–PEG–PCL composite scaffolds for bone tissue engineering applications. Journal of Biomaterials Applications, 2017, 31, 1148-1168.	1.2	31
1128	Phase separation and segregation morphology of <scp>PCL/PS</scp> blends: Quantitative effect of the crystallization temperature, composition, and molecular weight of <scp>PS</scp> . Polymer Engineering and Science, 2017, 57, 1062-1072.	1.5	2
1129	Prediction of diameter in blended nanofibers of polycaprolactone-gelatin using ANN and RSM. Fibers and Polymers, 2017, 18, 2368-2378.	1.1	12
1130	In Vitro Production of Cartilage Tissue from Rabbit Bone Marrow-Derived Mesenchymal Stem Cells and Polycaprolactone Scaffold. Advances in Experimental Medicine and Biology, 2017, 1084, 45-60.	0.8	14
1131	Effect of in Vitro Enzymatic Degradation on 3D Printed Poly(Îμ-Caprolactone) Scaffolds: Morphological, Chemical and Mechanical Properties. Journal of Applied Biomaterials and Functional Materials, 2017, 15, 185-195.	0.7	14
1132	A New Leap in Periodontics: Three-dimensional (3D) Printing. Journal of Advanced Oral Research, 2017, 8, 1-7.	0.3	9
1133	Surface Modification and Coatings for Controlling the Degradation and Bioactivity of Magnesium Alloys for Medical Applications. , 2017, , 331-363.		8
1134	NanoMatrix3D® technology in development of nanofibrouse scaffolds: Biomedical evaluation. , 2017, , .		0
1135	A Review of Patents on Therapeutic Potential and Delivery of Hydroge n Sulfide. Recent Patents on Drug Delivery and Formulation, 2017, 11, 114-123.	2.1	7
1136	In vitro study of neural stem cells and activated Schwann cells cocultured on electrospinning polycaprolactone scaffolds. Journal of Neurorestoratology, 0, Volume 5, 155-165.	1.1	6
1137	Polymer Design and Development. , 2017, , 295-314.		20
1138	5.17 Three-Dimensional Bioengineered Cancer Models. , 2017, , 303-328.		2

#	Article	IF	CITATIONS
1139	Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment. Beilstein Journal of Nanotechnology, 2017, 8, 1446-1456.	1.5	45
1140	Influence of Controlled Cooling in Bimodal Scaffold Fabrication Using Polymers with Different Melting Temperatures. Materials, 2017, 10, 640.	1.3	18
1141	Fabrication and Characterization of Magnesium Ferrite-Based PCL/Aloe Vera Nanofibers. Materials, 2017, 10, 937.	1.3	24
1142	Electrospinning PCL Scaffolds Manufacture for Three-Dimensional Breast Cancer Cell Culture. Polymers, 2017, 9, 328.	2.0	59
1143	Short Oxygen Plasma Treatment Leading to Long-Term Hydrophilicity of Conductive PCL-PPy Nanofiber Scaffolds. Polymers, 2017, 9, 614.	2.0	23
1144	Immobilization of Platelet-Rich Plasma onto COOH Plasma-Coated PCL Nanofibers Boost Viability and Proliferation of Human Mesenchymal Stem Cells. Polymers, 2017, 9, 736.	2.0	35
1145	Morphogenetically-Active Barrier Membrane for Guided Bone Regeneration, Based on Amorphous Polyphosphate. Marine Drugs, 2017, 15, 142.	2.2	4
1146	Aplicaciones biomédicas de biomateriales poliméricos. DYNA (Colombia), 2017, 84, 241.	0.2	8
1147	Additive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(Îμ-caprolactone) Blend Scaffolds for Tissue Engineering. Bioengineering, 2017, 4, 49.	1.6	31
1148	Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful?. Bioengineering, 2017, 4, 79.	1.6	164
1149	An Affordable Microsphere-Based Device for Visual Assessment of Water Quality. Biosensors, 2017, 7, 31.	2.3	1
1150	Effect of Injection Molding Melt Temperatures on PLGA Craniofacial Plate Properties during <i> In Vitro</i> Degradation. International Journal of Biomaterials, 2017, 2017, 1-11.	1.1	18
1151	Crystallinity of Electrospun and Centrifugal Spun Polycaprolactone Fibers: A Comparative Study. Journal of Nanomaterials, 2017, 2017, 1-9.	1.5	34
1152	An ECM-Mimicking, Mesenchymal Stem Cell-Embedded Hybrid Scaffold for Bone Regeneration. BioMed Research International, 2017, 2017, 1-12.	0.9	26
1153	Vascularization Potential of Electrospun Poly(L-Lactide-co-Caprolactone) Scaffold: The Impact for Tissue Engineering. Medical Science Monitor, 2017, 23, 1540-1551.	0.5	16
1154	Polycaprolactone-Based Biomaterials for Guided Tissue Regeneration Membrane. , 2017, , .		6
1155	Photopolymerization of acrylates by enzymatically synthesized PCL based macrophotoinitiator. EXPRESS Polymer Letters, 2017, 11, 493-503.	1.1	9
1156	Electrospinning of Polycaprolactone/Pluronic F127 dissolved in glacial acetic acid: fibrous scaffolds fabrication, characterization and <i>in vitro</i> evaluation. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1155-1167.	1.9	23

#	Article	IF	CITATIONS
1157	Factors Controlling Drug Release in Cross-linked Poly(valerolactone) Based Matrices. Molecular Pharmaceutics, 2018, 15, 1565-1577.	2.3	19
1158	Microwave-Assisted Synthesis of Sucrose Polyurethanes and Their Semi-interpenetrating Polymer Networks with Polycaprolactone and Soybean Oil. Industrial & Engineering Chemistry Research, 2018, 57, 3227-3234.	1.8	9
1159	Aligned nanofiber material supports cell growth and increases osteogenesis in canine adiposeâ€derived mesenchymal stem cells <i>in vitro</i> . Journal of Biomedical Materials Research - Part A, 2018, 106, 1780-1788.	2.1	21
1160	Zwitterionic Polyester-Based Nanoparticles with Tunable Size, Polymer Molecular Weight, and Degradation Time. Biomacromolecules, 2018, 19, 1314-1323.	2.6	26
1161	Self-Assembly of Triblock Copolymers from Cyclic Esters as a Tool for Tuning Their Particle Morphology. Langmuir, 2018, 34, 3701-3710.	1.6	13
1162	Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as antibacterial materials for tissue engineering applications. Carbohydrate Polymers, 2018, 191, 127-135.	5.1	52
1163	Influence of the test method on in vitro drug release from intravitreal model implants containing dexamethasone or fluorescein sodium in poly (d,l-lactide-co-glycolide) or polycaprolactone. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 270-278.	2.0	17
1164	Catalytic metal-based systems for controlled statistical copolymerisation of lactide with a lactone. Polymer Chemistry, 2018, 9, 2517-2531.	1.9	68
1165	Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting. Advances in Experimental Medicine and Biology, 2018, 1058, 221-245.	0.8	6
1166	Preparation and in vitro evaluation of polycaprolactone/PEG/bioactive glass nanopowders nanocomposite membranes for GTR/GBR applications. Materials Science and Engineering C, 2018, 90, 236-247.	3.8	40
1167	Melt Electrospun Bilayered Scaffolds for Tissue Integration of a Suture‣ess Inflow Cannula for Rotary Blood Pumps. Artificial Organs, 2018, 42, E43-E54.	1.0	7
1168	Block–Stereoblock Copolymers of Poly(<i>ïµ</i> aprolactone) and Poly(Lactic Acid). Angewandte Chemie - International Edition, 2018, 57, 7191-7195.	7.2	46
1169	Enhanced antibacterial nanocomposite mats by coaxial electrospinning of polycaprolactone fibers loaded with Zn-based nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1695-1706.	1.7	27
1170	Anhydrous polymerâ€based coating with sustainable controlled release functionality for facile, efficacious impregnation, and delivery of antimicrobial peptides. Biotechnology and Bioengineering, 2018, 115, 2000-2012.	1.7	20
1171	Human Knee Meniscus Regeneration Strategies: a Review on Recent Advances. Current Osteoporosis Reports, 2018, 16, 224-235.	1.5	33
1172	3D-printed biodegradable gyroid scaffolds for tissue engineering applications. Materials and Design, 2018, 151, 113-122.	3.3	76
1173	Thermal transitions in semi-crystalline polymer thin films studied via spectral reflectance. Polymer, 2018, 143, 336-342.	1.8	3
1174	Application of a thermostable Baeyer–Villiger monooxygenase for the synthesis of branched polyester precursors. Journal of Chemical Technology and Biotechnology, 2018, 93, 2131-2140.	1.6	19

#	Article	IF	CITATIONS
1175	Nanobead-on-string composites for tendon tissue engineering. Journal of Materials Chemistry B, 2018, 6, 3116-3127.	2.9	49
1176	Plastic Biodegradation: Challenges and Opportunities. , 2018, , 1-29.		33
1177	Drug-loaded poly (ε-caprolactone)/Fe3O4 composite microspheres for magnetic resonance imaging and controlled drug delivery. Journal of Magnetism and Magnetic Materials, 2018, 456, 316-323.	1.0	42
1178	Nanostructured electrospun nonwovens of poly(ε-caprolactone)/quaternized chitosan for potential biomedical applications. Carbohydrate Polymers, 2018, 186, 110-121.	5.1	68
1179	Prebiotic macromolecules and today's biomacromolecules in the light of polymerology. European Polymer Journal, 2018, 100, 25-36.	2.6	2
1180	Tetrahydro curcumin loaded PCL-PEG electrospun transdermal nanofiber patch: Preparation, characterization, and in vitro diffusion evaluations. Journal of Drug Delivery Science and Technology, 2018, 44, 342-348.	1.4	52
1181	Guggulsterone-releasing microspheres direct the differentiation of human induced pluripotent stem cells into neural phenotypes. Biomedical Materials (Bristol), 2018, 13, 034104.	1.7	23
1182	Newly developed controlled release subcutaneous formulation for tramadol hydrochloride. Saudi Pharmaceutical Journal, 2018, 26, 585-592.	1.2	9
1183	Carbon dioxide-based copolymers with various architectures. Progress in Polymer Science, 2018, 82, 120-157.	11.8	115
1184	Microstructure and <i>in vivo</i> characterization of multi-channel nerve guidance scaffolds. Biomedical Materials (Bristol), 2018, 13, 044104.	1.7	49
1185	Construction of Bioactive and Reinforced Bioresorbable Nanocomposites by Reduced Nano-Graphene Oxide Carbon Dots. Biomacromolecules, 2018, 19, 1074-1081.	2.6	44
1186	Impact of the Formulation Pathway on the Colloidal State and Crystallinity of Poly-Îμ-caprolactone Particles Prepared by Solvent Displacement. Langmuir, 2018, 34, 2531-2542.	1.6	12
1187	Three-dimensional polycaprolactone-bioactive glass composite scaffolds: Effect of particle size and volume fraction on mechanical properties and <i>in vitro</i> cellular behavior. International Journal of Polymeric Materials, 2018, 67, 1005-1015.	1.8	11
1188	A Universal Classification System of Skin Substitutes Inspired by Factorial Design. Tissue Engineering - Part B: Reviews, 2018, 24, 279-288.	2.5	63
1189	Chitosan composite scaffolds for articular cartilage defect repair: a review. RSC Advances, 2018, 8, 3736-3749.	1.7	62
1190	Temperature Dependence Characteristics of Biodegradable Polycaprolactone Grafted Propargyl Dehydroabietic Ester (PCL-g-DAPE). Journal of Macromolecular Science - Physics, 2018, 57, 129-150.	0.4	4
1191	Multigram Synthesis of Cuâ€Ag Core–Shell Nanowires Enables the Production of a Highly Conductive Polymer Filament for 3D Printing Electronics. Particle and Particle Systems Characterization, 2018, 35, 1700385.	1.2	73
1192	Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications. Spine Journal, 2018, 18, 818-830.	0.6	12

#	Article	IF	CITATIONS
1193	Effect of plasma immersion ion implantation on polycaprolactone with various molecular weights and crystallinity. Journal of Materials Science: Materials in Medicine, 2018, 29, 5.	1.7	11
1194	Effect of sucrose concentration and pH onto the physical stability of β-carotene nanocapsules. LWT - Food Science and Technology, 2018, 90, 354-361.	2.5	17
1195	Preparation and characterization of spiral-like micro-struts with nano-roughened surface for enhancing the proliferation and differentiation of preosteoblasts. Journal of Industrial and Engineering Chemistry, 2018, 61, 244-254.	2.9	7
1196	Evaluating models for polycaprolactone crystallization via simultaneous rheology and Raman spectroscopy. Journal of Rheology, 2018, 62, 343-356.	1.3	22
1197	Degradation of Poly(ε-caprolactone) and bio-interactions with mouse bone marrow mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2018, 163, 107-118.	2.5	38
1198	One-Pot Versatile Synthesis of Branched-Multiblock Copolymers Based on Polylactide and Poly(ε-caprolactone). Industrial & Engineering Chemistry Research, 2018, 57, 242-249.	1.8	7
1199	In Vitro Regeneration of Patient-specific Ear-shaped Cartilage and Its First Clinical Application for Auricular Reconstruction. EBioMedicine, 2018, 28, 287-302.	2.7	220
1200	Growth factor delivery strategies for rotator cuff repair and regeneration. International Journal of Pharmaceutics, 2018, 544, 358-371.	2.6	65
1201	Structural Evolution of PCL during Melt Extrusion 3D Printing. Macromolecular Materials and Engineering, 2018, 303, 1700494.	1.7	69
1202	PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. European Polymer Journal, 2018, 99, 445-455.	2.6	85
1203	Preparation of monolithic polycaprolactone foams with controlled morphology. Polymer, 2018, 136, 166-178.	1.8	27
1204	Engineered Cellular Uptake and Controlled Drug Delivery Using Two Dimensional Nanoparticle and Polymer for Cancer Treatment. Molecular Pharmaceutics, 2018, 15, 679-694.	2.3	49
1205	Rational design and fabrication of multiphasic soft network composites for tissue engineering articular cartilage: A numerical model-based approach. Chemical Engineering Journal, 2018, 340, 15-23.	6.6	58
1206	Ring opening copolymerisation of lactide and mandelide for the development of environmentally degradable polyesters with controllable glass transition temperatures. Reactive and Functional Polymers, 2018, 128, 16-23.	2.0	8
1207	Polycaprolactone nanofibres loaded with 20(<i>S</i>)-protopanaxadiol for <i>in vitro</i> and <i>in vivo</i> anti-tumour activity study. Royal Society Open Science, 2018, 5, 180137.	1.1	16
1208	Crystallization kinetics of PCL and PCL–glass composites for additive manufacturing. Journal of Thermal Analysis and Calorimetry, 2018, 134, 2115-2125.	2.0	25
1209	Merging Biology and Solidâ€State Lighting: Recent Advances in Lightâ€Emitting Diodes Based on Biological Materials. Advanced Functional Materials, 2018, 28, 1707011.	7.8	63
1210	Functional Polyesters with Pendant Double Bonds Prepared by Coordination–Insertion and Cationic Ring-Opening Copolymerizations of ε-Caprolactone with Renewable Tulipalin A. Macromolecules, 2018, 51, 3582-3596.	2.2	21

#	Article	IF	CITATIONS
1211	3D Bioprinting of Artificial Tissues: Construction of Biomimetic Microstructures. Macromolecular Bioscience, 2018, 18, e1800034.	2.1	24
1212	Shape memory-assisted self-healing polyurethane inspired by a suture technique. Journal of Materials Science, 2018, 53, 10582-10592.	1.7	30
1213	Rheological characterization of polymer/ceramic blends for 3D printing of bone scaffolds. Polymer Testing, 2018, 68, 365-378.	2.3	40
1214	Water-insoluble, nanocrystalline, and hydrogel fibrillar scaffolds for biomedical applications. Polymer Journal, 2018, 50, 637-647.	1.3	12
1215	Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, , .	0.8	2
1216	Development of non-orthogonal 3D-printed scaffolds to enhance their osteogenic performance. Biomaterials Science, 2018, 6, 1569-1579.	2.6	23
1217	<i>In vitro</i> degradation and <i>in vivo</i> toxicity of NanoMatrix3D [®] polycaprolactone and poly(lactic acid) nanofibrous scaffolds. Journal of Biomedical Materials Research - Part A, 2018, 106, 2200-2212.	2.1	20
1218	Formulation of botanicals for the control of plant-pathogens: A review. Crop Protection, 2018, 110, 135-140.	1.0	59
1219	Block–Stereoblock Copolymers of Poly(<i>ïµ</i> aprolactone) and Poly(Lactic Acid). Angewandte Chemie, 2018, 130, 7309-7313.	1.6	25
1220	Drug loaded biodegradable polymer microneedles fabricated by hot embossing. Microelectronic Engineering, 2018, 195, 57-61.	1.1	26
1221	Influence of high molecular weight poly(ethylene adipate) on the crystallization behavior and mechanical properties of biodegradable poly(I-lactide) in their immiscible polymer blend. Polymer Testing, 2018, 67, 421-427.	2.3	9
1222	Biocatalytic Route for the Synthesis of Oligoesters of Hydroxy-Fatty acids and Ϊμ-Caprolactone. Biotechnology Journal, 2018, 13, 1700629.	1.8	7
1223	Tailored electrospun nanofibrous polycaprolactone/gelatin scaffolds into an acid hydrolytic solvent system. European Polymer Journal, 2018, 101, 273-281.	2.6	31
1224	Packing of metalized polymer nanofibers for aneurysm embolization. Nanoscale, 2018, 10, 6589-6601.	2.8	7
1225	Cilostazol-Loaded Poly(ε-Caprolactone) Electrospun Drug Delivery System for Cardiovascular Applications. Pharmaceutical Research, 2018, 35, 32.	1.7	56
1226	Collagen and mPCL-TCP scaffolds induced differential bone regeneration in ovary-intact and ovariectomized rats. Bio-Medical Materials and Engineering, 2018, 29, 389-399.	0.4	2
1227	Development and validation of analytical method for vildagliptinencapsulated poly-ε-caprolactone microparticles. Materials Today: Proceedings, 2018, 5, 958-964.	0.9	8
1228	Poly(ε-caprolactone) Biocomposites Based on Acetylated Cellulose Fibers and Wet Compounding for Improved Mechanical Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 6753-6760.	3.2	31

#	Article	IF	CITATIONS
1229	Nanopharmaceuticals for wound healing – Lost in translation?. Advanced Drug Delivery Reviews, 2018, 129, 194-218.	6.6	63
1230	Preparation of β-Ca3(PO4)2/Poly(D,L-lactide) and β-Ca3(PO4)2/Poly(ε-caprolactone) Biocomposite Implants for Bone Substitution. Inorganic Materials, 2018, 54, 87-95.	0.2	10
1231	SPHRINT – Printing Drug Delivery Microspheres from Polymeric Melts. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 398-406.	2.0	16
1232	In vivo biocompatibility and degradation of novel Polycaprolactone-Biphasic Calcium phosphate scaffolds used as a bone substitute. Bio-Medical Materials and Engineering, 2018, 29, 253-267.	0.4	12
1233	Multifunctional Composite Ecomaterials and Their Impact on Sustainability. , 2018, , 1-31.		0
1234	Polycaprolactoneâ€hydroxy apatite composites for tissue engineering applications. Journal of Vinyl and Additive Technology, 2018, 24, 248-261.	1.8	4
1235	Bulk Synthesis of Monodisperse and Highly Biocompatible Poly(É›-caprolactone)-diol by Transesterification Side-Reactions. Polymer-Plastics Technology and Engineering, 2018, 57, 492-499.	1.9	19
1236	Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells . Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e473-e485.	1.3	46
1237	Mechanical properties and crystallization behaviors of oriented electrospun nanofibers of zein/poly(εâ€caprolactone) composites. Polymer Composites, 2018, 39, 2151-2159.	2.3	5
1238	Surgical repair of annulus defect with biomimetic multilamellar nano/microfibrous scaffold in a porcine model. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 164-174.	1.3	14
1239	Collagen density gradient on threeâ€dimensional printed poly(ε aprolactone) scaffolds for interface tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 321-329.	1.3	32
1240	Effect of graphite nanoplatelets on melt drawing and properties of PCL/PLA microfibrillar composites. Polymer Composites, 2018, 39, 3147-3156.	2.3	18
1241	Effect of processing techniques on new poly(εâ€caprolactone)â€embelin microparticles of biomedical interest. Advances in Polymer Technology, 2018, 37, 1570-1580.	0.8	5
1242	The Inclusion of Chitosan in Poly-ε-caprolactone Nanoparticles: Impact on the Delivery System Characteristics and on the Adsorbed Ovalbumin Secondary Structure. AAPS PharmSciTech, 2018, 19, 101-113.	1.5	13
1243	Novel strategies for the formulation and processing of poorly water-soluble drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 126, 40-56.	2.0	110
1244	Interface design, cytocompatibility, and biological activity of astaxanthin/polyester composites. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 564-571.	1.8	2
1245	Nanocomposite hydrogels for cartilage tissue engineering: a review. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 465-471.	1.9	91
1246	PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 805-824.	1.9	25

#	Article	IF	CITATIONS
1247	Axon mimicking hydrophilic hollow polycaprolactone microfibres for diffusion magnetic resonance imaging. Materials and Design, 2018, 137, 394-403.	3.3	14
1248	Assessment of formulation parameters needed for successful vitamin C entrapped polycaprolactone nanoparticles. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 942-950.	1.8	10
1249	PCL and PCL-based materials in biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 863-893.	1.9	529
1250	The combination of nanofibrous and microfibrous materials for enhancement of cell infiltration and <i>in vivo</i> bone tissue formation. Biomedical Materials (Bristol), 2018, 13, 025004.	1.7	21
1251	Synthesis of lactide/ <i>É></i> â€caprolactone quasiâ€random copolymer by using rationally designed mononuclear aluminum complexes with modified βâ€ketiminato ligand. Journal of Polymer Science Part A, 2018, 56, 203-212.	2.5	20
1252	Fabrication of biodegradable foams for deep tissue negative pressure treatments. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 1998-2007.	1.6	3
1253	Optimisation of process parameters using D-optimal for enzymatic synthesis of polycaprolactone. Polymer Bulletin, 2018, 75, 3227-3239.	1.7	3
1254	3D-printed bioabsordable polycaprolactone stent: The effect of process parameters on its physical features. Materials and Design, 2018, 137, 430-437.	3.3	79
1255	Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 2018, 135, 45726.	1.3	234
1256	Poly(ε-caprolactone) networks with tunable thermoresponsive shape memory via a facile photo-initiated thiol–ene pathway. Journal of Materials Science, 2018, 53, 2236-2252.	1.7	15
1257	Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. Materials Science and Engineering C, 2018, 83, 218-232.	3.8	68
1258	Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application. Materials Science and Engineering C, 2018, 82, 163-181.	3.8	58
1259	Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions. Drug Delivery and Translational Research, 2018, 8, 1790-1796.	3.0	35
1260	Electrospinning of polycaprolactone nanofibers using H ₂ O as benign additive in polycaprolactone/glacial acetic acid solution. Journal of Applied Polymer Science, 2018, 135, 45578.	1.3	17
1261	Manufacturing and characterization of poly(lactic acid) composites with hydroxyapatite. Journal of Thermoplastic Composite Materials, 2018, 31, 865-881.	2.6	42
1262	Co-expression of an alcohol dehydrogenase and a cyclohexanone monooxygenase for cascade reactions facilitates the regeneration of the NADPH cofactor. Enzyme and Microbial Technology, 2018, 108, 53-58.	1.6	45
1263	Sustained Simultaneous Delivery of Metronidazole and Doxycycline From Polycaprolactone Matrices Designed for Intravaginal Treatment of Pelvic Inflammatory Disease. Journal of Pharmaceutical Sciences, 2018, 107, 863-869.	1.6	9
1264	The starch nanocrystal filled biodegradable poly(ε-caprolactone) composite membrane with highly improved properties. Carbohydrate Polymers, 2018, 182, 115-122.	5.1	38

ARTICLE IF CITATIONS # Production and characterization of a nanocomposite of highly crystalline nanowhiskers from biologically extracted chitin in enzymatic poly(lµ-caprolactone). Ćarbohydrate Polymers, 2018, 181, 1265 5.1 17 684-692. Biodegradable polymeric injectable implants for longâ€term delivery of contraceptive drugs. Journal of 1.3 Applied Polymer Science, 2018, 135, 46068. Removal of lead (II) from aqeouos waste using (CD-PCL-TiO2) bio-nanocomposites. International 1267 3.6 34 Journal of Biological Macromolecules, 2018, 109, 136-142. Controlling the extrudate swell in melt extrusion additive manufacturing of 3D scaffolds: a designed 1268 1.9 experiment. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 195-216. 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 2018, 3, 278-314. 1269 8.6 866 Microbial Depolymerization. Energy, Environment, and Sustainability, 2018, , 61-103. Synthesis of a novel organosoluble, biocompatible, and antibacterial chitosan derivative for 1271 1.3 21 biomedical applications. Journal of Applied Polymer Science, 2018, 135, 45905. Injection-Molded Bioblends from Lignin and Biodegradable Polymers: Processing and Performance 2.4 Evaluation. Journal of Polymers and the Environment, 2018, 26, 2360-2373. Blocky poly(É)â€caprolactoneâ€<i>co</i>à€butylene 2,5â€furandicarboxylate) copolyesters via enzymatic ring 1273 2.5 39 opening pólymerization. Journal of Polymer Science Part A, 2018, 56, 290-299. The Effects of Additives on the Biodegradation of Polycaprolactone Composites. Journal of Polymers 1274 2.4 and the Environment, 2018, 26, 1425-1444. Preparation of Electrospun Electroactive Nanofibers of Four Arm Star-Shaped Poly(ε-Caprolactone)-<i>b</i>Poly(2-Hydroxyethyl Methacrylate) and Its Blends with Polyaniline. 1275 7 1.9 Polymer-Plastics Technology and Engineering, 2018, 57, 893-902. The influence of strontium release rate from bioactive phosphate glasses on osteogenic differentiation of human mesenchymal stem cells. Journal of the European Ceramic Society, 2018, 38, 2.8 887-897 Electrospun biphasic tubular scaffold with enhanced mechanical properties for vascular tissue 1277 3.8 58 engineering. Materials Science and Engineering C, 2018, 82, 10-18. Customized, degradable, functionally graded scaffold for potential treatment of early stage 1278 1.2 56 osteonecrosis of the femoral head. Journal of Orthopaedic Research, 2018, 36, 1002-1011. Fabrication of polycaprolactone electrospun fibers with different hierarchical structures mimicking 1279 42 3.1collagen fibrils for tissue engineering scaffolds. Applied Surface Science, 2018, 427, 311-325. The effect of polymer molar mass and silica nanoparticles on the rheological and mechanical 1280 2.2 properties of poly(î-caprolactone) nanocomposites. Nanocomposites, 2018, 4, 112-126. Medical applications., 2018, , 83-114. 1281 0 Development of banana (<i>Musa balbisiana</i>) pseudo stem fiber as a surgical bio-tool to avert post-operative wound infections. RSC Advances, 2018, 8, 36791-36801.

#	Article	IF	CITATIONS
1283	Advances and challenges of green materials for electronics and energy storage applications: from design to end-of-life recovery. Journal of Materials Chemistry A, 2018, 6, 20546-20563.	5.2	96
1284	<i>In situ</i> formation of hydrophobic clusters to enhance mechanical performance of biodegradable poly(<scp> </scp> -glutamic acid)/poly(ε-caprolactone) hydrogel towards meniscus tissue engineering. Journal of Materials Chemistry B, 2018, 6, 7822-7833.	2.9	26
1285	Volatile Acid-Solvent Evaporation (VASE): Molecularly Homogeneous Distribution of Acyclovir in a Bioerodable Polymer Matrix for Long-Term Treatment of Herpes Simplex Virus-1 Infections. Journal of Drug Delivery, 2018, 2018, 1-13.	2.5	5
1286	Sustainable synthesis and precise characterisation of bio-based star polycaprolactone synthesised with a metal catalyst and with lipase. Polymer Chemistry, 2018, 9, 5594-5607.	1.9	21
1287	A Review on 4D Printing Material Composites and Their Applications. Materials Today: Proceedings, 2018, 5, 20474-20484.	0.9	42
1288	Polymers of ε-Caprolactone Using New Copper(II) and Zinc(II) Complexes as Initiators: Synthesis, Characterization and X-Ray Crystal Structures. Polymers, 2018, 10, 1239.	2.0	14
1289	Factors influencing catalytic behavior of titanium complexes bearing bisphenolate ligands toward ring-opening polymerization of L-lactide and Îμ-caprolactone. EXPRESS Polymer Letters, 2018, 12, 126-135.	1.1	11
1290	Decellularized Scaffolds and Organogenesis. Methods in Molecular Biology, 2018, , .	0.4	3
1291	Effect of Ionizing Radiation on the Chemical Structure and the Physical Properties of Polycaprolactones of Different Molecular Weight. Polymers, 2018, 10, 397.	2.0	27
1292	Effect of Domain Structure of Segmented Poly(urethane-imide) Membranes with Polycaprolactone Soft Blocks on Dehydration of n-Propanol via Pervaporation. Polymers, 2018, 10, 1222.	2.0	11
1293	Selectively Deuterated Poly(ε-caprolactone)s: Synthesis and Isotope Effects on the Crystal Structures and Properties. Macromolecules, 2018, 51, 9393-9404.	2.2	20
1294	Chemical stability, mass loss and hydrolysis mechanism of sterile and non-sterile lipid-core nanocapsules: The influence of the molar mass of the polymer wall. Reactive and Functional Polymers, 2018, 133, 161-172.	2.0	9
1295	Histopathological evaluation of polycaprolactone nanocomposite compared with tricalcium phosphate in bone healing. Journal of Veterinary Research (Poland), 2018, 62, 385-394.	0.3	12
1296	A Matrix Metalloproteinase-1 Polymorphism, <i>MMP1–1607</i> (1G>2G), Is Associated with Increased Cancer Risk: A Meta-Analysis Including 21,327 Patients. Disease Markers, 2018, 2018, 1-12.	0.6	15
1297	3D Printing Applied to Tissue Engineered Vascular Grafts. Applied Sciences (Switzerland), 2018, 8, 2631.	1.3	24
1298	Alternating Copolymerization of Epoxides and Anhydrides Catalyzed by Aluminum Complexes. ACS Omega, 2018, 3, 17581-17589.	1.6	21
1299	Hybrid Hydrogel Composed of Polymeric Nanocapsules Co-Loading Lidocaine and Prilocaine for Topical Intraoral Anesthesia. Scientific Reports, 2018, 8, 17972.	1.6	38
1300	Stabilization strategies in extrusion-based 3D bioprinting for tissue engineering. Applied Physics Reviews, 2018, 5, 041112.	5.5	44

#	Article	IF	CITATIONS
1301	Implantable Polymeric Drug Delivery Devices: Classification, Manufacture, Materials, and Clinical Applications. Polymers, 2018, 10, 1379.	2.0	242
1302	Novel Pathway for Efficient Covalent Modification of Polyester Materials of Different Design to Prepare Biomimetic Surfaces. Polymers, 2018, 10, 1299.	2.0	11
1303	Thermal Properties and Non-Isothermal Crystallization Kinetics of Poly (δ-Valerolactone) and Poly (δ-Valerolactone)/Titanium Dioxide Nanocomposites. Crystals, 2018, 8, 452.	1.0	10
1304	Thermal, mechanical, and topographical evaluation of nonstoichiometric α•yclodextrin/poly(ε•aprolactone) pseudorotaxane nucleated poly(ε•aprolactone) composite films. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1529-1537.	2.4	7
1305	Interaction of PCL based self-assembled nano-polymeric micelles with model lipid bilayers using coarse-grained molecular dynamics simulations. Chemical Physics Letters, 2018, 712, 1-6.	1.2	11
1306	Poly-ε-caprolactone/polysulfhydrylated polyester blend: A platform for topical and degradable nitric oxide-releasing materials. European Polymer Journal, 2018, 109, 143-152.	2.6	10
1307	Techno-economic Analysis of a Chemical Process To Manufacture Methyl-ε-caprolactone from Cresols. ACS Sustainable Chemistry and Engineering, 2018, 6, 15316-15324.	3.2	28
1308	Degradation and related changes in supermolecular structure of poly(caprolactone) inÂvivo conditions. Polymer Degradation and Stability, 2018, 157, 70-79.	2.7	19
1309	Evaluation and characterization of waterborne biodegradable polyurethane films for the prevention of tendon postoperative adhesion. International Journal of Nanomedicine, 2018, Volume 13, 5485-5497.	3.3	32
1310	Smart Drug Delivery from Electrospun Fibers through Electroresponsive Polymeric Nanoparticles. ACS Applied Bio Materials, 2018, 1, 1594-1605.	2.3	47
1311	Preparation and characterization of functionalized heparin-loaded poly-ƕcaprolactone fibrous mats to prevent infection with human papillomaviruses. PLoS ONE, 2018, 13, e0199925.	1.1	10
1312	Evidences of the Effect of GO and rGO in PCL Membranes on the Differentiation and Maturation of Human Neural Progenitor Cells. Macromolecular Bioscience, 2018, 18, 1800195.	2.1	18
1313	A tough and self-healing poly(<scp>l</scp> -glutamic acid)-based composite hydrogel for tissue engineering. Journal of Materials Chemistry B, 2018, 6, 6865-6876.	2.9	38
1314	Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells. Biomacromolecules, 2018, 19, 4307-4319.	2.6	67
1315	Degradable Bioelastomers Prepared by a Facile Melt Polycondensation of Citric Acid and Polycaprolactone-diol. Journal of Macromolecular Science - Physics, 2018, 57, 679-690.	0.4	5
1316	Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polymer, 2018, 157, 19-31.	1.8	46
1317	Antibacterial and Bioactive Surface Modifications of Titanium Implants by PCL/TiO2 Nanocomposite Coatings. Nanomaterials, 2018, 8, 860.	1.9	65
1318	Injectable Nanocomposite Hydrogels and Electrosprayed Nano(Micro)Particles for Biomedical Applications. Advances in Experimental Medicine and Biology, 2018, 1077, 225-249.	0.8	4

#	Article	IF	CITATIONS
1319	Impact of setup orientation on blend electrospinning of poly-Îμ-caprolactone-gelatin scaffolds for vascular tissue engineering. International Journal of Artificial Organs, 2018, 41, 801-810.	0.7	19
1320	Development of new bioâ€based polyol ester from palm oil for potential polymeric drug carrier. Advances in Polymer Technology, 2018, 37, 3552-3560.	0.8	6
1321	Impact of chemical and physical treatments on the mechanical properties of poly(ε-caprolactone) fibers bundles for the anterior cruciate ligament reconstruction. PLoS ONE, 2018, 13, e0205722.	1.1	13
1322	Preparation and characterization of shape memory composite foams based on solid foaming method. Journal of Applied Polymer Science, 2018, 135, 46767.	1.3	3
1323	Wet Feeding Approach for Cellulosic Materials/PCL Biocomposites. ACS Symposium Series, 2018, , 209-226.	0.5	6
1325	3D-Printed PCL/PLA Composite Stents: Towards a New Solution to Cardiovascular Problems. Materials, 2018, 11, 1679.	1.3	120
1326	Functional biodegradable polymers <i>via</i> ring-opening polymerization of monomers without protective groups. Chemical Society Reviews, 2018, 47, 7739-7782.	18.7	147
1327	Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters. Molecules, 2018, 23, 290.	1.7	9
1328	On-Line Fabric Disk Sorptive Extraction via a Flow Preconcentration Platform Coupled with Atomic Absorption Spectrometry for the Determination of Essential and Toxic Elements in Biological Samples. Separations, 2018, 5, 34.	1.1	13
1329	"Green-reduced―graphene oxide induces in vitro an enhanced biomimetic mineralization of polycaprolactone electrospun meshes. Materials Science and Engineering C, 2018, 93, 1044-1053.	3.8	38
1330	Experimental reconstruction of an abdominal wall defect with electrospun polycaprolactone-ureidopyrimidinone mesh conserves compliance yet may have insufficient strength. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 431-441.	1.5	19
1331	Crystallization and Segregation Behavior at the Submicrometer Scale of PCL/PEG Blends. Macromolecules, 2018, 51, 7266-7273.	2.2	26
1332	Acidâ€ŧriggered synergistic chemoâ€photodynamic therapy systems based on metalâ€coordinated supramolecular interaction. Journal of Biomedical Materials Research - Part A, 2018, 106, 2955-2962.	2.1	7
1333	Synthesis and characterization of 4-arm star-shaped amphiphilic block copolymers consisting of poly(ethylene oxide) and poly(ε-caprolactone). RSC Advances, 2018, 8, 28569-28580.	1.7	29
1334	Enhancement of synthesis of extracellular matrix proteins on retinoic acid loaded electrospun scaffolds. Journal of Materials Chemistry B, 2018, 6, 6468-6480.	2.9	7
1335	A bioprinting printing approach to regenerate cartilage for microtia treatment. Bioprinting, 2018, 12, e00031.	2.9	10
1336	Composites of fatty acids and ceramic powders are versatile biomaterials for personalized implants and controlled release of pharmaceuticals. Bioprinting, 2018, 10, e00027.	2.9	9
1337	Antibacterial PCL electrospun membranes containing synthetic polypeptides for biomedical purposes. Colloids and Surfaces B: Biointerfaces, 2018, 172, 330-337.	2.5	36

