Polyâ€Lactic Acid: Production, Applications, Nanocomp

Comprehensive Reviews in Food Science and Food Safety 9, 552-571 DOI: 10.1111/j.1541-4337.2010.00126.x

Citation Report

#	Article	IF	CITATIONS
1	Conversion of triose sugars with alcohols to alkyl lactates catalyzed by BrÃ,nsted acid tin ion-exchanged montmorillonite. Applied Catalysis B: Environmental, 2011, 107, 135-139.	10.8	79
2	Nano-Biocomposites for Food Packaging. Green Energy and Technology, 2012, , 393-408.	0.4	6
3	Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications. , 0, , .		92
4	Polylactide (PLA)—Halloysite Nanocomposites: Production, Morphology and Key-Properties. Journal of Polymers and the Environment, 2012, 20, 932-943.	2.4	79
5	Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydrate Polymers, 2012, 90, 948-956.	5.1	420
6	Release of synthetic phenolic antioxidants from extruded poly lactic acid (PLA) film. Food Control, 2012, 28, 445-455.	2.8	80
7	Antioxidant Activity and Diffusion of Catechin and Epicatechin from Antioxidant Active Films Made of Poly(<scp>l</scp> -lactic acid). Journal of Agricultural and Food Chemistry, 2012, 60, 6515-6523.	2.4	75
8	Synthesis of Orientationally Isomeric Cyclic Stereoblock Polylactides with Head-to-Head and Head-to-Tail Linkages of the Enantiomeric Segments. ACS Macro Letters, 2012, 1, 902-906.	2.3	74
9	Antimicrobial Activity of Lauric Arginateâ€Coated Polylactic Acid Films against <i>Listeria monocytogenes</i> and <i>Salmonella</i> Typhimurium on Cooked Sliced Ham. Journal of Food Science, 2012, 77, M142-9.	1.5	58
10	Effects of synthetic phenolic antioxidants on physical, structural, mechanical and barrier properties of poly lactic acid film. Carbohydrate Polymers, 2012, 87, 1763-1773.	5.1	68
11	Direct production of l (+) lactic acid in a continuous and fully membrane-integrated hybrid reactor system under non-neutralizing conditions. Journal of Membrane Science, 2012, 389, 355-362.	4.1	49
12	Structural, mechanical and barrier properties of active PLA–antioxidant films. Journal of Food Engineering, 2012, 110, 380-389.	2.7	139
13	Isothermal crystallization and melting behaviors of bionanocomposites from poly(lactic acid) and TiO ₂ nanowires. Journal of Applied Polymer Science, 2012, 124, 2968-2977.	1.3	23
14	Creep behavior of PLAâ€based biodegradable plastic exposed to a hydrocarbon liquid. Journal of Applied Polymer Science, 2013, 127, 2654-2660.	1.3	12
15	Cellulose Acetate Butyrate Nanocomposites with Antimicrobial Properties for Food Packaging. Packaging Technology and Science, 2013, 26, 249-265.	1.3	23
16	PLA and Montmorilonite Nanocomposites: Properties, Biodegradation and Potential Toxicity. Journal of Polymers and the Environment, 2013, 21, 738-759.	2.4	39
17	Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polymer Degradation and Stability, 2013, 98, 651-658.	2.7	160
18	Hydrophobic Polymers from Food Waste: Resources and Synthesis. Polymer Reviews, 2013, 53, 627-694.	5.3	74

TION RE

#	Article	IF	CITATIONS
19	Amphiphilic Conetworks and Gels Physically Cross-Linked via Stereocomplexation of Polylactide. Langmuir, 2013, 29, 14307-14313.	1.6	35
20	Stability of poly(l-lactide)/TiO2 nanocomposite thin films under UV irradiation at 254Ânm. Polymer Degradation and Stability, 2013, 98, 885-893.	2.7	33
21	Polypropylene-based composites reinforced by toluene diisocyanate modified wood. Journal of Composite Materials, 2013, 47, 3451-3464.	1.2	9
22	Antioxidants Release from Solvent-Cast PLA Film: Investigation of PLA Antioxidant-Active Packaging. Food and Bioprocess Technology, 2013, 6, 1450-1463.	2.6	48
24	Diamond-like carbon coating of a pure bioplastic foil. Thin Solid Films, 2013, 545, 558-563.	0.8	28
25	Enhanced crystallization of poly(d-lactide) by xylan esters. Polymer Degradation and Stability, 2013, 98, 2482-2487.	2.7	14
26	Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork. International Journal of Food Microbiology, 2013, 167, 229-235.	2.1	60
27	Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. Journal of Food Engineering, 2013, 117, 113-123.	2.7	132
28	Twin-screw extrusion impact on natural fibre morphology and material properties in poly(lactic acid) based biocomposites. Industrial Crops and Products, 2013, 46, 173-185.	2.5	112
29	Bioplastics science from a policy vantage point. New Biotechnology, 2013, 30, 635-646.	2.4	106
30	Application of bioplastics for food packaging. Trends in Food Science and Technology, 2013, 32, 128-141.	7.8	451
31	Bimodal architecture and rheological and foaming properties for gamma-irradiated long-chain branched polylactides. RSC Advances, 2013, 3, 8783.	1.7	45
32	Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 2013, 31, 877-902.	6.0	758
33	Nanoscale Damping Characteristics of Boron Nitride Nanotubes and Carbon Nanotubes Reinforced Polymer Composites. ACS Applied Materials & Interfaces, 2013, 5, 12052-12057.	4.0	89
34	Facile Preparation of Polylactic Acid/Ketoconazole Composite Microspheres by Oil/Water Solvent Evaporation Method. Advanced Materials Research, 0, 652-654, 335-338.	0.3	3
35	Adhesion Improvements of Nanocellulose Composite Interfaces. Plastics Engineering, 2013, 69, 32-37.	0.1	5
36	Pathways to Biodegradable Flame Retardant Polymer (Nano)Composites. , 2014, , 709-773.		10
37	Toughness Enhancement of Polylactic Acid by Employing Glycolyzed Polylactic Acid-Cured Epoxidized Natural Rubber. Advanced Materials Research, 2014, 1025-1026, 580-584.	0.3	3

#	Article	IF	CITATIONS
38	Self-extinguishing Polymer Blends Containing Organoclays. , 2014, , 653-674.		0
39	Metal/polymer composite Nuss bar for minimally invasive bar removal after <i>Pectus Excavatum</i> treatment: FEM simulations. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 1530-1540.	1.0	1
40	A Review of Poly(Lactic Acid)â€Based Materials for Antimicrobial Packaging. Journal of Food Science, 2014, 79, R1477-90.	1.5	224
41	Impact of the coating process on the molecular structure of starchâ€based barrier coatings. Journal of Applied Polymer Science, 2014, 131, .	1.3	11
42	Tensile Strength and Flexural Strength Testing of Acrylonitrile Butadiene Styrene (ABS) Materials for Biomimetic Robotic Applications. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 0, 20, 11-21.	0.5	11
43	Preliminary evaluation of packagingâ \in content interactions: Mechanical and physicochemical characterization of polylactide bottles. Journal of Applied Polymer Science, 2014, 131, .	1.3	12
44	Maintaining Structural Stability of Poly(lactic acid): Effects of Multifunctional Epoxy based Reactive Oligomers. Polymers, 2014, 6, 1232-1250.	2.0	35
45	Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Materials & Design, 2014, 59, 279-286.	5.1	123
46	Preparation and Characterization of High-Melt-Strength Polylactide with Long-Chain Branched Structure through γ-Radiation-Induced Chemical Reactions. Industrial & Engineering Chemistry Research, 2014, 53, 1150-1159.	1.8	70
47	Antimicrobial nanocomposite films made of poly(lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: part A—effect of nisin release on the inactivation of Listeria monocytogenes in ham. Cellulose, 2014, 21, 1837-1850.	2.4	105
48	Enantioselective lactic acid production by an Enterococcus faecium strain showing potential in agro-industrial waste bioconversion: Physiological and proteomic studies. Journal of Biotechnology, 2014, 173, 31-40.	1.9	17
49	Antimicrobial films and coatings for inactivation of Listeria innocua on ready-to-eat deli turkey meat. Food Control, 2014, 40, 64-70.	2.8	101
50	The quest for sustainable polyesters – insights into the future. Polymer Chemistry, 2014, 5, 3119-3141.	1.9	438
51	Characterization of polylactic acid films for food packaging as affected by dielectric barrier discharge atmospheric plasma. Innovative Food Science and Emerging Technologies, 2014, 21, 107-113.	2.7	121
52	<i>In Situ</i> Optical Analysis of Structural Changes in Polylactic Acid (PLA) during the Gas Dissolution Process. Defect and Diffusion Forum, 2014, 353, 131-136.	0.4	0
53	Antimicrobial nanocomposite films made of poly(lactic acid)–cellulose nanocrystals (PLA–CNC) in food applications—part B: effect of oregano essential oil release on the inactivation of Listeria monocytogenes in mixed vegetables. Cellulose, 2014, 21, 4271-4285.	2.4	132
54	Water Uptake, Distribution, and Mobility in Amorphous Poly(d , l ‣actide) by Molecular Dynamics Simulation. Journal of Pharmaceutical Sciences, 2014, 103, 2759-2771.	1.6	26
55	Mechanical Properties, Heat Resistance and Flame Retardancy of Glass Fiber-Reinforced PLA-PC Alloys Based on Aluminum Hypophosphite. Polymer-Plastics Technology and Engineering, 2014, 53, 613-625.	1.9	29

#	Article	IF	CITATIONS
56	Quasi-elastic light scattering and small-angle X-ray scattering study of a mixture of a biopolymer with microemulsion. Physics and Chemistry of Liquids, 2014, 52, 618-626.	0.4	4
57	A study on ZnO nanoparticles catalyzed ring opening polymerization of L-lactide. Journal of Polymer Research, 2014, 21, 1.	1.2	19
58	Controlled release of nisin from HPMC, sodium caseinate, poly-lactic acid and chitosan for active packaging applications. Journal of Food Engineering, 2014, 143, 178-185.	2.7	75
59	Synthesis and characterization of bioâ€based thermosetting resins from lactic acid and glycerol. Journal of Applied Polymer Science, 2014, 131, .	1.3	39
60	Plasticized Poly(lactic acid)–Poly(hydroxybutyrate) (PLA–PHB) Blends Incorporated with Catechin Intended for Active Food-Packaging Applications. Journal of Agricultural and Food Chemistry, 2014, 62, 10170-10180.	2.4	160
61	Synthesis and Characterization of Lactic Acid Oligomers: Evaluation of Performance as Poly(Lactic) Tj ETQq1 1 0.	784314 rg 2.4	gBT_/Overlock
62	Development of a novel controlled-release nanocomposite based on poly(lactic acid) to increase the oxidative stability of soybean oil. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2014, 31, 1586-1597.	1.1	29
63	Combined Effect of Poly(hydroxybutyrate) and Plasticizers on Polylactic acid Properties for Film Intended for Food Packaging. Journal of Polymers and the Environment, 2014, 22, 460-470.	2.4	169
64	Supertough Polylactide Materials Prepared through In Situ Reactive Blending with PEG-Based Diacrylate Monomer. ACS Applied Materials & Interfaces, 2014, 6, 13552-13563.	4.0	139
65	Analysis of Porous Electrospun Fibers from Poly(<scp>l</scp> -lactic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 5 Engineering, 2014, 2, 1976-1982.	50 387 Td 3.2	(acid)/Poly(3 63
66	Equilibrium studies on lactic acid extraction with N,N-didodecylpyridin-4-amine (DDAP) extractant. Chemical Engineering Science, 2014, 109, 236-243.	1.9	61
67	Novel linear-dendritic-like amphiphilic copolymers: synthesis and self-assembly characteristics. Polymer Chemistry, 2014, 5, 4069-4075.	1.9	51
68	Effect of Nanoclay Hydrophilicity on the Poly(lactic acid)/Clay Nanocomposites Properties. Industrial & Engineering Chemistry Research, 2014, 53, 7877-7890.	1.8	78
69	Antimicrobial Polylactic Acid Packaging Films against Listeria and Salmonella in Culture Medium and on Ready-to-Eat Meat. Food and Bioprocess Technology, 2014, 7, 3293-3307.	2.6	53
71	Natural additives and agricultural wastes in biopolymer formulations for food packaging. Frontiers in Chemistry, 2014, 2, 6.	1.8	128
72	Vitamin E acetate addition to poly(<scp>d,l</scp>)lactic acid modifies its mechanical behavior without affecting biocompatibility. Journal of Applied Polymer Science, 2014, 131, .	1.3	3
73	Use of Micro- and Nano-ZnO particles as Catalysts for the Microwave-Assisted Polymerization of D,L-lactide. Materials Research Society Symposia Proceedings, 2015, 1767, 3-9.	0.1	0
74	Heat resistance of new biobased polymeric materials, focusing on starch, cellulose, <scp>PLA</scp> , and <scp>PHA</scp> . Journal of Applied Polymer Science, 2015, 132, .	1.3	63

#	Article	IF	CITATIONS
75	Recent advances and migration issues in biodegradable polymers from renewable sources for food packaging. Journal of Applied Polymer Science, 2015, 132, .	1.3	106
78	Novel approach to obtain composite poly-L-lactide based films blended with starch and calcium phosphates and their bioactive properties. Biomedical Physics and Engineering Express, 2015, 1, 045011.	0.6	9
79	Novel Applications for Biomaterials: The Case of Remediation of Wine Taints Using Poly-Lactic Acid Polymer. Applied Mechanics and Materials, 0, 749, 70-73.	0.2	1
80	Analysis of the Suitability of Poly(lactic acid) in Rotational Molding Process. Advances in Polymer Technology, 2015, 34, .	0.8	18
81	Morphology and thermal degradation studies of meltâ€mixed PLA/PHBV biodegradable polymer blend nanocomposites with TiO ₂ as filler. Journal of Applied Polymer Science, 2015, 132, .	1.3	53
82	Modification and extrusion coating of polylactic acid films. Journal of Applied Polymer Science, 2015, 132, .	1.3	22
83	Current progress in the production of PLA–ZnO nanocomposites: Beneficial effects of chain extender addition on key properties. Journal of Applied Polymer Science, 2015, 132, .	1.3	58
84	Melt processed PLA/PCL blends: Effect of processing method on phase structure, morphology, and mechanical properties. Journal of Applied Polymer Science, 2015, 132, .	1.3	122
85	Preparation and Characterization of Composites Based on Polylactic Acid and Beeswax with Improved Water Vapor Barrier Properties. Journal of Food Science, 2015, 80, E2471-7.	1.5	24
86	Freeâ€radical terpolymerization of <i>n</i> â€butyl acrylate/butyl methacrylate/ <scp>d</scp> â€limonene. Journal of Applied Polymer Science, 2015, 132, .	1.3	9
87	Polylactic acid (PLA) viscoelastic properties and their degradation compared with those of polyethylene. International Journal of Physical Sciences, 2015, 10, 568-575.	0.1	4
88	Natural Pectin Polysaccharides as Edible Coatings. Coatings, 2015, 5, 865-886.	1.2	151
89	Obtaining a Flexible Film Elaborated from Cassava Thermoplastic Starch and Polylactic Acid. International Journal of Polymer Science, 2015, 2015, 1-9.	1.2	24
90	Preparation, characterization and properties of PLA/TiO ₂ nanocomposites based on a novel vane extruder. RSC Advances, 2015, 5, 4639-4647.	1.7	104
91	Lactic acid production from hydroxyacetone on dual metal/base heterogeneous catalytic systems. Green Chemistry, 2015, 17, 3889-3899.	4.6	26
92	Recent advances in production of poly(lactic acid) (PLA) nanocomposites: a versatile method to tune crystallization properties of PLA. Nanocomposites, 2015, 1, 71-82.	2.2	63
93	Morphology and thermal degradation studies of melt-mixed poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) biodegradable polymer blend nanocomposites with TiO2 as filler. Polymer Testing, 2015, 45, 93-100.	2.3	142
94	A review of progress in the dyeing of eco-friendly aliphatic polyester-based polylactic acid fabrics. Journal of Cleaner Production, 2015, 108, 476-483.	4.6	67

#	Article	IF	CITATIONS
95	Amino acids and poly(amino acids) as nucleating agents for poly(lactic acid). Journal of Polymer Engineering, 2015, 35, 169-180.	0.6	17
96	Effect of solvents on the enzyme mediated degradation of copolymers. Materials Research Express, 2015, 2, 095301.	0.8	3
97	Determination of Crystallization and Melting Behaviour of Poly-lactic Acid and Polypropyleneblends as a Food Packaging Materials by Differential Scanning Calorimeter. Procedia Chemistry, 2015, 16, 489-494.	0.7	8
98	Potential role of nanofillers as compatibilizers in immiscible <scp>PLA/LDPE</scp> Blends. Journal of Applied Polymer Science, 2015, 132, .	1.3	49
99	Screening of metal catalysts influence on the synthesis, structure, properties, and biodegradation of <scp>PLA</scp> â€ <scp>PBA</scp> triblock copolymers obtained in melt. Journal of Polymer Science Part A, 2015, 53, 1444-1456.	2.5	17
100	A Computational Platform for Simulation, Design and Analysis of a Poly(Lactic) Acid Production Process From Different Lignocellulosic Raw Materials. Computer Aided Chemical Engineering, 2015, 37, 1187-1192.	0.3	4
101	Impact property enhancement of poly (lactic acid) with different flexible copolymers. IOP Conference Series: Materials Science and Engineering, 2015, 87, 012069.	0.3	16
102	Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT - Food Science and Technology, 2015, 64, 980-988.	2.5	87
103	Nanoparticles with photoinduced precipitation for the extraction of pollutants from water and soil. Nature Communications, 2015, 6, 7765.	5.8	95
104	Multifunctional nanobiocomposites of biodegradable polylactide and nanoclay. , 2015, , 144-212.		2
105	Eco-friendly Polymer Nanocomposite—Properties and Processing. Advanced Structured Materials, 2015, , 1-15.	0.3	5
106	Application of plastic polymers in remediating wine with elevated alkyl-methoxypyrazine levels. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 1199-1206.	1.1	10
107	Synthesis of silver/polymer nanocomposites by surface coating using carbodiimide method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 44-49.	2.3	13
108	Development of Films of Novel Polypropylene based Nanomaterials for Food Packaging Application. Packaging Technology and Science, 2015, 28, 589-602.	1.3	21
109	Modification of poly(lactic acid) using itaconic anhydride by reactive extrusion. European Polymer Journal, 2015, 67, 213-223.	2.6	31
110	Mechanical Property Optimization of FDM PLA in Shear with Multiple Objectives. Jom, 2015, 67, 1183-1193.	0.9	247
111	Evaluation of biodegradable film packaging to improve the shelf-life of Boletus edulis wild edible mushrooms. Innovative Food Science and Emerging Technologies, 2015, 29, 288-294.	2.7	39
112	Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): Morphological and physical properties. Food Packaging and Shelf Life, 2015, 5, 21-31.	3.3	94

ARTICLE IF CITATIONS # Biocomposites with tunable properties from poly(lactic acid)-based copolymers and carboxymethyl 113 5.1 19 cellulose via ionic assembly. Carbohydrate Polymers, 2015, 128, 122-129. Strategies for drug delivery to the central nervous system by systemic route. Drug Delivery, 2015, 22, 114 2.5 243-257. Studies on PLA grafting onto graphene oxide and its effect on the ensuing composite films. Materials 115 2.0 27 Chemistry and Physics, 2015, 166, 122-132. A Change of Phase Morphology in Poly Lactic Acid/Poly Methyl Methacrylate Blends Induced by Graphene Nano Sheets. Journal of Macromolecular Science - Physics, 2015, 54, 1466-1478. 116 0.4 Water-lactose behavior as a function of concentration and presence of lactic acid in lactose model 117 1.4 30 systems. Journal of Dairy Science, 2015, 98, 8505-8514. Potentiometric determination of trace acidic impurities in lactide. Journal of Analytical Chemistry, 0.4 2015, 70, 1267-1270. Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the 119 2.6 51 presence of CO2. European Polymer Journal, 2015, 71, 231-247. Removing chiral contamination of lactate solutions by selective metabolism of the d-enantiomer. 1.1 Biotechnology Letters, 2015, 37, 2411-2418. Novel biocompatible nanocapsules for slow release of fragrances on the human skin. New 121 2.4 31 Biotechnology, 2015, 32, 40-46. Life cycle assessment of biopolymers., 2016, , 57-78. PLA and PLGA nanoarchitectonics for improving anti-infective drugs efficiency., 2016, , 451-482. 123 0 124 Innovative Biobased Materials for Packaging Sustainability., 2016, , 167-189. Antimicrobial Food Packaging Based on Biodegradable Materials., 2016, , 363-384. 125 24 Biomedical Applications of Biodegradable Polyesters. Polymers, 2016, 8, 20. Injection Molding of Bio-Based Plastics, Polymers, and Composites., 2016, , 211-237. 127 5 Cellulose Nanocrystals versus Polyethylene Glycol as Toughening Agents for Poly(Lactic) Tj ETQq1 1 0.784314 rgBT, /Qverlock 10 Tf 5 Water Uptake Behavior and Young Modulus Prediction of Composites Based on Treated Sisal Fibers 129 1.322 and Poly(Lactic Acid). Materials, 2016, 9, 400. Chemical and Sensory Evaluation of Silicone and Polylactic Acid-Based Remedial Treatments for Elevated Methoxypyrazine Levels in Wine. Molecules, 2016, 21, 1238.

