Butte detachment: how preâ€rift geological structure a escarpment evolution at rifted continental margins

Earth Surface Processes and Landforms 35, 1373-1385 DOI: 10.1002/esp.1973

Citation Report

#	Article	IF	CITATIONS
1	An automated method for producing synoptic regional maps of river gradient variation: Procedure, accuracy tests, and comparison with other knickpoint mapping methods. Geomorphology, 2011, 134, 394-407.	2.6	22
2	Post-rift reactivation of the onshore margin of southeast Brazil: Evidence from apatite (U–Th)/He and fission-track data. Earth and Planetary Science Letters, 2011, 309, 118-130.	4.4	96
3	Stream capture as driver of transient landscape evolution in a tectonically quiescent setting. Geology, 2011, 39, 823-826.	4.4	96
4	The influence of rifting on escarpment migration on high elevation passive continental margins. Journal of Geophysical Research, 2012, 117, .	3.3	31
5	Evidence of transient topographic disequilibrium in a landward passive margin river system: knickpoints and paleoâ€landscapes of the New River basin, southern Appalachians. Earth Surface Processes and Landforms, 2013, 38, 1685-1699.	2.5	34
6	Neogene rejuvenation of central Appalachian topography: Evidence for differential rock uplift from stream profiles and erosion rates. Earth and Planetary Science Letters, 2013, 369-370, 1-12.	4.4	143
7	High magnitude and rapid incision from river capture: Rhine River, Switzerland. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1060-1084.	2.8	57
8	Linking offshore stratigraphy to onshore paleotopography: The Late Jurassic-Paleocene evolution of the south Norwegian margin. Bulletin of the Geological Society of America, 2013, 125, 1164-1186.	3.3	34
9	Low rates of bedrock outcrop erosion in the central Appalachian Mountains inferred from in situ ¹⁰ Be. Bulletin of the Geological Society of America, 2013, 125, 201-215.	3.3	41
10	Denudation and retreat of the Serra do Mar escarpment in southern Brazil derived from in situâ€produced ¹⁰ Be concentration in river sediment. Earth Surface Processes and Landforms, 2014, 39, 311-319.	2.5	28
11	Numerical modeling of spatially-variable precipitation and passive margin escarpment evolution. Geomorphology, 2014, 207, 203-212.	2.6	48
12	Phanerozoic surface history of southern P eninsular I ndia from apatite (Uâ€Thâ€Sm)/He data. Geochemistry, Geophysics, Geosystems, 2015, 16, 3626-3648.	2.5	8
13	Spatial variability of 10 Be-derived erosion rates across the southern Peninsular Indian escarpment: A key to landscape evolution across passive margins. Earth and Planetary Science Letters, 2015, 425, 154-167.	4.4	67
14	Erosional and depositional history of the Atlantic passive margin as recorded in detrital zircon fission-track ages and lithic detritus in Atlantic Coastal plain sediments. Numerische Mathematik, 2016, 316, 110-168.	1.4	24
15	Cenozoic epeirogeny of the <scp>I</scp> ndian peninsula. Geochemistry, Geophysics, Geosystems, 2016, 17, 4920-4954.	2.5	35
16	Very long-term stability of passive margin escarpment constrained by ⁴⁰ Ar/ ³⁹ Ar dating of K-Mn oxides. Geology, 2016, 44, 299-302.	4.4	33
17	Relief evolution of the Continental Rift of Southeast Brazil revealed by in situ-produced 10Be concentrations in river-borne sediments. Journal of South American Earth Sciences, 2016, 67, 89-99.	1.4	27
18	Geomorphic fluvial markers reveal transient landscape evolution in tectonically quiescent southern Peninsular India. Geological Journal, 2017, 52, 681-702.	1.3	15

	Сіт	CITATION REPORT	
#	Article	IF	CITATIONS
19	Geomorphology and topography of relict surfaces: the influence of inherited crustal structure in the northern Scandinavian Mountains. Journal of the Geological Society, 2017, 174, 93-109.	2.1	9
20	A quantitative analysis of transtensional margin width. Earth and Planetary Science Letters, 2018, 491, 95-108.	, 4.4	26
21	Advances in global mountain geomorphology. Geomorphology, 2018, 308, 230-264.	2.6	24
22	Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains. Earth and Planetary Science Letters, 2018, 493, 150-160.	4.4	110
23	A review of numerical modeling studies of passive margin escarpments leading to a new analytical expression for the rate of escarpment migration velocity. Gondwana Research, 2018, 53, 209-224.	6.0	61
24	Exogenic forcing and autogenic processes on continental divide location and mobility. Basin Research, 2018, 30, 344-369.	2.7	17
25	Fission-Track Thermochronology Applied to the Evolution of Passive Continental Margins. Springer Textbooks in Earth Sciences, Geography and Environment, 2019, , 351-371.	0.3	20
26	Controls on the erosion of the continental margin of southeast Brazil from cosmogenic 10Be in river sediments. Geomorphology, 2019, 330, 163-176.	2.6	11
27	Base Level and Lithologic Control of Drainage Reorganization in the Sierra de las Planchadas, NW Argentina. Journal of Geophysical Research F: Earth Surface, 2019, 124, 1516-1539.	2.8	17
28	New insights from low-temperature thermochronology into the tectonic and geomorphologic evolution of the south-eastern Brazilian highlands and passive margin. Geoscience Frontiers, 2020, 11, 303-324.	8.4	27
29	Role of inherent geological and climatic characteristics on landscape variability in the tectonically passive Western Ghat, India. Geomorphology, 2020, 350, 106840.	2.6	14
30	Impact of drainage integration on basin geomorphology and landform evolution: A case study along the Salt and Verde rivers, Sonoran Desert, USA. Geomorphology, 2020, 371, 107439.	2.6	13
31	Stream capture and the geomorphic evolution of the Linville Gorge in the southern Appalachians, USA. Geomorphology, 2020, 368, 107360.	2.6	11
32	Flood susceptibility mapping of the Western Ghat coastal belt using multi-source geospatial data and analytical hierarchy process (AHP). Remote Sensing Applications: Society and Environment, 2020, 20, 100379.	1.5	74
33	Process inference from topographic fractal characteristics in the tectonically active Northwest Himalaya, India. Earth Surface Processes and Landforms, 2020, 45, 3572-3591.	2.5	12
34	Temporal and spatial denudation trends in the continental margin of southeastern Brazil. Journal of South American Earth Sciences, 2021, 105, 102931.	1.4	11
35	Beyond the Long Profile. , 2022, , 22-52.		4
36	Pliocene-Pleistocene stability of the Queen Creek drainage in the Basin and Range Province, eastern Phoenix metropolitan area, Central Arizona. Geomorphology, 2021, 381, 107647.	2.6	1

