CITATION REPORT List of articles citing

CAG-repeat length and the age of onset in Huntington disease (HD): a review and validation study of statistical approaches

DOI: 10.1002/ajmg.b.30992 American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 397-408.

Source: https://exaly.com/paper-pdf/48125599/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
265	Response to Falush: a role for cis-element polymorphisms in HD. <i>American Journal of Human Genetics</i> , 2009 , 85, 942-5	11	4
264	Probing the metabolic aberrations underlying mutant huntingtin toxicity in yeast and assessing their degree of preservation in humans and mice. 2010 , 9, 404-12		15
263	Cerebral cortex structure in prodromal Huntington disease. 2010 , 40, 544-54		115
262	Perception, experience, and response to genetic discrimination in Huntington disease: the international RESPOND-HD study. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2010 , 153B, 1081-93	3.5	27
261	Challenges assessing clinical endpoints in early Huntington disease. 2010 , 25, 2595-603		60
260	Early Detection of Huntington Disease. 2010 , 5,		56
259	Tapping linked to function and structure in premanifest and symptomatic Huntington disease. 2010 , 75, 2150-60		108
258	Commentary: Huntington disease in a nonagenarian mistakenly diagnosed as normal pressure hydrocephalus. 2010 , 17, 1068		2
257	Striatal and white matter predictors of estimated diagnosis for Huntington disease. 2010 , 82, 201-7		183
256	The clinical and genetic features of Huntington disease. 2010 , 23, 243-59		84
255	Neurocognitive signs in prodromal Huntington disease. 2011 , 25, 1-14		288
254	The Trail Making Test in prodromal Huntington disease: contributions of disease progression to test performance. 2011 , 33, 567-79		42
253	Bringing natural products into the fold - exploring the therapeutic lead potential of secondary metabolites for the treatment of protein-misfolding-related neurodegenerative diseases. 2011 , 28, 26	-47	43
252	The neurology and natural history of patients with indeterminate CAG repeat length mutations of the Huntington disease gene. 2011 , 301, 14-20		16
251	Shape analysis of subcortical nuclei in Huntington's disease, global versus local atrophyresults from the TRACK-HD study. 2011 , 307, 60-8		50
250	Pathogenic mechanisms in Huntington's disease. 2011 , 98, 373-418		26
249	HTT haplotypes contribute to differences in Huntington disease prevalence between Europe and East Asia. 2011 , 19, 561-6		110

248	Development of biomarkers for Huntington's disease. 2011 , 10, 573-90		122
247	Early atrophy of pallidum and accumbens nucleus in Huntington's disease. 2011 , 258, 412-20		98
246	What is the impact of education on Huntington's disease?. 2011 , 26, 1489-95		27
245	The number of CAG repeats within the normal allele does not influence the age of onset in Huntington's disease. 2011 , 26, 125-9		15
244	Automated structural imaging analysis detects premanifest Huntington's disease neurodegeneration within 1 year. 2011 , 26, 1481-8		19
243	CAG repeat size in the normal HTT allele and age of onset in Huntington's disease. 2011 , 26, 2450-1; author reply 2451		2
242	Indexing disease progression at study entry with individuals at-risk for Huntington disease. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2011 , 156B, 751-63	3.5	149
241	Smaller intracranial volume in prodromal Huntington's disease: evidence for abnormal neurodevelopment. <i>Brain</i> , 2011 , 134, 137-42	11.2	95
240	Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. 2011 , 68, 581-6		119
239	Longitudinal change in regional brain volumes in prodromal Huntington disease. 2011 , 82, 405-10		183
238	Predicting Disease Onset from Mutation Status Using Proband and Relative Data with Applications to Huntington's Disease. 2012 , 2012,		7
237	Autophagy and polyglutamine diseases. 2012 , 97, 67-82		70
236	Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes. 2012 , 11, 264-78		366
235	Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington's disease affected neuronal cells for reduction of huntingtin. 2012 , 49, 271-81		57
234	Modeling the polyglutamine aggregation pathway in Huntington's disease: from basic studies to clinical applications. 2012 , 65, 353-88		1
233	Polyglutamine repeats are associated to specific sequence biases that are conserved among eukaryotes. 2012 , 7, e30824		21
232	Proactive selective response suppression is implemented via the basal ganglia. 2013 , 33, 13259-69		88
231	A review of quality of life after predictive testing for and earlier identification of neurodegenerative diseases. 2013 , 110, 2-28		93

