Carbon Nanotube Sponges

Advanced Materials 22, 617-621

DOI: 10.1002/adma.200902986

Citation Report

#	Article	IF	CITATIONS
6	Ultralight Multiwalled Carbon Nanotube Aerogel. ACS Nano, 2010, 4, 7293-7302.	7.3	477
7	Soft, Highly Conductive Nanotube Sponges and Composites with Controlled Compressibility. ACS Nano, 2010, 4, 2320-2326.	7.3	219
8	Patterning of hydrophobic three-dimensional carbon nanotube architectures by a pattern transfer approach. Nanoscale, 2010, 2, 1401.	2.8	20
9	Use of carbon nanotube filter in removing bioaerosols. Journal of Aerosol Science, 2010, 41, 611-620.	1.8	45
10	Carbon Nanotubes with Temperature-Invariant Viscoelasticity from –196° to 1000°C. Science, 2010, 330, 1364-1368.	6.0	335
11	Carbon nanotube sponge filters for trapping nanoparticles and dye molecules from water. Chemical Communications, 2010, 46, 7966.	2.2	95
12	Large-scale preparation of 3D self-assembled iron hydroxide and oxide hierarchical nanostructures and their applications for water treatment. Journal of Materials Chemistry, 2011, 21, 11742.	6.7	116
13	Tailoring Temperature Invariant Viscoelasticity of Carbon Nanotube Material. Nano Letters, 2011, 11, 3279-3284.	4.5	41
14	Wettability Control of ZnO Nanoparticles for Universal Applications. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3350-3356.	4.0	95
15	Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy and Environmental Science, 2011, 4, 2062.	15.6	560
16	Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. Chemical Society Reviews, 2011, 40, 3764.	18.7	341
17	A Polydimethylsiloxane (PDMS) Sponge for the Selective Absorption of Oil from Water. ACS Applied Materials & Discrete Amplied & Discrete Am	4.0	606
18	In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale, 2011, 3, 3132.	2.8	673
19	Poptube approach for ultrafast carbon nanotube growth. Chemical Communications, 2011, 47, 9912.	2.2	108
20	A Facile Route to Isotropic Conductive Nanocomposites by Direct Polymer Infiltration of Carbon Nanotube Sponges. ACS Nano, 2011, 5, 4276-4283.	7.3	58
21	Facile Removal and Collection of Oils from Water Surfaces through Superhydrophobic and Superoleophilic Sponges. Journal of Physical Chemistry C, 2011, 115, 17464-17470.	1.5	442
22	Improvement of oil adsorption performance by a sponge-like natural vermiculite-carbon nanotube hybrid. Applied Clay Science, 2011, 53, 1-7.	2.6	70
23	Hydrophobic Nanocellulose Aerogels as Floating, Sustainable, Reusable, and Recyclable Oil Absorbents. ACS Applied Materials & Interfaces, 2011, 3, 1813-1816.	4.0	741

#	Article	IF	CITATIONS
24	Decorating Mg/Fe oxide nanotubes with nitrogen-doped carbon nanotubes. Journal of Alloys and Compounds, 2011, 509, 9372-9376.	2.8	5
25	Superwetting monolithic SiO2 with hierarchical structure for oil removal. Journal of Materials Chemistry, 2011, 21, 11901.	6.7	68
26	Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. Journal of Materials Chemistry, 2011, 21, 18295.	6.7	230
27	Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film. Beilstein Journal of Nanotechnology, 2011, 2, 311-317.	1.5	14
28	Controllable synthesis of carbon nanotubes by changing the Mo content in bimetallic Fe–Mo/MgO catalyst. Materials Chemistry and Physics, 2011, 127, 379-384.	2.0	39
29	Macroscopic Carbon Nanotube Assemblies: Preparation, Properties, and Potential Applications. Small, 2011, 7, 1504-1520.	5.2	291
30	Enhanced Transport of Nanoparticles Across a Porous Nanotube Sponge. Advanced Functional Materials, 2011, 21, 3439-3445.	7.8	18
31	Applications of Bioâ€Inspired Special Wettable Surfaces. Advanced Materials, 2011, 23, 719-734.	11.1	961
32	Carbon Nanotubes with Temperatureâ€Invariant Creep and Creepâ€Recovery from â^'190 to 970 °C. Advanced Materials, 2011, 23, 3686-3691.	11.1	38
33	A Novel Superhydrophilic and Underwater Superoleophobic Hydrogelâ€Coated Mesh for Oil/Water Separation. Advanced Materials, 2011, 23, 4270-4273.	11.1	1,462
34	Silicon–Carbon Nanotube Coaxial Sponge as Liâ€ion Anodes with High Areal Capacity. Advanced Energy Materials, 2011, 1, 523-527.	10.2	220
35	Removal of Organic Compounds from Water by Using a Gold Nanoparticle–Poly(dimethylsiloxane) Nanocomposite Foam. ChemSusChem, 2011, 4, 737-743.	3.6	50
36	Preparation of stable carbon nanotube aerogels with high electrical conductivity and porosity. Carbon, 2011, 49, 2352-2361.	5.4	98
37	Tuning the compressive mechanical properties of carbon nanotube foam. Carbon, 2011, 49, 2834-2841.	5.4	93
38	Recyclable carbon nanotube sponges for oil absorption. Acta Materialia, 2011, 59, 4798-4804.	3.8	276
39	Impact of the fabrication method on the physicochemical properties of carbon nanotube-based aerogels. Microporous and Mesoporous Materials, 2011, 143, 451-457.	2.2	31
40	Preparation and Photocatalytic Properties of SnO ₂ Coated on Nitrogen-Doped Carbon Nanotubes. Journal of Nanomaterials, 2012, 2012, 1-6.	1.5	10
41	Tailoring properties of carbon-nanotube-based foams by ion bombardment. Applied Physics Letters, 2012, 101, .	1.5	7

#	Article	IF	Citations
43	Encyclopedia of Carbon Nanoforms. , 2012, , 1-65.		2
44	Electro- and Photodriven Phase Change Composites Based on Wax-Infiltrated Carbon Nanotube Sponges. ACS Nano, 2012, 6, 10884-10892.	7.3	374
45	Magnetically Driven Floating Foams for the Removal of Oil Contaminants from Water. ACS Nano, 2012, 6, 5413-5419.	7.3	574
46	Biomimetic superelastic graphene-based cellular monoliths. Nature Communications, 2012, 3, 1241.	5.8	1,091
47	Self-assembly of graphene into three-dimensional structures promoted by natural phenolic acids. Journal of Materials Chemistry, 2012, 22, 22459.	6.7	188
48	Gas Diffusion, Energy Transport, and Thermal Accommodation in Singleâ€Walled Carbon Nanotube Aerogels. Advanced Functional Materials, 2012, 22, 5251-5258.	7.8	95
50	A Versatile, Ultralight, Nitrogenâ€Doped Graphene Framework. Angewandte Chemie - International Edition, 2012, 51, 11371-11375.	7.2	731
51	Superhydrophobic kapok fiber oil-absorbent: Preparation and high oil absorbency. Chemical Engineering Journal, 2012, 213, 1-7.	6.6	253
52	The application of a three dimensional CNT-sponge as the counter electrode for dye-sensitized solar cells. Carbon, 2012, 50, 5624-5627.	5.4	16
53	Superlow Thermal Conductivity 3D Carbon Nanotube Network for Thermoelectric Applications. ACS Applied Materials & Samp; Interfaces, 2012, 4, 81-86.	4.0	117
54	Bubble-promoted assembly of hierarchical, porous Ag2S nanoparticle membranes. Journal of Materials Chemistry, 2012, 22, 24721.	6.7	5
55	Production of large-scale, freestanding vanadium pentoxide nanobelt porous structures. Nanoscale, 2012, 4, 1636.	2.8	3
56	Toward the design of superabsorbent materials for non-polar organic solvents and oils: ionic content dependent swelling behaviour of cross-linked poly(octadecyl acrylate)-based lipophilic polyelectrolytes. Journal of Materials Chemistry, 2012, 22, 20962.	6.7	24
57	Strong, Conductive, Lightweight, Neat Graphene Aerogel Fibers with Aligned Pores. ACS Nano, 2012, 6, 7103-7113.	7.3	599
58	MOF derived porous carbon–Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent. Journal of Materials Chemistry, 2012, 22, 19694.	6.7	295
59	Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue. Nature Nanotechnology, 2012, 7, 562-566.	15.6	468
60	Stable superhydrophobic coatings from thiol-ligand nanocrystals and their application in oil/water separation. Journal of Materials Chemistry, 2012, 22, 9774.	6.7	231
61	Novel Solution to Oil Spill Recovery: Using Thermodegradable Polyolefin Oil Superabsorbent Polymer (Oil–SAP). Energy & Fuels, 2012, 26, 4896-4902.	2.5	80

#	Article	IF	CITATIONS
62	Oneâ€Pot Synthesis of Ultraâ€Light Nickel Nanofoams Composed of Nanowires and Their Transformation into Various Functional Nanofoams. Small, 2012, 8, 3432-3437.	5.2	46
63	Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chemical Communications, 2012, 48, 10660.	2.2	471
64	Flexible single-walled carbon nanotube/polycellulose papers for lithium-ion batteries. Nanotechnology, 2012, 23, 495401.	1.3	36
65	Elastic shape recovery of carbon nanotube sponges in liquid oil. Journal of Materials Chemistry, 2012, 22, 18300.	6.7	27
66	Toward Effective Synergetic Effects from Graphene Nanoplatelets and Carbon Nanotubes on Thermal Conductivity of Ultrahigh Volume Fraction Nanocarbon Epoxy Composites. Journal of Physical Chemistry C, 2012, 116, 23812-23820.	1.5	154
67	Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy and Environmental Science, 2012, 5, 7908.	15.6	727
68	Competing elastic and adhesive interactions govern deformation behaviors of aligned carbon nanotube arrays. Applied Physics Letters, 2012, 101, 053105.	1.5	11
69	Nonfouling Capture–Release Substrates Based on Polymer Brushes for Separation of Water-Dispersed Oil Droplets. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6403-6409.	4.0	25
70	Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations. Journal of Materials Chemistry, 2012, 22, 20197.	6.7	478
71	Photo-induced water–oil separation based on switchable superhydrophobicity–superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films. Journal of Materials Chemistry, 2012, 22, 19652.	6.7	347
72	Magnetoactive Superhydrophobic Foams for Oil-Water Separation. Advances in Science and Technology, 2012, 77, 159-164.	0.2	1
73	Alignment Control of Carbon Nanotube Forest from Random to Nearly Perfectly Aligned by Utilizing the Crowding Effect. ACS Nano, 2012, 6, 5837-5844.	7.3	151
74	Recent developments in polymeric superoleophobic surfaces. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1209-1224.	2.4	219
75	Biomoleculeâ€Directed Assembly of Selfâ€Supported, Nanoporous, Conductive, and Luminescent Singleâ€Walled Carbon Nanotube Scaffolds. Small, 2012, 8, 1840-1845.	5.2	15
76	Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Scientific Reports, 2012, 2, 363.	1.6	329
77	Wide Range Control of Microstructure and Mechanical Properties of Carbon Nanotube Forests: A Comparison Between Fixed and Floating Catalyst CVD Techniques. Advanced Functional Materials, 2012, 22, 5028-5037.	7.8	58
78	Highly Concentrated 3D Macrostructure of Individual Carbon Nanotubes in a Ceramic Environment. Advanced Materials, 2012, 24, 4322-4326.	11.1	56
80	Macroscopicâ€6cale Template Synthesis of Robust Carbonaceous Nanofiber Hydrogels and Aerogels and Their Applications. Angewandte Chemie - International Edition, 2012, 51, 5101-5105.	7.2	609

#	ARTICLE	IF	CITATIONS
81	Synthesis of carbon-coated Fe3O4 composites with pine-tree-leaf structures from catalytic pyrolysis of polyethylene. CrystEngComm, 2012, 14, 3451.	1.3	18
82	Photocatalytic, recyclable CdS nanoparticle-carbon nanotube hybrid sponges. Nano Research, 2012, 5, 265-271.	5.8	37
83	Fabrication of photocatalytic composite of multi-walled carbon nanotubes/TiO2 and its application for desulfurization of diesel. Materials Research Bulletin, 2012, 47, 308-314.	2.7	44
84	Multi-scale study of the strength and toughness of carbon nanotube fiber materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 549, 118-122.	2.6	24
85	A hierarchical mesh film with superhydrophobic and superoleophilic properties for oil and water separation. Journal of Chemical Technology and Biotechnology, 2012, 87, 427-430.	1.6	82
86	Hierarchical Nanocomposites Derived from Nanocarbons and Layered Double Hydroxides ―Properties, Synthesis, and Applications. Advanced Functional Materials, 2012, 22, 675-694.	7.8	537
87	Superâ€Compressibility of Ultralowâ€Density Nanoporous Silica. Advanced Materials, 2012, 24, 776-780.	11.1	98
88	Ultra-low density porous polystyrene monolith: facile preparation and superior application. Journal of Materials Chemistry A, 2013, 1, 10135.	5.2	66
89	Carbon nanotube sponges as conductive networks for supercapacitor devices. Nano Energy, 2013, 2, 1025-1030.	8.2	61
90	Ni-Doped Graphene/Carbon Cryogels and Their Applications As Versatile Sorbents for Water Purification. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7584-7591.	4.0	126
91	Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption. Energy and Environmental Science, 2013, 6, 2435.	15.6	275
92	Synthesis and properties of the vapour-grown carbon nanofiber/epoxy shape memory and conductive foams prepared via latex technology. Composites Science and Technology, 2013, 76, 8-13.	3.8	44
93	Efficient organic solvent and oil sorbent co-polyesters: Poly-9-octadecenylacrylate/methacrylate with 1-hexene. Reactive and Functional Polymers, 2013, 73, 457-464.	2.0	32
94	An overview of carbon materials for flexible electrochemical capacitors. Nanoscale, 2013, 5, 8799.	2.8	278
95	Versatile Fabrication of Ultralight Magnetic Foams and Application for Oil–Water Separation. ACS Nano, 2013, 7, 6875-6883.	7.3	321
96	Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes. Nanoscale, 2013, 5, 8472.	2.8	101
97	Engineering growth of TiO2 nanofibers on NiO–Ni foam with cleaning and separation functions. RSC Advances, 2013, 3, 15421.	1.7	9
98	Application potential of carbon nanotubes in water treatment: A review. Journal of Environmental Sciences, 2013, 25, 1263-1280.	3.2	280

#	Article	IF	CITATIONS
99	Functional Polyolefins for Energy Applications. Macromolecules, 2013, 46, 6671-6698.	2.2	142
100	Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Scientific Reports, 2013, 3, 1935.	1.6	130
102	A high-capacity lithium–air battery with Pd modified carbon nanotube sponge cathode working in regular air. Carbon, 2013, 62, 288-295.	5.4	116
103	Carbon Fiber Aerogel Made from Raw Cotton: A Novel, Efficient and Recyclable Sorbent for Oils and Organic Solvents. Advanced Materials, 2013, 25, 5916-5921.	11.1	600
104	Energy absorption ability of buckyball C720 at low impact speed: a numerical study based on molecular dynamics. Nanoscale Research Letters, 2013, 8, 54.	3.1	8
105	Poly(dimethylsiloxane) Oil Absorbent with a Three-Dimensionally Interconnected Porous Structure and Swellable Skeleton. ACS Applied Materials & Interfaces, 2013, 5, 10201-10206.	4.0	206
106	Cost-Effective Reduced Graphene Oxide-Coated Polyurethane Sponge As a Highly Efficient and Reusable Oil-Absorbent. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10018-10026.	4.0	404
107	Three-Dimensional Nitrogen-Doped Multiwall Carbon Nanotube Sponges with Tunable Properties. Nano Letters, 2013, 13, 5514-5520.	4.5	110
108	Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. Journal of Materials Chemistry A, 2013, 1, 5386.	5.2	525
109	A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. Journal of Materials Chemistry A, 2013, 1, 5758.	5.2	330
110	A self-cleaning underwater superoleophobic mesh for oil-water separation. Scientific Reports, 2013, 3, 2326.	1.6	252
111	A magnetically superhydrophobic bulk material for oil removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 429, 129-133.	2.3	45
112	Cooling performance enhancement of LED (light emitting diode) packages with carbon nanogrease. Energy, 2013, 60, 195-203.	4.5	23
113	Tailoring Carbon Nanotube Density for Modulating Electro-to-Heat Conversion in Phase Change Composites. Nano Letters, 2013, 13, 4028-4035.	4.5	133
114	Fabrication of cross-linked carbon nanotube foam using polymethylmethacrylate microspheres as templates. Journal of Materials Chemistry A, 2013, 1, 13984.	5.2	21
115	Rheological model predicting compressive responses of carbon nanotube networks. RSC Advances, 2013, 3, 14473.	1.7	6
116	Papilla-like magnetic particles with hierarchical structure for oil removal from water. Chemical Communications, 2013, 49, 8752.	2.2	70
117	Effect of supra-molecular microstructures on the adhesion of SWCNT fiber/iPP interface. Polymer, 2013, 54, 456-463.	1.8	18

#	Article	IF	Citations
118	Bioinspired Multifunctional Foam with Selfâ€Cleaning and Oil/Water Separation. Advanced Functional Materials, 2013, 23, 2881-2886.	7.8	513
119	Electrophoretic deposition of macroporous carbon nanotube assemblies for electrochemical applications. Carbon, 2013, 53, 302-312.	5.4	14
120	Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications. Chemical Society Reviews, 2013, 42, 794-830.	18.7	1,065
121	Multifunctional, Ultraâ€Flyweight, Synergistically Assembled Carbon Aerogels. Advanced Materials, 2013, 25, 2554-2560.	11.1	1,701
122	Covalent assembly of 3D graphene/polypyrrole foams for oil spill cleanup. Journal of Materials Chemistry A, 2013, 1, 3446.	5.2	135
123	Fabrication and characterization of three-dimensional macroscopic all-carbon scaffolds. Carbon, 2013, 53, 90-100.	5.4	72
124	Enhanced mechanical properties of carbon nanotube networks by mobile and discrete binders. Carbon, 2013, 64, 237-244.	5.4	44
125	Graphene oxide foams and their excellent adsorption ability for acetone gas. Materials Research Bulletin, 2013, 48, 3553-3558.	2.7	38
126	Heavy-ion-induced modification of structural and mechanical properties of carbon-nanotube aerogels. Carbon, 2013, 57, 310-316.	5.4	5
127	Ultralight and Highly Compressible Graphene Aerogels. Advanced Materials, 2013, 25, 2219-2223.	11.1	1,249
128	Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin–chitosan. Colloids and Surfaces B: Biointerfaces, 2013, 107, 76-83.	2.5	362
129	Ultralight, Flexible, and Fireâ€Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angewandte Chemie - International Edition, 2013, 52, 2925-2929.	7.2	643
130	Highly Compressionâ€Tolerant Supercapacitor Based on Polypyrroleâ€mediated Graphene Foam Electrodes. Advanced Materials, 2013, 25, 591-595.	11.1	745
131	Superhydrophobic and Superoleophilic PVDF Membranes for Effective Separation of Waterâ€inâ€Oil Emulsions with High Flux. Advanced Materials, 2013, 25, 2071-2076.	11.1	1,015
132	Ultrafast Separation of Emulsified Oil/Water Mixtures by Ultrathin Freeâ€Standing Singleâ€Walled Carbon Nanotube Network Films. Advanced Materials, 2013, 25, 2422-2427.	11.1	527
133	Porous boron nitride nanosheets for effective water cleaning. Nature Communications, 2013, 4, 1777.	5.8	831
134	Modifying Native Nanocellulose Aerogels with Carbon Nanotubes for Mechanoresponsive Conductivity and Pressure Sensing. Advanced Materials, 2013, 25, 2428-2432.	11.1	246
135	Carbon Nanotube Spongeâ€Array Tandem Composites with Extended Energy Absorption Range. Advanced Materials, 2013, 25, 1185-1191.	11.1	47

#	Article	IF	Citations
137	Controllable synthesis of spongy carbon nanotube blocks with tunable macro- and microstructures. Nanotechnology, 2013, 24, 085705.	1.3	20
138	Superhydrophobic Activated Carbonâ€Coated Sponges for Separation and Absorption. ChemSusChem, 2013, 6, 1057-1062.	3.6	190
139	Fabrication of superhydrophobic cotton textiles for water–oil separation based on drop-coating route. Carbohydrate Polymers, 2013, 97, 59-64.	5.1	137
140	Nanowireâ€Haired Inorganic Membranes with Superhydrophilicity and Underwater Ultralow Adhesive Superoleophobicity for Highâ€Efficiency Oil/Water Separation. Advanced Materials, 2013, 25, 4192-4198.	11.1	784
141	Ultralight Three-Dimensional Boron Nitride Foam with Ultralow Permittivity and Superelasticity. Nano Letters, 2013, 13, 3232-3236.	4.5	190
142	Developing Polymer Composite Materials: Carbon Nanotubes or Graphene?. Advanced Materials, 2013, 25, 5153-5176.	11.1	398
143	Mussel-Inspired Chemistry and Michael Addition Reaction for Efficient Oil/Water Separation. ACS Applied Materials & Diterfaces, 2013, 5, 4438-4442.	4.0	310
144	Magnetic and Highly Recyclable Macroporous Carbon Nanotubes for Spilled Oil Sorption and Separation. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5845-5850.	4.0	310
145	Oil spill cleanup from sea water by carbon nanotube sponges. Frontiers of Materials Science, 2013, 7, 170-176.	1.1	69
146	Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil–water separation. RSC Advances, 2013, 3, 23432.	1.7	130
147	Flexible, compressible, hydrophobic, floatable, and conductive carbon nanotube-polymer sponge. Applied Physics Letters, 2013, 102, .	1.5	114
148	Superhydrophobic Mesoporous Graphene for Separation and Absorption. ChemPlusChem, 2013, 78, 1282-1287.	1.3	39
149	Synthesis of porous carbon nanotubes foam composites with a high accessible surface area and tunable porosity. Journal of Materials Chemistry A, 2013, 1, 9508.	5.2	69
150	A reverse membrane emulsification process based on a hierarchically porous monolith for high efficiency water–oil separation. Journal of Materials Chemistry A, 2013, 1, 1701-1708.	5.2	64
151	Hollow Carbon Fibers Derived from Natural Cotton as Effective Sorbents for Oil Spill Cleanup. Industrial & Engineering Chemistry Research, 2013, 52, 18251-18261.	1.8	88
152	Porous Carbon Nanoparticle Networks with Tunable Absorbability. Scientific Reports, 2013, 3, 2524.	1.6	50
153	Mechanical and Thermal Management Characteristics of Ultrahigh Surface Area Singleâ€Walled Carbon Nanotube Aerogels. Advanced Functional Materials, 2013, 23, 377-383.	7.8	104
154	Zinc oxide application in the textile industry: surface tailoring and water barrier attributes as parameters with direct implication in comfort performance. Textile Reseach Journal, 2013, 83, 2142-2151.	1.1	20

#	Article	IF	CITATIONS
155	A brief review of surface-functionalized cotton fabrics. Surface Innovations, 2013, 1, 140-156.	1.4	42
156	Experimental Study on Energy Dissipation Characteristics of ZSMâ€5 Zeolite/Water System. Advanced Engineering Materials, 2013, 15, 740-746.	1.6	22
157	Compressibility of highly porous network of carbon nanotubes. Applied Physics Letters, 2013, 103, .	1.5	9
158	Cellulosic Substrates for Removal of Pollutants from Aqueous Systems: A Review. 3. Spilled Oil and Emulsified Organic Liquids. BioResources, 2013, 8, .	0.5	66
159	Carbon nanotube fibers spun from a sizing material. Applied Physics Letters, 2014, 105, .	1.5	3
160	Recent advances in understanding the reinforcing ability and mechanism of carbon nanotubes in ceramic matrix composites. Science and Technology of Advanced Materials, 2014, 15, 064902.	2.8	73
161	Kinetic and Thermodynamic Studies on the Removal of Oil from Water Using Superhydrophobic Kapok Fiber. Water Environment Research, 2014, 86, 360-365.	1.3	13
162	Superhydrophobic silica wool—a facile route to separating oil and hydrophobic solvents from water. Science and Technology of Advanced Materials, 2014, 15, 065003.	2.8	13
163	Low cost and robust soot dipped polyurethane sponge for highly efficient and recyclable oil and organic solvent cleanup. RSC Advances, 2014, 4, 59481-59485.	1.7	23
164	Multiscale Mass-Spring Model for High-Rate Compression of Vertically Aligned Carbon Nanotube Foams. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	1.1	15
165	Chip cooling with carbon nanotube heat sink. , 2014, , .		1
166	Facile Preparation and Characterization of Modified Polyurethane Sponge for Oil Absorption. Industrial & Diplomation	1.8	51
167	Effect of fluid medium on mechanical behavior of carbon nanotube foam. Applied Physics Letters, 2014, 104, 221910.	1.5	7
168	Comparative Study of Aerogels Obtained from Differently Prepared Nanocellulose Fibers. ChemSusChem, 2014, 7, 154-161.	3.6	258
169	CMP Aerogels: Ultrahighâ€Surfaceâ€Area Carbonâ€Based Monolithic Materials with Superb Sorption Performance. Advanced Materials, 2014, 26, 8053-8058.	11.1	125
170	Dualâ€Scaled Porous Nitrocellulose Membranes with Underwater Superoleophobicity for Highly Efficient Oil/Water Separation. Advanced Materials, 2014, 26, 1771-1775.	11.1	311
171	Super-fast oil uptake using porous ultra-high molecular weight polyethylene sheets. Polymers for Advanced Technologies, 2014, 25, 1181-1185.	1.6	22
172	Dendrimer-linked, renewable and magnetic carbon nanotube aerogels. Materials Horizons, 2014, 1, 232-236.	6.4	35

#	Article	IF	Citations
173	Three-dimensional Nanotube Networks and a New Horizon of Applications., 2014,, 457-493.		2
174	A shape-memory scaffold for macroscale assembly of functional nanoscale building blocks. Materials Horizons, 2014, 1, 69-73.	6.4	55
175	Intercalation strategies in clay/polymer hybrids. Progress in Polymer Science, 2014, 39, 443-485.	11.8	248
176	Si/C hybrid nanostructures for Li-ion anodes: An overview. Journal of Power Sources, 2014, 246, 167-177.	4.0	218
177	Graphene Nanoribbon Aerogels Unzipped from Carbon Nanotube Sponges. Advanced Materials, 2014, 26, 3241-3247.	11.1	151
178	A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy and Environmental Science, 2014, 7, 1564.	15.6	996
179	Amphiphilic superabsorbent cellulose nanofibril aerogels. Journal of Materials Chemistry A, 2014, 2, 6337-6342.	5.2	375
180	Porous Graphene Materials for Water Remediation. Small, 2014, 10, 3434-3441.	5.2	104
181	Pumping through Porous Hydrophobic/Oleophilic Materials: An Alternative Technology for Oil Spill Remediation. Angewandte Chemie - International Edition, 2014, 53, 3612-3616.	7.2	253
182	A one-pot biosynthesis of reduced graphene oxide (RGO)/bacterial cellulose (BC) nanocomposites. Green Chemistry, 2014, 16, 3195-3201.	4.6	90
183	Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Research, 2014, 7, 209-218.	5.8	115
184	Superhydrophobic fabrics for oil–water separation through a diamond like carbon (DLC) coating. Journal of Materials Chemistry A, 2014, 2, 6781-6789.	5.2	164
185	A convenient strategy to functionalize carbon nanotubes with ascorbic acid and its effect on the physical and thermomechanical properties of poly(amide–imide) composites. Journal of Solid State Chemistry, 2014, 211, 136-145.	1.4	50
186	Conformal coating of TiO2 nanorods on a 3-D CNT scaffold by using a CNT film as a nanoreactor: a free-standing and binder-free Li-ion anode. Journal of Materials Chemistry A, 2014, 2, 2701.	5.2	46
187	Core-Double-Shell, Carbon Nanotube@Polypyrrole@MnO ₂ Sponge as Freestanding, Compressible Supercapacitor Electrode. ACS Applied Materials & Sponge as Freestanding, 100 (100 Materials & 100 Materia	4.0	298
188	Conductive polymerâ€coated mesh films with tunable surface wettability for separation of oils and organics from water. Journal of Applied Polymer Science, 2014, 131, .	1.3	18
189	Cellulose nanofibrils aerogels generated from jute fibers. Carbohydrate Polymers, 2014, 109, 35-43.	5.1	68
190	Saltâ€Induced Fabrication of Superhydrophilic and Underwater Superoleophobic PAAâ€gâ€PVDF Membranes for Effective Separation of Oilâ€inâ€Water Emulsions. Angewandte Chemie - International Edition, 2014, 53, 856-860.	7.2	673