C	 	Rep	
	ON		ODT
		NLF	

#	Article	IF	CITATIONS
37	Integrating water-classified returns in DTM generation to increase accuracy of stream delineations and geomorphic analyses. Geomorphology, 2021, 385, 107722.	2.6	3
38	Drainage Reorganization Across the Puna Plateau Margin (NW Argentina): Implications for the Preservation of Orogenic Plateaus. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006147.	2.8	1
39	Escarpment retreat rates derived from detrital cosmogenic nuclide concentrations. Earth Surface Dynamics, 2021, 9, 1301-1322.	2.4	14
40	Role of Climate and Topography on Hydrological Characteristics of the Bharathapuzha Basin in the Tectonically Quiescent Western Ghats, India. Journal of the Geological Society of India, 2021, 97, 1087-1096.	1.1	0
41	Contribuição aos estudos da evolução da escarpa entre as bacias hidrográficas dos rios Doce e ParaÃba do Sul, na Serra da Mantiqueira-MG-Brasil. GEOUSP: Espaço E Tempo, 2019, 23, 417-434.	0.1	2
42	Quelle approche «Âréaliste» de la montagne en géographieÂ: l'exemple des bourrelets de marge pas L'Information Geographique, 2020, Vol. 84, 48-69.	sive 0.2	0
43	Retreat of the Great Escarpment of Madagascar From Geomorphic Analysis and Cosmogenic ¹⁰ Be Concentrations. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009979.	2.5	8
44	Exhumation of the passive margin of the DR Congo during pre- and post- Gondwana breakup: Evidence from low-temperature thermochronology, geology and geomorphology. Geomorphology, 2022, 398, 108067.	2.6	3
45	Drainage integration in extensional tectonic settings. Geomorphology, 2022, 399, 108082.	2.6	2
46	Insights on the growth and mobility of debris flows from repeat high-resolution lidar. Landslides, 0, , 1.	5.4	3
47	Lithologic Controls on Geomorphic Evolution of the Central Western Ghats: An Example from the Aghnashini Catchment, Karnataka, India. Journal of the Geological Society of India, 2022, 98, 451-459.	1.1	2
48	Topography and rainfall coupled landscape evolution of the passive margin of Sahyadri (Western) Tj ETQq1 1 0.7	84314 rgt 3.2	3T JOverlock
49	Große GrÃ b en und heiße Flecken. , 2022, , 307-364.		0
50	Mesoarchean terrestrial sedimentation in a continental rift setting and its provenance implications: An example from the Bisrampur Formation, Singhbhum craton, India. Earth-Science Reviews, 2022, 234, 104205.	9.1	3
51	Great Rifts and Hot Spots. , 2022, , 317-372.		0
52	The Erosional Signature of Drainage Divide Motion Along the Blue Ridge Escarpment. Journal of Geophysical Research F: Earth Surface, 2023, 128, .	2.8	4
53	Long-term erosion rate in the SW Cameroon margin. Environmental Earth Sciences, 2023, 82, .	2.7	0
54	Scale-dependency, rainfall, and lithologic controls on the hypsometry of the Western Ghats, India. Journal of Earth System Science, 2023, 132, .	1.3	0

#	Article	IF	CITATIONS
55	A model of temporal and spatial river network evolution with climatic inputs. Frontiers in Water, 0, 5,	2.3	0
56	On a new colorful species of <i>Moenkhausia</i> (Characiformes: Characidae) from the upper rio Madeira basin at the Chapada dos Parecis, Brazil, with comments on its conservation and putative biogeographic history. Journal of Fish Biology, 0, , .	1.6	0
57	Evolution of the Eastern Red Sea Rifted margin: morphology, uplift processes and source-to-sink dynamics. Earth-Science Reviews, 2024, 250, 104698.	9.1	0
58	Regional Soil Patterns as Indicators of Late Cenozoic Change in the Critical Zone: A Baseline Synthesis for the Landscapes of Peninsular India. Earth Science, Systems and Society, 0, 4, .	0.0	0

CITATION REPORT