230	Therapeutic Strategies for Huntington's Disease. 2015 , 22, 161-201		8
229	Epigenetic modifications in trinucleotide repeat diseases. 2013 , 19, 655-63		39
228	The Role of Proteomics in Personalized Medicine. 2013, 241-262		
227	Pathogenic cellular phenotypes are germline transmissible in a transgenic primate model of Huntington's disease. 2013 , 22, 1198-205		25
226	Interregional compensatory mechanisms of motor functioning in progressing preclinical neurodegeneration. 2013 , 75, 146-154		26
225	Recommendations for the predictive genetic test in Huntington's disease. 2013 , 83, 221-31		131
224	Plasma 24S-hydroxycholesterol correlation with markers of Huntington disease progression. 2013 , 55, 37-43		62
223	Clinical Aspects of Huntington's Disease. 2015 , 22, 3-31		20
222	Reproductive options for prospective parents in families with Huntington's disease: clinical, psychological and ethical reflections. 2013 , 19, 304-15		36
221	Ethical aspects of undergoing a predictive genetic testing for Huntington's disease. 2013 , 20, 189-99		7
220	The implications of genomics on the nursing care of adults with neuropsychiatric conditions. 2013 , 45, 79-88		3
219	EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease. 2013 , 21, 480-6		40
218	Role of cerebral cortex in the neuropathology of Huntington's disease. 2013 , 7, 19		54
217	Motor-Language Coupling in Huntington's Disease Families. <i>Frontiers in Aging Neuroscience</i> , 2014 , 6, 122	5.3	33
216	Nanomedicine-based neuroprotective strategies in patient specific-iPSC and personalized medicine. <i>International Journal of Molecular Sciences</i> , 2014 , 15, 3904-25	6.3	13
215	Regionally selective atrophy of subcortical structures in prodromal HD as revealed by statistical shape analysis. 2014 , 35, 792-809		51
214	Nonparametric modeling and analysis of association between Huntington's disease onset and CAG repeats. 2014 , 33, 1369-82		2
213	Frontal cortex BOLD signal changes in premanifest Huntington disease: a possible fMRI biomarker. 2014 , 83, 65-72		10

(2015-2014)

212	Attempted and successful compensation in preclinical and early manifest neurodegeneration - a review of task FMRI studies. 2014 , 5, 132	43
211	Huntington disease: natural history, biomarkers and prospects for therapeutics. 2014 , 10, 204-16	600
210	Cross sectional PET study of cerebral adenosine Alreceptors in premanifest and manifest Huntington's disease. 2014 , 41, 1210-20	29
209	The cognitive burden in Huntington's disease: pathology, phenotype, and mechanisms of compensation. 2014 , 29, 673-83	91
208	Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6. 2014 , 51, 479-86	46
207	Prediction of manifest Huntington's disease with clinical and imaging measures: a prospective observational study. 2014 , 13, 1193-201	159
206	Tracking motor impairments in the progression of Huntington's disease. 2014 , 29, 311-9	41
205	Multivariate prediction of motor diagnosis in Huntington's disease: 12 years of PREDICT-HD. 2015 , 30, 1664-72	30
204	Abnormal Weight and Body Mass Index in Children with Juvenile Huntington's Disease. <i>Journal of Huntington's Disease</i> , 2015 , 4, 231-238	8
203	Predicting cumulative risk of disease onset by redistributing weights. 2015 , 34, 2427-43	1
202	Non-Verbal and Verbal Fluency in Prodromal Huntington's Disease. 2015 , 5, 517-29	4
201	Clinical diagnosis and management in early Huntington's disease: a review. 2015 , 5, 37-50	3
200	Huntington Disease in Asia. 2015 , 128, 1815-9	14
199	Modelling the natural history of Huntington's disease progression. 2015 , 86, 1143-9	12
198	Impairments in negative emotion recognition and empathy for pain in Huntington's disease families. 2015 , 68, 158-67	33
197	Genotype P henotype Correlations. 2015 , 29-38	
196	miR-10b-5p expression in Huntington's disease brain relates to age of onset and the extent of striatal involvement. 2015 , 8, 10	76
195	Huntington disease. 2015 , 1, 15005	672