#	Article	IF	CITATIONS
191	Dimethyl phthalate degradation at novel and efficient electro-Fenton cathode. Applied Catalysis B: Environmental, 2014, 156-157, 1-7.	10.8	47
192	Surface modification and partial reduction of three-dimensional macroporous graphene oxide scaffolds for greatly improved adsorption capacity. RSC Advances, 2014, 4, 899-902.	1.7	21
193	Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water. Chemistry of Materials, 2014, 26, 2659-2668.	3.2	511
194	Carbon Aerogel from Winter Melon for Highly Efficient and Recyclable Oils and Organic Solvents Absorption. ACS Sustainable Chemistry and Engineering, 2014, 2, 1492-1497.	3.2	296
195	Highly Efficient and Recyclable Carbon Soot Sponge for Oil Cleanup. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5924-5929.	4.0	157
196	Surface modification of polypyrrole-coated foam for the capture of organic solvents and oils. Journal of Materials Science, 2014, 49, 4576-4582.	1.7	18
197	Mussel-Inspired Direct Immobilization of Nanoparticles and Application for Oil–Water Separation. ACS Nano, 2014, 8, 1402-1409.	7.3	333
198	Carbon Microbelt Aerogel Prepared by Waste Paper: An Efficient and Recyclable Sorbent for Oils and Organic Solvents. Small, 2014, 10, 3544-3550.	5. 2	196
200	Preparation and characterization of porous PDMS beads for oil and organic solvent sorption. Polymer Engineering and Science, 2014, 54, 2965-2969.	1.5	16
201	Nitrogenâ€Doped Aligned Carbon Nanotube/Graphene Sandwiches: Facile Catalytic Growth on Bifunctional Natural Catalysts and Their Applications as Scaffolds for Highâ€Rate Lithiumâ€6ulfur Batteries. Advanced Materials, 2014, 26, 6100-6105.	11.1	534
203	Carbon Materials for Spilled-oil Recovery. , 2014, , 313-334.		4
204	Construction of superhydrophobic and superoleophilic nickel foam for separation of water and oil mixture. Applied Surface Science, 2014, 289, 417-424.	3.1	68
205	Mechanical- and oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation. Journal of Colloid and Interface Science, 2014, 413, 112-117.	5.0	98
206	Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Materials Letters, 2014, 115, 241-243.	1.3	146
207	A three-dimensional carbon nanotube network for water treatment. Nanotechnology, 2014, 25, 065701.	1.3	125
208	Superhydrophobic silica aerogel microspheres from methyltrimethoxysilane: rapid synthesis via ambient pressure drying and excellent absorption properties. RSC Advances, 2014, 4, 4535-4542.	1.7	115
209	Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing–thawing. Journal of Materials Chemistry A, 2014, 2, 350-359.	5.2	232
210	Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. Journal of Materials Chemistry A, 2014, 2, 2934.	5.2	380

#	Article	IF	CITATIONS
211	Novel hydrophobic polyvinyl alcohol–formaldehyde foams for organic solvents absorption and effective separation. RSC Advances, 2014, 4, 660-669.	1.7	53
212	Multifunctional carbon nanotubes in water treatment: The present, past and future. Desalination, 2014, 354, 160-179.	4.0	210
213	From biomass to high performance solar–thermal and electric–thermal energy conversion and storage materials. Journal of Materials Chemistry A, 2014, 2, 7759-7765.	5.2	213
214	Hierarchical rough surfaces formed by LBL self-assembly for oil–water separation. Journal of Materials Chemistry A, 2014, 2, 11830-11838.	5.2	87
215	Integrated random-aligned carbon nanotube layers: deformation mechanism under compression. Nanoscale, 2014, 6, 1748-1755.	2.8	24
216	Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation. Soft Matter, 2014, 10, 8116-8121.	1.2	67
217	Self-assembled synthesis of carbon-coated Fe3O4 composites with firecracker-like structures from catalytic pyrolysis of polyamide. RSC Advances, 2014, 4, 6991.	1.7	15
218	Cellulose-based hydrophobic carbon aerogels as versatile and superior adsorbents for sewage treatment. RSC Advances, 2014, 4, 45753-45759.	1.7	74
219	Magnetically driven super durable superhydrophobic polyester materials for oil/water separation. Polymer Chemistry, 2014, 5, 2382.	1.9	90
220	Robust and all-inorganic absorbent based on natural clay nanocrystals with tunable surface wettability for separation and selective absorption. RSC Advances, 2014, 4, 12590.	1.7	34
221	Spiers Memorial Lecture: Advances of carbon nanomaterials. Faraday Discussions, 2014, 173, 9-46.	1.6	24
222	Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties. Nanoscale, 2014, 6, 13748-13753.	2.8	98
223	Exceptional organic solvent uptake by disulfide-linked polymeric networks. RSC Advances, 2014, 4, 24320.	1.7	21
224	Using multi-walled carbon nanotubes (MWNTs) for oilfield produced water treatment with environmentally acceptable endpoints. Environmental Sciences: Processes and Impacts, 2014, 16, 2039-2047.	1.7	6
225	Striking influence of NiO catalyst diameter on the carbonization of polypropylene into carbon nanomaterials and their high performance in the adsorption of oils. RSC Advances, 2014, 4, 33806-33814.	1.7	28
226	A compressible mesoporous SiO2 sponge supported by a carbon nanotube network. Nanoscale, 2014, 6, 3585.	2.8	34
227	Preparation and absorption behavior to organic pollutants of macroporous hydrophobic polyvinyl alcohol–formaldehyde sponges. RSC Advances, 2014, 4, 35620-35628.	1.7	19
228	Nanoporous Cu–C composites based on carbon-nanotube aerogels. Journal of Materials Chemistry A, 2014, 2, 962-967.	5.2	10

#	Article	IF	Citations
229	Novel Natural Sorbent for Oil Spill Cleanup. Industrial & Engineering Chemistry Research, 2014, 53, 11954-11961.	1.8	66
230	Supercritical-assistant liquid crystal template approach to synthesize mesoporous titania/multiwalled carbon nanotube composites with high visible-light driven photocatalytic performance. Materials Research Bulletin, 2014, 60, 174-182.	2.7	6
231	New Lipophilic Polyelectrolyte Gels Containing Quaternary Ammonium Salt with Superabsorbent Capacity for Organic Solvents. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14894-14902.	4.0	30
232	Liquidâ€Type Cathode Enabled by 3D Spongeâ€Like Carbon Nanotubes for High Energy Density and Long Cycling Life of Liâ€S Batteries. Advanced Materials, 2014, 26, 7456-7461.	11.1	109
233	Ultra-light nanocomposite aerogels of bacterial cellulose and reduced graphene oxide for specific absorption and separation of organic liquids. RSC Advances, 2014, 4, 21553.	1.7	77
234	Preparation of multifunctional microchannel-network graphene foams. Journal of Materials Chemistry A, 2014, 2, 16786-16792.	5.2	29
235	Gravity-Driven Hybrid Membrane for Oleophobic–Superhydrophilic Oil–Water Separation and Water Purification by Graphene. Langmuir, 2014, 30, 11761-11769.	1.6	89
236	Mussel-inspired, ultralight, multifunctional 3D nitrogen-doped graphene aerogel. Carbon, 2014, 80, 174-182.	5.4	145
237	A superhydrophobic/superoleophilic sponge for the selective absorption oil pollutants from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 397-401.	2.3	50
238	Hydrophobic carbon nanotubes for removal of oils and organics from water. Journal of Materials Science, 2014, 49, 6855-6861.	1.7	41
239	Biodegradable Material for the Absorption of Organic Compounds and Nanoparticles. Biomacromolecules, 2014, 15, 3321-3327.	2.6	8
240	Robust preparation of superhydrophobic polymer/carbon nanotube hybrid membranes for highly effective removal of oils and separation of water-in-oil emulsions. Journal of Materials Chemistry A, 2014, 2, 15268.	5.2	194
241	Aligned carbon nanotube/silicon carbide hybrid materials with high electrical conductivity, superhydrophobicity and superoleophilicity. Carbon, 2014, 80, 120-126.	5.4	22
242	A versatile approach to produce superhydrophobic materials used for oil–water separation. Journal of Colloid and Interface Science, 2014, 432, 105-108.	5.0	103
243	Holey graphene nanosheets: large-scale rapid preparation and their application toward highly-effective water cleaning. Nanoscale, 2014, 6, 11659-11663.	2.8	43
244	A graphene coated cotton for oil/water separation. Composites Science and Technology, 2014, 102, 100-105.	3.8	87
245	Monolithic Macroporous Carbon Materials as High-Performance and Ultralow-Cost Sorbents for Efficiently Solving Organic Pollution. Industrial & Engineering Chemistry Research, 2014, 53, 4888-4893.	1.8	43
246	Superhydrophobic Silanized Melamine Sponges as High Efficiency Oil Absorbent Materials. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14181-14188.	4.0	343

#	Article	IF	CITATIONS
247	Mesoscale assembly of chemically modified graphene into complex cellular networks. Nature Communications, 2014, 5, 4328.	5.8	250
248	Nanotechnology-based remediation of petroleum impurities from water. Journal of Petroleum Science and Engineering, 2014, 122, 705-718.	2.1	52
249	Special wettable materials for oil/water separation. Journal of Materials Chemistry A, 2014, 2, 2445-2460.	5.2	1,052
250	Synthesis of a Novel Hydrogel Nanocomposite Coated on Cotton Fabric for Water–Oil Separation. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	21
251	Superhydrophobic Cu Mesh Combined with a Superoleophilic Polyurethane Sponge for Oil Spill Adsorption and Collection. Industrial & Engineering Chemistry Research, 2014, 53, 7141-7148.	1.8	56
252	Compressible Carbon Nanotube–Graphene Hybrid Aerogels with Superhydrophobicity and Superoleophilicity for Oil Sorption. Environmental Science and Technology Letters, 2014, 1, 214-220.	3.9	212
253	Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal. Carbon, 2014, 80, 523-533.	5.4	337
254	Preparation of flexible, hydrophobic, and oleophilic silica aerogels based on a methyltriethoxysilane precursor. Journal of Materials Science, 2014, 49, 7715-7722.	1.7	44
255	Graphene-based macroscopic assemblies and architectures: an emerging material system. Chemical Society Reviews, 2014, 43, 7295-7325.	18.7	416
256	Three-dimensional porous graphene sponges assembled with the combination of surfactant and freeze-drying. Nano Research, 2014, 7, 1477-1487.	5.8	111
257	Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Science of the Total Environment, 2014, 482-483, 241-251.	3.9	318
258	Hydrophobic sponge for spilled oil absorption. Journal of Applied Polymer Science, 2014, 131, .	1.3	31
259	In Situ Separation and Collection of Oil from Water Surface via a Novel Superoleophilic and Superhydrophobic Oil Containment Boom. Langmuir, 2014, 30, 1281-1289.	1.6	117
260	Superwetting Double-Layer Polyester Materials for Effective Removal of Both Insoluble Oils and Soluble Dyes in Water. ACS Applied Materials & Soluble Dyes in Water. A	4.0	109
261	Threeâ€Dimensional Carbon Nanotube Spongeâ€Array Architectures with High Energy Dissipation. Advanced Materials, 2014, 26, 1248-1253.	11.1	88
263	Multifunctional Superhydrophobic Surfaces Templated From Innately Microstructured Hydrogel Matrix. Nano Letters, 2014, 14, 4803-4809.	4.5	183
264	Biodegradable Poly(vinyl alcohol) Foams Supported by Cellulose Nanofibrils: Processing, Structure, and Properties. Langmuir, 2014, 30, 9544-9550.	1.6	56
265	Geometryâ€Induced Mechanical Properties of Carbon Nanotube Foams. Advanced Engineering Materials, 2014, 16, 1026-1031.	1.6	10

#	Article	IF	Citations
266	Multifunctional foams derived from poly(melamine formaldehyde) as recyclable oil absorbents. Journal of Materials Chemistry A, 2014, 2, 9994-9999.	5.2	134
267	Ultra-light carbon nanotube sponge as an efficient electromagnetic shielding material in the GHz range. Physica Status Solidi - Rapid Research Letters, 2014, 8, 698-704.	1.2	78
268	A superhydrophobic 3D porous material for oil spill cleanup. RSC Advances, 2014, 4, 46470-46475.	1.7	22
269	Elastic improvement of carbon nanotube sponges by depositing amorphous carbon coating. Carbon, 2014, 76, 19-26.	5.4	78
270	Hollow carbon beads fabricated by phase inversion method for efficient oil sorption. Carbon, 2014, 69, 25-31.	5.4	43
271	Nitrogen-Rich and Fire-Resistant Carbon Aerogels for the Removal of Oil Contaminants from Water. ACS Applied Materials & Diterfaces, 2014, 6, 6351-6360.	4.0	178
272	Polymer/Graphene Hybrid Aerogel with High Compressibility, Conductivity, and "Sticky― Superhydrophobicity. ACS Applied Materials & Superhydrophobicity. Superhydrophob	4.0	140
273	Oil sorbents with high sorption capacity, oil/water selectivity and reusability for oil spill cleanup. Marine Pollution Bulletin, 2014, 84, 263-267.	2.3	104
274	Magnetic graphene foam for efficient adsorption of oil and organic solvents. Journal of Colloid and Interface Science, 2014, 430, 337-344.	5.0	133
275	Conjugated microporous polymer nanotubes and hydrophobic sponges. Microporous and Mesoporous Materials, 2014, 196, 335-340.	2.2	45
276	Nanocarbon aerogel complexes inspired by the leaf structure. Carbon, 2014, 77, 637-644.	5.4	21
277	Resilient aligned carbon nanotube/graphene sandwiches for robust mechanical energy storage. Nano Energy, 2014, 7, 161-169.	8.2	66
278	Ultralight, high-surface-area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol. Carbon, 2014, 68, 221-231.	5.4	188
279	UV-responsive nano-sponge for oil absorption and desorption. Scientific Reports, 2015, 5, 12908.	1.6	57
280	Ultralight metal foams. Scientific Reports, 2015, 5, 13825.	1.6	25
281	Compressible and monolithic microporous polymer sponges prepared via one-pot synthesis. Scientific Reports, 2015, 5, 15957.	1.6	44
282	Stiffness threshold of randomly distributed carbon nanotube networks. Journal of the Mechanics and Physics of Solids, 2015, 84, 395-423.	2.3	75
283	A Superhydrophobic Sponge with Hierarchical Structure as an Efficient and Recyclable Oil Absorbent. ChemPlusChem, 2015, 80, 1435-1439.	1.3	37

#	Article	IF	CITATIONS
284	A Switchable and Compressible Carbon Nanotube Sponge Electrocapillary Imbiber. Advanced Materials, 2015, 27, 7241-7246.	11.1	26
285	Zirconiaâ€Nanoparticleâ€Reinforced Morphologyâ€Engineered Grapheneâ€Based Foams. Advanced Materials, 2015, 27, 4534-4543.	11.1	28
286	Barrelâ€Shaped Oil Skimmer Designed for Collection of Oil from Spills. Advanced Materials Interfaces, 2015, 2, 1500350.	1.9	112
287	Biomimetic Carbon Nanotube Films with Gradient Structure and Locally Tunable Mechanical Property. Advanced Functional Materials, 2015, 25, 7173-7179.	7.8	18
288	Dopamineâ€Induced Superhydrophobic Melamine Foam for Oil/Water Separation. Advanced Materials Interfaces, 2015, 2, 1500255.	1.9	82
289	Porous three-dimensional carbon nanotube scaffolds for tissue engineering. Journal of Biomedical Materials Research - Part A, 2015, 103, 3212-3225.	2.1	61
290	Tuning Surface Wettability and Adhesivity of a Nitrogenâ€Doped Graphene Foam after Water Vapor Treatment for Efficient Oil Removal. Advanced Materials Interfaces, 2015, 2, 1500243.	1.9	30
291	Porous Silica Particles as Oil Absorbents: Comparison of Mesoâ€, Macroâ€, and Meso/Macroâ€Structures. Bulletin of the Korean Chemical Society, 2015, 36, 1751-1757.	1.0	4
292	3D Nanocomposites of Covalently Interconnected Multiwalled Carbon Nanotubes with SiC with Enhanced Thermal and Electrical Properties. Advanced Functional Materials, 2015, 25, 4985-4993.	7.8	18
293	Ambientâ€Dried Cellulose Nanofibril Aerogel Membranes with High Tensile Strength and Their Use for Aerosol Collection and Templates for Transparent, Flexible Devices. Advanced Functional Materials, 2015, 25, 6618-6626.	7.8	155
294	Green Approach to the Fabrication of Superhydrophobic Mesh Surface for Oil/Water Separation. ChemPhysChem, 2015, 16, 2237-2243.	1.0	37
295	Preparation and morphology control of threeâ€dimensional interconnected microporous PDMS for oil sorption. Polymers for Advanced Technologies, 2015, 26, 1091-1096.	1.6	25
296	Directly Coating Hydrogel on Filter Paper for Effective Oil–Water Separation in Highly Acidic, Alkaline, and Salty Environment. Advanced Functional Materials, 2015, 25, 5368-5375.	7.8	322
297	Carbon Fiber/Carbon Nanotube Buckypaper Interply Hybrid Composites: Manufacturing Process and Tensile Properties. Advanced Engineering Materials, 2015, 17, 1442-1453.	1.6	57
299	Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications. Materials, 2015, 8, 6806-6848.	1.3	163
300	Electromechanical Response of Conductive Porous Structure. Journal of Nanomaterials, 2015, 2015, 1-6.	1.5	1
301	TiO2 -Based Surfaces with Special Wettability – From Nature to Biomimetic Application. , 2015, , .		4
302	An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. Journal of Materials Chemistry A, 2015, 3, 8772-8781.	5.2	186

#	Article	IF	CITATIONS
303	Extraordinary Capability for Water Treatment Achieved by a Perfluorous Conjugated Microporous Polymer. Scientific Reports, 2015, 5, 10155.	1.6	90
304	Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews, 2015, 115, 4744-4822.	23.0	1,519
305	Filtration properties of hierarchical carbon nanostructures deposited on carbon fibre fabrics. Journal Physics D: Applied Physics, 2015, 48, 115305.	1.3	4
306	Applications of three-dimensional carbon nanotube networks. Beilstein Journal of Nanotechnology, 2015, 6, 792-798.	1.5	19
307	Preparation and Surface Property of Fluoroalkyl End-Capped Vinyltrimethoxysilane Oligomer/Talc Composite-Encapsulated Organic Compounds: Application for the Separation of Oil and Water. ACS Applied Materials & Diterfaces, 2015, 7, 13782-13793.	4.0	39
308	Few-layer graphene based sponge as a highly efficient, recyclable and selective sorbent for organic solvents and oils. RSC Advances, 2015, 5, 53741-53748.	1.7	28
309	Superhydrophilic and underwater superoleophobic mesh coating for efficient oil–water separation. RSC Advances, 2015, 5, 51537-51541.	1.7	38
311	Hierarchically Designed Threeâ€Dimensional Macro/Mesoporous Carbon Frameworks for Advanced Electrochemical Capacitance Storage. Chemistry - A European Journal, 2015, 21, 6157-6164.	1.7	49
312	Silica decorated CNTs sponge for selective removal of toxic contaminants and oil spills from water. Journal of Environmental Chemical Engineering, 2015, 3, 892-897.	3.3	33
313	Synthesis of three-dimensional macro-porous networks of carbon nanotubes by chemical vapor deposition of methane on Co/Mo/Mg catalyst. Applied Catalysis A: General, 2015, 505, 487-493.	2.2	10
314	Anti-corrosive hierarchical structured copper mesh film with superhydrophilicity and underwater low adhesive superoleophobicity for highly efficient oil–water separation. Journal of Materials Chemistry A, 2015, 3, 13411-13417.	5.2	100
315	Superhydrophobic surfaces based on polypyrrole with corrosion resistance and the separation of oil/water mixture properties. RSC Advances, 2015, 5, 107880-107888.	1.7	26
316	Freestanding carbon-coated CNT/Sn(O ₂) coaxial sponges with enhanced lithium-ion storage capability. Nanoscale, 2015, 7, 20380-20385.	2.8	20
317	Anchoring superparamagnetic core–shells onto reduced graphene oxide: fabrication of Ni–carbon–rGO nanocomposite for effective adsorption and separation. RSC Advances, 2015, 5, 10033-10039.	1.7	11
318	Hydrophobic and fire-resistant carbon monolith from melamine sponge: A recyclable sorbent for oilâ€"water separation. Carbon, 2015, 84, 551-559.	5.4	84
319	All carbon coaxial supercapacitors based on hollow carbon nanotube sleeve structure. Nanotechnology, 2015, 26, 045401.	1.3	14
320	Underwater Self-Cleaning Scaly Fabric Membrane for Oily Water Separation. ACS Applied Materials & Lamp; Interfaces, 2015, 7, 4336-4343.	4.0	113
321	Manipulating surface wettability and oil absorbency of diatomite depending on processing and ambient conditions. Applied Surface Science, 2015, 332, 22-31.	3.1	21

#	Article	IF	CITATIONS
322	The improved electrochemical performance of cross-linked 3D graphene nanoribbon monolith electrodes. Nanoscale, 2015, 7, 6504-6509.	2.8	29
323	Design of Cellulose Nanocrystals Template-Assisted Composite Hydrogels: Insights from Static to Dynamic Alignment. Macromolecules, 2015, 48, 1231-1239.	2.2	44
324	One-step fabrication of highly stable, superhydrophobic composites from controllable and low-cost PMHS/TEOS sols for efficient oil cleanup. Journal of Colloid and Interface Science, 2015, 446, 155-162.	5.0	49
325	Polyelectrolyte-fluorosurfactant complex-based meshes with superhydrophilicity and superoleophobicity for oil/water separation. Chemical Engineering Journal, 2015, 268, 245-250.	6.6	121
326	Highly-efficient and recyclable oil absorbing performance of functionalized graphene aerogel. Chemical Engineering Journal, 2015, 269, 229-235.	6.6	193
327	Magnetic, Durable, and Superhydrophobic Polyurethane@Fe ₃ O ₄ @SiO ₂ @Fluoropolymer Sponges for Selective Oil Absorption and Oil/Water Separation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4936-4946.	4.0	407
328	Interlocked CNT networks with high damping and storage modulus. Carbon, 2015, 86, 46-53.	5.4	68
329	A superhydrophobic monolithic material with tunable wettability for oil and water separation. Journal of Materials Science, 2015, 50, 2365-2369.	1.7	54
330	A Selfâ€Assembled Superhydrophobic Electrospun Carbon–Silica Nanofiber Sponge for Selective Removal and Recovery of Oils and Organic Solvents. Chemistry - A European Journal, 2015, 21, 5395-5402.	1.7	43
331	Amphiphilic, ultralight, and multifunctional graphene/nanofibrillated cellulose aerogel achieved by cation-induced gelation and chemical reduction. Nanoscale, 2015, 7, 3959-3964.	2.8	87
332	Multifunctional, robust sponges by a simple adsorption–combustion method. Journal of Materials Chemistry A, 2015, 3, 5875-5881.	5.2	57
333	Graphene Foam Developed with a Novel Twoâ€Step Technique for Low and High Strains and Pressureâ€Sensing Applications. Small, 2015, 11, 2380-2385.	5.2	206
334	Covalently bonded nitrogen-doped carbon-nanotube-supported Ag hybrid sponges: Synthesis, structure manipulation, and its application for flexible conductors and strain-gauge sensors. Carbon, 2015, 86, 225-234.	5.4	59
335	Approach of Cost-Effective Adsorbents for Oil Removal from Oily Water. Critical Reviews in Environmental Science and Technology, 2015, 45, 1916-1945.	6.6	117
336	Oilâ€absorbent polyurethane sponge coated with <scp>KH</scp> â€570â€modified graphene. Journal of Applied Polymer Science, 2015, 132, .	1.3	30
337	In-situ synthesis of carbon nanotube/graphene composite sponge and its application as compressible supercapacitor electrode. Electrochimica Acta, 2015, 157, 134-141.	2.6	72
338	Three-dimensionally bonded spongy graphene material with super compressive elasticity and near-zero Poisson's ratio. Nature Communications, 2015, 6, 6141.	5.8	458
339	Bioinspired Superâ€Wettability from Fundamental Research to Practical Applications. Angewandte Chemie - International Edition, 2015, 54, 3387-3399.	7.2	611

#	Article	IF	CITATIONS
340	pH-Controllable On-Demand Oil/Water Separation on the Switchable Superhydrophobic/Superhydrophilic and Underwater Low-Adhesive Superoleophobic Copper Mesh Film. Langmuir, 2015, 31, 1393-1399.	1.6	213
341	Multifunctional, marvelous polyimide aerogels as highly efficient and recyclable sorbents. RSC Advances, 2015, 5, 12592-12596.	1.7	39
342	A Superamphiphobic Coating with an Ammoniaâ€Triggered Transition to Superhydrophilic and Superoleophobic for Oil–Water Separation. Angewandte Chemie - International Edition, 2015, 54, 4527-4530.	7.2	301
343	Application of Strong Porous Polymer Sheets for Superior Oil Spill Recovery. Chemical Engineering and Technology, 2015, 38, 482-488.	0.9	23
344	Macroscopic Carbon Nanotubeâ€based 3D Monoliths. Small, 2015, 11, 3263-3289.	5.2	83
345	Oil Adsorption and Reuse Performance of Multi-Walled Carbon Nanotubes. Procedia Engineering, 2015, 102, 1896-1902.	1.2	21
346	Bioinspired Surfaces with Superwettability: New Insight on Theory, Design, and Applications. Chemical Reviews, 2015, 115, 8230-8293.	23.0	1,292
347	Detailed investigation on elastoplastic deformation and failure of carbon nanotube fibers by monotonic and cyclic tensile experiments. Carbon, 2015, 94, 73-78.	5.4	31
348	Three-dimensional \hat{l}_{\pm} -Fe ₂ O ₃ /carbon nanotube sponges as flexible supercapacitor electrodes. Journal of Materials Chemistry A, 2015, 3, 20927-20934.	5.2	151
349	Density controlled oil uptake and beyond: from carbon nanotubes to graphene nanoribbon aerogels. Journal of Materials Chemistry A, 2015, 3, 20547-20553.	5.2	69
350	A magnetic and highly reusable macroporous superhydrophobic/superoleophilic PDMS/MWNT nanocomposite for oil sorption from water. Journal of Materials Chemistry A, 2015, 3, 17685-17696.	5.2	128
351	Superhydrophobic/superoleophilic magnetic polyurethane sponge for oil/water separation. RSC Advances, 2015, 5, 68293-68298.	1.7	114
352	Scalable fabrication of exceptional 3D carbon networks for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 16104-16111.	5.2	55
353	Superstructured Assembly of Nanocarbons: Fullerenes, Nanotubes, and Graphene. Chemical Reviews, 2015, 115, 7046-7117.	23.0	448
354	In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance. Scientific Reports, 2015, 5, 11336.	1.6	37
355	Versatile fabrication of magnetic carbon fiber aerogel applied for bidirectional oil–water separation. Applied Physics A: Materials Science and Processing, 2015, 120, 949-957.	1.1	33
356	Chemical vapor infiltration tailored hierarchical porous CNTs/C composite spheres fabricated by freeze casting and their adsorption properties. RSC Advances, 2015, 5, 16870-16877.	1.7	23
357	Ternary silicone sponge with enhanced mechanical properties for oil–water separation. Polymer Chemistry, 2015, 6, 5869-5875.	1.9	62