8

#	Article	IF	Citations
131	Current Polyesteric Systems for Advanced Drug Delivery. , 2016, , 143-168.		1
132	"Polymer-polymer composites for the design of strong and tough degradable biomaterials― Materials Today Communications, 2016, 8, 53-63.	0.9	26
133	Decomposition and detoxification of aflatoxin B ₁ by lactic acid. Journal of the Science of Food and Agriculture, 2016, 96, 1959-1966.	1.7	62
134	Molecular characterisation of a bioâ€based active packaging containing <i>Origanum vulgare</i> L. essential oil using pyrolysis gas chromatography–mass spectrometry. Journal of the Science of Food and Agriculture, 2016, 96, 3207-3212.	1.7	12
135	Superâ€ŧoughened poly(<scp>l</scp> â€lactic acid) fabricated via reactive blending and interfacial compatibilization. Polymer International, 2016, 65, 1187-1194.	1.6	19
136	Effect of electron beam irradiation on the properties of polylactic acid/montmorillonite nanocomposites for food packaging applications. Journal of Applied Polymer Science, 2016, 133, .	1.3	24
137	Investigation of structure and mechanical properties of toughened poly(<scp>l</scp> â€lactide)/thermoplastic poly(ester urethane) blends. Journal of Applied Polymer Science, 2016, 133, .	1.3	40
138	Estimation of the Compatibility of Blend Composites of Resins by Measuring the Fluorescent Spectra. Analytical Sciences, 2016, 32, 1251-1256.	0.8	6
139	Induced liquid-crystalline ordering in solutions of stiff and flexible amphiphilic macromolecules: Effect of mixture composition. Journal of Chemical Physics, 2016, 145, 044904.	1.2	8
140	Thermal and Flame Resistant Properties of Poly (Lactic Acid)/Poly (Methyl Methacrylate) Blends Containing Halogen-free Flame Retardant. Procedia Chemistry, 2016, 19, 795-802.	0.7	17
141	Sandwich-Architectured Poly(lactic acid)–Graphene Composite Food Packaging Films. ACS Applied Materials & Interfaces, 2016, 8, 9994-10004.	4.0	146
142	Non-isothermal crystallization kinetics of polypropylene/poly(lactic acid)/maleic anhydride-grafted polypropylene blends. Journal of Thermal Analysis and Calorimetry, 2016, 126, 785-794.	2.0	15
143	Thermal and Morphological Properties of Poly (Lactic Acid)/Nanocellulose Nanocomposites. Procedia Chemistry, 2016, 19, 788-794.	0.7	97
144	Characterization and disintegrability under composting conditions of PLA-based nanocomposite films with thymol and silver nanoparticles. Polymer Degradation and Stability, 2016, 132, 2-10.	2.7	54
145	Functionalization and photocuring of an L-lactic acid macromer for biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 497-507.	1.8	10
146	Clickable Polylactic Acids by Fast Organocatalytic Ring-Opening Polymerization in Continuous Flow. Macromolecules, 2016, 49, 2054-2062.	2.2	35
147	New transparent poly(<scp>l</scp> -lactide acid) films as high-performance bio-based nanocomposites. RSC Advances, 2016, 6, 23949-23955.	1.7	8
148	Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews, 2016, 107, 333-366.	6.6	895

#	Article	IF	CITATIONS
149	Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. European Polymer Journal, 2016, 79, 1-12.	2.6	212
150	Polylactic acid/zinc oxide biocomposite films for food packaging application. International Journal of Biological Macromolecules, 2016, 88, 254-262.	3.6	204
151	PLA composites: From production to properties. Advanced Drug Delivery Reviews, 2016, 107, 17-46.	6.6	651
152	PLLA/ZnO nanocomposites: Dynamic surfaces to harness cell differentiation. Colloids and Surfaces B: Biointerfaces, 2016, 144, 152-160.	2.5	22
153	Composite materials with bast fibres: Structural, technical, and environmental properties. Progress in Materials Science, 2016, 83, 1-23.	16.0	102
154	Biodegradable electronics: cornerstone for sustainable electronics and transient applications. Journal of Materials Chemistry C, 2016, 4, 5531-5558.	2.7	184
155	Current status and future challenges of table olive processing wastewater valorization. Biochemical Engineering Journal, 2016, 112, 103-113.	1.8	50
156	Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Advanced Drug Delivery Reviews, 2016, 107, 206-212.	6.6	336
158	Building the design, translation and development principles of polymeric nanomedicines using the case of clinically advanced poly(lactide(glycolide))–poly(ethylene glycol) nanotechnology as a model: An industrial viewpoint. Advanced Drug Delivery Reviews, 2016, 107, 289-332.	6.6	33
159	Investigation on the properties of poly(l-lactide)/thermoplastic poly(ester urethane)/halloysite nanotube composites prepared based on prediction of halloysite nanotube location by measuring free surface energies. Polymer, 2016, 104, 104-114.	1.8	24
160	Reductive Amination of Aldehyde Ester from Vegetable Oils to Produce Amino Ester in the Presence of Anhydrous Ammonia. ChemistrySelect, 2016, 1, 2004-2008.	0.7	4
161	Antimicrobial PLA films from environment friendly additives. Composites Part B: Engineering, 2016, 102, 94-99.	5.9	109
162	Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. Journal of Cleaner Production, 2016, 137, 667-676.	4.6	139
163	Polylactides in additive biomanufacturing. Advanced Drug Delivery Reviews, 2016, 107, 228-246.	6.6	63
164	Fermentation of de-oiled algal biomass by Lactobacillus casei for production of lactic acid. Bioprocess and Biosystems Engineering, 2016, 39, 1817-1823.	1.7	12
166	Influence of rubber content on mechanical, thermal, and morphological behavior of natural rubber toughened poly(lactic acid)–multiwalled carbon nanotube nanocomposites. Journal of Applied Polymer Science, 2016, 133, .	1.3	24
167	Surface properties of poly(lactic acid)/polyacrylate semi-interpenetrating networks – Effect of UVC radiation. Polymer Degradation and Stability, 2016, 131, 71-81.	2.7	6
168	Temperature Dependence of Morphology of Transcrystalline at the Interface of Carbon Fiber and Poly (L‣actic Acid) Composite Under a Temperature Gradient Stage. Macromolecular Symposia, 2016, 365, 10-16.	0.4	5

#	Article	IF	CITATIONS
169	The Use of a Green Polymer Nanocomposite in Geo-Infrastructure. , 2016, , .		0
170	A review on non-electro nanofibre spinning techniques. RSC Advances, 2016, 6, 83783-83801.	1.7	101
171	Preparation and characterization of poly(vinylidene fluoride): A high dielectric performance nano-composite for electrical storage. Results in Physics, 2016, 6, 617-626.	2.0	51
173	In vitro synthesis of linear α-1,3-glucan and chemical modification to ester derivatives exhibiting outstanding thermal properties. Scientific Reports, 2016, 6, 30479.	1.6	71
174	Physical and mechanical characterization of PLLA interference screws produced by two stage injection molding method. Progress in Biomaterials, 2016, 5, 183-191.	1.8	10
175	Biodegradable polymer scaffolds. Journal of Materials Chemistry B, 2016, 4, 7493-7505.	2.9	64
176	Efficacy of antimicrobial properties of polylactide/cinnamon oil film with and without high-pressure treatment against Listeria monocytogenes and Salmonella typhimurium inoculated in chicken sample. Food Packaging and Shelf Life, 2016, 10, 72-78.	3.3	15
177	Biodegradable Polymer for Food Packaging: Degradation and Waste Management. Food Preservation Technology, 2016, , 531-547.	0.0	0
178	Green Synthesis of Inorganic–Organic Hybrid Materials: State of the Art and Future Perspectives. European Journal of Inorganic Chemistry, 2016, 2016, 1135-1156.	1.0	54
179	Biobased Packaging. , 2016, , .		2
180	Synthesis and Rheology of Branched Multiblock Polymers Based on Polylactide. Macromolecules, 2016, 49, 4587-4598.	2.2	49
181	Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Advanced Drug Delivery Reviews, 2016, 107, 367-392.	6.6	1,957
182	Poly(lactic acid) for delivery of bioactive macromolecules. Advanced Drug Delivery Reviews, 2016, 107, 277-288.	6.6	49
183	A colour-tunable chiral AIEgen: reversible coordination, enantiomer discrimination and morphology visualization. Chemical Science, 2016, 7, 6106-6114.	3.7	22
184	Thermal properties of ZnO and bimetallic Ag–Cu alloy reinforced poly(lactic acid) nanocomposite films. Journal of Thermal Analysis and Calorimetry, 2016, 125, 205-214.	2.0	15
185	Development of flexible bactericidal films based on poly(lactic acid) and essential oil and its effectiveness to reduce microbial growth of refrigerated rainbow trout. LWT - Food Science and Technology, 2016, 72, 251-260.	2.5	92
186	Nanocomposites of poly(l -lactide) and surface-modified chitin whiskers with improved mechanical properties and cytocompatibility. European Polymer Journal, 2016, 81, 266-283.	2.6	35
187	Effects of part build orientations on fatigue behaviour of FDM-processed PLA material. Progress in Additive Manufacturing, 2016, 1, 21-28.	2.5	220

#	Article	IF	CITATIONS
188	Hydrogel formation by the â€~topological conversion' of cyclic PLA–PEO block copolymers. Polymer Journal, 2016, 48, 391-398.	1.3	12
189	Three-dimensional orientation of poly(<scp>l</scp> -lactide) crystals under uniaxial drawing. RSC Advances, 2016, 6, 11943-11951.	1.7	21
190	A Comparison of the Rheological and Mechanical Properties of Isotactic, Syndiotactic, and Heterotactic Poly(lactide). Macromolecules, 2016, 49, 909-919.	2.2	52
191	Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview. Water Research, 2016, 92, 22-37.	5.3	289
192	Compostability assessment of nano-reinforced poly(lactic acid) films. Waste Management, 2016, 48, 143-155.	3.7	55
193	Modification of poly(l-lactic acid) electrospun fibers and films with poly(propylene imine) dendrimer. Applied Surface Science, 2016, 363, 593-603.	3.1	25
194	The feasibility of producing patient-specific acrylic cranioplasty implants with a low-cost 3D printer. Journal of Neurosurgery, 2016, 124, 1531-1537.	0.9	92
195	Valorization of Lactic Acid and Derivatives to Acrylic Acid Derivatives: Review of Mechanistic Studies. Green Chemistry and Sustainable Technology, 2016, , 39-62.	0.4	7
196	The crystallinity, thermal properties and microscopic morphology of di-block copolymers of <scp>l</scp> -lactide and several acrylates. RSC Advances, 2016, 6, 31934-31946.	1.7	12
197	A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydrate Polymers, 2016, 144, 254-262.	5.1	174
198	Cardanol derivatives as innovative bio-plasticizers for poly-(lactic acid). Polymer Degradation and Stability, 2016, 132, 213-219.	2.7	32
199	Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites. Polymer Degradation and Stability, 2016, 132, 145-156.	2.7	81
200	Atmospheric plasma assisted PLA/microfibrillated cellulose (MFC) multilayer biocomposite for sustainable barrier application. Industrial Crops and Products, 2016, 93, 235-243.	2.5	41
201	Impact of corona treatment on PLA film properties. Polymer Degradation and Stability, 2016, 132, 109-116.	2.7	51
202	Simultaneous saccharification and fermentation (SSF) of jackfruit seed powder (JFSP) to l -lactic acid and to polylactide polymer. Bioresource Technology, 2016, 213, 283-288.	4.8	19
203	An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid Prototyping Journal, 2016, 22, 387-404.	1.6	179
204	Mechanical, structural and thermal properties of Ag–Cu and ZnO reinforced polylactide nanocomposite films. International Journal of Biological Macromolecules, 2016, 86, 885-892.	3.6	74
205	Aminopiperidine based complexes for lactide polymerisation. Dalton Transactions, 2016, 45, 5374-5387.	1.6	24

#	Article	IF	CITATIONS
206	Effect of N,N′-diallyl-phenylphosphoricdiamide on ease of ignition, thermal decomposition behavior and mechanical properties of poly (lactic acid). Polymer Degradation and Stability, 2016, 127, 2-10.	2.7	33
207	Ultrahigh Heat-resistant, Transparent Bioplastics from Exotic Amino Acid. Materials Today: Proceedings, 2016, 3, S21-S29.	0.9	11
208	Toughening Glassy Poly(lactide) with Block Copolymer Micelles. ACS Macro Letters, 2016, 5, 359-364.	2.3	83
209	Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Industrial Crops and Products, 2016, 93, 290-301.	2.5	112
210	Preparation of poly(lactide)/poly(butylene adipate-co-terephthalate) blend films using a solvent casting method and their food packaging application. LWT - Food Science and Technology, 2016, 68, 454-461.	2.5	146
211	Environmental Impact of Natural Polymers. , 2016, , 315-338.		3
212	Photocatalytic self-cleaning poly(l -lactide) materials based on a hybrid between nanosized zinc oxide and expanded graphite or fullerene. Materials Science and Engineering C, 2016, 60, 184-194.	3.8	33
213	Life-Cycle Assessment of Food-Packaging Systems. Environmental Footprints and Eco-design of Products and Processes, 2016, , 1-22.	0.7	9
214	Release of thymol from poly(lactic acid)-based antimicrobial films containing kenaf fibres as natural filler. LWT - Food Science and Technology, 2016, 66, 629-637.	2.5	48
215	Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Composites Part A: Applied Science and Manufacturing, 2016, 83, 130-139.	3.8	129
216	Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer. Carbohydrate Polymers, 2016, 137, 515-524.	5.1	34
217	Migration kinetics of sorbic acid from polylactic acid and seaweed based films into food simulants. LWT - Food Science and Technology, 2016, 65, 630-636.	2.5	30
218	Antimicrobial efficacies of essential oils/nanoparticles incorporated polylactide films against <i>L. monocytogenes</i> and <i>S. typhimurium</i> on contaminated cheese. International Journal of Food Properties, 2017, 20, 53-67.	1.3	51
219	Fabrication of poly(lactic acid)/graphene oxide/stearic acid composites with improved tensile strength. Polymer Composites, 2017, 38, 2272-2282.	2.3	24
220	Influence of nanoclay and graft copolymer on the thermal and flammability properties of poly(lactic) Tj ETQq0 0	O rgBT /Ov	erlock 10 Tf 12
221	Preparation, characterization, and oxygen scavenging capacity of biodegradable αâ€ŧocopherol/PLA microparticles for active food packaging applications. Polymer Composites, 2017, 38, 981-986.	2.3	45
222	Development and Antibacterial Performance of Novel Polylactic Acid-Graphene Oxide-Silver Nanoparticle Hybrid Nanocomposite Mats Prepared By Electrospinning. ACS Biomaterials Science and Engineering, 2017, 3, 471-486.	2.6	136
223	Copolymerization of lactones and bioaromatics via concurrent ring-opening polymerization/polycondensation. Green Chemistry. 2017. 19. 1877-1888.	4.6	51

#	Article	IF	CITATIONS
224	Synthesis and chemical modification of poly(butylene succinate) with rutin useful to the release of silybin. Industrial Crops and Products, 2017, 97, 599-611.	2.5	27
225	Star-shaped lactic acid based systems and their thermosetting resins; synthesis, characterization, potential opportunities and drawbacks. European Polymer Journal, 2017, 87, 360-379.	2.6	33
226	Rheological and Thermo-Mechanical Properties of Poly(lactic acid)/Lignin-Coated Cellulose Nanocrystal Composites. ACS Sustainable Chemistry and Engineering, 2017, 5, 1711-1720.	3.2	142
227	A Novel Approach to Design Lesion-Specific Stents for Minimum Recoil. Journal of Medical Devices, Transactions of the ASME, 2017, 11, .	0.4	3
228	Preparation and properties of electrically conductive, flexible and transparent silver nanowire/poly (lactic acid) nanocomposites. Organic Electronics, 2017, 44, 74-84.	1.4	26
229	Poly(lactic acid)â€based nanocomposites. Polymers for Advanced Technologies, 2017, 28, 919-930.	1.6	52
230	Investigation of the biocompatibility and cytotoxicity associated with ROP initiator and its role in bulk polymerization of l-lactide. Polymer, 2017, 111, 244-251.	1.8	15
231	Effect of the state of water and relative humidity on ageing of PLA films. Food Chemistry, 2017, 236, 109-119.	4.2	39
232	<i>l²</i> -cyclodextrin as a Partial Replacement of Phosphorus Flame Retardant for Poly(Lactic) Tj ETQq0 0 0 rgB1 Polymer-Plastics Technology and Engineering, 2017, 56, 1680-1694.	/Overlock 1.9	2 10 Tf 50 42 9
234	Beyond Biodegradability of Poly(lactic acid): Physical and Chemical Stability in Humid Environments. ACS Sustainable Chemistry and Engineering, 2017, 5, 2751-2762.	3.2	64
236	Plant fibre-reinforced polymers: where do we stand in terms of tensile properties?. International Materials Reviews, 2017, 62, 441-464.	9.4	66
237	ls 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. Journal of Occupational and Environmental Hygiene, 2017, 14, D80-D85.	0.4	194
238	Active Nanocomposites in Food Contact Materials. Sustainable Agriculture Reviews, 2017, , 1-44.	0.6	4
239	Polymer Nanocomposites for Food Packaging. , 2017, , 119-147.		11
240	Direct observation of shear piezoelectricity in poly- <scp>l</scp> -lactic acid nanowires. APL Materials, 2017, 5, .	2.2	44
241	The effect of halloysite nanotubes and N,N'- ethylenebis (stearamide) on the properties of polylactide nanocomposites with amorphous matrix. Polymer Testing, 2017, 61, 35-45.	2.3	14
242	Thermo-sensitive random poly(L-alanine-co-L-lactic acid) with no cytotoxicity by the structure-controlled synthesis for a nano-drug carrier. International Journal of Polymer Analysis and Characterization, 2017, 22, 435-446.	0.9	1
243	High-resolution nanopatterning of biodegradable polylactide by thermal nanoimprint lithography using gas permeable mold. AIP Advances, 2017, 7, .	0.6	8