194	The role of the amygdala during emotional processing in Huntington's disease: from pre-manifest to late stage disease. 2015 , 70, 80-9	30
193	Ultrasensitive measurement of huntingtin protein in cerebrospinal fluid demonstrates increase with Huntington disease stage and decrease following brain huntingtin suppression. 2015 , 5, 12166	60
192	Motor onset and diagnosis in Huntington disease using the diagnostic confidence level. 2015 , 262, 2691-8	9
191	Beyond the redox imbalance: Oxidative stress contributes to an impaired GLUT3 modulation in Huntington's disease. 2015 , 89, 1085-96	30
190	The impact of occipital lobe cortical thickness on cognitive task performance: An investigation in Huntington's Disease. 2015 , 79, 138-46	42
189	Epidemiology of Huntington's disease in Finland. <i>Parkinsonism and Related Disorders</i> , 2015 , 21, 46-9 3.6	24
188	Heritability and Differential Susceptibility (to Mental Disorders). 2016, 305-314	
187	Patterns of Co-Occurring Gray Matter Concentration Loss across the Huntington Disease Prodrome. 2016 , 7, 147	19
186	Large-scale phenome analysis defines a behavioral signature for Huntington's disease genotype in mice. 2016 , 34, 838-44	30
185	Stem cell therapies for Huntington's disease. 2016 , 581-598	
184	DNA Methylation Leads to DNA Repair Gene Down-Regulation and Trinucleotide Repeat Expansion in Patient-Derived Huntington Disease Cells. 2016 , 186, 1967-1976	15
183	Presymptomatic ALS genetic counseling and testing: Experience and recommendations. 2016 , 86, 2295-302	34
182	Current status of PET imaging in Huntington's disease. 2016 , 43, 1171-82	58
181	Deep phenotyping predicts Huntington's genotype. 2016 , 34, 823-4	2
180	Mutated Huntingtin Causes Testicular Pathology in Transgenic Minipig Boars. 2016 , 16, 245-59	19
179	Huntington disease reduced penetrance alleles occur at high frequency in the general population. 2016 , 87, 282-8	48
178	The HTT CAG-Expansion Mutation Determines Age at Death but Not Disease Duration in Huntington Disease. <i>American Journal of Human Genetics</i> , 2016 , 98, 287-98	92
177	Behavioral Phenotyping Assays for Genetic Mouse Models of Neurodevelopmental, Neurodegenerative, and Psychiatric Disorders. 2017 , 5, 371-389	30

176	Penalized nonlinear mixed effects model to identify biomarkers that predict disease progression. 2017 , 73, 1343-1354	3
175	Motivational, proteostatic and transcriptional deficits precede synapse loss, gliosis and neurodegeneration in the B6.Htt model of Huntington's disease. 2017 , 7, 41570	10
174	Validation of a prognostic index for Huntington's disease. 2017 , 32, 256-263	27
173	Dynamic Prediction of Motor Diagnosis in Huntington's Disease Using a Joint Modeling Approach. Journal of Huntingtons Disease, 2017 , 6, 127-137	9
172	Huntington's disease blood and brain show a common gene expression pattern and share an immune signature with Alzheimer's disease. 2017 , 7, 44849	31
171	A Systematic Review of the Huntington Disease-Like 2 Phenotype. <i>Journal of Huntingtonys Disease</i> , 2017 , 6, 37-46	25
170	Blue light therapy improves circadian dysfunction as well as motor symptoms in two mouse models of Huntington's disease. 2017 , 2, 39-52	19
169	Possible use of a H3R antagonist for the management of nonmotor symptoms in the Q175 mouse model of Huntington's disease. 2017 , 5, e00344	15
168	Two Ethnic Clusters with Huntington Disease in Israel: The Case of Mountain Jews and Karaites. 2017 , 17, 281-285	3
167	Comparison of mid-age-onset and late-onset Huntington's disease in Finnish patients. 2017 , 264, 2095-2100	5
167 166	Comparison of mid-age-onset and late-onset Huntington's disease in Finnish patients. 2017 , 264, 2095-2100 Cognitive decline in Huntington's disease expansion gene carriers. 2017 , 95, 51-62	5 31
Í		
166	Cognitive decline in Huntington's disease expansion gene carriers. 2017 , 95, 51-62	31
166 165	Cognitive decline in Huntington's disease expansion gene carriers. 2017 , 95, 51-62 Huntington's Disease: Pathogenic Mechanisms and Therapeutic Targets. 2017 , 15, 93-128	31
166 165 164	Cognitive decline in Huntington's disease expansion gene carriers. 2017, 95, 51-62 Huntington's Disease: Pathogenic Mechanisms and Therapeutic Targets. 2017, 15, 93-128 Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. 2017, 483, 1051-1062	31 3 51
166 165 164	Cognitive decline in Huntington's disease expansion gene carriers. 2017, 95, 51-62 Huntington's Disease: Pathogenic Mechanisms and Therapeutic Targets. 2017, 15, 93-128 Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. 2017, 483, 1051-1062 Epidemiology of Huntington disease. 2017, 144, 31-46	31 3 51 30
166 165 164 163	Cognitive decline in Huntington's disease expansion gene carriers. 2017, 95, 51-62 Huntington's Disease: Pathogenic Mechanisms and Therapeutic Targets. 2017, 15, 93-128 Striatal synaptic dysfunction and altered calcium regulation in Huntington disease. 2017, 483, 1051-1062 Epidemiology of Huntington disease. 2017, 144, 31-46 Structural imaging in premanifest and manifest Huntington disease. 2017, 144, 247-261	31 3 51 30 14