#	Article	IF	CITATIONS
358	Low cost carbon fiber aerogel derived from bamboo for the adsorption of oils and organic solvents with excellent performances. RSC Advances, 2015, 5, 38470-38478.	1.7	91
359	Nitrogenâ€Doped Carbon Nanotube Aerogels for Highâ€Performance ORR Catalysts. Small, 2015, 11, 3903-3908.	5.2	96
360	Disinfection of Staphylococcus aureus in indoor aerosols using Cu–TiO2 deposited on glass fiber under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 307-308, 16-22.	2.0	29
361	Novel integrated approach of adsorption and photo-oxidation using Ag–TiO2/PU for bioaerosol removal under visible light. Chemical Engineering Journal, 2015, 275, 357-365.	6.6	28
362	Flexible, Highly Graphitized Carbon Aerogels Based on Bacterial Cellulose/Lignin: Catalystâ€Free Synthesis and its Application in Energy Storage Devices. Advanced Functional Materials, 2015, 25, 3193-3202.	7.8	262
363	Facile Fabrication of Reduced Graphene Oxide/Polypyrrole Composite Hydrogels with Excellent Electrochemical Performance and Compression Capacity. ACS Sustainable Chemistry and Engineering, 2015, 3, 862-870.	3.2	50
364	One-step fabrication of a nickel foam-based superhydrophobic and superoleophilic box for continuous oil–water separation. Journal of Materials Science, 2015, 50, 4707-4716.	1.7	48
365	Scalable synthesis of bi-functional high-performance carbon nanotube sponge catalysts and electrodes with optimum $Ca\in Na\in Na\in Na\in Na\in Na\in Na\in Na\in Na\in Na\in N$	15.6	138
366	Superhydrophobic and superoleophilic "sponge-like―aerogels for oil/water separation. Journal of Materials Science, 2015, 50, 5115-5124.	1.7	40
367	One-Step Breaking and Separating Emulsion by Tungsten Oxide Coated Mesh. ACS Applied Materials & Lamp; Interfaces, 2015, 7, 8108-8113.	4.0	57
368	Tensile failure mechanisms of individual junctions assembled by two carbon nanotubes. Composites Science and Technology, 2015, 110, 159-165.	3.8	9
369	Highly Hydrophobic, Compressible, and Magnetic Polystyrene/Fe ₃ O ₄ /Graphene Aerogel Composite for Oil–Water Separation. Industrial & Engineering Chemistry Research, 2015, 54, 5460-5467.	1.8	134
370	High internal phase emulsion (HIPE) xerogels for enhanced oil spill recovery. Journal of Materials Chemistry A, 2015, 3, 1906-1909.	5.2	66
371	A Pure Inorganic ZnO-Co3O4 Overlapped Membrane for Efficient Oil/Water Emulsions Separation. Scientific Reports, 2015, 5, 9688.	1.6	72
372	Ultralight, Soft Polymer Sponges by Selfâ€Assembly of Short Electrospun Fibers in Colloidal Dispersions. Advanced Functional Materials, 2015, 25, 2850-2856.	7.8	164
373	Selective adsorption of oil–water mixtures using polydimethylsiloxane (PDMS)–graphene sponges. Environmental Science: Water Research and Technology, 2015, 1, 298-305.	1.2	127
374	Controllable fabrication and magnetic properties of double-shell cobalt oxides hollow particles. Scientific Reports, 2015, 5, 8737.	1.6	25
375	Polypyrrole/Silver Coaxial Nanowire Aero-Sponges for Temperature-Independent Stress Sensing and Stress-Triggered Joule Heating. ACS Nano, 2015, 9, 4244-4251.	7.3	175

#	Article	IF	CITATIONS
376	Carbonâ€Based Sorbents with Threeâ€Dimensional Architectures for Water Remediation. Small, 2015, 11, 3319-3336.	5.2	166
377	Layer-by-Layer Assembly of Multifunctional Porous N-Doped Carbon Nanotube Hybrid Architectures for Flexible Conductors and Beyond. ACS Applied Materials & Interfaces, 2015, 7, 6716-6723.	4.0	21
378	Tribological properties of Tin-based Babbitt bearing alloy with polyurethane coating under dry and starved lubrication conditions. Tribology International, 2015, 90, 22-31.	3.0	48
379	Facile preparation of carbon nanotube aerogels with controlled hierarchical microstructures and versatile performance. Carbon, 2015, 90, 164-171.	5.4	51
380	Durable superhydrophobic/superoleophilic epoxy/attapulgite nanocomposite coatings for oil/water separation. Surface and Coatings Technology, 2015, 272, 285-290.	2.2	63
381	Coupling Underwater Superoleophobic Membranes with Magnetic Pickering Emulsions for Fouling-Free Separation of Crude Oil/Water Mixtures: An Experimental and Theoretical Study. ACS Nano, 2015, 9, 9930-9941.	7.3	123
382	Facile preparation of graphene-coated polyurethane sponge with superhydrophobic/superoleophilic properties. Journal of Polymer Research, 2015, 22, 1.	1.2	15
383	Ultralight anisotropic foams from layered aligned carbon nanotube sheets. Nanoscale, 2015, 7, 17038-17047.	2.8	45
384	Compressible porous hybrid monoliths: preparation via a low molecular mass gelators-based gel-emulsion approach and exceptional performances. Journal of Materials Chemistry A, 2015, 3, 24322-24332.	5.2	23
385	Easy fabrication of ultralight CNx foams with application as absorbents and continuous flow oil–water separation. Materials Today Communications, 2015, 4, 116-123.	0.9	8
386	Flexible carbon nanofiber sponges for highly efficient and recyclable oil absorption. RSC Advances, 2015, 5, 70025-70031.	1.7	33
387	Stable superhydrophobic and superoleophilic silica coated polyurethane sponges for the continuous capture and removal of oils from the water surface. New Journal of Chemistry, 2015, 39, 9958-9962.	1.4	48
388	Facile preparation and characterization of modified magnetic silica nanocomposite particles for oil absorption. Applied Surface Science, 2015, 357, 2297-2305.	3.1	39
389	Recent developments of camphor based carbon nanomaterial: Their latent applications and future prospects. Nano Structures Nano Objects, 2015, 3, 1-8.	1.9	15
390	Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells. Journal of Power Sources, 2015, 298, 177-183.	4.0	88
391	Mussel and fish scale-inspired underwater superoleophobic kapok membranes for continuous and simultaneous removal of insoluble oils and soluble dyes in water. Journal of Materials Chemistry A, 2015, 3, 18475-18482.	5. 2	88
392	Electro-oxidation of perfluorooctanoic acid by carbon nanotube sponge anode and the mechanism. Chemosphere, 2015, 141, 120-126.	4.2	29
393	Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Advances, 2015, 5, 79479-79510.	1.7	247

#	Article	IF	CITATIONS
394	One-step synthesis of isoreticular metal–organic framework-8 derived hierarchical porous carbon and its application in differential pulse anodic stripping voltammetric determination of Pb(<scp>ii</scp>). RSC Advances, 2015, 5, 77159-77167.	1.7	33
395	Hydrophobic and flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC Advances, 2015, 5, 82027-82033.	1.7	98
396	Oil Absorbents Based on Melamine/Lignin by a Dip Adsorbing Method. ACS Sustainable Chemistry and Engineering, 2015, 3, 3012-3018.	3.2	103
397	Triptycene-Based Hyper-Cross-Linked Polymer Sponge for Gas Storage and Water Treatment. Macromolecules, 2015, 48, 8509-8514.	2.2	178
398	Facile and scalable production of three-dimensional spherical carbonized bacterial cellulose/graphene nanocomposites with a honeycomb-like surface pattern as potential superior absorbents. Journal of Materials Chemistry A, 2015, 3, 24389-24396.	5.2	51
399	Versatile fabrication of the magnetic polymer-based graphene foam and applications for oil–water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468, 10-16.	2.3	117
400	Graphene Foam with Switchable Oil Wettability for Oil and Organic Solvents Recovery. Advanced Functional Materials, 2015, 25, 597-605.	7.8	138
401	Shock formation and rate effects in impacted carbon nanotube foams. Carbon, 2015, 84, 390-398.	5.4	33
402	Symmetric supercapacitors based on porous 3D interconnected carbon framework. Electrochimica Acta, 2015, 151, 386-392.	2.6	118
403	Carbon Nanotube–Chitosan Composite Beads with Radially Aligned Channels and Nanotubeâ€Exposed Walls for Bilirubin Adsorption. Advanced Engineering Materials, 2015, 17, 460-466.	1.6	72
404	3D Macroporous Solids from Chemically Cross-linked Carbon Nanotubes. Small, 2015, 11, 688-693.	5.2	49
405	Carbon nanofiber aerogels for emergent cleanup of oil spillage and chemical leakage under harsh conditions. Scientific Reports, 2014, 4, 4079.	1.6	223
406	Methylene blue removal by carbon nanotube-based aerogels. Chemical Engineering Research and Design, 2015, 94, 516-523.	2.7	39
407	Recyclable TiO2/carbon nanotube sponge nanocomposites: Controllable synthesis, characterization and enhanced visible light photocatalytic property. Ceramics International, 2015, 41, 363-368.	2.3	18
408	Underwater superoleophobic porous membrane based on hierarchical TiO ₂ nanotubes: multifunctional integration of oil–water separation, flow-through photocatalysis and self-cleaning. Journal of Materials Chemistry A, 2015, 3, 1279-1286.	5.2	204
409	A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil–water separation through a chemical fabrication. Journal of Materials Chemistry A, 2015, 3, 266-273.	5 . 2	348
410	Joule Heating Characteristics of Emulsionâ€Templated Graphene Aerogels. Advanced Functional Materials, 2015, 25, 28-35.	7.8	99
411	Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chemical Society Reviews, 2015, 44, 336-361.	18.7	1,359

#	ARTICLE	IF	CITATIONS
412	Templated synthesis of TiO2 nanotube macrostructures and their photocatalytic properties. Nano Research, 2015, 8, 900-906.	5.8	32
414	Carbon nanotube sponges as a solid-phase extraction adsorbent for the enrichment and determination of polychlorinated biphenyls at trace levels in environmental water samples. Talanta, 2016, 160, 79-85.	2.9	33
415	Highly Reversible and Recyclable Absorption under Both Hydrophobic and Hydrophilic Conditions using a Reduced Bulk Graphene Oxide Material. Advanced Materials, 2016, 28, 3504-3509.	11.1	63
416	Carbon Nanotube Sponges, Aerogels, and Hierarchical Composites: Synthesis, Properties, and Energy Applications. Advanced Energy Materials, 2016, 6, 1600554.	10.2	183
417	Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices. Advanced Materials, 2016, 28, 4306-4337.	11.1	595
418	Microscopic Dimensions Engineering: Stepwise Manipulation of the Surface Wettability on 3D Substrates for Oil/Water Separation. Advanced Materials, 2016, 28, 936-942.	11.1	109
419	A Robust Polyionized Hydrogel with an Unprecedented Underwater Antiâ€Crudeâ€Oilâ€Adhesion Property. Advanced Materials, 2016, 28, 5307-5314.	11.1	346
420	Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation. Small, 2016, 12, 2186-2202.	5.2	719
421	Ultralight Interconnected Metal Oxide Nanotube Networks. Small, 2016, 12, 2432-2438.	5,2	10
422	Highâ€Performance Epoxy Nanocomposites Reinforced with Threeâ€Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding. Advanced Functional Materials, 2016, 26, 447-455.	7.8	579
423	Strong, Machinable Carbon Aerogels for High Performance Supercapacitors. Advanced Functional Materials, 2016, 26, 4976-4983.	7.8	79
424	Novel Pliable Electrodes for Flexible Electrochemical Energy Storage Devices: Recent Progress and Challenges. Advanced Energy Materials, 2016, 6, 1600490.	10.2	136
425	Carbon Aerogels Derived from Bacterial Cellulose/Polyimide Composites as Versatile Adsorbents and Supercapacitor Electrodes. ChemNanoMat, 2016, 2, 212-219.	1.5	52
426	3D Printing as Feasible Platform for Onâ€Site Building Oilâ€Skimmer for Oil Collection from Spills. Advanced Materials Interfaces, 2016, 3, 1600015.	1.9	33
427	Fast Triggering of Shape Memory Polymers using an Embedded Carbon Nanotube Sponge Network. Scientific Reports, 2016, 6, 24148.	1.6	28
428	Heat conduction in multifunctional nanotrusses studied using Boltzmann transport equation. Applied Physics Letters, 2016, 108, .	1.5	12
429	Separation of organic liquid mixture by flexible nanofibrous membranes with precisely tunable wettability. NPG Asia Materials, 2016, 8, e334-e334.	3.8	62
430	Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals. Chemical Engineering Journal, 2016, 294, 353-361.	6.6	47

#	Article	IF	CITATIONS
431	Viscoelastic properties of randomly entangled carbon nanotube networks under cyclic tension loading. Computational Materials Science, 2016, 119, 46-51.	1.4	16
432	A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation. Chemical Communications, 2016, 52, 8026-8029.	2.2	31
433	Nitrogen-doped carbon foam as an efficient enzymatic biosensing platform for glucose sensing. Analytical Methods, 2016, 8, 4547-4553.	1.3	4
434	Facile preparation of nitrogen-doped graphene sponge as a highly efficient oil absorption material. Materials Letters, 2016, 178, 95-99.	1.3	39
435	Simultaneous determination of copper, cobalt, and mercury ions in water samples by solid-phase extraction using carbon nanotube sponges as adsorbent after chelating with sodium diethyldithiocarbamate prior to high performance liquid chromatography. Analytical and Bioanalytical Chemistry, 2016, 408, 4445-4453.	1.9	41
436	Ultralight Co/Ag composite foams: Synthesis, morphology and compressive property. Scripta Materialia, 2016, 117, 68-72.	2.6	6
437	Coaxial TiO ₂ –carbon nanotube sponges as compressible anodes for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7398-7405.	5.2	50
438	Omniphilic Polymeric Sponges by Ice Templating. Chemistry of Materials, 2016, 28, 1823-1831.	3.2	47
439	Perfluorosilane treated Calotropis gigantea fiber: Instant hydrophobic–oleophilic surface with efficient oil-absorbing performance. Chemical Engineering Journal, 2016, 295, 477-483.	6.6	54
440	Low-cost carbon nanotube aerogels with varying and controllable density. Journal of Sol-Gel Science and Technology, 2016, 79, 76-82.	1.1	20
441	Exposing residual catalyst in a carbon nanotube sponge. RSC Advances, 2016, 6, 45103-45111.	1.7	9
442	Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Saturated Carbon Nanotube Sponges. ACS Applied Materials & Direct Oil Recovery from Satur	4.0	37
443	Recent advances in aerogels for environmental remediation applications: A review. Chemical Engineering Journal, 2016, 300, 98-118.	6.6	494
444	Millimeter-sized carbon/TiO2 beads fabricated by phase inversion method for oil and dye adsorption. RSC Advances, 2016, 6, 16314-16318.	1.7	12
445	Constructing Three-Dimensional Hierarchical Architectures by Integrating Carbon Nanofibers into Graphite Felts for Water Purification. ACS Sustainable Chemistry and Engineering, 2016, 4, 2351-2358.	3.2	57
446	Carbon nanotube modification of microbial fuel cell electrodes. Biosensors and Bioelectronics, 2016, 85, 536-552.	5.3	116
447	Hollow carbon fiber sponges from crude catkins: an ultralow cost absorbent for oils and organic solvents. RSC Advances, 2016, 6, 48715-48719.	1.7	23
448	Improving the electrical conductivity and interface properties of carbon fiber/epoxy composites by low temperature flame growth of carbon nanotubes. RSC Advances, 2016, 6, 48896-48904.	1.7	37

#	Article	IF	CITATIONS
449	Porous silicon carbide derived from apple fruit with high electromagnetic absorption performance. Journal of Materials Chemistry C, 2016, 4, 5349-5356.	2.7	46
450	Interfacial engineering of melamine sponges using hydrophobic TiO 2 nanoparticles for effective oil/water separation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67, 476-483.	2.7	56
451	Outstanding adsorption performance of high aspect ratio and super-hydrophobic carbon nanotubes for oil removal. Chemosphere, 2016, 164, 142-155.	4.2	79
452	Superhydrophobic graphene-decorated mesh gauze: recycling oils and organic solvents enhanced by large-diameter capillary action. Science China Materials, 2016, 59, 581-588.	3 . 5	9
453	Carbon Nanotube Fibers., 2016,, 373-400.		0
454	Sustainable, Reusable, and Superhydrophobic Aerogels from Microfibrillated Cellulose for Highly Effective Oil/Water Separation. ACS Sustainable Chemistry and Engineering, 2016, 4, 6409-6416.	3.2	197
455	Rapid deposition of superhydrophilic stalagmite-like protrusions for underwater selective superwettability. RSC Advances, 2016, 6, 89298-89304.	1.7	1
456	Photodetection and Photoswitch Based On Polarized Optical Response of Macroscopically Aligned Carbon Nanotubes. Nano Letters, 2016, 16, 6378-6382.	4.5	18
457	Controlled Synthesis of Core–Shell Carbon@MoS ₂ Nanotube Sponges as Highâ€Performance Battery Electrodes. Advanced Materials, 2016, 28, 10175-10181.	11.1	145
458	In situ dual-functional water purification with simultaneous oil removal and visible light catalysis. Nanoscale, 2016, 8, 18558-18564.	2.8	46
459	Advanced Sorbents for Oilâ€Spill Cleanup: Recent Advances and Future Perspectives. Advanced Materials, 2016, 28, 10459-10490.	11.1	547
460	Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application. Nanoscale, 2016, 8, 18042-18049.	2.8	74
461	Magnetically superhydrophobic kapok fiber for selective sorption and continuous separation of oil from water. Chemical Engineering Research and Design, 2016, 115, 122-130.	2.7	59
462	Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy, 2016, 27, 482-491.	8.2	299
463	Microwave-assisted synthesis of sponge-like carbon nanotube arrays and their application in organic transistor devices. Journal of Materials Science: Materials in Electronics, 2016, 27, 12642-12648.	1.1	9
464	An Ultrahydrophobic Fluorous Metal–Organic Framework Derived Recyclable Composite as a Promising Platform to Tackle Marine Oil Spills. Chemistry - A European Journal, 2016, 22, 10937-10943.	1.7	91
465	Highly ordered graphene architectures by duplicating melamine sponges as a three-dimensional deformation-tolerant electrode. Nano Research, 2016, 9, 2938-2949.	5.8	55
466	Controllable and Predictable Viscoelastic Behavior of 3D Boronâ€Doped Multiwalled Carbon Nanotube Sponges. Particle and Particle Systems Characterization, 2016, 33, 21-26.	1.2	6

#	Article	IF	CITATIONS
467	Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. Journal of Materials Chemistry A, 2016, 4, 15749-15770.	5.2	168
468	Compressible, amphiphilic graphene-based aerogel using a molecular glue to link graphene sheets and coated-polymer layers. Materials and Design, 2016, 110, 839-848.	3.3	17
469	Highly Stable Carbon Nanotube/Polyaniline Porous Network for Multifunctional Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34027-34033.	4.0	55
470	Versatile fabrication of a superhydrophobic and ultralight cellulose-based aerogel for oil spillage clean-up. Physical Chemistry Chemical Physics, 2016, 18, 28297-28306.	1.3	78
471	Robust superhydrophobic attapulgite coated polyurethane sponge for efficient immiscible oil/water mixture and emulsion separation. Journal of Materials Chemistry A, 2016, 4, 15546-15553.	5.2	317
472	Examining the structural contribution to the electrical character of single wall carbon nanotube forest by a height dependent study. Carbon, 2016, 108, 106-111.	5.4	0
473	Effective and simple methodology to produce nanocellulose-based aerogels for selective oil removal. Cellulose, 2016, 23, 3077-3088.	2.4	36
474	Aerogels based on carbon nanomaterials. Journal of Materials Science, 2016, 51, 9157-9189.	1.7	82
475	The use of carbon nanotube yarn as a filter medium to treat nitroaromatic-contaminated water. New Carbon Materials, 2016, 31, 415-423.	2.9	14
476	Tailoring Pore Structure of Ultralight Electrospun Sponges by Solid Templating. ChemistrySelect, 2016, 1, 5595-5598.	0.7	40
477	Three-dimensional carbon-based architectures for oil remediation: from synthesis and modification to functionalization. Journal of Materials Chemistry A, 2016, 4, 18687-18705.	5.2	77
478	Facile synthesis of flexible macroporous polypropylene sponges for separation of oil and water. Scientific Reports, 2016, 6, 21265.	1.6	58
479	A Versatile and Scalable Approach toward Robust Superhydrophobic Porous Materials with Excellent Absorbency and Flame Retardancy. Scientific Reports, 2016, 6, 31233.	1.6	23
480	Thermal conducting properties of aligned carbon nanotubes and their polymer composites. Composites Part A: Applied Science and Manufacturing, 2016, 91, 351-369.	3.8	99
481	Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure. Nature Communications, 2016, 7, 12920.	5.8	344
482	Three-dimensional Sponges with Super Mechanical Stability: Harnessing True Elasticity of Individual Carbon Nanotubes in Macroscopic Architectures. Scientific Reports, 2016, 6, 18930.	1.6	56
483	Scalable Multifunctional Ultra-thin Graphite Sponge: Free-standing, Superporous, Superhydrophobic, Oleophilic Architecture with Ferromagnetic Properties for Environmental Cleaning. Scientific Reports, 2016, 6, 21858.	1.6	13
484	Thermoelectric performance of conducting aerogels based on carbon nanotube/silver nanocomposites with ultralow thermal conductivity. RSC Advances, 2016, 6, 109878-109884.	1.7	6

#	Article	IF	CITATIONS
485	3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants. Science Advances, 2016, 2, e1600087.	4.7	84
486	Autonomous Graphene Vessel for Suctioning and Storing Liquid Body of Spilled Oil. Scientific Reports, 2016, 6, 22339.	1.6	23
487	Ambient-temperature fabrication of melamine-based sponges coated with hydrophobic lignin shells by surface dip adsorbing for oil/water separation. RSC Advances, 2016, 6, 106928-106934.	1.7	31
488	Template-free, facile synthesis of core–shell carbon networks. Nanocomposites, 2016, 2, 153-161.	2.2	5
490	Melamine-derived carbon sponges for oil-water separation. Carbon, 2016, 107, 198-208.	5.4	199
491	Ultrasoft gelatin aerogels for oil contaminant removal. Journal of Materials Chemistry A, 2016, 4, 9381-9389.	5.2	7 3
492	Graphene and carbon-based nanomaterials as highly efficient adsorbents for oils and organic solvents. Nanotechnology Reviews, 2016, 5, .	2.6	42
493	Microfluidic fabrication of magnetic porous multi-walled carbon nanotube beads for oil and organic solvent adsorption. Journal of Materials Chemistry A, 2016, 4, 10479-10485.	5.2	37
494	Three-Dimensional Porous Sponges from Collagen Biowastes. ACS Applied Materials & Diterfaces, 2016, 8, 14836-14844.	4.0	29
495	Silane bonded graphene aerogels with tunable functionality and reversible compressibility. Carbon, 2016, 107, 573-582.	5.4	83
496	Dodecyl sulfate chain anchored mesoporous graphene: Synthesis and application to sequester heavy metal ions from aqueous phase. Chemical Engineering Journal, 2016, 304, 431-439.	6.6	38
497	3D Selfâ€Supporting Porous Magnetic Assemblies for Water Remediation and Beyond. Advanced Energy Materials, 2016, 6, 1600473.	10.2	37
498	Enhancement of Open ircuit Voltage by Using the 58†Silylmethyl Fullerenes in Smallâ€Molecule Organic Solar Cells. Chemistry - an Asian Journal, 2016, 11, 1268-1272.	1.7	12
500	Ultralight, compressible and multifunctional carbon aerogels based on natural tubular cellulose. Journal of Materials Chemistry A, 2016, 4, 2069-2074.	5.2	141
501	Carbon science in 2016: Status, challenges and perspectives. Carbon, 2016, 98, 708-732.	5.4	261
502	Carbon materials as oil sorbents: a review on the synthesis and performance. Journal of Materials Chemistry A, 2016, 4, 1550-1565.	5 . 2	298
503	Advanced removal of C. famata in bioaerosols by simultaneous adsorption and photocatalytic oxidation of Cu-doped TiO 2 /PU under visible irradiation. Chemical Engineering Journal, 2016, 286, 377-386.	6.6	32
504	Facile fabrication of superhydrophobic sand: Potential advantages for practical application in oil–water separation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 651-655.	2.7	42

#	ARTICLE	IF	CITATIONS
505	Hybrid-dimensional magnetic microstructure based 3D substrates for remote controllable and ultrafast water remediation. Journal of Materials Chemistry A, 2016, 4, 938-943.	5.2	32
506	Ultrafast Synthesis of Multifunctional N-Doped Graphene Foam in an Ethanol Flame. ACS Nano, 2016, 10, 453-462.	7.3	119
507	Indentation Tests Reveal Geometry-Regulated Stiffening of Nanotube Junctions. Nano Letters, 2016, 16, 232-236.	4.5	18
508	Carbon Nanomaterials Based on Carbon Nanotubes (CNTs). Advanced Structured Materials, 2016, , 25-101.	0.3	1
509	Flexible hybrid carbon nanotube sponges embedded with SnS ₂ from tubular nanosheaths to nanosheets as free-standing anodes for lithium-ion batteries. RSC Advances, 2016, 6, 30098-30105.	1.7	26
510	Eco-friendly fabrication of sponge-like magnetically carbonaceous fiber aerogel for high-efficiency oil–water separation. RSC Advances, 2016, 6, 30301-30310.	1.7	33
511	Multifunctional biosensor based on self-assembled multi-walled carbon nanotubes sponge. Journal of Materials Science: Materials in Electronics, 2016, 27, 6911-6917.	1.1	11
512	Advances in Nanomaterials. Advanced Structured Materials, 2016, , .	0.3	5
513	Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water. NPG Asia Materials, 2016, 8, e253-e253.	3.8	114
514	Ultrafast Dynamic Piezoresistive Response of Grapheneâ€Based Cellular Elastomers. Advanced Materials, 2016, 28, 194-200.	11.1	171
515	Enhancing oil removal from water using ferric oxide nanoparticles doped carbon nanotubes adsorbents. Chemical Engineering Journal, 2016, 293, 90-101.	6.6	148
516	Flexible electrical probes made of carbon nanotube bundles. Carbon, 2016, 101, 331-337.	5.4	4
517	Programmably Shaped Carbon Nanostructure from Shape-Conserving Carbonization of DNA. ACS Nano, 2016, 10, 3069-3077.	7.3	37
518	Biomass-derived multifunctional TiO ₂ /carbonaceous aerogel composite as a highly efficient photocatalyst. RSC Advances, 2016, 6, 25255-25266.	1.7	44
519	Phthalonitrile-Based Carbon Foam with High Specific Mechanical Strength and Superior Electromagnetic Interference Shielding Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7422-7430.	4.0	189
520	Continuous and scalable fabrication and multifunctional properties of carbon nanotube aerogels from the floating catalyst method. Carbon, 2016, 102, 409-418.	5.4	65
521	Designing a single superabsorbent for separating oil from both layered as well as micron/submicron size emulsified oil/water mixtures by gamma radiation assisted grafting. RSC Advances, 2016, 6, 26086-26095.	1.7	17
522	Sustainable Life Cycles of Natural-Precursor-Derived Nanocarbons. Chemical Reviews, 2016, 116, 163-214.	23.0	163