#	Article	IF	CITATIONS
244	Thermal and mechanical properties of tailor-made unbranched α-1,3-glucan esters with various carboxylic acid chain length. Carbohydrate Polymers, 2017, 169, 245-254.	5.1	43
245	Making a Supertough Flame-Retardant Polylactide Composite through Reactive Blending with Ethylene-Acrylic Ester-Glycidyl Methacrylate Terpolymer and Addition of Aluminum Hypophosphite. ACS Omega, 2017, 2, 1886-1895.	1.6	27
246	Stabilization of Polylactic Acid and Polyethylene with Nutshell Extract: Efficiency Assessment and Economic Evaluation. ACS Sustainable Chemistry and Engineering, 2017, 5, 4607-4618.	3.2	27
247	Can poly(ε-caprolactone) crystals nucleate glassy polylactide?. CrystEngComm, 2017, 19, 3178-3191.	1.3	18
248	Polylactic acid macromonomer radical propagation kinetics and degradation behaviour. Reaction Chemistry and Engineering, 2017, 2, 487-497.	1.9	12
249	Stability of O/W emulsions packed with PLA film with incorporated rosemary and thyme. European Food Research and Technology, 2017, 243, 1249-1259.	1.6	9
250	Effect of Layout Sequence on the Integrity of Poly-lactic Acid and Rice Straw Fibre Composites. Materials Today: Proceedings, 2017, 4, 3150-3157.	0.9	1
251	Design of toughened PLA based material for application in structures subjected to severe loading conditions. Part 2. Quasi-static tensile tests and dynamic mechanical analysis at ambient and moderately high temperature. Polymer Testing, 2017, 57, 235-244.	2.3	14
252	Polysaccharide nanocrystals as fillers for PLA based nanocomposites. Cellulose, 2017, 24, 447-478.	2.4	122
253	Implantable polymeric microneedles with phototriggerable properties as a patient-controlled transdermal analgesia system. Journal of Materials Chemistry B, 2017, 5, 496-503.	2.9	40
254	A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. International Journal of Biological Macromolecules, 2017, 96, 282-301.	3.6	295
255	Bionanocomposites based on PLA and halloysite nanotubes: From key properties to photooxidative degradation. Polymer Degradation and Stability, 2017, 145, 60-69.	2.7	40
256	Efficient Recycling of Poly(lactic acid) Nanoparticle Templates for the Synthesis of Hollow Silica Spheres. ACS Sustainable Chemistry and Engineering, 2017, 5, 4941-4947.	3.2	18
257	Polylactic acid nano- and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release <i>via</i> high intensity focused ultrasound. Nanoscale, 2017, 9, 7063-7070.	2.8	59
258	Improved water barrier properties of polylactic acid films with an amorphous hydrogenated carbon (a-C:H) coating. Carbon, 2017, 120, 157-164.	5.4	16
259	Curcumin-bortezomib loaded polymeric nanoparticles for synergistic cancer therapy. European Polymer Journal, 2017, 93, 116-131.	2.6	44
260	Incorporation of supramolecular polymer-functionalized graphene: Towards the development of bio-based high electrically conductive polymeric nanocomposites. Composites Science and Technology, 2017, 148, 89-96.	3.8	21
261	Effective binary catalysts of BrÃ,nsted acidic ionic liquids and stannous chloride dihydrate for melt polycondensation of l-lactic acid. Molecular Catalysis, 2017, 434, 140-145.	1.0	6

	Сітатіо	on Report	
#	Article	IF	CITATIONS
262	Physical gelation and macromolecular mobility of sustainable polylactide during isothermal crystallization. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1235-1244.	2.4	7
263	Release of carbon nanoparticles of different size and shape from nanocomposite poly(lactic) acid film into food simulants. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2017, 34, 1072-1085.	1.1	8
264	Effect of annealing on gas permeability and mechanical properties of polylactic acid/talc composite films. Journal of Plastic Film and Sheeting, 2017, 33, 361-383.	1.3	17
265	Comparative effects of untreated and 3-methacryloxypropyltrimethoxysilane treated ZnO nanoparticle reinforcement on properties of polylactide-based nanocomposite films. International Journal of Biological Macromolecules, 2017, 101, 1041-1050.	3.6	43
266	Design for Sustainability in Composite Product Development. , 2017, , 273-294.		1
267	Compressive shape memory behavior of springâ€shaped polylactic acid alloy type. Journal of Applied Polymer Science, 2017, 134, 45115.	1.3	13
268	Characterization of poly(lactic acid)s with reduced molecular weight fabricated through an autoclave process. Polymer Testing, 2017, 60, 132-139.	2,3	20
269	Biopolymer production and end of life comparisons using life cycle assessment. Resources, Conservation and Recycling, 2017, 122, 295-306.	5.3	158
270	Two-Step Enzymatic Synthesis of Biocompatible Polymers Made from Cholic Acid. ACS Sustainable Chemistry and Engineering, 2017, 5, 689-695.	3.2	11
271	Preparation and characterization of nanocomposites based on PLA and TiO2 nanoparticles functionalized with fluorocarbons. Polymer Bulletin, 2017, 74, 3027-3041.	1.7	15
272	Biopolymer-based functional composites for medical applications. Progress in Polymer Science, 2017, 68, 77-105.	11.8	292
273	Storage stability of packaged baby formula in poly(lactide)â€whey protein isolate laminated pouch. Journal of the Science of Food and Agriculture, 2017, 97, 3365-3373.	1.7	10
274	Melt processing of biodegradable poly(lactic acid)/functionalized chitosan nanocomposite films: mechanical modeling with improved oxygen barrier and thermal properties. Journal of Polymer Research, 2017, 24, 1.	1.2	19
275	Development of a microfluidic platform integrating high-resolution microstructured biomaterials to study cell–material interactions. Lab on A Chip, 2017, 17, 4134-4147.	3.1	23
276	Aromatic interactions in aryl-capped polylactides: A thermorheological investigation. Journal of Rheology, 2017, 61, 1137-1148.	1.3	5
277	Lightweight parametric design optimization for 4D printed parts. Integrated Computer-Aided Engineering, 2017, 24, 225-240.	2.5	24
278	Poly(dl-lactide)-degrading enzyme production by immobilized Actinomadura keratinilytica strain T16-1 in a 5-L fermenter under various fermentation processes. Electronic Journal of Biotechnology, 2017, 30, 71-76.	1.2	9
279	Fluorescent additive for estimation of compatibility of polyester blend by imipramine-containing polymer. International Journal of Polymer Analysis and Characterization, 2017, 22, 725-733.	0.9	7

#	Article	IF	CITATIONS
280	Development and characterization of polyvinyl alcohol stabilized polylactic acid/ZnO nanocomposites. Materials Research Express, 2017, 4, 105019.	0.8	25
282	Preparation and properties of poly (lactic acid)/magnetic Fe ₃ O ₄ composites and nonwovens. RSC Advances, 2017, 7, 41929-41935.	1.7	27
283	Preparation, characterization and in vitro evaluation of $\hat{I}\mu$ -polylysine-loaded polymer blend microparticles for potential pancreatic cancer therapy. Journal of Microencapsulation, 2017, 34, 582-591.	1.2	6
285	Cyclic versus linear polylactide: Straightforward access using a single catalyst. Journal of Polymer Science Part A, 2017, 55, 3175-3179.	2.5	14
286	Characterizations of PLA-PEG blends involving organically modified montmorillonite. Journal of Analytical and Applied Pyrolysis, 2017, 127, 343-349.	2.6	27
287	Improvements in morphology, mechanical and thermal properties of films produced by reactive blending of poly(lactic acid)/natural rubber latex with dicumyl peroxide. Iranian Polymer Journal (English Edition), 2017, 26, 615-628.	1.3	12
288	Networks based on biodegradable polyesters: An overview of the chemical ways of crosslinking. Materials Science and Engineering C, 2017, 80, 760-770.	3.8	25
289	Rheology and morphology study of immiscible linear lowâ€density polyethylene/poly(lactic acid) blends filled with nanosilica particles. Journal of Applied Polymer Science, 2017, 134, 45526.	1.3	16
290	Effects of PP-based Nanopackaging on the Overall Quality and Shelf Life of Ready-to-eat Salami. Packaging Technology and Science, 2017, 30, 663-679.	1.3	8
291	Optimization of Poly(dl-Lactic Acid) Degradation and Evaluation of Biological Re-polymerization. Journal of Polymers and the Environment, 2017, 25, 1131-1139.	2.4	14
292	PLA-Based Nanocomposites Reinforced with CNC for Food Packaging Applications: From Synthesis to Biodegradation. , 2017, , 265-300.		6
293	Isolation and characterization of bacteria capable of degrading poly(lactic acid) at ambient temperature. Polymer Degradation and Stability, 2017, 144, 392-400.	2.7	57
294	Poly(α-hydroxy acid) based polymers: A review on material and degradation aspects. Polymer Degradation and Stability, 2017, 144, 520-535.	2.7	71
298	Preparation and characterization of bio resin natural tannin/poly (vinylidene fluoride): A high dielectric performance nano-composite for electrical storage. Chemical Physics, 2017, 494, 61-71.	0.9	0
299	Polylactic acid biocomposites: approaches to a completely green flame retarded polymer. E-Polymers, 2017, 17, 449-462.	1.3	33
300	Processing of Poly(lactic Acid). Advances in Polymer Science, 2017, , 1-33.	0.4	12
301	Poly(lactic acid)-Based Materials for Automotive Applications. Advances in Polymer Science, 2017, , 177-219.	0.4	26
302	Poly(lactic acid) as Biomaterial for Cardiovascular Devices and Tissue Engineering Applications. Advances in Polymer Science, 2017, , 51-77.	0.4	16

#	Article	IF	CITATIONS
303	Cellulose Nanofibrils Films: Molecular Diffusion through Elongated Sub-Nano Cavities. Journal of Physical Chemistry C, 2017, 121, 15437-15447.	1.5	20
304	6.3 Engineering the Organ Bone. , 2017, , 54-74.		1
305	Progress in environmental-friendly polymer nanocomposite material from PLA: Synthesis, processing and applications. Vacuum, 2017, 146, 655-663.	1.6	101
306	Effect of Poly(Lactic Acid)/Kenaf Composites Incorporated with Thymol on the Antimicrobial Activity of Processed Meat. Journal of Food Processing and Preservation, 2017, 41, e13145.	0.9	15
307	Production and Application ofÂLactic Acid. , 2017, , 543-556.		23
308	Synergistic Effects of Polyethylene Glycol and Polyhedral Oligomeric Silsesquioxanes on Crystallization Behavior of Poly(L-lactide). Journal of Macromolecular Science - Physics, 2017, 56, 12-25.	0.4	6
309	Selfâ€supportingâ€film from starch, poly(vinyl alcohol), and glutaraldehyde: Optimization of composition using response surface methodology. Journal of Applied Polymer Science, 2017, 134, .	1.3	14
310	Enthalpy relaxation of the glass of poly (l-lactic acid) of different d-isomer content and its effect on mechanical properties. Polymer Bulletin, 2017, 74, 2565-2573.	1.7	22
311	Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material. Carbohydrate Polymers, 2017, 157, 1323-1332.	5.1	93
312	Space-resolved thermal properties of thermoplastics reinforced with carbon nanotubes. Journal of Thermal Analysis and Calorimetry, 2017, 127, 2059-2074.	2.0	7
313	Dynamic Monte Carlo Simulation of the <scp>l,l</scp> â€Lactide Ringâ€Opening Polymerization. Macromolecular Reaction Engineering, 2017, 11, 1600039.	0.9	7
314	Smart Polymers. , 2017, , 131-154.		9
315	Deciphering the potential of guar gum/Ag-Cu nanocomposite films as an active food packaging material. Carbohydrate Polymers, 2017, 157, 65-71.	5.1	123
316	Transformation of Palm Oil Mill Effluent to Terpolymer Polyhydroxyalkanoate and Biodiesel Using Rummeliibacillus pycnus Strain TS8. Waste and Biomass Valorization, 2017, 8, 1247-1256.	1.8	9
317	Mixture of PLA–PEG and biotinylated albumin enables immobilization of avidins on electrospun fibers. Journal of Biomedical Materials Research - Part A, 2017, 105, 356-362.	2.1	11
318	Barrier properties of poly(lactic acid)/cloisite 30B composites and their relation between oxygen permeability and relative humidity. Journal of Applied Polymer Science, 2017, 134, .	1.3	9
319	Fabrication of hollow nanofibrous structures using a triple layering method for vascular scaffold applications. Fibers and Polymers, 2017, 18, 2342-2348.	1.1	6
320	Impregnation of Cinnamon Essential Oil into Plasticised Polylactic Acid Biocomposite Film for Active Food Packaging. Journal of Packaging Technology and Research, 2017, 1, 149-156.	0.6	27

~		~	
	ON	REDC	DT
\sim		IVEL V	

#	ARTICLE	IF	CITATIONS
321	Thermomechanical Properties of Polylactic Acid-Graphene Composites: A State-of-the-Art Review for Biomedical Applications. Materials, 2017, 10, 748.	1.3	73
322	Biodegradation of Biopolymers. , 2017, , 739-755.		45
323	On the Use of PLA-PHB Blends for Sustainable Food Packaging Applications. Materials, 2017, 10, 1008.	1.3	272
324	Poly(lactic acid) Composites Containing Carbon-Based Nanomaterials: A Review. Polymers, 2017, 9, 269.	2.0	109
325	An overview of nanoparticles role in the improvement of barrier properties of bioplastics for food packaging applications. , 2017, , 391-424.		31
326	Use of Starch in Food Packaging. , 2017, , 229-256.		7
327	Application of Biopolymer Composites in Super Capacitor. , 2017, , 487-503.		21
328	Antimicrobial Films Based on Chitosan and Methylcellulose Containing Natamycin for Active Packaging Applications. Coatings, 2017, 7, 177.	1.2	23
329	X-ray Tomographic Imaging of Tensile Deformation Modes of Electrospun Biodegradable Polyester Fibers. Frontiers in Materials, 2017, 4, .	1.2	31
330	Composite Orthopedic Fixation Devices. , 2017, , 399-425.		1
331	Characterization of Extruded Poly(lactic acid)/Pecan Nutshell Biocomposites. International Journal of Polymer Science, 2017, 2017, 1-12.	1.2	15
332	Preparation and Characterization of Ternary Antimicrobial Films of β-Cyclodextrin/Allyl Isothiocyanate/Polylactic Acid for the Enhancement of Long-Term Controlled Release. Materials, 2017, 10, 1210.	1.3	13
333	Effect of Crosslinking Agent and Branching Agent on Morphological and Physical Properties of Poly(Butylene succinate) Foams. Frontiers in Forests and Global Change, 2017, 36, 333-354.	0.6	16
334	Preparation of poly(L-lactide)/poly(ethylene glycol)/organo-modified montmorillonite nanocomposites via melt intercalation under continuous elongation flow. Journal of Polymer Engineering, 2018, 38, 449-460.	0.6	8
335	Dual effect biodegradable ciprofloxacin loaded implantable matrices for osteomyelitis: controlled release and osteointegration. Drug Development and Industrial Pharmacy, 2018, 44, 1023-1033.	0.9	7
336	Characteristic Properties of Novel Organosolv Lignin/Polylactide/Delta-Valerolactone Terpolymers. Journal of Polymers and the Environment, 2018, 26, 3262-3271.	2.4	2
337	Controlled release of 18- <i>β</i> -glycyrrhetic acid by nanodelivery systems increases cytotoxicity on oral carcinoma cell line. Nanotechnology, 2018, 29, 285101.	1.3	40
338	A comparative study of three-dimensional printing directions: The degradation and toxicological profile of a PLA/PHA blend. Polymer Degradation and Stability, 2018, 152, 191-207.	2.7	81

#	Article	IF	CITATIONS
339	Active Chicken Meat Packaging Based on Polylactide Films and Bimetallic Ag–Cu Nanoparticles and Essential Oil. Journal of Food Science, 2018, 83, 1299-1310.	1.5	100
340	Next-Generation Water-Soluble Homogeneous Catalysts for Conversion of Glycerol to Lactic Acid. Organometallics, 2018, 37, 1400-1409.	1.1	46
341	The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chemistry, 2018, 20, 1929-1961.	4.6	499
342	Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews, 2018, 127, 138-166.	6.6	512
343	Hydrodynamic characteristics of particles with different roughness and deformability in a liquid fluidized bed. Chemical Engineering Science, 2018, 185, 50-63.	1.9	12
344	Dipyridamole-loaded biodegradable PLA nanoplatforms as coatings for cardiovascular stents. Nanotechnology, 2018, 29, 275101.	1.3	29
345	Thermal analysis of poly(lactic acid) plasticized by cardanol derivatives. Journal of Thermal Analysis and Calorimetry, 2018, 134, 559-565.	2.0	23
346	Liquid-liquid equilibria and COSMO-SAC modeling of organic solvent/ionic liquid - hydroxyacetone - water mixtures. Fluid Phase Equilibria, 2018, 462, 73-84.	1.4	17
347	Crossâ€metathesis functionalized exoâ€olefin derivatives of lactide. Journal of Polymer Science Part A, 2018, 56, 741-748.	2.5	7
348	Synthesis of a novel polyphosphate and its application with APP in flame retardant PLA. RSC Advances, 2018, 8, 4483-4493.	1.7	40
349	A material length scale–based methodology to assess static strength of notched additively manufactured polylactide (PLA). Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 2071-2098.	1.7	48
350	Commentary on: Rejuvenating the Face: An Analysis of 100 Absorbable Suture Suspension Patients. Aesthetic Surgery Journal, 2018, 38, 664-666.	0.9	1
351	Dyeing of recycled Poly(lactic acid) fibers from disposable packages flake with low energy consumption and effluent. Journal of Cleaner Production, 2018, 176, 382-390.	4.6	11
352	Shear wave propagation in layered composites with degraded matrices at locations of imperfect bonding. Wave Motion, 2018, 78, 9-31.	1.0	3
353	Effects of UV/Photo-Initiator Treatments on Enhancement of Crystallinity of Polylactide Films and Their Physicochemical Properties. Journal of Polymers and the Environment, 2018, 26, 2793-2802.	2.4	5
354	Multiscale modeling of poly(lactic acid) production: From reaction conditions to rheology of polymer melt. Chemical Engineering Journal, 2018, 336, 361-375.	6.6	19
355	Coarseâ€grained Aâ€graftâ€B model of poly(lactic acid) for molecular dynamics simulations. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 604-612.	2.4	9
356	Nanocrystal–Polymer Particles: Extended Delivery Carriers for Osteoarthritis Treatment. Small, 2018, 14, 1703108.	5.2	48