158	Recommendations for the Use of Automated Gray Matter Segmentation Tools: Evidence from Huntington's Disease. 2017 , 8, 519		23
157	Exosomes and Homeostatic Synaptic Plasticity Are Linked to Each other and to Huntington's, Parkinson's, and Other Neurodegenerative Diseases by Database-Enabled Analyses of Comprehensively Curated Datasets. 2017 , 11, 149		31
156	Animal Models for the Study of Human Neurodegenerative Diseases. 2017, 1109-1129		3
155	Clustering of longitudinal data by using an extended baseline: A new method for treatment efficacy clustering in longitudinal data. 2018 , 27, 97-113		2
154	Complex spatial and temporally defined myelin and axonal degeneration in Huntington disease. 2018 , 20, 236-242		23
153	Predicting clinical diagnosis in Huntington's disease: An imaging polymarker. 2018 , 83, 532-543		15
152	Manipulating cell fate while confronting reproducibility concerns. 2018, 151, 144-156		6
151	Whole-Brain Connectivity in a Large Study of Huntington's Disease Gene Mutation Carriers and Healthy Controls. 2018 , 8, 166-178		26
150	Developmental Delay, Treatment-Resistant Psychosis, and Early-Onset Dementia in a Man With 22q11 Deletion Syndrome and Huntington's Disease. 2018 , 175, 400-407		7
149	A Huntingtin Knockin Pig Model Recapitulates Features of Selective Neurodegeneration in Huntington's Disease. 2018 , 173, 989-1002.e13		131
148	Prion-Like Characteristics of Polyglutamine-Containing Proteins. 2018, 8,		21
147	Measuring Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo in Saccharomyces cerevisiae. <i>Methods in Molecular Biology</i> , 2018 , 1672, 439-470	1.4	2
146	Progress in developing transgenic monkey model for Huntington's disease. 2018 , 125, 401-417		12
145	Functional Magnetic Resonance Imaging in Huntington's Disease. 2018 , 142, 381-408		1
145	Functional Magnetic Resonance Imaging in Huntington's Disease. 2018 , 142, 381-408 Molecular Imaging in Huntington's Disease. 2018 , 142, 289-333		1
144	Molecular Imaging in Huntington's Disease. 2018 , 142, 289-333	3.8	4

140	Using Genomic Data to Find Disease-Modifying Loci in Huntington's Disease (HD). <i>Methods in Molecular Biology</i> , 2018 , 1780, 443-461	1.4	1
139	Modeling Genetic and Environment Interactions Relevant to Huntington's and Parkinson's Disease in Human Induced Pluripotent Stem Cells (hiPSCs)-Derived Neurons. 2018 , 159-171		
138	Overlap between age-at-onset and disease-progression determinants in Huntington disease. 2018 , 90, e2099-e2106		22
137	Circadian-based Treatment Strategy Effective in the BACHD Mouse Model of Huntington's Disease. 2018 , 33, 535-554		18
136	Huntington disease. 2018 , 147, 255-278		37
135	Epigenetic alterations mediate iPSC-induced normalization of DNA repair gene expression and TNR stability in Huntington's disease cells. 2018 , 131,		4
134	Age at onset prediction in spinocerebellar ataxia type 3 changes according to population of origin. <i>European Journal of Neurology</i> , 2019 , 26, 113-120	6	14
133	Time-varying proportional odds model for mega-analysis of clustered event times. 2019 , 20, 129-146		4
132	Neurofilaments in pre-symptomatic ALS and the impact of genotype. 2019 , 20, 538-548		37
131	Predicting the Risk of Huntington's Disease with Multiple Longitudinal Biomarkers. <i>Journal of Huntingtonps Disease</i> , 2019 , 8, 323-332	1.9	
130	A genetic association study of glutamine-encoding DNA sequence structures, somatic CAG expansion, and DNA repair gene variants, with Huntington disease clinical outcomes. 2019 , 48, 568-580		63
130			63
	expansion, and DNA repair gene variants, with Huntington disease clinical outcomes. 2019 , 48, 568-580 Mesenchymal stem cells alleviate AQP-4-dependent glymphatic dysfunction and improve brain	1.9	
129	expansion, and DNA repair gene variants, with Huntington disease clinical outcomes. 2019 , 48, 568-580 Mesenchymal stem cells alleviate AQP-4-dependent glymphatic dysfunction and improve brain distribution of antisense oligonucleotides in BACHD mice. 2020 , 38, 218-230 Progressive Polyglutamine Repeat Expansion in Peripheral Blood Cells and Sperm of Transgenic		8
129	expansion, and DNA repair gene variants, with Huntington disease clinical outcomes. 2019, 48, 568-580 Mesenchymal stem cells alleviate AQP-4-dependent glymphatic dysfunction and improve brain distribution of antisense oligonucleotides in BACHD mice. 2020, 38, 218-230 Progressive Polyglutamine Repeat Expansion in Peripheral Blood Cells and Sperm of Transgenic Huntington's Disease Monkeys. <i>Journal of Huntingtonps Disease</i> , 2019, 8, 443-448		8
129 128 127	expansion, and DNA repair gene variants, with Huntington disease clinical outcomes. 2019, 48, 568-580 Mesenchymal stem cells alleviate AQP-4-dependent glymphatic dysfunction and improve brain distribution of antisense oligonucleotides in BACHD mice. 2020, 38, 218-230 Progressive Polyglutamine Repeat Expansion in Peripheral Blood Cells and Sperm of Transgenic Huntington's Disease Monkeys. <i>Journal of Huntingtonps Disease</i> , 2019, 8, 443-448 Stem cells in animal models of Huntington disease: A systematic review. 2019, 95, 43-50		8 4 11
129 128 127	expansion, and DNA repair gene variants, with Huntington disease clinical outcomes. 2019, 48, 568-580 Mesenchymal stem cells alleviate AQP-4-dependent glymphatic dysfunction and improve brain distribution of antisense oligonucleotides in BACHD mice. 2020, 38, 218-230 Progressive Polyglutamine Repeat Expansion in Peripheral Blood Cells and Sperm of Transgenic Huntington's Disease Monkeys. <i>Journal of Huntington's Disease</i> , 2019, 8, 443-448 Stem cells in animal models of Huntington disease: A systematic review. 2019, 95, 43-50 Age at onset in genetic prion disease and the design of preventive clinical trials. 2019, 93, e125-e134 Late Onset Huntington Disease: Phenotypic and Genotypic Characteristics of 10 Cases in Argentina.	1.9	8 4 11 34