#	Article	IF	CITATIONS
1338	Sorption of Benzene, 1,2-Dichloroethane, Dichloromethane, and Chloroform by Polyethylene Glycol, Polycaprolactone, and their Triblock Copolymers at 298.15 K Using a Quartz Crystal Microbalance. Journal of Chemical & Engineering Data, 2018, 63, 3459-3464.	1.0	4
1339	Highly Branched Polycaprolactone/Clycidol Copolymeric Green Plasticizer by One-Pot Solvent-Free Polymerization. ACS Sustainable Chemistry and Engineering, 2018, 6, 9006-9017.	3.2	55
1340	PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Molecular Biotechnology, 2018, 60, 506-532.	1.3	267
1341	Hybrids of Silica/Poly(caprolactone coglycidoxypropyl trimethoxysilane) as Biomaterials. Chemistry of Materials, 2018, 30, 3743-3751.	3.2	21
1342	Improved Cellulose Nanofibril Dispersion in Melt-Processed Polycaprolactone Nanocomposites by a Latex-Mediated Interphase and Wet Feeding as LDPE Alternative. ACS Applied Nano Materials, 2018, 1, 2669-2677.	2.4	34
1343	Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: Influence of composition and porosity. Journal of Materials Research, 2018, 33, 1948-1959.	1.2	105
1344	Three-Dimensional Printed Poly(vinyl alcohol) Substrate with Controlled On-Demand Degradation for Transient Electronics. ACS Nano, 2018, 12, 6006-6012.	7.3	43
1345	UV-A activated TiO2 embedded biodegradable polymer film for antimicrobial food packaging application. LWT - Food Science and Technology, 2018, 96, 307-314.	2.5	77
1346	Facile preparation of biocompatible poly (lactic acid)-reinforced poly(ε-caprolactone) fibers via graphite nanoplatelets -aided melt spinning. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 84, 108-115.	1.5	9
1347	Fabrication of 3D Printed PCL/PEG Polyblend Scaffold Using Rapid Prototyping System for Bone Tissue Engineering Application. Journal of Bionic Engineering, 2018, 15, 435-442.	2.7	57
1348	Effects of different sterilization processes on the properties of a novel 3Dâ€printed polycaprolactone stent. Polymers for Advanced Technologies, 2018, 29, 2327-2335.	1.6	28
1349	Preparation of sulfonated silk fibroin for anti-coagulation material. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1701-1715.	1.9	2
1350	Tunable Elastomers with an Antithrombotic Component for Cardiovascular Applications. Advanced Healthcare Materials, 2018, 7, e1800222.	3.9	11
1351	Biopolymers for Antitumor Implantable Drug Delivery Systems: Recent Advances and Future Outlook. Advanced Materials, 2018, 30, e1706665.	11.1	147
1352	Poly(βâ€amino ester)â€ <i>co</i> â€poly(caprolactone) Terpolymers as Nonviral Vectors for mRNA Delivery In Vitro and In Vivo. Advanced Healthcare Materials, 2018, 7, e1800249.	3.9	58
1353	Poly (ε-caprolactone) nanoparticles loaded with indomethacin and Nigella Sativa L. essential oil for the topical treatment of inflammation. Journal of Drug Delivery Science and Technology, 2018, 46, 234-242.	1.4	39
1354	Zein Increases the Cytoaffinity and Biodegradability of Scaffolds 3D-Printed with Zein and Poly(ε-caprolactone) Composite Ink. ACS Applied Materials & Interfaces, 2018, 10, 18551-18559.	4.0	60
1355	Versatile organoaluminium catalysts based on heteroscorpionate ligands for the preparation of polyesters. Dalton Transactions, 2018, 47, 7471-7479.	1.6	21

#	Article	IF	CITATIONS
1357	Bioengineered surgical repair of a chronic oronasal fistula in a cat using autologous platelet-rich fibrin and bone marrow with a tailored 3D printed implant. Journal of Feline Medicine and Surgery, 2018, 20, 835-843.	0.6	14
1358	1α,25-dihydroxyvitamin D ₃ -eluting nanofibrous dressings induce endogenous antimicrobial peptide expression. Nanomedicine, 2018, 13, 1417-1432.	1.7	19
1359	Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chemistry, 2018, 269, 286-292.	4.2	98
1360	The Effect of Inkjet Printing over Polymeric Films as Potential Buccal Biologics Delivery Systems. AAPS PharmSciTech, 2018, 19, 3376-3387.	1.5	27
1361	Exploring the Use of Structure and Polymer Incorporation to Tune Silver Ion Release and Antibacterial Activity of Silver Coordination Polymers. European Journal of Inorganic Chemistry, 2018, 2018, 3512-3518.	1.0	13
1362	Stimuli-responsive poly (ε-caprolactone)s for drug delivery applications. , 2018, , 501-529.		3
1363	Induction of zonal-specific cellular morphology and matrix synthesis for biomimetic cartilage regeneration using hybrid scaffolds. Journal of the Royal Society Interface, 2018, 15, 20180310.	1.5	25
1364	Facile production of biodegradable PCL/PLA in situ nanofibrillar composites with unprecedented compatibility between the blend components. Chemical Engineering Journal, 2018, 351, 976-984.	6.6	88
1365	mPEG-co-PCL nanoparticles: The influence of hydrophobic segment on methotrexate drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555, 142-149.	2.3	29
1366	Fabrication of injectable and superelastic nanofiber rectangle matrices ("peanutsâ€) and their potential applications in hemostasis. Biomaterials, 2018, 179, 46-59.	5.7	96
1367	The Effect of Pulsatile Flow on bMSC-Derived Endothelial-Like Cells in a Small-Sized Artificial Vessel Made by 3-Dimensional Bioprinting. Stem Cells International, 2018, 2018, 1-11.	1.2	13
1368	A Facile Strategy for Preparing PCL/PEG Block Copolymer Microspheres via Electrospraying as Coatings for Cotton Fabrics. Macromolecular Materials and Engineering, 2018, 303, 1800164.	1.7	14
1369	Stability and reproducibility of co-electrospun brain-mimicking phantoms for quality assurance of diffusion MRI sequences. NeuroImage, 2018, 181, 395-402.	2.1	9
1370	Nanofiberâ€Based Multiâ€Tubular Conduits with a Honeycomb Structure for Potential Application in Peripheral Nerve Repair. Macromolecular Bioscience, 2018, 18, e1800090.	2.1	22
1371	Knitted 3D Scaffolds of Polybutylene Succinate Support Human Mesenchymal Stem Cell Growth and Osteogenesis. Stem Cells International, 2018, 2018, 1-11.	1.2	19
1372	Permeability and in vivo distribution of poly(ƕcaprolactone) nanoparticles loaded with zidovudine. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	2
1373	ROS-responsive poly(ε-caprolactone) with pendent thioether and selenide motifs. Polymer Chemistry, 2018, 9, 3762-3773.	1.9	44
1374	<i>In situ</i> gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: <i>in vitro</i> and <i>in vivo</i> studies. Nanoscale, 2018, 10, 15447-15453.	2.8	72

ARTICLE IF CITATIONS A twin-tailed tadpole-shaped amphiphilic copolymer of poly(ethylene glycol) and cyclic poly(ε-caprolactone): synthesis, self-assembly and biomedical applications. Polymer Chemistry, 2018, 9, 1375 18 1.9 4343-4353. Electrofluidodynamic technologies for biomaterials and medical devices., 2018, , 37-69. 1376 14 Carbon nanofiber amalgamated 3D poly-lµ-caprolactone scaffold functionalized 1377 porous-nanoarchitectures for human meniscal tissue engineering: In vitro and in vivo 1.7 18 biocompatibility studies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2247-2258. Effect of cellulose nanocrystals on crystallization kinetics of polycaprolactone as probed by 1378 1.8 Rheo-Raman. Polymer, 2018, 153, 70-77. Construction of a bilayered vascular graft with smooth internal surface for improved 1379 5.7 64 hemocompatibility and endothelial cell monolayer formation. Biomaterials, 2018, 181, 1-14. Development of a dual extrusion printing technique for an acid- and thermo-labile drug. European Journal of Pharmaceutical Sciences, 2018, 123, 191-198. 1380 Highly branched linear-comb random copolyesters of $\hat{l}\mu$ -caprolactone and \hat{l} -valerolactone: 1381 Isodimorphism, mechanical properties and enzymatic degradation behavior. Polymer Degradation and 2.7 21 Stability, 2018, 155, 173-182. Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Progress in 11.8 177 Polymer Science, 2018, 87, 107-164. A polypropylene mesh modified with poly-ε-caprolactone nanofibers in hernia repair: large 1383 3.3 22 animal experiment. International Journal of Nanomedicine, 2018, Volume 13, 3129-3143. Polyester-based nanoparticles for nucleic acid delivery. Materials Science and Engineering C, 2018, 92, 1384 3.8 983-994. Electrohydrodynamic Jet 3D Printed Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. 1385 2.0 61 Polymers, 2018, 10, 753. Effect of Molecular Weight and Functionality on Acrylated Poly(caprolactone) for 1386 2.6 Stereolithography and Biomedical Applications. Biomacromolecules, 2018, 19, 3682-3692. Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects. Frontiers in 1387 2.0 241 Bioengineering and Biotechnology, 2018, 6, 105. The Effect of Polymer Microstructure on Encapsulation Efficiency and Release Kinetics of Citropin 1.1 from the Poly($\hat{l}\mu$ -caprolactone) Microparticles. Nanomaterials, 2018, 8, 482. 1388 1.9 Low valent Al(<scp>ii</scp>)–Al(<scp>ii</scp>) catalysts as highly active ε-caprolactone polymerization catalysts: indication of metal cooperativity through DFT studies. Dalton Transactions, 2018, 47, 1389 35 1.6 13800-13808. Post-Emergence Herbicidal Activity of Nanoatrazine Against Susceptible Weeds. Frontiers in 53 Environmental Science, 2018, 6, . Treatment of calvarial defects by resorbable and non-resorbable sonic activated polymer pins and 1391 0.7 7 mouldable titanium mesh in two dogs: a case report. BMC Veterinary Research, 2018, 14, 199. Structural Effects of Residual Groups of Graphene Oxide on Poly(Ĵu-Caprolactone)/Graphene Oxide 1392

CITATION REPORT

77

Nanocomposite. Crystals, 2018, 8, 270.

#

#	Article	IF	CITATIONS
1393	Dually self-reinforced Poly(ε-caprolactone) composites based on unidirectionally arranged fibers. Composites Science and Technology, 2018, 165, 331-338.	3.8	6
1394	Degradable Nanocomposites for Fused Filament Fabrication Applications. Journal of Manufacturing and Materials Processing, 2018, 2, 29.	1.0	8
1395	Osteointegration of Porous Poly-ε-Caprolactone-Coated and Previtalised Magnesium Implants in Critically Sized Calvarial Bone Defects in the Mouse Model. Materials, 2018, 11, 6.	1.3	13
1396	Surface Treatment of PEOT/PBT (55/45) with a Dielectric Barrier Discharge in Air, Helium, Argon and Nitrogen at Medium Pressure. Materials, 2018, 11, 391.	1.3	41
1397	3D Printed, PVA–PAA Hydrogel Loaded-Polycaprolactone Scaffold for the Delivery of Hydrophilic In-Situ Formed Sodium Indomethacin. Materials, 2018, 11, 1006.	1.3	11
1398	Precision Aliphatic Polyesters via Segmer Assembly Polymerization. Molecules, 2018, 23, 452.	1.7	10
1399	Material Considerations for Fused-Filament Fabrication of Solid Dosage Forms. Pharmaceutics, 2018, 10, 44.	2.0	116
1400	Electrospun Poly(ε-caprolactone) Nanofibrous Mesh for Imiquimod Delivery in Melanoma Therapy. Polymers, 2018, 10, 231.	2.0	28
1401	Bioactive Sr(II)/Chitosan/Poly(ε-caprolactone) Scaffolds for Craniofacial Tissue Regeneration. In Vitro and In Vivo Behavior. Polymers, 2018, 10, 279.	2.0	13
1402	Aliphatic Polyester Nanofibers Functionalized with Cyclodextrins and Cyclodextrin-Guest Inclusion Complexes. Polymers, 2018, 10, 428.	2.0	24
1403	A Novel Delivery System for the Controlled Release~of Antimicrobial Peptides: Citropin 1.1 and Temporin A. Polymers, 2018, 10, 489.	2.0	9
1404	Enzymatic Degradation of Poly(butylene succinate) Copolyesters Synthesized with the Use of Candida antarctica Lipase B. Polymers, 2018, 10, 688.	2.0	30
1405	Chromatographic characterization of amphiphilic di―and triâ€block copolymers of poly(ethylene oxide) and poly(εâ€caprolactone). Journal of Separation Science, 2018, 41, 3352-3359.	1.3	15
1406	Polycaprolactone/metal oxide nanocomposites. , 2018, , 223-263.		3
1407	The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Materials Science and Engineering C, 2018, 92, 132-142.	3.8	45
1408	Synthesis and Characterization of Dinuclear Salan Rare-Earth Metal Complexes and Their Application in the Homo- and Copolymerization of Cyclic Esters. Inorganic Chemistry, 2018, 57, 9028-9038.	1.9	24
1409	Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydrate Polymers, 2018, 199, 628-640.	5.1	101
1410	An electrospun poly(ε-caprolactone) nanocomposite fibrous mat with a high content of hydroxyapatite to promote cell infiltration. RSC Advances, 2018, 8, 25228-25235.	1.7	27

IF

CITATIONS

Fundamentals of bionanocomposites., 2018,, 351-377. 7 1411 Fibre-based scaffolding techniques for tendon tissue engineering. Journal of Tissue Engineering and 1412 1.3 Regenerative Medicine, 2018, 12, 1798-1821. Impact of Molecular Weight on the Thermal Stability and the Miscibility of Poly(ε-caprolactone)/Polystyrene Binary Blends. Journal of Polymers and the Environment, 2018, 26, 1413 2.4 30 3511-3519. Facile production of nanocomposites of carbon nanotubes and polycaprolactone with high aspect 1414 24 ratios with potential applications in drug delivery. RSC Advances, 2018, 8, 16444-16454. Electrospun poly(ε-caprolactone) matrices containing silver sulfadiazine complexed with \hat{I}^2 -cyclodextrin as a new pharmaceutical dosage form to wound healing: preliminary physicochemical 1415 1.7 23 and biological evaluation. Journal of Materials Science: Materials in Medicine, 2018, 29, 67. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications. Materials Science and 3.8 Engineering Ć, 2018, 91, 94-102. Nanofiber technology in the ex vivo expansion of cord blood-derived hematopoietic stem cells. 1417 1.7 18 Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1707-1718. Promising Biomolecules. Advances in Experimental Medicine and Biology, 2018, 1059, 189-205. 1418 0.8 Towards thermoplastic hemicellulose: Chemistry and characteristics of poly-(lµ-caprolactone) grafting 1419 3.3 43 onto hemicellulose backbones. Materials and Design, 2018, 153, 298-307. 1420 Fast Degradable Polycaprolactone for Drug Delivery. Biomacromolecules, 2018, 19, 2302-2307. 2.6 State of the Art in the Targeted Modification of Chitosan. Polymer Science - Series B, 2018, 60, 131-161. 1421 0.3 15 Cefazolin-loaded polycaprolactone fibers produced via different electrospinning methods: Characterization, drug release and antibacterial effect. European Journal of Pharmaceutical Sciences, 2018, 124, 26-36. Bioresorbable Materials for Orthopedic Applications (Lactide and Glycolide Based)., 2018, , 287-344. 1423 3 Osteogenic Potential of Graphene in Bone Tissue Engineering Scaffolds. Materials, 2018, 11, 1430. 1424 1.3 74 Characterization of Nanospheres Containing Zanthoxylum riedelianum Fruit Essential Oil and Their 1425 Insecticidal and Deterrent Activities against Bemisia tábaci (Hemiptera: Aleyrodidae). Molecules, 2018, 1.7 21 23, 2052. Papain Loaded Poly(ε-Caprolactone) Nanoparticles: In-silico and In-Vitro Studies. Journal of 1426 1.3 14 Fluorescence, 2018, 28, 1127-1142. Active Food Packaging From Botanical, Animal, Bacterial, and Synthetic Sources., 2018, , 87-135. 1427 3 Effects of large dimensional deformation of a porous structure on stem cell fate activated by

poly(<scp>l</scp>-glutamic acid)-based shape memory scaffolds. Biomaterials Science, 2018, 6,

1428

ARTICLE

~			_		
	ITAT	ION	12 F		DT
<u> </u>	LAL	ION	IN E	PU	IX I

#	Article	IF	CITATIONS
1429	Application of 3-D Printing for Tissue Regeneration in Oral and Maxillofacial Surgery: What is Upcoming?. , 2018, , .		1
1430	Hydrolytic Degradation and Mechanical Stability of Poly(Îμ-Caprolactone)/Reduced Graphene Oxide Membranes as Scaffolds for In Vitro Neural Tissue Regeneration. Membranes, 2018, 8, 12.	1.4	62
1431	A 96-well microplate bioreactor platform supporting individual dual perfusion and high-throughput assessment of simple or biofabricated 3D tissue models. Lab on A Chip, 2018, 18, 2757-2775.	3.1	47
1432	Controlled degradability of PCL-ZnO nanofibrous scaffolds for bone tissue engineering and their antibacterial activity. Materials Science and Engineering C, 2018, 93, 724-738.	3.8	77
1433	Synthesis of a ROS-responsive analogue of poly(Îμ-caprolactone) by the living ring-opening polymerization of 1,4-oxathiepan-7-one. Polymer Chemistry, 2018, 9, 4574-4584.	1.9	26
1434	Biodegradable spirulina extract/polycaprolactone porous scaffolds. New Journal of Chemistry, 2018, 42, 15830-15838.	1.4	1
1435	New paper-based microfluidic tools for the analysis of blood serum protein and creatinine built <i>via</i> aerosolized deposition of polycaprolactone. Analytical Methods, 2018, 10, 2994-3000.	1.3	13
1436	Effects of polycaprolactone-biphasic calcium phosphate scaffolds on enhancing growth and differentiation of osteoblasts. Bio-Medical Materials and Engineering, 2018, 29, 159-176.	0.4	7
1437	Ultrahigh verapamil-loaded controlled release polymeric beads using superamphiphobic substrate: D-optimal statistical design, <i>in vitro</i> and <i>in vivo</i> performance. Drug Delivery, 2018, 25, 1448-1460.	2.5	7
1438	Salicylic Acid Based Hyperbranched Polyester: Synthesis, Characterization, Optical Properties and Antimicrobial Activity. Macromolecular Research, 2018, 26, 831-837.	1.0	8
1439	The control of alginate degradation to dynamically manipulate scaffold composition for in situ transfection application. International Journal of Biological Macromolecules, 2018, 117, 1169-1178.	3.6	14
1440	Bouncing and 3D printable hybrids with self-healing properties. Materials Horizons, 2018, 5, 849-860.	6.4	44
1441	Nanofibrous scaffolds for biomedical applications. Nanoscale, 2018, 10, 12228-12255.	2.8	65
1442	Experimental studies on preparation of the porous and small-diameter poly(ε-caprolactone) external vascular scaffold and its degradability and biocompatibility. Regenerative Medicine Research, 2018, 6, 2.	2.2	1
1443	Bio-resorbable polymer stents: a review of material progress and prospects. Progress in Polymer Science, 2018, 83, 79-96.	11.8	123
1444	Controlled self-assembly into diverse stimuli-responsive microstructures: from microspheres to branched cylindrical micelles and vesicles. RSC Advances, 2018, 8, 21613-21620.	1.7	4
1445	Electrospun polycaprolactone scaffolds for tissue engineering: a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 527-539.	1.8	76
1446	Recent Trends in the Fabrication of Starch Nanofibers: Electrospinning and Non-electrospinning Routes and Their Applications in Biotechnology. Applied Biochemistry and Biotechnology, 2019, 187, 47-74.	1.4	58

ARTICLE IF CITATIONS Polymeric Biomaterials for Scaffold-Based Bone Regenerative Engineering. Regenerative Engineering 91 1447 1.6 and Translational Medicine, 2019, 5, 128-154. Biomaterials for Tissue Engineering and Regenerative Medicine., 2019, , 462-482. 1448 Simple and efficient approach for improved cytocompatibility and faster degradation of electrospun 1449 1.7 9 polycaprolactone fibers. Polymer Bulletin, 2019, 76, 1333-1347. Bioresorbable antibacterial PCLâ€PLAâ€nHA composite membranes for oral and maxillofacial defects. 1450 Polymer Composites, 2019, 40, 1564-1575. Controlled delivery of the antiprotozoal agent (tinidazole) from intravaginal polymer matrices for 1451 treatment of the sexually transmitted infection, trichomoniasis. Pharmaceutical Development and 1.1 7 Technology, 2019, 24, 348-356. The Foreign Body Response Demystified. ACS Biomaterials Science and Engineering, 2019, 5, 19-44. 2.6 Synthetic Polymers. , 2019, , 559-590. 1453 45 Morphological study on the pore growth profile of $poly(\hat{l}\mu$ -caprolactone) bi-modal porous foams using 1454 1.6 a modified supercritical CO2 foaming process. Journal of Supercritical Fluids, 2019, 143, 72-81. Bioengineering Scaffolds for Regenerative Engineering., 2019, , 444-461. 2 1455 Effect of pseudomonas lipase enzyme on the degradation of 1456 polycaprolactone/polycaprolactone-polyglycolide fiber blended nanocomposites. International 1.8 Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 360-367. Thermal decomposition behavior of poly(propylene carbonate) in poly(propylene carbonate)/poly(vinyl) Tj ETQq0 0,0,7gBT /Oyerlock 10 1457 Injectable Catalyst-Free Poly(Propylene Fumarate) System Cross-Linked by Strain Promoted Alkyne–Azide Cycloaddition Click Chemistry for Spine Defect Filling. Biomacromolecules, 2019, 20, 2.6 3352-3365. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for 1459 1.7 18 favorable mechanical and biological properties. Biomedical Materials (Bristol), 2019, 14, 065002. Degradation and $\langle i \rangle$ in vivo $\langle i \rangle$ evaluation of polycaprolactone, poly($\hat{\mu}$ -caprolactone-co-L-lactide), and poly-L-lactic acid as scaffold sealant polymers for murine tissue-engineered vascular grafts. Regenerative Medicine, 2019, 14, 627-637. 1460 0.8 16 1461 Plastic Biodegradation: Challenges and Opportunities., 2019,, 333-361. 5 Analysis of early cellular responses of anterior cruciate ligament fibroblasts seeded on different molecular weight polycaprolactone films functionalized by a bioactive poly(sodium styrene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 1462 An amphiphilic, heterografted polythiophene copolymer containing biocompatible/biodegradable side 1463 chains for use as an (electro)active surface in biomedical applications. Polymer Chemistry, 2019, 10, 1.9 16 5010-5022. Electrospray for generation of drug delivery and vaccine particles applied in vitro and in vivo. 1465 3.8 Materials Science and Engineering C, 2019, 105, 110070.

#	Article	IF	CITATIONS
1466	Turning on ROP activity in a bimetallic Co/Zn complex supported by a [2+2] Schiff-base macrocycle. Chemical Communications, 2019, 55, 11279-11282.	2.2	17
1467	Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: an alternative approach for leishmaniasis treatment. Nanotechnology, 2019, 30, 455102.	1.3	33
1468	3D bioprinted endometrial stem cells on melt electrospun poly $\hat{I}\mu$ -caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice. Acta Biomaterialia, 2019, 97, 162-176.	4.1	79
1469	Print Me An Organ! Why We Are Not There Yet. Progress in Polymer Science, 2019, 97, 101145.	11.8	192
1470	Stability improvement by incorporating poly(ε-caprolactone) in dimethylformamide-potassium iodide liquid electrolyte for dye-sensitized solar cell. Journal of Solid State Electrochemistry, 2019, 23, 2411-2421.	1.2	5
1471	PCL microspheres containing magnesium hydroxide for dermal filler with enhanced physicochemical and biological performances. Journal of Industrial and Engineering Chemistry, 2019, 80, 854-861.	2.9	12
1473	Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair. ACS Applied Materials & Interfaces, 2019, 11, 33548-33558.	4.0	30
1474	Melt-electrowriting with novel milk protein/PCL biomaterials for skin regeneration. Biomedical Materials (Bristol), 2019, 14, 055013.	1.7	28
1475	In vitro and in vivo proves of concept for the use of a chemically cross-linked poly(ester-urethane-urea) scaffold as an easy handling elastomeric biomaterial for bone regeneration. International Journal of Energy Production and Management, 2019, 6, 311-323.	1.9	3
1476	Synthetic polymers for skin biomaterials. , 2019, , 125-149.		8
1477	Pulsatile Discharge from Polymeric Scaffolds: A Novel Method for Modulated Drug Release. Bulletin of the Chemical Society of Japan, 2019, 92, 1237-1244.	2.0	8
1478	Characterization of a Reservoir-Style Implant for Sustained Release of Tenofovir Alafenamide (TAF) for HIV Pre-Exposure Prophylaxis (PrEP). Pharmaceutics, 2019, 11, 315.	2.0	62
1479	Rose-Inspired Micro-device with Variable Stiffness for Remotely Controlled Release of Objects in Robotics. Lecture Notes in Computer Science, 2019, , 122-133.	1.0	8
1480	Mechanical Characteristics of Composites Based on β-Ca3(PO4)2/Poly(D,L-Lactide) and β-Ca3(PO4)2/Poly(ε-Caprolactone). Inorganic Materials: Applied Research, 2019, 10, 109-113.	0.1	2
1481	Optimization of electrospray fabrication of stem cell–embedded alginate–gelatin microspheres and their assembly in 3D-printed poly(ε-caprolactone) scaffold for cartilage tissue engineering. Journal of Orthopaedic Translation, 2019, 18, 128-141.	1.9	49
1482	Sustained Release of Basic Fibroblast Growth Factor (bFGF) Encapsulated Polycaprolactone (PCL) Microspheres Promote Angiogenesis In Vivo. Nanomaterials, 2019, 9, 1037.	1.9	24
1483	Jellyfishâ€Based Smart Wound Dressing Devices Containing In Situ Synthesized Antibacterial Nanoparticles. Advanced Functional Materials, 2019, 29, 1902783.	7.8	39
1484	Enzymatic Ringâ€Opening Polymerization of Lactones: Traditional Approaches and Alternative Strategies. ChemCatChem, 2019, 11, 4983-4997.	1.8	30

#	Article	IF	CITATIONS
1485	Multi-Functional Electrospun Nanofibers from Polymer Blends for Scaffold Tissue Engineering. Fibers, 2019, 7, 66.	1.8	63
1486	Genetically Engineered-MSC Therapies for Non-unions, Delayed Unions and Critical-size Bone Defects. International Journal of Molecular Sciences, 2019, 20, 3430.	1.8	32
1487	Proof of concept, design, and manufacture via 3â€D printing of a mesh with bactericidal capacity: Behaviour in vitro and in vivo. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1955-1964.	1.3	14
1488	Polystyrene beads supported phosphazene superbase as recyclable organocatalyst for ring-opening polymerization of Î-valerolactone. European Polymer Journal, 2019, 119, 130-135.	2.6	17
1489	Electrospun polycaprolactone membranes with Zn-doped bioglass for nasal tissues treatment. Journal of Materials Science: Materials in Medicine, 2019, 30, 80.	1.7	30
1490	Star-shaped poly(ethylene oxide)‑block‑poly(caprolactone) conjugated silver nanoparticles: A colorimetric probe for cephalexin in environmental, biological and pharmaceutical samples. Microchemical Journal, 2019, 149, 104048.	2.3	25
1491	Degradation and Stability of Poly(Lactic Acid). , 2019, , 227-272.		0
1492	Morphology, Crystallinity, and Molecular Weight of Poly(ε-caprolactone)/Graphene Oxide Hybrids. Polymers, 2019, 11, 1099.	2.0	49
1493	Heterolepic <i>β</i> â€Ketoiminate Zinc Phenoxide Complexes as Efficient Catalysts for the Ring Opening Polymerization of Lactide. ChemistryOpen, 2019, 8, 951-960.	0.9	20
1494	Incorporation of Fibrin Matrix into Electrospun Membranes for Periodontal Wound Healing. Bioengineering, 2019, 6, 57.	1.6	10
1495	Additive Manufacturing Approaches for Hydroxyapatiteâ€Reinforced Composites. Advanced Functional Materials, 2019, 29, 1903055.	7.8	109
1496	Biomimetic and Biohybrid Systems. Lecture Notes in Computer Science, 2019, , .	1.0	3
1497	Improving the barrier character of poly(caprolactone): Transport properties and free volume of immiscible blends. Journal of Applied Polymer Science, 2019, 136, 48018.	1.3	7
1498	In-vitro biodegradation study of poly(Îμ -caprolactone) films using a 3D printed helical flow prototype to simulate the physiological conditions for cardiovascular implanted devices. Biomedical Physics and Engineering Express, 2019, 5, 065021.	0.6	2
1499	Organocatalysts in Ring-Opening Polymerization: Revealing Their Effect on Stereochemistry. European Polymer Journal, 2019, 121, 109291.	2.6	6
1500	A review on the thermomechanical properties and biodegradation behaviour of polyesters. European Polymer Journal, 2019, 121, 109296.	2.6	143
1501	Introduction to biomaterials for skin repair and regeneration. , 2019, , xiii-xxvii.		10
1502	Amine-functionalized Single-walled Carbon Nanotube/Polycaprolactone Electrospun Scaffold for Bone Tissue Engineering: in vitro Study. Fibers and Polymers, 2019, 20, 1869-1882.	1.1	40

# 1503	ARTICLE In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nature Communications, 2019, 10, 4620.	IF 5.8	Citations
1504	In vitro and preclinical characterisation of compressed, macro-porous and collagen coated poly- ε -caprolactone electro-spun scaffolds. Biomedical Materials (Bristol), 2019, 14, 055007.	1.7	3
1505	Hierarchical Cross-Linked Poly(caprolactone- <i>co</i> -urethane) toward Connective Tissue-like Properties and Multifunctional Integration. Chemistry of Materials, 2019, 31, 9295-9306.	3.2	10
1506	Polymer-coated nanoparticles and their effects on mitochondrial function in brain endothelial cells. Toxicology and Applied Pharmacology, 2019, 385, 114800.	1.3	3
1507	Biodegradable polymer nanocomposites for tissue engineering: synthetic strategies and related applications. , 2019, , 157-198.		1
1508	Effect of Alkyl Chain Length in POSS Nanocage on Non-Isothermal Crystallization Behavior of PCL/Amino-POSS Nanocomposites. Polymers, 2019, 11, 1719.	2.0	8
1509	Nanoengineering Materials for Biomedical Uses. , 2019, , .		2
1510	The impact of electrospun films of poly(Îμ-caprolactone) filled with nanostructured zeolite and silica microparticles on in vitro histamine formation by Staphylococcus aureus and Salmonella Paratyphi A. Food Packaging and Shelf Life, 2019, 22, 100414.	3.3	16
1511	Nanobiocatalyst from lipase non-covalently immobilized on multiwalled carbon nanotubes for copolymerization of ε-caprolactone and trimethylene carbonate. Polymer Degradation and Stability, 2019, 170, 109000.	2.7	9
1512	Lignin, a biomass crosslinker, in a shape memory polycaprolactone network. Journal of Polymer Science Part A, 2019, 57, 2121-2130.	2.5	17
1513	Bayesian calibration of AquaCrop model for winter wheat by assimilating UAV multi-spectral images. Computers and Electronics in Agriculture, 2019, 167, 105052.	3.7	25
1514	Miniaturized characterization of polymers: From synthesis to rheological and mechanical properties in 30â€mg. Polymer, 2019, 185, 121918.	1.8	6
1515	Aliphatic Polyester/polyhedral Oligomeric Silsesquioxanes Hybrid Networks via Copperâ€free 1,3â€dipolar Cycloaddition Click Reaction. Journal of Polymer Science Part A, 2019, 57, 2222-2227.	2.5	16
1516	Polycaprolactone nanofibers functionalized with aÂdopamine coating for on-line solid phase extraction of bisphenols, betablockers, nonsteroidal drugs, and phenolic acids. Mikrochimica Acta, 2019, 186, 710.	2.5	20
1517	Biopolymer-hydrophobic drug fibers and the delivery mechanisms for sustained release applications. European Polymer Journal, 2019, 112, 400-410.	2.6	11
1518	A Novel Bilayer Polycaprolactone Membrane for Guided Bone Regeneration: Combining Electrospinning and Emulsion Templating. Materials, 2019, 12, 2643.	1.3	64
1519	Sustained release of vitamin C from PCL coated TCP induces proliferation and differentiation of osteoblast cells and suppresses osteosarcoma cell growth. Materials Science and Engineering C, 2019, 105, 110096.	3.8	36
1520	Addressing Patient Specificity in the Engineering of Tumor Models. Frontiers in Bioengineering and Biotechnology, 2019, 7, 217.	2.0	53

#	Article	IF	CITATIONS
1521	High-efficiency dual-responsive shape memory assisted self-healing of carbon nanotubes enhanced polycaprolactone/thermoplastic polyurethane composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580, 123731.	2.3	45
1522	Material-based therapy for bone nonunion. Materials and Design, 2019, 183, 108161.	3.3	23
1523	Folate Receptor α-Modified Nanoparticles for Targeting of the Central Nervous System. ACS Applied Materials & Interfaces, 2019, 11, 39633-39647.	4.0	26
1524	The interactions of human ovarian cancer cells and nanotextured surfaces: cell attachment, viability and apoptosis studies. RSC Advances, 2019, 9, 25957-25966.	1.7	4
1525	Biomimetic Polymer-Based Engineered Scaffolds for Improved Stem Cell Function. Materials, 2019, 12, 2950.	1.3	15
1526	Polymer-Based Additive Manufacturing. , 2019, , .		13
1527	Oil-in-eutectic mixture HIPEs co-stabilized with surfactant and nanohydroxyapatite: ring-opening polymerization for nanocomposite scaffold synthesis. Chemical Communications, 2019, 55, 12292-12295.	2.2	19
1528	Interaction of Graphene And Polycaprolactone at Atomic Level. , 2019, , .		1
1529	Photorheology of bioadhesive dendrimer polycaprolactone composites. Polymer Testing, 2019, 80, 106099.	2.3	9
1530	Development of grapefruit seed extract-loaded poly(ε-caprolactone)/chitosan films for antimicrobial food packaging. Food Packaging and Shelf Life, 2019, 22, 100396.	3.3	69
1531	Processability of 4D printable modified polycaprolactone with self-healing abilities. Materials Today: Proceedings, 2019, 7, 508-515.	0.9	9
1532	Metal–Organic Frameworks Incorporated Polycaprolactone Film for Enhanced Corrosion Resistance and Biocompatibility of Mg Alloy. ACS Sustainable Chemistry and Engineering, 2019, 7, 18114-18124.	3.2	50
1533	Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes. Nanomaterials, 2019, 9, 1215.	1.9	19
1534	Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model. Materials Science and Engineering C, 2019, 98, 949-959.	3.8	55
1535	The influence of poly(ester amide) on the structural and functional features of 3D additive manufactured poly(lμ-caprolactone) scaffolds. Materials Science and Engineering C, 2019, 98, 994-1004.	3.8	40
1536	Gelatin-assisted conglutination of aligned polycaprolactone nanofilms into a multilayered fibre-guiding scaffold for periodontal ligament regeneration. RSC Advances, 2019, 9, 507-518.	1.7	12
1537	Layer-by-layer deposition of chitosan nanoparticles as drug-release coatings for PCL nanofibers. Biomaterials Science, 2019, 7, 233-246.	2.6	32
1538	Biological activity of human mesenchymal stromal cells on polymeric electrospun scaffolds. Biomaterials Science, 2019, 7, 1088-1100.	2.6	20

#	Article	IF	CITATIONS
1539	Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds. Biomaterials Science, 2019, 7, 560-570.	2.6	22
1540	Biocompatibility Studies of Nanoengineered Polycaprolactone and Nanohydroxyapatite Scaffold for Craniomaxillofacial Bone Regeneration. Journal of Craniofacial Surgery, 2019, 30, 265-269.	0.3	16
1541	A Fundamental Approach Toward Polymers and Polymer Composites: Current Trends for Biomedical Applications. Lecture Notes in Bioengineering, 2019, , 1-28.	0.3	5
1542	In vivo and in vitro study of a novel nanohydroxyapatite sonocoated scaffolds for enhanced bone regeneration. Materials Science and Engineering C, 2019, 99, 669-684.	3.8	49
1543	Fabrication and Evaluation of Polycaprolactone Beads-on-String Membranes for Applications in Bone Tissue Regeneration. ACS Applied Bio Materials, 2019, 2, 1031-1040.	2.3	6
1544	The fabrication of uniaxially aligned micro-textured polycaprolactone struts and application for skeletal muscle tissue regeneration. Biofabrication, 2019, 11, 025005.	3.7	19
1545	Biomedical Applications of Electrospun Polymer Composite Nanofibres. Lecture Notes in Bioengineering, 2019, , 111-165.	0.3	5
1546	Preparation of Electrosprayed Poly(caprolactone) Microparticles Based on Green Solvents and Related Investigations on the Effects of Solution Properties as Well as Operating Parameters. Coatings, 2019, 9, 84.	1.2	15
1547	Introduction and Historical Overview. , 2019, , 3-20.		4
1548	Fabrication and Characterization of Scaffolds of Poly(ε-caprolactone)/Biosilicate® Biocomposites Prepared by Generative Manufacturing Process. International Journal of Biomaterials, 2019, 2019, 1-11.	1.1	8
1549	Polymer Nanocomposites in Biomedical Engineering. Lecture Notes in Bioengineering, 2019, , .	0.3	17
1550	New degradable composite elastomers of POC/PCL fabricated via in-situ copolymerization blending strategy. European Polymer Journal, 2019, 110, 337-343.	2.6	14
1551	Alternating crystalline lamellar structures from thermodynamically miscible poly(Îμ-caprolactone) H/D blends. Polymer, 2019, 175, 320-328.	1.8	5
1552	Suturable regenerated silk fibroin scaffold reinforced with 3D-printed polycaprolactone mesh: biomechanical performance and subcutaneous implantation. Journal of Materials Science: Materials in Medicine, 2019, 30, 63.	1.7	29
1553	The Impact of Melt Electrowritten Scaffold Design on Porosity Determined by X-Ray Microtomography. Tissue Engineering - Part C: Methods, 2019, 25, 367-379.	1.1	37
1554	Development of a dissolution method based on lipase for preclinical level A IVIVC of oral poly(ε-caprolactone) microspheres. Journal of Drug Delivery Science and Technology, 2019, 52, 632-641.	1.4	5
1555	Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science, 2019, 96, 1-20.	11.8	366
1556	New insights into the PLGA and PCL blending: physico-mechanical properties and cell response. Materials Research Express, 2019, 6, 085344.	0.8	14

#	Article	IF	CITATIONS
1557	Efficacy of eluted antibiotics through 3D printed femoral implants. Biomedical Microdevices, 2019, 21, 51.	1.4	23
1558	Compostable composites of wheat stalk micro―and nanocrystalline cellulose and poly(butylene) Tj ETQq1 1 0.7 Polymer Science, 2019, 136, 48149.	'84314 rg[1.3	3T /Overlock 30
1559	2,5-Dimethyl-4-hydroxy-3(2H)-furanone as an Anti-biofilm Agent Against Non-Candida albicans Candida Species. Mycopathologia, 2019, 184, 403-411.	1.3	14
1560	Scaffolds for periodontal tissue engineering. , 2019, , 479-504.		2
1561	Scaffolds for dental cementum. , 2019, , 563-594.		0
1562	Scaffolds for engineering tooth–ligament interfaces. , 2019, , 595-613.		1
1563	Polycaprolactone-enabled sealing and carbon composite electrode integration into electrochemical microfluidics. Lab on A Chip, 2019, 19, 2589-2597.	3.1	27
1564	Nanostructures of chemical biodegradable polymers and their derivatives for encapsulation of food ingredients. , 2019, , 581-606.		0
1565	Scaffolds for Sustained Release of Ambroxol Hydrochloride, a Pharmacological Chaperone That Increases the Activity of Misfolded β lucocerebrosidase. Macromolecular Bioscience, 2019, 19, 1900130.	2.1	4
1566	Carbon nanotube/iron oxide hybrid particles and their PCL-based 3D composites for potential bone regeneration. Materials Science and Engineering C, 2019, 104, 109913.	3.8	30
1567	Selectively Biodegradable Polyesters: Nature-Inspired Construction Materials for Future Biomedical Applications. Polymers, 2019, 11, 1061.	2.0	45
1568	A green cascade polymerization method for the facile synthesis of sustainable poly(butylene-co-decylene terephthalate) copolymers. Polymer, 2019, 178, 121591.	1.8	15
1569	Enhancing the recrystallization ability of bio-based polylactide stereocomplex by in situ construction of multi-block branched conformation. Journal of Materials Science, 2019, 54, 12145-12158.	1.7	6
1570	Recent Advances in Nanostructured Polymer Composites for Biomedical Applications. , 2019, , 21-52.		4
1571	Enhancing the Properties of Poly(Îμ-caprolactone) by Simple and Effective Random Copolymerization of Îμ-Caprolactone with <i>p</i> -Dioxanone. Biomacromolecules, 2019, 20, 3171-3180.	2.6	29
1572	Preparation and In-vitro Degradation Behavior of Poly(L-lactide-co-glycolide-co-ε-caprolactone) Terpolymer. Journal of Macromolecular Science - Physics, 2019, 58, 568-577.	0.4	15
1573	In vitro evaluation of 3D printed polycaprolactone scaffolds with angle-ply architecture for annulus fibrosus tissue engineering. International Journal of Energy Production and Management, 2019, 6, 175-184.	1.9	37
1574	Molecular Bottlebrushes Featuring Brush-on-Brush Architecture. ACS Macro Letters, 2019, 8, 749-753.	2.3	28

IF

- Properties and applications., 2019,, 49-98. 1575 Novel chitosan derivative based composite scaffolds with enhanced angiogenesis; potential candidates for healing chronic non-healing wounds. Journal of Materials Science: Materials in 1576 1.7 Medicine, 2019, 30, 72. Enhanced nitrogen removal of coal pyrolysis wastewater with low COD to nitrogen ratio by partial 1577 nitrification-denitrification bioprocess assisted with polycaprolactone. Environmental Science and 2.7 Pollution Research, 2019, 26, 21655-21667. Nanofiber-based matrices for rotator cuff regenerative engineering. Acta Biomaterialia, 2019, 94, 64-81. A coarse grained simulation study on the morphology of ABA triblock copolymers. Computational 1579 1.4 Materials Science, 2019, 167, 160-167. InÂvitro cell uptake evaluation of curcumin-loaded PCL/F68 nanoparticles for potential application in 1580 1.4 neuronal diseases. Journal of Drug Delivery Science and Technology, 2019, 52, 905-914. Mechanical and biological evaluations of novel electrospun PLLA composite scaffolds doped with 1581 1.5 oxide ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 229-237. Biodegradable atrial septal defect occluders: A current review. Acta Biomaterialia, 2019, 96, 68-80. 4.1 1582 Biocopolyesters of Poly(butylene succinate) Containing Long-Chain Biobased Glycol Synthesized with 1583 Heterogeneous Titanium Dioxide Catalyst. ACS Sustainable Chemistry and Engineering, 2019, 7, 3.2 10623-10632. Influence of nano-hydroxyapatite on mechanical behavior of microwave processed polycaprolactone 1584 0.8 composite foams. Materials Research Express, 2019, 6, 085336. The functionalization of poly($\hat{l}\mu$ -caprolactone) as a versatile platform using $\hat{l}\mu$ -($\hat{l}\pm$ -phenylseleno) 1585 1.9 caprolactone as a monomer. Polymer Chemistry, 2019, 10, 3851-3858. Engineering a platform for nerve regeneration with direct application to nerve repair technology. 5.7 Biomaterials, 2019, 216, 119263. Adsorption of Fibrinogen and Fibronectin on Elastomeric Poly(butylene succinate) Copolyesters. 1587 1.6 Langmuir, 2019, 35, 8850-8859. Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on 1588 3.1 stem cell behavior. Applied Surface Science, 2019, 485, 204-221. Synthesis and Electrospinning of Polycaprolactone from an Aluminium-Based Catalyst: Influence of 1589 2.0
- CITATIONS

8

17

4

21

23

11

12

9

ARTICLE

1590	A circular economy approach to plastic waste. Polymer Degradation and Stability, 2019, 165, 170-181.	2.7	236
1591	Three-Dimensional Printed Polycaprolactone Scaffolds for Bone Regeneration Success and Future Perspective. Tissue Engineering - Part A, 2019, 25, 931-935.	1.6	37
1592	Enzymatic degradation of bacteriostatic polylactide composites. International Biodeterioration and Biodegradation, 2019, 142, 103-108.	1.9	11

the Ancillary Ligand and Initiators on Catalytic Efficiency and Fibre Structure. Polymers, 2019, 11, 677.