#	Article	IF	CITATIONS
357	Uptake and Intracellular Fate of Engineered Nanoparticles in Mammalian Cells: Capabilities and Limitations of Transmission Electron Microscopy—Polymerâ€Based Nanoparticles. Advanced Materials, 2018, 30, 1703704.	11.1	67
358	Rejuvenating the Face: An Analysis of 100 Absorbable Suture Suspension Patients. Aesthetic Surgery Journal, 2018, 38, 654-663.	0.9	40
359	Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 2018, 340, 9-14.	6.6	482
360	Biodegradable polylactide and thermoplastic starch blends as drug release device – mass transfer study. Polish Journal of Chemical Technology, 2018, 20, 75-80.	0.3	10
361	A simple method for preparation of microcellular <scp>PLA</scp> /calcium carbonate nanocomposite using super critical nitrogen as a blowing agent: Control of microstructure. Advances in Polymer Technology, 2018, 37, 3017-3026.	0.8	11
362	<i>In vitro</i> degradation and <i>in vivo</i> toxicity of NanoMatrix3D [®] polycaprolactone and poly(lactic acid) nanofibrous scaffolds. Journal of Biomedical Materials Research - Part A, 2018, 106, 2200-2212.	2.1	20
363	Heat Treated Luffa - PLA Composites: Effect of Cyclic Moisture Absorption and Desorption on the Mechanical Properties. Materials Science Forum, 0, 917, 42-46.	0.3	1
364	Spin-coating: A new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites. Carbohydrate Polymers, 2018, 190, 139-147.	5.1	55
365	Development and Application of 3D Printed Mesoreactors in Chemical Engineering Education. Journal of Chemical Education, 2018, 95, 783-790.	1.1	27
366	Structure and thermal properties of porous polylactic acid membranes prepared via phase inversion induced by hot water droplets. Polymer, 2018, 141, 62-69.	1.8	37
367	Effects of agar films incorporated with fish protein hydrolysate or clove essential oil on flounder (Paralichthys orbignyanus) fillets shelf-life. Food Hydrocolloids, 2018, 81, 351-363.	5.6	119
368	The influence of chemically treated natural fibers in poly(lactic acid) composites containing thymol. Polymer Composites, 2018, 39, 1261-1272.	2.3	15
369	Influence of factors on release of antimicrobials from antimicrobial packaging materials. Critical Reviews in Food Science and Nutrition, 2018, 58, 1108-1121.	5.4	26
370	Practical Approach in Developing Desirable Peel–Seal and Clear Lidding Films Based on Poly(Lactic) Tj ETQq1 1 296-309.	0.784314 1.3	rgBT /Overlo 10
371	Biodegradable Compatibilized Poly(l-lactide)/Thermoplastic Polyurethane Blends: Design, Preparation and Property Testing. Journal of Polymers and the Environment, 2018, 26, 1818-1830.	2.4	20
372	Aluminum-doped zinc oxide coatings on polylactic acid films for antimicrobial food packaging. Thin Solid Films, 2018, 645, 187-192.	0.8	62
373	Synchronized extraction and purification of L-lactic acid from fermentation broth by emulsion liquid membrane technique. Journal of Dispersion Science and Technology, 2018, 39, 1291-1299.	1.3	24
374	Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA). Journal of Thermoplastic Composite Materials, 2018, 31, 1090-1101.	2.6	61

#	Article	IF	CITATIONS
375	Flexural elasticity of woodpile lattice beams. European Journal of Mechanics, A/Solids, 2018, 67, 187-199.	2.1	25
376	Metabolic engineering of <i>Bacillus subtilis</i> for production of Dâ€lactic acid. Biotechnology and Bioengineering, 2018, 115, 453-463.	1.7	36
377	Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. Materials Science and Engineering C, 2018, 83, 218-232.	3.8	68
378	Absorption of Siderite Within a Chemically Modified Poly(lactic acid) Based Composite Material for Agricultural Applications. Journal of Polymers and the Environment, 2018, 26, 2173-2181.	2.4	2
379	Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates. International Journal of Biological Macromolecules, 2018, 107, 615-625.	3.6	130
380	Synthesis and Characterization of Novel Star-Shaped Itaconic Acid Based Thermosetting Resins. Journal of Polymers and the Environment, 2018, 26, 2072-2085.	2.4	15
381	Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites. Polymer Composites, 2018, 39, E9.	2.3	88
382	Perspectives of Bio-nanocomposites for Food Packaging Applications. , 2018, , 1-32.		15
383	Monitoring lipid oxidation in a processed meat product packaged with nanocomposite poly(lactic) Tj ETQq0 0 0	rgBT_/Over 2.6	'loဌန 10 Tf 50
384	Phosphasalen vs. Salen Ligands: What Does the Phosphorus Change?. European Journal of Inorganic Chemistry, 2018, 2018, 1634-1644.	1.0	15
385	Performance of high lignin content cellulose nanocrystals in poly(lactic acid). Polymer, 2018, 135, 305-313.	1.8	59
386	Supertough PLA-Silane Nanohybrids by in Situ Condensation and Grafting. ACS Sustainable Chemistry and Engineering, 2018, 6, 1289-1298.	3.2	39
387	Composites of Wood and Biodegradable Thermoplastics: A Review. Polymer Reviews, 2018, 58, 444-494.	5.3	134
388	The role of stearic acid for silver nanoparticle formation on graphene and its composite with poly(lactic acid). Polymer Bulletin, 2018, 75, 3171-3187.	1.7	2
389	New opportunities to valorize biomass wastes into green materials. II. Behaviour to accelerated weathering. Journal of Cleaner Production, 2018, 172, 2567-2575.	4.6	13
390	Recovery of yerba mate (llex paraguariensis) residue for the development of PLA-based bionanocomposite films. Industrial Crops and Products, 2018, 111, 317-328.	2.5	73
392	Mechanical, Color and Barrier, Properties of Biodegradable Nanocomposites Polylactic Acid/Nanoclay. Journal of Bioremediation & Biodegradation, 2018, 09, .	0.5	16
393	Highly active Mg(<scp>ii</scp>) and Zn(<scp>ii</scp>) complexes for the ring opening polymerisation of lactide, Polymer Chemistry, 2018, 9, 5339-5347	1.9	61

#	Article	IF	CITATIONS
394	Renewable vanillin based flame retardant for poly(lactic acid): a way to enhance flame retardancy and toughness simultaneously. RSC Advances, 2018, 8, 42189-42199.	1.7	48
395	Quality- and sustainability-related issues associated with biopolymers for food packaging applications. , 2018, , 401-418.		11
396	Accelerated Ageing of Alkali Treated Olive Husk Flour Reinforced Polylactic Acid (PLA) Biocomposites: Physico-Mechanical Properties. Polymers and Polymer Composites, 2018, 26, 223-232.	1.0	11
397	Hybrid Materials Based on I,d-Poly(lactic acid) and Single-Walled Carbon Nanotubes as Flexible Substrate for Organic Devices. Polymers, 2018, 10, 1271.	2.0	11
399	A 3D-printed 3-DOF tripedal microrobotic platform for unconstrained and omnidirectional sample positioning. International Journal of Intelligent Robotics and Applications, 2018, 2, 425-435.	1.6	7
400	An Efficient Chemical Conversion of Glycerol to Dihydroxyacetone. ChemistrySelect, 2018, 3, 11569-11572.	0.7	5
401	Surface Roughness, Hydrophilicity and Encapsulation Efficiency of Gentamicin Loaded Surface Engineered PLA Microspheres. Journal of Physics: Conference Series, 2018, 1082, 012068.	0.3	1
402	Investigation of crystalline structure of plasticized poly (lactic acid)/Banana nanofibers composites. IOP Conference Series: Materials Science and Engineering, 2018, 369, 012031.	0.3	25
403	Alternating Copolymerization of Epoxides and Anhydrides Catalyzed by Aluminum Complexes. ACS Omega, 2018, 3, 17581-17589.	1.6	21
405	Implantable Polymeric Drug Delivery Devices: Classification, Manufacture, Materials, and Clinical Applications. Polymers, 2018, 10, 1379.	2.0	242
406	Thermal properties of polylactic acid/zinc oxide biocomposite films. AIP Conference Proceedings, 2018,	0.3	4
407	Fabrication and characterization of a PVDF/PLA membrane made by electrospinning as a flexible temperature sensor. , 2018, , .		1
408	Enhanced Flexibility of Biodegradable Polylactic Acid/Starch Blends Using Epoxidized Palm Oil as Plasticizer. Polymers, 2018, 10, 977.	2.0	47
409	Mechanical and Optical Properties of Polylactic Acid Films Containing Surfactant-Modified Cellulose Nanocrystals. Journal of Nanomaterials, 2018, 2018, 1-12.	1.5	18
410	Metabolic Engineered Biocatalyst: A Solution for PLA Based Problems. International Journal of Biomaterials, 2018, 2018, 1-9.	1.1	21
411	Peroxide-initiated graft modification of thermoplastic BioPolyesters: Introduction of long-chain branching. Polymer, 2018, 158, 254-261.	1.8	11
413	Development of new bioâ€based polyol ester from palm oil for potential polymeric drug carrier. Advances in Polymer Technology, 2018, 37, 3552-3560.	0.8	6
414	Twin-Screw Extrusion: A Key Technology for the Biorefinery. ACS Symposium Series, 2018, , 25-44.	0.5	3

#	Article	IF	CITATIONS
415	Contribution of Reactive Extrusion to Technological and Scientific Challenges of Eco-Friendly Circular Economy. ACS Symposium Series, 2018, , 45-66.	0.5	1
416	Preparation of Cationic Starches by Reactive Extrusion: Experiments and Modelling. ACS Symposium Series, 2018, , 67-88.	0.5	1
417	Starch Extrudates as Sustainable Ingredients in Food and Non-Food Applications. ACS Symposium Series, 2018, , 89-113.	0.5	0
418	Melt Stability of Starch-Filled LDPE during Multi-Pass Extrusion Determined by Melt-Flow and Non-Isothermal Thermogravimetric Investigations. ACS Symposium Series, 2018, , 115-136.	0.5	0
419	Microcellular Foaming of (Nano)Biocomposites by Continuous Extrusion Assisted by Supercritical CO2. ACS Symposium Series, 2018, , 171-188.	0.5	3
420	Extrusion and Ionic Liquids: A Promising Combination To Develop High Performance Polymer Materials. ACS Symposium Series, 2018, , 189-208.	0.5	0
421	Wet Feeding Approach for Cellulosic Materials/PCL Biocomposites. ACS Symposium Series, 2018, , 209-226.	0.5	6
422	Applying Mathematical Optimization To Efficiently Make Better Decisions for Extrusion Technology: State-of-the-Art and Opportunities. ACS Symposium Series, 2018, , 243-260.	0.5	1
423	Controlling the Properties of OPEFB/PLA Polymer Composite by Using Fe2O3 for Microwave Applications. Fibers and Polymers, 2018, 19, 1513-1521.	1.1	14
424	Highâ€Barrier, Biodegradable Food Packaging. Macromolecular Materials and Engineering, 2018, 303, 1800333.	1.7	33
425	Using Reactive Extrusion To Manufacture Greener Products: From Laboratory Fundamentals to Commercial Scale. ACS Symposium Series, 2018, , 1-23.	0.5	5
427	Food Packaging: A Comprehensive Review and Future Trends. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 860-877.	5.9	430
428	UV-A activated TiO2 embedded biodegradable polymer film for antimicrobial food packaging application. LWT - Food Science and Technology, 2018, 96, 307-314.	2.5	77
429	Incorporation of spice essential oils into poly-lactic acid film matrix with the aim of extending microbiological and sensorial shelf life of ground beef. LWT - Food Science and Technology, 2018, 96, 482-490.	2.5	57
430	Present and Future of Biodegradable Polymers for Food Packaging Applications. , 2018, , 431-467.		49
431	Physical properties of nanocomposite polylactic acid films prepared with oleic acid modified titanium dioxide. Food Packaging and Shelf Life, 2018, 17, 30-38.	3.3	49
432	Reduced physical aging rates of polylactide in polystyrene/polylactide multilayer films from fast scanning calorimetry. Polymer, 2018, 150, 1-9.	1.8	15
433	Active polylactic acid film incorporated with green tea extract: Development, characterization and effectiveness. Industrial Crops and Products, 2018, 123, 100-110.	2.5	52

#	Article	IF	CITATIONS
434	Development of 3D-Printed Embedded Temperature Sensor for Both Terrestrial and Aquatic Environmental Monitoring Robots. 3D Printing and Additive Manufacturing, 2018, 5, 160-169.	1.4	22
435	Biosynthesis of d-lactic acid from lignocellulosic biomass. Biotechnology Letters, 2018, 40, 1167-1179.	1.1	31
436	Thermal properties, phase morphology and stability of biodegradable PLA/PBSL/HAp composites. Polymer Degradation and Stability, 2018, 154, 248-260.	2.7	47
437	Polylactic Acid Biocomposites Reinforced with Nanocellulose Fibrils with High Lignin Content for Improved Mechanical, Thermal, and Barrier Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 10058-10068.	3.2	127
438	Classification of recyclables using laser-induced breakdown spectroscopy for waste management. Spectroscopy Letters, 2018, 51, 257-265.	0.5	16
439	Thermal, optical and structural properties of blocks and blends of PLA and P2HEB. Green Materials, 2018, 6, 85-96.	1.1	9
440	Controlling short circuiting, oxide layer and cavitation problems in electrochemical machining of freeform surfaces. Journal of Materials Processing Technology, 2018, 262, 585-596.	3.1	9
441	Improving the resistance to hydrothermal ageing of flame-retarded PLA by incorporating miscible PMMA. Polymer Degradation and Stability, 2018, 155, 52-66.	2.7	17
442	Pharmapolymers in the 21st century: Synthetic polymers in drug delivery applications. Progress in Polymer Science, 2018, 87, 107-164.	11.8	177
443	Biomass-Derived Building Block Chemicals. , 2018, , 177-200.		2
444	Novel Approaches of Nanotechnology in Agro and Food Processing. , 2018, , 271-291.		2
446	Determination of Processing Parameters for Thermoplastic Biocomposites Based on Hybrid Yarns Using Finite Elements Simulation. Journal of Composites Science, 2018, 2, 11.	1.4	2
447	Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion. Materials, 2018, 11, 148.	1.3	78
448	Antimicrobial additives for poly(lactic acid) materials and their applications: current state and perspectives. Applied Microbiology and Biotechnology, 2018, 102, 7739-7756.	1.7	64
449	Incineration of Nanoclay Composites Leads to Byproducts with Reduced Cellular Reactivity. Scientific Reports, 2018, 8, 10709.	1.6	16
450	Effect of tungsten disulfide (WS2) nanotubes on structural, morphological and mechanical properties of poly(L-lactide) (PLLA) films. AIP Conference Proceedings, 2018, , .	0.3	4
451	Improving the Mode-II interlaminar fracture toughness of polymeric matrix composites through additive manufacturing. Materials and Design, 2018, 157, 60-73.	3.3	33
452	Properties and Morphology of Poly(Lactic Acid)/Calcium Carbonate Whiskers Composites Prepared by a Vane Mixer based on an Extensional Flow Field. Journal of Macromolecular Science - Physics, 2018, 57, 418-436.	0.4	6

	CITATION RE	PORT	
#	Article	IF	CITATIONS
453	Poly(lactic acid) mass transfer properties. Progress in Polymer Science, 2018, 86, 85-121.	11.8	71
454	Polylactic acid blends: The future of green, light and tough. Progress in Polymer Science, 2018, 85, 83-127.	11.8	418
456	PLA and single component silicone rubber blends for sub-zero temperature blown film packaging applications. Results in Physics, 2018, 9, 1127-1135.	2.0	11
457	Synthesis and Characterization of Chemicallyâ€Modified Cassava Starch Grafted with Poly(2â€Ethylhexyl) Tj ETQ	q110.78 1.1	4314 rgBT /(
458	Current Challenges in Melt Extrusion of Cellulose-Based Nanocomposites. ACS Symposium Series, 2018, , 137-152.	0.5	1
459	Toughening of Poly(lactic acid) and Thermoplastic Cassava Starch Reactive Blends Using Graphene Nanoplatelets. Polymers, 2018, 10, 95.	2.0	49
460	Cellulose and Nanocellulose Produced from Lignocellulosic Residues by Reactive Extrusion. ACS Symposium Series, 2018, , 227-242.	0.5	3
461	Active Food Packaging From Botanical, Animal, Bacterial, and Synthetic Sources. , 2018, , 87-135.		3
462	Spinning of Cellulose Nanofibrils. ACS Symposium Series, 2018, , 153-169.	0.5	1
463	Group 2 Metal Complexes Based on Redox-Active Acenaphthene-1,2-Diimine Ligand for the Polymerization of L-Lactide. Russian Journal of Applied Chemistry, 2018, 91, 1044-1048.	0.1	12
464	How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review. European Polymer Journal, 2018, 108, 274-285.	2.6	150
465	Influence of fabric pretreatment on adhesion of three-dimensional printed material on textile substrates. Advances in Mechanical Engineering, 2018, 10, 168781401879231.	0.8	42
466	Nanostructured polymer-based piezoelectric and triboelectric materials and devices for energy harvesting applications. Journal Physics D: Applied Physics, 2018, 51, 303001.	1.3	82
468	The future of plastic. Nature Communications, 2018, 9, 2157.	5.8	85
469	One-step synthesis of stereo-pure l,l lactide from l-lactic acid. Catalysis Communications, 2018, 114, 33-36.	1.6	22
470	Bionanocomposites: Green materials for a sustainable future. , 2018, , 699-712.		33
471	Biodegradable Packaging Materials. , 2018, , 688-697.		10
472	The Influence of Additives on the Interfacial Bonding Mechanisms Between Natural Fibre and Biopolymer Composites. Macromolecular Research, 2018, 26, 851-863.	1.0	29

#	Article	IF	CITATIONS
473	Influence of microfibers length on PDLA/cellulose microfibers biocomposites crystallinity and properties. Polymer Bulletin, 2019, 76, 1061-1079.	1.7	10
474	Effect of continuous elongational flow on structure and properties of poly(Lâ€lactic) Tj ETQq1 1 0.784314 rgBT Composites, 2019, 40, E617.	/Overlock 2.3	10 Tf 50 70 <mark>7</mark> 5
475	Accelerated thermal ageing behaviour of bagasse fibers reinforced Poly (Lactic Acid) based biocomposites. Composites Part B: Engineering, 2019, 156, 121-127.	5.9	53
476	Assessment of anisotropic mechanical properties of a 3D printed carbon whisker reinforced composite. Advanced Composite Materials, 2019, 28, 545-560.	1.0	12
477	In vitro and in vivo studies on magnesium alloys to evaluate the feasibility of their use in obstetrics and gynecology. Acta Biomaterialia, 2019, 97, 623-636.	4.1	17
478	Molecular Structure Requirements. , 2019, , 37-72.		0
479	Effect of branching on flow-induced crystallization of poly (lactic acid). European Polymer Journal, 2019, 119, 410-420.	2.6	31
480	Morphological and physiological traits in relation to carbon balance in a diverse clade of dryland mosses. Plant, Cell and Environment, 2019, 42, 3140-3151.	2.8	11
481	Electron rich salen-AlCl catalysts as efficient initiators for the ring-opening polymerisation of rac-lactide. European Polymer Journal, 2019, 119, 507-513.	2.6	18
482	Polylactic Acid-Based Nanocomposites: An Important Class of Biodegradable Composites. Materials Horizons, 2019, , 221-231.	0.3	1
483	Switchable Ringâ€Opening Polymerization by a Ferrocene Supported Aluminum Complex. ChemCatChem, 2019, 11, 4210-4218.	1.8	38
484	Recent advances in pelvic floor repair. F1000Research, 2019, 8, 778.	0.8	23
485	Isolation and characterisation of nanofibrillated cellulose from waste cotton: effects on thermo-mechanical properties of polylactic acid/MA-g-SEBS blends. Iranian Polymer Journal (English) Tj ETQqO 0 () rgBJT /Ov	erl o ¢k 10 Tf 5
486	<i>In situ</i> formation of PLA-grafted alkoxysilanes for toughening a biodegradable PLA stereocomplex thin film. RSC Advances, 2019, 9, 21748-21759.	1.7	14
487	Orange peels: from byâ€product to resource through lactic acid fermentation. Journal of the Science of Food and Agriculture, 2019, 99, 6761-6767.	1.7	32
488	Properties of biobased packaging material. , 2019, , 25-111.		2
489	Structure and antimicrobial properties of longâ€chain branched poly (lactic acid). Journal of Biomedical Materials Research - Part A, 2019, 107, 2458-2467.	2.1	5
490	Impact of Hydrolysis Methods on the Utilization of Agricultural Residues as Nutrient Source for D-lactic Acid Production by Sporolactobacillus inulinus. Fermentation, 2019, 5, 12.	1.4	16