122	Astroglial monoacylglycerol lipase controls mutant huntingtin-induced damage of striatal neurons. 2019 , 150, 134-144		6
121	Pervasive autobiographical memory impairments in Huntington's disease. 2019 , 127, 123-130		8
120	Widespread Increased Diffusivity Reveals Early Cortical Degeneration in Huntington Disease. 2019 , 40, 1464-1468		8
119	Dynamic landmark prediction for mixture data. 2021 , 22, 558-574		
118	Hybrid PET-MRI Applications in Movement Disorders. 2019 , 144, 211-257		8
117	Sample enrichment for clinical trials to show delay of onset in huntington disease. 2019 , 34, 274-280		6
116	FAN1 modifies Huntington's disease progression by stabilizing the expanded HTT CAG repeat. 2019 , 28, 650-661		56
115	Leukocyte telomere shortening in Huntington's disease. 2019 , 396, 25-29		14
114	An active cognitive lifestyle as a potential neuroprotective factor in Huntington's disease. 2019 , 122, 116-124		11
113	Calcium-Handling Defects and Neurodegenerative Disease. 2020 , 12,		13
112	Early-Motor Phenotype Relates to Neuropsychiatric and Cognitive Disorders in Huntington's Disease. 2020 , 35, 781-788		4
111	One-year changes in brain microstructure differentiate preclinical Huntington's disease stages. 2020 , 25, 102099		5
110	Brain Branched-Chain Amino Acids in Maple Syrup Urine Disease: Implications for Neurological Disorders. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	8
109	Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. 2020 , 16, 529-546		80
108	The Association between CAG Repeat Length and Age of Onset of Juvenile-Onset Huntington's Disease. 2020 , 10,		1
107	Peripheral Levels of Renin-Angiotensin System Components Are Associated With Cognitive Performance in Huntington's Disease. 2020 , 14, 594945		O
106	Protein changes in synaptosomes of Huntington's disease knock-in mice are dependent on age and brain region. 2020 , 141, 104950		12
105	Quantifying the bias due to observed individual confounders in causal treatment effect estimates. 2020 , 39, 2447-2476		0