#	Article	IF	CITATIONS
523	Advancements in Crude Oil Spill Remediation Research After the Deepwater Horizon Oil Spill. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	60
524	Biomimetic Mineralized Hierarchical Graphene Oxide/Chitosan Scaffolds with Adsorbability for Immobilization of Nanoparticles for Biomedical Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1707-1717.	4.0	113
525	Multifunctional nitrogen-doped graphene nanoribbon aerogels for superior lithium storage and cell culture. Nanoscale, 2016, 8, 2159-2167.	2.8	50
526	Ultrathermostable, Magnetic-Driven, and Superhydrophobic Quartz Fibers for Water Remediation. ACS Applied Materials & Driverfaces, 2016, 8, 1025-1032.	4.0	30
527	Hierarchical reinforcement of randomly-oriented carbon nanotube mats by ion irradiation. Carbon, 2016, 99, 491-501.	5.4	7
528	Experimental study on thermal effect on infiltration mechanisms of glycerol into ZSM-5 zeolite under cyclic loadings. Journal Physics D: Applied Physics, 2016, 49, 025303.	1.3	18
529	Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates. Nano Energy, 2016, 19, 117-127.	8.2	115
530	Recycle and reusable melamine sponge coated by graphene for highly efficient oil-absorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 488, 93-99.	2.3	80
531	Dopamine-mediated fabrication of ultralight graphene aerogels with low volume shrinkage. Journal of Materials Chemistry A, 2016, 4, 512-518.	5.2	70
532	Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability. Nanoscale, 2016, 8, 626-633.	2.8	36
533	Separation of Emulsified Oil from Oily Wastewater by Functionalized Multiwalled Carbon Nanotubes. Journal of Dispersion Science and Technology, 2016, 37, 1294-1302.	1.3	39
534	Preparation and characterization of cotton fabric with potential use in UV resistance and oil reclaim. Carbohydrate Polymers, 2016, 137, 264-270.	5.1	29
535	Simple and eco-friendly fabrication of superhydrophobic textile for oil/water separation. Environmental Technology (United Kingdom), 2016, 37, 1591-1596.	1.2	20
536	Constructing polyurethane sponge modified with silica/graphene oxide nanohybrids as a ternary sorbent. Chemical Engineering Journal, 2016, 284, 478-486.	6.6	86
537	Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohydrate Polymers, 2016, 136, 95-100.	5.1	141
538	High-Performance Electrochemical Catalysts Based on Three-Dimensional Porous Architecture with Conductive Interconnected Networks. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28265-28273.	4.0	22
539	SnO2-decorated multiwalled carbon nanotubes and Vulcan carbon through a sonochemical approach for supercapacitor applications. Ultrasonics Sonochemistry, 2016, 29, 205-212.	3.8	39
540	Graphene–carbon nanotube aerogel as an ultra-light, compressible and recyclable highly efficient absorbent for oil and dyes. Environmental Science: Nano, 2016, 3, 107-113.	2.2	176

#	Article	IF	CITATIONS
541	Thermal reduction of graphene-oxide-coated cotton for oil and organic solvent removal. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 216, 10-15.	1.7	32
542	Carbon sponge-type nanostructures based on coaxial nitrogen-doped multiwalled carbon nanotubes grown by CVD using benzylamine as precursor. Carbon, 2017, 115, 409-421.	5.4	49
543	Selfâ€Crosslink Method for a Straightforward Synthesis of Poly(Vinyl Alcohol)â€Based Aerogel Assisted by Carbon Nanotube. Advanced Functional Materials, 2017, 27, 1604423.	7.8	61
544	Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon, 2017, 115, 629-639.	5.4	228
545	Simple fabrication of zeolitic imidazolate framework ZIF-8/polymer composite beads by phase inversion method for efficient oil sorption. Journal of Colloid and Interface Science, 2017, 493, 150-161.	5.0	62
546	Influence of Mo or Cu doping in Fe/MgO catalyst for synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of methane. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 256-264.	1.0	21
547	Synthesis of carbon nanotube/titanate nanotube composites with photocatalytic activity for H ₂ S oxidation. Journal of Sulfur Chemistry, 2017, 38, 264-278.	1.0	4
548	A comparative study for oil-absorbing performance of octadecyltrichlorosilane treated Calotropis gigantea fiber and kapok fiber. Cellulose, 2017, 24, 989-1000.	2.4	34
549	Advances in Production and Applications of Carbon Nanotubes. Topics in Current Chemistry, 2017, 375, 18.	3.0	64
550	Advanced oil sorbents using sequential infiltration synthesis. Journal of Materials Chemistry A, 2017, 5, 2929-2935.	5.2	114
551	A bio-based coating onto the surface Populus fiber for oil spillage cleanup applications. Industrial Crops and Products, 2017, 98, 38-45.	2.5	18
552	A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy, 2017, 33, 334-342.	8.2	352
553	Flexible, sandwich-like CNTs/NiCo ₂ O ₄ hybrid paper electrodes for all-solid state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 5886-5894.	5.2	82
554	Ultraâ€Lightweight and Highly Adaptive Allâ€Carbon Elastic Conductors with Stable Electrical Resistance. Advanced Functional Materials, 2017, 27, 1606220.	7.8	78
555	Moldable clay-like unit for synthesis of highly elastic polydimethylsiloxane sponge with nanofiller modification. RSC Advances, 2017, 7, 10479-10486.	1.7	16
556	Graphene Oxide Glue-Electrode for Fabrication of Vertical, Elastic, Conductive Columns. ACS Nano, 2017, 11, 2944-2951.	7.3	37
557	Hybrid effect of carbon nanotube film and ultrathin carbon fiber prepreg composites. Journal of Reinforced Plastics and Composites, 2017, 36, 452-463.	1.6	18
558	In situ fastening graphene sheets into a polyurethane sponge for the highly efficient continuous cleanup of oil spills. Nano Research, 2017, 10, 1756-1766.	5.8	47

#	Article	IF	CITATIONS
559	Designing multifunctional 3D magnetic foam for effective insoluble oil separation and rapid selective dye removal for use in wastewater remediation. Journal of Materials Chemistry A, 2017, 5, 7316-7325.	5.2	135
560	Highly Flexible Hybrid Polymer Aerogels and Xerogels Based on Resorcinol-Formaldehyde with Enhanced Elastic Stiffness and Recoverability: Insights into the Origin of Their Mechanical Properties. Chemistry of Materials, 2017, 29, 2122-2134.	3.2	76
561	A novel 3D porous modified material with cage-like structure: fabrication and its demulsification effect for efficient oil/water separation. Journal of Materials Chemistry A, 2017, 5, 5895-5904.	5.2	97
562	A carbon-based 3D current collector with surface protection for Li metal anode. Nano Research, 2017, 10, 1356-1365.	5.8	200
563	Graphene-carbon nanotube hybrids as robust, rapid, reversible adsorbents for organics. Carbon, 2017, 116, 409-414.	5.4	13
564	Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil/water separation. Journal of Colloid and Interface Science, 2017, 497, 57-65.	5.0	166
565	High-Performance Energy Storage and Conversion Materials Derived from a Single Metal–Organic Framework/Graphene Aerogel Composite. Nano Letters, 2017, 17, 2788-2795.	4.5	348
566	Impact absorption properties of carbon fiber reinforced bucky sponges. Nanotechnology, 2017, 28, 184002.	1.3	3
567	Ultralight Multifunctional Carbonâ€Based Aerogels by Combining Graphene Oxide and Bacterial Cellulose. Small, 2017, 13, 1700453.	5.2	79
568	Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. Nano Energy, 2017, 37, 98-107.	8.2	129
569	Janus Copper Mesh Film with Unidirectional Water Transportation Ability toward High Efficiency Oil/Water Separation. Chemistry - an Asian Journal, 2017, 12, 2085-2092.	1.7	40
570	Pressure-Sensitive and Conductive Carbon Aerogels from Poplars Catkins for Selective Oil Absorption and Oil/Water Separation. ACS Applied Materials & Interfaces, 2017, 9, 18001-18007.	4.0	173
571	Superhydrophobic hBN-Regulated Sponges with Excellent Absorbency Fabricated Using a Green and Facile Method. Scientific Reports, 2017, 7, 45065.	1.6	20
572	Activation of Cellulose Assisted by CO ₂ for the Preparation of a Superhydrophobic Nanocoating. Chemistry - an Asian Journal, 2017, 12, 1773-1779.	1.7	5
573	Hydrophobic surface modification of FMSS and its application as effective sorbents for oil spill cleanâ€ups and recovery. AICHE Journal, 2017, 63, 4090-4102.	1.8	15
574	IN SITU SYNTHESIS OF CORAL-LIKE MELAMINE FORMALDEHYDE RESINS/CARBON NANOTUBES MICROPARTICLES. Surface Review and Letters, 2017, 24, 1850021.	0.5	1
575	Sulfur Vapor-Infiltrated 3D Carbon Nanotube Foam for Binder-Free High Areal Capacity Lithium–Sulfur Battery Composite Cathodes. ACS Nano, 2017, 11, 4877-4884.	7.3	235
576	Modification of formaldehyde-melamine-sodium bisulfite copolymer foam and its application as effective sorbents for clean up of oil spills. Chemical Engineering Science, 2017, 160, 384-395.	1.9	53

#	Article	IF	CITATIONS
577	Offenzellige SchwÄ m me mit niedrigen Dichten als Funktionsmaterialien. Angewandte Chemie, 2017, 129, 15726-15745.	1.6	7
578	Rapidly Degradable and Sustainable Polyhemiaminal Aerogels for Self-Driven Efficient Separation of Oil/Water Mixture. Industrial & Engineering Chemistry Research, 2017, 56, 6508-6514.	1.8	12
579	Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chemical Engineering Journal, 2017, 326, 17-28.	6.6	255
580	Nanohybrid Catalyst based on Carbon Nanotube. Carbon Nanostructures, 2017, , .	0.1	13
581	Continuous fabrication of polymer microfiber bundles with interconnected microchannels for oil/water separation. Applied Materials Today, 2017, 9, 77-81.	2.3	84
582	Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience. ACS Nano, 2017, 11, 6817-6824.	7.3	297
583	Rational Design of Hierarchical Carbon/Mesoporous Silicon Composite Sponges as High-Performance Flexible Energy Storage Electrodes. ACS Applied Materials & Energy Storage Electrodes. ACS Applied Materials & Energy Storage Electrodes.	4.0	34
584	Oneâ€Pot Preparation of Macroporous Organicâ€Silica Monolith for the Organicsâ€JOilâ€Water Separation. ChemistrySelect, 2017, 2, 4538-4544.	0.7	7
585	Self-Expansion Construction of Ultralight Carbon Nanotube Aerogels with a 3D and Hierarchical Cellular Structure. Small, 2017, 13, 1700966.	5.2	10
586	Strong and resilient alumina nanotube and CNT/alumina hybrid foams with tuneable elastic properties. RSC Advances, 2017, 7, 27923-27931.	1.7	10
587	Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Materials and Design, 2017, 130, 452-458.	3.3	138
588	Super-hydrophobic modification of porous natural polymer "luffa sponge―for oil absorption. Polymer, 2017, 126, 470-476.	1.8	52
589	Lowâ€Density Open Cellular Sponges as Functional Materials. Angewandte Chemie - International Edition, 2017, 56, 15520-15538.	7.2	168
590	Recent Progress of Polyurethane-Based Materials for Oil/Water Separation. Nano, 2017, 12, 1730001.	0.5	14
591	A 3-D binder-free nanoporous anode for a safe and stable charging of lithium ion batteries. Materials Research Bulletin, 2017, 93, 1-8.	2.7	21
592	Synthesis of a new "green―sponge via transesterification of dimethyl carbonate with polyvinyl alcohol and foaming approach. Journal of Porous Materials, 2017, 24, 1595-1604.	1.3	4
593	Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Research, 2017, 10, 1560-1583.	5.8	96
594	One-Pot Sintering Strategy for Efficient Fabrication of High-Performance and Multifunctional Graphene Foams. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13323-13330.	4.0	40

#	Article	IF	CITATIONS
595	Carbon foams produced from lignin-phenol-formaldehyde resin for oil/water separation. New Carbon Materials, 2017, 32, 86-91.	2.9	57
596	Robust superhydrophobic carbon fiber sponge used for efficient oil/corrosive solution mixtures separation. Vacuum, 2017, 141, 57-61.	1.6	10
597	Covalent three-dimensional networks of graphene and carbon nanotubes: synthesis and environmental applications. Nano Today, 2017, 12, 116-135.	6.2	97
598	Graphene oxide as high-performance dielectric materials for capacitive pressure sensors. Carbon, 2017, 114, 209-216.	5.4	201
599	Facile and fast removal of oil through porous carbon spheres derived from the fruit of Liquidambar formosana. Chemosphere, 2017, 170, 68-74.	4.2	27
600	Synthesis of lightweight and flexible composite aerogel of mesoporous iron oxide threaded by carbon nanotubes for microwave absorption. Journal of Alloys and Compounds, 2017, 697, 138-146.	2.8	66
601	Low Molecular Weight Spandex as a Promising Polymeric Binder for LiFePO ₄ Electrodes. Advanced Energy Materials, 2017, 7, 1602147.	10.2	27
602	Constructing optimized three-dimensional electrochemical interface in carbon nanofiber/carbon nanotube hierarchical composites for high-energy-density supercapacitors. Carbon, 2017, 111, 502-512.	5.4	47
603	Hierarchical self-entangled carbon nanotube tube networks. Nature Communications, 2017, 8, 1215.	5.8	120
604	3D graphene-based nanostructured materials as sorbents for cleaning oil spills and for the removal of dyes and miscellaneous pollutants present in water. Environmental Science and Pollution Research, 2017, 24, 27731-27745.	2.7	36
605	Property improvements of CNT films induced by wet-stretching and tension-heating post treatments. Composites Part A: Applied Science and Manufacturing, 2017, 103, 106-112.	3.8	10
606	Promising properties of ALD boron nitride nanotube mats for water purification. Environmental Science: Nano, 2017, 4, 2311-2320.	2.2	24
607	Facile and tailored synthesis of ultrahigh-surface-area clews of carbon nanobelts for high-rate lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 23209-23220.	5.2	24
608	MOF-Derived ZnO Nanoparticles Covered by N-Doped Carbon Layers and Hybridized on Carbon Nanotubes for Lithium-Ion Battery Anodes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 37813-37822.	4.0	107
609	Furfuryl alcohol modified melamine sponge for highly efficient oil spill clean-up and recovery. Journal of Materials Chemistry A, 2017, 5, 21893-21897.	5.2	75
610	A binder-free NiCo ₂ O ₄ nanosheet/3D elastic N-doped hollow carbon nanotube sponge electrode with high volumetric and gravimetric capacitances for asymmetric supercapacitors. Nanoscale, 2017, 9, 16826-16835.	2.8	73
611	Mopping up the Oil, Metal, and Fluoride Ions from Water. ACS Omega, 2017, 2, 6878-6887.	1.6	11
612	An innovative, fast and facile soft-template approach for the fabrication of porous PDMS forÂoil–water separation. Journal of Materials Chemistry A, 2017, 5, 23785-23793.	5.2	59

#	Article	IF	CITATIONS
613	Fabrication of superhydrophobic sponge with hierarchical structure and application for oil/water separation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 877-884.	1.2	7
614	Carbon-nanotube sponges enabling highly efficient and reliable cell inactivation by low-voltage electroporation. Environmental Science: Nano, 2017, 4, 2010-2017.	2.2	56
615	Flexible Electrodes for Sodiumâ€ion Batteries: Recent Progress and Perspectives. Advanced Materials, 2017, 29, 1703012.	11.1	156
616	Robust Macroscopic 3D Sponges of Manganese Oxide Molecular Sieves. Chemistry - A European Journal, 2017, 23, 16213-16218.	1.7	9
617	Surface roughness induced superhydrophobicity of graphene foam for oil-water separation. Journal of Colloid and Interface Science, 2017, 508, 254-262.	5.0	71
618	Exploration of the Electrical Conductivity of Double-Network Silver Nanowires/Polyimide Porous Low-Density Compressible Sponges. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34286-34293.	4.0	49
619	Nanoporous graphene and graphene oxide-coated polyurethane sponge as a highly efficient, superhydrophobic, and reusable oil spill absorbent. Journal of Environmental Chemical Engineering, 2017, 5, 5025-5032.	3.3	41
620	Multiscale design of nanofibrous carbon aerogels: Synthesis, properties and comparisons with other low-density carbon materials. Carbon, 2017, 124, 588-598.	5.4	5
621	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	3.5	170
622	Table Salt as a Template to Prepare Reusable Porous PVDF–MWCNT Foam for Separation of Immiscible Oils/Organic Solvents and Corrosive Aqueous Solutions. Advanced Functional Materials, 2017, 27, 1702926.	7.8	160
623	Bacteria as Bio-Template for 3D Carbon Nanotube Architectures. Scientific Reports, 2017, 7, 9855.	1.6	21
624	Effect of flake size on the mechanical properties of graphene aerogels prepared by freeze casting. RSC Advances, 2017, 7, 33600-33605.	1.7	53
625	Extremely Low Density and Superâ€Compressible Graphene Cellular Materials. Advanced Materials, 2017, 29, 1701553.	11.1	126
626	Multifunctional and highly compressive cross-linker-free sponge based on reduced graphene oxide and boron nitride nanosheets. Chemical Engineering Journal, 2017, 328, 825-833.	6.6	30
627	Electrocapillary Rise in Nanoporous Media. Procedia IUTAM, 2017, 21, 71-77.	1.2	0
628	Protected Lithiumâ€Metal Anodes in Batteries: From Liquid to Solid. Advanced Materials, 2017, 29, 1701169.	11.1	596
629	Oriented Arrangement: The Origin of Versatility for Porous Graphene Materials. Small, 2017, 13, 1701231.	5.2	26
630	Biomimetic superhydrophobic surfaces with transition metals and their oxides: A review. Journal of Bionic Engineering, 2017, 14, 401-439.	2.7	81

#	Article	IF	CITATIONS
631	Layerâ€by‣ayer Assembly Fabrication of Porous Boron Nitride Coated Multifunctional Materials for Water Cleaning. Advanced Materials Interfaces, 2017, 4, 1700392.	1.9	30
632	Diverse wettability of superoleophilicity and superoleophobicity for oil spill cleanup and recycling. Applied Surface Science, 2017, 426, 1158-1166.	3.1	10
633	Template-free synthesis of polystyrene monoliths for the removal of oil-in-water emulsion. Scientific Reports, 2017, 7, 6534.	1.6	14
634	Capillary uptake in macroporous compressible sponges. Soft Matter, 2017, 13, 5731-5740.	1.2	13
635	Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29812-29819.	4.0	119
636	Mussel-Inspired Self-Healing of Ultralight Magnetic Frameworks. ACS Sustainable Chemistry and Engineering, 2017, 5, 7905-7911.	3.2	11
638	Superhydrophobic/Superoleophilic and Reinforced Ethyl Cellulose Sponges for Oil/Water Separation: Synergistic Strategies of Cross-linking, Carbon Nanotube Composite, and Nanosilica Modification. ACS Applied Materials & Diterfaces, 2017, 9, 29167-29176.	4.0	107
639	Preparation of carbon aerogels from TEMPO-oxidized cellulose nanofibers for organic solvents absorption. RSC Advances, 2017, 7, 38220-38230.	1.7	40
640	A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries. Chemical Society Reviews, 2017, 46, 5237-5288.	18.7	572
641	Facile Fabrication of Porous Conductive Thermoplastic Polyurethane Nanocomposite Films via Solution Casting. Scientific Reports, 2017, 7, 17470.	1.6	33
642	Self-Assembly of Porous Boron Nitride Microfibers into Ultralight Multifunctional Foams of Large Sizes. ACS Applied Materials & Sizes.	4.0	64
643	Facile synthesis of reduced graphene oxide/trimethyl chlorosilaneâ€coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnology, 2017, 11, 929-934.	1.9	28
644	Comparative analysis of the physicochemical characteristics of SiO2 aerogels prepared by drying under subcritical and supercritical conditions. Inorganic Materials, 2017, 53, 1270-1278.	0.2	9
645	Modification of cotton fabric by mussel-inspired for oil/water separation. Fibers and Polymers, 2017, 18, 1763-1768.	1.1	6
646	Carbon aerogel evolution: Allotrope, graphene-inspired, and 3D-printed aerogels. Journal of Materials Research, 2017, 32, 4166-4185.	1.2	71
647	Preparation of graphene-MoS2 hybrid aerogels as multifunctional sorbents for water remediation. Science China Materials, 2017, 60, 1102-1108.	3.5	27
648	Selective removal of cationic micro-pollutants using disulfide-linked network structures. RSC Advances, 2017, 7, 25969-25977.	1.7	19
649	Surface Design of Separators for Oil/Water Separation with High Separation Capacity and Mechanical Stability. Langmuir, 2017, 33, 8012-8022.	1.6	11

#	Article	IF	CITATIONS
650	Ultrasensitive Pressure Sensor Based on an Ultralight Sparkling Graphene Block. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22885-22892.	4.0	113
651	Selfâ€assembly of 3D Carbon Nanotube Sponges: A Simple and Controllable Way to Build Macroscopic and Ultralight Porous Architectures. Advanced Materials, 2017, 29, 1603549.	11.1	69
652	Sponge-like nickel phosphide–carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Research, 2017, 10, 415-425.	5.8	73
653	Electronic Polymer Composite. , 2017, , 107-149.		2
654	Multifunctional Bionanocomposite Foams with a Chitosan Matrix Reinforced by Nanofibrillated Cellulose. ChemNanoMat, 2017, 3, 98-108.	1.5	37
655	Lightweight conductive graphene/thermoplastic polyurethane foams with ultrahigh compressibility for piezoresistive sensing. Journal of Materials Chemistry C, 2017, 5, 73-83.	2.7	576
656	Carbon electrodes for capacitive deionization. Journal of Materials Chemistry A, 2017, 5, 470-496.	5.2	295
657	Fabrication of recyclable carbonized asphaltâ€melamine sponges with high oilâ€absorption capability. Journal of Chemical Technology and Biotechnology, 2017, 92, 1415-1420.	1.6	19
658	Direct Nanofabrication Using DNA Nanostructure. Methods in Molecular Biology, 2017, 1500, 217-235.	0.4	1
659	Polyurethane sponge functionalized with superhydrophobic nanodiamond particles for efficient oil/water separation. Chemical Engineering Journal, 2017, 307, 319-325.	6.6	237
660	Continuous preparation of polyHIPE monoliths from ionomer-stabilized high internal phase emulsions (HIPEs) for efficient recovery of spilled oils. Chemical Engineering Journal, 2017, 307, 812-819.	6.6	73
661	Preparation of wrapped carbon nanotubes poly(4-vinylpyridine)/MTO based heterogeneous catalysts for the oxidative desulfurization (ODS) of model and synthetic diesel fuel. Applied Catalysis B: Environmental, 2017, 200, 392-401.	10.8	51
662	Review on the Aerogel-Type Oil Sorbents Derived from Nanocellulose. ACS Sustainable Chemistry and Engineering, 2017, 5, 49-66.	3.2	270
663	A Scientometric Analysis of Aerogel Research in 1996-2015. , 2017, , .		0
664	Conductive Cotton Filters for Affordable and Efficient Water Purification. Catalysts, 2017, 7, 291.	1.6	9
665	Two Sprayer CVD Synthesis of Nitrogen-doped Carbon Sponge-type Nanomaterials. Scientific Reports, 2018, 8, 2983.	1.6	29
666	Superlyophobic anti-corrosive and self-cleaning titania robust mesh membrane with enhanced oil/water separation. Separation and Purification Technology, 2018, 201, 193-204.	3.9	165
667	Highly Compressible Carbon Sponge Supercapacitor Electrode with Enhanced Performance by Growing Nickel–Cobalt Sulfide Nanosheets. ACS Applied Materials & Interfaces, 2018, 10, 10087-10095.	4.0	111

#	Article	IF	CITATIONS
668	Ultralight, Recoverable, and High-Temperature-Resistant SiC Nanowire Aerogel. ACS Nano, 2018, 12, 3103-3111.	7.3	298
669	Resilient, mesoporous carbon nanotube-based strips as adsorbents of dilute organics in water. Carbon, 2018, 132, 329-334.	5.4	21
670	Facile One-Pot Bottom–Up Synthesis of Graphene and Ni/Graphene Nanostructures and Their Excellent Adsorption Performances. Nano, 2018, 13, 1850021.	0.5	1
671	Wrinkled Nitrogen-doped Carbon Belts. Scientific Reports, 2018, 8, 3546.	1.6	8
672	Polyolefin-based interpenetrating polymer network absorbent for crude oil entrapment and recovery in aqueous system. Journal of Hazardous Materials, 2018, 351, 285-292.	6.5	28
673	High areal capacity, long cycle life Li-O2 cathode based on highly elastic gel granules. Nano Energy, 2018, 47, 353-360.	8.2	19
674	Scalable and Sustainable Approach toward Highly Compressible, Anisotropic, Lamellar Carbon Sponge. CheM, 2018, 4, 544-554.	5.8	246
675	Morphology of cross-linked cellulose nanocrystal aerogels: cryo-templating versus pressurized gas expansion processing. Journal of Materials Science, 2018, 53, 9842-9860.	1.7	28
676	One-step solution immersion process for the fabrication of low adhesive underwater superoleophobic copper mesh film toward high-flux oil/water separation. Applied Surface Science, 2018, 448, 241-247.	3.1	38
677	Efficient carbon nanotube sponges production boosted by acetone in CVD-Synthesis. Carbon, 2018, 135, 145-156.	5.4	18
678	Formation of Hollow Metal Oxide Nanoparticles for ORR. Springer Theses, 2018, , 103-119.	0.0	0
679	A Bubbleâ€Derived Strategy to Prepare Multiple Grapheneâ€Based Porous Materials. Advanced Functional Materials, 2018, 28, 1705879.	7.8	85
680	3D, Mutually Embedded MOF@Carbon Nanotube Hybrid Networks for Highâ€Performance Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800013.	10.2	198
681	<i>In vitro</i> effect of graphene structures as an osteoinductive factor in bone tissue engineering: A systematic review. Journal of Biomedical Materials Research - Part A, 2018, 106, 2284-2343.	2.1	56
682	Tunable Contact Angle Hysteresis for Component Placement on Stretchable Superhydrophobic Surfaces. Advanced Materials Interfaces, 2018, 5, 1701353.	1.9	3
683	A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor. Journal of Materials Chemistry A, 2018, 6, 9074-9080.	5.2	114
684	Tunable Free-Standing Core–Shell CNT@MoSe ₂ Anode for Lithium Storage. ACS Applied Materials & Discrete Standard (1998). Anode for Lithium Storage (1998). According to the Materials (1998). The Materials (1998) and the Materials (1998) are supplied to the Materials (1998). The Materials (1998) are supplied to the Materials (1998). The Materials (1998) are supplied to the Materials (1998) and the Materials (1998) are supplied to the Materials (1998). The Materials (1998) are supplied to the Materials (1998) are supplied to the Materials (1998). The Materials (1998) are supplied to the Materials (1998) are supplied to the Materials (1998). The Materials (1998) are supplied to the Materials (1998) are supplied to the Materials (1998) are supplied to the Materials (1998). The Materials (1998) are supplied to the Materials (1998) are supplied	4.0	78
685	Direct growth of 3D host on Cu foil for stable lithium metal anode. Energy Storage Materials, 2018, 13, 323-328.	9.5	92