#	Article	IF	CITATIONS
491	Improvement of Gas Barrier Properties of Polyethylene Terephtalate (PET) by Graphene Nanoplatelets (GNP). Materials Today: Proceedings, 2019, 7, 808-815.	0.9	9
492	Synthesis and characterization of thermally stable bio-based poly(ester amide)s from sustainable feedstock. European Polymer Journal, 2019, 120, 109228.	2.6	6
493	Poly(lactic acid) and poly(lactic-co-glycolic) acid nanoparticles: versatility in biomedical applications. , 2019, , 199-216.		3
494	Barrier properties and abrasion resistance of biopolymerâ€based coatings on biodegradable poly(lactic) Tj ETQq1	1 0.7843] 1.5	l4 ₈ rgBT /Ov
495	Crystallinity and Property Enhancements in Neat Polylactic Acid by Chilled Extrusion: Solidâ€State Shear Pulverization and Solidâ€State/Melt Extrusion. Polymer Engineering and Science, 2019, 59, E286.	1.5	12
496	Synthesis and characterization of novel polymer matrix composites reinforced with max phases (Ti 3) Tj ETQq1 1 Ceramic Engineering & Science, 2019, 1, 144-154.	0.784314 0.5	rgBT /Over 8
497	High-Strength, Low-Permeable, and Light-Protective Nanocomposite Films Based on a Hybrid Nanopigment and Biodegradable PLA for Food Packaging Applications. ACS Omega, 2019, 4, 14947-14954.	1.6	59
498	Furfuryl Alcohol and Lactic Acid Blends: Homo- or Co-Polymerization?. Polymers, 2019, 11, 1533.	2.0	7
499	Electric Volume Resistivity for Biopolyimide Using 4,4′-Diamino-α-truxillic acid and 1,2,3,4-Cyclobutanetetracarboxylic dianhydride. Polymers, 2019, 11, 1552.	2.0	11
500	Effect of PLA/PBAT Antibacterial Film on Storage Quality of Passion Fruit during the Shelf-Life. Molecules, 2019, 24, 3378.	1.7	19
501	Impact of thermal processing or solvent casting upon crystallization of PLA nanocellulose and/or nanoclay composites. Journal of Applied Polymer Science, 2019, 136, 47486.	1.3	22
502	Bio-based composite fibers from pine essential oil and PLA/PBAT polymer blend. Morphological, physicochemical, thermal and mechanical characterization. Materials Chemistry and Physics, 2019, 234, 345-353.	2.0	55
503	Effect of lignin on mechanical, biodegradability, morphology, and thermal properties of polypropylene/polylactic acid/lignin biocomposite. Plastics, Rubber and Composites, 2019, 48, 82-92.	0.9	31
504	Toward Sustainable PLA-Based Multilayer Complexes with Improved Barrier Properties. ACS Sustainable Chemistry and Engineering, 2019, 7, 3759-3771.	3.2	57
505	Improved Impact Properties in Poly(lactic acid) (PLA) Blends Containing Cellulose Acetate (CA) Prepared by Reactive Extrusion. Materials, 2019, 12, 270.	1.3	25
506	Bioâ€Inspired, Selfâ€Toughening Polymers Enabled by Plasticizerâ€Releasing Microcapsules. Advanced Materials, 2019, 31, e1807212.	11.1	19
507	Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment. International Journal of Biological Macromolecules, 2019, 129, 448-459.	3.6	101
508	Correlating <i>in vitro</i> degradation and drug release kinetics of biopolymer-based drug delivery systems. International Journal of Biobased Plastics, 2019, 1, 8-21.	5.6	16

#	Article	IF	CITATIONS
509	Fabrication and characterization of biopolymer fibers for 3D oriented microvascular structures. Journal of Micromechanics and Microengineering, 2019, 29, 083003.	1.5	9
510	Efficacy of eluted antibiotics through 3D printed femoral implants. Biomedical Microdevices, 2019, 21, 51.	1.4	23
511	Purification and polymerisation of microbial d-lactic acid from DDGS hydrolysates fermentation. Biochemical Engineering Journal, 2019, 150, 107265.	1.8	27
512	Levulinic Acid as a Versatile Building Block for Plasticizer Design. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	17
513	Effects of graft polymer compatibilizers in blends of cellulose triacetate and poly(lactic acid). Polymer International, 2019, 68, 1263-1270.	1.6	9
514	Compostable polymer materials $\hat{a} \in \hat{~}$ definitions, structures and methods of preparation. , 2019, , 11-48.		2
515	Enhancing Impact Toughness of Renewable Poly(lactic acid)/Thermoplastic Polyurethane Blends via Constructing Cocontinuous-like Phase Morphology Assisted by Ethylene–Methyl Acrylate–Glycidyl Methacrylate Copolymer. Industrial & Engineering Chemistry Research, 2019, 58, 10894-10907.	1.8	53
516	Investigation of zincâ€ʿcopper alloys as potential materials for craniomaxillofacial osteosynthesis implants. Materials Science and Engineering C, 2019, 103, 109826.	3.8	70
517	Conceiving a feasible degradation model of polylactic acid-based composites through hydrolysis study to polylactic acid/wood flour/polymethyl methacrylate. Composites Science and Technology, 2019, 181, 107675.	3.8	27
518	N,N-Diethyl-3-methylbenzamide (DEET): A mosquito repellent as functional plasticizer for poly(l-lactic) Tj ETQq1	1 0,78431 1.2	4 rgBT /Overl 14
519	Mechanical strength evaluation of crystalline poly(L-lactic acid) fabricated by replica micromolding for bioabsorbable microneedle devices. Japanese Journal of Applied Physics, 2019, 58, SDDK05.	0.8	6
519 520	Mechanical strength evaluation of crystalline poly(L-lactic acid) fabricated by replica micromolding for bioabsorbable microneedle devices. Japanese Journal of Applied Physics, 2019, 58, SDDK05. Thermal and UV aging of polypropylene stabilized by wine seeds wastes and their extracts. Polymer Degradation and Stability, 2019, 165, 49-59.	0.8 2.7	6 28
519 520 521	Mechanical strength evaluation of crystalline poly(L-lactic acid) fabricated by replica micromolding for bioabsorbable microneedle devices. Japanese Journal of Applied Physics, 2019, 58, SDDK05. Thermal and UV aging of polypropylene stabilized by wine seeds wastes and their extracts. Polymer Degradation and Stability, 2019, 165, 49-59. Plant-based materials and transitioning to a circular economy. Sustainable Production and Consumption, 2019, 19, 194-215.	0.8 2.7 5.7	6 28 149
519 520 521 522	Mechanical strength evaluation of crystalline poly(L-lactic acid) fabricated by replica micromolding for bioabsorbable microneedle devices. Japanese Journal of Applied Physics, 2019, 58, SDDK05. Thermal and UV aging of polypropylene stabilized by wine seeds wastes and their extracts. Polymer Degradation and Stability, 2019, 165, 49-59. Plant-based materials and transitioning to a circular economy. Sustainable Production and Consumption, 2019, 19, 194-215. Migration of oligomers from a food contact biopolymer based on polylactic acid (PLA) and polyester. Analytical and Bioanalytical Chemistry, 2019, 411, 3521-3532.	0.8 2.7 5.7 1.9	6 28 149 46
 519 520 521 522 523 	Mechanical strength evaluation of crystalline poly(L-lactic acid) fabricated by replica micromolding for bioabsorbable microneedle devices. Japanese Journal of Applied Physics, 2019, 58, SDDK05. Thermal and UV aging of polypropylene stabilized by wine seeds wastes and their extracts. Polymer Degradation and Stability, 2019, 165, 49-59. Plant-based materials and transitioning to a circular economy. Sustainable Production and Consumption, 2019, 19, 194-215. Migration of oligomers from a food contact biopolymer based on polylactic acid (PLA) and polyester. Analytical and Bioanalytical Chemistry, 2019, 411, 3521-3532. Physical and Chemical Stability of PLA in Food Packaging. , 2019, , .	0.8 2.7 5.7 1.9	6 28 149 46
 519 520 521 522 523 524 	Mechanical strength evaluation of crystalline poly(L-lactic acid) fabricated by replica micromolding for bioabsorbable microneedle devices. Japanese Journal of Applied Physics, 2019, 58, SDDK05. Thermal and UV aging of polypropylene stabilized by wine seeds wastes and their extracts. Polymer Degradation and Stability, 2019, 165, 49-59. Plant-based materials and transitioning to a circular economy. Sustainable Production and Consumption, 2019, 19, 194-215. Migration of oligomers from a food contact biopolymer based on polylactic acid (PLA) and polyester. Analytical and Bioanalytical Chemistry, 2019, 411, 3521-3532. Physical and Chemical Stability of PLA in Food Packaging. , 2019, , . Technological challenges and advances: from lactic acid to polylactate and copolymers. , 2019, , 117-153.	0.8 2.7 5.7 1.9	6 28 149 46 6
 519 520 521 522 523 524 525 	Mechanical strength evaluation of crystalline poly(L-lactic acid) fabricated by replica micromolding for bioabsorbable microneedle devices. Japanese Journal of Applied Physics, 2019, 58, SDDKO5.Thermal and UV aging of polypropylene stabilized by wine seeds wastes and their extracts. Polymer Degradation and Stability, 2019, 165, 49-59.Plant-based materials and transitioning to a circular economy. Sustainable Production and Consumption, 2019, 19, 194-215.Migration of oligomers from a food contact biopolymer based on polylactic acid (PLA) and polyester. Analytical and Bioanalytical Chemistry, 2019, 411, 3521-3532.Physical and Chemical Stability of PLA in Food Packaging., 2019, , .Technological challenges and advances: from lactic acid to polylactate and copolymers., 2019, , 117-153.Plasma treated and untreated thermoplastic biopolymers/biocomposites in tissue engineering and biodegradable implants., 2019, , 339-369.	0.8 2.7 5.7 1.9	6 28 149 46 6 0

#	Article	IF	CITATIONS
527	Preparation of Glass Fabric/Poly(l-lactide) Composites by Thermoplastic Resin Transfer Molding. Polymers, 2019, 11, 339.	2.0	11
528	Continuous Processing of Nanocellulose and Polylactic Acid into Multilayer Barrier Coatings. ACS Applied Materials & Interfaces, 2019, 11, 11920-11927.	4.0	96
529	Metabolic engineering of microorganisms for production of aromatic compounds. Microbial Cell Factories, 2019, 18, 41.	1.9	150
530	Bread Packaging: Features and Functions. , 2019, , 211-222.		9
531	Insights into the biodegradation of PHA / wood composites: Micro- and macroscopic changes. Sustainable Materials and Technologies, 2019, 21, e00099.	1.7	22
532	Effects of furan-phosphamide derivative on flame retardancy and crystallization behaviors of poly(lactic acid). Chemical Engineering Journal, 2019, 369, 150-160.	6.6	91
533	Effect of phosphorus-containing modified magnesium hydroxide on the mechanical properties and flammability of PLA/MH composites. AIP Conference Proceedings, 2019, , .	0.3	1
534	Particulate systems of PLA and its copolymers. , 2019, , 349-380.		1
535	Thermal conductivity of poly(L‣actic Acid) subjected to elongational deformations. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 547-553.	2.4	4
536	Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds. Materials Science and Engineering C, 2019, 101, 660-673.	3.8	86
537	Kinetic release study of zinc from polylactic acid based nanocomposite into food simulants. Polymer Testing, 2019, 76, 254-260.	2.3	28
538	A Highly Elastic and Autofluorescent Poly(xylitol-dodecanedioic Acid) for Tissue Engineering. ACS Biomaterials Science and Engineering, 2019, 5, 1257-1267.	2.6	26
539	Natural monomers: A mine for functional and sustainable materials – Occurrence, chemical modification and polymerization. Progress in Polymer Science, 2019, 92, 158-209.	11.8	124
540	Impact of Nanoparticle Shape, Size, and Properties of the Sustainable Nanocomposites. , 2019, , 313-336.		13
541	Polymers derived from hemicellulosic parts of lignocellulosic biomass. Reviews in Environmental Science and Biotechnology, 2019, 18, 317-334.	3.9	57
542	Advanced Biodegradable Materials for Water and Beverages Packaging. , 2019, , 227-239.		2
543	Bioplastic Fibers from Gum Arabic for Greener Food Wrapping Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 5900-5911.	3.2	37
544	Starch-Based Nanocomposites: Types and Industrial Applications. , 2019, , 157-181.		17

#	Article	IF	CITATIONS
545	Thermal properties enhancement of poly(lactic acid) by corn cob cellulose nanocrystals. Polymers From Renewable Resources, 2019, 10, 63-76.	0.8	12
546	Stereocomplex Poly(Lactic Acid) Amphiphilic Conetwork Gel with Temperature and pH Dual Sensitivity. Polymers, 2019, 11, 1940.	2.0	9
547	Micromolded Polylactid Acid With Selective Degradation Rate. Frontiers in Materials, 2019, 6, .	1.2	4
548	Morphology, molecular interactions and H2O diffusion in a poly(lactic-acid)/graphene composite: A vibrational spectroscopy study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 218, 40-50.	2.0	12
549	The effect of synthesis conditions and tunable hydrophilicity on the drug encapsulation capability of PLA and PLGA nanoparticles. Colloids and Surfaces B: Biointerfaces, 2019, 176, 212-218.	2.5	28
550	Sustainable polycondensation of multifunctional fatty acids from tomato pomace agro-waste catalyzed by tin (II) 2-ethylhexanoate. Materials Today Sustainability, 2019, 3-4, 100004.	1.9	19
551	Can Biodegradable Plastics Solve Plastic Solid Waste Accumulation?. , 2019, , 403-423.		30
552	A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. International Journal of Biological Macromolecules, 2019, 124, 591-626.	3.6	51
553	Influence of thermoplasticized starch on physical-chemical properties of new biodegradable carriers intended for forest industry. International Journal of Biological Macromolecules, 2019, 122, 924-929.	3.6	6
554	Biocomposites. , 2019, , 197-215.		48
555	Nutritional changes during storage in fresh-cut long storage tomato as affected by biocompostable polylactide and cellulose based packaging. LWT - Food Science and Technology, 2019, 101, 618-624.	2.5	32
556	Surface modification of nanodiamond: Toward the dispersion of reinforced phase in poly-l-lactic acid scaffolds. International Journal of Biological Macromolecules, 2019, 126, 1116-1124.	3.6	86
557	Microbial production of <scp>d</scp> â€lactic acid from dried distiller's grains with solubles. Engineering in Life Sciences, 2019, 19, 21-30.	2.0	21
558	In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. Journal of Polymers and the Environment, 2019, 27, 84-96.	2.4	42
559	Star-shaped and branched polylactides: Synthesis, characterization, and properties. Progress in Polymer Science, 2019, 89, 159-212.	11.8	112
560	Disclosing the role of surface and bulk erosion on the viscoelastic behavior of biodegradable poly(εâ€caprolactone)/poly(lactic acid)/hydroxyapatite nanocomposites. Journal of Applied Polymer Science, 2019, 136, 47151.	1.3	13
561	Utilization of linseed cake as a postagricultural functional filler for poly(lactic acid) green composites. Journal of Applied Polymer Science, 2019, 136, 47152.	1.3	24
562	Preparation and characterization of green polylactic acid (PLA) membranes for organic/organic separation by pervaporation. Clean Technologies and Environmental Policy, 2019, 21, 109-120.	2.1	47

#	Article	IF	Citations
563	Poly(lactic acid) based hydrogels: formation, characteristics and biomedical applications. Journal of Porous Materials, 2019, 26, 881-901.	1.3	59
564	Effect of low nanoclay content on the physico-mechanical properties of poly(lactic acid) nanocomposites. Polymers and Polymer Composites, 2019, 27, 43-54.	1.0	10
565	Preparation and optimization of poly (lactic acid) nanoparticles loaded with fisetin to improve anti-cancer therapy. International Journal of Biological Macromolecules, 2019, 125, 700-710.	3.6	70
566	A new methodology for rapidly assessing interfacial bonding within fibre-reinforced thermoplastic composites. International Journal of Adhesion and Adhesives, 2019, 89, 66-71.	1.4	14
567	Effect of pressurized CO2 and N2 on the rheology of PLA. European Polymer Journal, 2019, 112, 601-609.	2.6	4
568	Mechanical properties of poly(lactid acid) plasticized by cardanol derivatives. Polymer Degradation and Stability, 2019, 159, 199-204.	2.7	25
569	Manufacturing of Biodegradable Poly Lactic Acid (PLA): Green Alternatives to Petroleum Derived Plastics. , 2020, , 561-569.		5
570	Thermal degradation of poly(lactic acid)–zeolite composites produced by melt-blending. Polymer Bulletin, 2020, 77, 2111-2137.	1.7	17
571	The Effect of CaCO3 Nanoparticles and Chitosan on the Properties of PLA Based Biomaterials for Biomedical Applications. , 2020, , 736-745.		4
572	A review of high performance polymer nanocomposites for packaging applications in electronics and food industries. Journal of Plastic Film and Sheeting, 2020, 36, 94-112.	1.3	66
573	Effect of the geometry of cellulose nanocrystals on morphology and mechanical performance of dynamically vulcanized PLA/PU blend. Cellulose, 2020, 27, 215-231.	2.4	10
574	Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. Small, 2020, 16, e1903736.	5.2	77
575	Polylactic Acid (PLA) Modified by Polyethylene Glycol (PEG) for the Immobilization of Lipase. Applied Biochemistry and Biotechnology, 2020, 190, 982-996.	1.4	13
576	Validated innovative approaches for energy-efficient resource recovery and re-use from municipal wastewater: From anaerobic treatment systems to a biorefinery concept. Critical Reviews in Environmental Science and Technology, 2020, 50, 869-902.	6.6	32
577	Synthesis and quantitative analyses of acrylamide-grafted poly(lactide-co-glycidyl methacrylate) amphiphilic copolymers for environmental and biomedical applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 225, 117447.	2.0	3
578	Preparation and characterization of poly-lactic acid based films containing propolis ethanolic extract to be used in dry meat sausage packaging. Journal of Food Science and Technology, 2020, 57, 1242-1250.	1.4	30
579	Characterization of electrostatic interactions and complex formation of ɣ-poly-glutamic acid (PGA) and É›-poly-l-lysine (PLL) in aqueous solutions. Food Research International, 2020, 128, 108781.	2.9	11
580	Development of Poly(lactic acid) Nanocomposites Reinforced with Hydrophobized Bacterial Cellulose. Journal of Polymers and the Environment, 2020, 28, 61-73.	2.4	7