104	Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington's disease Young Adult Study (HD-YAS): a cross-sectional analysis. 2020 , 19, 502-512	56
103	Huntington's Disease and Hypertension: Sorting Out Mixed Messages. 2020 , 35, 915-917	
102	Clinical, radiological, and genetic characteristics in patients with Huntington's disease in a Taiwanese cohort. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2020 , 183, 352 ³ 59	O
101	Exploring the role of high-mobility group box 1 (HMGB1) protein in the pathogenesis of Huntington's disease. 2020 , 98, 325-334	6
100	Evaluation of Biochemical and Epigenetic Measures of Peripheral Brain-Derived Neurotrophic Factor (BDNF) as a Biomarker in Huntington's Disease Patients. 2019 , 12, 335	15
99	Resting-state connectivity stratifies premanifest Huntington's disease by longitudinal cognitive decline rate. 2020 , 10, 1252	4
98	The Inverse Comorbidity between Oncological Diseases and Huntington Disease: Review of Epidemiological and Biological Evidence. 2020 , 56, 269-279	1
97	Fronto-striatal circuits for cognitive flexibility in far from onset Huntington's disease: evidence from the Young Adult Study. 2021 , 92, 143-149	3
96	Prediction of the Age at Onset of Spinocerebellar Ataxia Type 3 with Machine Learning. 2021, 36, 216-224	4
95	Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. 2021 , 109, 448-460.e4	20
94	Estimating the causal effects of modifiable, non-genetic factors on Huntington disease progression using propensity score weighting. <i>Parkinsonism and Related Disorders</i> , 2021 , 83, 56-62	1
93	Impaired response of cerebral oxygen metabolism to visual stimulation in Huntington's disease. 2021 , 41, 1119-1130	2
92	Regenerative nanomedicine applications for neurodegenerative diseases of central nervous system. 2021 , 259-287	1
91	Genetic epidemiological characteristics of a Hungarian subpopulation of patients with Huntington's disease. 2021 , 21, 79	
90	Huntington's Disease Pathogenesis: Two Sequential Components. <i>Journal of Huntingtonps Disease</i> , 2021 , 10, 35-51	16
	<u> </u>	
89	Distinct sub-cellular autophagy impairments occur independently of protein aggregation in induced neurons from patients with Huntington disease.	
89 88	Distinct sub-cellular autophagy impairments occur independently of protein aggregation in induced	1

86	Altered Phase Separation and Cellular Impact in -Linked ALS/FTD. 2021, 15, 664151	4
85	snpXplorer: a web application to explore human SNP-associations and annotate SNP-sets. 2021 , 49, W60	3-W61 3
84	Gray Matter Vulnerabilities Predict Longitudinal Development of Apathy in Huntington's Disease. 2021 , 36, 2162-2172	2
83	Plasma neurofilament light in Huntington's disease: A marker for disease onset, but not symptom progression. <i>Parkinsonism and Related Disorders</i> , 2021 , 87, 32-38	3.6 6
82	Network model of pathology spread recapitulates neurodegeneration and selective vulnerability in Huntington's Disease. 2021 , 235, 118008	3
81	Safety and feasibility of research lumbar puncture in Huntington's disease: the HDClarity cohort and bioresource.	o
80	A Multi-Study Model-Based Evaluation of the Sequence of Imaging and Clinical Biomarker Changes in Huntington's Disease. 2021 , 4, 662200	1
79	Aberrant Striatal Value Representation in Huntington's Disease Gene Carriers 25 Years Before Onset. 2021 , 6, 910-918	1
78	Age of Onset of Huntington's Disease in Carriers of Reduced Penetrance Alleles. 2021,	
77	PET in Neurological and Psychiatric Disorders: Technologic Advances and Clinical Applications. 2017 , 485-535	1
76	Thermodynamics of Huntingtin Aggregation. 2020 , 118, 2989-2996	4
75	Age of onset in genetic prion disease and the design of preventive clinical trials.	2
74	The importance of integrating basic and clinical research toward the development of new therapies for Huntington disease. 2011 , 121, 476-83	77
73	Removal of the Mitochondrial Fission Factor Mff Exacerbates Neuronal Loss and Neurological Phenotypes in a Huntington's Disease Mouse Model. 2018 , 10,	4
72	Is There an Association of Physical Activity with Brain Volume, Behavior, and Day-to-day Functioning? A Cross Sectional Design in Prodromal and Early Huntington Disease. 2016 , 8,	5
71	Characterization of a large group of individuals with huntington disease and their relatives enrolled in the COHORT study. 2012 , 7, e29522	70
7°	Aggregation of polyQ proteins is increased upon yeast aging and affected by Sir2 and Hsf1: novel quantitative biochemical and microscopic assays. 2012 , 7, e44785	21
69	Characterising Upper Limb Movements in Huntington's Disease and the Impact of Restricted Visual Cues. 2015 , 10, e0133709	5