#	Article	IF	Citations
686	Single Carbon Fibers with a Macroscopicâ€Thickness, 3D Highly Porous Carbon Nanotube Coating. Advanced Materials, 2018, 30, e1704419.	11.1	62
687	Mechanical properties of nanocomposites reinforced by carbon nanotube sponges. Journal of Materiomics, 2018, 4, 157-164.	2.8	32
688	Synergy of polypyrrole and carbon x-aerogel in lithium–oxygen batteries. Nanoscale, 2018, 10, 3753-3758.	2.8	10
689	Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization. Carbon, 2018, 130, 377-383.	5.4	224
690	Multiwall carbon nanotube reinforced teflon fibrils for oil spill clean up and its effective recycling as textile dye sorbent. Journal of Environmental Management, 2018, 211, 198-205.	3.8	8
691	Reduced graphene oxide modified melamine formaldehyde (rGO@MF) superhydrophobic sponge for efficient oil–water separation. Journal of Porous Materials, 2018, 25, 1475-1488.	1.3	54
692	Conductive 3D sponges for affordable and highly-efficient water purification. Nanoscale, 2018, 10, 4771-4778.	2.8	61
693	Efficient heat dissipation by ion-mediation assembled reduced graphene oxide. Journal of Materials Chemistry C, 2018, 6, 2515-2521.	2.7	19
694	Recent advances in three-dimensional graphene based materials for catalysis applications. Chemical Society Reviews, 2018, 47, 2165-2216.	18.7	412
695	Monodisperse CNT Microspheres for High Permeability and Efficiency Flowâ€Through Filtration Applications. Advanced Materials, 2018, 30, e1706503.	11.1	23
696	Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon, 2018, 132, 199-209.	5.4	278
697	3Dâ€Printed Biomimetic Superâ€Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation. Advanced Materials, 2018, 30, 1704912.	11.1	312
698	Super high-rate fabrication of high-purity carbon nanotube aerogels from floating catalyst method for oil spill cleaning. Chemical Physics Letters, 2018, 693, 146-151.	1.2	50
699	Magnetically driven superhydrophobic silica sponge decorated with hierarchical cobalt nanoparticles for selective oil absorption and oil/water separation. Chemical Engineering Journal, 2018, 337, 541-551.	6.6	112
700	Zeolite filled siloxane composite foams: Compression property. Journal of Applied Polymer Science, 2018, 135, 46145.	1.3	18
701	Superelastic and Arbitraryâ€Shaped Graphene Aerogels with Sacrificial Skeleton of Melamine Foam for Varied Applications. Advanced Functional Materials, 2018, 28, 1704674.	7.8	155
702	Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. ACS Nano, 2018, 12, 140-147.	7.3	364
703	Controllable growth of SnS ₂ nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. Journal of Materials Chemistry A, 2018, 6, 1462-1472.	5.2	117

#	Article	IF	CITATIONS
704	Carbon nanotube aerogel–CoS ₂ hybrid catalytic counter electrodes for enhanced photovoltaic performance dye-sensitized solar cells. Nanoscale, 2018, 10, 4194-4201.	2.8	69
705	Engineering sub-100Ânm Mo _(1â^'x) W _x Se ₂ crystals for efficient hydrogen evolution catalysis. Journal of Materials Chemistry A, 2018, 6, 2900-2907.	5.2	34
706	A flexible and highly sensitive pressure sensor based on elastic carbon foam. Journal of Materials Chemistry C, 2018, 6, 1451-1458.	2.7	127
707	One-Step Synthesis of Carbon-Hybridized ZnO on Polymeric Foams by Atomic Layer Deposition for Efficient Absorption of Oils from Water. Industrial & Engineering Chemistry Research, 2018, 57, 1269-1276.	1.8	16
708	Highly porous and easy shapeable poly-dopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors. Carbon, 2018, 130, 137-144.	5.4	54
709	Flexible supercapacitors based on carbon nanotubes. Chinese Chemical Letters, 2018, 29, 571-581.	4.8	88
710	Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials. Nanotechnology, 2018, 29, 105706.	1.3	7
711	Hierarchically porous sponge for oily water treatment: Facile fabrication by combination of particulate templates and thermally induced phase separation method. Journal of Industrial and Engineering Chemistry, 2018, 62, 192-196.	2.9	24
712	Superhydrophobic Graphene/Cellulose/Silica Aerogel with Hierarchical Structure as Superabsorbers for High Efficiency Selective Oil Absorption and Recovery. Industrial & Engineering Chemistry Research, 2018, 57, 1745-1755.	1.8	69
713	Graphene/nanofiber aerogels: Performance regulation towards multiple applications in dye adsorption and oil/water separation. Chemical Engineering Journal, 2018, 338, 202-210.	6.6	198
714	Adsorption Mechanism of Oil by Resilient Graphene Aerogels from Oil–Water Emulsion. Langmuir, 2018, 34, 1890-1898.	1.6	110
715	Superhydrophobic Cellulose Nanofiber-Assembled Aerogels for Highly Efficient Water-in-Oil Emulsions Separation. ACS Applied Nano Materials, 2018, 1, 2095-2103.	2.4	96
716	An ultra-lightweight recyclable carbon aerogel from bleached softwood kraft pulp for efficient oil and organic absorption. Materials Chemistry and Physics, 2018, 214, 291-296.	2.0	27
717	Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coordination Chemistry Reviews, 2018, 367, 82-126.	9.5	105
718	Fe3O4@SiO2@MPS core/shell nanocomposites: The effect of the core weight on their magnetic properties and oil separation performance. Journal of Environmental Chemical Engineering, 2018, 6, 3034-3040.	3.3	19
719	Freeze-extrusion for controllable assembly of 3-dimensional ultra-fine and amorphous fibrous matrices: potential applications in sorption. Journal of Materials Chemistry A, 2018, 6, 10320-10330.	5. 2	18
720	Densification by Compaction as an Effective Lowâ€Cost Method to Attain a High Areal Lithium Storage Capacity in a CNT@Co ₃ O ₄ Sponge. Advanced Energy Materials, 2018, 8, 1702981.	10.2	69
721	Preparation of corn straw based spongy aerogel for spillage oil capture. Korean Journal of Chemical Engineering, 2018, 35, 1119-1127.	1.2	24

#	Article	IF	Citations
722	Dual Wet and Dry Resilient Cellulose II Fibrous Aerogel for Hydrocarbon–Water Separation and Energy Storage Applications. ACS Omega, 2018, 3, 3530-3539.	1.6	25
723	Nanoconfined phase change materials for thermal energy applications. Energy and Environmental Science, 2018, 11, 1392-1424.	15.6	445
724	Large-scale blow spinning of carbon microfiber sponge as efficient and recyclable oil sorbent. Chemical Engineering Journal, 2018, 343, 638-644.	6.6	41
725	Coating Cellulosic Materials with Graphene for Selective Absorption of Oils and Organic Solvents from Water. Fibers and Polymers, 2018, 19, 524-530.	1.1	11
726	Facile fabrication of asphaltene-derived graphene-polyurethane sponges for efficient and selective oil-water separation. Journal of Dispersion Science and Technology, 2018, 39, 977-981.	1.3	8
727	Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon, 2018, 133, 457-463.	5.4	206
728	Carbon nanotube-alumina strips as robust, rapid, reversible adsorbents of organics. RSC Advances, 2018, 8, 10715-10718.	1.7	5
729	Green synthesis of amphipathic graphene aerogel constructed by using the framework of polymer-surfactant complex for water remediation. Applied Surface Science, 2018, 444, 399-406.	3.1	32
730	Removal of Oil From Water Surface by Novel Composite NSMâ€ <i>g</i> â€P(MMAâ€ <i>co</i> â€BA) Super Oilâ€Absorption Resin. Polymer Composites, 2018, 39, 1051-1063.	2.3	12
731	A threeâ€dimensional carbon nanotube–nanofiber composite foam for selective adsorption of oils and organic liquids. Polymer Composites, 2018, 39, E271.	2.3	13
732	A study of thermal insulation properties and microstructure of ultra-light 3D-carbon foam via direct carbonization of polymer foam. Journal of Porous Materials, 2018, 25, 527-536.	1.3	32
733	Mechanically robust and highly compressible electrochemical supercapacitors from nitrogen-doped carbon aerogels. Carbon, 2018, 127, 236-244.	5.4	99
734	Preparation and structural evolution of SiOC preceramic aerogel during high-temperature treatment. Ceramics International, 2018, 44, 563-570.	2.3	48
735	Calotropis gigantea fiber derived carbon fiber enables fast and efficient absorption of oils and organic solvents. Separation and Purification Technology, 2018, 192, 30-35.	3.9	35
736	Porous nanoplatelets wrapped carbon aerogels by pyrolysis of regenerated bamboo cellulose aerogels as supercapacitor electrodes. Carbohydrate Polymers, 2018, 180, 385-392.	5.1	79
737	Mitigating oil spills in the water column. Environmental Science: Water Research and Technology, 2018, 4, 40-47.	1.2	36
738	Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review. Science of the Total Environment, 2018, 612, 561-581.	3.9	237
739	Robust superhydrophobic and superoleophilic filter paper via atom transfer radical polymerization for oil/water separation. Carbohydrate Polymers, 2018, 181, 419-425.	5.1	78

#	Article	IF	CITATIONS
740	Preparation of DOPA-TA coated novel membrane for multifunctional water decontamination. Separation and Purification Technology, 2018, 194, 135-140.	3.9	32
741	Synthesis of reusable silicone foam containing carbon nanotubes for oil spill remediation. Journal of Applied Polymer Science, 2018, 135, 46067.	1.3	36
742	Reduced graphene oxide-coated cotton as an efficient absorbent in oil-water separation. Advanced Composites and Hybrid Materials, 2018, 1, 135-148.	9.9	83
743	Bioinspired Assembly of Carbon Nanotube into Graphene Aerogel with "Cabbagelike―Hierarchical Porous Structure for Highly Efficient Organic Pollutants Cleanup. ACS Applied Materials & Discrete Representation (1993-1103).	4.0	113
744	A linear and large-range pressure sensor based on a graphene/silver nanowires nanobiocomposites network and a hierarchical structural sponge. Composites Science and Technology, 2018, 155, 108-116.	3.8	142
745	Ultrafast Nanoscale Polymer Coating on Porous 3D Structures Using Microwave Irradiation. Advanced Functional Materials, 2018, 28, 1704877.	7.8	18
746	All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly(3,4-ethylenedioxythiophene) (PEDOT) sponge electrodes. Journal of Power Sources, 2018, 376, 138-146.	4.0	94
747	Surface modification of polymeric foams for oil spills remediation. Journal of Environmental Management, 2018, 206, 872-889.	3.8	77
748	Vibration Damping of Carbon Nanotube Assembly Materials. Advanced Engineering Materials, 2018, 20, 1700647.	1.6	31
749	Macroporous carbon aerogel as a novel adsorbent for immobilized enzymes and a support for the lipase-active heterogeneous biocatalysts for conversion of triglycerides and fatty acids. Journal of Porous Materials, 2018, 25, 1017-1026.	1.3	17
750	Facile fabrication of a free-standing superhydrophobic and superoleophilic carbon nanofiber-polymer block that effectively absorbs oils and chemical pollutants from water. Vacuum, 2018, 149, 39-47.	1.6	16
751	Honeycomb-like NiCo2O4@Ni(OH)2 supported on 3D Nâ^'doped graphene/carbon nanotubes sponge as an high performance electrode for Supercapacitor. Ceramics International, 2018, 44, 3113-3121.	2.3	38
752	Removal of Organic Pollutants from Water Using Superwetting Materials. Chemical Record, 2018, 18, 118-136.	2.9	61
7 53	Polyacrylamide-Modified Polyester Fabric with Easy-Cleaning for Efficient Oil/Water Separation. AATCC Journal of Research, 2018, 5, 1-6.	0.3	7
754	Vertically aligned carbon nanotubes: production and applications for environmental sustainability. Green Chemistry, 2018, 20, 5245-5260.	4.6	35
755	Greener transformation of lignin into ultralight multifunctional materials. Journal of Materials Chemistry A, 2018, 6, 20973-20981.	5.2	22
756	An ultrahighly sensitive and repeatable flexible pressure sensor based on PVDF/PU/MWCNT hierarchical framework-structured aerogels for monitoring human activities. Journal of Materials Chemistry C, 2018, 6, 12575-12583.	2.7	27
757	Recent Hydrophobic Metal-Organic Frameworks and Their Applications. Materials, 2018, 11, 2250.	1.3	45

#	Article	IF	Citations
758	Solvent Response. Biologically-inspired Systems, 2018, , 169-182.	0.4	0
759	Konjac Glucomannan Derived Carbon Aerogels for Multifunctional Applications. Nano, 2018, 13, 1850113.	0.5	5
760	Nanoscaled Surface Modification of Poly(dimethylsiloxane) Using Carbon Nanotubes for Enhanced Oil and Organic Solvent Absorption. ACS Omega, 2018, 3, 15907-15915.	1.6	20
761	<i>Thalia dealbata</i> Inspired Anisotropic Cellular Biomass Derived Carbonaceous Aerogel. ACS Sustainable Chemistry and Engineering, 2018, 6, 17152-17159.	3.2	51
762	Fabrication of Self-Entangled 3D Carbon Nanotube Networks from Metal–Organic Frameworks for Li-Ion Batteries. ACS Applied Nano Materials, 2018, 1, 7075-7082.	2.4	10
763	One-Step Fabrication of the Pure-Silica Zeolite Beta Coating on Stainless Steel Mesh for Efficient Oil/Water Separation. Industrial & Engineering Chemistry Research, 2018, 57, 17409-17416.	1.8	23
764	Advances on Sensors Based on Carbon Nanotubes. Chemosensors, 2018, 6, 62.	1.8	120
765	Cellulose-Based Absorbents for Oil Contaminant Removal. Polymers and Polymeric Composites, 2018, , 1-27.	0.6	0
766	Highly Compressible Wood Sponges with a Spring-like Lamellar Structure as Effective and Reusable Oil Absorbents. ACS Nano, 2018, 12, 10365-10373.	7. 3	473
767	Lightweight, mechanical robust foam with a herringbone-like porous structure for oil/water separation and filtering. Polymer Testing, 2018, 72, 86-93.	2.3	14
768	Solution Processed Coating of Polyolefin on Melamine Foams to Fabricate Tough Oil Superabsorbents. Macromolecular Materials and Engineering, 2018, 303, 1800436.	1.7	11
769	Polybenzoxazine-Functionalized Melamine Sponges with Enhanced Selective Capillarity for Efficient Oil Spill Cleanup. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40274-40285.	4.0	97
770	Cellulose-Based Absorbents for Oil Contaminant Removal. Polymers and Polymeric Composites, 2018, , 1-27.	0.6	4
771	Superelastic Carbon Aerogel with Ultrahigh and Wide-Range Linear Sensitivity. ACS Applied Materials & Linear S	4.0	64
772	Superhydrophobic/Superoleophilic Polycarbonate/Carbon Nanotubes Porous Monolith for Selective Oil Adsorption from Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 13747-13755.	3.2	198
773	Hydrogel bowls for cleaning oil spills on water. Water Research, 2018, 145, 640-649.	5.3	28
774	Towards the development of superhydrophobic carbon nanomaterial coatings on wood. Progress in Organic Coatings, 2018, 125, 23-31.	1.9	35
775	Continuous separation of oil from water surface by a novel tubular unit based on graphene coated polyurethane sponge. Polymers for Advanced Technologies, 2018, 29, 2317-2326.	1.6	13

#	Article	IF	CITATIONS
776	Preparation of porous carbon nanotube/carbon composite spheres and their adsorption properties. Carbon, 2018, 137, 493-501.	5.4	33
777	Hierarchical porous carbon microspheres with superhydrophilic surface for efficient adsorption and detection of water-soluble contaminants. Journal of Materials Chemistry A, 2018, 6, 12153-12161.	5. 2	35
778	Emerging Carbonâ€Nanofiber Aerogels: Chemosynthesis versus Biosynthesis. Angewandte Chemie - International Edition, 2018, 57, 15646-15662.	7.2	92
779	Woodâ€Derived Ultrathin Carbon Nanofiber Aerogels. Angewandte Chemie, 2018, 130, 7203-7208.	1.6	37
780	Enhancement of evaporative heat transfer on carbon nanotube sponges by electric field reinforced wettability. Applied Surface Science, 2018, 454, 262-269.	3.1	18
781	Asymmetric self-supporting hybrid fluorinated carbon nanotubes/carbon nanotubes sponge electrode for high-performance lithium-polysulfide battery. Chemical Engineering Journal, 2018, 349, 756-765.	6.6	31
782	Enhanced capacitive deionization by nitrogen-doped porous carbon nanofiber aerogel derived from bacterial-cellulose. Journal of Electroanalytical Chemistry, 2018, 822, 81-88.	1.9	52
783	Carbon Felt Monoliths Coated with a Highly Hydrophobic Mesoporous Carbon Phase for the Continuous Oil Sorption/Filtration from Water. Advanced Sustainable Systems, 2018, 2, 1800040.	2.7	5
784	Kohlenstoffnanofaserâ€Aerogele: Vergleich von Chemosynthese und Biosynthese. Angewandte Chemie, 2018, 130, 15872-15889.	1.6	8
785	Superhydrophobic, carbon-infiltrated carbon nanotubes on Si and 316L stainless steel with tunable geometry. Applied Physics Letters, 2018, 112, .	1.5	6
786	Highly pressure-sensitive graphene sponge fabricated by \hat{l}^3 -ray irradiation reduction. Science China Materials, 2018, 61, 1596-1604.	3.5	6
787	Anticorrosive, Ultralight, and Flexible Carbonâ€Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding. Small, 2018, 14, e1800534.	5.2	310
788	Bioinspired Superwettability Electrospun Micro/Nanofibers and Their Applications. Advanced Functional Materials, 2018, 28, 1801114.	7.8	204
789	Woodâ€Derived Ultrathin Carbon Nanofiber Aerogels. Angewandte Chemie - International Edition, 2018, 57, 7085-7090.	7.2	143
790	Stretchable and compressible strain sensor based on carbon nanotube foam/polymer nanocomposites with three-dimensional networks. Composites Science and Technology, 2018, 163, 162-170.	3.8	65
791	Improved interfacial floatability of superhydrophobic and compressive S, N co-doped graphene aerogel by electrostatic spraying for highly efficient organic pollutants recovery from water. Applied Surface Science, 2018, 457, 780-788.	3.1	22
792	Manufacturing of a hierarchical carbon foam with tailored catalytically Me/MexOy particles. Vacuum, 2018, 155, 490-495.	1.6	4
793	Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. Journal of Colloid and Interface Science, 2018, 530, 113-119.	5.0	86

#	Article	IF	CITATIONS
794	Aerogels as promising materials for environmental remediation—A broad insight into the environmental pollutants removal through adsorption and (photo)catalytic processes. , 2018, , 389-436.		8
795	Dual-templating synthesis of compressible and superhydrophobic spongy polystyrene for oil capture. Chemical Engineering Journal, 2018, 354, 245-253.	6.6	61
796	Practical Oil Spill Recovery by a Combination of Polyolefin Absorbent and Mechanical Skimmer. ACS Sustainable Chemistry and Engineering, 2018, 6, 12036-12045.	3.2	51
797	Large-sized graphene oxide/modified tourmaline nanoparticle aerogel with stable honeycomb-like structure for high-efficiency PM _{2.5} capture. Journal of Materials Chemistry A, 2018, 6, 16139-16148.	5.2	54
798	Metallic Octahedral CoSe ₂ Threaded by Nâ€Doped Carbon Nanotubes: A Flexible Framework for Highâ€Performance Potassiumâ€lon Batteries. Advanced Science, 2018, 5, 1800782.	5.6	198
799	2.2 Carbonaceous Materials., 2018,, 40-71.		3
800	Lotus-Seedpod-Bioinspired 3D Superhydrophobic Diatomite Porous Ceramics Comodified by Graphene and Carbon Nanobelts. ACS Applied Materials & Samp; Interfaces, 2018, 10, 27416-27423.	4.0	24
801	Step-by-step self-assembly of 2D few-layer reduced graphene oxide into 3D architecture of bacterial cellulose for a robust, ultralight, and recyclable all-carbon absorbent. Carbon, 2018, 139, 824-832.	5.4	53
802	Synthesis of aminopyridine-containing conjugated microporous polymers with excellent superhydrophobicity for oil/water separation. New Journal of Chemistry, 2018, 42, 14863-14869.	1.4	13
803	Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: An extensive review. Solar Energy, 2018, 170, 1130-1161.	2.9	132
804	Carbon-Based Materials for Thermoelectrics. Advances in Condensed Matter Physics, 2018, 2018, 1-29.	0.4	35
805	Tunable Polarity Carbon Fibers, a Holistic Approach to Environmental Protection. Molecules, 2018, 23, 1026.	1.7	9
806	Superfast Preparation of SWNT Sponge by Flame Burning Method and Its Adsorptive, Elastic and Electrochemical Properties. Nano, 2018, 13, 1850077.	0.5	5
807	Three-dimensional graphene-based polymer nanocomposites: preparation, properties and applications. Nanoscale, 2018, 10, 14788-14811.	2.8	162
808	Synthesis ofÂMIL-101@nanoporousÂgraphene composites as hydrophobic adsorbents for oil removal. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 597-608.	2.7	24
809	Nanotechnology for Environmental Remediation: Materials and Applications. Molecules, 2018, 23, 1760.	1.7	418
810	A general synthesis strategy for the multifunctional 3D polypyrrole foam of thin 2D nanosheets. Frontiers of Materials Science, 2018, 12, 105-117.	1.1	4
811	UiO-66-Coated Mesh Membrane with Underwater Superoleophobicity for High-Efficiency Oil–Water Separation. ACS Applied Materials & Separa	4.0	120

#	Article	IF	CITATIONS
812	High Performance Metal-Based Nanocomposite Thermal Interface Materials Toward Enhanced Cooling Efficiency in Electronic Applications. , 2018 , , .		0
813	Basalt fiber fabric synergistically decorated by MnO2 nanosheets/stearic acid for the enhancement of oil-recovery and anti-icing behavior. Applied Surface Science, 2018, 459, 647-656.	3.1	10
814	Superhydrophobic Melamine Sponge Modified by Cross-Linked Urea Network as Recyclable Oil Absorbent Materials. Industrial & Engineering Chemistry Research, 2018, 57, 8449-8459.	1.8	34
815	Atomic and Molecular Layer Deposition for Superior Lithiumâ€Sulfur Batteries: Strategies, Performance, and Mechanisms. Batteries and Supercaps, 2018, 1, 41-68.	2.4	50
816	Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures. Nanotechnology, 2018, 29, 335302.	1.3	3
817	Hydrophilic/Oleophilic Magnetic Janus Particles for the Rapid and Efficient Oil–Water Separation. Advanced Functional Materials, 2018, 28, 1802493.	7.8	144
818	Ultrahigh adsorption capacity of starch derived zinc based carbon foam for adsorption of toxic dyes and its preliminary investigation on oil-water separation. Journal of Cleaner Production, 2018, 197, 511-524.	4.6	74
819	Atomic layer deposition of core-shell structured V2O5@CNT sponge as cathode for potassium ion batteries. Journal of Materiomics, 2019, 5, 344-349.	2.8	27
820	Highly Efficient and Recyclable Carbonâ€Nanofiberâ€Based Aerogels for Ionic Liquid–Water Separation and Ionic Liquid Dehydration in Flowâ€Through Conditions. Advanced Materials, 2019, 31, e1903418.	11.1	24
821	Highly Conductive Multifunctional rGO/CNT Hybrid Sponge for Electromagnetic Wave Shielding and Strain Sensor. Advanced Materials Technologies, 2019, 4, 1900443.	3.0	32
822	A Fiber-Aligned Thermal-Managed Wood-Based Superhydrophobic Aerogel for Efficient Oil Recovery. ACS Sustainable Chemistry and Engineering, 2019, 7, 16428-16439.	3.2	65
823	Robust superhydrophobic polyurethane sponge functionalized with perfluorinated graphene oxide for efficient immiscible oil/water mixture, stable emulsion separation and crude oil dehydration. Science China Technological Sciences, 2019, 62, 1585-1595.	2.0	28
824	CNT Sponges for Environmental Applications. Engineering Materials, 2019, , 1-13.	0.3	1
825	Advanced Compressible and Elastic 3D Monoliths beyond Hydrogels. Advanced Functional Materials, 2019, 29, 1904472.	7.8	69
826	A carbon nanotube sponge as an adsorbent for vapor preconcentration of aromatic volatile organic compounds. Journal of Chromatography A, 2019, 1605, 460363.	1.8	17
827	Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance. Carbon, 2019, 153, 737-744.	5.4	169
828	Synthesis and mechanism perspectives of a carbon nanotube aerogel via a floating catalyst chemical vapour deposition method. Bulletin of Materials Science, 2019, 42, 1.	0.8	12
829	Review of superoleophobic surfaces: Evaluation, fabrication methods, and industrial applications. Surfaces and Interfaces, 2019, 17, 100340.	1.5	37