#	Article	IF	CITATIONS
581	Mononuclear zinc(II) Schiff base complexes as catalysts for the ring-opening polymerization of lactide. European Polymer Journal, 2020, 122, 109302.	2.6	33
582	Effective In-Plane Moduli of Fused Filament Fabrication Material with Aligned Mesostructure. Jom, 2020, 72, 1314-1323.	0.9	2
583	In-situ changes of thermo-mechanical properties of poly(lactic acid) film immersed in alcohol solutions. Polymer Testing, 2020, 82, 106320.	2.3	5
584	Isobaric Vapor–Liquid Equilibrium for Binary System of Isoamyl <scp>dl</scp> -Lactate and Isoamyl Alcohol at 25.0, 50.0, and 101.3 kPa. Journal of Chemical & Engineering Data, 2020, 65, 81-87.	1.0	4
585	Exploration of hybrid nanocarbon composite with polylactic acid for packaging applications. International Journal of Biological Macromolecules, 2020, 144, 135-142.	3.6	45
586	Crystallization kinetics and morphology of small concentrations of cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) melt-compounded into poly(lactic acid) (PLA) with plasticizer. Polymer, 2020, 187, 122101.	1.8	41
587	Effect of glass fiber reinforcement on the thermal, mechanical, and flame retardancy behavior of poly(lactic acid)/polycarbonate blend. Polymer Composites, 2020, 41, 1481-1489.	2.3	8
588	Poly(lactic acid)/Functionalized Silica Hybrids by Reactive Extrusion: Thermal, Rheological, and Degradation Behavior. Macromolecular Research, 2020, 28, 327-335.	1.0	4
589	Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 2020, 3, 27-35.	2.7	263
590	Chloroform desorption from poly(lactic acid) nanocomposites: a thermal desorption spectroscopy study. Pure and Applied Chemistry, 2020, 92, 391-398.	0.9	7
591	Preparation of Dibenzazepine-containing Polymers and Use as Fluorescent Functional Additives for Estimating Plastic Blend. Analytical Sciences, 2020, 36, 17-21.	0.8	6
592	Keratin Associations with Synthetic, Biosynthetic and Natural Polymers: An Extensive Review. Polymers, 2020, 12, 32.	2.0	66
593	Substituted glycolides from natural sources: preparation, alcoholysis and polymerization. Polymer Chemistry, 2020, 11, 6890-6902.	1.9	5
594	Applications of PLA in modern medicine. Engineered Regeneration, 2020, 1, 76-87.	3.0	132
595	Vimentin Association with Nuclear Grooves in Normal MEF 3T3 Cells. International Journal of Molecular Sciences, 2020, 21, 7478.	1.8	6
596	Drug-Eluting Stents and Balloons—Materials, Structure Designs, and Coating Techniques: A Review. Molecules, 2020, 25, 4624.	1.7	40
597	Design and evaluation of intensified downstream technologies towards feasible lactic acid bioproduction. Chemical Engineering and Processing: Process Intensification, 2020, 158, 108174.	1.8	12
598	Electron rich (salen)AlCl catalysts for lactide polymerisation: Investigation of the influence of regioisomers on the rate and initiation efficiency. European Polymer Journal, 2020, 138, 109917.	2.6	10

#	Article	IF	CITATIONS
599	Performance evaluation of biobased/biodegradable films for in-package thermal pasteurization. Innovative Food Science and Emerging Technologies, 2020, 66, 102485.	2.7	21
600	Combination of poly lactid acid zinc oxide nanocomposite for antimicrobial packaging application. IOP Conference Series: Materials Science and Engineering, 2020, 830, 042018.	0.3	10
601	Continuous Flow Upgrading of Selected C ₂ –C ₆ Platform Chemicals Derived from Biomass. Chemical Reviews, 2020, 120, 7219-7347.	23.0	222
602	Polylactic acid and highâ€density polyethylene blend: Characterization and application in additive manufacturing. Journal of Applied Polymer Science, 2020, 137, 49602.	1.3	18
603	In Vitro Study of Degradation Behavior, Cytotoxicity, and Cell Adhesion of the Atactic Polylactic Acid for Biomedical Purposes. Journal of Polymers and the Environment, 2020, 28, 2652-2660.	2.4	12
604	Toughening of Poly(<scp>l</scp> -Lactide) with Branched Polycaprolactone: Effect of Chain Length. ACS Omega, 2020, 5, 29284-29291.	1.6	22
605	Solid-State Compounding for Recycling of Sawdust Waste into Green Packaging Composites. Processes, 2020, 8, 1386.	1.3	5
606	Green is the new black – a review of technologies for carboxylic acid recovery from black liquor. Green Chemistry, 2020, 22, 8097-8115.	4.6	29
607	Application of Polypropylene-Based Nanocomposite Films for Sliced Turkish Pastrami under Vacuum/Modified Atmosphere Packaging: A Pilot Study. Coatings, 2020, 10, 1125.	1.2	1
608	Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review. Sustainability, 2020, 12, 6030.	1.6	215
609	Properties and Characterization of PLA, PHA, and Other Types of Biopolymer Composites. , 2020, , 111-138.		19
610	A multi-DOF rotary 3D printer: machine design, performance analysis and process planning of curved layer fused deposition modeling (CLFDM). Rapid Prototyping Journal, 2020, 26, 1079-1093.	1.6	13
611	Influence of organoclay on behaviour of polylactic acid (PLA)/polypropylene (PP) blend. IOP Conference Series: Materials Science and Engineering, 2020, 839, 012017.	0.3	1
612	Development of Biodegradable Cosmetic Patch Using a Polylactic Acid/Phycocyanin–Alginate Composite. Polymers, 2020, 12, 1669.	2.0	22
613	Synthesis and Biological Application of Polylactic Acid. Molecules, 2020, 25, 5023.	1.7	198
614	Nano, micro particulate and cosmetic delivery systems of polylactic acid: A mini review. Journal of Cosmetic Dermatology, 2020, 19, 2805-2811.	0.8	18
615	Preparation of isocyanate microcapsules as a high-performance adhesive for PLA/WF. Construction and Building Materials, 2020, 260, 120483.	3.2	10
616	Mechanical, morphological, thermal properties and hydrolytic degradation behavior of polylactic acid/polypropylene carbonate blends prepared by solvent casting. Polymer Engineering and Science, 2020, 60, 2876-2886.	1.5	19

#	Article	IF	CITATIONS
617	Advances on the Valorisation and Functionalization of By-Products and Wastes from Cereal-Based Processing Industry. Foods, 2020, 9, 1243.	1.9	42
618	Proteinoid Nanocapsules as Drug Delivery System for Improving Antipsychotic Activity of Risperidone. Molecules, 2020, 25, 4013.	1.7	8
619	Lastingly Colored Polylactide Synthesized by Dye-Initiated Polymerization. Polymers, 2020, 12, 1980.	2.0	1
620	Compostable Polylactide and Cellulose Based Packaging for Fresh-Cut Cherry Tomatoes: Performance Evaluation and Influence of Sterilization Treatment. Materials, 2020, 13, 3432.	1.3	16
621	The Study of Physico-Mechanical Properties of Polylactide Composites with Different Level of Infill Produced by the FDM Method. Polymers, 2020, 12, 3056.	2.0	12
623	Computational Implementation of Required Industrial Unit Operations for Bio-Plastic Production From Starch Extracted from Banana Peels by Aerobic Fermentation using Rizophus Oryzae. Journal of Physics: Conference Series, 2020, 1655, 012078.	0.3	0
624	Strength Evaluation and Modification of a 3D Printed Anterior Ankle Foot Orthoses. Applied Sciences (Switzerland), 2020, 10, 7289.	1.3	3
625	Engineering the Yeast Yarrowia lipolytica for Production of Polylactic Acid Homopolymer. Frontiers in Bioengineering and Biotechnology, 2020, 8, 954.	2.0	21
626	Graphene Derivatives in Biopolymer-Based Composites for Food Packaging Applications. Nanomaterials, 2020, 10, 2077.	1.9	31
627	Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities. Sustainability, 2020, 12, 8360.	1.6	57
628	Simultaneous removal of Cr(III) from high contaminated soil and recovery of lactic acid from the spent solution. Journal of Environmental Management, 2020, 268, 110584.	3.8	13
629	Behaviour of lignocellulosic fibre-reinforced cellular core under low-velocity impact loading: Taguchi method. International Journal of Advanced Manufacturing Technology, 2020, 108, 223-233.	1.5	26
631	Synthesis and properties of a temperature-sensitive hydrogel based on physical crosslinking <i>via</i> stereocomplexation of PLLA-PDLA. RSC Advances, 2020, 10, 19759-19769.	1.7	16
632	Case studies on membrane-based green technology for organic acid manufacture. , 2020, , 561-602.		0
633	Characterization of electrospun polylactide nanofibers modified via atom transfer radical polymerization. Journal of Industrial Textiles, 2020, , 152808372093038.	1.1	1
634	Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transportation Geotechnics, 2020, 24, 100385.	2.0	157
635	Development of a novel rectangular–circular grid filling pattern of fused deposition modeling in cellular lattice structures. International Journal of Advanced Manufacturing Technology, 2020, 108, 3419-3436.	1.5	10
636	Influence of Sepiolite and Lignin as Potential Synergists on Flame Retardant Systems in Polylactide (PLA) and Polyurethane Elastomer (PUE). Materials, 2020, 13, 2450.	1.3	25

ARTICLE IF CITATIONS # Determination of thermal and thermomechanical properties of biodegradable PLA blends: for additive 638 2.0 11 manufacturing process. Journal of Thermal Analysis and Calorimetry, 2020, 142, 715-722. Nano-technologies and reinforcements., 2020, , 185-205. Expanding the Build Plate: Functional Morphing 3D Printed Structures Through Anisotropy. Frontiers 640 1.2 0 in Materials, 2020, 7, . Composite of PLA Nanofiber and Hexadecyl Trimethyl-Ammonium Chloride-Modified Montmorillonite 641 1.2 Clay: Fabrication and Morphology. Coatings, 2020, 10, 484. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environmental Science & amp; 642 4.6 207 Technology, 2020, 54, 4712-4732. Bio-based packaging materials., 2020, , 279-309. Poly-<scp>l</scp>-Lactic Acid Nanotubes as Soft Piezoelectric Interfaces for Biology: Controlling Cell 644 2.3 27 Attachment <i>via</i> Polymer Crystallinity. ACS Applied Bio Materials, 2020, 3, 2140-2149. Mineral-Doped Poly(L-lactide) Acid Scaffolds Enriched with Exosomes Improve Osteogenic 645 1.9 Commitment of Human Adipose-Derived Mesenchymal Stem Cells. Nanomaterials, 2020, 10, 432. 646 The chemistry behind 4D printing. Applied Materials Today, 2020, 19, 100611. 2.3 42 Insights into In Vitro Wound Closure on Two Biopolyestersâ€"Polylactide and Polyhydroxyoctanoate. 647 1.3 Materials, 2020, 13, 2793. Effect of Solvent Combination on Electrospun Stereocomplex Polylactic Acid Nanofiber Properties. 648 0.4 5 Macromolecular Symposia, 2020, 391, 1900134. Study of Physicomechanical Properties of Composite Fibers Based on Polylactide and Modified Chitin 0.4 Nanófibrils. Polymer Science - Series A, 2020, 62, 249-259. Interface nanocavities in poly (lactic acid) membranes with dispersed cellulose nanofibrils: Their role 650 1.8 7 in the gas barrier performances. Polymer, 2020, 202, 122729. Compressive stiffness of staggered woodpile lattices: Mechanics, measurement, and scaling laws. 3.6 International Journal of Mechanical Sciences, 2020, 187, 105932. Biobased and Biodegradable Plastics in Denmark. Industrial Biotechnology, 2020, 16, 164-175. 652 10 0.5 The Analysis of 3D Printer Dust for Forensic Applications,... Journal of Forensic Sciences, 2020, 65, 1480-1496. A hybrid physics-based and data-driven approach for characterizing porosity variation and filament 654 1.7 12 bonding in extrusion-based additive manufacturing. Additive Manufacturing, 2020, 36, 101399. A new bio-based fibre-reinforced polymer obtained from sheep wool short fibres and PLA. Green 1.1 Materials, 2020, 8, 79-91.

#	Article	IF	CITATIONS
656	Poly(lactic acid) microcapsules: Tailoring properties via solid state polymerization. Polymer Degradation and Stability, 2020, 179, 109283.	2.7	14
657	Applications of bionanocomposites in agriculture. , 2020, , 485-504.		5
658	Quality evaluation of solvent-cast 3D printing of poly(lactic acid) films. Bulletin of Materials Science, 2020, 43, 1.	0.8	3
659	High thermal conductivity polylactic acid composite for 3D printing: Synergistic effect of graphene and alumina. Polymers for Advanced Technologies, 2020, 31, 1291-1299.	1.6	32
660	A â€~greener' one-pot synthesis of monoterpene-functionalised lactide oligomers. European Polymer Journal, 2020, 125, 109516.	2.6	13
661	pH dependent degradation properties of lactide based 3D microchamber arrays for sustained cargo release. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110826.	2.5	11
662	Preparation and study on the optical, mechanical, and antibacterial properties of polylactic acid/ZnO/TiO ₂ shared nanocomposites. Journal of Plastic Film and Sheeting, 2020, 36, 285-311.	1.3	18
663	Recent developments in polymers/polymer nanocomposites for additive manufacturing. Progress in Materials Science, 2020, 111, 100638.	16.0	299
664	Characterization of degradation products from a hydrolytically degradable cationic flocculant. Polymer Degradation and Stability, 2020, 174, 109097.	2.7	3
665	Efficient Synthesis of Lactide with Low Racemization Catalyzed by Sodium Bicarbonate and Zinc Lactate. ACS Sustainable Chemistry and Engineering, 2020, 8, 2865-2873.	3.2	21
666	Fracture evaluation of plasticized polylactic acid / poly (3-HYDROXYBUTYRATE) blends for commodities replacement in packaging applications. Polymer Testing, 2020, 84, 106375.	2.3	24
667	Effect of the Thermal History on the Crystallinity of Poly (L-lactic Acid) During the Micromolding Process. Micromachines, 2020, 11, 452.	1.4	4
668	Development of polylactide composites with improved thermomechanical properties by simultaneous use of basalt powder and a nucleating agent. Polymer Composites, 2020, 41, 2947-2957.	2.3	26
669	Star-shaped polylactic acid-based triazine dendrimers: the catalyst type and time factors influence on polylactic acid molecular weight. Iranian Polymer Journal (English Edition), 2020, 29, 423-432.	1.3	8
670	Exploring fermentation strategies for enhanced lactic acid production with polyvinyl alcohol-immobilized Lactobacillus plantarum 23 using microalgae as feedstock. Bioresource Technology, 2020, 308, 123266.	4.8	46
671	Modern Biodegradable Plastics—Processing and Properties: Part I. Materials, 2020, 13, 1986.	1.3	19
672	Modification of poly (lactic acid) through the incorporation of gum rosin and gum rosin derivative: Mechanical performance and hydrophobicity. Journal of Applied Polymer Science, 2020, 137, 49346.	1.3	18
673	Utilization of carrot (Daucus carota L.) fiber as a filler for chitosan based films. Food Hydrocolloids, 2020, 106, 105861.	5.6	37

#	Article	IF	CITATIONS
674	Design of a double-optimized lattice structure using the solid isotropic material with penalization method and material extrusion additive manufacturing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 3447-3458.	1.1	3
675	Effects of Methylenediphenyl 4,4'-Diisocyanate and Maleic Anhydride as Coupling Agents on the Properties of Polylactic Acid/Polybutylene Succinate/Wood Flour Biocomposites by Reactive Extrusion. Materials, 2020, 13, 1660.	1.3	19
676	Natural fibres as promising environmental-friendly reinforcements for polymer composites. Polymers and Polymer Composites, 2021, 29, 277-300.	1.0	25
677	Analysing Flammability Characteristics of Green Biocomposites: An Overview. Fire Technology, 2021, 57, 31-67.	1.5	29
678	A Critical Review on Date Palm Tree (Phoenix dactylifera L.) Fibres and Their Uses in Bio-composites. Waste and Biomass Valorization, 2021, 12, 2853-2887.	1.8	29
679	Progress in green nanocomposites for high-performance applications. Materials Research Innovations, 2021, 25, 53-65.	1.0	27
680	Biopolymers for sustainable membranes in CO2 separation: a review. Fuel Processing Technology, 2021, 213, 106643.	3.7	55
681	Comparative studies of thermal and mechanical properties of macrocyclic versus linear polylactide. Polymer Bulletin, 2021, 78, 3763-3783.	1.7	4
682	Thermal degradation kinetics study of molten polylactide based on Raman spectroscopy. Polymer Engineering and Science, 2021, 61, 201-210.	1.5	26
683	Ex Vivo Imaging of Ultrasound-Stimulated Metabolic Activity in Rat Pancreatic Slices. Ultrasound in Medicine and Biology, 2021, 47, 666-678.	0.7	1
684	Preparation of biobased poly(propylene 2,5â€furandicarboxylate) fibers: Mechanical, thermal and hydrolytic degradation properties. Journal of Applied Polymer Science, 2021, 138, app50345.	1.3	10
685	Importance of sustainable polymers for modern society and development. , 2021, , 1-35.		2
686	Physical and chemical properties of sustainable polymers and their blends. , 2021, , 37-57.		1
687	Biopolymers and their role in medicinal and pharmaceutical applications. , 2021, , 175-191.		12
688	The circularity of potential bio-textile production routes: Comparing life cycle impacts of bio-based materials used within the manufacturing of selected leather substitutes. Journal of Cleaner Production, 2021, 287, 125470.	4.6	44
689	Poly(<scp>l</scp> -Lactic Acid)/Poly(Butylene Succinate) Biobased Biodegradable Blends. Polymer Reviews, 2021, 61, 457-492.	5.3	25
690	The reactive compatibilization of PLA/PP blends and improvement of PLA crystallization properties induced by <i>in situ</i> UV irradiation. CrystEngComm, 2021, 23, 864-875.	1.3	8
691	Effect of nickel phytate on flame retardancy of intumescent flame retardant polylactic acid. Polymers for Advanced Technologies, 2021, 32, 1548-1559.	1.6	38

#	Article	IF	CITATIONS
692	Mechanical and hydrolytic properties of thin polylactic acid films by fused filament fabrication. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 114, 104217.	1.5	14
693	Synthesis and characteristics of MMT reinforced chitosan nanocomposite. Materials Today: Proceedings, 2021, 46, 4487-4492.	0.9	9
694	Biodegradable Materials for Sustainable Health Monitoring Devices. ACS Applied Bio Materials, 2021, 4, 163-194.	2.3	133
695	Thermal behavior of PLA plasticized by commercial and cardanol-derived plasticizers and the effect on the mechanical properties. Journal of Thermal Analysis and Calorimetry, 2021, 146, 131-141.	2.0	34
696	Experimental and computational investigation of polylactic acid/silverâ€NPÂnanocomposite with antimicrobial activity prepared by plasma in liquid. Plasma Processes and Polymers, 2021, 18, 2000169.	1.6	12
697	Preparation, characterization, and preservation performance of active polylactic acid film containing <i>Origanum majorana</i> essential oil and zinc oxide nanoparticles for ground meat packaging. Journal of Food Processing and Preservation, 2021, 45, .	0.9	6
698	Influence of plasticizers on the compostability of polylactic acid. Journal of Applied Research in Technology & Engineering, 2021, 2, 1.	0.4	6
699	Altering the Hydrophobic/Hydrophilic Nature of Bioplastic Surfaces for Biomedical Applications. , 2021, , 431-466.		2
700	Exploring the Effect of Iron Metal-Organic Framework Particles in Polylactic Acid Membranes for the Azeotropic Separation of Organic/Organic Mixtures by Pervaporation. Membranes, 2021, 11, 65.	1.4	34
701	In vivo and Post-synthesis Strategies to Enhance the Properties of PHB-Based Materials: A Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 619266.	2.0	61
702	Effect of supercritical incorporation of cinnamaldehyde on physical-chemical properties, disintegration and toxicity studies of PLA/lignin nanocomposites. International Journal of Biological Macromolecules, 2021, 167, 255-266.	3.6	34
703	Analysis of the rheological property and crystallization behavior of polylactic acid (Ingeoâ,,¢) Tj ETQq1 1 0.78431	4 rgBT /O	verlgck 10 Tf
704	Sustainability of Biodegradable Polymers for the Environment. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 65-87.	0.3	0
706	Boosting PLA melt strength by controlling the chirality of co-monomer incorporation. Chemical Science, 2021, 12, 5672-5681.	3.7	20
707	Biodegradable composites based on biopolymers and natural bast fibres: A review. Materials Today: Proceedings, 2021, 46, 1420-1428.	0.9	20
708	General Structure and Classification of Bioplastics and Biodegradable Plastics. , 2021, , 61-82.		8
709	Application of Bioplastics in Agro-Based Industries and Bioremediation. , 2021, , 661-701.		0
710	A Review on Natural Fiber Bio-Composites, Surface Modifications and Applications. Molecules, 2021, 26, 404.	1.7	124