68	How to Capitalize on the Retest Effect in Future Trials on Huntington's Disease. 2015 , 10, e0145842		8
67	COMT Val158Met Polymorphism Modulates Huntington's Disease Progression. 2016 , 11, e0161106		12
66	Time-Restricted Feeding Improves Circadian Dysfunction as well as Motor Symptoms in the Q175 Mouse Model of Huntington's Disease. 2018 , 5,		42
65	Reviewing Biochemical Implications of Normal and Mutated Huntingtin in Huntington's Disease. <i>Current Medicinal Chemistry</i> , 2020 , 27, 5137-5158	4.3	3
64	Examination of Huntington's disease in a Chinese family. <i>Neural Regeneration Research</i> , 2014 , 9, 440-6	4.5	2
63	Promises and pitfalls of immune-based strategies for Huntington's disease. <i>Neural Regeneration Research</i> , 2017 , 12, 1422-1425	4.5	6
62	Can leukocyte telomere shortening be a possible biomarker to track Huntington's disease progression?. <i>Neural Regeneration Research</i> , 2019 , 14, 1709-1710	4.5	1
61	Huntington Disease: The Complexities of Making and Disclosing a Clinical Diagnosis After Premanifest Genetic Testing. <i>Tremor and Other Hyperkinetic Movements</i> , 2017 , 7, 467	2	3
60	Arithmetic Word-Problem Solving as Cognitive Marker of Progression in Pre-Manifest and Manifest Huntington's Disease. <i>Journal of Huntington's Disease</i> , 2021 , 10, 459-468	1.9	1
59	Imaging Biomarkers in Huntington Disease. <i>Neuromethods</i> , 2022 , 457-505	0.4	
58	Revealing the Timeline of Structural MRI Changes in Premanifest to Manifest Huntington Disease. <i>Neurology: Genetics</i> , 2021 , 7, e617	3.8	2
57	Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. <i>Brain</i> , 2021 ,	11.2	4
56	Validation of biomarkers in Huntington disease to support the development of disease-modifying therapies: A systematic review and critical appraisal scheme. <i>Parkinsonism and Related Disorders</i> , 2021 , 93, 89-96	3.6	0
55	Huntington Disease: Molecular Pathogenesis and New Therapeutic Perspectives. 2014, 101-126		
54	Huntington Disease: Clinical Phenotypes and Therapeutics. 2014, 71-99		
53	Diabetes. 2014 , 115-146		
52	Episodic Learning and Memory in Prodromal Huntington Disease: The Role of Multimodal Encoding and Selective Reminding. <i>International Journal of Clinical Medicine</i> , 2015 , 06, 876-886	0.3	0
51	Motivational, proteostatic and transcriptional deficits precede synapse loss, gliosis and neurodegeneration in the B6.HttQ111/+ model of Huntington disease.		O

50	Huntington Disease. 2017 , 195-221		O
49	El papel de las especies reactivas de oxgeno y nitrgeno en algunas enfermedades neurodegenerativas. <i>Revista De La Facultad De Medicina, Universidad Nacional Autonoma De Mexico</i> , 2019 , 62, 6-19	0.1	O
48	Tracking Expansions of Stable and Threshold Length Trinucleotide Repeat Tracts In Vivo and In Vitro Using Saccharomyces cerevisiae. <i>Methods in Molecular Biology</i> , 2020 , 2056, 25-68	1.4	О
47	Huntington Disease: A Nursing Perspective. Australasian Journal of Neuroscience, 2021, 31, 18-26	0.2	
46	Thermodynamics of Homopeptide Aggregation.		
45	An Exploration of Latent Structure in Observational Huntington's Disease Studies. <i>AMIA Summits on Translational Science Proceedings</i> , 2017 , 2017, 92-102	1.1	2
44	Chorea-Acanthocytosis and the Huntington Disease Allele in an Irish Family. <i>Tremor and Other Hyperkinetic Movements</i> , 2018 , 8, 604	2	
43	Longer CAG repeat length is associated with shorter survival after disease onset in Huntington disease <i>American Journal of Human Genetics</i> , 2021 ,	11	3
42	RNA-Targeting CRISPR/Cas13d System Eliminates Disease-Related Phenotypes in Pre-clinical Models of Huntington Disease.		0
41	DNA methylation age acceleration is associated with age of onset in Chinese spinocerebellar ataxia type 3 patients <i>Neurobiology of Aging</i> , 2022 , 113, 1-6	5.6	
40	Advances in Cellular and Cell-Free Therapy Medicinal Products for Huntington Disease Treatment.		0
39	Clinical and genetic characteristics of late-onset Huntington's disease in a large European cohort <i>European Journal of Neurology</i> , 2022 ,	6	0
38	Safety and Feasibility of Research Lumbar Puncture in Huntington's Disease: The HDClarity Cohort and Bioresource <i>Journal of Huntingtonps Disease</i> , 2022 , 11, 59-69	1.9	1
37	A review on Huntington protein Insight into protein aggregation and therapeutic interventions <i>Current Drug Metabolism</i> , 2022 ,	3.5	1
36	Associations between prognostic index scores and plasma neurofilament light in Huntington's disease <i>Parkinsonism and Related Disorders</i> , 2022 , 97, 25-28	3.6	1
35	Distinct subcellular autophagy impairments in induced neurons from Huntington's disease patients <i>Brain</i> , 2021 ,	11.2	2
34	Microglia Mediate Early Corticostriatal Synapse Loss and Cognitive Dysfunction in Huntington Disease Through Complement-Dependent Mechanisms.		1
33	Suppression of Somatic Expansion As a Novel Therapeutic Approach for Huntington Disease and Other Repeat Expansion Disorders. 2022 , 1, 163-175		