#	Article	IF	CITATIONS
830	A 3D Trilayered CNT/MoSe ₂ /C Heterostructure with an Expanded MoSe ₂ Interlayer Spacing for an Efficient Sodium Storage. Advanced Energy Materials, 2019, 9, 1900567.	10.2	218
831	Self-Healing Graphene-Reinforced Composite for Highly Efficient Oil/Water Separation. Langmuir, 2019, 35, 13950-13957.	1.6	9
832	Highly Compressible and Robust Polyimide/Carbon Nanotube Composite Aerogel for High-Performance Wearable Pressure Sensor. ACS Applied Materials & Interfaces, 2019, 11, 42594-42606.	4.0	255
833	Superelastic and Durable Hierarchical Porous Thermoplastic Polyurethane Monolith with Excellent Hydrophobicity for Highly Efficient Oil/Water Separation. Industrial & Engineering Chemistry Research, 2019, 58, 20291-20299.	1.8	40
834	Stimulus-Responsive Biopolymeric Surface: Molecular Switches for Oil/Water Separation. ACS Applied Bio Materials, 2019, 2, 4249-4257.	2.3	25
835	Carbon nanotube reinforced nanocomposites for energy conversion and storage. Journal of Power Sources, 2019, 443, 227277.	4.0	12
836	A Facile Route to Fabricate Superhydrophobic Cu2O Surface for Efficient Oil–Water Separation. Coatings, 2019, 9, 659.	1.2	7
837	A Correlation Filter Target Tracking Algorithm Combining LK Optical Flow., 2019, , .		1
838	Direct Patterning of Carbon Nanotube via Stamp Contact Printing Process for Stretchable and Sensitive Sensing Devices. Nano-Micro Letters, 2019, 11, 92.	14.4	56
840	Oxygenated Surface of Carbon Nanotube Sponges: Electroactivity and Magnetic Studies. ACS Omega, 2019, 4, 18011-18022.	1.6	12
841	Resilient carbon fiber network materials under cyclic compression. Carbon, 2019, 155, 344-352.	5.4	11
842	Highly Efficient Thermo- and Sunlight-Driven Energy Storage for Thermo-Electric Energy Harvesting Using Sustainable Nanocellulose-Derived Carbon Aerogels Embedded Phase Change Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 17523-17534.	3.2	60
843	Assembling reduced graphene oxide hydrogel with controlled porous structures using cationic and anionic surfactants. Nanotechnology, 2019, 30, 505602.	1.3	5
844	Carbon Nanotube/Chitosan-Based Elastic Carbon Aerogel for Pressure Sensing. Industrial & Sensing Chemistry Research, 2019, 58, 17768-17775.	1.8	43
845	Magnetic superabsorbents based on nanocellulose aerobeads for selective removal of oils and organic solvents. Materials and Design, 2019, 183, 108115.	3.3	37
846	Development of janus polymer/carbon nanotubes hybrid membrane for oil-water separation. Materials Today: Proceedings, 2019, 7, 655-660.	0.9	4
847	Complex Aerogels Generated from Nano-Polysaccharides and Its Derivatives for Oil–Water Separation. Polymers, 2019, 11, 1593.	2.0	27
848	3D Bombax-structured carbon nanotube sponge coupling with Ag3PO4 for tetracycline degradation under ultrasound and visible light irradiation. Science of the Total Environment, 2019, 695, 133694.	3.9	50

#	Article	IF	CITATIONS
849	Synthesis and applications of three-dimensional graphene network structures. Materials Today Nano, 2019, 5, 100027.	2.3	60
850	Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. Journal of Materials Chemistry A, 2019, 7, 2981-2992.	5.2	90
851	Green preparation of nonflammable carbonized asphalt-melamine sponges as recyclable oil absorbents. Materials Chemistry and Physics, 2019, 226, 235-243.	2.0	9
852	From Scrap to Functional Materials: Exploring Green and Sustainable Chemistry Approach in the Undergraduate Laboratory. Journal of Chemical Education, 2019, 96, 535-539.	1.1	8
853	Functionalization of Commercial Sand Core Funnels as Hydrophobic Materials with Novel Physicochemical Properties. ACS Applied Materials & Emp; Interfaces, 2019, 11, 7510-7521.	4.0	8
854	Carbonâ€Nanomaterialâ€Based Flexible Batteries for Wearable Electronics. Advanced Materials, 2019, 31, e1800716.	11.1	228
855	Multifunctional C/SiO2/SiC-based aerogels and composites for thermal insulators and electromagnetic interference shielding. Journal of Sol-Gel Science and Technology, 2019, 89, 623-633.	1.1	18
856	In-situ growth of polypyrrole onto bamboo cellulose-derived compressible carbon aerogels for high performance supercapacitors. Electrochimica Acta, 2019, 301, 55-62.	2.6	71
857	Superhydrophobic and superoleophilic carbon nanofiber grafted polyurethane for oil-water separation. Chemical Engineering Research and Design, 2019, 123, 327-334.	2.7	56
858	Ultralight, superelastic and bendable lashing-structured nanofibrous aerogels for effective sound absorption. Nanoscale, 2019, 11, 2289-2298.	2.8	70
859	An Extreme Case of Swelling of Mostly cis-Polydicyclopentadiene by Selective Solvent Absorption—Application in Decontamination and Environmental Remediation. ACS Applied Polymer Materials, 2019, 1, 1648-1659.	2.0	14
860	Carbon Aerogels for Environmental Cleanâ€Up. European Journal of Inorganic Chemistry, 2019, 2019, 3126-3141.	1.0	52
861	Few-walled carbon nanotube-enhanced activated carbon supercapacitor performance in organic electrolyte at 4 V. RSC Advances, 2019, 9, 18863-18867.	1.7	8
862	Carbon Soot/n–carboxylic Acids Composites As Formâ€stable Phase Change Materials For Thermal Energy Storage. ChemistrySelect, 2019, 4, 7108-7115.	0.7	3
863	Fabrication of coal tar pitch–derived reticulated carbon foam as oxidation-resistant thermal insulation. Journal of Analytical and Applied Pyrolysis, 2019, 141, 104643.	2.6	17
864	Hierarchical superhydrophobic surfaces for oil–water separation via a gradient of ammonia content controlling of dopamine oxidative selfâ€polymerization. Journal of Applied Polymer Science, 2019, 136, 48044.	1.3	23
865	Ultralight, robustly compressible and super-hydrophobic biomass-decorated carbonaceous melamine sponge for oil/water separation with high oil retention. Applied Surface Science, 2019, 489, 922-929.	3.1	57
866	Biomimetic Carbon Tube Aerogel Enables Super-Elasticity and Thermal Insulation. CheM, 2019, 5, 1871-1882.	5.8	136

#	Article	IF	CITATIONS
867	Cycloparaphenylene crystals: Packed carbon nanorings for energy absorption and thermal insulation. Computational Materials Science, 2019, 168, 96-103.	1.4	9
868	Highly Porous, Hydrophobic, and Compressible Cellulose Nanocrystals/Poly(vinyl alcohol) Aerogels as Recyclable Absorbents for Oil–Water Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 11118-11128.	3.2	136
869	Compressive Alginate Sponge Derived from Seaweed Biomass Resources for Methylene Blue Removal from Wastewater. Polymers, 2019, 11, 961.	2.0	21
870	Novel hydrophobic macroporous polypropylene monoliths for efficient separation of hydrocarbons. Composites Part B: Engineering, 2019, 173, 106805.	5.9	15
871	Lightweight, Superelastic Yet Thermoconductive Boron Nitride Nanocomposite Aerogel for Thermal Energy Regulation. ACS Nano, 2019, 13, 7860-7870.	7.3	143
872	Self-floating aerogel composed of carbon nanotubes and ultralong hydroxyapatite nanowires for highly efficient solar energy-assisted water purification. Carbon, 2019, 150, 233-243.	5.4	85
873	EcoFlex Sponge with Ultrahigh Oil Absorption Capacity. ACS Applied Materials & Samp; Interfaces, 2019, 11, 20037-20044.	4.0	26
874	Robust and Thermally Stable Butterfly-Like Co(OH) < sub>2 < /sub>/Hexadecyltrimethoxysilane Superhydrophobic Mesh Filters Prepared by Electrodeposition for Highly Efficient Oil/Water Separation. Industrial & Separation. I	1.8	14
875	Effect of pyrolysis temperature on compression and thermal properties of melamine-derived carbon foam. Journal of Analytical and Applied Pyrolysis, 2019, 142, 104619.	2.6	21
876	Multifunctional nanohybrid material from discarded razor blades as cost-effective supercapacitor electrodes and oil-spill cleaners. Applied Surface Science, 2019, 487, 109-115.	3.1	10
877	A review of femtosecond laser-structured superhydrophobic or underwater superoleophobic porous surfaces/materials for efficient oil/water separation. RSC Advances, 2019, 9, 12470-12495.	1.7	89
878	Optimization of pyrolysis process of porous carbon foam by orthogonal test design and evaluation of its mechanical property. Materials Research Express, 2019, 6, 075601.	0.8	4
879	One-step synthesis of a steel-polymer wool for oil-water separation and absorption. Npj Clean Water, 2019, 2, .	3.1	17
880	Lightweight, Flexible, Thermally-Stable, and Thermally-Insulating Aerogels Derived from Cotton Nanofibrillated Cellulose. ACS Sustainable Chemistry and Engineering, 2019, 7, 9202-9210.	3.2	52
881	Underâ€Oil Superhydrophilic Poly(vinyl alcohol)/Silica Hybrid Nanofibrous Aerogel for Gravityâ€Driven Separation of Surfactantâ€Stabilized Waterâ€inâ€Oil Emulsions. Macromolecular Materials and Engineering, 2019, 304, 1900125.	1.7	23
882	Thermal conductivity enhancement of carbon@ carbon nanotube arrays and bonded carbon nanotube network. Materials Research Express, 2019, 6, 085616.	0.8	6
883	A highly porous solvent free PVDF/expanded graphite foam for oil/water separation. Chemical Engineering Journal, 2019, 372, 1174-1182.	6.6	52
884	Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption. Environment International, 2019, 128, 37-45.	4.8	68

#	Article	IF	Citations
885	Electrically conductive and elastoplastic carbon nanohybrid preform reinforced by physical cross-linking. Soft Materials, 2019, 17, 359-367.	0.8	1
886	Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation. Renewable and Sustainable Energy Reviews, 2019, 109, 578-605.	8.2	120
887	Superhydrophobic and superoleophilic graphene aerogel for adsorption of oil pollutants from water. RSC Advances, 2019, 9, 8569-8574.	1.7	44
888	Highly Dispersed Catalytic Co ₃ S ₄ among a Hierarchical Carbon Nanostructure for High-Rate and Long-Life Lithium–Sulfur Batteries. ACS Nano, 2019, 13, 3982-3991.	7.3	198
889	A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors. Journal of Materials Chemistry A, 2019, 7, 8092-8100.	5.2	146
890	Facile synthesis of oil adsorbent carbon microtubes by pyrolysis of plant tissues. Journal of Materials Science, 2019, 54, 9352-9361.	1.7	12
891	Advances in polymer-anchored carbon nanotube foam: a review. Polymer-Plastics Technology and Materials, 2019, 58, 1965-1978.	0.6	14
892	Stress Controllability in Thermal and Electrical Conductivity of 3D Elastic Graphene rosslinked Carbon Nanotube Sponge/Polyimide Nanocomposite. Advanced Functional Materials, 2019, 29, 1901383.	7.8	187
893	CNT sponges with outstanding absorption capacity and electrical properties: Impact of the CVD parameters on the product structure. Ceramics International, 2019, 45, 13761-13771.	2.3	10
894	Superelastic Hard Carbon Nanofiber Aerogels. Advanced Materials, 2019, 31, e1900651.	11.1	147
895	Beetle-inspired wettable materials: from fabrications to applications. Materials Today Nano, 2019, 6, 100034.	2.3	36
896	A superhydrophobic and elastic melamine sponge for oil/water separation. New Journal of Chemistry, 2019, 43, 6343-6349.	1.4	45
897	Novel nonlinear coarse-grained potentials of carbon nanotubes. Journal of the Mechanics and Physics of Solids, 2019, 128, 79-104.	2.3	37
898	Reticulate Dualâ€Nanowire Aerogel for Multifunctional Applications: a Highâ€Performance Strain Sensor and a High Areal Capacity Rechargeable Anode. Advanced Functional Materials, 2019, 29, 1807467.	7.8	40
899	Continuous carbon nanotube composite fibers for flexible aqueous lithium-ion batteries. Sustainable Materials and Technologies, 2019, 20, e00096.	1.7	16
900	Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale, 2019, 11, 4653-4682.	2.8	161
901	Nanocarbon and its composites for water purification. , 2019, , 711-731.		11
902	Nitrogen-doped carbon fiber sponges by using different nitrogen precursors: synthesis, characterization, and electrochemical activity. Materials Today Chemistry, 2019, 14, 100200.	1.7	3

#	Article	IF	Citations
903	A polyamide 6–organic montmorillonite composite sponge by large-scale solution foaming as a reusable and efficient oil and organic pollutant sorbent. Soft Matter, 2019, 15, 9066-9075.	1.2	10
904	pH-sensitive organic diimide materials-based superhydrophobic surface for oil-water separation applications. Materials Research Express, 2019, 6, 125112.	0.8	10
905	A fabrication of three-dimensional multi-assembling platform based on polyimide matrix. Polymer, 2019, 183, 121833.	1.8	2
906	Three-Dimensional Monolithic Organic Battery Electrodes. ACS Nano, 2019, 13, 14357-14367.	7.3	22
907	Dual-Stimuli Responsive Carbon Nanotube Sponge-PDMS Amphibious Actuator. Nanomaterials, 2019, 9, 1704.	1.9	12
908	Waste spunlaced facial puff derived monolithic flexible carbon framework (WCF): an ultralow-cost, recyclable and eco-friendly sorbent for oils and organic solvents. RSC Advances, 2019, 9, 31255-31263.	1.7	6
909	Macroporous monoliths with pH-induced switchable wettability for recyclable oil separation and recovery. Journal of Colloid and Interface Science, 2019, 534, 183-194.	5.0	37
910	Recent progress and future prospects of oil-absorbing materials. Chinese Journal of Chemical Engineering, 2019, 27, 1282-1295.	1.7	79
911	Superhydrophobic Metal–Organic Framework Membrane with Self-Repairing for High-Efficiency Oil/Water Emulsion Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 2709-2717.	3.2	64
912	A stable eco-friendly superhydrophobic/superoleophilic copper mesh fabricated by one-step immersion for efficient oil/water separation. Surface and Coatings Technology, 2019, 359, 108-116.	2.2	28
913	Bioâ€Based Polybenzoxazine Modified Melamine Sponges for Selective Absorption of Organic Solvent in Water. Advanced Sustainable Systems, 2019, 3, 1800126.	2.7	24
914	A general aerosol-assisted biosynthesis of functional bulk nanocomposites. National Science Review, 2019, 6, 64-73.	4.6	44
915	Lightweight, three-dimensional carbon Nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon, 2019, 144, 433-439.	5.4	153
916	Plant polyphenol-inspired nano-engineering topological and chemical structures of commercial sponge surface for oils/organic solvents clean-up and recovery. Chemosphere, 2019, 218, 559-568.	4.2	20
917	Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come?. Carbon, 2019, 143, 430-446.	5.4	135
918	Structurally Controlled Cellular Architectures for Highâ€Performance Ultra‣ightweight Materials. Advanced Materials, 2019, 31, e1803670.	11.1	79
919	Mechanochemical robust, magnetic-driven, superhydrophobic 3D porous materials for contaminated oil recovery. Journal of Colloid and Interface Science, 2019, 538, 25-33.	5.0	37
920	Stress-sensitive thermally conductive elastic nanocomposite based on interconnected graphite-welded carbon nanotube sponges. Carbon, 2019, 145, 378-388.	5.4	60

#	Article	IF	CITATIONS
921	Novel All-Natural Material for Oil/Water Separation. Industrial & Engineering Chemistry Research, 2019, 58, 1924-1931.	1.8	41
922	Highly Efficient Adsorption of Oils and Pollutants by Porous Ultrathin Oxygen-Modified BCN Nanosheets. ACS Sustainable Chemistry and Engineering, 2019, 7, 3234-3242.	3.2	14
923	Cellulose-Based Absorbents for Oil Contaminant Removal. Polymers and Polymeric Composites, 2019, , 951-977.	0.6	1
924	Student Zone: Overview, Training, Practices, and Exercises. , 2019, , 665-766.		0
925	Magnetically responsive multi-wall carbon nanotubes as recyclable demulsifier for oil removal from crude oil-in-water emulsion with different pH levels. Carbon, 2019, 145, 229-239.	5.4	67
926	Durable Superhydrophobic/Superoleophilic Graphene-Based Foam for High-Efficiency Oil Spill Cleanups and Recovery. Environmental Science & Environmenta	4.6	85
927	Electrospun Fibrous Membranes with Dual-Scaled Porous Structure: Super Hydrophobicity, Super Lipophilicity, Excellent Water Adhesion, and Anti-Icing for Highly Efficient Oil Adsorption/Separation. ACS Applied Materials & Diterfaces, 2019, 11, 5073-5083.	4.0	111
928	Photocatalytic and Filtration performance study of TiO2/CNTs-Filter for oil particle. Chemical Engineering Research and Design, 2019, 123, 72-78.	2.7	10
929	Atomic layer deposition (ALD) of subnanometer inorganic layers on natural cotton to enhance oil sorption performance in marine environments. Journal of Materials Research, 2019, 34, 563-570.	1.2	18
930	Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Materials, 2019, 20, 401-409.	9.5	192
931	A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. Journal of Materials Science, 2019, 54, 1036-1076.	1.7	210
932	Synthesis of Carbon Nanotube-Cotton Superfiber Materials. , 2019, , 61-76.		8
933	Storage of Mechanical Energy Based on Carbon Nanotubes with High Energy Density and Power Density. Advanced Materials, 2019, 31, e1800680.	11.1	46
934	Processing, growth mechanism and thermodynamic calculations of carbon foam with a hollow tetrapodal morphology – Aerographite. Applied Surface Science, 2019, 470, 535-542.	3.1	7
935	High temperature quasistatic and dynamic mechanical behavior of interconnected 3D carbon nanotube structures. Carbon, 2019, 142, 291-299.	5.4	7
936	Evaporative characteristics of sessile nanofluid droplet on microâ€structured heated surface. Electrophoresis, 2019, 40, 845-850.	1.3	6
937	Three-dimensional carbon foam nanocomposites for thermal energy storage. Solar Energy Materials and Solar Cells, 2019, 191, 297-305.	3.0	35
938	Ultralight, Superelastic, and Fatigue-Resistant Graphene Aerogel Templated by Graphene Oxide Liquid Crystal Stabilized Air Bubbles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1303-1310.	4.0	68

#	Article	IF	CITATIONS
939	A carbon nanotubes composite filter for removal of oil particles. Materials Research Express, 2019, 6, 025024.	0.8	5
940	Polarimetric Vis-NIR photodetector based on self-aligned single-walled carbon nanotubes. Carbon, 2019, 143, 844-850.	5.4	18
941	Tuning oxygen clusters on graphene oxide to synthesize graphene aerogels with crumpled nanosheets for effective removal of organic pollutants. Carbon, 2019, 143, 897-907.	5.4	51
942	Three-dimensional \hat{l} ±-Fe2O3/amino-functionalization carbon nanotube sponge for adsorption and oxidative removal of tetrabromobisphenol A. Separation and Purification Technology, 2019, 211, 359-367.	3.9	36
943	Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon, 2019, 141, 400-416.	5.4	268
944	Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosensors and Bioelectronics, 2019, 124-125, 40-52.	5.3	98
945	Fabrication of a robust superhydrophobic polyurethane sponge for oil–water separation. Surface Engineering, 2019, 35, 403-410.	1.1	19
946	Ultrafastly Interweaving Graphdiyne Nanochain on Arbitrary Substrates and Its Performance as a Supercapacitor Electrode. ACS Applied Materials & Supercapacitor Electrode. ACS Applied Materials & Supercapacitor Electrode.	4.0	58
947	Graphdiyne Sponge for Direct Collection of Oils from Water. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2591-2598.	4.0	85
948	Magnetically actuated graphene coated polyurethane foam as potential sorbent for oils and organics. Arabian Journal of Chemistry, 2020, 13, 1752-1762.	2.3	30
949	High tough and highly porous graphene/carbon nanotubes hybrid beads enhanced by carbonized polyacrylonitrile for efficient dyes adsorption. Microporous and Mesoporous Materials, 2020, 292, 109716.	2.2	38
950	Study on oil-water separation of selective-wettability meshes with different Micro/Nano structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 124026.	2.3	5
951	Superelastic, fatigue resistant and heat insulated carbon nanofiber aerogels for piezoresistive stress sensors. Ceramics International, 2020, 46, 2122-2127.	2.3	27
952	Constructing hydrothermal carbonization coatings on carbon fibers with controllable thickness for achieving tunable sorption of dyes and oils via a simple heat-treated route. Journal of Colloid and Interface Science, 2020, 559, 263-272.	5.0	23
953	Porous polydivinylbenzene (PDVB) as an efficient adsorbent for hydrocarbons: Effect of porogens on adsorption capacity. Chemical Engineering Journal, 2020, 380, 122481.	6.6	33
954	Ultralight three-dimensional, carbon-based nanocomposites for thermal energy storage. Journal of Materials Science and Technology, 2020, 36, 70-78.	5.6	23
955	Engineering Lignin Nanoparticles Deposition on Melamine Sponge Skeleton for Absorbent and Flame Retardant Materials. Waste and Biomass Valorization, 2020, 11, 4561-4569.	1.8	14
956	Preparation, thermal and mechanical properties of poly (etherâ€imide) composite reinforced with carbon nanotube buckypaper. Journal of Applied Polymer Science, 2020, 137, 48330.	1.3	9

#	Article	IF	CITATIONS
957	Carbon nanotube: Controlled synthesis determines its future. Science China Materials, 2020, 63, 16-34.	3.5	16
958	Efficient oxidation and rational reduction of long carbon nanotubes for multifunctional superhydrophobic surfaces. Carbon, 2020, 157, 649-655.	5.4	12
959	Preparation and oil–water separation of 3D kapok fiberâ€reduced graphene oxide aerogel. Journal of Chemical Technology and Biotechnology, 2020, 95, 639-648.	1.6	13
960	Carbon nanotube sponges as an enrichment material for aromatic volatile organic compounds. Journal of Chromatography A, 2020, 1617, 460840.	1.8	8
961	Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy Storage Materials, 2020, 26, 129-137.	9.5	124
962	Carbon Microtube Aerogel Derived from Kapok Fiber: An Efficient and Recyclable Sorbent for Oils and Organic Solvents. ACS Nano, 2020, 14, 595-602.	7.3	104
963	Amorphous CoMoS4 Nanostructure for Photocatalytic H2 Generation, Nitrophenol Reduction, and Methylene Blue Adsorption. ACS Applied Nano Materials, 2020, 3, 68-76.	2.4	15
964	Ultralight and highly compressible coal oxide-modified graphene aerogels for organic solvent absorption and light-to-heat conversion. New Journal of Chemistry, 2020, 44, 2228-2235.	1.4	10
965	Largeâ€Scale Synthesis of MOFâ€Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents. Angewandte Chemie, 2020, 132, 2082-2086.	1.6	70
966	Largeâ€Scale Synthesis of MOFâ€Derived Superporous Carbon Aerogels with Extraordinary Adsorption Capacity for Organic Solvents. Angewandte Chemie - International Edition, 2020, 59, 2066-2070.	7.2	191
967	Stretchable Supercapacitors as Emergent Energy Storage Units for Health Monitoring Bioelectronics. Advanced Energy Materials, 2020, 10, 1902769.	10.2	93
968	Lightweight and stiff carbon foams derived from rigid thermosetting polyimide foam with superior electromagnetic interference shielding performance. Carbon, 2020, 158, 45-54.	5.4	139
969	Ultralight, highly elastic and bioinspired capillary-driven graphene aerogels for highly efficient organic pollutants absorption. Applied Surface Science, 2020, 509, 144818.	3.1	34
970	Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents. Journal of Hazardous Materials, 2020, 388, 121804.	6.5	133
971	Temperatureâ€Invariant Superelastic and Fatigue Resistant Carbon Nanofiber Aerogels. Advanced Materials, 2020, 32, e1904331.	11.1	92
972	An ultralight, supercompressible, superhydrophobic and multifunctional carbon aerogel with a specially designed structure. Carbon, 2020, 158, 137-145.	5.4	67
973	Bitumen and asphalt concrete modified by nanometer-sized particles: Basic concepts, the state of the art and future perspectives of the nanoscale approach. Advances in Colloid and Interface Science, 2020, 285, 102283.	7.0	47
974	Tailored viscoelasticity of a polymer cellular structure through nanoscale entanglement of carbon nanotubes. Nanoscale Advances, 2020, 2, 5375-5383.	2.2	4

#	Article	IF	Citations
975	Application of Sorbents for Oil Spill Cleanup Focusing on Natural-Based Modified Materials: A Review. Molecules, 2020, 25, 4522.	1.7	65
976	Spatial Effects between Two 3D Selfâ€Supported Carbonâ€Nanotubeâ€Based Skeleton as Binderâ€Free Cathodes for Lithiumâ€Sulfur Batteries. ChemistrySelect, 2020, 5, 11383-11390.	0.7	4
977	Hard Carbon Nanotube Sponges for Highly Efficient Cooling <i>via</i> Moisture Absorption–Desorption Process. ACS Nano, 2020, 14, 14091-14099.	7.3	31
978	Molecular to Macroscale Energy Absorption Mechanisms in Biological Body Armour Illuminated by Scanning X-ray Diffraction with In Situ Compression. ACS Nano, 2020, 14, 16535-16546.	7.3	8
979	Three-dimensional interconnected networks for thermally conductive polymer composites: Design, preparation, properties, and mechanisms. Materials Science and Engineering Reports, 2020, 142, 100580.	14.8	261
980	Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance. Materials Today Energy, 2020, 18, 100548.	2.5	56
981	Nanocable with thick active intermediate layer for stable and high-areal-capacity sodium storage. Nano Energy, 2020, 78, 105265.	8.2	12
982	Linking Renewable Cellulose Nanocrystal into Lightweight and Highly Elastic Carbon Aerogel. ACS Sustainable Chemistry and Engineering, 2020, 8, 11921-11929.	3.2	33
983	A rapid and simple method for the removal of dyes and organophosphorus pesticides from water and soil samples using deep eutectic solvent embedded sponge. Chemosphere, 2020, 260, 127590.	4.2	35
984	Developing thermal regulating and electromagnetic shielding textiles using ultra-thin carbon nanotube films. Composites Communications, 2020, 21, 100409.	3.3	14
985	Robust, amphiphobic and super-buoyant CNT foams promising for self-floating functional platforms. Carbon, 2020, 168, 439-447.	5.4	12
986	Hard to Soft: Biogenic Absorbent Sponge-like Material from Waste Mussel Shells. Matter, 2020, 3, 2029-2041.	5.0	15
988	Multifunctional paraffin wax/carbon nanotube sponge composites with simultaneous high-efficient thermal management and electromagnetic interference shielding efficiencies for electronic devices. Composites Part B: Engineering, 2020, 199, 108308.	5.9	65
989	Recent Progress on the Development of Superhydrophobic and Superoleophilic Meshes for Oil and Water Separation: A Review. ACS Symposium Series, 2020, , 175-196.	0.5	5
990	Reusable Graphitic Carbon Nitride Nanosheet-Based Aerogels as Sorbents for Oils and Organic Solvents. ACS Applied Nano Materials, 2020, 3, 8176-8181.	2.4	9
991	Facile Preparation of Hydrophobic Melamine Sponges using Naturally Derived Urushiol for Efficient Oil/Water Separation. ACS Applied Polymer Materials, 2020, 2, 3781-3788.	2.0	29
992	Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nature Communications, 2020, 11, 3732.	5.8	172
993	A Photoactuator Based on Stiffness-Variable Carbon Nanotube Nanocomposite Yarn. ACS Applied Materials & Materials	4.0	18