#	Article	IF	CITATIONS
711	Biochars from Spirulina as an alternative material in the purification of lactic acid from a fermentation broth. Current Research in Green and Sustainable Chemistry, 2021, 4, 100084.	2.9	6
712	Effect of tungsten disulfide nanotubes on crystallization of polylactide under uniaxial deformation and annealing. Functional Composite Materials, 2021, 2, .	0.9	6
713	Chitosan-based materials for supercapacitor applications: a review. Journal of Materials Chemistry A, 2021, 9, 17592-17642.	5.2	74
714	Ultrarapid Cerium(III)–NHC Catalysts for High Molar Mass Cyclic Polylactide. ACS Catalysis, 2021, 11, 1563-1569.	5.5	28
715	PLA Based Plastics for Enhanced Sustainability of the Environment. , 2021, , .		0
716	Migration and Degradation in Composting Environment of Active Polylactic Acid Bilayer Nanocomposites Films: Combined Role of Umbelliferone, Lignin and Cellulose Nanostructures. Polymers, 2021, 13, 282.	2.0	7
717	Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Advances, 2021, 11, 17151-17196.	1.7	226
718	Methods of engineering of biopolymers and biocomposites. , 2021, , 351-357.		8
719	Novel coatings to improve the performance of multilayer biopolymeric films for food packaging applications. , 2021, , 259-280.		0
720	Advances in Green Polymer/Ceramic Nanocomposite for a Sustainable Environment. , 2021, , 1-16.		0
721	Polylactic Acid Activated Bamboo Carbon Nanocomposites. Engineering Materials, 2021, , 63-82.	0.3	0
722	Molecular Imprinted Nanocomposites for Green Chemistry. Materials Horizons, 2021, , 571-598.	0.3	0
724	Processing of advanced green nanomaterials. , 2021, , 15-30.		0
725	Sustainable agricultural waste diversity: advances in green energy and materials production. , 2021, , 55-73.		1
727	Experimental and Numerical Measurement of the Impact Strength of Poly-lactic Acid through a Low-velocity Impact. IOP Conference Series: Materials Science and Engineering, 2021, 1094, 012171.	0.3	0
728	Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1333-1380.	5.9	134
729	Perspectives of polylactic acid from structure to applications. Polymers From Renewable Resources, 2021, 12, 60-74.	0.8	17
730	In-vitro Degradation Behaviors of Poly(L-lactide-co-glycolide-co-ε-caprolactone) Microspheres. Journal of Macromolecular Science - Physics, 2021, 60, 521-529.	0.4	8

#	Article	IF	CITATIONS
731	Towards More Sustainable Materials for Geo-Environmental Engineering: The Case of Geogrids. Sustainability, 2021, 13, 2585.	1.6	13
732	Preparation of Chemically Modified Lignin-Reinforced PLA Biocomposites and Their 3D Printing Performance. Polymers, 2021, 13, 667.	2.0	41
733	Poly(2-ethyl-2-oxazoline) as β-Nucleating Agent for Poly(lactic acid) Blends with High Transparency and Hydrophilicity. Journal of Polymers and the Environment, 2021, 29, 2650-2659.	2.4	5
734	Key Improvements in Interfacial Adhesion and Dispersion of Fibers/Fillers in Polymer Matrix Composites; Focus on PLA Matrix Composites. Composite Interfaces, 2022, 29, 1071-1120.	1.3	24
735	Bottom-Up Development of Nanoimprinted PLLA Composite Films with Enhanced Antibacterial Properties for Smart Packaging Applications. Macromol, 2021, 1, 49-63.	2.4	18
736	Surface activation with oxygen plasma promotes osteogenesis with enhanced extracellular matrix formation in threeâ€dimensional microporous scaffolds. Journal of Biomedical Materials Research - Part A, 2021, 109, 1560-1574.	2.1	11
737	Morphological and Rheological Properties of PLA, PBAT, and PLA/PBAT Blend Nanocomposites Containing CNCs. Nanomaterials, 2021, 11, 857.	1.9	31
738	Statistical Optimization of Alkali Pretreatment to Improve Sugars Recovery from Spent Coffee Grounds and Utilization in Lactic Acid Fermentation. Processes, 2021, 9, 494.	1.3	23
739	Production of Green Star/Linear PLA Blends by Extrusion and Injection Molding: Tailoring Rheological and Mechanical Performances of Conventional PLA. Macromolecular Materials and Engineering, 2021, 306, 2000805.	1.7	10
740	Advances in peroxideâ€initiated graft modification of thermoplastic biopolyesters by reactive extrusion. Canadian Journal of Chemical Engineering, 2021, 99, 1870-1884.	0.9	8
741	Coffee By-Products and Their Suitability for Developing Active Food Packaging Materials. Foods, 2021, 10, 683.	1.9	35
742	Àido L-poliláctico (PLA) y nanotubos de carbono de pared múltiple (NTCPM) con potenciales aplicaciones industriales. Revista Colombiana De Quimica, 2021, 50, 20-39.	0.2	1
743	Prediction of tensile modulus from calorimetric melting curves of polylactic acid with pronounced cold crystallization ability. Polymer Testing, 2021, 95, 107112.	2.3	7
744	Preparation and Characterization of Biodegradable Polylactic Acid (PLA) Film for Food Packaging Application: A Review. Journal of Physics: Conference Series, 2021, 1892, 012037.	0.3	9
745	Towards Controlled Degradation of Poly(lactic) Acid in Technical Applications. Journal of Carbon Research, 2021, 7, 42.	1.4	83
747	Compatibilization of Poly(Lactic Acid) (PLA)/Plasticized Cellulose Acetate Extruded Blends through the Addition of Reactively Extruded Comb Copolymers. Molecules, 2021, 26, 2006.	1.7	12
748	An overview on the influence of process parameters through the characteristic of 3D-printed PEEK and PEI parts. High Performance Polymers, 2021, 33, 862-880.	0.8	49
749	Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers, 2021, 13, 1326.	2.0	208

		CITATION R	EPORT	
#	Article		IF	CITATIONS
752	Modern Biodegradable Plastics—Processing and Properties Part II. Materials, 2021, 1	4, 2523.	1.3	15
753	Innovative Bio-based Poly(Lactic Acid)/Poly(Alkylene Furanoate)s Fiber Blends for Sust Applications. Journal of Polymers and the Environment, 2021, 29, 3948-3963.	ainable Textile	2.4	27
754	Ring-Opening Copolymerization of Cyclohexene Oxide and Cyclic Anhydrides Catalyze Scorpionate Zinc Catalysts. Polymers, 2021, 13, 1651.	d by Bimetallic	2.0	5
755	Preparation of poly(lactic acid)-based shape memory polymers with low response temp utilizing composite plasticizers. Polymer Bulletin, 2022, 79, 4761-4781.	berature	1.7	4
756	The Effect of the Compounding Procedure on the Morphology and Mechanical Propert PLA/PBAT-Based Nanocomposites. International Polymer Processing, 2021, 36, 219-22	ies of 7.	0.3	1
757	Surface Characterization of Fracture in Polylactic Acid vs. PLA + Particle (Cu, Al, Grapho by 3D Fused Deposition Modeling Technology. Coatings, 2021, 11, 633.	ene) Insertions	1.2	5
758	Synergic Effect of HNT/oMMT Bi-filler System for the Mechanical Enhancement of PLA/ and Polymers, 2021, 22, 2163-2169.	PBAT Film. Fibers	1.1	10
759	Effect of molecular weight of Poly(ethylene glycol) on plasticization of Poly(ÊŸ-lactic a 2021, 223, 123720.	cid). Polymer,	1.8	16
760	Graphene oxide crosslinker for the enhancement of mechanical properties of polylaction of Polymer Science, 2021, 59, 1043-1054.	: acid. Journal	2.0	13
761	Thermomechanical, Crystallization and Melting Behavior of Plasticized Poly(Lactic Acic Nanocomposites. Solid State Phenomena, 0, 317, 351-360.)	0.3	1
763	Evaluation of in-vitro drug release of polyvinylcyclohexane carbonate as a CO2-derived polymer blended with PLA and PCL as drug carriers. Journal of Drug Delivery Science ar 2021, 63, 102491.	degradable 1d Technology,	1.4	8
764	Effect of poly(εâ€caprolactone) and titanium (<scp>IV</scp>) dioxide content on the hydrolytic degradation of poly(lactic acid)/poly(εâ€caprolactone) blends. Journal of Ap Science, 2021, 138, 51266.	<scp>UV</scp> and pplied Polymer	1.3	8
765	Present Status and Future Prospects of Jute in Nanotechnology: A Review. Chemical Re 1631-1665.	2cord, 2021, 21,	2.9	97
766	Low-temperature inductively coupled plasma as a method to promote biomineralizatic poly(lactic acid) scaffolds. Journal of Materials Science, 2021, 56, 14717-14728.	n on 3D printed	1.7	3
767	Advanced natural fibre-based fully biodegradable and renewable composites and nano comprehensive review. International Wood Products Journal, 2021, 12, 178-193.	composites: a	0.6	7
768	Fabrication of Novel Functional Cellâ€Plastic Using Polyvinyl Alcohol: Effects of Crossâ Structure and Mixing Ratio of Components on the Mechanical and Thermal Properties. Challenges, 2021, 5, 2100026.	€Linking Global	1.8	4
769	Antimicrobial Food Packaging with Biodegradable Polymers and Bacteriocins. Molecule	2s, 2021, 26, 3735.	1.7	34
770	Recycling of bioplastic waste: A review. Advanced Industrial and Engineering Polymer F 4, 159-177.	Research, 2021,	2.7	50

#	Article	IF	CITATIONS
771	Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers, 2021, 13, 2484.	2.0	77
772	Poly lactic acid (PLA) polymers: from properties to biomedical applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 1117-1130.	1.8	47
773	Preparation and Characterization of Electrospun Polylactic Acid (PLA) Fiber Loaded with Birch Bark Triterpene Extract for Wound Dressing. AAPS PharmSciTech, 2021, 22, 205.	1.5	25
774	Mechanical and Structural Properties of Nanocarbon Particles Reinforced in Plasticised Polylactic Acid for High Strength Application. Journal of Physical Science, 2021, 32, 41-56.	0.5	4
775	Feasibility Study of 3D Printed Materials for an Ammonia Emission Passive Sampler. Basrah Journal of Agricultural Sciences, 0, 34, 11-20.	0.2	0
776	New method for controlled synthesis of polylactide block copolymers: organoborane/ <scp><i>p</i>â€quinone</scp> system and <scp>reversibleâ€deactivation</scp> radical polymerization. Polymer International, 2022, 71, 86-97.	1.6	3
777	Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. Journal of Cleaner Production, 2021, 310, 127483.	4.6	251
779	Direct polycondensation of l-lactic acid in hydrophobic bis(trifluoromethanesulfonyl)imide-anionic ionic liquids: A kinetic study. European Polymer Journal, 2021, 158, 110692.	2.6	7
780	Bioactive Peptides from Liquid Milk Protein Concentrate by Sequential Tryptic and Microbial Hydrolysis. Processes, 2021, 9, 1688.	1.3	6
781	Behavioral Characteristics of Magnesium as a Biomaterial for Surface Engineering Application. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	1.2	4
782	Super Tough Polylactic Acid Plasticized with Epoxidized Soybean Oil Methyl Ester for Flexible Food Packaging. ACS Applied Polymer Materials, 2021, 3, 5087-5095.	2.0	46
783	Biopolymer Degradation Analysis: Accelerated Life Testing Study to Characterize Polylactic Acid Durability. Materials, 2021, 14, 5730.	1.3	4
785	Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends in Food Science and Technology, 2021, 115, 87-104.	7.8	141
786	Active packaging based on PLA and chitosan-caseinate enriched rosemary essential oil coating for fresh minced chicken breast application. Food Packaging and Shelf Life, 2021, 29, 100708.	3.3	40
787	Valorisation of polylactic acid (PLA) waste: A comparative life cycle assessment of various solvent-based chemical recycling technologies. Resources, Conservation and Recycling, 2021, 172, 105670.	5.3	27
788	Highly Shrinkable Objects as Obtained from 4D Printing. Macromolecular Materials and Engineering, 2022, 307, 2100619.	1.7	11
789	Polymerization of lactic acid produced from food waste by metal oxide-assisted dark fermentation. Environmental Technology and Innovation, 2021, 24, 101862.	3.0	13
790	Utilization of bio-polymeric additives for a sustainable production strategy in pulp and paper manufacturing: A comprehensive review. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100050.	1.6	12

#	Article	IF	Citations
791	Nanocrystallisation and self-assembly of biosourced ferulic acid derivative in polylactic acid elastomeric blends. Journal of Colloid and Interface Science, 2022, 606, 1842-1851.	5.0	6
792	Sustainable biocomposite development using halloysite nanotubes and polylactic acid. , 2022, , 245-264.		0
793	Classification, material types, and design approaches of long-acting and implantable drug delivery systems. , 2022, , 17-59.		3
794	Apoptosis modulating nanochemotherapeutics in the treatment of cancer: Recent progress and advances. , 2021, , 153-207.		1
795	Polylactic acid and polyhydroxybutyrate chemistry. , 2021, , 185-211.		0
796	Thermal stability, hydrophobicity and antioxidant potential of ultrafine poly (lactic acid)/rice husk lignin fibers. Brazilian Journal of Chemical Engineering, 2021, 38, 133-144.	0.7	13
797	Utilization of Plastic Wastes and Its Technologies: An Overview. , 2021, , 1-22.		1
798	Functional testing and evaluation of additively manufactured hand drill body prototype. Materials Today: Proceedings, 2021, 45, 3585-3595.	0.9	0
800	Agro-based green biocomposites for packaging applications. , 2021, , 235-254.		1
801	Cooperative Heterometallic Catalysts for Lactide Ring-Opening Polymerization: Combining Aluminum with Divalent Metals. Inorganic Chemistry, 2021, 60, 2294-2303.	1.9	30
802	3D printed scaffolds for tissue engineering applications: Mechanical, morphological, thermal, in-vitro and in-vivo investigations. CIRP Journal of Manufacturing Science and Technology, 2021, 32, 205-216.	2.3	21
803	Advances in Green Polymer/Ceramic Nanocomposite for a Sustainable Environment. , 2021, , 1651-1666.		0
805	Seawaterâ€Ðegradable Polymers—Fighting the Marine Plastic Pollution. Advanced Science, 2021, 8, 2001121.	5.6	157
806	Recyclable and Eco-friendly Single Polymer Composite. , 2019, , 693-725.		3
807	Spectroscopy and Microscopy of Eco-friendly Polymer Composites. , 2019, , 105-141.		1
808	Cellulose-Enabled Polylactic Acid (PLA) Nanocomposites: Recent Developments and Emerging Trends. Springer Series on Polymer and Composite Materials, 2018, , 183-216.	0.5	10
809	Synthetic Materials: Processing and Surface Modifications for Vascular Tissue Engineering. , 2020, , 1-50.		1
810	Nanotechnology Applications in Food: A Scientometric Overview. , 2019, , 683-711.		2

#	Article	IF	CITATIONS
811	Tensile Testing and Evaluation of 3D-Printed PLA Specimens as per ASTM D638 Type IV Standard. Lecture Notes in Mechanical Engineering, 2019, , 79-95.	0.3	14
812	Recent progress in development and chemical modification of poly(hydroxybutyrate)-based blends for potential medical applications. International Journal of Biological Macromolecules, 2020, 160, 77-100.	3.6	62
813	Marine Algae-PLA composites as de novo alternative to porcine derived collagen membranes. Materials Today Chemistry, 2020, 17, 100276.	1.7	16
814	Coarse-grained simulation of molecular ordering in polylactic blends under uniaxial strain. Polymer, 2020, 190, 122232.	1.8	7
815	Bimetallic Zinc Catalysts for Ring-Opening Copolymerization Processes. Inorganic Chemistry, 2020, 59, 8412-8423.	1.9	21
817	Effect of empty fruit bunches microcrystalline cellulose (MCC) on the thermal, mechanical and morphological properties of biodegradable poly (lactic acid) (PLA) and polybutylene adipate terephthalate (PBAT) composites. Materials Research Express, 2020, 7, 015336.	0.8	16
818	The influence of the MEX manufacturing parameters on the tensile elastic response of printed elements. Rapid Prototyping Journal, 2021, 27, 187-196.	1.6	2
819	Formulation and Characterization of Materials Containing Natural Antimicrobial Agents for Food Packaging Applications. International Journal of Advanced Materials Manufacturing and Characterization, 2014, 4, 1-10.	0.2	2
821	Extrusion Foaming of Polylactide. Polymeric Foams Series, 2016, , 107-152.	0.0	2
822	On the use of nano fibrillated kenaf cellulose fiber as reinforcement in polylactic acid biocomposites. Journal of Mechanical Engineering and Sciences, 2019, 13, 4970-4988.	0.3	10
823	Rheological and Morphological Properties of Composites Based on Polylactide and Talc. Journal of Materials Science and Engineering B, 2013, 3, .	0.2	1
824	Bioplastics for Food Packaging: A Review. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 2311-2321.	0.0	30
825	Understanding bioplastic materials - current state and trends. Journal of the Serbian Chemical Society, 2020, 85, 1507-1538.	0.4	19
827	Industrial vegetable oil by-products increase the ductility of polylactide. EXPRESS Polymer Letters, 2015, 9, 1087-1103.	1.1	17
829	Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility. Polymers, 2016, 8, 287.	2.0	88
830	Effect of Addition of Polyï¼^Phenazasiline) to Plastic Blends for Fluorescent Properties and Impact Strength. Journal of the Japan Society of Colour Material, 2018, 91, 13-16.	0.0	2
831	Synthesis and Non-Isothermal Crystallization Behaviors of Maleic Anhydride onto High Density Polyethylene. Journal of the Korean Ceramic Society, 2016, 53, 24-33.	1.1	2
832	Nanokompozit Kaynağı ve Uygulama Alanı Olarak Bitkiler. Marmara Fen Bilimleri Dergisi, 0, , .	0.2	2

#	Article	IF	CITATIONS
833	Partial Polymer Blend for Fused Filament Fabrication with High Thermal Stability. Polymers, 2021, 13, 3353.	2.0	11
834	Plasma Sputtered Tungsten Oxide Thin Film on Poly(lactic acid) for Food Packaging Applications. Coatings, 2021, 11, 1281.	1.2	6
835	Trends and challenges of biopolymerâ€based nanocomposites in food packaging. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5321-5344.	5.9	68
836	Prevalence and Management of Alkyl-Methoxypyrazines in a Changing Climate: Viticultural and Oenological Considerations. Biomolecules, 2021, 11, 1521.	1.8	3
837	Hybridization as an efficient strategy for enhancing the performance of polymer nanocomposites. Polymer Composites, 2021, 42, 6801-6815.	2.3	33
838	Isolation of nanocellulose from lignocellulosic biomass: Synthesis, characterization, modification, and potential applications. Journal of Environmental Chemical Engineering, 2021, 9, 106606.	3.3	35
839	Interacciones empaque-alimento: migración. Revista IngenierÃas Universidad De MedellÃn, 2014, 13, 99-113.	0.1	2
840	Properties Of Plastics For Packaging Applications. , 2014, , 3-38.		0
841	BIOPOLYMERS: POTENTIAL BIODEGRADABLE PACKAGING MATERIAL FOR FOOD INDUSTRY. , 2014, , 171-190.		0
842	Modeling and Simulation of a Biopolymer Processing in a Single Screw Extruder. Environmental Science and Engineering, 2015, , 465-471.	0.1	0
843	Polylactic Acid: Synthesis. , 0, , 6460-6479.		0
844	Biocomposites: Natural and Synthetic Fibers. , 0, , 585-601.		0
845	Biodegradable Poly(Lactic Acid) and Its Composites. , 2016, , 890-931.		0
846	Polylactic Acid: Microwave-Assisted Synthesis. , 0, , 6433-6448.		0
847	Smart Polymers in Targeted Drug Delivery. , 2016, , 765-844.		0
848	Packaging and Preservation Methods of Minimally Processed Produce. Food Engineering Series, 2017, , 239-268.	0.3	1
849	5BIOP a Biocomposite for Electrical Application. Lecture Notes in Electrical Engineering, 2018, , 155-162.	0.3	0
850	Study of defectoscopy of partially biodegradable LDPE films. Vibroengineering PROCEDIA, 2017, 13, 41-46.	0.3	0