#	Article	IF	CITATIONS
1593	Biologically Inspired Scaffolds for Heart Valve Tissue Engineering via Melt Electrowriting. Small, 2019, 15, e1900873.	5.2	150
1594	Two-photon polymerized poly(caprolactone) retinal cell delivery scaffolds and their systemic and retinal biocompatibility. Acta Biomaterialia, 2019, 94, 204-218.	4.1	51
1595	Photopolymerization of enzymatically synthesized methacrylated poly(caprolactone) with poly(ethylene glycol) macromonomer. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 658-666.	1.2	1
1596	Molecular Engineering of the Cellulose-Poly(Caprolactone) Bio-Nanocomposite Interface by Reactive Amphiphilic Copolymer Nanoparticles. ACS Nano, 2019, 13, 6409-6420.	7.3	26
1597	Unique animal friendly 3D culturing of human cancer and normal cells. Toxicology in Vitro, 2019, 60, 51-60.	1.1	15
1598	Macroporous scaffolds of cross-linked Poly(É>-caprolactone) via high internal phase emulsion templating. Polymer, 2019, 176, 66-73.	1.8	28
1599	Emulsion templated scaffolds manufactured from photocurable polycaprolactone. Polymer, 2019, 175, 243-254.	1.8	46
1600	Nano- and Micropatterned Polycaprolactone Cellulose Composite Surfaces with Tunable Protein Adsorption, Fibrin Clot Formation, and Endothelial Cellular Response. Biomacromolecules, 2019, 20, 2327-2337.	2.6	21
1601	Biomedical applications of polyethylene. European Polymer Journal, 2019, 118, 412-428.	2.6	107
1602	Gamma irradiation effects on polycaprolactone/zinc oxide nanocomposite films. Polimeros, 2019, 29, .	0.2	27
1603	Engineering of electrically-conductive poly(ε-caprolactone)/ multi-walled carbon nanotubes composite nanofibers for tissue engineering applications. Ceramics International, 2019, 45, 15736-15740.	2.3	24
1604	Two-component cross-linkable gels for fabrication of solid oral dosage forms. Journal of Controlled Release, 2019, 303, 274-280.	4.8	10
1605	Resilon: Assessment of Degraded Filling Material in Nonhealed Cases. Journal of Endodontics, 2019, 45, 691-695.	1.4	10
1605 1606		1.4	10 0
	691-695.	1.4 2.3	
1606	691-695.3D Printing Polymeric Parts Reinforced With Carbon Nanotube Yarn. , 2019, , 205-216.Supercritical fluid-assisted controllable fabrication of open and highly interconnected porous		0
1606 1607	 691-695. 3D Printing Polymeric Parts Reinforced With Carbon Nanotube Yarn., 2019, , 205-216. Supercritical fluid-assisted controllable fabrication of open and highly interconnected porous scaffolds for bone tissue engineering. Science China Life Sciences, 2019, 62, 1670-1682. Synthesis and properties of polyurethane networks composed of comb-shaped polymers grafted with 	2.3	0 7

#	Article	IF	CITATIONS
1611	Nanofiber-hydrogel composite–mediated angiogenesis for soft tissue reconstruction. Science Translational Medicine, 2019, 11, .	5.8	171
1612	Dehydration-induced folding of poly(ε-caprolactone)-agarose hydrogel composites. European Polymer Journal, 2019, 117, 159-164.	2.6	2
1613	Study on the Degradation Property of nHAC/PLA Composite Wire Material. Lecture Notes in Electrical Engineering, 2019, , 1016-1021.	0.3	0
1614	Modulating the crystallinity, mechanical properties, and degradability of poly(ε-caprolactone) derived polyesters by statistical and alternating copolymerization. Polymer Chemistry, 2019, 10, 2579-2588.	1.9	15
1615	Polymer fiber-based biocomposites for medical sensing applications. , 2019, , 57-88.		5
1616	Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Biofabrication, 2019, 11, 035027.	3.7	142
1617	Polymeric Materials for 3D Bioprinting. , 2019, , 63-81.		8
1618	Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods. Computational and Structural Biotechnology Journal, 2019, 17, 591-598.	1.9	54
1619	Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration. Materials Science and Engineering C, 2019, 102, 341-361.	3.8	47
1620	Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Industrial & Engineering Chemistry Research, 2019, 58, 6163-6194.	1.8	133
1(91	Towards skin tissue engineering using poly(2-hydroxy ethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 352 Td (metha		
1621	terpolymers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 691-700.	1.8	11
1622	Akermanite reinforced PHBV scaffolds manufactured using selective laser sintering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2596-2610.	1.6	18
1623	Stimuli-responsive materials in additive manufacturing. Progress in Polymer Science, 2019, 93, 36-67.	11.8	148
1624	Machine learning metrology of cell confinement in melt electrowritten three-dimensional biomaterial substrates. Microsystems and Nanoengineering, 2019, 5, 15.	3.4	59
1625	Thermodynamic Principles for the Design of Polymers for Drug Formulations. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 311-335.	3.3	11
1626	In vitro and in vivo evaluation of an electrospun-aligned microfibrous implant for Annulus fibrosus repair. Biomaterials, 2019, 205, 81-93.	5.7	66
1627	Non-Isothermal Crystallization and Degradation Kinetic Studies of Synthesized Mo-TG end Capped Poly(ε-Caprolactone). Macromolecular Research, 2019, 27, 386-395.	1.0	4
1628	Electrospinning of highly porous yet mechanically functional microfibrillar scaffolds at the human scale for ligament and tendon tissue engineering. Biomedical Materials (Bristol), 2019, 14, 035016.	1.7	28

#	Article	IF	CITATIONS
1629	Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization. Materials Science and Engineering C, 2019, 100, 564-575.	3.8	57
1630	Properties of biobased epoxy resins from epoxidized linseed oil (ELO) crosslinked with a mixture of cyclic anhydride and maleinized linseed oil. EXPRESS Polymer Letters, 2019, 13, 407-418.	1.1	29
1631	A Growth Factor-Free Co-Culture System of Osteoblasts and Peripheral Blood Mononuclear Cells for the Evaluation of the Osteogenesis Potential of Melt-Electrowritten Polycaprolactone Scaffolds. International Journal of Molecular Sciences, 2019, 20, 1068.	1.8	23
1632	MSC differentiation on two-photon polymerized, stiffness and BMP2 modified biological copolymers. Biomedical Materials (Bristol), 2019, 14, 035001.	1.7	7
1633	Impact of sterilization by electron beam, gamma radiation and X-rays on electrospun poly-(ε-caprolactone) fiber mats. Journal of Materials Science: Materials in Medicine, 2019, 30, 42.	1.7	30
1634	Non-isothermal Crystallization and Degradation Kinetics of Fe3O4–Thymolblue Functionalized Poly(ε-caprolactone). Journal of Polymers and the Environment, 2019, 27, 1259-1272.	2.4	9
1635	Application of the three-dimensionally printed biodegradable polycaprolactone (PCL) mesh in repair of orbital wall fractures. Journal of Cranio-Maxillo-Facial Surgery, 2019, 47, 1065-1071.	0.7	25
1636	In vitro evaluation of a novel multiwalled carbon nanotube/nanohydroxyapatite/polycaprolactone composite for bone tissue engineering. Journal of Materials Research, 2019, 34, 532-544.	1.2	9
1637	Biocompatibility of Resorbable Polymers: A Historical Perspective and Framework for the Future. Biomacromolecules, 2019, 20, 1465-1477.	2.6	109
1638	Innovations in Antimicrobial Engineered Nanomaterials. Environmental Chemistry for A Sustainable World, 2019, , 253-277.	0.3	0
1639	Hyperbranched Polycaprolactone through RAFT Polymerization of 2-Methylene-1,3-dioxepane. Polymers, 2019, 11, 318.	2.0	19
1640	Sintered electrospun poly(É›â€caprolactone)–poly(ethylene terephthalate) for drug delivery. Journal of Applied Polymer Science, 2019, 136, 47731.	1.3	11
1641	Study of Miscibility, Crystallization, and Biodegradation of Casting Films of Poly(butylene) Tj ETQq0 0 0 rgBT /Ove	erlock 10 0.4	Tf 50 262 Td
1642	Smart Materials for Biomedical Applications: The Usefulness of Shape-Memory Polymers. Applied Mechanics and Materials, 0, 890, 237-247.	0.2	10
1643	Raman microspectroscopic investigations of polymer nanocomposites: evaluation of physical and biophysical properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 44-52.	1.8	13
1644	Low molecular weight ε-caprolactone-p-coumaric acid copolymers as potential biomaterials for skin regeneration applications. PLoS ONE, 2019, 14, e0214956.	1.1	27
1645	Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers, 2019, 11, 651.	2.0	156
1646	Carbon Nanotube Wire for Use in Precision Medical Devices. , 2019, , 825-849.		1

#	Article	IF	CITATIONS
1647	Electrospun microporous gelatin–polycaprolactone blend tubular scaffold as a potential vascular biomaterial. Polymer International, 2019, 68, 1367-1377.	1.6	9
1648	Lightweight Poly(ε-Caprolactone) Composites with Surface Modified Hollow Glass Microspheres for Use in Rotational Molding: Thermal, Rheological and Mechanical Properties. Polymers, 2019, 11, 624.	2.0	34
1649	Near-infrared light-induced shape memory, self-healable and anti-bacterial elastomers prepared by incorporation of a diketopyrrolopyrrole-based conjugated polymer. Materials Chemistry Frontiers, 2019, 3, 836-841.	3.2	38
1650	Rheological Characterization of Biomaterials Directs Additive Manufacturing of Strontiumâ€Substituted Bioactive Glass/Polycaprolactone Microfibers. Macromolecular Rapid Communications, 2019, 40, e1900019.	2.0	38
1651	Enhanced mechanical properties of biodegradable poly(Îμ-caprolactone)/cellulose acetate butyrate nanocomposites filled with organoclay. Composites Communications, 2019, 13, 70-74.	3.3	19
1652	Recent Advances in Scaffold Design and Material for Vascularized Tissueâ€Engineered Bone Regeneration. Advanced Healthcare Materials, 2019, 8, e1801433.	3.9	176
1653	Development of bone screw using novel biodegradable composite orthopedic biomaterial: from material design to <i>in vitro</i> biomechanical and <i>in vivo</i> biocompatibility evaluation. Biomedical Materials (Bristol), 2019, 14, 045020.	1.7	12
1654	Fabrication of bioactive glass particles composite porous fibers by combination of electrospinning and phase separation. Materials Letters, 2019, 248, 185-188.	1.3	6
1655	Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2019, 130, 266-279.	3.6	40
1656	Self-Healing Four-Dimensional Printing with an Ultraviolet Curable Double-Network Shape Memory Polymer System. ACS Applied Materials & Interfaces, 2019, 11, 10328-10336.	4.0	126
1657	Physicochemical, Antioxidant and Antimicrobial Properties of Electrospun Poly(Îμ-caprolactone) Films Containing a Solid Dispersion of Sage (Salvia officinalis L.) Extract. Nanomaterials, 2019, 9, 270.	1.9	48
1658	Tuning Interaction Parameters of Thermoplastic Polyurethanes in a Binary Solvent To Achieve Precise Control over Microphase Separation. Journal of Chemical Information and Modeling, 2019, 59, 1946-1956.	2.5	15
1659	Sintered electrospun polycaprolactone for controlled model drug delivery. Materials Science and Engineering C, 2019, 99, 112-120.	3.8	18
1660	Loadâ€bearing biodegradable polycaprolactoneâ€poly (lacticâ€coâ€glycolic acid)―beta triâ€calcium phosphate scaffolds for bone tissue regeneration. Polymers for Advanced Technologies, 2019, 30, 1189-1197.	1.6	14
1661	Insulin immobilized PCL ellulose acetate microâ€nanostructured fibrous scaffolds for tendon tissue engineering. Polymers for Advanced Technologies, 2019, 30, 1205-1215.	1.6	34
1662	Grafting maleic anhydride onto polycaprolactone: influence of processing. Materials Research Express, 2019, 6, 055315.	0.8	14
1663	Comparison of response surface methodology and feedforward neural network modeling for polycaprolactone synthesis using enzymatic polymerization. Biocatalysis and Agricultural Biotechnology, 2019, 18, 101046.	1.5	10
1664	Chitosan ascorbate hydrogel improves water uptake capacity and cell adhesion of electrospun poly(epsilon-caprolactone) membranes. International Journal of Pharmaceutics, 2019, 559, 420-426.	2.6	43

#	Article	IF	CITATIONS
1665	Modification of 3D printed PCL scaffolds by PVAc and HA to enhance cytocompatibility and osteogenesis. RSC Advances, 2019, 9, 5338-5346.	1.7	41
1666	Efficient Fabrication of Polycaprolactone Scaffolds for Printing Hybrid Tissue-Engineered Constructs. Materials, 2019, 12, 613.	1.3	14
1667	Cinnamic acid derivatives as promising building blocks for advanced polymers: synthesis, properties and applications. Polymer Chemistry, 2019, 10, 1696-1723.	1.9	66
1668	Biodegradation of poly(ε-caprolactone) (PCL) and medium chain length polyhydroxyalkanoate (mcl-PHA) using whole cells and cell free protein preparations of Pseudomonas and Streptomyces strains grown on waste cooking oil. Polymer Degradation and Stability, 2019, 162, 160-168.	2.7	18
1669	Microparticles of Lamivudine—Poly-ε-Caprolactone Conjugate for Drug Delivery via Internalization by Macrophages. Molecules, 2019, 24, 723.	1.7	7
1670	Three-Dimensional Objects Consisting of Hierarchically Assembled Nanofibers with Controlled Alignments for Regenerative Medicine. Nano Letters, 2019, 19, 2059-2065.	4.5	56
1671	Synthesis of poly-ε-caprolactone/hydroxyapatite composite materials by in situ and mechanical mixing methods and investigation of their physico-chemical properties. IOP Conference Series: Materials Science and Engineering, 2019, 597, 012007.	0.3	0
1672	Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. Biomedical Materials (Bristol), 2019, 14, 065014.	1.7	29
1673	Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Scientific Reports, 2019, 9, 20236.	1.6	101
1674	Comparative Study of Polymer Nanoparticles on the Basis of Caprolactone–Polyvinyl Alcohol Mixtures with an Encapsulated Antitumor Preparation by Atomic Force Microscopy, X-Ray Diffraction, and Dynamic Light Scattering. Technical Physics, 2019, 64, 1729-1737.	0.2	0
1675	Peracetic Acid Sterilization Induces Divergent Biological Response in Polymeric Tissue Engineering Scaffolds. Applied Sciences (Switzerland), 2019, 9, 3682.	1.3	0
1676	The Influence of Mucin-Based Artificial Saliva on Properties of Polycaprolactone and Polylactide. Polymers, 2019, 11, 1880.	2.0	22
1677	Porous poly(ε-caprolactone) implants: A novel strategy for efficient intraocular drug delivery. Journal of Controlled Release, 2019, 316, 331-348.	4.8	50
1678	Electrospun acellular scaffolds for mimicking the natural anisotropy of the extracellular matrix. RSC Advances, 2019, 9, 40190-40195.	1.7	6
1679	Shape Memory Behavior of Emulsion-Templated Poly(Îμ-Caprolactone) Synthesized by Organocatalyzed Ring-Opening Polymerization. Macromolecules, 2019, 52, 9291-9298.	2.2	34
1680	Mechanical, thermal and morphological properties of poly(lactic acid) by using star-shaped poly(ε-caprolactone) with POSS core. European Polymer Journal, 2019, 121, 109316.	2.6	21
1681	3D Cytocompatible Composites of PCL/magnetite. Materials, 2019, 12, 3843.	1.3	8
1682	Collagen immobilization on ultra-thin nanofiber membrane to promote <i>in vitro</i> endothelial monolayer formation. Journal of Tissue Engineering, 2019, 10, 204173141988783.	2.3	22

#	Article	IF	CITATIONS
1683	Poly-ε-caprolactone scaffold for the reinforcement of stapled small intestinal anastomoses: a randomized experimental study. Langenbeck's Archives of Surgery, 2019, 404, 1009-1016.	0.8	6
1684	Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering, 2019, 6, 113.	1.6	60
1685	Development, Fabrication, and Characterization of Composite Polycaprolactone Membranes Reinforced with TiO2 Nanoparticles. Polymers, 2019, 11, 1955.	2.0	12
1686	Biomaterials for stem cell engineering and biomanufacturing. Bioactive Materials, 2019, 4, 366-379.	8.6	75
1687	Perdecanoic acid as a safe and stable medium-chain peracid for Baeyer–Villiger oxidation of cyclic ketones to lactones. RSC Advances, 2019, 9, 30012-30018.	1.7	10
1688	Effect of polyvinyl acetals on non-isothermal crystallization behaviour and mechanical properties of poly(Îμ-caprolactone). RSC Advances, 2019, 9, 36815-36824.	1.7	5
1689	Photothermal Heating-Induced Localized Structural Disruption in a Poly-ε-caprolactone Nanocarrier System for Controlled Drug Delivery. ACS Applied Bio Materials, 2019, 2, 464-469.	2.3	4
1690	The potential of electrospun poly(methyl methacrylate)/polycaprolactone core–sheath fibers for drug delivery applications. Journal of Materials Science, 2019, 54, 5712-5725.	1.7	33
1691	Fabrication of CNT/ION hybrids and their impact on the biomedical applicability of PCLâ€based composite films. Polymer Composites, 2019, 40, E1818-E1830.	2.3	2
1692	Development macro-porous electro-spun meshes with clinically relevant mechanical properties—a technical note. Biomedical Materials (Bristol), 2019, 14, 024103.	1.7	6
1693	Electrospun PCL, gold nanoparticles, and soy lecithin composite material for tissue engineering applications. Journal of Biomaterials Applications, 2019, 33, 979-988.	1.2	11
1694	Poly (lactic acid) blends: Processing, properties and applications. International Journal of Biological Macromolecules, 2019, 125, 307-360.	3.6	505
1695	Evaluation of in vitro bioactivity and in vitro biocompatibility of Polycaprolactone/Hyaluronic acid/Multiwalled Carbon Nanotubes/Extract from Mimosa tenuiflora composites. Bio-Medical Materials and Engineering, 2019, 30, 97-109.	0.4	1
1696	The mechanics of scaling-up multichannel scaffold technology for clinical nerve repair. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 91, 247-254.	1.5	19
1697	Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration. Materials Science and Engineering C, 2019, 98, 266-278.	3.8	89
1698	Current applications of electrospun polymeric nanofibers in cancer therapy. Materials Science and Engineering C, 2019, 97, 966-977.	3.8	93
1699	Silica/polycaprolactone nanofiber scaffold variants for human periosteal cell growth. Journal of Biomedical Materials Research - Part A, 2019, 107, 791-801.	2.1	6
1700	Polymeric Nanomaterials. , 2019, , 557-653.		22

CITATION REPORT ARTICLE IF CITATIONS Threeâ€dimensional printing biotechnology for the regeneration of the tooth and toothâ€supporting 1.7 49 tissues. Biotechnology and Bioengineering, 2019, 116, 452-468. Modeling phase behavior of Poly(É>-caprolactone) solutions at high pressure. Fluid Phase Equilibria, 1.4 2019, 483, 116-121. Vascular endothelial growth factor immobilized on mussel-inspired three-dimensional bilayered scaffold for artificial vascular graft application: In vitro and in vivo evaluations. Journal of Ćolloid and Interface Science, 2019, 537, 333-344. 5.0 51 Dextranâ€based hydrogel with enhanced mechanical performance via covalent and nonâ€covalent crossâ€linking units carrying adiposeâ€derived stem cells toward vascularized bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2019, 107, 1120-1131. Development, characterization and biological in vitro assays of paclitaxel-loaded PCL polymeric 3.8 50 nanoparticles. Materials Science and Engineering C, 2019, 96, 347-355. Single‣tep Approach to Tailor Surface Chemistry and Potential on Electrospun PCL Fibers for Tissue Engineering Application. Advanced Materials Interfaces, 2019, 6, 1801211. Facile fabrication of porous polymer fibers via cryogenic electrospinning system. Journal of Materials 3.1 18 Processing Technology, 2019, 266, 551-557. Synthesis and characterization of two new biobased poly(pentylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 472 Td (2,5-furan 2.7 Polymer Degradation and Stability, 2019, 160, 242-263 Developments of 3D polycaprolactone/beta-tricalcium phosphate/collagen scaffolds for hard tissue 1.1 14 engineering. Journal of the Australian Ceramic Society, 2019, 55, 849-855. 3D Molecularly Functionalized Cellâ€Free Biomimetic Scaffolds for Osteochondral Regeneration. Advanced Functional Materials, 2019, 29, 1807356. An Introduction to 3D Printingâ€"Past, Present, and Future Promise. , 2019, , 1-15. 22 Printomics: the high-throughput analysis of printing parameters applied to melt electrowriting. 3.7 Biofabrication, 2019, 11, 025004. Three-Dimensional Tubular Printing of Bioabsorbable Stents: The Effects Process Parameters Have on 1.4 9 In Vitro Degradation. 3D Printing and Additive Manufacturing, 2019, 6, 50-56. PCL/POSS Nanocomposites: Effect of POSS Derivative and Preparation Method on Morphology and Properties. Polymers, 2019, 11, 33. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D 122 5.7printed polymeric microchambers. Biomaterials, 2019, 197, 194-206. Microscale scaffolds with diverse morphology via electrohydrodynamic jetting for in vitro cell culture application. Biomedical Physics and Engineering Express, 2019, 5, 025011.

1717 peptide-polymer conjugates. Biofabrication, 2019, 11, 035028. Crystallization behavior in miscible blends of poly(εâ€caprolactone) and poly(hexylene adipate) with 1718 similar thermal properties studied by timeâ€resolved Fourier transform infrared spectroscopy. Polymer Crystallization, 2019, 2, e10037.

3.7

18

Tuning mechanical reinforcement and bioactivity of 3D printed ternary nanocomposites by interfacial

1701

1703

1704

1705

1707

1708

1709

1710

1711

1712

1713

1714

1715

#	Article	IF	CITATIONS
1719	Modelling and optimization of NaOH-etched 3-D printed PCL for enhanced cellular attachment and growth with minimal loss of mechanical strength. Materials Science and Engineering C, 2019, 98, 602-611.	3.8	44
1720	Biomimetic Designer Scaffolds Made of D,L-Lactide-É>-Caprolactone Polymers by 2-Photon Polymerization. Tissue Engineering - Part B: Reviews, 2019, 25, 167-186.	2.5	17
1721	Assessment of doxorubicin delivery devices based on tailored bare polycaprolactone against glioblastoma. International Journal of Pharmaceutics, 2019, 558, 110-119.	2.6	19
1722	Mechanism for the Nano-Based Drug Delivery System. , 2019, , 219-263.		17
1723	Study of the gas-phase decomposition of multiply lithiated polycaprolactone, polytetrahydrofurane and their copolymer by two different activation methods: Collision-induced dissociation and electron transfer dissociation. Analytica Chimica Acta, 2019, 1048, 85-95.	2.6	6
1724	Study of engineered low-modulus Mg/PLLA composites as potential orthopaedic implants: An in vitro and in vivo study. Colloids and Surfaces B: Biointerfaces, 2019, 174, 280-290.	2.5	19
1725	Design and fabrication of a hybrid alginate hydrogel/poly(ε aprolactone) mold for auricular cartilage reconstruction. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1711-1721.	1.6	38
1726	Effect of blend ratio and nanofiller localization on the thermal degradation of graphite nanoplatelets-modified PLA/PCL. Journal of Thermal Analysis and Calorimetry, 2019, 136, 2373-2382.	2.0	15
1727	Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials, 2019, 190-191, 97-110.	5.7	345
1728	Behavior of valvular interstitial cells on trilayered nanofibrous substrate mimicking morphologies of heart valve leaflet. Acta Biomaterialia, 2019, 85, 142-156.	4.1	23
1729	Preparation and characterization of poly(ε-caprolactone) scaffolds modified with cell-loaded fibrin gel. International Journal of Biological Macromolecules, 2019, 125, 683-689.	3.6	17
1730	Clinical Application of Three-Dimensionally Printed Biomaterial Polycaprolactone (PCL) in Augmentation Rhinoplasty. Aesthetic Plastic Surgery, 2019, 43, 437-446.	0.5	33
1731	Mechanism of ε-caprolactone polymerization in the presence of alkali metal salts: investigation of initiation course and determination of polymers structure by MALDI-TOF mass spectrometry. Polymer Bulletin, 2019, 76, 3501-3515.	1.7	15
1732	Mechanical properties of a hierarchical electrospun scaffold for ovine anterior cruciate ligament replacement. Journal of Orthopaedic Research, 2019, 37, 421-430.	1.2	7
1733	Electrohydrodynamic jet 3D-printed PCL/PAA conductive scaffolds with tunable biodegradability as nerve guide conduits (NGCs) for peripheral nerve injury repair. Materials and Design, 2019, 162, 171-184.	3.3	78
1734	Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. Materials Science and Engineering C, 2019, 96, 776-789.	3.8	22
1735	A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1329-1351.	1.6	97
1736	Facile one-pot synthesis and solution behavior of poly(acrylic acid)-block-polycaprolactone copolymers. Journal of Molecular Liquids, 2019, 273, 99-106.	2.3	2

#	Article	IF	Citations
1737	Polymer blending or fiber blending: A comparative study using chitosan and poly(ε aprolactone) electrospun fibers. Journal of Applied Polymer Science, 2019, 136, 47191.	1.3	16
1738	Fabrication of a thick three-dimensional scaffold with an open cellular-like structure using airbrushing and thermal cross-linking of molded short nanofibers. Biofabrication, 2019, 11, 015006.	3.7	11
1739	N-acetylcysteine side-chain functionalization of poly(globalide-co-Îμ-caprolactone) through thiol-ene reaction. Materials Science and Engineering C, 2019, 94, 477-483.	3.8	18
1740	Preclinical induced membrane model to evaluate synthetic implants for healing critical bone defects without autograft. Journal of Orthopaedic Research, 2019, 37, 60-68.	1.2	19
1741	Bone Substitute Materials. , 2019, , 513-529.		3
1742	Flax fibers reinforced polycaprolactone modified by triallyl isocyanurate and electron radiation. Polymer Composites, 2019, 40, 481-488.	2.3	4
1743	Fabrication of shish-kebab-structured carbon nanotube/poly(ε-caprolactone) composite nanofibers for potential tissue engineering applications. Rare Metals, 2019, 38, 64-72.	3.6	13
1744	Hydrogels for Advanced Stem Cell Therapies: A Biomimetic Materials Approach for Enhancing Natural Tissue Function. IEEE Reviews in Biomedical Engineering, 2019, 12, 333-351.	13.1	38
1745	Controlled drug release carriers based on PCL/PEO/PCL block copolymers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 308-318.	1.8	9
1746	Exploiting poly(É> â€caprolactone) and cellulose nanofibrils modified with latex nanoparticles for the development of biodegradable nanocomposites. Polymer Composites, 2019, 40, 1342-1353.	2.3	19
1747	Application of ANN and RSM techniques for modeling electrospinning process of polycaprolactone. Neural Computing and Applications, 2019, 31, 239-248.	3.2	46
1748	Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 85-126.	1.8	102
1749	Improving skin integration around longâ€ŧerm percutaneous devices using fibrous scaffolds in a reconstructed human skin equivalent model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 738-749.	1.6	13
1750	Fabrication Drug Loaded Polycaprolactone MicroparticlesÂby Electrospraying Method. IFMBE Proceedings, 2020, , 313-317.	0.2	1
1751	Porous conductive and biocompatible scaffolds on the basis of polycaprolactone and polythiophene for scaffolding. Polymer Bulletin, 2020, 77, 1829-1846.	1.7	14
1752	Structural and mechanical properties of fibrous poly (caprolactone)/gelatin nanocomposite incorporated with cellulose nanofibers. Polymer Bulletin, 2020, 77, 717-740.	1.7	20
1753	Electrospun nanofiber mesh with fibroblast growth factor and stem cells for pelvic floor repair. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 48-55.	1.6	26
1754	A 3Dâ€printed polycaprolactone∫î²â€ŧricalcium phosphate mandibular prosthesis: A pilot animal study. Laryngoscope, 2020, 130, 358-366.	1.1	15

#	Article	IF	CITATIONS
1755	Poly(ε-caprolactone- <i>co</i> - <i>p</i> -dioxanone): a Degradable and Printable Copolymer for Pliable 3D Scaffolds Fabrication toward Adipose Tissue Regeneration. Biomacromolecules, 2020, 21, 188-198.	2.6	27
1756	Nanoparticle Technology for Respiratory Tract Mucosal Vaccine Delivery. KONA Powder and Particle Journal, 2020, 37, 97-113.	0.9	5
1757	Effects of montmorillonite, sepiolite, and halloysite clays on the morphology and properties of polycaprolactone bionanocomposites. Polymers and Polymer Composites, 2020, 28, 338-347.	1.0	7
1758	Biomaterials for Personalized Cell Therapy. Advanced Materials, 2020, 32, e1902005.	11.1	76
1759	Ring-opening Copolymerization of Îμ-Caprolactone and δ-Valerolactone Catalyzed by a 2,6-Bis(amino)phenol Zinc Complex. Chinese Journal of Polymer Science (English Edition), 2020, 38, 240-247.	2.0	16
1760	Composite clinoptilolite/PCLâ€PEGâ€PCL scaffolds for bone regeneration: In vitro and in vivo evaluation. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 3-15.	1.3	7
1761	Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Materials Science and Engineering C, 2020, 107, 110291.	3.8	86
1762	Oxygenâ€releasing polycaprolactone/calcium peroxide composite microspheres. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1097-1106.	1.6	24
1763	Shape Memory Polymers, Blends and Composites. Advanced Structured Materials, 2020, , .	0.3	17
1764	Biodegradable Shape-Memory Polymers. Advanced Structured Materials, 2020, , 219-236.	0.3	3
1765	Comparative study of rheological properties and preclinical data of porous polycaprolactone microsphere dermal fillers. Journal of Cosmetic Dermatology, 2020, 19, 596-604.	0.8	5
1766	Biobased miktoarm star copolymer from soybean oil, isosorbide, and caprolactone. Journal of Applied Polymer Science, 2020, 137, 48281.	1.3	7
1767	Integrating finite element modelling and 3D printing to engineer biomimetic polymeric scaffolds for tissue engineering. Connective Tissue Research, 2020, 61, 174-189.	1.1	44
1768	Functional hydrophilic highly biodegradable PCL nanofibers through direct aminolysis of PAMAM dendrimer. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 1069-1080.	1.8	14
1769	Hybrid enzymatic and organic catalyst cascade for enhanced complete oxidation of ethanol in an electrochemical micro-reactor device. Electrochimica Acta, 2020, 331, 135254.	2.6	12
1770	Modification of resveratrol via coupling six-armed PCL. Chemical Papers, 2020, 74, 1377-1382.	1.0	5
1771	Crystallization Behavior and Dynamic Mechanical Properties of Poly(ε-caprolactone)/Octaisobutyl-Polyhedral Oligomeric Silsesquioxanes Composites Prepared via Different Methods. Chinese Journal of Polymer Science (English Edition), 2020, 38, 158-163.	2.0	5
1772	Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140315.	1.1	93

#	Article	IF	CITATIONS
1773	Nondegradative additive manufacturing of medical grade copolyesters of high molecular weight and with varied elastic response. Journal of Applied Polymer Science, 2020, 137, 48550.	1.3	12
1774	Biodegradable hypoxia biomimicry microspheres for bone tissue regeneration. Journal of Biomaterials Applications, 2020, 34, 1028-1037.	1.2	2
1775	α-Cyclodextrin-Based Polypseudorotaxane Hydrogels. Materials, 2020, 13, 133.	1.3	28
1776	Recent Studies on Single Site Metal Alkoxide Complexes as Catalysts for Ring Opening Polymerization of Cyclic Compounds. Catalysis Surveys From Asia, 2020, 24, 87-103.	1.0	15
1777	Engineered Three-Dimensional Scaffolds Modulating Fate of Breast Cancer Cells Using Stiffness and Morphology Related Cell Adhesion. IEEE Open Journal of Engineering in Medicine and Biology, 2020, 1, 41-48.	1.7	6
1778	Copolymers of ε-caprolactone and ε-caprolactam <i>via</i> polyesterification: towards sequence-controlled poly(ester amide)s. Polymer Chemistry, 2020, 11, 1211-1219.	1.9	13
1779	Matching Static and Dynamic Compliance of Smallâ€Diameter Arteries, with Poly(lactideâ€ <i>co</i> â€caprolactone) Copolymers: In Vitro and In Vivo Studies. Macromolecular Bioscience, 2020, 20, e1900234.	2.1	10
1780	Nanodiamond in composite: Biomedical application. Journal of Biomedical Materials Research - Part A, 2020, 108, 906-922.	2.1	36
1781	Synthesis and properties of shape memory polymers of LLA, TMC, and ε L terpolymers. Polymers for Advanced Technologies, 2020, 31, 1059-1066.	1.6	4
1782	Influence of semiâ€crystalline poly(ε â€caprolactone) and nonâ€crystalline polylactide blocks on the thermal properties of polydimethylsiloxaneâ€based block copolymers. Polymer International, 2020, 69, 1105-1112.	1.6	8
1783	An atmospheric pressure plasma jet to tune the bioactive peptide coupling to polycaprolactone electrospun layers. Applied Surface Science, 2020, 507, 144713.	3.1	19
1784	ROS-responsive polyurethane fibrous patches loaded with methylprednisolone (MP) for restoring structures and functions of infarcted myocardium in vivo. Biomaterials, 2020, 232, 119726.	5.7	87
1785	Synthesis of amphiphilic pullulan-graft-poly(ε-caprolactone) via click chemistry. International Journal of Biological Macromolecules, 2020, 145, 701-711.	3.6	24
1786	Tranilast-loaded tubular scaffold and surgical suture for suppression of stenosis after tracheal prosthesis transplantation. Journal of Industrial and Engineering Chemistry, 2020, 82, 81-88.	2.9	8
1787	Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability. International Journal of Biological Macromolecules, 2020, 153, 1272-1280.	3.6	40
1788	An Injectable Cytokine Trap for Local Treatment of Autoimmune Disease. Biomaterials, 2020, 230, 119626.	5.7	16
1789	Design and characterisation of multi-functional strontium-gelatin nanocomposite bioinks with improved print fidelity and osteogenic capacity. Bioprinting, 2020, 18, e00073.	2.9	60
1790	Surface characterizations of membranes and electrospun chitosan derivatives by optical speckle analysis. Surface and Interface Analysis, 2020, 52, 132-139.	0.8	4