32	The Hold me Tight Program for Couples Facing Huntington's Disease <i>Journal of Huntingtonps Disease</i> , 2022 ,	1.9	
31	Standardizing the CAP Score in Huntington's Disease by Predicting Age-at-Onset <i>Journal of Huntingtonps Disease</i> , 2022 ,	1.9	2
30	Data_Sheet_1.PDF. 2020 ,		
29	Data_Sheet_2.PDF. 2020 ,		
28	Data_Sheet_3.pdf. 2020 ,		
27	Classification of Huntington Disease Stage with Features Derived from Structural and Diffusion-Weighted Imaging. <i>Journal of Personalized Medicine</i> , 2022 , 12, 704	3.6	
26	Genetic and Epigenetic Interplay Define Disease Onset and Severity in Repeat Diseases <i>Frontiers in Aging Neuroscience</i> , 2022 , 14, 750629	5.3	О
25	How the study of digital footprints can supplement research in behavioral genetics and molecular psychology. 1, 2		1
24	Divergent Effects of the Nonselective Adenosine Receptor Antagonist Caffeine in Pre-Manifest and Motor-Manifest Huntington Disease. <i>Biomedicines</i> , 2022 , 10, 1258	4.8	
23	Spermatozoan Metabolism as a Non-Traditional Model for the Study of Huntington Disease. <i>International Journal of Molecular Sciences</i> , 2022 , 23, 7163	6.3	
22	The Repeatable Battery for the Assessment of Neuropsychological Status, While Useful for Measuring Cognitive Changes in Manifest Huntington Disease, May Show Limited Utility in Premanifest Disease. <i>Cognitive and Behavioral Neurology</i> , Publish Ahead of Print,	1.6	
21	Inflammasome activation and assembly in Huntington disease. 2022, 151, 134-142		O
20	Explainable artificial intelligence based on feature optimization for age at onset prediction of spinocerebellar ataxia type 3. 16,		O
19	CRISPR and iPSCs: Recent Developments and Future Perspectives in Neurodegenerative Disease Modelling, Research, and Therapeutics. 2022 , 40, 1597-1623		1
18	Salivary Huntingtin protein is uniquely associated with clinical features of Huntington Disease.		O
17	Zebrafish as a model organism for neurodegenerative disease. 15,		4
16	Role of SUMOylation in Neurodegenerative Diseases. 2022 , 11, 3395		1
15	Lumbar puncture safety and tolerability in premanifest and manifest Huntington disease: a multi-analysis cross-sectional study. 2022 , 12,		Ο

14	Leukocyte Telomere Length as Potential Biomarker of HD Progression: A Follow-Up Study. 2022 , 23, 13449	1
13	HSF1 and Its Role in Huntington Disease Pathology. 2022 ,	O
12	Unraveling the role of relative telomere length and CAG expansion on initial symptoms of juvenile Huntington disease.	0
11	Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington disease.	0
10	An RNA-targeting CRISPRCas13d system alleviates disease-related phenotypes in Huntington disease models.	О
9	Nrf2 Pathway in Huntington Disease (HD): What Is Its Role?. 2022 , 23, 15272	3
8	Reduced-penetrance Huntington disease-causing alleles with 39 CAG trinucleotide repeats could be a genetic factor of amyotrophic lateral sclerosis. 2023 , 86, 47-51	О
7	Two cases of Huntington disease unmasked by the COVID-19 pandemic.	O
6	Clustering and prediction of disease progression trajectories in Huntington's disease: An analysis of Enroll-HD data using a machine learning approach. 13,	0
5	Salivary Huntingtin protein is uniquely associated with clinical features of Huntington disease. 2023 , 13,	O
4	Speech biomarkers in Huntington's disease: A cross-sectional study in pre-symptomatic, prodromal and early manifest stages. 2023 , 30, 1262-1271	О
3	Structural and metabolic brain correlates of arithmetic word-problem solving in Huntington's disease. 2023 , 101, 990-999	O
2	Genetic factors influencing age of onset of Huntington's disease and markers of its prediction. 2023 , 24, 127-131	О
1	Application Value of Serum Neurofilament Light Protein for Disease Staging in Huntington's Disease.	O