#	Article	IF	CITATIONS
994	Core–Shell FeSe ₂ /C Nanostructures Embedded in a Carbon Framework as a Free Standing Anode for a Sodium Ion Battery. Small, 2020, 16, e2002200.	5.2	72
995	Cornstalk-derived macroporous carbon materials with enhanced microwave absorption. Journal of Materials Science: Materials in Electronics, 2021, 32, 25758-25768.	1.1	13
996	Dislocationâ€Strained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e2006034.	11.1	148
998	Superlyophilic Shape Memory Porous Sponge for Smart Liquid Permeation. ACS Nano, 2020, 14, 14047-14056.	7.3	19
1000	Biomass-derived nitrogen and sulfur co-doped carbon microtubes for the oxygen reduction reaction. Materials Chemistry Frontiers, 2020, 4, 3251-3257.	3.2	18
1001	Bacterial Celluloseâ€"Graphene Based Nanocomposites. International Journal of Molecular Sciences, 2020, 21, 6532.	1.8	31
1002	Glass transition behaviour of thin polymer films coated on the 3D networks of porous CNT sponges. Physical Chemistry Chemical Physics, 2020, 22, 21297-21306.	1.3	1
1003	Fabrication of diverse carbon forms and their reversed applications in hexane/water separation. Water Science and Technology, 2020, 82, 1296-1303.	1.2	3
1004	2D and 3D Bulk Materials for Environmental Remediation: Air Filtration and Oil/Water Separation. Materials, 2020, 13, 5714.	1.3	25
1005	Materials and Technologies for the Tertiary Treatment of Produced Water Contaminated by Oil Impurities through Nonfibrous Deep-Bed Media: A Review. Water (Switzerland), 2020, 12, 3419.	1.2	13
1006	Synthesis and Characterization of Graphite Composite Foams for Oil Spill Recovery Application. Journal of Composites Science, 2020, 4, 154.	1.4	3
1007	Synergistic effect of Zr/Cl dual-ions mediated pyrrole polymerization and development of superhydrophobic melamine sponges for oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124877.	2.3	12
1008	OHM Sponge: A Versatile, Efficient, and Ecofriendly Environmental Remediation Platform. Industrial & Samp; Engineering Chemistry Research, 2020, 59, 10945-10954.	1.8	18
1009	Oneâ€Step Preparation of Highly Durable Superhydrophobic Carbon Nanothorn Arrays. Small, 2020, 16, e1907013.	5.2	19
1010	Advanced aerogels from waste tire fibers for oil spill-cleaning applications. Journal of Environmental Chemical Engineering, 2020, 8, 104016.	3.3	39
1011	Effect of structure: A new insight into nanoparticle assemblies from inanimate to animate. Science Advances, 2020, 6, eaba1321.	4.7	65
1012	Advanced thermal properties of carbon-based aerogels. , 2020, , 221-269.		4
1013	A three-dimensional porous MoS ₂ –PVP aerogel as a highly efficient and recyclable sorbent for oils and organic solvents. Materials Advances, 2020, 1, 760-766.	2.6	9

#	Article	IF	Citations
1014	A facile route to prepare nitrogen-doped carbon microspheres/graphene aerogel with high compressibility and superior capacitive property. Materials Today Communications, 2020, 24, 101125.	0.9	3
1015	A carbon nanotube approach for efficient thermally insulating material with high mechanical stability and fire-retardancy. RSC Advances, 2020, 10, 21772-21780.	1.7	4
1016	Antifouling slippery liquid-infused membrane for separation of water-in-oil emulsions. Journal of Membrane Science, 2020, 611, 118289.	4.1	43
1017	Elastic nanocellulose/graphene aerogel with excellent shape retention and oil absorption selectivity. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 261-269.	2.7	38
1018	Natural sponge-like wood-derived aerogel for solar-assisted adsorption and recovery of high-viscous crude oil. Chemical Engineering Journal, 2020, 400, 125865.	6.6	96
1019	Hydrophobic cellulose aerogel from waste napkin paper for oil sorption applications. Nordic Pulp and Paper Research Journal, 2020, 35, 137-147.	0.3	22
1020	Lightweight, hydrophobic and recyclable carbon foam derived from lignin–resorcinol–glyoxal resin for oil and solvent spill capture. Journal of Materials Research and Technology, 2020, 9, 4655-4664.	2.6	34
1021	Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science, 2020, 113, 100665.	16.0	61
1022	A novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel. Journal of Hazardous Materials, 2020, 392, 122499.	6.5	92
1023	Oxygen-Vacancy-Rich BiO _{2–<i>x</i>} /Ag ₃ PO ₄ /CNT Composite for Polycyclic Aromatic Hydrocarbons (PAHs) Removal via Visible and Near-Infrared Light Irradiation. Industrial & Description of the Parameter Research, 2020, 59, 5725-5735.	1.8	37
1024	Construction of Carbon Nanotube Sponges to Have High Optical Antireflection and Mechanical Stability. ACS Applied Materials & Stability.	4.0	21
1025	Carbon nanotube-based electrodes for flexible supercapacitors. Nano Research, 2020, 13, 1825-1841.	5.8	142
1026	A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO3)0.5OH·0.11H2O Nanoneedles for Oil–Water Separation. ACS Applied Nano Materials, 2020, 3, 3779-3786.	2.4	8
1027	Large-scale Synthesis of Carbon Fiber Sponges by Chemical Vapor Deposition. Chemistry Letters, 2020, 49, 542-545.	0.7	2
1028	Carbon Nanofiber Aerogel/Magnetic Core–Shell Nanoparticle Composites as Recyclable Oil Sorbents. ACS Applied Nano Materials, 2020, 3, 3939-3950.	2.4	44
1029	Recent advances in carbon nanotube sponge–based sorption technologies for mitigation of marine oil spills. Journal of Colloid and Interface Science, 2020, 570, 411-422.	5.0	69
1030	Ultrahigh-Sensitive Finlike Double-Sided E-Skin for Force Direction Detection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14136-14144.	4.0	44
1031	Phase Change Materials for Electro-Thermal Conversion and Storage: From Fundamental Understanding to Engineering Design. IScience, 2020, 23, 101208.	1.9	55

#	Article	IF	CITATIONS
1032	Structural reconstruction strategies for the design of cellulose nanomaterials and aligned wood cellulose-based functional materials – A review. Carbohydrate Polymers, 2020, 247, 116722.	5.1	29
1033	Multilayered nickel oxide/carbon nanotube composite paper electrodes for asymmetric supercapacitors. Electrochimica Acta, 2020, 354, 136744.	2.6	40
1034	Rational and wide-range tuning of CNT aerogel conductors with multifunctionalities. Nanoscale, 2020, 12, 13771-13780.	2.8	5
1035	Photoluminescent, Ferromagnetic, and Hydrophobic Sponges for Oil–Water Separation. ACS Omega, 2020, 5, 15077-15082.	1.6	13
1036	Recycling waste epoxy resin as hydrophobic coating of melamine foam for high-efficiency oil absorption. Applied Surface Science, 2020, 529, 147151.	3.1	44
1037	Facile fabrication of bubbles-enhanced flexible bioaerogels for efficient and recyclable oil adsorption. Chemical Engineering Journal, 2020, 402, 126240.	6.6	45
1038	FeOF/TiO ₂ Hetero-Nanostructures for High-Areal-Capacity Fluoride Cathodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 33803-33809.	4.0	12
1039	MWCNTs polyurethane sponges with enhanced super-hydrophobicity for selective oil–water separation. Surface Engineering, 2020, 36, 651-659.	1.1	24
1040	Furan and Pyran Functional Groups Driven the Surface of Nitrogenâ€Doped Nanofiber Sponges. ChemNanoMat, 2020, 6, 672-684.	1.5	4
1041	Semiâ€Interpenetrating Polymer Network Biomimetic Structure Enables Superelastic and Thermostable Nanofibrous Aerogels for Cascade Filtration of PM _{2.5} . Advanced Functional Materials, 2020, 30, 1910426.	7.8	7 5
1042	Current investigations in theoretical studies of nanostructure–liquid interfaces. Chinese Journal of Physics, 2020, 65, 93-107.	2.0	4
1043	Robust superhydrophobic fluorinated fibrous silica sponge with fire retardancy for selective oil absorption in harsh environment. Separation and Purification Technology, 2020, 241, 116700.	3.9	15
1044	Superhydrophobic Methylated Silica Sol for Effective Oil–Water Separation. Materials, 2020, 13, 842.	1.3	13
1045	Superresilient Hard Carbon Nanofabrics for Sodiumâ€lon Batteries. Small, 2020, 16, e1906883.	5.2	64
1046	Recent developments in forward osmosis membranes using carbon-based nanomaterials. Desalination, 2020, 482, 114375.	4.0	118
1047	Highly Stretchable and Compressible Carbon Nanofiber–Polymer Hydrogel Strain Sensor for Human Motion Detection. Macromolecular Materials and Engineering, 2020, 305, 1900813.	1.7	28
1048	Amphiphilic Super-Wetting Ionic-Liquid-Based Lower Critical Solution Temperature System: Preparation, Characterization, and Excellent Dispersion Performance for Nanostructured Materials. ACS Sustainable Chemistry and Engineering, 2020, 8, 3253-3260.	3.2	4
1049	Assembly and application advancement of organicâ€functionalized grapheneâ€based materials: A review. Journal of Separation Science, 2020, 43, 1544-1557.	1.3	20

#	Article	IF	CITATIONS
1050	Hybrid Metallic Foam with Superior Elasticity, High Electrical Conductivity, and Pressure Sensitivity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6489-6495.	4.0	32
1051	Porous nanosheets-based carbon aerogel derived from sustainable rattan for supercapacitors application. Industrial Crops and Products, 2020, 145, 112100.	2.5	33
1052	Mechanical properties of continuous fiber composites of cubic silicon carbide (3C-SiC) / different types of carbon nanotubes (SWCNTs, RSWCNTs, and MWCNTs): A molecular dynamics simulation. Materials Today Communications, 2020, 23, 100922.	0.9	8
1053	Oil spill modeling: MappingÂtheÂknowledgeÂdomain. Progress in Physical Geography, 2020, 44, 120-136.	1.4	11
1054	Intrinsically microstructured graphene aerogel exhibiting excellent mechanical performance and super-high adsorption capacity. Carbon, 2020, 161, 146-152.	5.4	27
1055	A new strategy to prepare carbon nanotube thin film by the combination of top-down and bottom-up approaches. Carbon, 2020, 161, 563-569.	5.4	19
1056	A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterials, 2020, 10, 186.	1.9	121
1057	A Dual Protection System for Heterostructured 3D CNT/CoSe ₂ /C as High Areal Capacity Anode for Sodium Storage. Advanced Science, 2020, 7, 1902907.	5.6	97
1058	A sustainable strategy for remediation of oily sewage: Clean and safe. Separation and Purification Technology, 2020, 240, 116592.	3.9	26
1059	High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes. Nano Research, 2020, 13, 1044-1052.	5.8	44
1060	Ag nanoparticle-decorated carbon nanotube sponges for removal of methylene blue from aqueous solution. New Journal of Chemistry, 2020, 44, 7096-7104.	1.4	10
1061	Three-dimensional adsorbent with pH induced superhydrophobic and superhydrophilic transformation for oil recycle and adsorbent regeneration. Journal of Colloid and Interface Science, 2020, 575, 231-244.	5.0	34
1062	Carbon-based sponges for oil spill recovery. , 2020, , 155-175.		3
1063	Chloride functionalized carbon nanotube sponge: High charge capacity and high magnetic saturation. Carbon, 2020, 164, 324-336.	5.4	18
1064	The pressing-induced formation of a large-area supramolecular film for oil capture. Materials Chemistry Frontiers, 2020, 4, 1530-1539.	3.2	13
1065	Preparation and characterization of graphene oxide aerogel/gelatin as a hybrid scaffold for application in nerve tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70, 674-683.	1.8	23
1066	Rice straw agri-waste for water pollutant adsorption: Relevant mesoporous super hydrophobic cellulose aerogel. Carbohydrate Polymers, 2021, 251, 117016.	5.1	122
1067	Carbon nanotubes for flexible batteries: recent progress and future perspective. National Science Review, 2021, 8, nwaa261.	4.6	71

#	Article	IF	CITATIONS
1068	Enhancement of wastewater treatment by underwater superelastic fiber-penetrated lamellar monolith. Journal of Hazardous Materials, 2021, 403, 124016.	6.5	68
1069	Fully bio-based, low fire-hazard and superelastic aerogel without hazardous cross-linkers for excellent thermal insulation and oil clean-up absorption. Journal of Hazardous Materials, 2021, 403, 123977.	6. 5	75
1070	Green and scalable separation and purification of carbon materials in molten salt by efficient high-temperature press filtration. Separation and Purification Technology, 2021, 255, 117719.	3.9	9
1071	Nanoengineered highly sensitive and stable soft strain sensor built from cracked carbon nanotube network/composite bilayers. Carbon, 2021, 173, 849-856.	5.4	17
1072	Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Materials Today, 2021, 42, 162-177.	8.3	73
1073	A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel. Materials Chemistry Frontiers, 2021, 5, 804-816.	3.2	36
1074	Robust membranes with tunable functionalities for sustainable oil/water separation. Journal of Molecular Liquids, 2021, 321, 114701.	2.3	30
1075	Superhydrophobic and superoleophilic cuttlebone with an inherent lamellar structure for continuous and effective oil spill cleanup. Chemical Engineering Journal, 2021, 420, 127596.	6.6	13
1076	Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Storage Materials, 2021, 36, 56-76.	9.5	214
1077	Sorption as a rapidly response for oil spill accidents: A material and mechanistic approach. Journal of Hazardous Materials, 2021, 407, 124842.	6.5	64
1078	Pollens derived magnetic porous particles for adsorption of low-density lipoprotein from plasma. Bioactive Materials, 2021, 6, 1555-1562.	8.6	19
1079	Highly efficient and recyclable spongy nanoporous graphene for remediation of organic pollutants. Chemical Engineering Research and Design, 2021, 148, 313-322.	2.7	7
1080	Metal coordination assists fabrication of multifunctional aerogel. Journal of Materials Science and Technology, 2021, 71, 67-74.	5.6	4
1081	A review on the emerging resilient and multifunctional ceramic aerogels. Journal of Materials Science and Technology, 2021, 75, 1-13.	5.6	34
1082	Sustainable aerogels derived from bio-based 2,5-diformylfuran and depolymerization products of lignin. International Journal of Biobased Plastics, 2021, 3, 29-39.	5.6	4
1083	Recent Advances in the Macroscopic Self-Assembly of Inorganic Non-Carbon Nanowires. Advances in Material Chemistry, 2021, 09, 24-37.	0.0	0
1084	Carbon Nanomaterials for Neuronal Tissue Engineering. RSC Nanoscience and Nanotechnology, 2021, , 184-222.	0.2	0
1085	An ultra-broad-range pressure sensor based on a gradient stiffness design. Materials Horizons, 2021, 8, 2260-2272.	6.4	24

#	ARTICLE	IF	CITATIONS
1086	Carbon aerogels: Synthesis, properties, and applications. , 2021, , 739-781.		0
1087	Renewable and robust biomass carbon aerogel derived from deep eutectic solvents modified cellulose nanofiber under a low carbonization temperature for oil-water separation. Separation and Purification Technology, 2021, 254, 117577.	3.9	7 3
1088	Lightweight and Flexible Phenolic Aerogels with Three-Dimensional Foam Reinforcement for Acoustic and Thermal Insulation. Industrial & Engineering Chemistry Research, 2021, 60, 1241-1249.	1.8	28
1089	Green Synthesis of Waterborne Polyurethane for High Damping Capacity. Macromolecular Chemistry and Physics, 2021, 222, 2000457.	1.1	10
1090	Fused sphere carbon monoliths with honeycomb-like porosity from cellulose nanofibers for oil and water separation. RSC Advances, 2021, 11, 2202-2212.	1.7	7
1091	Adsorptive removals of pollutants using aerogels and its composites. , 2021, , 171-199.		0
1092	Heavy metals scavenging using multidentate/multifunctional aerogels and their composites. , 2021, , 275-296.		3
1093	Copper-assisted growth of high-purity carbon nanofiber networks with controllably tunable wettabilities. Journal of Materials Chemistry A, 2021, 9, 22039-22047.	5. 2	6
1094	A comprehensive review on the environmental applications of graphene–carbon nanotube hybrids: recent progress, challenges and prospects. Materials Advances, 2021, 2, 6816-6838.	2.6	7
1095	Anisotropic conductive networks for multidimensional sensing. Materials Horizons, 2021, 8, 2615-2653.	6.4	30
1096	Biosorption. Interface Science and Technology, 2021, , 587-628.	1.6	12
1097	Fabrication of chlorine nitrogen co-doped carbon nanomaterials by an injection catalytic vapor deposition method. Materials Research Express, 2021, 8, 015007.	0.8	4
1098	Degradation and Removal of Petroleum Hydrocarbons from Contaminated Environments Using Nanotechnologies and Nanomaterials., 2021,, 2121-2137.		0
1099	Amphiphilic Janus 3D MoS ₂ /rGO Nanocomposite for Removing Oil from Wastewater. Industrial & Discourse Engineering Chemistry Research, 2021, 60, 1266-1273.	1.8	19
1100	Polycondensation of kraft-lignin toward value-added biomaterials: carbon aerogels. International Journal of Biobased Plastics, 2021, 3, 19-28.	5.6	3
1101	Facile Fabrication of Amphiphilic and Asymmetric Films with Excellent Deformability for Efficient and Stable Adsorption Applications. Macromolecular Materials and Engineering, 2021, 306, 2000738.	1.7	3
1102	Superelastic, Fatigue-Resistant, and Flame-Retardant Spongy Conductor for Human Motion Detection against a Harsh High-Temperature Condition. ACS Applied Materials & Samp; Interfaces, 2021, 13, 7580-7591.	4.0	16
1103	Biomimetic nanoporous aerogels from branched aramid nanofibers combining high heat insulation and compressive strength. SmartMat, 2021, 2, 76-87.	6.4	28

#	Article	IF	CITATIONS
1104	Spider Web-like Flexible Tactile Sensor for Pressure-Strain Simultaneous Detection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 10428-10436.	4.0	37
1105	Modeling oil–water separation with controlled wetting properties. Journal of Chemical Physics, 2021, 154, 104704.	1.2	2
1106	Mechanically Flexible Carbon Aerogel with Wavy Layers and Springboard Elastic Supporting Structure for Selective Oil/Organic Solvent Recovery. ACS Applied Materials & Interfaces, 2021, 13, 15910-15924.	4.0	37
1107	A shape memory porous sponge with tunability in both surface wettability and pore size for smart molecule release. Science China Materials, 2021, 64, 2337-2347.	3.5	7
1108	Highly Selective Adsorption and Desorption of Charged Molecules in Three-Dimensional Networks of Polydopamine-Modified Carbon Nanotube Sponges. Langmuir, 2021, 37, 4523-4531.	1.6	10
1109	Fast water transport reversible CNT/PVA hybrid hydrogels with highly environmental tolerance for multifunctional sport headband. Composites Part B: Engineering, 2021, 211, 108661.	5.9	21
1110	Preparation of 3-D porous PVDF/TPU composite foam with superoleophilic/hydrophobicity for the efficient separation of oils and organics from water. Journal of Materials Science, 2021, 56, 12506-12523.	1.7	13
1111	Facile fabrication of hydrophobic and underwater superoleophilic elastic and mechanical robust graphene/PDMS sponge for oil/water separation. Separation and Purification Technology, 2021, 261, 118273.	3.9	38
1112	Porous and hydrophobic graphene-based core–shell sponges for efficient removal of water contaminants. Nanotechnology, 2021, 32, 265706.	1.3	2
1113	Hierarchical honeycomb graphene aerogels reinforced by carbon nanotubes with multifunctional mechanical and electrical properties. Carbon, 2021, 175, 312-321.	5.4	37
1115	Equilibrium catalyst from a fluidized catalytic cracking unit separated by metal content by using carbon nanotubes and a biphasic system. AICHE Journal, 2021, 67, e17260.	1.8	0
1116	Soft liquid-metal/elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding. Chemical Engineering Journal, 2021, 410, 128288.	6.6	85
1117	Additiveâ€free, robust and superelastic dualâ€network graphene/melamine composite sponge for motion sensing. Journal of Applied Polymer Science, 2021, 138, 50788.	1.3	1
1118	Application-Driven Carbon Nanotube Functional Materials. ACS Nano, 2021, 15, 7946-7974.	7.3	102
1119	Continuous growth of carbon nanotube films: From controllable synthesis to real applications. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106359.	3.8	26
1120	Dual Network Sponge for Compressible Lithiumâ€lon Batteries. Small, 2021, 17, e2100911.	5.2	3
1121	Advanced Switchable Molecules and Materials for Oil Recovery and Oily Waste Cleanup. Advanced Science, 2021, 8, e2004082.	5.6	28
1122	Monolithic carbon xerogels-metal composites for crude oil removal from oil in-saltwater emulsions and subsequent regeneration through oxidation process: Composites synthesis, adsorption studies, and oil decomposition experiments. Microporous and Mesoporous Materials, 2021, 319, 111039.	2.2	11

#	Article	IF	CITATIONS
1123	Carbon Nanotubes and Polydopamine Modified Poly(dimethylsiloxane) Sponges for Efficient Oil–Water Separation. Materials, 2021, 14, 2431.	1.3	13
1124	Polymer supported copper complexes/nanoparticles for treatment of environmental contaminants. Journal of Molecular Liquids, 2021, 330, 115668.	2.3	23
1125	Preparation and adsorption properties of magnetic hydrophobic cellulose aerogels based on refined fibers. Carbohydrate Polymers, 2021, 260, 117790.	5.1	33
1126	Functionalized multi-walled carbon nanotubes for oil spill cleanup from water. Clean Technologies and Environmental Policy, 2022, 24, 519-541.	2.1	20
1127	A flame-retardant post-synthetically functionalized COF sponge as absorbent for spilled oil recovery. Journal of Materials Science, 2021, 56, 13031.	1.7	6
1128	Woodâ€Derived Systems for Sustainable Oil/Water Separation. Advanced Sustainable Systems, 2021, 5, 2100039.	2.7	22
1129	Highly efficient reusable superhydrophobic sponge prepared by a facile, simple and cost effective biomimetic bonding method for oil absorption. Scientific Reports, 2021, 11, 11960.	1.6	24
1130	Biomassâ€Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small, 2021, 17, e2008079.	5.2	105
1131	High-efficiency oil/water absorbent using hydrophobic silane-modified plant fiber sponges. Composites Communications, 2021, 25, 100763.	3.3	21
1132	Promotional effect of metal oxides (MxOyÂ=ÂTiO2, V2O5) on multi-walled carbon nanotubes (MWCNTs) for kerosene removal from contaminated water. Materials Letters, 2021, 292, 129612.	1.3	9
1133	Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today, 2021, 38, 101204.	6.2	142
1134	A comparison of fluoride removal techniques using multi criteria analysis. International Journal of Environmental Analytical Chemistry, 0, , 1-12.	1.8	1
1135	Candle soot particles-modified macroporous monoliths for efficient separation of floating oil/water and stable emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 619, 126492.	2.3	4
1136	Design, fabrication and applications of soft network materials. Materials Today, 2021, 49, 324-350.	8.3	36
1137	High hydrophobic poly(lactic acid) foams impregnating one-step Si–F modified lignin nanoparticles for oil/organic solvents absorption. Composites Communications, 2021, 25, 100730.	3.3	28
1138	Controllable synthesis of Li3VO4/N doped C nanofibers toward high-capacity and high-rate Li-ion storage. Electrochimica Acta, 2021, 384, 138386.	2.6	16
1139	Hotspots, Frontiers, and Emerging Trends of Superabsorbent Polymer Research: A Comprehensive Review. Frontiers in Chemistry, 2021, 9, 688127.	1.8	14
1140	Magnetic-responsive CNT/chitosan composite as stabilizer and adsorbent for organic contaminants and heavy metal removal. Journal of Molecular Liquids, 2021, 334, 116087.	2.3	25

#	Article	IF	CITATIONS
1141	Ultralight hard <scp>carbon nanotubes</scp> nanofiber foam/epoxy nanocomposites for comprehensive microwave absorption performance. Polymer Composites, 2021, 42, 4673-4683.	2.3	8
1142	Fabrication and the mechanical and physical properties of nanocarbon-reinforced light metal matrix composites: A review and future directions. Materials Science & Department of the Materials: Properties, Microstructure and Processing, 2021, 820, 141542.	2.6	48
1143	Advanced Aerogels from Wool Waste Fibers for Oil Spill Cleaning Applications. Journal of Polymers and the Environment, 2022, 30, 681-694.	2.4	17
1144	Emulsion preparation of ultralight TiO2 foams for selective oil absorption. Journal of the European Ceramic Society, 2021, 41, 4349-4354.	2.8	4
1145	Recent advances and challenges of electrode materials for flexible supercapacitors. Coordination Chemistry Reviews, 2021, 438, 213910.	9.5	204
1146	Biomimetic hierarchical porous carbon fibers via block copolymer self-assembly. Microporous and Mesoporous Materials, 2021, 321, 111136.	2.2	3
1147	Biomass-derived, multifunctional and wave-layered carbon aerogels toward wearable pressure sensors, supercapacitors and triboelectric nanogenerators. Nano Energy, 2021, 85, 105973.	8.2	116
1148	Liquid-like adsorbent assembled by CNTs: Serving as renewable CO2 capture materials for indoor air. Journal of Energy Chemistry, 2021, 63, 574-584.	7.1	14
1149	Recent advances in developing cellulosic sorbent materials for oil spill cleanup: A state-of-the-art review. Journal of Cleaner Production, 2021, 311, 127630.	4.6	54
1150	Multifunctional Superelastic Cellulose Nanofibrils Aerogel by Dual Iceâ€Templating Assembly. Advanced Functional Materials, 2021, 31, 2106269.	7.8	138
1151	Nâ€doped carbon nanotube sponges and their excellent lithium storage performances. Nano Select, 0, , .	1.9	4
1152	An overview on carbon nanotubes as innovative absorbent for marine oil spill. IOP Conference Series: Earth and Environmental Science, 2021, 847, 012034.	0.2	2
1153	Highâ€Lithiophilicity Host with Micro/Nanostructured Active Sites based on Wenzel Wetting Model for Dendriteâ€Free Lithium Metal Anodes. Advanced Functional Materials, 2021, 31, 2106676.	7.8	42
1154	An adhesive and self-healable hydrogel with high stretchability and compressibility for human motion detection. Composites Science and Technology, 2021, 213, 108948.	3.8	31
1155	2D gallium molybdenum selenide grown on a hollow carbon nanofibrous aerogel for high-efficiency electroreduction of nitrogen: Optimized basal plane activity via selenium vacancy modulation. Applied Catalysis B: Environmental, 2021, 292, 120175.	10.8	18
1156	Concus Finn Capillary driven fast viscous oil-spills removal by superhydrophobic cruciate polyester fibers. Journal of Hazardous Materials, 2021, 417, 126133.	6.5	31
1157	Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial. Nano Energy, 2021, 87, 106181.	8.2	86
1158	The shape tunable gelatin/carbon nanotube wet-gels for complex three-dimensional cellular structures with high elasticity. Carbon, 2021, 184, 811-820.	5.4	5