#	Article	IF	CITATIONS
1791	Incorporation of graphene oxide into poly(É›-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties. Materials Science and Engineering C, 2020, 109, 110537.	3.8	28
1792	Trilayered tissue structure with leaflet-like orientations developed through <i>in vivo</i> tissue engineering. Biomedical Materials (Bristol), 2020, 15, 015004.	1.7	18
1793	Cellulose-Derived Nanographene Oxide Reinforced Macroporous Scaffolds of High Internal Phase Emulsion-Templated Cross-Linked Poly(ε-caprolactone). Biomacromolecules, 2020, 21, 589-596.	2.6	26
1794	Controlled degradation of poly-ε-caprolactone for resorbable scaffolds. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110678.	2.5	14
1795	Tuning the three-dimensional architecture of supercritical CO2 foamed PCL scaffolds by a novel mould patterning approach. Materials Science and Engineering C, 2020, 109, 110518.	3.8	18
1796	Highly efficient encapsulation of curcumin into and pH-controlled drug release from poly(lµ-caprolactone) nanoparticles stabilized with a novel amphiphilic hyperbranched polyglycerol. EXPRESS Polymer Letters, 2020, 14, 90-101.	1.1	17
1797	Design of biodegradable, implantable devices towards clinical translation. Nature Reviews Materials, 2020, 5, 61-81.	23.3	440
1798	Fabrication of flexible composite drug films via foldable linkages using electrohydrodynamic printing. Materials Science and Engineering C, 2020, 108, 110393.	3.8	26
1799	Application of microwave energy for rapid fabrication of nano-hydroxyapatite reinforced polycaprolactone composite foam. Manufacturing Letters, 2020, 23, 9-13.	1.1	18
1800	The status and challenges of replicating the mechanical properties of connective tissues using additive manufacturing. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103544.	1.5	23
1801	Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review. Polymers, 2020, 12, 32.	2.0	66
1802	Single-step, acid-based fabrication of homogeneous gelatin-polycaprolactone fibrillar scaffolds intended for skin tissue engineering. Biomedical Materials (Bristol), 2020, 15, 035001.	1.7	15
1803	Star-shaped polycaprolactone bearing mussel-inspired catechol end-groups as a promising bio-adhesive. European Polymer Journal, 2020, 139, 110025.	2.6	7
1804	Organocatalytic strategy to telechelic oligo(ε-caprolactone-co-p-dioxanone): Photocurable macromonomers for polyester networks. European Polymer Journal, 2020, 141, 110098.	2.6	8
1805	Adapting Mechanical Characterization of a Biodegradable Polymer to Physiological Approach of Anterior Cruciate Ligament Functions. Irbm, 2022, 43, 39-48.	3.7	5
1806	Development of Mechanically Enhanced Polycaprolactone Composites by a Functionalized Titanate Nanofiller for Melt Electrowriting in 3D Printing. ACS Applied Materials & Interfaces, 2020, 12, 47993-48006.	4.0	20
1807	In vivo bone regeneration assessment of offset and gradient melt electrowritten (MEW) PCL scaffolds. Biomaterials Research, 2020, 24, 17.	3.2	43
1808	Different Conditions for the Modification of Polycaprolactone Films with L-Arginine. International Journal of Molecular Sciences, 2020, 21, 6989.	1.8	9

#	Article	IF	Citations
1809	Rapid One-Step Fabrication of Graphene Oxide-Decorated Polycaprolactone Three-Dimensional Templates for Water Treatment. ACS Applied Polymer Materials, 2020, 2, 4993-5005.	2.0	37
1810	Development, optimization and in vitro evaluation of oxaliplatin loaded nanoparticles in non-small cell lung cancer. DARU, Journal of Pharmaceutical Sciences, 2020, 28, 673-684.	0.9	11
1811	Drug-Eluting Stents and Balloons—Materials, Structure Designs, and Coating Techniques: A Review. Molecules, 2020, 25, 4624.	1.7	40
1812	The effect of sorbitan monooleate as surfactant in preparation of polyblend polylactic acid and polycaprolactone microspheres. IOP Conference Series: Materials Science and Engineering, 2020, 763, 012028.	0.3	0
1813	Crystallization and Alkaline Degradation Behaviors of Poly(l-Lactide)/4-Armed Poly(ε-Caprolactone)-Block-Poly(d-Lactide) Blends with Different Poly(d-Lactide) Block Lengths. Polymers, 2020, 12, 2195.	2.0	5
1814	Axonal extension from dorsal root ganglia on fibrillar and highly aligned poly(lactic) Tj ETQq1 1 0.784314 rgBT /C extruded microfibres. International Journal of Biological Macromolecules, 2020, 163, 1959-1969.	verlock 10 3.6) Tf 50 547 T 10
1815	Comparative Experimental and Theoretical Study of Mg, Al and Zn Aryloxy Complexes in Copolymerization of Cyclic Esters: The Role of the Metal Coordination in Formation of Random Copolymers. Polymers, 2020, 12, 2273.	2.0	11
1816	Microfluidics for Medical Additive Manufacturing. Engineering, 2020, 6, 1244-1257.	3.2	45
1817	Reactive extrusion of biodegradable aliphatic polyesters in the presence of free-radical-initiators: A review. Polymer Degradation and Stability, 2020, 182, 109383.	2.7	22
1818	Promising bioadhesive ofloxacin-loaded polymeric nanoparticles for the treatment of ocular inflammation: formulation and in vivo evaluation. Drug Delivery and Translational Research, 2021, 11, 1943-1957.	3.0	17
1819	Evaluation of the effects of nanoprecipitation process parameters on the size and morphology of poly(ethylene oxide)-block-polycaprolactone nanostructures. International Journal of Pharmaceutics, 2020, 590, 119900.	2.6	7
1820	Organoselenium chemistry-based polymer synthesis. Organic Chemistry Frontiers, 2020, 7, 2815-2841.	2.3	64
1821	Nanofibrous Scaffolds for Skin Tissue Engineering and Wound Healing Based on Synthetic Polymers. , 0, , .		11
1822	Poly(caprolactone)-Based Coatings on 3D-Printed Biodegradable Implants: A Novel Strategy to Prolong Delivery of Hydrophilic Drugs. Molecular Pharmaceutics, 2020, 17, 3487-3500.	2.3	60
1823	CaproGlu: Multifunctional tissue adhesive platform. Biomaterials, 2020, 260, 120215.	5.7	19
1824	Development of multilayered nanofibrous scaffolds with PCL and PVA:NaAlg using electrospinning technique for bone tissue regeneration. Materialia, 2020, 12, 100826.	1.3	24
1825	Polycaprolactone/fluoride substituted-hydroxyapatite (PCL/FHA) nanocomposite coatings prepared by in-situ sol-gel process for dental implant applications. Progress in Organic Coatings, 2020, 147, 105873.	1.9	39
1826	Biodegradation of Polycaprolactone (PCL) with Different Molecular Weights by Candida antarcticaÂLipase. Journal of Polymers and the Environment, 2020, 28, 2947-2955.	2.4	42

#	Article	IF	CITATIONS
1827	Microparticles. , 2020, , 431-451.		2
1828	Controlled Drug Release from Biodegradable Polymer Matrix Loaded in Microcontainers Using Hot Punching. Pharmaceutics, 2020, 12, 1050.	2.0	12
1829	Polymeric Gelatin Scaffolds Affect Mesenchymal Stem Cell Differentiation and Its Diverse Applications in Tissue Engineering. International Journal of Molecular Sciences, 2020, 21, 8632.	1.8	13
1830	Use of pyrazoles as ligands greatly enhances the catalytic activity of titanium iso-propoxide for the ring-opening polymerization of l-lactide: a cooperation effect. RSC Advances, 2020, 10, 40690-40696.	1.7	4
1831	Physicochemical- and biocompatibility of oxygen and nitrogen plasma treatment using a PLA scaffold. AIP Advances, 2020, 10, .	0.6	11
1832	Biomedical Implants for Regenerative Therapies. , 2020, , .		2
1833	Influence of the Solidification Process on the Mechanical Properties of Solid-State Drawn PCL/Sepiolite Nanocomposite Tapes. Fibers, 2020, 8, 70.	1.8	3
1834	Synthesis, Characterization, and Antimicrobial Evaluation of Random Poly(ester-Carbonate)s Bearing Pendant Primary Amine in the Main Chain. Polymers, 2020, 12, 2640.	2.0	2
1835	New Insight into a Step-by-Step Modeling of Supercritical CO ₂ Foaming to Fabricate Poly(ε-caprolactone) Scaffold. Industrial & Engineering Chemistry Research, 2020, 59, 20033-20044.	1.8	8
1836	Mesophase in melt-spun poly(ϵ-caprolactone) filaments: Structure–mechanical property relationship. Polymer, 2020, 206, 122870.	1.8	21
1837	The influence of the molecular weight of polymer on the morphology, functional properties and L929 fibroblasts growth on polylactide membranes for tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 45-57.	1.8	1
1838	The highly cross-linked poly(Îμ-caprolactone) as biodegradable implants for prostate cancer treatment-part I: Synthesis and inÂvivo degradation. Polymer Degradation and Stability, 2020, 180, 109307.	2.7	1
1839	Electrospinning Multilayered Scaffolds Loaded with Melatonin and Fe ₃ O ₄ Magnetic Nanoparticles for Peripheral Nerve Regeneration. Advanced Functional Materials, 2020, 30, 2004537.	7.8	62
1840	Hollow Fiber Membranes of PCL and PCL/Graphene as Scaffolds with Potential to Develop In Vitro Bloodâ \in "Brain Barrier Models. Membranes, 2020, 10, 161.	1.4	13
1841	Structure, thermal and mechanical properties of poly (ε-caprolactone)/organomodified clay bionanocomposites prepared in open air by <i>in situ</i> polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2020, 57, 865-875.	1.2	6
1842	Synthesis of Biodegradable Polymers: A Review on the Use of Schiff-Base Metal Complexes as Catalysts for the Ring Opening Polymerization (ROP) of Cyclic Esters. Catalysts, 2020, 10, 800.	1.6	74
1843	Effects of Electrospun Fibrous Membranes of PolyCaprolactone and Chitosan/Poly(Ethylene Oxide) on Mouse Acute Skin Lesions. Polymers, 2020, 12, 1580.	2.0	10
1844	Microfabrication of a biomimetic arcade-like electrospun scaffold for cartilage tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2020, 31, 69.	1.7	13

ARTICLE IF CITATIONS Biocompatible Polymers Combined with Cyclodextrins: Fascinating Materials for Drug Delivery 1845 1.7 41 Applications. Molecules, 2020, 25, 3404. Induced Periosteum-Mimicking Membrane with Cell Barrier and Multipotential Stromal Cell (MSC) 1846 1.8 Homing Functionalities. International Journal of Molecular Sciences, 2020, 21, 5233. New nanodrug design for cancer therapy: Its synthesis, formulation, in vitro and in silico 1847 2.1 7 evaluations. Archiv Der Pharmazie, 2020, 353, 2000137. 3D-printed radiopaque polymer composites for the in situ monitoring of biodegradable medical 1848 implants. Applied Materials Today, 2020, 20, 100771. Alkynyl-functionalized chain-extended PCL for coupling to biological molecules. European Polymer 1849 2.6 4 Journal, 2020, 136, 109908. Does 2D correlation Raman spectroscopy distinguish polymer nanomaterials due to the nanoaddition?. Journal of Molecular Structure, 2020, 1217, 128342. 1.8 Fabrication of emulsion-templated macroporous poly(ε-caprolactone) towards highly effective and 1851 1.8 14 sustainable oil/water separation. Polymer, 2020, 204, 122852. Physicochemical and Thermal Properties of Acrylated Palm Olein as a Promising Biopolymer. Journal 2.4 of Polymers and the Environment, 2020, 28, 2734-2748. Insight into the Ionic Transport of Solid Polymer Electrolytes in Polyether and Polyester Blends. 1853 1.5 37 Journal of Physical Chemistry C, 2020, 124, 17981-17991. A Review of Bioresorbable Implantable Medical Devices: Materials, Fabrication, and Implementation. 1854 Advanced Healthcare Materials, 2020, 9, e2000790. Enhancement in the antibacterial activity of cephalexin by its delivery through star-shaped poly(lµ-caprolactone)-block-poly(ethylene oxide) coated silver nanoparticles. Royal Society Open 1855 1.1 1 Science, 2020, 7, 201097. Melt Electrospinning of Nanofibers from Medicalâ€Grade Poly(εâ€Caprolactone) with a Modified Nozzle. 5.2 Small, 2020, 16, e2003471. Development of bioactive glass-poly-Æ-caprolactone polymer composite film for soft tissue 1857 0.3 1 regeneration. AIP Conference Proceedings, 2020, , . Production and enzymatic degradation of poly(ε-caprolactone)/graphene oxide composites. Materials 0.2 Express, 2020, 10, 866-876. Periosteum Mimetic Coating on Structural Bone Allografts <i>via</i> Enhances Repair and Reconstruction of Segmental Defects. ACS Biomaterials Science and Engineering, 1859 10 2.6 2020, 6, 6241-6252. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Frontiers in 1860 Bioengineering and Biotechnology, 2020, 8, 955. Liquid Metal Initiator of Ringâ€Opening Polymerization: Selfâ€Capsulation into Thermal/Photomoldable 1861 11.1 58 Powder for Multifunctional Composites. Advanced Materials, 2020, 32, e2003553. Doxorubicin hydrochloride loaded nanotextured films as a novel drug delivery platform for ovarian 1.1 cancer treatment. Pharmaceutical Development and Technology, 2020, 25, 1289-1301.

#	Article	IF	CITATIONS
1863	Biocompatible PEO-b-PCL Nanosized Micelles as Drug Carriers: Structure and Drug–Polymer Interactions. Nanomaterials, 2020, 10, 1872.	1.9	18
1864	In Vitro Biocompatibility of Diazirineâ€Grafted Biomaterials. Macromolecular Rapid Communications, 2020, 41, e2000235.	2.0	11
1865	INSICHTS into the structures adopted by titanocalix[6 and 8]arenes and their use in the ring opening polymerization of cyclic esters. Dalton Transactions, 2020, 49, 11978-11996.	1.6	14
1866	Advanced polymeric nanotechnology to augment therapeutic delivery and disease diagnosis. Nanomedicine, 2020, 15, 2287-2309.	1.7	6
1867	Advancing spinal fusion: Interbody stabilization by in situ foaming of a chemically modified polycaprolactone. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1465-1475.	1.3	2
1868	Dissolvable Microneedles Coupled with Nanofiber Dressings Eradicate Biofilms <i>via</i> Effectively Delivering a Database-Designed Antimicrobial Peptide. ACS Nano, 2020, 14, 11775-11786.	7.3	129
1869	Biocompatibility of Biomaterials for Nanoencapsulation: Current Approaches. Nanomaterials, 2020, 10, 1649.	1.9	44
1870	Effect of temperature and ultraviolet light on the bacterial kill effectiveness of antibiotic-infused 3D printed implants. Biomedical Microdevices, 2020, 22, 59.	1.4	13
1871	In Vitro Corrosion Behavior and Cytotoxicity of Polycaprolactone–Akermanite-Coated Friction-Welded Commercially Pure Ti/AZ31 for Orthopedic Applications. Journal of Materials Engineering and Performance, 2020, 29, 6053-6065.	1.2	8
1872	Antimicrobial and Biocompatible Polycaprolactone and Copper Oxide Nanoparticle Wound Dressings against Methicillin-Resistant Staphylococcus aureus. Nanomaterials, 2020, 10, 1692.	1.9	33
1873	Active Ga-catalysts for the ring opening homo- and copolymerization of cyclic esters, and copolymerization of epoxide and anhydrides. Dalton Transactions, 2020, 49, 13475-13486.	1.6	10
1874	Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects. Journal of Bioactive and Compatible Polymers, 2020, 35, 517-537.	0.8	6
1875	Electrospun Scaffolds and Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Engineering Applications. Bioengineering, 2020, 7, 105.	1.6	24
1876	Hydrolytic Degradation of Porous Crosslinked Poly(ε-Caprolactone) Synthesized by High Internal Phase Emulsion Templating. Polymers, 2020, 12, 1849.	2.0	20
1877	Poly(ε-caprolactone) Titanium Dioxide and Cefuroxime Antimicrobial Scaffolds for Cultivation of Human Limbal Stem Cells. Polymers, 2020, 12, 1758.	2.0	12
1878	Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review. Cardiovascular Engineering and Technology, 2020, 11, 495-521.	0.7	57
1879	Melt-based, solvent-free additive manufacturing of biodegradable polymeric scaffolds with designer microstructures for tailored mechanical/biological properties and clinical applications. Virtual and Physical Prototyping, 2020, 15, 417-444.	5.3	21
1880	Convergence of scaffold-guided bone regeneration and RIA bone grafting for the treatment of a critical-sized bone defect of the femoral shaft. European Journal of Medical Research, 2020, 25, 70.	0.9	39

#	Article	IF	CITATIONS
1881	Electrospun Polycaprolactone Scaffolds Using an Ionic Liquid as Alternative Solvent: Morphometric, Mechanical and Biological Properties. ChemistrySelect, 2020, 5, 14050-14055.	0.7	5
1882	Composition-property relationship of polyurethane networks based on polycaprolactone diol. Polymer Bulletin, 2021, 78, 7103-7128.	1.7	11
1883	Development and evaluation of polycaprolactone based docetaxel nanoparticle formulation for targeted breast cancer therapy. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	15
1884	Current Advances in 3D Bioprinting Technology and Its Applications for Tissue Engineering. Polymers, 2020, 12, 2958.	2.0	55
1885	Layered Antimicrobial Selenium Nanoparticle–Calcium Phosphate Coating on 3D Printed Scaffolds Enhanced Bone Formation in Critical Size Defects. ACS Applied Materials & Interfaces, 2020, 12, 55638-55648.	4.0	24
1886	Radiopaque scaffolds based on electrospun iodixanol/polycaprolactone fibrous composites. Materialia, 2020, 14, 100874.	1.3	5
1887	Potassium N-arylbenzimidates as readily accessible and benign (pre)catalysts for the ring opening polymerization of Îμ-CL and L-LA. Molecular Catalysis, 2020, 498, 111280.	1.0	9
1888	Antimicrobial Activity of the Sodium Lauryl Sulphate Used as Surfactant in the Polymeric Encapsulation Processes. Materials Science Forum, 2020, 1012, 500-505.	0.3	1
1889	Catalysis in polymerization of cyclic esters. Catalyst and initiator in one molecule. Polymerization of ε-caprolactone. Journal of Catalysis, 2020, 392, 97-107.	3.1	16
1890	Synthesis of Zwitterionic and Trehalose Polymers with Variable Degradation Rates and Stabilization of Insulin. Biomacromolecules, 2020, 21, 2147-2154.	2.6	17
1891	Bioactive antibacterial bilayer PCL/gelatin nanofibrous scaffold promotes full-thickness wound healing. International Journal of Pharmaceutics, 2020, 583, 119413.	2.6	95
1892	Two Principles for Polymersomes with Ultrahigh Biomacromolecular Loading Efficiencies: Acid-Induced Adsorption and Affinity-Enhanced Attraction. Macromolecules, 2020, 53, 3978-3993.	2.2	17
1893	Kinetic and degradation reactions of poly (sodium 4-styrene sulfonate) grafting "from―ozonized poly (ϵ-caprolactone) surfaces. Polymer Degradation and Stability, 2020, 176, 109154.	2.7	16
1894	Organocatalysis for versatile polymer degradation. Green Chemistry, 2020, 22, 3721-3726.	4.6	67
1895	Functionalized layer-by-layer assembled film with directional 5-fluorouracil release to target colon cancer. Materials Science and Engineering C, 2020, 115, 111118.	3.8	23
1896	Effects of Rutile–TiO2 Nanoparticles on Accelerated Weathering Degradation of Poly(Lactic Acid). Polymers, 2020, 12, 1096.	2.0	19
1897	Facile synthesis and nanoscale features of a nanostructured nordihydroguaiaretic acid analog for therapeutic applications. Journal of Nanobiotechnology, 2020, 18, 74.	4.2	4
1898	A nucleobase-inspired super adhesive hydrogel with desirable mechanical, tough and fatigue resistant properties based on cytosine and ε-caprolactone. European Polymer Journal, 2020, 133, 109741.	2.6	11

#	Article	IF	CITATIONS
1899	Fabrication of biocompatible and bioabsorbable polycaprolactone/ magnesium hydroxide 3D printed scaffolds: Degradation and in vitro osteoblasts interactions. Composites Part B: Engineering, 2020, 197, 108158.	5.9	64
1900	Electroconductive Graphene-Containing Polymeric Patch: A Promising Platform for Future Cardiac Repair. ACS Biomaterials Science and Engineering, 2020, 6, 4214-4224.	2.6	33
1901	In vitro and in vivo testing of nanofibrous membranes doped with alaptide and L-arginine for wound treatment. Biomedical Materials (Bristol), 2020, 15, 065023.	1.7	10
1902	Performance evaluation of bilayer oxidized regenerated cellulose/poly ε-caprolactone knitted fabric-reinforced composites for dural substitution. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 854-863.	1.0	12
1903	Solution Extrusion Additive Manufacturing of Biodegradable Polycaprolactone. Applied Sciences (Switzerland), 2020, 10, 3189.	1.3	16
1904	Dual drug-delivering polycaprolactone-collagen scaffold to induce early osteogenic differentiation and coupled angiogenesis. Biomedical Materials (Bristol), 2020, 15, 045008.	1.7	24
1905	Influence of PCL on the epoxy workability, insights from thermal and spectroscopic analyses. Polymer Testing, 2020, 89, 106679.	2.3	10
1906	Encapsulation efficiency and in vitro dissolution test of captopril microcapsule from polyblend poly(D-lactic acid) and polycaprolactone. AIP Conference Proceedings, 2020, , .	0.3	0
1907	Effect of infill on resulting mechanical properties of additive manufactured bioresorbable polymers for medical devices. Materialia, 2020, 12, 100732.	1.3	16
1908	3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomaterialia, 2020, 113, 130-143.	4.1	97
1909	Electrospinning of biomedically relevant multi-region scaffolds: From honeycomb to randomly-oriented microstructure. Polymer, 2020, 202, 122606.	1.8	7
1910	HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation. Journal of Materials Chemistry B, 2020, 8, 6115-6127.	2.9	41
1911	Biodegradable Polymers for Biomedical Additive Manufacturing. Applied Materials Today, 2020, 20, 100700.	2.3	86
1912	A 2D-Raman correlation spectroscopy study of the interaction of the polymer nanocomposites with carbon nanotubes and human osteoblast-like cells interface. Journal of Molecular Structure, 2020, 1212, 128135.	1.8	8
1913	Controlling the Release of Neurotrophinâ€3 and Chondroitinase ABC Enhances the Efficacy of Nerve Guidance Conduits. Advanced Healthcare Materials, 2020, 9, e2000200.	3.9	17
1914	Emerging Nano/Micro-Structured Degradable Polymeric Meshes for Pelvic Floor Reconstruction. Nanomaterials, 2020, 10, 1120.	1.9	18
1915	Hybrid Bioprinting of Chondrogenically Induced Human Mesenchymal Stem Cell Spheroids. Frontiers in Bioengineering and Biotechnology, 2020, 8, 484.	2.0	66
1916	Nanoparticle Platforms for Antigen-Specific Immune Tolerance. Frontiers in Immunology, 2020, 11, 945.	2.2	28

#	Article	IF	CITATIONS
1917	Development of 3D-Printed Sulfated Chitosan Modified Bioresorbable Stents for Coronary Artery Disease. Frontiers in Bioengineering and Biotechnology, 2020, 8, 462.	2.0	26
1918	Urogynecological surgical mesh implants: New trends in materials, manufacturing and therapeutic approaches. International Journal of Pharmaceutics, 2020, 585, 119512.	2.6	25
1919	Integrational Technologies for the Development of Three-Dimensional Scaffolds as Platforms in Cartilage Tissue Engineering. ACS Omega, 2020, 5, 12623-12636.	1.6	10
1920	Conductive multichannel PCL/gelatin conduit with tunable mechanical and structural properties for peripheral nerve regeneration. Journal of Applied Polymer Science, 2020, 137, 49219.	1.3	24
1921	Alphaâ€amylase immobilized on polycaprolactoneâ€grafted magnetic nanoparticles: improving stability and reusability. Journal of Chemical Technology and Biotechnology, 2020, 95, 2243-2250.	1.6	13
1922	3D printing of silver-doped polycaprolactone-poly propylene succinate composite scaffolds for skin tissue engineering. Biomedical Materials (Bristol), 2020, 15, 035015.	1.7	26
1923	Architecture based selectivity of Amphiphilic block copolymers of poly(ethylene oxide) and poly(ε-caprolactone) for drug delivery. Reactive and Functional Polymers, 2020, 150, 104553.	2.0	14
1924	Development of novel 3D scaffolds using BioExtruder by varying the content of hydroxyapatite and silica in PCL matrix for bone tissue engineering. Journal of Polymer Research, 2020, 27, 1.	1.2	21
1925	Organocatalytic Ring-Opening Polymerization of <i>N</i> -Acylated-1,4-oxazepan-7-ones Toward Well-Defined Poly(ester amide)s: Biodegradable Alternatives to Poly(2-oxazoline)s. ACS Macro Letters, 2020, 9, 464-470.	2.3	18
1926	Long-Term Evaluation of Dip-Coated PCL-Blend-PEG Coatings in Simulated Conditions. Polymers, 2020, 12, 717.	2.0	22
1927	Fabrication of novel poly(lactic acid/caprolactone) bilayer membrane for GBR application. Dental Materials, 2020, 36, 626-634.	1.6	40
1928	Thermal behavior of oligo[(ε-caprolactone)-co-δ-gluconolactone] enzymatically synthesized in reaction conditions optimized by experimental design. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1017-1026.	2.0	6
1929	The Influence of Electron Beam Sterilization on In Vivo Degradation of β-TCP/PCL of Different Composite Ratios for Bone Tissue Engineering. Micromachines, 2020, 11, 273.	1.4	9
1930	In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomaterialia, 2020, 108, 326-336.	4.1	41
1931	<i>In vivo</i> tissue engineering of a trilayered leaflet-shaped tissue construct. Regenerative Medicine, 2020, 15, 1177-1192.	0.8	12
1932	Covalent Surface Functionalization of Bovine Serum Albumin to Magnesium Surface to Provide Robust Corrosion Inhibition and Enhance In Vitro Osteo-Inductivity. Polymers, 2020, 12, 439.	2.0	10
1933	Sustainable drug release from highly porous and architecturally engineered composite scaffolds prepared by 3D printing. Journal of Biomedical Materials Research - Part A, 2020, 108, 1426-1438.	2.1	17
1934	Facile preparation PCL/ modified nano ZnO organic-inorganic composite and its application in antibacterial materials. Journal of Polymer Research, 2020, 27, 1.	1.2	34

#	Article	IF	CITATIONS
1935	Graphene Nanoplatelets for the Development of Reinforced PLA–PCL Electrospun Fibers as the Next-Generation of Biomedical Mats. Polymers, 2020, 12, 1390.	2.0	20
1936	Controlling the biodegradation rates of poly(globalide-co-Î μ -caprolactone) copolymers by post polymerization modification. Polymer Degradation and Stability, 2020, 179, 109287.	2.7	11
1937	A Preliminary Evaluation of the Pro-Chondrogenic Potential of 3D-Bioprinted Poly(ester Urea) Scaffolds. Polymers, 2020, 12, 1478.	2.0	9
1938	Preparation and modeling of threeâ€layered PCL/PLGA/PCL fibrous scaffolds for prolonged drug release. Scientific Reports, 2020, 10, 11126.	1.6	49
1939	Effect of polyblend poly(D,L-lactic acid) and polycaprolactone composition in captopril microcapsule on the encapsulation efficiency and in vitro dissolution test. AIP Conference Proceedings, 2020, , .	0.3	0
1940	Biopolymer Systems in Soft Tissue Engineering: Cell Compatibility and Effect Studies Including Material, Catalyst, and Surface Properties. ACS Applied Polymer Materials, 2020, 2, 3251-3258.	2.0	7
1941	Natamycin-loaded electrospun poly(ε-caprolactone) nanofibers as an innovative platform for antifungal applications. SN Applied Sciences, 2020, 2, 1.	1.5	11
1942	Manufacture of PCL scaffolds through electrospinning technology to accommodate Triple Negative Breast Cancer cells culture. Procedia CIRP, 2020, 89, 98-103.	1.0	7
1943	Electrospun colourimetric sensors for detecting volatile amines. Sensors and Actuators B: Chemical, 2020, 322, 128570.	4.0	23
1944	Alginate-based bionanocomposites. , 2020, , 173-205.		1
1944 1945		2.3	1
	Alginate-based bionanocomposites. , 2020, , 173-205. Development of a composite electrode based on graphite and polycaprolactone for the determination	2.3	
1945	Alginate-based bionanocomposites. , 2020, , 173-205. Development of a composite electrode based on graphite and polycaprolactone for the determination of antihypertensive drugs. Microchemical Journal, 2020, 158, 105228. Effect of three different amines on the surface properties of electrospun polycaprolactone mats.		15
1945 1946	Alginate-based bionanocomposites., 2020, , 173-205. Development of a composite electrode based on graphite and polycaprolactone for the determination of antihypertensive drugs. Microchemical Journal, 2020, 158, 105228. Effect of three different amines on the surface properties of electrospun polycaprolactone mats. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1258-1270. Synthesis and Characterization of Polycaprolactone (PCL)/Organo-Montmorillonite(O-MMT) Blendvia	1.8	15 15
1945 1946 1947	Alginate-based bionanocomposites. , 2020, , 173-205. Development of a composite electrode based on graphite and polycaprolactone for the determination of antihypertensive drugs. Microchemical Journal, 2020, 158, 105228. Effect of three different amines on the surface properties of electrospun polycaprolactone mats. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1258-1270. Synthesis and Characterization of Polycaprolactone (PCL)/Organo-Montmorillonite (O-MMT) Blendvia Solvent Casting. Materials Science Forum, 2020, 998, 255-260. Regeneration of elastic cartilage with accurate human-ear shape based on PCL strengthened	1.8 0.3	15 15 1
1945 1946 1947 1948	Alginate-based bionanocomposites. , 2020, , 173-205. Development of a composite electrode based on graphite and polycaprolactone for the determination of antihypertensive drugs. Microchemical Journal, 2020, 158, 105228. Effect of three different amines on the surface properties of electrospun polycaprolactone mats. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1258-1270. Synthesis and Characterization of Polycaprolactone(PCL)/Organo-Montmorillonite(O-MMT) Blendvia Solvent Casting. Materials Science Forum, 2020, 998, 255-260. Regeneration of elastic cartilage with accurate human-ear shape based on PCL strengthened biodegradable scaffold and expanded microtia chondrocytes. Applied Materials Today, 2020, 20, 100724. New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives.	1.8 0.3 2.3	15 15 1 19
1945 1946 1947 1948 1949	Alginate-based bionanocomposites. , 2020, , 173-205. Development of a composite electrode based on graphite and polycaprolactone for the determination of antihypertensive drugs. Microchemical Journal, 2020, 158, 105228. Effect of three different amines on the surface properties of electrospun polycaprolactone mats. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 1258-1270. Synthesis and Characterization of Polycaprolactone(PCL)/Organo-Montmorillonite(O-MMT) Blendvia Solvent Casting. Materials Science Forum, 2020, 998, 255-260. Regeneration of elastic cartilage with accurate human-ear shape based on PCL strengthened biodegradable scaffold and expanded microtia chondrocytes. Applied Materials Today, 2020, 20, 100724. New Materials for 3D-Printing Based on Polycaprolactone with Gum Rosin and Beeswax as Additives. Polymers, 2020, 12, 334. TCFa6 ^{ch} ¹ 23 Loaded Electrospun Polycaprolacton Fibre Scaffolds for Rotator Cuff Tear Repair: An in Vivo	1.8 0.3 2.3 2.0	15 15 1 19 33

#	Article	IF	CITATIONS
1953	Chondrogenic differentiation of mesenchymal stem/stromal cells on 3D porous poly (ε-caprolactone) scaffolds: Effects of material alkaline treatment and chondroitin sulfate supplementation. Journal of Bioscience and Bioengineering, 2020, 129, 756-764.	1.1	27
1954	Preparation of Natural Multicompatible Silk Nanofibers by Green Deep Eutectic Solvent Treatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 4499-4510.	3.2	30
1955	Polyester functional graphenic materials as a mechanically enhanced scaffold for tissue regeneration. RSC Advances, 2020, 10, 8548-8557.	1.7	6
1956	Surface modification of PLA scaffold using radio frequency (RF) nitrogen plasma in tissue engineering application. Surface Topography: Metrology and Properties, 2020, 8, 015012.	0.9	12
1957	3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules, 2020, 21, 1037-1059.	2.6	61
1958	Models of Osteoarthritis: Relevance and New Insights. Calcified Tissue International, 2021, 109, 243-256.	1.5	82
1959	Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering. Biofabrication, 2020, 12, 025028.	3.7	17
1960	Polycaprolactone/polysaccharide functional composites for low-temperature fused deposition modelling. Bioactive Materials, 2020, 5, 185-191.	8.6	28
1961	The effect of temperature and pressure on polycaprolactone morphology. Polymer, 2020, 191, 122227.	1.8	33
1962	Controlled and highly effective ringâ€opening polymerization of αâ€chloroâ€iµâ€caprolactone using Zn―and Alâ€based catalysts. Journal of Polymer Science, 2020, 58, 1197-1206.	2.0	5
1963	Facile preparation of long-chain aliphatic polycarbonates containing block copolycarbonates <i>via</i> one-pot sequential organic catalyzed polymerization of macrocyclic carbonates and trimethylene carbonates. Polymer Chemistry, 2020, 11, 2166-2172.	1.9	6
1964	Change of rheological/mechanical properties of poly(caprolactone)/CaCO3 composite with particle surface modification. Korea Australia Rheology Journal, 2020, 32, 29-39.	0.7	10
1965	A Synergistic Relationship between Polycaprolactone and Natural Polymers Enhances the Physical Properties and Biological Activity of Scaffolds. ACS Applied Materials & Interfaces, 2020, 12, 13587-13597.	4.0	34
1966	Boosting the Osteogenic and Angiogenic Performance of Multiscale Porous Polycaprolactone Scaffolds by <i>In Vitro</i> Generated Extracellular Matrix Decoration. ACS Applied Materials & Interfaces, 2020, 12, 12510-12524.	4.0	63
1967	Effective Gold Biosorption by Electrospun and Electrosprayed Bio-Composites with Immobilized Lysinibacillus sphaericus CBAM5. Nanomaterials, 2020, 10, 408.	1.9	7
1968	Solubility considerations in relative block crystallization and morphology of PEO― <i>b</i> â€PCL films. Polymer Crystallization, 2020, 3, e10107.	0.5	1
1969	Advances in Sustainable Polymers. Materials Horizons, 2020, , .	0.3	5
1970	Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomaterialia, 2020, 106, 54-69.	4.1	276

#	ARTICLE Aligned nanofibers of decellularized muscle extracellular matrix for volumetric muscle loss.	IF	Citations
1971	Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2528-2537.	1.6	28
1972	Complicity of degradable polymers in health-care applications. Materials Today Chemistry, 2020, 16, 100236.	1.7	38
1973	Aging effect of atmospheric pressure plasma jet treated polycaprolactone polymer solutions on electrospinning properties. Journal of Applied Polymer Science, 2020, 137, 48914.	1.3	5
1974	Aligned biomimetic scaffolds based on carbon nanotubes-reinforced polymeric nanofibers for knee meniscus tissue engineering. Materials Letters, 2020, 264, 127351.	1.3	19
1975	Ring-Opening Polymerization (ROP) of cyclic esters by a versatile aluminum Diphenoxyimine Complex: From polylactide to random copolymers. European Polymer Journal, 2020, 125, 109527.	2.6	23
1976	<p>Polycaprolactone: How a Well-Known and Futuristic Polymer Has Become an Innovative Collagen-Stimulator in Esthetics</p> . Clinical, Cosmetic and Investigational Dermatology, 2020, Volume 13, 31-48.	0.8	62
1977	Workflow for highly porous resorbable custom 3D printed scaffolds using medical grade polymer for large volume alveolar bone regeneration. Clinical Oral Implants Research, 2020, 31, 431-441.	1.9	29
1978	Tissue-Engineered Interlocking Scaffold Blocks for the Regeneration of Bone. Jom, 2020, 72, 1443-1457.	0.9	9
1979	Design and additive manufacturing of flexible polycaprolactone scaffolds with highly-tunable mechanical properties for soft tissue engineering. Materials and Design, 2020, 189, 108508.	3.3	54
1980	Weak Lewis Pairs as Catalysts for Highly Isoselective Ring-Opening Polymerization of Epimerically Labile <i>rac</i> - <i>O</i> -Carboxyanhydride of Mandelic Acid. Macromolecules, 2020, 53, 946-955.	2.2	23
1981	Preclinical biological and physicochemical evaluation of two-photon engineered 3D biomimetic copolymer scaffolds for bone healing. Biomaterials Science, 2020, 8, 1683-1694.	2.6	8
1982	Acoustic Patterning of Growth Factor for Three-Dimensional Tissue Engineering. Tissue Engineering - Part A, 2020, 26, 602-612.	1.6	7
1983	Phosphazene/Lewis Acids as Highly Efficient Cooperative Catalyst for Synthesis of Highâ€Molecularâ€Weight Polyesters by Ringâ€Opening Alternating Copolymerization of Epoxide and Anhydride. Journal of Polymer Science, 2020, 58, 803-810.	2.0	26
1984	Poly (ε-caprolactone)/layered double hydroxide microspheres-aggregated nanocomposite scaffold for osteogenic differentiation of mesenchymal stem cell. Materials Today Communications, 2020, 23, 100913.	0.9	19
1985	3D printed PCL scaffold reinforced with continuous biodegradable fiber yarn: A study on mechanical and cell viability properties. Polymer Testing, 2020, 83, 106347.	2.3	71
1986	Polycaprolactone blends for fracture fixation in low loadâ€bearing applications. Journal of Applied Polymer Science, 2020, 137, 48940.	1.3	8
1987	Multifunctional coatings combining bioactive peptides and affinity-based cytokine delivery for enhanced integration of degradable vascular grafts. Biomaterials Science, 2020, 8, 1734-1747.	2.6	18
1988	Volume restoration of hands with polycaprolactone by cannula delivery; a prospective single center consecutive case series evaluation. Journal of Cosmetic and Laser Therapy, 2020, 22, 55-59.	0.3	7

ARTICLE IF CITATIONS Impact of Various Sterilization and Disinfection Techniques on Electrospun Poly-Ĵµ-caprolactone. ACS 1989 36 1.6 Omega, 2020, 5, 8885-8892. Implantable drug delivery systems., 2020, , 111-146. 1990 Macromechanics and polycaprolactone fiber organization drive macrophage polarization and 1991 5.7 71 regulate inflammatory activation of tendon in vitro and in vivo. Biomaterials, 2020, 249, 120034. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. 118 Ceramics International, 2020, 46, 15725-15739. Highly responsive and rapid hydrogen peroxide-triggered degradation of polycaprolactone 1993 2.6 10 nanoparticles. Biomaterials Science, 2020, 8, 2394-2397. Extracellular matrix mimicking polycaprolactone-chitosan nanofibers promote stemness maintenance 1994 1.7 of mesenchymal stem cells via spheroid formation. Biomedical Materials (Bristol), 2020, 15, 035011. Reinforcing interpenetrating network hydrogels with 3D printed polymer networks to engineer 1995 3.7 73 cartilage mimetic composites. Biofabrication, 2020, 12, 035011. The synergistic effect of combining the bioactive glasses with polymer blends on biological and 1996 1.9 material properties. Journal of the American Ceramic Society, 2020, 103, 4558-4572. 1997 Spun Biotextiles in Tissue Engineering and Biomolecules Delivery Systems. Antibiotics, 2020, 9, 174. 1.5 25 Preparation and Characterization of Electrospun Blend Fibrous Polyethylene Oxide:Polycaprolactone 1998 1.6 Scaffolds to Promote Cartilage Regeneration. Advanced Engineering Materials, 2020, 22, 2000131. Combination Design of Time-Dependent Magnetic Field and Magnetic Nanocomposites to Guide Cell 1999 1.9 38 Behavior. Nanomaterials, 2020, 10, 577. 2000 Recent Advances in Bioplastics: Application and Biodegradation. Polymers, 2020, 12, 920. 2.0 195 2001 Aerosol Acidity Sensing via Polymer Degradation. Analytical Chemistry, 2020, 92, 6502-6511. 3.2 17 Bioactive and Elastic Nanocomposites with Antimicrobial Properties for Bone Tissue Regeneration. 2.3 ACS Applied Bio Materials, 2020, 3, 3313-3325. Lanthanum complexes stabilized by a pentadentate Schiff-base ligand: synthesis, characterization, and 2003 reactivity in statistical copolymerization of $\hat{\mu}$ -caprolactone and $\langle scp \rangle | \langle scp \rangle$ -lactide. Dalton 1.6 13 Transactions, 2020, 49, 5842-5850. <i>In-situ</i> re-melting and re-solidification treatment of selective laser sintered polycaprolactone 2004 lattice scaffolds for improved filament quality and mechanical properties. Biofabrication, 2020, 12, 035012. The Fabrication and in vitro Evaluation of Retinoic Acid-Loaded Electrospun Composite Biomaterials 2005 2.0 17 for Tracheal Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 190. 3D Bioprinting Strategies for the Regeneration of Functional Tubular Tissues and Organs. 1.6 Bioengineering, 2020, 7, 32.

#	Article	IF	CITATIONS
2007	Well-Defined Diblock Poly(ethylene glycol)-b-Poly(ε-caprolactone)-Based Polymer-Drug Conjugate Micelles for pH-Responsive Delivery of Doxorubicin. Materials, 2020, 13, 1510.	1.3	10
2008	Comparison study of εâ€caprolactone , Lâ€lactide , and εâ€decalactone polymerizations using aluminum complexes bearing pyrazole derivatives, and synthesis of polylactide―gradual â€polyâ€Îµâ€caprolactone copolymer. Journal of Polymer Science, 2020, 58, 1400-1409.	2.0	2
2009	Thermal properties of aliphatic polyesters. , 2020, , 151-189.		1
2010	A comparison between electrospinning and rotary-jet spinning to produce PCL fibers with low bacteria colonization. Materials Science and Engineering C, 2020, 111, 110706.	3.8	20
2011	Crystallization of poly(ε-caprolactone) at the air-water interface studied by IRRAS and GI-WAXS. Polymer, 2020, 196, 122468.	1.8	12
2012	Vermiculite in polycaprolactone films prepared with the used of ultrasound. Materials Today: Proceedings, 2021, 37, 13-20.	0.9	5
2013	Poly(Caprolactone Fumarate) and Oligo[Poly(Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications. Polymer Reviews, 2021, 61, 319-356.	5.3	14
2014	Structural evaluation of percolating, self-healing polyurethane–polycaprolactone blends doped with metallic, ferromagnetic, and modified graphene fillers. Polymers and Polymer Composites, 2021, 29, 541-552.	1.0	1
2015	"Polymer-in-ceramic―based poly(ƕcaprolactone)/ceramic composite electrolyte for all-solid-state batteries. Journal of Energy Chemistry, 2021, 52, 318-325.	7.1	43
2016	High humidity electrospinning of porous fibers for tuning the release of drug delivery systems. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 880-892.	1.8	16
2017	New biodegradable nanoparticles-in-nanofibers based membranes for guided periodontal tissue and bone regeneration with enhanced antibacterial activity. Journal of Advanced Research, 2021, 28, 51-62.	4.4	83
2018	Fabricating polycitrate-based biodegradable elastomer nanofibrous mats via electrospinning. Journal of Elastomers and Plastics, 2021, 53, 258-269.	0.7	1
2019	Three-Dimensional Bioprinting of Articular Cartilage: A Systematic Review. Cartilage, 2021, 12, 76-92.	1.4	46
2020	Comparison and characterization of different polyester nano/micro fibres for use in tissue engineering applications. Journal of Industrial Textiles, 2021, 50, 870-890.	1.1	13
2021	Application of poly-ε-caprolactone in extrusion-based bioprinting. Bioprinting, 2021, 21, e00111.	2.9	18
2022	Preparation and antibacterial properties of polycaprolactone/quaternized chitosan blends. Chinese Journal of Chemical Engineering, 2021, 32, 462-471.	1.7	14
2023	Polycaprolactone fumarate acts as an artificial neural network to promote the biological behavior of neural stem cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 246-256.	1.6	8
2024	Loadâ€bearing biodegradable <scp>PCLâ€PGA</scp> â€beta <scp>TCP</scp> scaffolds for bone tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 193-200.	1.6	46

#	Article	IF	CITATIONS
2025	Evaluation of physicochemical and mechanical properties with the in vitro degradation of PCL/nHA/MWCNT composite scaffolds. Journal of Reinforced Plastics and Composites, 2021, 40, 134-142.	1.6	8
2026	Rare-earth metal complexes derived from the acids Ph2C(X)CO2H (X= OH, NH2): Structural and ring opening polymerization (ROP) studies. Journal of Molecular Structure, 2021, 1224, 129083.	1.8	4
2027	In-vitro and in-vivo studies of PLA / PCL / gelatin composite scaffold containing ascorbic acid for bone regeneration. Journal of Drug Delivery Science and Technology, 2021, 61, 102077.	1.4	34
2028	In situ differentiation of human-induced pluripotent stem cells into functional cardiomyocytes on a coaxial PCL-gelatin nanofibrous scaffold. Materials Science and Engineering C, 2021, 118, 111354.	3.8	14
2029	3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Materials Science and Engineering C, 2021, 118, 111433.	3.8	66
2030	Hybrid bioactive hydroxyapatite/polycaprolactone nanoparticles for enhanced osteogenesis. Materials Science and Engineering C, 2021, 119, 111599.	3.8	47
2031	Magnetically Responsive Polymeric Microparticles for the Triggered Delivery of a Complex Mixture of Human Placental Proteins. Macromolecular Bioscience, 2021, 21, 2000249.	2.1	6
2032	Interfacial characteristics of poly(εâ€caprolactone)―grafted â€halloysites nanotubes bionanocomposites. Polymer Engineering and Science, 2021, 61, 397-409.	1.5	2
2033	PEGylated polymeric nanocapsules for oral delivery of trypsin targeted to the small intestines. International Journal of Pharmaceutics, 2021, 592, 120094.	2.6	13
2034	Fabrication of 3D hybrid scaffold by combination technique of electrospinning-like and freeze-drying to create mechanotransduction signals and mimic extracellular matrix function of skin. Materials Science and Engineering C, 2021, 120, 111752.	3.8	26
2035	Comparison of imidacloprid, propiconazole, and nanopropiconazole effects on the development, behavior, and gene expression biomarkers of the Pacific oyster (Magallana gigas). Science of the Total Environment, 2021, 764, 142921.	3.9	12
2036	Design of multicomponent <scp>indomethacinâ€paracetamol</scp> and famotidine loaded nanoparticles for sustained and effective antiâ€inflammatory therapy. Drug Development Research, 2021, 82, 448-457.	1.4	4
2037	Drug eluting implants in pharmaceutical development and clinical practice. Expert Opinion on Drug Delivery, 2021, 18, 1-17.	2.4	17
2038	Application of electrospun nanofibers in bone, cartilage and osteochondral tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 536-561.	1.9	22
2039	Vanadium complexes derived from oxacalix[6]arenes: structural studies and use in the ring opening homo-/co-polymerization of ε-caprolactone/δ-valerolactone and ethylene polymerization. Catalysis Science and Technology, 2021, 11, 624-636.	2.1	9
2040	Convergence of 3D printed biomimetic wound dressings and adult stem cell therapy. Biomaterials, 2021, 268, 120558.	5.7	52
2041	Evaluation of acrylic acid grafting on the loading and release of scopolamine butylbromide from polymeric matrices for future sialorrhea treatment. Journal of Applied Polymer Science, 2021, 138, 50117.	1.3	1
2042	Non-invasive monitoring of in vivo bone regeneration based on alkaline phosphatase-responsive scaffolds. Chemical Engineering Journal, 2021, 408, 127959.	6.6	31

	CITATION	Report	
#	Article	IF	CITATIONS
2043	An investigation into influence of acetylated cellulose nanofibers on properties of PCL/Gelatin electrospun nanofibrous scaffold for soft tissue engineering. Polymer, 2021, 213, 123313.	1.8	41
2044	Engineering printable composites of poly (εâ€polycaprolactone) / βâ€ŧricalcium phosphate for biomedical applications. Polymer Composites, 2021, 42, 1198-1213.	2.3	22
2045	Polymer architecture as key to unprecedented high-resolution 3D-printing performance: The case of biodegradable hexa-functional telechelic urethane-based poly-ε-caprolactone. Materials Today, 2021, 44, 25-39.	8.3	28
2046	Surface characterization of polycaprolactone and carbonyl iron powder composite fabricated by solvent cast 3D printing for tissue engineering. Polymer Composites, 2021, 42, 865-871.	2.3	9
2047	Becoming Sustainable, The New Frontier in Soft Robotics. Advanced Materials, 2021, 33, e2004413.	11.1	107
2048	An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application. Engineered Regeneration, 2021, 2, 1-18.	3.0	102
2049	Ultraâ€ŧhin, high strength, antibioticâ€eluting sutures for prevention of ophthalmic infection. Bioengineering and Translational Medicine, 2021, 6, e10204.	3.9	21
2050	Synthesis, characterisation and ROP catalytic evaluation of Cu(II) complexes bearing 2,2ʹ-diphenylglycine-derived moieties. Polyhedron, 2021, 195, 114977.	1.0	1
2051	Laboratory-Scale Life-Cycle Assessment: A Comparison of Existing and Emerging Methods of Poly(ε-caprolactone) Synthesis. ACS Sustainable Chemistry and Engineering, 2021, 9, 669-683.	3.2	19
2052	Biodegradable Polymer Blends Based on Thermoplastic Starch. Journal of Polymers and the Environment, 2021, 29, 492-508.	2.4	48
2053	Polycaprolactone: a biodegradable polymer with its application in the field of self-assembly study. Journal of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 111-129.	1.2	19
2054	Controlling the Poly(εâ€caprolactone) Degradation to Maintain the Stemness and Function of Adiposeâ€Derived Mesenchymal Stem Cells in Vascular Regeneration Application. Macromolecular Bioscience, 2021, 21, 2000226.	2.1	5
2055	Antimicrobial and biodegradable materials based on ε aprolactone derivatives. Journal of Applied Polymer Science, 2021, 138, 49903.	1.3	4
2056	Role of bone 1stem cell–seeded 3D polylactic acid/polycaprolactone/hydroxyapatite scaffold on a critical-sized radial bone defect in rat. Cell and Tissue Research, 2021, 383, 735-750.	1.5	5
2057	Polymers for Melt Electrowriting. Advanced Healthcare Materials, 2021, 10, e2001232.	3.9	123
2058	Porous shape memory scaffold of dextran and hydroxyapatite for minimum invasive implantation for bone tissue engineering applications. Journal of Biomaterials Applications, 2021, 35, 823-837.	1.2	17
2059	Evaluation of polycaprolactone matrices for sustained intravaginal delivery of a natural macromolecular microbicide, lactoferrin. Journal of Drug Delivery Science and Technology, 2021, 61, 101191.	1.4	3
2060	Development of silk/polycaprolactone biocomposite for internal bone plate application. Journal of Industrial Textiles, 2021, 51, 3-23.	1.1	4

#	Article	IF	CITATIONS
2061	Thermal properties of lignin-based polycaprolactones. Journal of Thermal Analysis and Calorimetry, 2021, 143, 203-211.	2.0	8
2062	Effects of glycosaminoglycan supplementation in the chondrogenic differentiation of bone marrow- and synovial- derived mesenchymal stem/stromal cells on 3D-extruded poly (ε-caprolactone) scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 207-222.	1.8	6
2063	Polyaniline-based electrospun polycaprolactone nanofibers: preparation and characterization. Polimeros, 2021, 31, .	0.2	5
2064	Start-up stage with improved resolution for an electric field-assisted fused deposition. RSC Advances, 2021, 11, 7397-7404.	1.7	0
2065	Fabrication and characterization of polycaprolactone-based green materials for drug delivery. , 2021, , 395-423.		2
2066	Synthesis of fully degradable cationic polymers with various topological structures <i>via</i> postpolymerization modification by using thio-bromo "click―reaction. Polymer Chemistry, 2021, 12, 2592-2597.	1.9	7
2067	A 3D Printed Composite Scaffold Loaded with Clodronate to Regenerate Osteoporotic Bone: In Vitro Characterization. Polymers, 2021, 13, 150.	2.0	10
2068	Ring-opening copolymerization of ε-caprolactone and δ-valerolactone by a titanium-based metal–organic framework. New Journal of Chemistry, 2021, 45, 11313-11316.	1.4	3
2069	Toughened PLA- <i>b</i> -PCL- <i>b</i> -PLA triblock copolymer based biomaterials: effect of self-assembled nanostructure and stereocomplexation on the mechanical properties. Polymer Chemistry, 2021, 12, 3806-3824.	1.9	22
2070	Three Dimensional (3D) Printable Gel-Inks for Skin Tissue Regeneration. Gels Horizons: From Science To Smart Materials, 2021, , 191-227.	0.3	0
2071	Next-generation surgical meshes for drug delivery and tissue engineering applications: materials, design and emerging manufacturing technologies. Bio-Design and Manufacturing, 2021, 4, 278-310.	3.9	33
2072	Lead calix[<i>n</i>]arenes (<i>n</i> = 4, 6, 8): structures and ring opening homo-/co-polymerization capability for cyclic esters. Dalton Transactions, 2021, 50, 15140-15152.	1.6	4
2073	Electrospun biopolymer-based hybrid composites. , 2021, , 225-252.		2
2074	3D Printing Methods Applicable in Oral and Maxillofacial Surgery. , 2021, , 11-60.		1
2075	PCL-based bionanocomposites in tissue engineering and regenerative medicine. , 2021, , 465-480.		0
2076	Nanoencapsulated Essential Oils with Enhanced Antifungal Activity for Potential Application on Agri-Food, Material and Environmental Fields. Antibiotics, 2021, 10, 31.	1.5	28
2077	A comparative analysis of solvent cast <scp>3D</scp> printed carbonyl iron powder reinforced polycaprolactone polymeric stents for intravascular applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1344-1359.	1.6	13
2078	Physical structure contributions in pH degradation of PEO-b-PCL films. Polymer Degradation and Stability, 2021, 183, 109468.	2.7	8

#	Article	IF	Citations
2079	PLA binary bioblends with other biopolymers. , 2021, , 157-232.		1
2080	Biodegradable supramolecular micelles <i>via</i> host–guest interaction of cyclodextrin-terminated polypeptides and adamantane-terminated polycaprolactones. Chemical Communications, 2021, 57, 9446-9449.	2.2	4
2081	Lithium calix[4]arenes: structural studies and use in the ring opening polymerization of cyclic esters. RSC Advances, 2021, 11, 11304-11317.	1.7	9
2082	Fabrication of Drug-Eluting Nano-Hydroxylapatite Filled Polycaprolactone Nanocomposites Using Solution-Extrusion 3D Printing Technique. Polymers, 2021, 13, 318.	2.0	21
2083	Preliminary Analyses of Controlled Release of Potassium Permanganate Encapsulated in Polycaprolactone. Journal of Water Resource and Protection, 2021, 13, 32-43.	0.3	4
2084	Engineering microenvironment of biodegradable polyester systems for drug stability and release control. Therapeutic Delivery, 2021, 12, 37-54.	1.2	9
2085	Development of nanocarriers for innovative antimalarial combination strategies. , 2021, , 141-167.		0
2086	Antibacterial analysis and thermal properties of polycaprolactone/chitosan/TiO2 porous composite. AIP Conference Proceedings, 2021, , .	0.3	0
2087	Polymeric Nanoparticles. Nanomedicine and Nanotoxicology, 2021, , 1-17.	0.1	0
2088	A Raman Spectroscopic Analysis of Polymer Membranes with Graphene Oxide and Reduced Graphene Oxide. Journal of Composites Science, 2021, 5, 20.	1.4	32
2089	Structural control of self-healing silica–poly(tetrahydropyran)–poly(ε-caprolactone) hybrids. Journal of Materials Chemistry B, 2021, 9, 4400-4410.	2.9	4
2090	Preparation, characterization, and <i>in vitro</i> / <i>vivo</i> evaluation of dexamethasone/poly(ε-caprolactone)-based electrode coatings for cochlear implants. Drug Delivery, 2021, 28, 1673-1684.	2.5	8
2091	Different realâ€time degradation scenarios of functionalized poly(ε aprolactone) for biomedical applications. Journal of Applied Polymer Science, 2021, 138, 50479.	1.3	15
2092	Additive Manufacturing of Oral Tablets: Technologies, Materials and Printed Tablets. Pharmaceutics, 2021, 13, 156.	2.0	21
2093	Merging of cationic RAFT and radical RAFT polymerizations with ring-opening polymerizations for the synthesis of asymmetric ABCD type tetrablock copolymers in one pot. Polymer Chemistry, 2021, 12, 4974-4985.	1.9	4
2094	Sol-gel materials for smart electrochromic devices. , 2021, , 439-475.		3
2095	Review of emerging nanotechnology in bone regeneration: progress, challenges, and perspectives. Nanoscale, 2021, 13, 10266-10280.	2.8	28
2096	Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Advances, 2021, 11, 17809-17827.	1.7	22

#	Article	IF	Citations
2097	Polycaprolactone/chitosan core/shell nanofibrous mat fabricated by electrospinning process as carrier for rosuvastatin drug. Polymer Bulletin, 2022, 79, 1627-1645.	1.7	9
2098	Nanostructured Dense Collagenâ€Polyester Composite Hydrogels as Amphiphilic Platforms for Drug Delivery. Advanced Science, 2021, 8, 2004213.	5.6	40
2099	Ring opening polymerization of $\hat{l}\mu$ -caprolactone initiated by titanium and vanadium complexes of ONO-type schiff base ligand. Journal of Polymer Research, 2021, 28, 1.	1.2	9
2100	Effects of Two Melt Extrusion Based Additive Manufacturing Technologies and Common Sterilization Methods on the Properties of a Medical Grade PLGA Copolymer. Polymers, 2021, 13, 572.	2.0	10
2101	Electrospun nanofiber scaffolds for the propagation and analysis of breast cancer stem cells in vitro. Biomedical Materials (Bristol), 2021, 16, 035004.	1.7	9
2102	Microneedle array systems for long-acting drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159, 44-76.	2.0	137
2103	Biomaterial-Based Nanocomposite for Osteogenic Repurposing of Doxycycline. International Journal of Nanomedicine, 2021, Volume 16, 1103-1126.	3.3	12
2104	Respirometry and Cell Viability Studies for Sustainable Polyesters and Their Hydrolysis Products. ACS Sustainable Chemistry and Engineering, 2021, 9, 2736-2744.	3.2	12
2105	Recent Advances in Design of Functional Biocompatible Hydrogels for Bone Tissue Engineering. Advanced Functional Materials, 2021, 31, 2009432.	7.8	212
2106	Engineered Nanotopography on the Microfibers of 3D-Printed PCL Scaffolds to Modulate Cellular Responses and Establish an <i>In Vitro</i> Tumor Model. ACS Applied Bio Materials, 2021, 4, 1381-1394.	2.3	14
2107	Evidence that protein corona reduces the release of antimicrobial peptides from polymeric nanocapsules in milk. Food Research International, 2021, 140, 110074.	2.9	10
2108	Substantial Effect of Water on Radical Melt Crosslinking and Rheological Properties of Poly(ε-Caprolactone). Polymers, 2021, 13, 491.	2.0	12
2109	Cellulose nanocrystal effect on crystallization kinetics and biological properties of electrospun polycaprolactone. Materials Science and Engineering C, 2021, 121, 111855.	3.8	18
2110	Biodegradable Metallic Glass for Stretchable Transient Electronics. Advanced Science, 2021, 8, 2004029.	5.6	21
2111	Formulation of electrospun Mgâ€FA /poly (εâ€caprolactone) nanocomposite to adjust bioactivity, biodegradability, and cellular interactions. Polymers for Advanced Technologies, 2021, 32, 2597-2608.	1.6	0
2112	Incorporation of a Poly-ε-Caprolactone Scaffold in a ;Circular Stapled End-To-End Small Intestine Anastomosis Does Not Have Any Adverse Effects Within 30Âdays: A Study in Piglets. Surgical Innovation, 2021, 28, 679-687.	0.4	1
2113	Elastic Bioresorbable Polymeric Capsules for Osmosis-Driven Delayed Burst Delivery of Vaccines. Pharmaceutics, 2021, 13, 434.	2.0	3
2114	Synthesis and Characterization of Electrospun Carbon Quantum Dots – Polyacrylonitrile/Polycaprolactone Composite Nanofiber Membranes for Copper (II) Adsorption. Key Engineering Materials, 0, 878, 3-8.	0.4	3

#	Article	IF	CITATIONS
2115	Comparison between Artificial Neural Networks and Support Vector Machine Modeling for Polycaprolactone Synthesis via Enzyme Catalyzed Polymerization. Process Integration and Optimization for Sustainability, 2021, 5, 599-607.	1.4	5
2116	Star-hyperbranched waterborne polyurethane based on D-glucose-poly(ε-caprolactone) core as a biomaterial candidate. European Polymer Journal, 2021, 147, 110318.	2.6	3
2117	Noninvasive <i>In Vivo</i> Imaging and Monitoring of 3D-Printed Polycaprolactone Scaffolds Labeled with an NIR Region II Fluorescent Dye. ACS Applied Bio Materials, 2021, 4, 3189-3202.	2.3	11
2118	Fabrication of hybrid scaffolds obtained from combinations of <scp>PCL</scp> with gelatin or collagen via electrospinning for skeletal muscle tissue engineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 1600-1612.	2.1	48
2119	Personalized Bone Reconstruction and Regeneration in the Treatment of Craniosynostosis. Applied Sciences (Switzerland), 2021, 11, 2649.	1.3	6
2120	Solution Blow Spinning of Polycaprolactone—Rheological Determination of Spinnability and the Effect of Processing Conditions on Fiber Diameter and Alignment. Materials, 2021, 14, 1463.	1.3	19
2121	The effect of electrospun scaffolds on the glycosaminoglycan profile of differentiating neural stem cells. Biochimie, 2021, 182, 61-72.	1.3	12
2122	Hydroxyapatite/titania nanocomposite coating on nickel-free austenitic stainless steel. Surface and Coatings Technology, 2021, 409, 126849.	2.2	8
2123	Pericardial fluid and vascular tissue engineering: A preliminary study. Bio-Medical Materials and Engineering, 2021, 32, 101-113.	0.4	2
2124	Remotely triggered morphing behavior of additively manufactured thermoset polymer-magnetic nanoparticle composite structures. Smart Materials and Structures, 2021, 30, 045022.	1.8	12
2125	Simple biodegradable plastic screen-printing for microfluidic paper-based analytical devices. Sensors and Actuators B: Chemical, 2021, 331, 129463.	4.0	26
2126	The Marine Polysaccharide Ulvan Confers Potent Osteoinductive Capacity to PCL-Based Scaffolds for Bone Tissue Engineering Applications. International Journal of Molecular Sciences, 2021, 22, 3086.	1.8	19
2127	Review: Tissue Engineering of Small-Diameter Vascular Grafts and Their In Vivo Evaluation in Large Animals and Humans. Cells, 2021, 10, 713.	1.8	37
2128	Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review. Molecular Biotechnology, 2021, 63, 363-388.	1.3	36
2129	BDNFâ€Gene Transfected Schwann Cellâ€Assisted Axonal Extension and Sprouting on New PLA–PPy Microfiber Substrates. Macromolecular Bioscience, 2021, 21, e2000391.	2.1	9
2130	Sputter-Deposited Ag Nanoparticles on Electrospun PCL Scaffolds: Morphology, Wettability and Antibacterial Activity. Coatings, 2021, 11, 345.	1.2	18
2131	Tuning the Phenotype of Cartilage Tissue Mimics by Varying Spheroid Maturation and Methacrylamideâ€Modified Gelatin Hydrogel Characteristics. Macromolecular Bioscience, 2021, 21, 2000401.	2.1	7
2133	Development of Polymeric Nanoparticles for Blood–Brain Barrier Transfer—Strategies and Challenges. Advanced Science, 2021, 8, 2003937.	5.6	143

		CITATION REPORT		
#	Article		IF	CITATIONS
2134	3D printed polymeric drug-eluting implants. International Journal of Pharmaceutics, 2021	, 597, 120330.	2.6	32
2135	Polycaprolactone/alendronate systems intended for production of biomaterials. Journal c Polymer Science, 2021, 138, 50678.	f Applied	1.3	1
2138	Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers—Progress ar Limitations. Polymers, 2021, 13, 1097.	ıd	2.0	26
2139	Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engin Advanced Functional Materials, 2021, 31, 2010609.	neering.	7.8	370
2140	The fabrication of a novel film based on polycaprolactone incorporated with chitosan and potential as an antibacterial carrier for rainbow trout packaging. Food Science and Bioted 2021, 30, 683-690.		1.2	12
2141	Achievements and Trends in Biocatalytic Synthesis of Specialty Polymers from Biomass-D Monomers Using Lipases. Processes, 2021, 9, 646.	erived	1.3	15
2142	3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks chronic rotator cuff repair. Biofabrication, 2021, 13, 035005.	for	3.7	45
2143	Poly(εâ€caprolactone): A potential polymer for biodegradable food packaging applicatic Technology and Science, 2021, 34, 449-461.	ns. Packaging	1.3	54
2144	Co-continuous phase prediction in poly(lactic acid) /poly(caprolactone) blends from melt measurements. Polymer-Plastics Technology and Materials, 0, , 1-18.	viscosity	0.6	1
2145	Design of polymeric core-shell carriers for combination therapies. Journal of Colloid and In Science, 2021, 587, 499-509.	nterface	5.0	14
2146	Enzymatic degradation and biofilm formation during biodegradation of polylactide and polycaprolactone polymers in various environments. International Journal of Biological Macromolecules, 2021, 176, 226-232.		3.6	46
2147	Bio-based polyurethane aqueous dispersions. ChemistrySelect, 2023, 8, 1967-2000.		0.7	2
2148	Simultaneous Delivery of Multiple Antimicrobial Agents by Biphasic Scaffolds for Effective of Wound Biofilms. Advanced Healthcare Materials, 2021, 10, e2100135.	2 Treatment	3.9	29
2149	Biocatalytic synthesis of poly[îµ-caprolactone-co-(12-hydroxystearate)] copolymer for so nanoformulation useful in drug delivery. Catalysis Today, 2021, 366, 195-201.	rafenib	2.2	5
2150	Lipase catalysed oxidations in a sugar-derived natural deep eutectic solvent. Biocatalysis Biotransformation, 0, , 1-10.	and	1,1	1
2151	The Drug-Loaded Electrospun Poly(ε-Caprolactone) Mats for Therapeutic Application. Na 2021, 11, 922.	nomaterials,	1.9	14
2152	Development of Amoxicillin-Loaded Modified Polycaprolactone Microparticles in Medical International Journal of Pharma Medicine and Biological Sciences, 2021, 10, 88-93.	Application.	0.1	1
2153	Design and Characterization of Biomimetic Kerateine Aerogel-Electrospun Polycaprolactor Scaffolds for Retinal Cell Culture. Annals of Biomedical Engineering, 2021, 49, 1633-164	one 4.	1.3	5

#	Article	IF	CITATIONS
2154	Inner strut morphology is the key parameter in producing highly porous and mechanically stable poly(lµ-caprolactone) scaffolds via selective laser sintering. Materials Science and Engineering C, 2021, 123, 111986.	3.8	15
2155	Polymer particles for the intra-articular delivery of drugs to treat osteoarthritis. Biomedical Materials (Bristol), 2021, 16, 042006.	1.7	9
2156	An ontology-based framework to formalize and represent 4D printing knowledge in design. Computers in Industry, 2021, 126, 103374.	5.7	32
2157	Influence of elastin on the properties of hybrid <scp>PCL</scp> /elastin scaffolds for tissue engineering. Journal of Applied Polymer Science, 2021, 138, 50893.	1.3	11
2158	Design and Development of D‒α‒Tocopheryl Polyethylene Glycol Succinate‒block‒Poly(ε-Caprolactone) (TPCSâ°'bâ^'PCL) Nanocarriers for Solubilization and Controlled Release of Paclitaxel. Molecules, 2021, 26, 2690.	1.7	6
2159	Microfluidic-assisted nanoprecipitation of biodegradable nanoparticles composed of PTMC/PCL (co)polymers, tannic acid and doxorubicin for cancer treatment. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111598.	2.5	33
2160	Degradation Behavior, Biocompatibility, Electrochemical Performance, and Circularity Potential of Transient Batteries. Advanced Science, 2021, 8, 2004814.	5.6	44
2162	Recent Developments in Lactone Monomers and Polymer Synthesis and Application. Materials, 2021, 14, 2881.	1.3	20
2163	Some Properties of Polycaprolactone Composites with Cellulose Nanocrystals. Russian Journal of General Chemistry, 2021, 91, 864-869.	0.3	2
2164	Threeâ€∢â€dimensional porous poly(εâ€caprolactone)/betaâ€tricalcium phosphate microsphereâ€aggregated scaffold for bone tissue engineering. International Journal of Applied Ceramic Technology, 2021, 18, 1442-1456.	1.1	6
2165	Encapsulation of trans-resveratrol in poly(Îμ-caprolactone) by GAS antisolvent. Journal of Supercritical Fluids, 2021, 171, 105164.	1.6	10
2166	The Effect of Electrospun Polycaprolactone Nonwovens Containing Chitosan and Propolis Extracts on Fresh Pork Packaged in Linear Low-Density Polyethylene Films. Foods, 2021, 10, 1110.	1.9	13
2167	Recent Trends in the Development of Bone Regenerative Biomaterials. Frontiers in Cell and Developmental Biology, 2021, 9, 665813.	1.8	82
2168	Drug Release Kinetics from Nondegradable Hydrophobic Polymers Can Be Modulated and Predicted by the Glass Transition Temperature. Advanced Healthcare Materials, 2021, 10, e2100015.	3.9	9
2169	Novel composite scaffolds based on alginate and Mgâ€doped calcium phosphate fillers: Enhanced hydroxyapatite formation under biomimetic conditions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 2079-2090.	1.6	3
2170	Screening of critical variables in fabricating polycaprolactone nanoparticles using Neuro Fuzzy Logic. International Journal of Pharmaceutics, 2021, 601, 120558.	2.6	5
2171	A polymeric micellar drug delivery system developed through a design of Experiment approach improves pancreatic tumor accumulation of calcipotriol and paclitaxel. International Journal of Pharmaceutics, 2021, 601, 120523.	2.6	6
2172	Development and characterization of electrosprayed microcaspules of poly ε-caprolactone with citronella oil for mosquito-repellent application. International Journal of Polymer Analysis and Characterization, 2021, 26, 497-516.	0.9	8

#	Article	IF	Citations
2173	Printing between the Lines: Intricate Biomaterial Structures Fabricated via Negative Embodied Sacrificial Template 3D (NEST3D) Printing. Advanced Materials Technologies, 2021, 6, 2100189.	3.0	14
2174	Approaches on <scp>PCL</scp> /m <scp>acaÃba biocomposites</scp> ―mechanical, thermal, morphological properties and crystallization kinetics. Polymers for Advanced Technologies, 2021, 32, 3572-3587.	1.6	8
2175	Validating pore size estimates in a complex microfiber environment on a human MRI system. Magnetic Resonance in Medicine, 2021, 86, 1514-1530.	1.9	5
2176	Additive manufacturing and large deformation responses of highly-porous polycaprolactone scaffolds with helical architectures for breast tissue engineering. Virtual and Physical Prototyping, 2021, 16, 291-305.	5.3	7
2177	Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduction and Targeted Therapy, 2021, 6, 177.	7.1	55
2178	Biodegradable polycaprolactone (PCL) based polymer and composites. ChemistrySelect, 2023, 8, 4391-4414.	0.7	11
2179	Biodegradable ion-selective nanosensors with p-diethylaminophenol functionalized rhodamine as chromoionophore for metal ions measurements. Sensors and Actuators B: Chemical, 2021, 336, 129672.	4.0	3
2180	Synergistic Effect of PVDF-Coated PCL-TCP Scaffolds and Pulsed Electromagnetic Field on Osteogenesis. International Journal of Molecular Sciences, 2021, 22, 6438.	1.8	16
2181	Transient Neurovascular Interface for Minimally Invasive Neural Recording and Stimulation. Advanced Materials Technologies, 2022, 7, 2100176.	3.0	8
2182	Fabrication of doxorubicin conjugated methoxy poly(ethylene glycol)-block-poly(ε-caprolactone) nanoparticles and study on their <i>inÂvitro</i> antitumor activities. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1703-1717.	1.9	7
2183	The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. Journal of CO2 Utilization, 2021, 48, 101526.	3.3	41
2184	Effects of Polymer Blending on the Performance of a Subcutaneous Biodegradable Implant for HIV Pre-Exposure Prophylaxis (PrEP). International Journal of Molecular Sciences, 2021, 22, 6529.	1.8	4
2185	Crosslinking of Gelatin in Bicomponent Electrospun Fibers. Materials, 2021, 14, 3391.	1.3	8
2186	Ti(IV)-silyliminophenolate catalysts for ϵ-caprolactone and L-Lactide polymerization. Sustainable Chemistry and Pharmacy, 2021, 21, 100416.	1.6	16
2187	The Structure and Mechanical Properties of Hemp Fibers-Reinforced Poly(Îμ-Caprolactone) Composites Modified by Electron Beam Irradiation. Applied Sciences (Switzerland), 2021, 11, 5317.	1.3	9
2188	Polymeric biomaterials for 3D printing in medicine: An overview. Annals of 3D Printed Medicine, 2021, 2, 100011.	1.6	71
2189	Polymeric drug delivery systems by additive manufacturing. Advanced Drug Delivery Reviews, 2021, 173, 349-373.	6.6	86
2190	The Composites of PCL and Tetranuclear Titanium(IV)-oxo Complexes as Materials Exhibiting the Photocatalytic and the Antimicrobial Activity. International Journal of Molecular Sciences, 2021, 22, 7021	1.8	8