#	Article	IF	Citations
1159	Highly efficient and recyclable polyolefin-based magnetic sorbent for oils and organic solvents spill cleanup. Journal of Hazardous Materials, 2021, 419, 126485.	6.5	9
1160	Recent advances of 3D compressible carbon assemblies: A review of synthesis, properties and applications in energy and environment. Journal of Environmental Chemical Engineering, 2021, 9, 106269.	3.3	5
1161	Engineering bacteria for high-performance three-dimensional carbon nanofiber aerogel. Carbon, 2021, 183, 267-276.	5.4	8
1162	Controlling Magnesium Self-Corrosion in Mg–Air Batteries with the Conductive Nanocomposite PANI@3D-FCNT. ACS Omega, 2021, 6, 26640-26645.	1.6	6
1163	Ultralight, compressible, and high-temperature-resistant dual-phase SiC/Si3N4 felt for efficient electromagnetic wave attenuation. Chemical Engineering Journal, 2021, 425, 130727.	6.6	19
1164	Free-standing carbon nanofiber networks. Materials Letters, 2021, 304, 130702.	1.3	0
1165	High-yield production of carbon nanotubes from waste polyethylene and fabrication of graphene-carbon nanotube aerogels with excellent adsorption capacity. Journal of Materials Science and Technology, 2021, 94, 90-98.	5.6	28
1166	In-plane micro-sized energy storage devices: From device fabrication to integration and intelligent designs. Journal of Energy Chemistry, 2021, 63, 25-39.	7.1	12
1167	High content filling, toughness, and conductive performance of thermoplastic polyurethane/carbon nanotubes composites prepared by constructing the compact interface. Composites Communications, 2021, 28, 100948.	3.3	10
1168	Three-dimensional MOF-derived hierarchically porous aerogels activate peroxymonosulfate for efficient organic pollutants removal. Chemical Engineering Journal, 2022, 427, 130830.	6.6	53
1169	Superhydrophobic leached carbon Black/Poly(vinyl) alcohol aerogel for selective removal of oils and organic compounds from water. Chemosphere, 2022, 286, 131520.	4.2	13
1170	One-pot facile fabrication of covalently cross-linked carbon nanotube/PDMS composite foam as a pressure/temperature sensor with high sensitivity and stability. Journal of Materials Chemistry C, 2021, 9, 15337-15345.	2.7	19
1171	One-Step, Large-Scale Blow Spinning to Fabricate Ultralight, Fibrous Sorbents with Ultrahigh Oil Adsorption Capacity. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6631-6641.	4.0	24
1172	Flexible pressure sensors with high pressure sensitivity and low detection limit using a unique honeycomb-designed polyimide/reduced graphene oxide composite aerogel. RSC Advances, 2021, 11, 11760-11770.	1.7	35
1173	Flexible smart nanosensors., 2021, , 145-182.		0
1174	Heteroatoms in graphdiyne for catalytic and energy-related applications. Journal of Materials Chemistry A, 2021, 9, 19298-19316.	5.2	26
1175	Thermal conductivity and thermoelectric properties in 3D macroscopic pure carbon nanotube materials. Nanotechnology Reviews, 2021, 10, 178-186.	2.6	11
1177	Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation. Small, 2016, , n/a-n/a.	5.2	2

#	Article	IF	CITATIONS
1178	Carbon Nanotube in Water Treatment. Carbon Nanostructures, 2017, , 23-54.	0.1	12
1179	Homogeneous silver nanoparticles decorating 3D carbon nanotube sponges as flexible high-performance electromagnetic shielding composite materials. Carbon, 2020, 165, 404-411.	5.4	51
1180	Flexible monolithic phase change material based on carbon nanotubes/chitosan/poly(vinyl alcohol). Chemical Engineering Journal, 2020, 397, 125330.	6.6	92
1181	CHAPTER 3. Superwetting Nanomaterials for Advanced Oil/Water Separation: From Absorbing Nanomaterials to Separation Membranes. RSC Smart Materials, 2016, , 51-90.	0.1	4
1182	Improved wettability and enhanced ionic transport in highly porous CNT sponge. Nanotechnology, 2021, 32, 105709.	1.3	5
1183	Catalyst-Free <i>In Situ</i> Carbon Nanotube Growth in Confined Space <i>via</i> High Temperature Gradient. Research, 2018, 2018, 1793784.	2.8	7
1184	Silicon Nanowire Electrodes for Lithium-Ion Battery Negative Electrodes. , 2013, , 1-68.		2
1185	A Super Energy Mitigation Nanostructure at High Impact Speed Based on Buckyball System. PLoS ONE, 2013, 8, e64697.	1.1	8
1186	Oil spill remedy using bi-axially oriented polymer films. WIT Transactions on Ecology and the Environment, 2014, , .	0.0	4
1187	Advances in Nanotechnology Transition Metal Catalysts in Oxidative Desulfurization (ODS) Processes. Advances in Chemical and Materials Engineering Book Series, 2016, , 180-215.	0.2	2
1188	Sorption behavior of slightly reduced, three-dimensionally macroporous graphene oxides for physical loading of oils and organic solvents. Carbon Letters, 2016, 18, 24-29.	3.3	2
1189	Recent progress in the synthesis and applications of vertically aligned carbon nanotube materials. Nanotechnology Reviews, 2021, 10, 1592-1623.	2.6	14
1190	Extreme Environmental Thermal Shock Induced Dislocationâ€Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction. Advanced Materials, 2022, 34, e2106973.	11.1	68
1191	A simple and green strategy for preparing flexible thermoplastic polyimide foams with exceptional mechanical, thermal-insulating properties, and temperature resistance for high-temperature lightweight composite sandwich structures. Composites Part B: Engineering, 2022, 228, 109405.	5.9	25
1192	Advanced Multifunctional Aqueous Rechargeable Batteries Design: From Materials and Devices to Systems. Advanced Materials, 2022, 34, e2104327.	11.1	78
1193	Direct stamping multifunctional tactile sensor for pressure and temperature sensing. Nano Research, 2022, 15, 3614-3620.	5.8	17
1194	A Novel Self-Photodegradation Drilling Fluids Under Near-Infrared Light Irradiation with Preferable Wellbore Stability. , 2021, , .		1
1197	Lotus Leaf Effect: Micro- and Nanostructures. , 2015, , 1-49.		0

#	Article	IF	CITATIONS
1198	In-situ compression and electrochemical studies of graphene foam. Veruscript Functional Nanomaterials, 2018, 2, 1-10.	0.2	0
1199	Controlling porosity and density of nanocellulose aerogels for superhydrophobic light materials. Tappi Journal, 2018, 17, 145-153.	0.2	1
1200	Super square carbon nanotube networks: mechanical properties and electric conductivity. Letters on Materials, 2019, 9, 136-141.	0.2	2
1201	Superhydrophobic Interfaces for High-Performance/Advanced Application. Materials Horizons, 2019, , 411-457.	0.3	1
1202	Increased-Value Oxide Powders for Polymeric Fibrous Matrices with Tailored Surfaces for Clothing Wear Comfort: A Review., 0, , .		0
1203	Synthesis and Preparation of Hydrophobic CNTs-Coated Melamine Formaldehyde Foam by Green and Simple Method for Efficient Oil/Water Separation. Chemistry and Chemical Technology, 2020, 14, 531-537.	0.2	2
1204	Tribological properties of vertically aligned carbon nanotube arrays and carbon nanotube sponge. AIP Advances, 2020, 10, 125209.	0.6	1
1205	A Compact Volume-Expandable Sorbent for Oil and Solvent Capture. ACS Applied Polymer Materials, 2021, 3, 494-503.	2.0	5
1206	3D-printable biopolymer-based materials for water treatment: A review. Chemical Engineering Journal, 2022, 430, 132964.	6.6	29
1207	Controlling oil/water separation using oleophillic and hydrophobic coatings based on plasma technology. Materials Research Express, 2020, 7, 036411.	0.8	4
1208	Macroporous monoliths with tailorable hydrophobicity for oil–water separation. Materials Today: Proceedings, 2021, 50, A11-A11.	0.9	0
1209	A Role for Newly Developed Sorbents in Remediating Largeâ€Scale Oil Spills: Reviewing Recent Advances and Beyond. Advanced Sustainable Systems, 2022, 6, 2100211.	2.7	15
1210	Synthesis of Carbon Nanotubes by Floating Catalyst Chemical Vapor Deposition and Their Applications. Advanced Functional Materials, 2022, 32, 2108541.	7.8	63
1212	Magnet-assisted selective oil removal from water in non-open channel and continuous oil spills clean-up. Separation and Purification Technology, 2022, 282, 120119.	3.9	18
1213	Rational Assembly of Liquid Metal/Elastomer Lattice Conductors for Highâ€Performance and Strainâ€Invariant Stretchable Electronics. Advanced Functional Materials, 2022, 32, .	7.8	29
1214	A soft and recyclable carbon nanotube/carbon nanofiber hybrid membrane for oil/water separation. Journal of Applied Polymer Science, 0, , 52133.	1.3	1
1215	Recent trends and future prospects of nanostructured aerogels in water treatment applications. Journal of Water Process Engineering, 2022, 45, 102481.	2.6	33
1216	Porous carbons for environment remediation. , 2022, , 541-802.		O

#	Article	IF	CITATIONS
1217	Lightweight and Resilient ZrO ₂ –TiO ₂ Fiber Sponges with Layered Structure for Thermal Insulation. Advanced Engineering Materials, 2022, 24, .	1.6	18
1218	Carbon nanotube cloth as a promising electrode material for flexible aqueous supercapacitors. Journal of Applied Electrochemistry, 2022, 52, 487-498.	1.5	6
1219	Synthesis of carbon-based nanomaterials and their application in pollution management. Nanoscale Advances, 2022, 4, 1246-1262.	2.2	30
1220	Controlled Transition Metal Nucleated Growth of Carbon Nanotubes by Molten Electrolysis of CO2. Catalysts, 2022, 12, 137.	1.6	8
1221	Color tunable aerogels/sponge-like structures developed from fine fiber membranes. Materials Advances, 0, , .	2.6	1
1222	High-Performance Flexible Solid-State Supercapacitors Based on MnO ₂ -Decorated Carbon Nanotube Sponge with Ultra-high Capacitance, Long Cycling Life, and Enhanced Mechanical Strength. Energy & Samp; Fuels, 2022, 36, 2239-2247.	2.5	10
1224	Bioinspired carbon nanotube-based materials. Materials Advances, 2022, 3, 3070-3088.	2.6	8
1225	Metal–Organic Framework-Derived Core–Shell Nanospheres Anchored on Fe-Filled Carbon Nanotube Sponge for Strong Wideband Microwave Absorption. ACS Applied Materials & Interfaces, 2022, 14, 10577-10587.	4.0	64
1226	Oil spills adsorption and cleanup by polymeric materials: A review. Polymers for Advanced Technologies, 2022, 33, 1353-1384.	1.6	19
1227	Emerging Separation Applications of Surface Superwettability. Nanomaterials, 2022, 12, 688.	1.9	12
1228	Nanotube-based heterostructures for electrochemistry: A mini-review on lithium storage, hydrogen evolution and beyond. Journal of Energy Chemistry, 2022, 70, 630-642.	7.1	13
1229	Progress in Diamanes and Diamanoids Nanosystems for Emerging Technologies. Advanced Science, 2022, 9, e2105770.	5.6	35
1230	Wood-Inspired Compressible Superhydrophilic Sponge for Efficient Removal of Micron-Sized Water Droplets from Viscous Oils. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11789-11802.	4.0	17
1231	Synthesis of hydrophilic carbon nanotube sponge via post-growth thermal treatment. Nanotechnology, 2022, 33, 245707.	1.3	3
1232	Phase change material infiltrated 3D porous carbon interconnected composites for thermal energy storage. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 2133-2152.	1.2	3
1233	Carbon Nanotube/Polymer Coaxial Cables with Strong Interface for Damping Composites and Stretchable Conductors. Advanced Functional Materials, 2022, 32, .	7.8	9
1234	Synthesis and Hydrodynamic Modeling Study of Epoxy/Carbon Nanospheres (Epoxy-CNS) Composite Coatings for Water Filtration Applications. Sustainability, 2022, 14, 4114.	1.6	2
1235	Preparation and properties of a silver particle-coated and 1-dodecanethiol-modified superhydrophobic melamine sponge for oil/water separation. Frontiers of Chemical Science and Engineering, 2022, 16, 1237-1246.	2.3	3

#	Article	IF	CITATIONS
1236	Robust and durable superhydrophobic and oil-absorbent silica particles with ultrahigh separation efficiency and recyclability. Microporous and Mesoporous Materials, 2022, 335, 111772.	2.2	6
1237	Constructing hierarchical structure via in situ growth of CNT in SiO2-coated carbon foam for high-performance EMI shielding application. Composites Science and Technology, 2022, 222, 109372.	3.8	26
1239	Enhanced Electron Transfer Kinetics of Covalent Carbon Nanotube Junctions. Journal of Physical Chemistry C, 2022, 126, 239-245.	1.5	2
1240	The emergence of nanotechnology in mitigating petroleum oil spills. Marine Pollution Bulletin, 2022, 178, 113609.	2.3	23
1241	Ultralight Heat-Insulating, Electrically Conductive Carbon Fibrous Sponges for Wearable Mechanosensing Devices with Advanced Warming Function. ACS Applied Materials & mp; Interfaces, 2022, 14, 19918-19927.	4.0	9
1242	Electrochemical modification of carbon nanotube fibres. Nanoscale, 2022, 14, 9313-9322.	2.8	2
1243	Flexible SiC nanowire aerogel with excellent thermal insulation properties. Ceramics International, 2022, 48, 22172-22178.	2.3	8
1244	A simple method for developing efficient room temperature reduced graphene oxide-coated polyurethane sponge and cotton for oil-water separation. Separation Science and Technology, 2022, 57, 2596-2605.	1.3	6
1245	P-doped PANI/AgMWs nano/micro coating towards high-efficiency flame retardancy and electromagnetic interference shielding. Composites Part B: Engineering, 2022, 238, 109944.	5.9	30
1246	Carbon nanotubes-based adsorbents: Properties, functionalization, interaction mechanisms, and applications in water purification. Journal of Water Process Engineering, 2022, 47, 102815.	2.6	49
1247	Succulentâ€Inspired Ultraflexible and Multifunctional Carbon Aerogel for Highâ€Performing Strain Sensing and Thermal Management. Advanced Materials Technologies, 2022, 7, .	3.0	2
1248	Collective, bifunctional 1D CNT/2D TMOH hybrid sponge as high-capacity and long-cycle Li-O2 cathode. Energy Storage Materials, 2022, 50, 344-354.	9.5	7
1249	Preparation of 3D superhydrophobic porous g-C3N4 nanosheets@carbonized kapok fiber composites for oil/water separation and treating organic pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129298.	2.3	4
1250	Synthesis of all-biomass-derived carbon nanofibers for dual-functional filtration membranes and oxygen evolution reaction electrocatalysts. Journal of Alloys and Compounds, 2022, 918, 165600.	2.8	4
1251	Recent advances in oil/water separation using nanomaterial-based filtration methods for crude oil processing-a review. Journal of Petroleum Science and Engineering, 2022, 215, 110617.	2.1	15
1252	Highly branched polyethylene used as sorbents for oilâ€spill cleanup and separation. Journal of Polymer Science, 2022, 60, 2418-2427.	2.0	2
1253	System-level graphene foam speaker and the simulation of the thermo-acoustic process. Optics Express, 2022, 30, 23918.	1.7	0
1254	Thermoâ€controlled, selfâ€released smart wood tailored by nanotechnology for fast cleanâ€up ofÂhighly viscous liquids. SmartMat, 2023, 4, .	6.4	16

#	Article	IF	CITATIONS
1255	Carbon-based elastic foams supported redox-active covalent organic frameworks for flexible supercapacitors. Chemical Engineering Journal, 2022, 449, 137858.	6.6	23
1256	Highly Sensitive Piezoresistive Pressure Sensor Based on Super-Elastic 3D Buckling Carbon Nanofibers for Human Physiological Signals' Monitoring. Nanomaterials, 2022, 12, 2522.	1.9	2
1257	Compressible, gradient-immersion, regenerable carbon nanotube sponges as high-performance lithium–oxygen battery cathodes. Materials Today, 2022, 59, 68-79.	8.3	10
1258	Coir fiber-reinforced PVA aerogels for oil adsorption. New Journal of Chemistry, 2022, 46, 16265-16268.	1.4	1
1259	Monoâ€Acetylenes as New Crosslinkers for All arbon Living Charge Carbon Nanotubide Organogels. ChemistrySelect, 2022, 7, .	0.7	1
1260	Carbon nanotubes do not provide strong seeding effect for the nucleation of C3S hydration. Materials and Structures/Materiaux Et Constructions, 2022, 55, .	1.3	7
1261	Preparation, modification and environmental application of carbon monoliths assisted by the electric field: A review. Journal of Cleaner Production, 2022, 369, 133464.	4.6	6
1262	Monolithic robust hybrid sponge with enhanced light adsorption and ultrafast photothermal heating rate for rapid oil cleaning. Journal of Colloid and Interface Science, 2022, 628, 233-241.	5.0	4
1263	Organicâ€inorganic Hybrid Perovskiteâ€Based Lightâ€Assisted Liâ€oxygen Battery with Low Overpotential. ChemSusChem, 2022, 15, .	3.6	7
1264	Phosphorus and nitrogen codoped entangled carbon nanotubes forming spongy materials: Synthesis and characterization. Diamond and Related Materials, 2022, 129, 109317.	1.8	2
1265	3D printing of cellulose nanofiber monoliths for thermal insulation and energy storage applications. Additive Manufacturing, 2022, 59, 103124.	1.7	2
1266	Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents. International Journal of Biological Macromolecules, 2022, 222, 1-29.	3.6	23
1267	Synthesis and characterization of UiO-66-NH2 incorporated graphene aerogel composites and their utilization for absorption of organic liquids. Carbon, 2023, 201, 561-567.	5.4	10
1268	Robust and durable liquid-repellent surfaces. Chemical Society Reviews, 2022, 51, 8476-8583.	18.7	105
1269	Recyclable carbon nanotube/silicone oil emulsion with NaOH aqueous solution for indoor CO ₂ capture. Green Chemistry, 2022, 24, 6264-6277.	4.6	2
1270	Superelastic, Highly Conductive, Superhydrophobic, and Powerful Electromagnetic Shielding Hybrid Aerogels Built from Orthogonal Graphene and Boron Nitride Nanoribbons. ACS Nano, 2022, 16, 17049-17061.	7.3	42
1271	Introducing Polar Groups in Porous Aromatic Framework for Achieving High Capacity of Organic Molecules and Enhanced Self-Cleaning Applications. Molecules, 2022, 27, 6113.	1.7	1
1272	Anchoring Oxidized MXene Nanosheets on Porous Carbon Nanotube Sponge for Enhancing Ion Transport and Pseudocapacitive Performance. ACS Applied Materials & Samp; Interfaces, 2022, 14, 41997-42006.	4.0	6

#	Article	IF	CITATIONS
1273	Microporous vertically aligned CNT nanocomposites with tunable properties for use in flexible heat sinks. Journal of Science: Advanced Materials and Devices, 2022, 7, 100509.	1.5	1
1274	Anisotropic and Lightweight Carbon/Graphene Composite Aerogels for Efficient Thermal Insulation and Electromagnetic Interference Shielding. ACS Applied Materials & Samp; Interfaces, 2022, 14, 45844-45852.	4.0	23
1275	Highly compressible and environmentally adaptive conductors with high-tortuosity interconnected cellular architecture., 2022, 1, 975-986.		16
1276	Treating Waste with Waste: Facile Preparation of Elastic Thermoplastic Polyurethane Monolith for Efficient Oil/Water Separation. Bulletin of the Chemical Society of Japan, 2022, 95, 1515-1517.	2.0	2
1277	Current Existing Techniques for Environmental Monitoring. , 2022, , 239-262.		1
1278	Extremely black carbon nanotube materials with three-dimensional networks for highly efficient solar-driven vapor generation. Nanoscale, 2022, 14, 17438-17446.	2.8	7
1279	Use of Reduced Graphene Oxide to Modify Melamine and Polyurethane for the Removal of Organic and Oil Wastes. Energies, 2022, 15, 7371.	1.6	0
1280	Binder-free, pre-consolidated single-walled carbon nanotubes for manufacturing thermoset nanocomposites. Carbon, 2023, 202, 450-463.	5. 4	6
1281	Carbon nanotube-vertical edge rich graphene hybrid sponge as multifunctional reinforcements for high performance epoxy composites. Carbon, 2023, 201, 871-880.	5.4	17
1282	Mechanically Robust and Flexible GO/PI Hybrid Aerogels as Highly Efficient Oil Absorbents. Polymers, 2022, 14, 4903.	2.0	3
1283	Electromagnetic Interference Shielding Performance of CNT Sponge/PDMS Force-Sensitive Composites. Journal of Electronic Materials, 2023, 52, 429-436.	1.0	3
1284	Superelastic 3D Assembled Clay/Graphene Aerogels for Continuous Solar Desalination and Oil/Organic Solvent Absorption. Advanced Science, 2022, 9, .	5.6	21
1285	Recent Advances in Rolling 2D TMDs Nanosheets into 1D TMDs Nanotubes/Nanoscrolls. Small, 2023, 19, .	5.2	18
1286	Sonication-Free Dispersion of Single-Walled Carbon Nanotubes for High-Sorption-Capacity Aerogel Fabrication. Molecules, 2022, 27, 7657.	1.7	3
1287	Scalable multifunctional ultralight mesoporous micro yarn carbon for excellent durable supercapacitor and tremendous oils sorbent. Chemical Engineering Journal, 2023, 456, 141011.	6.6	6
1288	Robust superhydrophobic TiO2@carbon nanotubes inhibitor with bombax structure for strengthening wellbore in water-based drilling fluid. Journal of Molecular Liquids, 2023, 370, 120946.	2.3	3
1289	3D carbon nanotube-mesoporous carbon sponge with short pore channels for high-power lithium-ion capacitor cathodes. Carbon, 2023, 203, 479-489.	5.4	9
1290	An experimental study of spectral radiative properties of multi-walled carbon nanotube coating for heat dissipation. Case Studies in Thermal Engineering, 2023, 41, 102660.	2.8	0

#	Article	IF	CITATIONS
1291	Janus carbon nanotube sponges for highly efficient solar-driven vapor generation. Chemical Engineering Journal, 2023, 454, 140501.	6.6	21
1292	Thermally insulating and electroactive cellular nanocellulose composite cryogels from hybrid nanofiber networks. Chemical Engineering Journal, 2023, 455, 140638.	6.6	10
1293	Sorption of hazardous industrial organic liquids with environmentally friendly functionalized cellulosic sorbents. Journal of Polymer Engineering, 2022, .	0.6	0
1294	Superhydrophobic/superoleophilic modified melamine sponge for oil/water separation. Ceramics International, 2023, 49, 11544-11551.	2.3	11
1295	3D solvent-responsive actuator capable of directionally outputting thrust. Cell Reports Physical Science, 2022, 3, 101183.	2.8	2
1296	Comparison of Oil Sorption Capacity of Nonwoven Sorbents. AATCC Journal of Research, 0, , 247234442211320.	0.3	1
1297	Macroscale superlubricity by a sacrificial carbon nanotube coating. Materials Today Nano, 2023, 21, 100297.	2.3	1
1298	Multiscale Theories and Applications: From Microstructure Design to Macroscopic Assessment for Carbon Nanotubes Networks. Chinese Journal of Mechanical Engineering (English Edition), 2023, 36, .	1.9	4
1299	Recent Advances in Carbon and Activated Carbon Nanostructured Aerogels Prepared from Agricultural Wastes for Wastewater Treatment Applications. Agriculture (Switzerland), 2023, 13, 208.	1.4	11
1300	Oxygenated Hydrocarbons from Catalytic Hydrogenation of Carbon Dioxide. Catalysts, 2023, 13, 115.	1.6	6
1301	A review on the effectiveness of nanocomposites for the treatment and recovery of oil spill. Environmental Science and Pollution Research, 2023, 30, 16947-16983.	2.7	7
1302	Hydrogel as an advanced energy material for flexible batteries. Polymer-Plastics Technology and Materials, 2023, 62, 359-383.	0.6	0
1303	Configurationâ€dependent stretchable allâ€solidâ€state supercapacitors and hybrid supercapacitors. , 2023, 5, .		36
1304	Construction and application of carbon aerogels in microwave absorption. Physical Chemistry Chemical Physics, 2023, 25, 8244-8262.	1.3	3
1305	C-shaped porous polypropylene fibers for rapid oil absorption and effective on-line oil spillage monitoring. Journal of Hazardous Materials, 2023, 452, 131332.	6.5	2
1306	MOF-regulated flexible wood carbon aerogel for pressure sensing. Journal of Alloys and Compounds, 2023, 947, 169446.	2.8	4
1307	Robust elastic wave transport in zone-folding induced topological hierarchical metamaterials. International Journal of Mechanical Sciences, 2023, 251, 108336.	3.6	8
1308	Full spectrum solar hydrogen production by tandems of perovskite solar cells and photothermal enhanced electrocatalysts. Chemical Engineering Journal, 2023, 460, 141702.	6.6	8

#	Article	IF	CITATIONS
1309	Tailoring surface features and pore structure by carbon spiral fibers to construct the high-strength carbon foams for the fast and cyclic photo-thermal oil absorption. Journal of Materials Science and Technology, 2023, 150, 190-200.	5.6	0
1310	Recent advances in superwetting materials for separation of oil/water mixtures. Nanoscale, 2023, 15, 5139-5157.	2.8	8
1311	Bioinspired Cellular Single-Walled Carbon Nanotube Aerogels with Temperature-Invariant Elasticity and Fatigue Resistance for Potential Energy Dissipation. ACS Applied Nano Materials, 2023, 6, 3012-3019.	2.4	2
1312	Oil adsorption performance of tubular hypercrosslinked polymer and carbon nanofibers., 2023,, 153-182.		1
1313	Vapor-Responsive Shape-Memory Material Based on Carbon Nanotube Sponge Dominated by Pressure-Induced Conformational Transition of Spidroin. ACS Applied Polymer Materials, 2023, 5, 2490-2500.	2.0	1
1314	Reduced Graphene Oxide-Doped Porous Thermoplastic Polyurethane Sponges for Highly Efficient Oil/Water Separation. ACS Omega, 2023, 8, 10487-10492.	1.6	6
1315	Cellulose-based sponge@ZIF-8 from waste straws for water disinfection. RSC Advances, 2023, 13, 7554-7560.	1.7	0
1316	A Bioinspired Capillary Forceâ€Induced Driving Strategy for Constructing Ultraâ€Lowâ€Pressure Separation Membranes. Advanced Functional Materials, 2023, 33, .	7.8	5
1317	Superelastic Carbon Aerogels: An Emerging Material for Advanced Thermal Protection in Extreme Environments. Advanced Functional Materials, 2023, 33, .	7.8	10
1318	Biomass Chitosan-Based Tubular/Sheet Superhydrophobic Aerogels Enable Efficient Oil/Water Separation. Gels, 2023, 9, 346.	2.1	3
1319	Fabrication and surface functionalization of melt electrospun nanofibers for marine oil spill treatment., 2023,, 617-634.		1
1341	Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chemical Society Reviews, 2023, 52, 7389-7460.	18.7	9
1348	Environmental Applications for Aerogels. Springer Handbooks, 2023, , 1383-1398.	0.3	0
1349	Aerogel-Inspired Materials Derived from Industrial Waste. Springer Handbooks, 2023, , 1211-1237.	0.3	0
1352	Nanocarbons: Diamond, Fullerene, Nanotube, Graphite, and Graphene Aerogels. Springer Handbooks, 2023, , 941-970.	0.3	1
1353	Introduction to Sponge-Like Functional Materials from TEMPO-Oxidized Cellulose Nanofibers. , 2023, , 263-290.		0
1365	Advanced nanofabrication for elastic inorganic aerogels. Nano Research, 0, , .	5.8	0
1368	Regeneration/reuse capability of monolithic carbon xerogels-metal nanocomposites for crude oil removal from oil-in-saltwater emulsions. , 2024, , 289-357.		0

#	Article	IF	CITATIONS
1371	Synthesis of carbon nanotube aerogel and its application for the removal of organic solvents from water., 2024,, 209-241.		0
1374	Nanomaterial as an emerging green catalyst in environmental remediation., 2024,, 425-442.		0