#	Article	IF	CITATIONS
2191	(Macro)Molecular Imprinting of Proteins on PCL Electrospun Scaffolds. ACS Applied Materials & Interfaces, 2021, 13, 29293-29302.	4.0	12
2192	A Review: Optimization for Poly(glycerol sebacate) and Fabrication Techniques for Its Centered Scaffolds. Macromolecular Bioscience, 2021, 21, e2100022.	2.1	20
2193	Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. Frontiers in Bioengineering and Biotechnology, 2021, 9, 696040.	2.0	53
2194	Polycaprolactone film functionalized with bacteriophage T4 promotes antibacterial activity of food packaging toward Escherichia coli. Food Chemistry, 2021, 346, 128883.	4.2	34
2195	Bacterial Photoinactivation Using PLGA Electrospun Scaffolds. ACS Applied Materials & amp; Interfaces, 2021, 13, 31406-31417.	4.0	7
2196	Smart and Active Food Packaging: Insights in Novel Food Packaging. Frontiers in Microbiology, 2021, 12, 657233.	1.5	39
2197	Effects of Electron Beam Irradiation on 3D-Printed Biopolymers for Bone Tissue Engineering. Journal of Composites Science, 2021, 5, 182.	1.4	3
2198	Insights into the toxicity of biomaterials microparticles with a combination of cellular and oxidative biomarkers. Journal of Hazardous Materials, 2021, 413, 125335.	6.5	13
2199	A comprehensive study of acid and base treatment of 3D printed poly(Îμ-caprolactone) scaffolds to tailor surface characteristics. Applied Surface Science, 2021, 555, 149602.	3.1	13
2200	3D printing of patient-specific implants for osteochondral defects: workflow for an MRI-guided zonal design. Bio-Design and Manufacturing, 2021, 4, 818-832.	3.9	18
2201	Confinement and Composition Effects on the Degradation Profile of Extruded PLA/PCL Nonwoven Fiber Blends. ACS Applied Polymer Materials, 2021, 3, 3878-3890.	2.0	7
2202	Carbon Capture Utilization for Biopolymer Foam Manufacture: Thermal, Mechanical and Acoustic Performance of PCL/PHBV CO2 Foams. Polymers, 2021, 13, 2559.	2.0	3
2203	Biomaterials in skin tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 993-1011.	1.8	13
2204	Ethanol treatment of nanoPGA/PCL composite scaffolds enhances human chondrocyte development in the cellular microenvironment of tissue-engineered auricle constructs. PLoS ONE, 2021, 16, e0253149.	1.1	3
2205	Effect of Crystallinity on the Properties of Polycaprolactone Nanoparticles Containing the Dual FLAP/mPEGS-1 Inhibitor BRP-187. Polymers, 2021, 13, 2557.	2.0	13
2206	All-polymeric transient neural probe for prolonged in-vivo electrophysiological recordings. Biomaterials, 2021, 274, 120889.	5.7	26
2207	Novel bionanocomposite of polycaprolactone reinforced with steam-exploded microfibrillated cellulose modified with ZnO. Journal of Materials Research and Technology, 2021, 13, 1324-1335.	2.6	7
2208	Biomaterials with structural hierarchy and controlled 3D nanotopography guide endogenous bone regeneration. Science Advances, 2021, 7, .	4.7	39

#	Article	IF	CITATIONS
2209	pH and lightâ€responsive polycaprolactone/curcumin@zifâ€8 composite films with enhanced antibacterial activity. Journal of Food Science, 2021, 86, 3550-3562.	1.5	25
2210	Water resistant fibre/matrix interface in a degradable composite: Synergistic effects of heat treatment and polydopamine coating. Composites Part A: Applied Science and Manufacturing, 2021, 146, 106415.	3.8	9
2211	Bacterial Infection-Mimicking Three-Dimensional Phagocytosis and Chemotaxis in Electrospun Poly(ε-caprolactone) Nanofibrous Membrane. Membranes, 2021, 11, 569.	1.4	2
2212	Non-thermal plasma jet-assisted development of phosphorus-containing functional coatings on 3D-printed PCL scaffolds intended for bone tissue engineering. Journal of Physics and Chemistry of Solids, 2021, 154, 110025.	1.9	2
2213	Collaboration between Trinuclear Aluminum Complexes Bearing Bipyrazoles in the Ring-Opening Polymerization of ε-Caprolactone. Inorganic Chemistry, 2021, 60, 10535-10549.	1.9	9
2214	An assessment of magnesium AZ31 coronary stents manufacture. Materials Research Express, 2021, 8, 075403.	0.8	2
2215	Mechanical Properties of Compact Bone Defined by the Stress-Strain Curve Measured Using Uniaxial Tensile Test: A Concise Review and Practical Guide. Materials, 2021, 14, 4224.	1.3	24
2216	An initiator- and catalyst-free hydrogel coating process for 3D printed medical-grade poly(ε-caprolactone). Beilstein Journal of Organic Chemistry, 2021, 17, 2095-2101.	1.3	2
2217	Terpenes and Terpenoids: Building Blocks to Produce Biopolymers. Sustainable Chemistry, 2021, 2, 467-492.	2.2	28
2218	A Bioresorbable Dynamic Pressure Sensor for Cardiovascular Postoperative Care. Advanced Materials, 2021, 33, e2102302.	11.1	85
2219	Development of poly(ƕpolycaprolactone)/hydroxyapatite composites for bone tissue regeneration. Journal of Materials Research, 2021, 36, 3050-3062.	1.2	6
2220	Fabrication techniques involved in developing the composite scaffolds PCL/HA nanoparticles for bone tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2021, 32, 93.	1.7	40
2221	Rapid Activation of Diazirine Biomaterials with the Blue Light Photocatalyst. ACS Applied Materials & Interfaces, 2021, 13, 36839-36848.	4.0	10
2222	Shape memory PLLA-TMC/CSH-dPA microsphere scaffolds with mechanical and bioactive enhancement for bone tissue engineering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126594.	2.3	9
2223	Structure and dynamics of biodegradable polyurethane-silk fibroin composite materials in the dry and hydrated states studied using 13C solid-state NMR spectroscopy. Polymer Degradation and Stability, 2021, 190, 109645.	2.7	7
2224	Practicable selfâ€healing polyurethane binder for energetic composites combining thermoâ€reversible <scp>DA</scp> action and shapeâ€memory effect. Polymers for Advanced Technologies, 2021, 32, 4223-4232.	1.6	12
2225	Development, processing and characterization of Polycaprolactone/Nano-Hydroxyapatite/Chitin-Nano-Whisker nanocomposite filaments for additive manufacturing of bone tissue scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120, 104583.	1.5	21
2226	Pliable, Scalable, and Degradable Scaffolds with Varying Spatial Stiffness and Tunable Compressive Modulus Produced by Adopting a Modular Design Strategy at the Macrolevel. ACS Polymers Au, 2021, 1, 107-122.	1.7	3

#	Article	IF	CITATIONS
2227	Fixation of Transparent Bone Pins with Photocuring Biocomposites. ACS Biomaterials Science and Engineering, 2021, 7, 4463-4473.	2.6	2
2228	Transport Studies of Biocompatible Polymeric Membrane and its Application in Lead Ion (Pb++) Absorption. Journal of Molecular Structure, 2021, 1237, 130319.	1.8	3
2229	Supercritical CO2 technology for one-pot foaming and sterilization of polymeric scaffolds for bone regeneration. International Journal of Pharmaceutics, 2021, 605, 120801.	2.6	13
2230	Using melt-electrowritten microfibres for tailoring scaffold mechanics of 3D bioprinted chondrocyte-laden constructs. Bioprinting, 2021, 23, e00158.	2.9	7
2231	Investigation of structure, mechanical, and shape memory behavior of thermally activated poly(ε-caprolactone): azide-functionalized poly(vinyl chloride) binary polymer blend films. European Physical Journal Plus, 2021, 136, 1.	1.2	11
2233	Controllable Frontal Polymerization and Spontaneous Patterning Enabled by Phaseâ€Changing Particles. Small, 2021, 17, e2102217.	5.2	13
2234	Renal Biology Driven Macro- and Microscale Design Strategies for Creating an Artificial Proximal Tubule Using Fiber-Based Technologies. ACS Biomaterials Science and Engineering, 2021, 7, 4679-4693.	2.6	5
2235	Constructing solvent-free inclusion complexes from β-cyclodextrin- and adamantane-terminated polycaprolactones and their mechanical and shape memory properties. Polymer, 2021, 230, 124047.	1.8	6
2236	Multifunctional biopolymer coatings inspired by loach skin. Progress in Organic Coatings, 2021, 158, 106383.	1.9	6
2237	More Precise Control of the In Vitro Enzymatic Degradation via Ternary Self-Blending of High/Medium/Low Molecular Weight Poly(trimethylene carbonate). Frontiers in Materials, 2021, 8, .	1.2	4
2238	Silk fibroin/polycaprolactone nanofibrous membranes loaded with natural Manuka honey for potential wound healing. Journal of Applied Polymer Science, 2022, 139, 51686.	1.3	6
2239	Blend Electrospinning of Poly(ƕCaprolactone) and Poly(Ethylene Glycol-400) Nanofibers Loaded with Ibuprofen as a Potential Drug Delivery System for Wound Dressings. Autex Research Journal, 2023, 23, 66-76.	0.6	5
2240	A novel in vitro assay for peripheral nerve-related cell migration that preserves both extracellular matrix-derived molecular cues and nanofiber-derived topography. Journal of Neuroscience Methods, 2021, 361, 109289.	1.3	4
2241	Materials science and design principles of therapeutic materials in orthopedic and bone tissue engineering. Polymers for Advanced Technologies, 2021, 32, 4573-4586.	1.6	5
2242	Biofilm inhibition by biocompatible poly(Îμ-caprolactone) nanocapsules loaded with essential oils and their cyto/genotoxicity to human keratinocyte cell line. International Journal of Pharmaceutics, 2021, 606, 120846.	2.6	22
2243	PCL micro-dumbbells – A new class of polymeric particles reveals morphological biofunctionality. Applied Materials Today, 2021, 24, 101097.	2.3	4
2244	Polymer-based Nanotherapeutics for Burn Wounds. Current Pharmaceutical Biotechnology, 2022, 23, 1460-1482.	0.9	4
2245	3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing. Acta Biomaterialia, 2021, 131, 314-325.	4.1	59

#	Article	IF	CITATIONS
2246	Effects of gamma radiation in therapeutic dose on the chemical characteristics of a polycaprolactone/ZnO nanocomposite. Research, Society and Development, 2021, 10, e456101220528.	0.0	0
2247	A Personalized Multifunctional 3D Printed Shape Memoryâ€Displaying, Drug Releasing Tracheal Stent. Advanced Functional Materials, 2021, 31, 2108436.	7.8	23
2248	Investigating the physical characteristics and cellular interplay on 3D-printed scaffolds depending on the incorporated silica size for hard tissue regeneration. Materials and Design, 2021, 207, 109866.	3.3	9
2249	Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Acta Biomaterialia, 2021, 132, 188-216.	4.1	21
2250	Development of Novel Thin Polycaprolactone (PCL)/Clay Nanocomposite Films with Antimicrobial Activity Promoted by the Study of Mechanical, Thermal, and Surface Properties. Polymers, 2021, 13, 3193.	2.0	13
2251	Zn(II)- and Mg(II)-Complexes of a Tridentate {ONN} Ligand: Application to Poly(lactic acid) Production and Chemical Upcycling of Polyesters. Macromolecules, 2021, 54, 8453-8469.	2.2	33
2252	Correction of facial asymmetry using a patient-specific three-dimensional printed polycarprolactone/beta tricalcium phosphate scaffold: a case report. Oral Biology Research, 2021, 45, 143-149.	0.0	1
2253	Influence of chemistry and fiber diameter of electrospun PLA, PCL and their blend membranes, intended as cell supports, on their biological behavior. Polymer Testing, 2021, 103, 107364.	2.3	23
2254	Polycaprolactone-based materials in wound healing applications. Polymer Bulletin, 2022, 79, 7041-7063.	1.7	39
2255	3D printed nanocomposites for tailored cardiovascular tissue constructs: A minireview. Materialia, 2021, 19, 101184.	1.3	8
2256	Comparison of biofouling on 3D-printing materials in the marine environment. International Biodeterioration and Biodegradation, 2021, 164, 105293.	1.9	8
2257	A DFT study on the mechanism for polymerization of δ-valerolactone initiated by N-heterocyclic carbene (NHC) catalysts. Molecular Catalysis, 2021, 515, 111896.	1.0	3
2258	Miscibility and enzymatic degradability of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based polyester blends by PHB depolymerase and lipase. Polymer Degradation and Stability, 2021, 192, 109692.	2.7	11
2259	Lactobacillus amylovorus derived lipase-mediated silver derivatization over poly(ε-caprolactone) towards antimicrobial coatings. Enzyme and Microbial Technology, 2021, 150, 109888.	1.6	16
2260	Development of drug loaded cardiovascular prosthesis for thrombosis prevention using 3D printing. Materials Science and Engineering C, 2021, 129, 112375.	3.8	37
2261	Aluminium complexes supported by a thioether-bridged salen ligand: synthesis, characterization and application in $\hat{\mu}$ -caprolactone homopolymerization and copolymerization with L-lactide. Journal of Organometallic Chemistry, 2021, 951, 122007.	0.8	2
2262	Influence of the rosin pendant groups on the solution properties of a high molecular weight hydrogenated polynorbornene. Polymer, 2021, 232, 124167.	1.8	3
2263	Synthesis and characterization of a novel star polycaprolactone to be applied in the development of graphite nanoplates-based nanopapers. Reactive and Functional Polymers, 2021, 167, 105019.	2.0	7

	CHATION	KLPOKI	
#	Article	IF	CITATIONS
2264	The effect of high-pressure on organocatalyzed ROP of \hat{I}^3 -butyrolactone. Polymer, 2021, 233, 124166.	1.8	4
2265	Development and evaluation of a novel biodegradable implants with excellent inflammatory response suppression effect by hot-melt extrusion. European Journal of Pharmaceutical Sciences, 2021, 166, 105981.	1.9	3
2266	Local delivery strategies to restore immune homeostasis in the context of inflammation. Advanced Drug Delivery Reviews, 2021, 178, 113971.	6.6	17
2267	Biobased 2,5-furandicarboxylic acid (FDCA) and its emerging copolyesters' properties for packaging applications. European Polymer Journal, 2021, 160, 110778.	2.6	30
2268	Random and aligned electrospun poly(ε-caprolactone) (PCL)/poly(1,8-octanediol-co-citrate) (POC) fiber mats for cardiac tissue engineering using benign solvents. European Polymer Journal, 2021, 160, 110772.	2.6	10
2269	Design, development, and characterization of an idebenone-loaded poly-ε-caprolactone intravitreal implant as a new therapeutic approach for LHON treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 168, 195-207.	2.0	3
2270	Interactions in solvent–polycaprolactone–cellulose nanocrystals–polyvinyl pyrrolidone system: Experiment and molecular dynamics simulation. Journal of Molecular Liquids, 2021, 341, 117409.	2.3	6
2271	Transient electronics: new opportunities for implantable neurotechnology. Current Opinion in Biotechnology, 2021, 72, 22-28.	3.3	20
2272	A review of strategies for development of tissue engineered meniscal implants. Biomaterials and Biosystems, 2021, 4, 100026.	1.0	12
2273	Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioactive Materials, 2021, 6, 4830-4855.	8.6	139
2274	Degradation studies of biodegradable foams. , 2022, , 243-265.		0
2275	Classification, material types, and design approaches of long-acting and implantable drug delivery systems. , 2022, , 17-59.		3
2276	Development of dual purpose, industrially important <scp>PLA–PEG</scp> based coated abrasives and packaging materials. Journal of Applied Polymer Science, 2021, 138, 50495.	1.3	19
2277	Build an implanted "arsenal― detachable microneedles for NIR-triggered cancer photothermo-chemotherapy. Biomaterials Science, 2021, 9, 4737-4745.	2.6	8
2278	Biomimetic Tympanic Membrane Replacement Made by Melt Electrowriting. Advanced Healthcare Materials, 2021, 10, e2002089.	3.9	26
2279	Protease-Triggered Release of Stabilized CXCL12 from Coated Biomaterials for Improved Implant Integration and Wound Healing. SSRN Electronic Journal, 0, , .	0.4	0
2280	Engineered biodegradable melt-spun fibers. , 2021, , 191-232.		2
2281	Decellularised extracellular matrix decorated PCL PolyHIPE scaffolds for enhanced cellular activity, integration and angiogenesis. Biomaterials Science, 2021, 9, 7297-7310.	2.6	22

#	Article	IF	Citations
2282	Synthetic Bioplastics in Active Food Packaging. , 2021, , 381-398.		0
2283	Thermoresponsive and Conductive Chitosan-Polyurethane Biocompatible Thin Films with Potential Coating Application. Polymers, 2021, 13, 326.	2.0	12
2284	A sulfobetaine zwitterionic polymer–drug conjugate for multivalent paclitaxel and gemcitabine co-delivery. Biomaterials Science, 2021, 9, 5000-5010.	2.6	18
2285	Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(Îμ-Caprolactone) Blend. ACS Biomaterials Science and Engineering, 2021, 7, 672-689.	2.6	11
2286	Biodegradable polycaprolactone metallopolymer–antibiotic bioconjugates containing phenylboronic acid and cobaltocenium for antimicrobial application. Biomaterials Science, 2021, 9, 7237-7246.	2.6	7
2287	Electroconductive Melt Electrowritten Patches Matching the Mechanical Anisotropy of Human Myocardium. Advanced Functional Materials, 2020, 30, 1909880.	7.8	67
2288	Natural and Synthetic Polymers for Designing Composite Materials. , 2015, , 1-54.		6
2289	Synthetic Materials: Processing and Surface Modifications for Vascular Tissue Engineering. , 2020, , 1-50.		1
2290	Sustainable Routes for Synthesis of Poly(ε-Caprolactone): Prospects in Chemical Industries. Materials Horizons, 2020, , 21-33.	0.3	4
2291	Polycaprolactone-Based Nanofibers and their In-Vitro and In-Vivo Applications in Bone Tissue Engineering. , 2020, , 17-38.		2
2292	Biomaterials for on-chip organ systems. , 2020, , 669-707.		5
2293	Biocompatible Thermoplastics as Implants/Scaffold. , 2022, , 47-55.		5
2295	Functionalized poly l-lactic acid synthesis and optimization of process parameters for 3D printing of porous scaffolds via digital light processing (DLP) method. Journal of Manufacturing Processes, 2020, 56, 550-561.	2.8	50
2296	Polyhydroxyphenylvalerate/polycaprolactone nanofibers improve the life-span and mechanoresponse of human IPSC-derived cortical neuronal cells. Materials Science and Engineering C, 2020, 111, 110832.	3.8	9
2298	Stimuli-responsive Material Inspired Drug Delivery Systems and Devices. Biomaterials Science Series, 2018, , 317-334.	0.1	2
2299	Electrospun nanofibers: a promising horizon toward the detection and treatment of cancer. Analyst, The, 2020, 145, 2854-2872.	1.7	24
2300	Use of titanocalix[4]arenes in the ring opening polymerization of cyclic esters. Catalysis Science and Technology, 2020, 10, 1619-1639.	2.1	25
2301	Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds. RSC Advances, 2020, 10, 4805-4816.	1.7	43

#	Article	IF	Citations
2302	Formulation development, <i>in vitro</i> and <i>in vivo</i> evaluation of chitosan engineered nanoparticles for ocular delivery of insulin. RSC Advances, 2020, 10, 43629-43639.	1.7	24
2303	Scaffolds and Scaffolding Materials. , 0, , 6999-7015.		1
2304	The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells. Biomedical Materials (Bristol), 2018, 13, 015006.	1.7	37
2305	Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering—an embedding model with plasticity for incorporation of additives. Biomedical Materials (Bristol), 2021, 16, 015028.	1.7	11
2306	Plastic waste as a global challenge: are biodegradable plastics the answer to the plastic waste problem?. Microbiology (United Kingdom), 2019, 165, 129-137.	0.7	132
2307	Next generation vaccines: single-dose encapsulated vaccines for improved global immunisation coverage and efficacy. Journal of Pharmacy and Pharmacology, 2015, 67, 400-408.	1.2	23
2308	Characterisation of poly(vinyl alcohol)- polycaprolactone hybridized scaffold for potential skin tissue regeneration. Malaysian Journal of Fundamental and Applied Sciences, 2020, 16, 6-9.	0.4	2
2309	Long-term hydrolytic degradation study of polycaprolactone films and fibers grafted with poly(sodium styrene sulfonate): Mechanism study and cell response. Biointerphases, 2020, 15, 061006.	0.6	20
2310	Synthesis of Grafted Biodegradable Poly(ε-caprolactone) as Antibacterial and Antifungal Agent. Polymer Science - Series B, 2020, 62, 697-705.	0.3	3
2311	Enzymatic degradation of biostatic materials based on polylactide. Ecological Questions, 2018, 29, 1.	0.1	3
2313	Biodegradable Polycaprolactone Nanoparticles Based Drug Delivery Systems: A Short Review. Biosciences, Biotechnology Research Asia, 2018, 15, 679-685.	0.2	20
2314	Tumor Necrosis Factor Improves Vascularization in Osteogenic Grafts Engineered with Human Adipose-Derived Stem/Stromal Cells. PLoS ONE, 2014, 9, e107199.	1.1	24
2315	Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone. PLoS ONE, 2016, 11, e0147399.	1.1	70
2316	Accelerated Wound Closure - Differently Organized Nanofibers Affect Cell Migration and Hence the Closure of Artificial Wounds in a Cell Based In Vitro Model. PLoS ONE, 2017, 12, e0169419.	1.1	32
2317	Characterization and in vitro antitumor activity of polymeric nanoparticles loaded with Uncaria tomentosa extract. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20190336.	0.3	10
2319	Biodegradable mineralized collagen plug for the reconstruction of craniotomy burr-holes: A report of three cases. Translational Neuroscience and Clinics, 2015, 1, 3-9.	0.1	4
2320	Biocompatible Polymers and their Potential Biomedical Applications: A Review. Current Pharmaceutical Design, 2019, 25, 3608-3619.	0.9	65
2322	Optimization of preparation conditions of poly(ε-caprolactone) microspheres for controlled release of carbamazepine. Hemijska Industrija, 2010, 64, 491-502.	0.3	1

#	Article	IF	CITATIONS
2323	Culture of Cardiogenic Stem Cells on PCL-Scaffolds: Towards the Creation of Beating Tissue Constructs. , 2013, , .		5
2324	A Method of 1D UVC Radiation Dose Measurement using a Novel Tablet Dosimeter. Autex Research Journal, 2020, 20, 140-147.	0.6	3
2325	The Influence of Melt-Mixing Conditions and State of Dispersion on Crystallisation, Rheology and Mechanical Properties of PCL/Sepiolite Nanocomposites. International Polymer Processing, 2020, 35, 302-313.	0.3	3
2326	Effect of halloysite on structure and properties of melt-drawn PCL/PLA microfibrillar composites. EXPRESS Polymer Letters, 2016, 10, 381-393.	1.1	31
2327	Solvent free synthesis and structural evaluation of polyurethane films based on poly(ethylene) Tj ETQq0 0 0 rgBT	Qverlock 1.1	10 Tf 50 582
	Influence of the Fabrication Accuracy of Hot-Embossed PCL Scaffolds on Cell Growths. Frontiers in		

2020	Bioengineering and Biotechnology, 2020, 8, 84.	2.0	· ·
2329	Development of Polyelectrolyte Complex Nanoparticles-PECNs Loaded with Ampicillin by Means of Polyelectrolyte Complexation and Ultra-High Pressure Homogenization (UHPH). Polymers, 2020, 12, 1168.	2.0	17
2330	Cancer Stem Cell Microenvironment Models with Biomaterial Scaffolds In Vitro. Processes, 2021, 9, 45.	1.3	8
2331	Emerging polymeric materials in additive manufacturing for use in biomedical applications. AIMS Bioengineering, 2019, 6, 1-20.	0.6	19
2332	Fluidity of biodegradable substrate regulates carcinoma cell behavior: A novel approach to cancer therapy. AIMS Materials Science, 2016, 3, 66-82.	0.7	6
2333	Biodegradable stent. Journal of Biomedical Science and Engineering, 2012, 05, 208-216.	0.2	27
2334	Development of Polycaprolactone/Poly(Vinyl Alcohol)/Clay Microparticles by Spray Drying. Materials Sciences and Applications, 2016, 07, 575-592.	0.3	5
2335	In-vitro and in-vivo Behaviors of Poly(glycolide-caprolactone) Copolymer for Bioabsorbable Suture Materials. Bulletin of the Korean Chemical Society, 2012, 33, 4137-4140.	1.0	4
2336	Bio-Conjugated Polycaprolactone Membranes: A Novel Wound Dressing. Archives of Plastic Surgery, 2014, 41, 638-646.	0.4	18
2337	Recent Advances in Biodegradable Polymers. Journal of Research Updates in Polymer Science, 2018, 7, .	0.3	3
2338	Synthesis, Characterization and in vitro Anti-Tumoral Evaluation of Erlotinib-PCEC Nanoparticles. Asian Pacific Journal of Cancer Prevention, 2015, 15, 10281-10287.	0.5	19
2340	Electrospun fibre diameter and its effects on vascular smooth muscle cells. Journal of Materials Science: Materials in Medicine, 2021, 32, 131.	1.7	8
2341	Prevention of abdominal adhesion by aÂpolycaprolactone/phospholipid hybrid film containing	1.7	4

#	Article	IF	CITATIONS
2342	Shaping and properties of thermoplastic scaffolds in tissue regeneration: The effect of thermal history on polymer crystallization, surface characteristics and cell fate. Journal of Materials Research, 2021, 36, 3914-3935.	1.2	15
2343	Bioactive 3D Scaffolds for the Delivery of NGF and BDNF to Improve Nerve Regeneration. Frontiers in Materials, 2021, 8, .	1.2	7
2344	Sequenceâ€Controlled Alternating Copolyesters Synthesis via Selective Ringâ€Opening Polymerization. Macromolecular Chemistry and Physics, 2021, 222, .	1.1	4
2345	Protease-Triggered Release of Stabilized CXCL12 from Coated Scaffolds in an Ex Vivo Wound Model. Pharmaceutics, 2021, 13, 1597.	2.0	3
2346	Trends and challenges of biopolymerâ€based nanocomposites in food packaging. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5321-5344.	5.9	68
2347	Polymer coatings on magnesiumâ€based implants for orthopedic applications. Journal of Polymer Science, 2022, 60, 32-51.	2.0	34
2348	Controlling Topography and Crystallinity of Melt Electrowritten Poly(É>-Caprolactone) Fibers. 3D Printing and Additive Manufacturing, 2021, 8, 315-321.	1.4	8
2349	Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomaterials Science and Engineering, 2021, 7, 5339-5362.	2.6	76
2350	Examining properties influencing infectious microbe associations with surfaces of four different thermoplastic radiation therapy masks. Journal of Medical Imaging and Radiation Sciences, 2021, , .	0.2	0
2351	Tailoring the biodegradability and bioactivity of green-electrospun polycaprolactone fibers by incorporation of bioactive glass nanoparticles for guided bone regeneration. European Polymer Journal, 2021, 161, 110841.	2.6	10
2352	Melt-extrusion 3D printing of resorbable levofloxacin-loaded meshes: Emerging strategy for urogynaecological applications. Materials Science and Engineering C, 2021, 131, 112523.	3.8	5
2353	Repair of critical-size porcine craniofacial bone defects using a collagen–polycaprolactone composite biomaterial. Biofabrication, 2022, 14, 014102.	3.7	12
2354	Long-acting biodegradable implant for sustained delivery of antiretrovirals (ARVs) and hormones. Journal of Controlled Release, 2021, 340, 188-199.	4.8	19
2355	Poly-ε-Caprolactone/Fibrin-Alginate Scaffold: A New Pro-Angiogenic Composite Biomaterial for the Treatment of Bone Defects. Polymers, 2021, 13, 3399.	2.0	10
2356	Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration. Reactive and Functional Polymers, 2022, 170, 105064.	2.0	22
2357	Highly controlled robotic customized gel functionalization on 3D printed PCL framework for bone tissue engineering. Bioprinting, 2021, 24, e00175.	2.9	5
2358	Compostable Polymer Materials. , 2008, , .		12
2359	Polymeric Materials for Vascular Grafts. Advances in Polymeric Biomaterials Series, 2012, , 59-88.	0.0	Ο

#	Article	IF	CITATIONS
2360	Soft Bioactive Coatings based on Electrophoretically Deposited Bioactive Glass Nanoparticles and Polycaprolactone. , 2013, , .		0
2362	INCORPORAÇÃO E AVALIAÇÃO DA CINÉTICA DE LIBERAÇÃO DO COMPOSTO NATURAL ALFA-BISABOLO FILMES DE POLICAPROLACTONA E DE QUITOSANA COMPLEXADA COM GOMA GUAR. , 0, , .	DL EM	0
2363	ANALYSIS OF SCAFFOLD MATERIALS OF IMPLANT AND TISSUE REGENERATION / IMPLANTŲ IR AUDINIŲ REGENERACIJOS KARKASŲ MEDŽIAGŲ ANALIZĖ. Science: Future of Lithuania, 2015, 6, 654-660.	0.0	0
2364	Nanofibers, Electrospun Polycaprolactone: Controlled Drug Delivery. , 0, , 5239-5249.		0
2366	Biocomposites: Natural and Synthetic Fibers. , 0, , 585-601.		0
2367	Vascular Grafts: Biocompatibility Requirements. , 0, , 8121-8135.		0
2368	Aliphatic Polyesters: Particulate Vaccine Delivery. , 0, , 147-185.		0
2369	Synthetic Biopolymers. , 2016, , 307-335.		0
2370	Polyester Particles for Drug Delivery to the Skin: Local and Systemic Applications. , 2016, , 353-377.		0
2371	Aliphatic Polyester Micro- and Nanosystems for Treating HIV, Tuberculosis, and Malaria. , 2016, , 563-594.		0
2372	Nanofibrous Scaffolds for the Regeneration of Bone Tissue. , 2016, , 35-63.		0
2373	Nanofibrous Scaffolds for the Regeneration of Bone Tissue. , 2016, , 53-92.		0
2374	Microcapsules PCL with Essential Oil Citronella. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2017, 2, .	0.1	1
2375	LABORATORY-SCALE REACTION INJECTION MOLDING OF POLY(CAPROLACTONE) ELASTOMERS FOR RAPID PROTOTYPING OF STIMULI-RESPONSIVE THERMOSETS. Rubber Chemistry and Technology, 2017, 90, 337-346.	0.6	1
2376	Nanotubes Reinforcement of Degradable Polymers for Orthopedic Applications. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2017, 2, .	0.1	3
2377	Vascular Grafts: Biocompatibility Requirements. , 2017, , 1560-1574.		0
2378	BiopolÃmeros: aplicações farmacêutica e biomédica. Ecletica Quimica, 2016, 41, 01-31.	0.2	1
2379	Biodegradation of Natural and Synthetic Polymer. Advances in Environmental Engineering and Green Technologies Book Series. 2018. , 106-124.	0.3	2

#	Article	IF	CITATIONS
2381	From Injection Molding to 3d Printing of Patient-Specific Implants. Biomedical Journal of Scientific & Technical Research, 2018, 8, .	0.0	0
2382	In Vitro Assessment of Synthetic Nano Engineered Graft Designed for Further Clinical Study in Nerve Regeneration. International Clinical Neuroscience Journal, 2018, 5, 86-91.	0.1	1
2383	Development of Porous PCL Based Microcarrier. International Journal on Advanced Science, Engineering and Information Technology, 2018, 8, 1648-1653.	0.2	0
2384	Customised Interventions Utilising Additive Manufacturing. , 2019, , 143-160.		0
2385	On-demand tailored mesoporous silica nanoparticles as a theranostic platform for tumor therapy. , 2019, , 213-246.		0
2386	Polymers in Biofabrication and 3D Tissue Modelling. Biomaterials Science Series, 2019, , 119-147.	0.1	Ο
2388	Multifunctional Composite Ecomaterials and Their Impact on Sustainability. , 2019, , 3193-3222.		0
2389	Therapeutic Use of Bioengineered Materials for Myocardial Infarction. , 2019, , 161-193.		5
2390	FEATURES OF THE STRUCTURE AND PROPERTIES OF BLENDS OF POLYETHYLENE TEREPHTHALATE GLYCOL WITH POLY-Îμ-CAPROLACTONE. Polymer Materials and Technologies, 2019, 5, 27-38.	0.1	0
2391	Are Medical Grade Bioabsorbable Polymers a Viable Material for Fused Filament Fabrication?. Journal of Medical Devices, Transactions of the ASME, 2019, 13, 0310081-310085.	0.4	Ο
2392	Isovolemic Degradation of Polycaprolactone Particles and Calculation of Their Original Size from Human Biopsy. Plastic and Reconstructive Surgery - Global Open, 2020, 8, e2866.	0.3	2
2393	Copolymerization of D,L-lactide and ε-caprolactone using tin(II) octanoate as catalysts: an insight into copolymer microstructure. Journal of the Belarusian State University Chemistry, 2020, , 43-49.	0.1	0
2394	TİTANYUM DIOKSİT KATKI MALZEMELERİ POLİKAPROLAKTON NANOKOMPOSİT FİBERLERİNİN SENTI KARAKTERİZASYONU. Eskişehir Teknik Üniversitesi Bilim Ve Teknoloji Dergisi B - Teorik Bilimler, 2020, 8, 257-265.	EZİ ve 0.0	1
2395	A 2D-Raman correlation spectroscopy analysis of the polymeric nanocomposites with magnetic nanoparticles. Journal of Molecular Structure, 2020, 1215, 128294.	1.8	2
2396	Suitability of EtO Sterilization for Polydopamine-coated, Self-fitting Bone Scaffolds. Polymer Degradation and Stability, 2021, 194, 109763.	2.7	3
2397	Poly-ε-Caprolactone/Halloysite Nanotube Composites for Resorbable Scaffolds: Effect of Processing Technology on Homogeneity and Electrospinning. Polymers, 2021, 13, 3772.	2.0	Ο
2398	Early Recognition of the PCL/Fibrous Carbon Nanocomposites Interaction with Osteoblast-like Cells by Raman Spectroscopy. Nanomaterials, 2021, 11, 2890.	1.9	9
2399	Synthesis and characterization of poly(trimetylene carbonate-co-ε-caprolactone) prepared by ring-opening polymerization using samarium(III) acetate as initiator. International Journal of Polymer Analysis and Characterization, 2022, 27, 16-31.	0.9	1

#	ARTICLE	IF	CITATIONS
2400	3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials, 2021, 279, 121216.	5.7	81
2401	Multifunctional Biofilter to Effectively Remove Toxins. ACS Applied Bio Materials, 2021, 4, 731-741.	2.3	2
2402	Breathable Materials and Hybrid Nanocomposites with Antimicrobial Activity Based on Porous Poly(εâ€Caprolactone) Obtained via Environmental Crazing. Macromolecular Materials and Engineering, 2021, 306, 2000636.	1.7	0
2403	On the Rational Drug Design for Hypertension through NMR Spectroscopy. Molecules, 2021, 26, 12.	1.7	3
2404	Photo-induced shape memory blend composites with remote selective self-healing performance enabled by polypyrrole nanoparticles. Composites Science and Technology, 2022, 217, 109123.	3.8	19
2405	Modification of craft paper to change its surface properties. AIP Conference Proceedings, 2020, , .	0.3	1
2406	Synthetic Materials: Processing and Surface Modifications for Vascular Tissue Engineering. , 2020, , 137-186.		2
2407	Tissue-Engineered Vascular Grafts for Children. , 2020, , 533-548.		1
2408	Polymer-based composites for musculoskeletal regenerative medicine. , 2020, , 33-82.		2
2410	Thiolene- and Polycaprolactone Methacrylate-Based Polymerized High Internal Phase Emulsion (PolyHIPE) Scaffolds for Tissue Engineering. Biomacromolecules, 2022, 23, 720-730.	2.6	25
2411	Bone tissue engineering using <scp>3â€D</scp> polycaprolactone/gelatin nanofibrous scaffold containing berberine: In vivo and in vitro study. Polymers for Advanced Technologies, 2022, 33, 672-681.	1.6	5
2412	Leaflet Tissue Generation from Microfibrous Heart Valve Leaflet Scaffolds with Native Characteristics. ACS Applied Bio Materials, 2021, 4, 7836-7847.	2.3	6
2413	The Multiweek Thermal Stability of Medicalâ€Grade Poly(εâ€caprolactone) During Melt Electrowriting. Small, 2022, 18, e2104193.	5.2	20
2414	Polyurethanes: Design, synthesis and structure-property behavior of versatile materials. Hacettepe Journal of Biology and Chemistry, 2020, 48, 425-445.	0.3	1
2415	Nigella sativa Seed Extract in Green Synthesis and Nanocomposite. Food Bioactive Ingredients, 2021, , 179-190.	0.3	2
2416	Features of obtaining and properties of binary blends of polylactides. Review. Chemistry Technology and Application of Substances, 2020, 3, 146-156.	0.2	0
2417	Preparation, Characterization and Processing of PCL/PHO Blends by 3D Bioplotting. International Polymer Processing, 2020, 35, 458-470.	0.3	0
2418	Invitro and Invivo Study of PCL-Hydrogel Scaffold to Advance Bioprinting Translation in Microtia Reconstruction. Journal of Craniofacial Surgery, 2020, Publish Ahead of Print, 1931-1936.	0.3	6

#	Article	IF	CITATIONS
2419	Mechanical Properties of Polycaprolactone (PCL) Scaffolds for Hybrid 3D-Bioprinting with Alginate-Gelatin Hydrogel. SSRN Electronic Journal, 0, , .	0.4	0
2420	Correlating degradation of functionalized polycaprolactone fibers and fibronectin adsorption using atomic force microscopy. Polymer Degradation and Stability, 2022, 195, 109788.	2.7	3
2421	Hydrophilic and degradable polylactones via copolymerization of ε-caprolactone and oxo-crown ether catalyzed by a bifunctional organic base. Reactive and Functional Polymers, 2022, 170, 105123.	2.0	1
2422	A review of protein adsorption and bioactivity characteristics of poly Îμ-caprolactone scaffolds in regenerative medicine. European Polymer Journal, 2022, 162, 110892.	2.6	15
2423	Overview of scaffolds processing technologies. , 2022, , 215-262.		0
2424	Biodegradable and bioactive polymer/inorganic phase composites. , 2022, , 179-212.		1

#	Article	IF	CITATIONS
2437	A comparison between βâ€ŧricalcium phosphate and chitosan <scp>polyâ€caprolactone</scp> â€based <scp>3D</scp> melt extruded composite scaffolds. Biopolymers, 2022, 113, e23482.	1.2	11
2438	Porous Bilayer Vascular Grafts Fabricated from Electrospinning of the Recombinant Human Collagen (RHC) Peptide-Based Blend. Polymers, 2021, 13, 4042.	2.0	10
2439	Biodegradation of polymers in managing plastic waste — A review. Science of the Total Environment, 2022, 813, 151880.	3.9	64
2440	Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomaterialia, 2022, 138, 92-111.	4.1	42
2441	Implantable and Degradable Thermoplastic Elastomer. ACS Biomaterials Science and Engineering, 2021, 7, 5598-5610.	2.6	6
2442	Microfluidic-assisted electrospinning, an alternative to coaxial, as a controlled dual drug release system to treat inflammatory arthritic diseases. Materials Science and Engineering C, 2022, 134, 112585.	3.8	6
2443	AIE-Based Fluorescent Triblock Copolymer Micelles for Simultaneous Drug Delivery and Intracellular Imaging. Biomacromolecules, 2021, 22, 5243-5255.	2.6	17
2444	Effects of gamma radiation on nanocomposite films of polycaprolactone with modified MCM-48. Polimeros, 2021, 31, .	0.2	1
2445	An Overview of Biopolymer/Clay Nanocomposites. , 2021, , 1-69.		0
2447	3-D Printing Technologies From Infancy to Recent Times: A Scientometric Review. IEEE Transactions on Engineering Management, 2024, 71, 671-687.	2.4	14
2449	Combined sterilization and fabrication of drug-loaded scaffolds using supercritical CO2 technology. International Journal of Pharmaceutics, 2022, 612, 121362.	2.6	8
2450	Enkapsülasyon Teknikleri ve Kontrollü Salım. European Journal of Science and Technology, 0, , .	0.5	1
2451	Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers, 2022, 14, 182.	2.0	121
2452	Selective and stable upgrading of biomass-derived furans into plastic monomers by coupling homogeneous and heterogeneous catalysis. CheM, 2022, 8, 1034-1049.	5.8	24
2453	An efficient way to change surface properties of poly(l-lactic acid) by synthesis of polycaprolactone grafted fluoropolyacrylate. Materials Chemistry and Physics, 2022, 278, 125609.	2.0	4
2454	Biochar as a sustainable and renewable additive for the production of Poly(Îμ-caprolactone) composites. Sustainable Chemistry and Pharmacy, 2022, 25, 100586.	1.6	7
2455	The use of polymer materials for medical applications. Problemy Zdorovʹâ I èkologii, 2020, , 5-13.	0.0	0
2456	Start-up Stage for an Electric Field Assisted Fused Deposition. , 2020, , .		Ο

#	Article	IF	CITATIONS
2457	A Simple Method to Produce Engineered Cartilage from Human Adipose-Derived Mesenchymal Stem Cells and Poly $\hat{l}\mu$ -Caprolactone Scaffolds. Advances in Experimental Medicine and Biology, 2021, , .	0.8	2
2458	Additive manufacturing with biodegradable polymers. , 2022, , 611-679.		2
2459	Poly(ether ester) and related block copolymers via organocatalytic ringâ€opening polymerization. Journal of Polymer Science, 2022, 60, 3341-3353.	2.0	6
2460	Nature-Derived and Synthetic Additives to poly(É›-Caprolactone) Nanofibrous Systems for Biomedicine; an Updated Overview. Frontiers in Chemistry, 2021, 9, 809676.	1.8	30
2461	Biomaterials for medical products. , 2022, , 25-62.		0
2462	Bioplastics for a circular economy. Nature Reviews Materials, 2022, 7, 117-137.	23.3	550
2463	Effect of Graphene Addition on Polycaprolactone Scaffolds Fabricated Using Melt-Electrowriting. Polymers, 2022, 14, 319.	2.0	7
2464	Emulsion templated scaffolds of poly(ε-caprolactone) – a review. Chemical Communications, 2022, 58, 1468-1480.	2.2	26
2465	Cytocompatibility and bioactivity of calcium hydroxide-containing nanofiber scaffolds loaded with fibronectin for dentin tissue engineering. Clinical Oral Investigations, 2022, 26, 4031-4047.	1.4	5
2466	BiodegradableÂpolymer blendsÂandÂcompositesÂfor biomedical applications. , 2022, , 573-590.		2
2467	Ring-Opening Polymerization of ε-Caprolactone by Using Aluminum Complexes Bearing Aryl Thioether Phenolates: Labile Thioether Chelation. Inorganic Chemistry, 2022, , .	1.9	8
2468	Additive Manufactured Macroporous Chambers Facilitate the Regeneration of Large Volume Soft Tissue from Adipose-Derived Extracellular Matrix. SSRN Electronic Journal, 0, , .	0.4	0
2469	Development of Neuronal Guidance Fibers for Stimulating Electrodes: Basic Construction and Delivery of a Growth Factor. Frontiers in Bioengineering and Biotechnology, 2022, 10, 776890.	2.0	2
2470	Biodegradable Poly-ε-Caprolactone Scaffolds with ECFCs and iMSCs for Tissue-Engineered Heart Valves. International Journal of Molecular Sciences, 2022, 23, 527.	1.8	9
2471	Experimental study on the biocompatibility and osteogenesis induction ability of PLLA/DDM scaffolds. Odontology / the Society of the Nippon Dental University, 2022, , 1.	0.9	2
2472	Bioactive PCL microspheres with enhanced biocompatibility and collagen production for functional hyaluronic acid dermal fillers. Biomaterials Science, 2022, 10, 947-959.	2.6	9
2473	Physicochemical Characterization of Nanocellulose: Composite, Crystallinity, Morphology. , 2022, , 1-36.		0
2474	Porous functionally graded scaffolds of poly (ε-caprolactone)/ZnO nanocomposite for skin tissue engineering: Morphological, mechanical and biological evaluation. Materials Chemistry and Physics, 2022, 280, 125786.	2.0	2

#	Article	IF	CITATIONS
2475	Thermally-stable photo-curing chemistry for additive manufacturing by direct melt electrowriting. Additive Manufacturing, 2022, 51, 102623.	1.7	3
2476	Molecular mobility, crystallization and melt-memory investigation of molar mass effects on linear and hydroxyl-terminated Poly(ε-caprolactone). Polymer, 2022, 242, 124603.	1.8	17
2477	PCL-PEG copolymer based injectable thermosensitive hydrogels. Journal of Controlled Release, 2022, 343, 217-236.	4.8	68
2478	The effect of pNaSS grafting of knitted poly(lµ-caprolactone) artificial ligaments on in vitro mineralization and in vivo osseointegration. Materialia, 2022, 21, 101331.	1.3	3
2479	Production and characterization of hybrid nanofiber wound dressing containing Centella asiatica coated silver nanoparticles by mutual electrospinning method. European Polymer Journal, 2022, 166, 111023.	2.6	30
2481	One-pot multifunctional polyesters by continuous flow organocatalysed ring-opening polymerisation for targeted and tunable materials design. Polymer Chemistry, 2022, 13, 1387-1393.	1.9	5
2482	Recent Progress on Bio-Based Polyesters Derived from 2,5-Furandicarbonxylic Acid (FDCA). Polymers, 2022, 14, 625.	2.0	45
2483	Foaming of PCL-Based Composites Using scCO2: Structure and Physical Properties. Materials, 2022, 15, 1169.	1.3	7
2484	A review on biodegradable biliary stents: materials and future trends. Bioactive Materials, 2022, 17, 488-495.	8.6	19
2486	Thiolâ€Mediated Chain Transfer as a Tool to Improve the Toughness of Acrylate Photoâ€Crosslinked Poly(Îμ) Tj I	ETQq1 1 0	.784314 rg <mark>8</mark> 1
2486 2487		23.3	.784314 rgB
	Thiolâ€Mediated Chain Transfer as a Tool to Improve the Toughness of Acrylate Photoâ€Crosslinked Poly(Îμ) Tj i Integrating plant molecular farming and materials research for next-generation vaccines. Nature	1.7	1
2487	Thiolâ€Mediated Chain Transfer as a Tool to Improve the Toughness of Acrylate Photoâ€Crosslinked Poly(ε) Tj H Integrating plant molecular farming and materials research for next-generation vaccines. Nature Reviews Materials, 2022, 7, 372-388. Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers. Journal	23.3	65
2487 2488	Thiolâ€Mediated Chain Transfer as a Tool to Improve the Toughness of Acrylate Photoâ€Crosslinked Poly(ε) Tj I Integrating plant molecular farming and materials research for next-generation vaccines. Nature Reviews Materials, 2022, 7, 372-388. Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers. Journal of the Serbian Chemical Society, 2022, 87, 1075-1090. Recent Advancement in Biomedical Applications of Polycaprolactone and Polycaprolactone-Based	23.3	65 0
2487 2488 2490	Thiolâ€Mediated Chain Transfer as a Tool to Improve the Toughness of Acrylate Photoâ€Crosslinked Poly(µ) Tj I Integrating plant molecular farming and materials research for next-generation vaccines. Nature Reviews Materials, 2022, 7, 372-388. Star-shaped poly(µ-caprolactones) with well-defined architecture as potential drug carriers. Journal of the Serbian Chemical Society, 2022, 87, 1075-1090. Recent Advancement in Biomedical Applications of Polycaprolactone and Polycaprolactone-Based Materials. , 2022, , 795-809. The effect of nanocomposite synthesis and the drying procedure of graphene oxide dispersion on the polycaprolactone/graphene oxide nanocomposite properties. Polymers and Polymer Composites, 2022,	0.4	65 0 4
2487 2488 2490 2491	Thiolâ€Mediated Chain Transfer as a Tool to Improve the Toughness of Acrylate Photoâ€Crosslinked Poly(ε) Tj f Integrating plant molecular farming and materials research for next-generation vaccines. Nature Reviews Materials, 2022, 7, 372-388. Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers. Journal of the Serbian Chemical Society, 2022, 87, 1075-1090. Recent Advancement in Biomedical Applications of Polycaprolactone and Polycaprolactone-Based Materials., 2022, , 795-809. The effect of nanocomposite synthesis and the drying procedure of graphene oxide dispersion on the polycaprolactone/graphene oxide nanocomposite properties. Polymers and Polymer Composites, 2022, 30, 096739112110689. Preparation of 4D printed peripheral vascular stent and its degradation behavior under fluid shear	1.7 23.3 0.4 1.0	1 65 0 4 1
2487 2488 2490 2491 2492	 Thiolâ€Mediated Chain Transfer as a Tool to Improve the Toughness of Acrylate Photoâ€Crosslinked Poly(ε) Tj II Integrating plant molecular farming and materials research for next-generation vaccines. Nature Reviews Materials, 2022, 7, 372-388. Star-shaped poly(ε-caprolactones) with well-defined architecture as potential drug carriers. Journal of the Serbian Chemical Society, 2022, 87, 1075-1090. Recent Advancement in Biomedical Applications of Polycaprolactone and Polycaprolactone-Based Materials. , 2022, , 795-809. The effect of nanocomposite synthesis and the drying procedure of graphene oxide dispersion on the polycaprolactone/graphene oxide nanocomposite properties. Polymers and Polymer Composites, 2022, 30, 096739112110689. Preparation of 4D printed peripheral vascular stent and its degradation behavior under fluid shear stress after deployment. Biomaterials Science, 2022, 10, 2302-2314. Reducing the crystallinity of PCL chains by copolymerization with substituted δlµ-lactones and its 	1.7 23.3 0.4 1.0 2.6	1 65 0 4 1 15

#	Article	IF	CITATIONS
2496	3D Bioprinting-Based Biofabrication Strategy for Orthopedic Tissue Engineering. SSRN Electronic Journal, 0, , .	0.4	1
2497	Formulation development and pharmacokinetic studies of long acting in situ depot injection of risperidone. Brazilian Journal of Pharmaceutical Sciences, 0, 58, .	1.2	2
2498	Development of 3D Printed Biodegradable Mesh with Antimicrobial Properties for Pelvic Organ Prolapse. Polymers, 2022, 14, 763.	2.0	10
2499	From Chain Growth to Step Growth Polymerization of Photoreactive Polyâ€Îµâ€Caprolactone: The Network Topology of Bioresorbable Networks as Tool in Tissue Engineering. Advanced Functional Materials, 2022, 32, .	7.8	14
2500	Recent advances in polymers and polymer composites for food packaging. Materials Today, 2022, 53, 134-161.	8.3	84
2501	Co-axial electrospraying of injectable multi-cancer drugs nanocapsules with polymer shells for targeting aggressive breast cancers. Cancer Nanotechnology, 2022, 13, .	1.9	5
2502	Emerging polymeric biomaterials and manufacturing techniques in regenerative medicine. Aggregate, 2022, 3, .	5.2	13
2503	3D Printed Poly(?-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties. International Journal of Molecular Sciences, 2022, 23, 2318.	1.8	12
2504	A Biohybrid Material With Extracellular Matrix Core and Polymeric Coating as a Cell Honing Cardiovascular Tissue Substitute. Frontiers in Cardiovascular Medicine, 2022, 9, 807255.	1.1	2
2505	From bio-based furanics to biodegradable plastics. CheM, 2022, 8, 897-899.	5.8	6
2506	Synthesis and Properties of Functionalized Poly(ε-caprolactone); Chain Polymerization Followed by Polycondensation in One Pot with Initiator and Catalyst in One Molecule. Synthesis and Molecular Structures. Macromolecules, 2022, 55, 2210-2221.	2.2	10
2507	Synthesis of polyglobalide by enzymatic ring opening polymerization using pressurized fluids. Journal of Supercritical Fluids, 2022, 186, 105588.	1.6	6
2508	Fabrication of Polymer/Graphene Biocomposites for Tissue Engineering. Polymers, 2022, 14, 1038.	2.0	8
2509	Melt-Spun, Cross-Section Modified Polycaprolactone Fibers for Use in Tendon and Ligament Tissue Engineering. Fibers, 2022, 10, 23.	1.8	5
2510	The Degradation of Synthetic Polymeric Scaffolds With Strut-like Architecture Influences the Mechanics-dependent Repair Process of an Osteochondral Defect in Silico. Frontiers in Bioengineering and Biotechnology, 2022, 10, 846665.	2.0	5
2511	3D Printing of Polymeric Bioresorbable Stents: A Strategy to Improve Both Cellular Compatibility and Mechanical Properties. Polymers, 2022, 14, 1099.	2.0	13
2512	Two Extracellular Poly(ε-caprolactone)-Degrading Enzymes From Pseudomonas hydrolytica sp. DSWY01T: Purification, Characterization, and Gene Analysis. Frontiers in Bioengineering and Biotechnology, 2022, 10, 835847.	2.0	2
2513	Ringâ€opening polymerization of 1,4â€oxathianâ€2â€one and its copolymerization with δâ€valerolactone. Journa of Polymer Science, 2022, 60, 1976-1987.	2.0	2

#	Article	IF	Citations
2514	In Vitro Hydrolytic Degradation of Polyester-Based Scaffolds under Static and Dynamic Conditions in a Customized Perfusion Bioreactor. Materials, 2022, 15, 2572.	1.3	11
2515	Nano-hydroxyapatite-incorporated polycaprolactone nanofibrous scaffold as a dentin tissue engineering-based strategy for vital pulp therapy. Dental Materials, 2022, 38, 960-977.	1.6	10
2516	Pharmaceutical, biomedical and ophthalmic applications of biodegradable polymers (BDPs): literature and patent review. Pharmaceutical Development and Technology, 2022, 27, 341-356.	1.1	10
2517	Investigation of polycaprolactone for bone tissue engineering scaffolds: In vitro degradation and biological studies. Materials and Design, 2022, 216, 110582.	3.3	28
2518	Alginate/polycaprolactone composite fibers as multifunctional wound dressings. Carbohydrate Polymers, 2022, 289, 119440.	5.1	31
2519	Modification of Cellulose Micro- and Nanomaterials to Improve Properties of Aliphatic Polyesters/Cellulose Composites: A Review. Polymers, 2022, 14, 1477.	2.0	31
2520	Slippery Antifouling Polymer Coatings Fabricated Entirely from Biodegradable and Biocompatible Components. ACS Applied Materials & Interfaces, 2022, 14, 17940-17949.	4.0	10
2521	A Modified Polymeric Nano-formulation to Control Binding and Release of Insulin. Journal of Pharmaceutical Sciences, 2022, , .	1.6	0
2522	Cellulose nanocrystals as initiator of ring-opening polymerization of ε-caprolactone: Mathematical modeling and experimental verification. European Polymer Journal, 2022, 170, 111171.	2.6	4
2523	3D printing of complex architected metamaterial structures by simple material extrusion for bone tissue engineering. Materials Today Communications, 2022, 31, 103382.	0.9	3
2524	Development and assessment of modified-honeycomb-structure scaffold for bone tissue engineering. Additive Manufacturing, 2022, 54, 102740.	1.7	7
2525	Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130, 105219.	1.5	14
2526	History of breast implants: Back to the future. JPRAS Open, 2022, 32, 166-177.	0.4	21
2527	Rational design of biodegradable thermoplastic polyurethanes for tissue repair. Bioactive Materials, 2022, 15, 250-271.	8.6	39
2528	Structural and Thermal Properties of Polycaprolactone/PEG-Coated Zinc Oxide Nanocomposites. Polymer Science - Series A, 2021, 63, 855-864.	0.4	1
2529	Fine Crystalline Mg-Al Hydrotalcites as Catalysts for Baeyer-Villiger Oxidation of Cyclohexanone with H2O2. Catalysts, 2021, 11, 1493.	1.6	8
2530	Nucleation Efficiencies of Calcium Hexahydrophthalic Acid for Poly(ε-caprolactone) Crystallization. ACS Applied Polymer Materials, 2022, 4, 627-634.	2.0	2
2531	Organocatalytic Ring-Opening Polymerization of ε-Caprolactone Using		

ARTICLE IF CITATIONS Biocompatible Poly(lµ-caprolactone)-based Shape-memory Polyurethane Composite Scaffold with 2532 2.7 3 Bone-induced Activity. Journal of Bionic Engineering, 2022, 19, 167-178. Miscibility, Morphology, and Crystallization Kinetics of Biodegradable Poly($\hat{l}\mu$ -caprolactone)/Ascorbic Acid Blends. ACS Applied Polymer Materials, 2022, 4, 301-312. Antibacterial and Biodegradable Electrospun Filtering Membranes for Facemasks: An Attempt to 2534 1.3 12 Reduce Disposable Masks Use. Applied Sciences (Switzerland), 2022, 12, 67. Calcium Carbonate Mineralization in Polycaprolactone Composites with Nanocrystalline Cellulose: Structure, Morphology, and Adsorption Properties. Russian Journal of Inorganic Chemistry, 2021, 66, 0.3 1904-1916. Development of a novel polycaprolactone based composite membrane for periodontal regeneration 2536 1.9 11 using spin coating technique. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 783-800. Polycaprolactone usage in additive manufacturing strategies for tissue engineering applications: A review. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1479-1503. 1.6 Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging 2538 5.3 6 Applications. Polymer Reviews, 2022, 62, 653-721. Conformational characteristics and conformation-dependent properties of $poly(\hat{l}\mu$ -caprolactone). 2539 1.3 Physical Chemistry Chemical Physics, 2022, , . Magnetically active nanocomposites based on biodegradable polylactide, polycaprolactone, 2540 7 1.8 polybutylene succinate and polybutylene adipate terephthalate. Polymer, 2022, 124804. A novel hybrid polymer of <scp>PCL</scp>/fish gelatin nanofibrous scaffold improves proliferation 2541 and differentiation of Wharton's jellyâ€derived mesenchymal cells into isletâ€like cells. Artificial Organs, 1.0 Preparation of Linalool/Polycaprolactone Coaxial Electrospinning Film and Application in Preserving 2542 0 1.5 Salmon Slices. Frontiers in Microbiology, 2022, 13, 860123. Development and Characterization of PEGylated Fatty Acid-Block-Poly(Îu-caprolactone) Novel Block Copolymers and Their Self-Assembled Nanostructures for Ocular Delivery of Cyclosporine A. 2543 2.0 Polymers, 2022, 14, 1635. Polymeric Nanocapsules Containing Fennel Essential Oil: Their Preparation, Physicochemical Characterization, Stability over Time and in Simulated Gastrointestinal Conditions. Pharmaceutics, 2544 2.0 12 2022, 14, 873. Three-dimensional gradient porous polymeric composites for osteochondral regeneration. Journal of Polymer Research, 2022, 29, 1. 2545 1.2 Structural and mechanical properties of biodegradable poly(lactic acid) and pectin composites: using 2546 13 1.3 bionucleating agent to improve crystallization behavior. Polymer Journal, 2022, 54, 921-930. Biocompatible Synthetic Polymers for Tissue Engineering Purposes. Biomacromolecules, 2022, 23, 2547 1841-1863. Long-Term Outcomes of Secondary Nasal Tip Plasty After Degradation of a Polycaprolactone (PCL) 2548 0.5 2 Mesh. Aesthetic Plastic Surgery, 2022, 46, 2358-2365. Progress in Degradation Behavior of Most Common Types of Functionalized Polymers: A Review. 2549 Macromolecular Rapid Communications, 2022, 43, e2200254.

#	Article	IF	CITATIONS
2550	Biomimetic hierarchical nanofibrous surfaces inspired by superhydrophobic lotus leaf structure for preventing tissue adhesions. Materials and Design, 2022, 217, 110661.	3.3	25
2558	Ring-opening polymerization of $\hat{I}\mu$ -caprolactone mediated by a di-zinc complex bearing a macrocyclic thioether-phenolate [OSSO]-type ligand. Polymer Chemistry, 2022, 13, 2971-2979.	1.9	7
2559	Polycaprolactones based bionanocomposites for food packaging applications. , 2022, , 135-151.		0
2560	Comparison of Release Efficiencies for the Controlled-Release of Potassium Permanganate in Polycaprolactone. Journal of Environmental Protection, 2022, 13, 277-288.	0.3	0
2562	Characterization and in vitro analysis of a poly(ε-caprolactone)–gelatin matrix produced by rotary jet spinning and applied as a skin dressing. Polymer Bulletin, 0, , .	1.7	1
2563	Bone regeneration in rat using polycaprolactone/gelatin/epinephrine scaffold. Drug Development and Industrial Pharmacy, 2021, 47, 1915-1923.	0.9	3
2564	Characterization of Zanthoxylum rhoifolium (Sapindales: Rutaceae) Essential Oil Nanospheres and Insecticidal Effects to Bemisia tabaci (Sternorrhyncha: Aleyrodidae). Plants, 2022, 11, 1135.	1.6	4
2565	Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromolecular Bioscience, 2022, 22, e2200039.	2.1	12
2566	3D micromolding of seed-like probes for self-burying soft robots. , 2022, , .		3
2567	Blends Based on Poly(ε-Caprolactone) with Addition of Poly(Lactic Acid) and Coconut Fibers: Thermal Analysis, Ageing Behavior and Application for Embossing Process. Polymers, 2022, 14, 1792.	2.0	7
2568	POLYCAPROLACTONE NANOPARTICLES AS DELIVERY VEHICLE IN COMBATING DISEASES. , 2022, , 76-78.		0
2569	Binary polymer systems for biomedical applications. International Materials Reviews, 2023, 68, 184-224.	9.4	7
2570	Effect of Angiogenesis in Bone Tissue Engineering. Annals of Biomedical Engineering, 2022, 50, 898-913.	1.3	22
2572	Environmentally friendly fabrication of electrospun nanofibers made of polycaprolactone, chitosan and κ-carrageenan (PCL/CS/κ-C). Biomedical Materials (Bristol), 2022, 17, 045019.	1.7	15
2573	Pharmaceutical-eluting hybrid degradable hydrogel/microparticle loaded sacs for finger joint interpositional arthroplasty. , 2022, 137, 212846.		5
2574	A review on alternative raw materials for sustainable production: novel plant fibers. Cellulose, 2022, 29, 4877-4918.	2.4	23
2576	Routes towards manufacturing biodegradable electronics with polycaprolactone (PCL) via direct light writing and electroless plating. Flexible and Printed Electronics, 2022, 7, 025006.	1.5	10
2577	Fabrication of Polycaprolactone -Silica Aerogel Nanofibers via Electrospinning Method. Journal of Nano Research, 0, 73, 161-174.	0.8	3

#	Article	IF	CITATIONS
2578	On novel hydrogels based on poly(2-hydroxyethyl acrylate) and polycaprolactone with improved mechanical properties prepared by frontal polymerization. European Polymer Journal, 2022, 171, 111226.	2.6	9
2579	Microstructures and properties of polycaprolactone/tricalcium phosphate scaffolds containing polyethylene glycol fabricated by 3D printing. Ceramics International, 2022, 48, 24032-24043.	2.3	9
2580	Improving the mechanical properties of polycaprolactone using functionalized nanofibrillated bacterial cellulose with high dispersibility and long fiber length as a reinforcement material. Composites Part A: Applied Science and Manufacturing, 2022, 158, 106978.	3.8	11
2581	Study on Mechanical Properties of Polycaprolactone Modified Cement-Based Material. International Journal of Concrete Structures and Materials, 2022, 16, .	1.4	4
2582	Luminescent CdSe Quantum Dot Arrays for Rapid Sensing of Explosive Taggants. ACS Applied Nano Materials, 2022, 5, 6717-6725.	2.4	10
2583	Melt Electrowriting of a Photoâ€Crosslinkable Poly(<i>ε</i> â€Caprolactone)â€Based Material into Tubular Constructs with Predefined Architecture and Tunable Mechanical Properties. Macromolecular Materials and Engineering, 0, , 2200097.	1.7	6
2584	Progress in the Degradability of Biodegradable Film Materials for Packaging. Membranes, 2022, 12, 500.	1.4	20
2585	Conductive nerve guide conduits based on wet-adhesive hydrogel to accelerate peripheral nerve repair. Applied Materials Today, 2022, 27, 101491.	2.3	11
2586	Fused filament fabrication of polycaprolactone bioscaffolds: Influence of fabrication parameters and thermal environment on geometric fidelity and mechanical properties. Bioprinting, 2022, 27, e00206.	2.9	4
2587	A correlation of Raman data with the nanomechanical results of polymer nanomaterials with carbon nanoparticles. Journal of Molecular Structure, 2022, 1264, 133305.	1.8	4
2588	Sustainability and Polyesters: Beyond Metals and Monomers to Function and Fate. Accounts of Chemical Research, 2022, 55, 1514-1523.	7.6	18
2589	Binuclear ketodiiminate magnesium complexes for the ROP of cyclic -Lactide and ε-Caprolactone. Polyhedron, 2022, 222, 115918.	1.0	2
2590	Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering. International Journal of Molecular Sciences, 2022, 23, 5831.	1.8	25
2592	Treatment of mild to moderate stress urinary incontinence with a novel polycaprolactonebased bioresorbable urethral bulking agent. Urogynaecologia International Journal, 2022, 34, .	0.2	1
2593	Design of 3D Polycaprolactone/ε-Polylysine Modified Chitosan Fibrous Scaffolds Incorporation of Bioactive Factors for Accelerating Wound Healing. SSRN Electronic Journal, 0, , .	0.4	0
2594	Manufacturing and characterizing of the poly (<i>ε</i> -caprolactone)/poly (N-vinyl-2-pyrrolidone) core-shell nanofibers loaded by multi-walled carbon nanotubes coated by polypyrrole via vapor phase and chemical method and its application as an electro-responsive anticancer drug delivery system. International lournal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 1009-1020.	1.8	3
2595	Chondrogenic Differentiation of Human Mesenchymal Stem Cells and Macrophage Polarization on 3D-Printed Poly(ε-caprolactone)/Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Blended Scaffolds with Different Secondary Porous Structures. ACS Applied Bio Materials, 2022, 5, 2689-2702.	2.3	2
2596	A 3D-Printed Polycaprolactone/Marine Collagen Scaffold Reinforced with Carbonated Hydroxyapatite from Fish Bones for Bone Regeneration. Marine Drugs, 2022, 20, 344.	2.2	10

#	Article	IF	CITATIONS
2598	Foaming of PCL-Based Composites Using scCO2—Biocompatibility and Evaluation for Biomedical Applications. Materials, 2022, 15, 3858.	1.3	2
2599	Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS Applied Bio Materials, 2022, 5, 2461-2480.	2.3	18
2600	Potential of Biodegradable Synthetic Polymers for Use in Small-diameter Vascular Engineering. Macromolecular Research, 2022, 30, 425-437.	1.0	3
2601	Electrospun Carbon Nanotube-Based Scaffolds Exhibit High Conductivity and Cytocompatibility for Tissue Engineering Applications. ACS Omega, 2022, 7, 20006-20019.	1.6	10
2602	Additively manufactured macroporous chambers facilitate large volume soft tissue regeneration from adipose-derived extracellular matrix. Acta Biomaterialia, 2022, 148, 90-105.	4.1	10
2603	The effect of solvent and pressure on polycaprolactone solutions for particle and fibre formation. European Polymer Journal, 2022, 173, 111300.	2.6	13
2606	3D Plotting of Calcium Phosphate Cement and Melt Electrowriting of Polycaprolactone Microfibers in One Scaffold: A Hybrid Additive Manufacturing Process. Journal of Functional Biomaterials, 2022, 13, 75.	1.8	8
2607	A methodological approach to ε-caprolactone modification of wood. Journal of Wood Chemistry and Technology, 2022, 42, 286-296.	0.9	7
2608	Exploring Nanofibers and Hydrogels as Collagenase Carriers for the Development of Advanced Wound Dressings. Materials Science Forum, 0, 1063, 43-55.	0.3	0
2609	Investigating Potential Effects of Ultra-Short Laser-Textured Porous Poly-Îμ-Caprolactone Scaffolds on Bacterial Adhesion and Bone Cell Metabolism. Polymers, 2022, 14, 2382.	2.0	7
2610	3D printed bioresorbable scaffolds for articular cartilage tissue engineering: a comparative study between neat polycaprolactone (PCL) and poly(lactide-b-ethylene glycol) (PLA-PEG) block copolymer. Biomedical Materials (Bristol), 2022, 17, 045028.	1.7	2
2611	Multiblock copolymers containing poly(butylene succinate) and poly(ε-caprolactone) blocks: Effect of block ratio and length on physical properties and biodegradability. Journal of Polymer Research, 2022, 29, .	1.2	1
2612	Evaluation of Electrospun PCL-PLGA for Sustained Delivery of Kartogenin. Molecules, 2022, 27, 3739.	1.7	5
2613	Laser Sintering Approaches for Bone Tissue Engineering. Polymers, 2022, 14, 2336.	2.0	7
2614	Bioactive engineered scaffolds based on PCL-PEG-PCL and tumor cell-derived exosomes to minimize the foreign body reaction. Biomaterials and Biosystems, 2022, 7, 100055.	1.0	4
2615	Fibroblast cell responses to physical cues of the triangular prism micropattern and aligned nanofibrous scaffold for promoting wound closure. Materials and Design, 2022, 220, 110864.	3.3	2
2616	Study of binary PLA/PBSA and ternary blends PLA/PCL/PBSA for the manufacturing of single dose strips. Procedia CIRP, 2022, 110, 335-341.	1.0	0
2617	Biodegradable plastics as a substitute to traditional polythenes: a step toward a safer environment. , 2022, , 193-215.		1

#	Article	IF	CITATIONS
2618	Drug Repositioning for the Treatment of COVID-19: Toxicity Assays of Nanoencapsulated Colchicine In Drosophila Melanogaster. SSRN Electronic Journal, 0, , .	0.4	0
2620	Niobium and Tantalum complexes derived from the acids Ph ₂ C(X)CO ₂ H (X =) Tj ETQq1 14146-14154.	1 0.7843 1.4	14 rgBT /C
2621	Green polymer filaments for 3D printing. , 2022, , 463-516.		0
2622	Polymers for 3D bioprinting. , 2022, , 337-349.		0
2623	Physicochemical Characterization of Nanocellulose: Composite, Crystallinity, Morphology. , 2022, , 83-117.		0
2624	Electrospun-Fibrous-Architecture-Mediated Non-Viral Gene Therapy Drug Delivery in Regenerative Medicine. Polymers, 2022, 14, 2647.	2.0	7
2625	Evaluación fÃsico-quÃmica de compositos madera-plástico para el diseño de productos. Revista Ion, 2022, 35, .	0.1	0
2626	Preparation of ε-Caprolactone/Fe3O4 Magnetic Nanocomposite and Its Application to the Remazol Brilliant Violet 5R Dye Adsorption from Wastewaters by Using RSM. Journal of Polymers and the Environment, 2022, 30, 4225-4237.	2.4	3
2627	Preparation and Mechanisms of Compatible Composite from Water Soluble Starch and Polycaprolactone. Starch/Staerke, 0, , 2200069.	1.1	0
2628	Effect of aliphatic segment length and content on crystallization and biodegradation properties of aliphatic-aromatic co-polyesters. Polymer Degradation and Stability, 2022, 203, 110080.	2.7	7
2629	3D-printed reservoir-type implants containing poly(lactic acid)/poly(caprolactone) porous membranes for sustained drug delivery. , 2022, 139, 213024.		20
2630	Novel elastomeric fibrous composites of poly-ε-caprolactone/propolis and their evaluation for biomedical applications. Journal of Polymer Research, 2022, 29, .	1.2	9
2631	É›-caprolactone and pentaerythritol derived oligomer for rigid polyurethane foams preparation. Journal of Cellular Plastics, 2022, 58, 757-775.	1.2	1
2632	Bioactive, Degradable and Tough Hybrids Through Calcium and Phosphate Incorporation. Frontiers in Materials, 0, 9, .	1.2	7
2633	Preparation of PCL Electrospun Fibers Loaded with Cisplatin and Their Potential Application for the Treatment of Prostate Cancer. Emergency Medicine International, 2022, 2022, 1-8.	0.3	2
2634	Bio-Mimicking Acellular Wet Electrospun Scaffolds Promote Accelerated Integration and Re-Epithelialization of Full-Thickness Dermal Wounds. Bioengineering, 2022, 9, 324.	1.6	1
2635	On the effective application of star-shaped polycaprolactones with different end functionalities to improve the properties of polylactic acid blend films. European Polymer Journal, 2022, 176, 111402.	2.6	5
2636	Promoting endogenous articular cartilage regeneration using extracellular matrix scaffolds. Materials Today Bio, 2022, 16, 100343.	2.6	13

#	Article	IF	Citations
2637	AC electrospinning: impact of high voltage and solvent on the electrospinnability and productivity of polycaprolactone electrospun nanofibrous scaffolds. Materials Today Chemistry, 2022, 26, 101025.	1.7	30
2638	3D cell-printing of gradient multi-tissue interfaces for rotator cuff regeneration. Bioactive Materials, 2023, 19, 611-625.	8.6	12
2639	Recent progress in multifunctional conjugated polymer nanomaterial-based synergistic combination phototherapy for microbial infection theranostics. Coordination Chemistry Reviews, 2022, 470, 214701.	9.5	21
2640	3D printed personalized, heparinized and biodegradable coronary artery stents for rabbit abdominal aorta implantation. Chemical Engineering Journal, 2022, 450, 138202.	6.6	13
2641	Effect of nonaffine displacement on the mechanical performance of degraded PCL and its graphene composites: an atomistic investigation. Nanoscale, 2022, 14, 14082-14096.	2.8	0
2642	Evaluation of Diced Cartilage Grafts Shaped with Three-Dimensionally–Printed Bioresorbable Polycaprolactone Molds. Plastic and Reconstructive Surgery, 2022, 150, 800e-809e.	0.7	1
2643	Characterization of a nanocomposite scaffold and assessment of its osteogenic influence in a rabbit mandibular bone defect model. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 2023, 35, 76-84.	0.2	1
2644	Nanofiber Scaffold Based on Polylactic Acid-Polycaprolactone for Anterior Cruciate Ligament Injury. Polymers, 2022, 14, 2983.	2.0	3
2645	Research Progress of Conjugated Nanomedicine for Cancer Treatment. Pharmaceutics, 2022, 14, 1522.	2.0	11
2646	A Bilayer Membrane Doped with Struvite Nanowires for Guided Bone Regeneration. Advanced Healthcare Materials, 2022, 11, .	3.9	9
2647	Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Acta Biomaterialia, 2023, 156, 4-20.	4.1	24
2648	A 3D printed Do-It-Yourself miniaturized device with a sensor responsive at six different wavelengths for reflectance measurements on paper-based supports. Microchemical Journal, 2022, 182, 107857.	2.3	0
2649	Bone tissue engineering via application of a PCL/Gelatin/Nanoclay/Hesperetin 3D nanocomposite scaffold. Journal of Drug Delivery Science and Technology, 2022, 76, 103704.	1.4	3
2650	Additive Manufacturing of Biomaterials—Design Principles and Their Implementation. Materials, 2022, 15, 5457.	1.3	31
2651	Upcycling of Poly(ϵâ€caprolactone) to Valuable Chemicals by TBDâ€Catalyzed Efficient Methanolysis Strategy. Chemistry - an Asian Journal, 2022, 17, .	1.7	10
2652	Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials, 2022, 288, 121699.	5.7	18
2653	Enhancement of PCL/PLA Electrospun Nanocomposite Fibers Comprising Silver Nanoparticles Encapsulated with <i>Thymus Vulgaris</i> L. Molecules for Antibacterial and Anticancer Activities. ACS Biomaterials Science and Engineering, 2022, 8, 3717-3732.	2.6	21
2654	Establishment of a bi-layered tissue engineered conjunctiva using a 3D-printed melt electrowritten poly-(Îμ-caprolactone) scaffold. International Ophthalmology, 2023, 43, 215-232.	0.6	1

#	Article	IF	CITATIONS
2655	Drug delivery nano-scaffold for effective implantation in orthopedic applications. Materials Today: Proceedings, 2022, 67, 975-984.	0.9	1
2656	Fabrication of human myocardium using multidimensional modelling of engineered tissues. Biofabrication, 2022, 14, 045017.	3.7	2
2657	Migration and Chemical Characterization of Cyclic Oligomers from Polyester Fiber in Waterless Dyeing System. Fibers and Polymers, 2022, 23, 2648-2656.	1.1	2
2658	Influence of the content of corn thermoplastic starches (TPS) prepared with different plasticizers on the rheological and mechanical properties of PCL/TPS blends. Polymer Bulletin, 0, , .	1.7	0
2659	Fabrication, morphological, mechanical and biological performance of 3D printed poly(ïµ-caprolactone)/bioglass composite scaffolds for bone tissue engineering applications. Biomedical Materials (Bristol), 2022, 17, 055014.	1.7	2
2660	Design of a nanofibrous guided tissue regeneration carrier as a potential drug delivery system for tetracycline hydrochloride in the management of periodontitis. Journal of Drug Delivery Science and Technology, 2022, 75, 103722.	1.4	2
2661	3D bioprinting for the repair of articular cartilage and osteochondral tissue. Bioprinting, 2022, 28, e00239.	2.9	11
2662	Melt Electrowriting of Graded Porous Scaffolds to Mimic the Matrix Structure of the Human Trabecular Meshwork. ACS Biomaterials Science and Engineering, 2022, 8, 3899-3911.	2.6	9
2663	Direct 3D printing of decellularized matrix embedded composite polycaprolactone scaffolds for cartilage regeneration. , 2022, 140, 213052.		11
2664	Comparison of the surface properties and cytocompatibility between plasma activated and homogeneously polydopamine-coated PCL nanofibers as a result of a pre-plasma activation step. Surface and Coatings Technology, 2022, 447, 128808.	2.2	2
2665	Effects of molecular weight of chitosan in a blend with polycaprolactone and grapefruit seed extract for active packaging and biodegradation. Food Packaging and Shelf Life, 2022, 34, 100931.	3.3	6
2666	Recent advances in one-dimensional nanowire-incorporated bone tissue engineering scaffolds. Materials Today Communications, 2022, 33, 104229.	0.9	2
2667	Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation. Chemical Engineering Science, 2022, 264, 118144.	1.9	12
2668	Magnesium Promoted Active and Isoselective ROP of rac‣actide and εâ€Caprolactone Under Mild Conditions. European Journal of Inorganic Chemistry, 0, , .	1.0	5
2669	Protection against Paraquat-Induced Oxidative Stress by Curcuma longa Extract-Loaded Polymeric Nanoparticles in Zebrafish Embryos. Polymers, 2022, 14, 3773.	2.0	4
2670	Synergistic effect of type and concentration of surfactant and diluting solvent on the morphology of emulsion templated matrices developed as tissue engineering scaffolds. Reactive and Functional Polymers, 2022, 180, 105387.	2.0	4
2671	Magnetic poly(ε-caprolactone)-based nanocomposite membranes for bone cell engineering. Journal of Magnetism and Magnetic Materials, 2022, 563, 169967.	1.0	2
2672	Applications of 3D Printing in Periodontal Tissue Regeneration. , 2022, , 135-149.		0

#	Article	IF	CITATIONS
2673	Oral Docetaxel Delivery with Cationic Polymeric Core-Shell Nanocapsules ForÂGastrointestinal Cancers: In Vitro and in Vivo Evaluation. SSRN Electronic Journal, 0, , .	0.4	0
2674	Electrospun nanofibers for bone regeneration: from biomimetic composition, structure to function. Journal of Materials Chemistry B, 2022, 10, 6078-6106.	2.9	12
2675	Synthesis and properties of ABA-triblock copolymers from polyester A-blocks and easily degradable polyacetal B-blocks. Polymer Chemistry, 2022, 13, 5243-5255.	1.9	6
2676	Braided structure artificial ligament from poly-l-lactide-co-caprolactone (PLA-CL) for anterior cruciate ligament injury. AIP Conference Proceedings, 2022, , .	0.3	0
2677	Development of a Porous Layer-by-Layer Microsphere with Branched Aliphatic Hydrocarbon Porogens. SSRN Electronic Journal, 0, , .	0.4	0
2678	Essential Oil—Loaded Nanofibers for Pharmaceutical and Biomedical Applications: A Systematic Mini-Review. Pharmaceutics, 2022, 14, 1799.	2.0	12
2679	Scaffold microarchitecture regulates angiogenesis and the regeneration of large bone defects. Biofabrication, 2022, 14, 045013.	3.7	22
2680	Sutureless transplantation of in vivo priming human mesenchymal stem cell sheet promotes the therapeutic potential for cardiac repair. Biofabrication, 2023, 15, 015009.	3.7	7
2681	Bioactive PCL-Peptide and PLA-Peptide Brush Copolymers for Bone Tissue Engineering. ACS Applied Bio Materials, 2022, 5, 4770-4778.	2.3	5
2682	lonic Ring-Opening Polymerization for the Synthesis of Star-Shaped Polymers. Polymer Science - Series C, 0, , .	0.8	0
2683	Electrospun PCL/fibrin scaffold as a bone implant improved the differentiation of human adipose-derived mesenchymal stem cells into osteo-like cells. International Journal of Polymeric Materials and Polymeric Biomaterials, 2024, 73, 71-78.	1.8	2
2684	Directional Submicrofiber Hydrogel Composite Scaffolds Supporting Neuron Differentiation and Enabling Neurite Alignment. International Journal of Molecular Sciences, 2022, 23, 11525.	1.8	6
2685	An overview of translational research in bone graft biomaterials. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 497-540.	1.9	6
2686	Synthesis, characterization, thermal stability, and inÂvitro and inÂvivo degradation study of polycaprolactone and polyglycolide block copolymers. Journal of Biomaterials Science, Polymer Edition, 2023, 34, 302-314.	1.9	2
2687	Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech, 2022, 23, .	1.5	36
2688	Design of 3D polycaprolactone/ε-polylysine-modified chitosan fibrous scaffolds with incorporation of bioactive factors for accelerating wound healing. Acta Biomaterialia, 2022, 152, 197-209.	4.1	17
2689	Oxidation of Cyclohexanone with Peracids—A Straight Path to the Synthesis of ε-Caprolactone Oligomers. Materials, 2022, 15, 6608.	1.3	0
2690	Poly(<i>ε</i> â€Caprolactone) Substrates with Micro/Nanohierarchical Patterned Structures for Cell Culture. Macromolecular Bioscience, 2022, 22, .	2.1	0

#	Article	IF	CITATIONS
2691	Polymer nanocarriers for targeted local delivery of agents in treating brain tumors. Nanotechnology, 2023, 34, 072001.	1.3	3
2692	Polycaprolactone-Based 3D-Printed Scaffolds as Potential Implant Materials for Tendon-Defect Repair. Journal of Functional Biomaterials, 2022, 13, 160.	1.8	4
2693	Microfluidic Generation of Therapeutically Relevant Polycaprolactone (PCL) Microparticles: Computational and Experimental Approaches. ACS Applied Polymer Materials, 2022, 4, 7004-7013.	2.0	5
2694	Biodegradable poly(butylene succinateâ€coâ€butylene furandicarboxylate): Effect of butylene furandicarboxylate unit on thermal, mechanical, and ultraviolet shielding properties, and biodegradability. Journal of Applied Polymer Science, 2022, 139, .	1.3	8
2695	Synthetic biodegradable polyesters for implantable controlled-release devices. Expert Opinion on Drug Delivery, 2022, 19, 1351-1364.	2.4	6
2696	Effect of porosity on mechanical and biological properties of bioprinted scaffolds. Journal of Biomedical Materials Research - Part A, 2023, 111, 245-260.	2.1	13
2697	Efficacy and safety of polycaprolactone in treating nasolabial folds: a prospective, multicenter, randomized controlled trial. Facial Plastic Surgery, 0, , .	0.5	0
2698	Highly effective electrospun polycaprolactone/ layered double hydroxide nanofibrous scaffold for bone tissue engineering. Journal of Drug Delivery Science and Technology, 2022, 76, 103827.	1.4	2
2699	Understanding the Interfacial Adhesion between Natural Silk and Polycaprolactone for Fabrication of Continuous Silk Biocomposites. ACS Applied Materials & Interfaces, 2022, 14, 46932-46944.	4.0	2
2700	Solvent system effects on the physical and mechanical properties of electrospun Poly(ε-caprolactone) scaffolds for in vitro lung models. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 136, 105493.	1.5	4
2701	Characterization of AnCUT3, a plastic-degrading paucimannose cutinase from Aspergillus niger expressed in Pichia pastoris. International Journal of Biological Macromolecules, 2022, 222, 2353-2367.	3.6	7
2702	Coâ€delivery of tauroursodeoxycholic acid and dexamethasone using electrospun ultrafine fibers to induce early coupled angiogenesis and osteogenic differentiation. Journal of Applied Polymer Science, 0, , .	1.3	0
2703	Controlling tosylation versus chlorination during end group modification of PCL. European Polymer Journal, 2022, 180, 111576.	2.6	2
2704	Mucoadhesive brinzolamide-loaded nanofibers for alternative glaucoma treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 180, 48-62.	2.0	16
2705	High fibroin-loaded silk-PCL electrospun fiber with core–shell morphology promotes epithelialization with accelerated wound healing. Journal of Materials Chemistry B, 2022, 10, 9622-9638.	2.9	4
2706	Nanofiber Aerogels with Precision Macrochannels and LLâ€37â€Mimic Peptides Synergistically Promote Diabetic Wound Healing. Advanced Functional Materials, 2023, 33, .	7.8	21
2707	Phospholipid-mimicking block, graft, and block-graft copolymers for phase-transition microbubbles as ultrasound contrast agents. Frontiers in Pharmacology, 0, 13, .	1.6	1
2708	On the Development of Nanocomposite Covalent Associative Networks Based on Polycaprolactone and Reduced Graphite Oxide. Nanomaterials, 2022, 12, 3744.	1.9	4

#	Article	IF	CITATIONS
2709	In vivo efficacy of a polymer layered decellularized matrix composite as a cell honing cardiovascular tissue substitute. Materials Today Bio, 2022, 17, 100451.	2.6	1
2710	Crystallization Behavior of Poly(ε-Caprolactone)-Hollow Glass Microspheres Composites for Rotational Molding Technology. Polymers, 2022, 14, 4326.	2.0	0
2711	Melt Electrowriting of Poly(dioxanone) Filament Using a Multiâ€Axis Robot. Macromolecular Materials and Engineering, 2022, 307, .	1.7	8
2712	Erythromycin Formulations—A Journey to Advanced Drug Delivery. Pharmaceutics, 2022, 14, 2180.	2.0	6
2713	Non‑isothermal crystallization kinetics of polycaprolactone-based composite membranes. Journal of Polymer Research, 2022, 29, .	1.2	1
2714	Injection Molding Process Simulation of Polycaprolactone Sticks for Further 3D Printing of Medical Implants. Materials, 2022, 15, 7295.	1.3	4
2715	Poly(ε-caprolactone)-Based Graft Copolymers: Synthesis Methods and Applications in the Biomedical Field: A Review. Molecules, 2022, 27, 7339.	1.7	11
2716	Pulsed Vacuum Arc Deposition of Nitrogen-Doped Diamond-like Coatings for Long-Term Hydrophilicity of Electrospun Poly(ε-caprolactone) Scaffolds. Membranes, 2022, 12, 1080.	1.4	0
2717	Degradation of Polylactide and Polycaprolactone as a Result of Biofilm Formation Assessed under Experimental Conditions Simulating the Oral Cavity Environment. Materials, 2022, 15, 7061.	1.3	4
2718	Synthesis and characterization of growth factor free nanoengineered bioactive scaffolds for bone tissue engineering. Journal of Biological Engineering, 2022, 16, .	2.0	2
2719	Biodegradation of Biodegradable Polymers in Mesophilic Aerobic Environments. International Journal of Molecular Sciences, 2022, 23, 12165.	1.8	40
2720	Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chemical Reviews, 2023, 123, 2609-2734.	23.0	53
2721	Mechanical properties and Keratinocytes cellular evaluation of Polycaprolactone/Collagen/Elastin Electrospun Fiber Scaffolds. Superficies Y Vacio, 0, 35, 221001.	0.2	0
2722	Fabrication and examination of polyorganophosphazene/polycaprolactone-based scaffold with degradation, in vitro and in vivo behaviors suitable for tissue engineering applications. Scientific Reports, 2022, 12, .	1.6	5
2723	A HYDROPHILIC/HYDROPHOBIC COMPOSITE STRUCTURE FOR WATER HARVESTING FROM THE AIR. Tekstil Ve Konfeksiyon, 0, , .	0.3	0
2724	Effect of Functionalization of the Polycaprolactone Film Surface on the Mechanical and Biological Properties of the Film Itself. Polymers, 2022, 14, 4654.	2.0	3
2725	Electrospun nanofiber nerve guidance conduits for peripheral nerve regeneration: A review. European Polymer Journal, 2022, 181, 111663.	2.6	9
2726	Bridging potential of Taurine-loading PCL conduits transplanted with hEnSCs on resected sciatic nerves. Regenerative Therapy, 2022, 21, 424-435.	1.4	1

#	Article	IF	CITATIONS
2727	Curcumin loaded polycaprolactone scaffold capable of anti-inflammation to enhance tracheal cartilage regeneration. Materials and Design, 2022, 224, 111299.	3.3	3
2728	Enzyme-triggered smart antimicrobial drug release systems against bacterial infections. Journal of Controlled Release, 2022, 352, 507-526.	4.8	19
2729	Microfluidic formation of biodegradable PCLDA microparticles as sustainable sorbents for treatment of organic contaminants in wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130409.	2.3	1
2730	Crystallization and molecular mobility in renewable semicrystalline copolymers based on polycaprolactone and polyisosorbide. Soft Matter, 2022, 18, 9216-9230.	1.2	2
2731	Renewable Resources for Bio-plastics. RSC Green Chemistry, 2022, , 775-833.	0.0	0
2732	A recyclable process between a monomer and polyester with a natural catalyst. Green Chemistry, 2022, 24, 9282-9289.	4.6	4
2733	Effects of femtosecond laser micropatterning on the surface properties and cellular response of biomedical tantalum-blended composites. Journal of Central South University, 2022, 29, 3376-3384.	1.2	6
2734	Nanomaterials: Compatibility Towards Biological Interactions. , 2023, , 1-31.		1
2735	Mechanical Acceleration of Ester Bond Hydrolysis in Polymers. Macromolecules, 2022, 55, 10145-10152.	2.2	5
2736	Effect of the Addition of Nano-Silica and Poly(Îμ-caprolactone) on the Mechanical and Thermal Properties of Poly(lactic acid) Blends and Possible Application in Embossing Process. Polymers, 2022, 14, 4861.	2.0	7
2737	Synthesis and Biocompatibility Evaluation of PCL Electrospun Membranes Coated with MTA/HA for Potential Application in Dental Pulp Capping. Polymers, 2022, 14, 4862.	2.0	4
2738	Dose-Dependent Cytotoxicity of Polypropylene Microplastics (PP-MPs) in Two Freshwater Fishes. International Journal of Molecular Sciences, 2022, 23, 13878.	1.8	12
2739	Crystal Growth of 3D Poly(<i>ε</i> aprolactone) Based Bone Scaffolds and Its Effects on the Physical Properties and Cellular Interactions. Advanced Science, 2023, 10, .	5.6	5
2740	<scp>C</scp> omputational fluid dynamic study of polycaprolactone nanoparticles precipitation in a coâ€flow capillary microâ€ŧube. Canadian Journal of Chemical Engineering, 2023, 101, 4746-4761.	0.9	1
2741	Biodegradable Electronics. Springer Handbooks, 2023, , 1019-1041.	0.3	0
2742	3D-Braided Poly-ε-Caprolactone-Based Scaffolds for Ligament Tissue Engineering. Journal of Functional Biomaterials, 2022, 13, 230.	1.8	1
2743	Evaluation of the self-healing capabilities and resistance to thermal cycling of a shape-memory epoxy coating containing polycaprolactone microspheres. Progress in Organic Coatings, 2023, 174, 107322.	1.9	3
2744	Exploring the effect of intramuscularly injected polymer/lipid hybrid nanoparticles loaded with quetiapine fumarate on the behavioral and neurological changes in cuprizone-induced schizophrenia in mice. Journal of Drug Delivery Science and Technology, 2023, 79, 104064.	1.4	4

#	Article	IF	CITATIONS
2745	Renewed interest in biopolymer composites: incorporation of renewable, plant-sourced fibers. Green Chemistry, 2023, 25, 106-129.	4.6	5
2746	Functional and degradable copolyesters by ring-opening copolymerization of epoxides and anhydrides. European Polymer Journal, 2023, 183, 111766.	2.6	2
2747	Coumarin end-capped poly(ε-caprolactone)-poly(ethylene glycol) tri-block copolymer: synthesis, characterization and light-response behavior. European Polymer Journal, 2023, 183, 111760.	2.6	2
2748	Effect of post-drawing and tension on enzymatic degradation of electrospun polycaprolactone nanofibers. Materials Today Communications, 2023, 34, 104990.	0.9	1
2749	Microfluidic preparation and optimization of sorafenib-loaded poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 Interface Science, 2023, 633, 383-395.	0 587 Td (5.0	(glycol-block 3
2750	Effect of gamma irradiation on shape memory, thermal and mechanical properties of polycaprolactone. Radiation Physics and Chemistry, 2023, 204, 110671.	1.4	8
2751	Impact-Resistant Poly(3-Hydroxybutyrate)/Poly(Îμ-Caprolactone)-Based Materials, through Reactive Melt Processing, for Compression-Molding and 3D-Printing Applications. Materials, 2022, 15, 8233.	1.3	8
2752	Osteoconductive biocompatible 3D-printed composites of poly-d,l-lactide filled with nanocrystalline cellulose modified by poly(glutamic acid). Mendeleev Communications, 2022, 32, 810-812.	0.6	6
2753	Tuning the Properties of Esterâ€Based Degradable Polymers by Inserting Epoxides into Poly(<i>ïµ</i> aprolactone). Chemistry - an Asian Journal, 2023, 18, .	1.7	5
2754	Extrusion plastometry processing of poly(3-hydroxybutyrate)/ground wool fiber blends. Green Materials, 2023, 11, 174-183.	1.1	1
2755	Biodegradable Mulch Films Based on Starch/Poly (Lactic Acid)/Poly (ε-Caprolactone) Ternary Blends. Journal of Polymers and the Environment, 0, , .	2.4	1
2756	Triangular-prism Microstructure Engineered on the Fibrous Scaffold Using Electro-centrifugal Spinning Technique for Tissue Engineering. Fibers and Polymers, 2022, 23, 3398-3414.	1.1	1
2757	Electrospun polycaprolactone nanofibers functionalized with <i>Achillea millefolium</i> extract yield biomaterial with antibacterial, antioxidant and improved mechanical properties. Journal of Biomedical Materials Research - Part A, 2023, 111, 962-974.	2,1	4
2758	Influence of Biobased Polyurethane Structure on Thermal and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)â^ Polyurethane Blends. Journal of Polymers and the Environment, 0, , .	2.4	1
2759	A Psychrophilic GelMA: Breaking Technical and Immunological Barriers for Multimaterial High-Resolution 3D Bioprinting. Biomacromolecules, 2023, 24, 150-165.	2.6	5
2760	Polycaprolactone versus collagen membrane and 1â€year clinical outcomes: A randomized controlled trial. Clinical Implant Dentistry and Related Research, 2023, 25, 330-342.	1.6	2
2761	Compatibility Study between Fenbendazole and Polymeric Excipients Used in Pharmaceutical Dosage Forms Using Thermal and Non-Thermal Analytical Techniques. Analytica—A Journal of Analytical Chemistry and Chemical Analysis, 2022, 3, 448-461.	0.8	1
2762	Dissecting the recruitment and self-organization of $\hat{I}\pm SMA$ -positive fibroblasts in the foreign body response. Science Advances, 2022, 8, .	4.7	3

# 2763	ARTICLE Branched Poly(ε-caprolactone)-Based Copolyesters of Different Architectures and Their Use in the Preparation of Anticancer Drug-Loaded Nanoparticles. International Journal of Molecular Sciences, 2022, 23, 15393.	IF 1.8	Citations
2764	Gamma Irradiation Processing on 3D PCL Devices—A Preliminary Biocompatibility Assessment. International Journal of Molecular Sciences, 2022, 23, 15916.	1.8	0
2765	Development of a porous layer-by-layer microsphere with branched aliphatic hydrocarbon porogens. Nanomedicine: Nanotechnology, Biology, and Medicine, 2023, 48, 102644.	1.7	0
2766	Wool Keratin Nanofibers for Bioinspired and Sustainable Use in Biomedical Field. Journal of Functional Biomaterials, 2023, 14, 5.	1.8	10
2767	Human Health Risk Estimation of Nanoatrazine. Exposure and Health, 0, , .	2.8	1
2768	Surface Enhancement of Magnesium Implants for Long Term Applications. Key Engineering Materials, 0, 937, 79-87.	0.4	0
2769	A Versatile Stepâ€Growth Polymerization Route to Functional Polyesters from an Activated Diester Monomer. Chemistry - A European Journal, 2023, 29, .	1.7	1
2770	Supplementation of Polymeric Reservoirs with Redox-Responsive Metallic Nanoparticles as a New Concept for the Smart Delivery of Insulin in Diabetes. Materials, 2023, 16, 786.	1.3	2
2771	Lithium anthraquinoids as catalysts in the ROP of lactide and caprolactone into cyclic polymers. Polymer Chemistry, 0, , .	1.9	1
2772	Binary PCL–waste photopolymer blends for biodegradable food packaging applications. Journal of Molecular Structure, 2023, 1279, 134990.	1.8	4
2773	Reusable polycaprolactone based sorbents with different cross-linking densities for the removal of organic pollutants. Journal of Environmental Chemical Engineering, 2023, 11, 109287.	3.3	4
2774	Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Progress in Materials Science, 2023, 134, 101072.	16.0	32
2775	Knowledge and awareness of polycaprolactone and its applications as provisional material in prosthodontic practice: A questionnaire-based survey. Journal of Indian Prosthodontic Society, The, 2023, 23, 78.	0.3	0
2776	Living Cationic Polymerization of ε-Caprolactone Catalyzed by a Metal-free Lewis Acid of Trityl Tetrafluoroborate. Macromolecules, 2023, 56, 501-509.	2.2	5
2777	Biodegradable synthetic polymer in orthopaedic application: A review. Materials Today: Proceedings, 2023, 74, 540-546.	0.9	11
2778	Fabrication and Characterisation of 3D-Printed Triamcinolone Acetonide-Loaded Polycaprolactone-Based Ocular Implants. Pharmaceutics, 2023, 15, 243.	2.0	7
2779	Maintenance of multipotency of bone marrow mesenchymal stem cells on poly(ε-caprolactone) nanoneedle arrays through the enhancement of cell-cell interaction. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	0
2780	Efficient encapsulation of isocyanates in PCL/PLA biodegradable microcapsules for adhesives. Journal of Materials Science, 2023, 58, 2249-2267.	1.7	1

#	Article	IF	CITATIONS
2781	Additive manufacturing and performance of bioceramic scaffolds with different hollow strut geometries. Biofabrication, 2023, 15, 025011.	3.7	4
2782	Management of Brain Cancer and Neurodegenerative Disorders with Polymer-Based Nanoparticles as a Biocompatible Platform. Molecules, 2023, 28, 841.	1.7	7
2783	Modulating Myofibroblastic Differentiation of Fibroblasts through Actin-MRTF Signaling Axis by Micropatterned Surfaces for Suppressed Implant-Induced Fibrosis. Research, 2023, 6, .	2.8	1
2784	Bioprinting of structurally organized meniscal tissue within anisotropic melt electrowritten scaffolds. Acta Biomaterialia, 2023, 158, 216-227.	4.1	11
2785	Relationship between toxicity and oxidative stress of the nanoencapsulated colchicine in a model of <i>Drosophila melanogaster</i> . Free Radical Research, 2022, 56, 577-594.	1.5	1
2786	Influence of processing parameters tuning and rheological characterization on improvement of mechanical properties and fabrication accuracy of 3D printed models. Rapid Prototyping Journal, 2023, 29, 867-881.	1.6	3
2787	Nanomaterials: Compatibility Towards Biological Interactions. , 2023, , 1059-1089.		2
2788	Dual-functionalized Pickering HIPE templated poly(É>-caprolactone) scaffold for maxillofacial implants. International Journal of Pharmaceutics, 2023, 633, 122611.	2.6	3
2789	Oral docetaxel delivery with cationic polymeric core-shell nanocapsules: In vitro and in vivo evaluation. Journal of Drug Delivery Science and Technology, 2023, 80, 104163.	1.4	2
2790	The structure and selected properties of poly(Îμ-caprolactone)-based biodegradable composites with high calcium carbonate concentration. Science of the Total Environment, 2023, 867, 161528.	3.9	4
2791	An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites. Polymer-Plastics Technology and Materials, 2023, 62, 327-358.	0.6	1
2792	Bone Scaffold Materials in Periodontal and Tooth-supporting Tissue Regeneration: A Review. Current Stem Cell Research and Therapy, 2024, 19, 449-460.	0.6	0
2793	Carbene-Based Bioadhesive Blended with Amine, Thiol, and Acrylate Liquid Additives. ACS Applied Polymer Materials, 2023, 5, 1440-1452.	2.0	4
2794	Fabrication and Characterization of Piezoelectric Polymer Composites and Cytocompatibility with Mesenchymal Stem Cells. ACS Applied Materials & amp; Interfaces, 2023, 15, 3731-3743.	4.0	11
2795	Bioprinting of cartilage. , 2023, , 69-94.		0
2796	Incorporating nanoconfined chitin <scp>â€</scp> fibrils in poly (εâ€caprolactone) membrane scaffolds improves mechanical and chemical properties for biomedical application. Journal of Biomedical Materials Research - Part A, 2023, 111, 1185-1199.	2.1	6
2797	Emulsion templated three-dimensional porous scaffolds for drug delivery. , 2023, , 389-416.		1
2798	Bioplastics: Innovation for Green Transition. Polymers, 2023, 15, 517.	2.0	15

# 2799	ARTICLE Biopolymers and challenges. , 2023, , 205-253.	IF	Citations
2800	Introduction to biomedical polymer and composites. , 2023, , 1-30.		0
2801	Recent development in multizonal scaffolds for osteochondral regeneration. Bioactive Materials, 2023, 25, 122-159.	8.6	7
2802	COMPARİSON OF EGG WHİTE AND Ε-POLYCAPROLACTONE FOR THREE-DİMENSİONAL CELL CULTURE. Ga University Journal of Science, 0, , .	zi 0.6	0
2803	Bioactive fibrous scaffolds with programmable release of polypeptides regulate inflammation and extracellular matrix remodeling. Regenerative Biomaterials, 2023, 10, .	2.4	4
2804	Fabrication Process of Triple-Layer Small-Diameter Vascular Scaffold with Microchannel Structure in the Inner Layer for Accelerated Endothelialization. Fibers and Polymers, 2023, 24, 469-482.	1.1	1
2805	Design and Characterization of Carboplatin and Paclitaxel Loaded PCL Filaments for 3D Printed Controlled Release Intrauterine Implants. Pharmaceutics, 2023, 15, 1154.	2.0	2
2806	The Mechanical Properties of Blended Fibrinogen:Polycaprolactone (PCL) Nanofibers. Nanomaterials, 2023, 13, 1359.	1.9	1
2807	Modern biodegradable materials with accelerated degradation for dairy and food products (subject) Tj ETQq0 0 0	rgBT /Ove 9.2	rlgck 10 Tf 5
2808	Promising synthesized bis (arylmethylidene) acetone -polymeric PCL emulsified nanoparticles with enhanced antimicrobial/antioxidant efficacy: in-vitro and in-vivo evaluation. OpenNano, 2023, 11, 100139.	1.8	2
2809	Application of graphene in articular cartilage tissue engineering and chondrogenic differentiation. Journal of Drug Delivery Science and Technology, 2023, 83, 104437.	1.4	4
2810	PCL/gelatin nanofibers incorporated with starfish polydeoxyribonucleotides for potential wound healing applications. Materials and Design, 2023, 229, 111912.	3.3	7
2811	3D printing of mechanically functional meniscal tissue equivalents using high concentration extracellular matrix inks. Materials Today Bio, 2023, 20, 100624.	2.6	3
2812	Bacterial degradation kinetics of poly(ƕcaprolactone) (PCL) film by Aquabacterium sp. CY2-9 isolated from plastic-contaminated landfill. Journal of Environmental Management, 2023, 335, 117493.	3.8	5
2813	The impact of the polycaprolactone content on the properties of polyurethane networks. Materials Today Communications, 2023, 35, 105721.	0.9	2
2814	Ascorbic Acid Enhances the Metabolic Activity, Growth and Collagen Production of Human Dermal Fibroblasts Growing in Three-dimensional (3D) Culture. Gazi University Journal of Science, 2023, 36, 1625-1637.	0.6	2
2815	Multilayer functional bionic fabricated polycaprolactone based fibrous membranes for osteochondral integrated repair. Colloids and Surfaces B: Biointerfaces, 2023, 225, 113279.	2.5	3

2816	Airâ€Permeable Textile Bioelectronics for Wearable Energy Harvesting and Active Sensing. Advanced Materials Technologies, 2023, 8, .	3.0	5
------	---	-----	---

#	Article	IF	CITATIONS
2817	PLCL/PCL Dressings with Platelet Lysate and Growth Factors Embedded in Fibrin for Chronic Wound Regeneration. International Journal of Nanomedicine, 0, Volume 18, 595-610.	3.3	4
2818	An Assessment of Blood Vessel Remodeling of Nanofibrous Poly(ε-Caprolactone) Vascular Grafts in a Rat Animal Model. Journal of Functional Biomaterials, 2023, 14, 88.	1.8	3
2819	Effect of curing time on the mechanical properties of poly(glycerol sebacate). Journal of Applied Polymer Science, 2023, 140, .	1.3	2
2820	PET-RAFT to expand the surface-modification chemistry of melt coextruded nanofibers. Polymer Chemistry, 2023, 14, 1054-1063.	1.9	2
2821	Synthetic and Natural Polymeric Drug Delivery Systems - A Comprehensive Overview of Polycaprolactone and Glucan Particles. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 59, 39-58.	0.5	1
2822	A 3D biomimetic optoelectronic scaffold repairs cranial defects. Science Advances, 2023, 9, .	4.7	10
2823	Biomimetic Growth of Hydroxyapatite in Hybrid Polycaprolactone/Graphene Oxide Ultra-Porous Scaffolds. ACS Omega, 2023, 8, 7904-7912.	1.6	5
2824	A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging. International Journal of Biological Macromolecules, 2023, 234, 123715.	3.6	63
2825	Oxygenated Boron Species Generated In Situ by Protonolysis Enables Precision Synthesis of Alternating Polyesters. Macromolecules, 2023, 56, 1907-1920.	2.2	10
2826	Current State and Opportunities with Long-acting Injectables: Industry Perspectives from the Innovation and Quality Consortium "Long-Acting Injectables―Working Group. Pharmaceutical Research, 2023, 40, 1601-1631.	1.7	8
2827	Extremely Strong and Tough Biodegradable Poly(urethane) Elastomers with Unprecedented Crack Tolerance via Hierarchical Hydrogenâ€Bonding Interactions. Advanced Materials, 2023, 35, .	11.1	53
2828	Polymeric Nanoparticles for Delivery of Natural Bioactive Agents: Recent Advances and Challenges. Polymers, 2023, 15, 1123.	2.0	22
2829	Volumetric Printing of Thiolâ€Ene Photoâ€Crossâ€Linkable Poly(εâ€caprolactone): A Tunable Material Platform Serving Biomedical Applications. Advanced Materials, 2023, 35, .	11.1	7
2830	Controlled degradation of polycaprolactone-based micropillar arrays. Biomaterials Science, 2023, 11, 3077-3091.	2.6	2
2831	Reconfigurable scaffolds for adaptive tissue regeneration. Nanoscale, 2023, 15, 6105-6120.	2.8	3
2832	Biomechanical Behaviors and Degradation Properties of Multilayered Polymer Scaffolds: The Phase Space Method for Bile Duct Design and Bioengineering. Biomedicines, 2023, 11, 745.	1.4	10
2833	Unique Fiber Morphologies from Emulsion Electrospinning—A Case Study of Poly(ε-caprolactone) and Its Applications. Colloids and Interfaces, 2023, 7, 19.	0.9	8
2834	Biomimetic mineralized amorphous carbonated calcium phosphate-polycaprolactone bioadhesive composites as potential coatings on implant materials. Ceramics International, 2023, 49, 18565-18576.	2.3	3

#	Article	IF	CITATIONS
2835	Antibacterial, wet adhesive, and healing-promoting nanosheets for the treatment of oral ulcers. Biomaterials Science, 2023, 11, 3214-3226.	2.6	3
2836	Toward regulating biodegradation in stages of polyurethane copolymers with bicontinuous microphase separation. Journal of Materials Chemistry B, 2023, 11, 3164-3175.	2.9	2
2837	Phosphazene Functionalized Silsesquioxane-Based Porous Polymer as Thermally Stable and Reusable Catalyst for Bulk Ring-Opening Polymerization of Îμ-Caprolactone. Polymers, 2023, 15, 1291.	2.0	1
2838	Thermal and crystalline properties of biodegradable PCL/PBAT shape memory blends. Iranian Polymer Journal (English Edition), 2023, 32, 791-800.	1.3	3
2839	Multiphoton Lithography as a Promising Tool for Biomedical Applications. Advanced Functional Materials, 2023, 33, .	7.8	12
2840	Anaerobic Biodegradability of Commercial Bioplastic Products: Systematic Bibliographic Analysis and Critical Assessment of the Latest Advances. Materials, 2023, 16, 2216.	1.3	3
2841	Injectable Devices for Delivery of Liquid or Solid Protein Formulations. ACS Materials Au, 2023, 3, 255-264.	2.6	1
2842	Biodegradable Biopolymeric Nanoparticles for Biomedical Applications-Challenges and Future Outlook. Materials, 2023, 16, 2364.	1.3	11
2843	Nature-Inspired Dual Purpose Strategy toward Cell-Adhesive PCL Networks: C(-linker-)RGD Incorporation via Thiol-ene Crosslinking. Biomacromolecules, 2023, 24, 1638-1647.	2.6	2
2844	Polycaprolactone-based nanoparticles for advanced therapeutic applications. , 2023, , 37-84.		0
2845	Sustainable, processable and cytocompatible bioelastomers based on polycaprolactone and biobased polyester elastomer via dynamic vulcanization. Polymer International, 0, , .	1.6	2
2846	Antimicrobial Properties of Biocompatible Poly (ƕCaprolactone) Treated with Plant Extract. Cumhuriyet Science Journal, 2023, 44, 62-66.	0.1	0
2847	Strategy Based on Michael Addition Reaction for the Development of Bioinspired Multilayered and Multiphasic 3D Constructs. Polymers, 2023, 15, 1635.	2.0	0
2848	Enhanced Adhesion of Electrospun Polycaprolactone Nanofibers to Plasma-Modified Polypropylene Fabric. Polymers, 2023, 15, 1686.	2.0	3
2849	Biofunctionalized 3D printed structures for biomedical applications: A critical review of recent advances and future prospects. Progress in Materials Science, 2023, 137, 101124.	16.0	6
2852	Dual-Stimuli-Sensitive Smart Hydrogels Containing Magnetic Nanoparticles as Antitumor Local Drug Delivery Systems—Synthesis and Characterization. International Journal of Molecular Sciences, 2023, 24, 6906.	1.8	5
2853	Recent Advances in Nanoparticle Development for Drug Delivery: A Comprehensive Review of Polycaprolactone-Based Multi-Arm Architectures. Polymers, 2023, 15, 1835.	2.0	8
2854	Minimally Invasive Sub-Retinal Transplantation of RPE-J Cells on a Biodegradable Composite PCL/Collagen Nanosheet. Cell Transplantation, 2023, 32, 096368972311651.	1.2	1

#	Article	IF	CITATIONS
2855	Study of selected properties of PLA used in 3D printing. Journal of Achievements in Materials and Manufacturing Engineering, 2023, 116, 72-79.	0.2	0
2856	Structural Mechanical Properties of 3D Printing Biomimetic Bone Replacement Materials. Biomimetics, 2023, 8, 166.	1.5	2
2857	Biodegradable polymer nanocomposites for food packaging applications. , 2023, , 639-674.		1
2868	Advances in additive manufacturing of polycaprolactone based scaffolds for bone regeneration. Journal of Materials Chemistry B, 2023, 11, 7250-7279.	2.9	5
2872	Biological evaluation of PCL-AgNPs biocomposites as guided tissue regeneration membranes. AIP Conference Proceedings, 2023, , .	0.3	0
2877	Fibrous composite PCL/HA coating on metallic implant materials for implant reconstruction applications. AIP Conference Proceedings, 2023, , .	0.3	0
2885	Recent Advances in Metal–Organic Frameworks Based on Electrospinning for Energy Storage. Advanced Fiber Materials, 2023, 5, 1592-1617.	7.9	11
2893	Bone Regeneration. ACS Symposium Series, 0, , 109-136.	0.5	2
2918	Functional Bone Regeneration in Oral and Maxillofacial Surgery: History, Definition, and Indications. , 2023, , 119-141.		0
2924	Catalyst-free depolymerization of polycaprolactone to silylated monoesters and iodide derivatives using iodosilanes. Chemical Communications, 0, , .	2.2	0
2929	Circular economy and upcoming horizons in the field of bionanocomposites. , 2024, , 365-384.		0
2937	Polymeric adsorbents for gas adsorption. , 2024, , 205-258.		0
2951	Protein-Based Materials for Wound Healing. , 2023, , 1-28.		0
2952	Lipase Synthesis Using Palm Oil Mill Effluent for Polycaprolactone Production. , 2023, , 165-181.		0
2954	Biopolymer nanocomposites and membranes in tissue engineering. , 2023, , 337-372.		0
2961	Prozessentwicklung zur Herstellung feiner Gitterstrukturen per Schmelzschichtung. , 2019, , 148-161.		0
2963	3D printing of biomaterials for biomedical applications: a review. International Journal on Interactive Design and Manufacturing, 0, , .	1.3	2
2979	Role of Block Copolymers in the Treatment of Brain Disorders. , 2023, , 121-142.		0

#	Article	IF	CITATIONS
2990	Study of adaptive window space direction contrast method in transmission speckle contrast imaging. , 2023, , .		0
2996	A computational and experimental mechanical study of nanocomposites for 3D printed scaffolds with a new geometry. , 2023, , .		1
3006	Sustainable Raw Materials. Textile Science and Clothing Technology, 2023, , 59-128.	0.4	0
3013	Electrospun fibers: promising materials for oil water separation. , 2024, , 261-288.		0
3017	Biodegradable and biobased plastic materials based on starch. , 2024, , 311-334.		0
3020	Braids structure design of scaffold ligament based on polylactic acid-polycaprolactone. AIP Conference Proceedings, 2024, , .	0.3	0
3025	Pharmaceutical and biomedical polymers: Basics, modifications, and applications. , 2024, , 1-86.		0
3030	Evaluation of Anticoagulant Activity of Heparin Loaded in PCL Fibers Using Thromboelastography. IFMBE Proceedings 2024 3-11	0.2	0