		15	0
#	ARTICLE	IF	CITATIONS
851	Materials and Related Bioproducts from Plant Carbohydrates. , 2018, , 109-120.		0
853	Ternary melt blend based on poly (lactic acid)/chitosan and cloisite 30B: A study of microstructural, thermo-mechanical and barrier properties. Materialpruefung/Materials Testing, 2018, 60, 825-832.	0.8	0
854	Biopolymer Dispersed Poly Lactic Acid Composites and Blends for Food Packaging Applications. Materials Horizons, 2019, , 209-235.	0.3	1
856	Future horizons of bionanocomposites. , 2020, , 547-554.		1
857	Natural edible films and coatings applied in food: a bibliographic review. Research, Society and Development, 2020, 9, e578997613.	0.0	5
858	Biobased and Recyclable Polyurethane for Room-Temperature Damping and Three-Dimensional Printing. ACS Omega, 2021, 6, 30003-30011.	1.6	12
859	l-Lactic Acid Production Using Engineered Saccharomyces cerevisiae with Improved Organic Acid Tolerance. Journal of Fungi (Basel, Switzerland), 2021, 7, 928.	1.5	15
860	Preparation of nano sustained-release fertilizer using natural degradable polymer polylactic acid by coaxial electrospinning. International Journal of Biological Macromolecules, 2021, 193, 903-914.	3.6	15
861	Novel Biodegradable Zn Alloy with Exceptional Mechanical and In Vitro Corrosion Properties for Biomedical Applications. ACS Biomaterials Science and Engineering, 2021, 7, 5555-5572.	2.6	5
862	Effects of New and Aged Polyethylenterephthalat and Polylactic Acid on <i>Gammarus fossarum</i> (Crustacea: Amphipoda) during Long-Term Exposures. Journal of Environmental Protection, 2020, 11, 359-376.	0.3	8
863	Graphene Oxide—Plant Gum Nanocomposites for Sustainable Applications. Composites Science and Technology, 2021, , 149-171.	0.4	3
864	Characterization of the Tensile Strength of FDM-Printed Parts Made from Polylactic Acid Filament using 33 Full-Factorial Design of Experiment. , 2020, , .		2
865	Graphene Functionalized PLA Nanocomposites and Their Biomedical Applications. Composites Science and Technology, 2021, , 83-105.	0.4	3
866	Biobased Packaging from Food Industry Waste. , 2020, , 241-265.		2
867	Synthetic Materials: Processing and Surface Modifications for Vascular Tissue Engineering. , 2020, , 137-186.		2
868	Systematic Experimental Evaluation of Function Based Cellular Lattice Structure Manufactured by 3D Printing. Applied Sciences (Switzerland), 2021, 11, 10489.	1.3	5
869	Comprehensive Review on Silicon-enhanced Green Nanocomposites Towards Sustainable Development. Silicon, 0, , 1.	1.8	1
870	Facile preparation of novel antioxidant fibrous material based on natural plant extract from Portulaca oleracea and PLA by electrospinning for biomedical applications. Polymer International, 0, ,	1.6	5

#	Article	IF	CITATIONS
871	Determining a Lower Bound Mixed Mode Failure Curve for An Interface Crack Between Single Crystal Silicon and Silicone Rubber. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	2
872	Biodegradable Bio-based Plastics Toward Climate Change Mitigation. , 2021, , 1-43.		1
873	Innovative bio-based materials for packaging sustainability. , 2022, , 173-192.		2
874	Polylactide-Based Porous Materials: Synthesis, Hydrolytic Degradation Features, and Application Areas. Polymer Science - Series C, 2021, 63, 199-218.	0.8	4
875	Spinnability and characterization of poly(Dâ€lactic acid)â€blended poly(Lâ€lactic acid) filament yarns. Journal of Applied Polymer Science, 0, , 51916.	1.3	2
876	Effect of infill density and raster angle on the mechanical properties of PLA. Journal of Physics: Conference Series, 2021, 2080, 012002.	0.3	2
877	PROMOTION OF POLYLACTID ACID ECO-FRIENDLY BY COMBINED ADDITION OF PCL CATECHIN-CHITOSAN UNDER EXTRUDING CONDITION. International Journal of Research -GRANTHAALAYAH, 2021, 9, 85-96.	0.1	0
878	Innovations in applications and prospects of bioplastics and biopolymers: a review. Environmental Chemistry Letters, 2022, 20, 379-395.	8.3	134
879	Green and Sustainable Packaging Manufacturing: a Case Study of Sugarcane Bagasse-Based Tableware in Egypt. Circular Economy and Sustainability, 2022, 2, 829-856.	3.3	4
880	An Application Process of Additive Manufacturing Based on Digital Simulation and BESO Topology Optimization. Journal of Physics: Conference Series, 2021, 2095, 012097.	0.3	0
881	Evaluation on effect of printing process parameter through Taguchi approach on mechanical properties of 3D printed PLA specimens using FDM at constant printing temperature. Materials Today: Proceedings, 2022, 52, 1288-1293.	0.9	41
882	Characterization of folic acidâ€functionalized PLA–PEG nanomicelle to deliver Letrozole: A nanoinformatics study. IET Nanobiotechnology, 2021, , .	1.9	9
883	Effect of Ferulic and Cinnamic Acids on the Functional and Antimicrobial Properties in Thermo-Processed Pla Films. SSRN Electronic Journal, 0, , .	0.4	0
885	Design of thermoformable three dimensional-printed PLA cast for fractured wrist. IOP Conference Series: Materials Science and Engineering, 2022, 1217, 012002.	0.3	4
886	Natural Fiber-Reinforced Polylactic Acid, Polylactic Acid Blends and Their Composites for Advanced Applications. Polymers, 2022, 14, 202.	2.0	157
887	An efficient solution to determine surface energy of powders and porous media: Application to untreated and treated lignin. Applied Surface Science, 2022, 579, 152159.	3.1	1
888	Optimization of lactic acid production from agro-industrial wastes produced by Kosakonia cowanii. Current Research in Green and Sustainable Chemistry, 2022, 5, 100228.	2.9	12
889	Energy and resources recovery from wastewater treatment systems. , 2022, , 17-36.		4

# 890	ARTICLE Experimental investigation and numerical simulations of temperature and morphology in material extrusion additive manufacturing. International Journal of Advanced Manufacturing Technology, 2022, 119, 4863.	IF 1.5	CITATIONS 3
892	Future development, prospective, and challenges in the application of green nanocomposites in environmental remediation. , 2022, , 483-511.		2
893	Modeling the Effect of In Situ Nozzle-Integrated Compression Rolling on the Void Reduction and Filaments-Filament Adhesion in Fused Filament Fabrication (FFF). Multiscale Science and Engineering, 0, , 1.	0.9	3
894	Investigating the hydrolytic degradation of <scp>PLA</scp> / <scp>PCL</scp> / <scp>ZnO</scp> nanocomposites by using viscoelastic models. Polymer Engineering and Science, 2022, 62, 869-882.	1.5	6
895	Education and awareness of waste and recycled plastic biocomposites. , 2022, , 281-297.		0
896	Evaluation of poly(L-lactic acid) (PLLA) rapid indicator film on deterioration degree of Refined, Bleached and Deodorised Malaysian Tenera palm olein oil (RBDPO) during long-term repetitive deep-fat frying. Arabian Journal of Chemistry, 2022, 15, 103726.	2.3	5
897	Utilization of Plastic Wastes and Its Technologies: An Overview. , 2022, , 1111-1131.		0
898	Recent advances in renewable polymer/metal oxide systems used for tissue engineering. , 2022, , 395-445.		1
899	Plastics in Agricultural Mulch Film. , 2022, , 92-102.		1
900	Polylactic Acid (PLA) Foaming: Design of Experiments for Cell Size Control. Materials Sciences and Applications, 2022, 13, 63-77.	0.3	2
901	Fabrication and biocompatibility analysis of flexible organic light emitting diodes on poly(lactic acid) substrates: toward the development of greener bioâ€electronic devices. Polymers for Advanced Technologies, 2022, 33, 1523-1532.	1.6	7
903	An overview of biodegradable poly (lactic acid) production from fermentative lactic acid for biomedical and bioplastic applications. Biomass Conversion and Biorefinery, 2024, 14, 3057-3076.	2.9	11
904	Effect of Biochar Addition on Mechanical Properties, Thermal Stability, and Water Resistance of Hemp-Polylactic Acid (PLA) Composites. Materials, 2022, 15, 2271.	1.3	18
905	A review on poly lactic acid (PLA) as a biodegradable polymer. Polymer Bulletin, 2023, 80, 1179-1213.	1.7	135
907	Preparation and characterization of polyvinyl alcohol/polylactic acid/titanium dioxide nanocomposite films enhanced by γâ€irradiation and its antibacterial activity. Journal of Applied Polymer Science, 2022, 139, .	1.3	10
908	Natural Dyes Used as Organic Coatings UV Protecting for Food Packages. Coatings, 2022, 12, 417.	1.2	5
909	Highly Flexible Polylactide Food Packaging Plasticized with Nontoxic, Biosourced Glycerol Plasticizers. ACS Applied Polymer Materials, 2022, 4, 3608-3617.	2.0	19
910	Investigation of impact strength at different infill rates biodegradable PLA constituent through fused deposition modeling. Materials Today: Proceedings, 2022, 62, 551-558.	0.9	1

#	Article	IF	CITATIONS
911	Organic acids production from lactic acid bacteria: A preservation approach. Food Bioscience, 2022, 46, 101615.	2.0	57
912	Lactide: Production Routes, Properties, and Applications. Bioengineering, 2022, 9, 164.	1.6	22
913	Effects of D-lactide content and molecular weight on the morphological, thermal, and mechanical properties of electrospun nanofiber polylactide mats. Journal of Industrial Textiles, 0, , 152808372210902.	1.1	2
914	Catalytic conversion of waste corrugated cardboard into lactic acid using lanthanide triflates. Waste Management, 2022, 144, 41-48.	3.7	7
915	Impacts of ingested MWCNT-Embedded nanocomposites in Japanese medaka (<i>Oryzias latipes</i>). Nanotoxicology, 2021, 15, 1403-1422.	1.6	3
916	Control of endâ€ofâ€life oxygenâ€containing groups accumulation in biopolyesters through introduction of crosslinked polysaccharide particles. Polymer Engineering and Science, 2022, 62, 426-436.	1.5	0
918	Artificial Ageing, Chemical Resistance, and Biodegradation of Biocomposites from Poly(Butylene) Tj ETQq0 0 0 rg	gBT /Overl 1.3	ock 10 Tf 50 5
919	Application of Biobased and Biodegradable Polymers. , 2021, , .		0
920	Titanium ONN-(phenolate) Alkoxide Complexes: Unique Reaction Kinetics for Ring-Opening Polymerization of Cyclic Esters. Inorganic Chemistry, 2021, 60, 19336-19344.	1.9	6
921	Partial Biodegradable Blend with High Stability against Biodegradation for Fused Deposition Modeling. Polymers, 2022, 14, 1541.	2.0	7
922	Partial Biodegradable Blend for Fused Filament Fabrication: In-Process Thermal and Post-Printing Moisture Resistance. Polymers, 2022, 14, 1527.	2.0	1
923	A Review on Melt Flow Index Characteristics of Polylactide (PLA) for Recycle Use in 3-D Printing. Journal of Testing and Evaluation, 2022, 50, 2260-2267.	0.4	1
927	Impact of bionanocomposites on the environment. , 2022, , 435-452.		1
929	Evaluating the mechanical, thermal, and antibacterial properties of poly (lactic acid)/silicone rubber blends reinforced with (3â€aminopropyl) triethoxysilaneâ€functionalized titanium dioxide nanoparticles. Polymer Composites, 2022, 43, 4165-4178.	2.3	22
930	Tuning the Physicochemical, Structural, and Antimicrobial Attributes of Whey-Based Poly (L-Lactic) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 50
932	Analysis of Selected Properties of Microporous PLA as a Result of Abiotic Degradation. Materials, 2022, 15, 3133.	1.3	0
933	An Overview of Selfâ€Healable Polymers and Recent Advances in the Field. Macromolecular Rapid Communications, 2022, 43, e2200164.	2.0	8

934	Alternative modification by grafting in bamboo cellulose nanofibrils: A potential option to improve compatibility and tunable surface energy in bionanocomposites. International Journal of Biological Macromolecules, 2022, 211, 626-638.	3.6	6	
-----	--	-----	---	--

ARTICLE

WS₂ Nanotubes as a 1D Functional Filler for Melt Mixing with Poly(lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 742 Td (ac

936	Direct conversion of cellulose to l-lactic acid by a novel thermophilic Caldicellulosiruptor strain. , 2022, 15, 44.		12
937	Thread LiftsTheory, Technique, Results and Duration of Effect. Advances in Cosmetic Surgery, 2022, 5, 27-35.	0.4	0
938	Sustainable Green Methods for the Extraction of Biopolymers. Springer Series on Polymer and Composite Materials, 2022, , 73-110.	0.5	6
939	Mathematical Models for Predicting the Mechanical Properties of Poly(Lactic Acid) for Load-Bearing Applications. Pertanika Journal of Science and Technology, 2022, 30, 1771-1787.	0.3	0
940	Binuclear ketodiiminate magnesium complexes for the ROP of cyclic -Lactide and Îμ-Caprolactone. Polyhedron, 2022, 222, 115918.	1.0	2
941	Characterization of Polylactic Acid Parts Produced Using the Fused Deposition Modelling. Mechanics of Composite Materials, 2022, 58, 169-180.	0.9	7
942	Biodegradable Bio-based Plastics Toward Climate Change Mitigation. , 2022, , 1987-2029.		0
943	Carbon-based polymer nanocomposites for electronic textiles (e-textiles). , 2022, , 443-482.		3
944	Life cycle and environmental impact evaluation of polylactic acid (PLA) production in Ecuador. International Journal of Life Cycle Assessment, 2022, 27, 834-848.	2.2	3
945	Effect of ferulic and cinnamic acids on the functional and antimicrobial properties in thermo-processed PLA films. Food Packaging and Shelf Life, 2022, 33, 100882.	3.3	20
946	Application of response surface methodology (RSM) in analyzing the hydrolytic degradation of plasticized MWCNTs nanocomposites. Journal of Physics: Conference Series, 2022, 2266, 012001.	0.3	0
947	An insight into enhancing the physical properties of poly(lactic acid) (D600) fibers. Textile Reseach Journal, 0, , 004051752211008.	1.1	0
948	Polymers Based on PLA from Synthesis Using D,L-Lactic Acid (or Racemic Lactide) and Some Biomedical Applications: A Short Review. Polymers, 2022, 14, 2317.	2.0	30
949	Bioengineering Human Tissues and the Future of Vascular Replacement. Circulation Research, 2022, 131, 109-126.	2.0	27
950	Comparative analysis of 3D-printed polylactic acid and acrylonitrile butadiene styrene: Experimental and Materials-Studio-based theoretical studies. Journal of Polymer Research, 2022, 29, .	1.2	3
951	A computational approach from design to degradation of additively manufactured scaffold for bone tissue engineering application. Rapid Prototyping Journal, 2022, 28, 1956-1967.	1.6	6
952	Biodegradable plastics as a substitute to traditional polythenes: a step toward a safer environment. , 2022, , 193-215.		1

ARTICLE IF CITATIONS # Polymers in printing filaments., 2022, , 155-269. 953 2 A review of manufacturing techniques for subcutaneous drug delivery implants. Procedia CIRP, 2022, 1.0 110, 329-334. 956 Green polymer filaments for 3D printing., 2022, , 463-516. 0 Preparation of coumarin polymer grafted nanocellulose films to form high performance, 2.0 photoresponsive barrier layers. Journal of Polymer Science, 0, , . Facile preparation of anisotropic <scp>PLA</scp>/cscp>CNT</scp> nanocomposites by hot and cold rolling processes for improving mechanical and conductive properties. Journal of Applied Polymer 958 1.32 Science, 2022, 139, . Synergistic Effects of Multi-Wall Carbon Nanotubes and Polycaprolactone on the Thermal and Mechanical Properties of Polylactic Acid. Journal of Macromolecular Science - Physics, 2022, 61, 0.4 719-740. Status quo and sector readiness for (bio)plastic food and beverage packaging in the 4IR. South African 961 0.3 1 Journal of Science, 2022, 118, . Sustainable Biodegradable Plastics and their Applications: A Mini Review. IOP Conference Series: 962 0.3 Materials Science and Engineering, 2022, 1248, 012008. EvaluaciÃ³n de pelÃculas biodegradables activas de PLA incorporada de aceites esenciales para inhibir 963 0.1 0 adhesiÃ³n microbiana. Granja, 2022, 36, . Bioplastic beads composite production based on cellulose acetate-starch blend: a literature study. IOP 964 0.2 Conference Series: Earth and Environmental Science, 2022, 1063, 012015. Engineered polylactide (PLA)–polyamide (PA) blends for durable applications: 1. PLA with high crystallization ability to tune up the properties of PLA/PA12 blends. European Journal of Materials, 965 0.8 1 2023, 3, 1-36. Combined dehydrogenation of glycerol with catalytic transfer hydrogenation of H2 acceptors to chemicals: Opportunities and challenges. Frontiers in Chemistry, 0, 10, . 966 1.8 Epoxyâ€Modified Pyrophyllite as a Multifunctional Chain Extender for Poly(latic acid). Macromolecular 967 1.1 3 Chemistry and Physics, 2022, 223, . PMMA Cranioplasty Making by Using Đžpen-Source CAD Software, PLA Printers, and Silicone Rubber Molds: Technical Note with Two Illustrative Cases. Journal of Innovative Optical Health Sciences, Science and media framing of the future of plastics in relation to transitioning to a circular 969 2 4.6 economy. Journal of Cleaner Production, 2022, 370, 133472. Enhanced crystallization of poly(lactic acid) bioplastics by a green and facile approach using liquid poly(ethylene glycol). Polymers for Advanced Technologies, 2022, 33, 4131-4141. 970 Mechanical Property Degradation of Polylactic Acid (PLA) 3D Printed Parts under Ultraviolet 972 0.5 0 Radiation. Lecture Notes in Networks and Systems, 2022, , 26-33. Biodegradable Plastics as a Solution to the Challenging Situation of Plastic Waste Management., 973 2022, , 1-22.

	CITATION	Report	
#	Article	IF	CITATIONS
974	Bio-catalyzed plastic degradation: a review. Circular Agricultural Systems, 2022, 2, 1-7.	0.5	1
975	Exploration of Bioplastics: A Review. Oriental Journal of Chemistry, 2022, 38, 840-854.	0.1	4
976	Identification and Quantification of Micro-Bioplastics in Environmental Samples by Pyrolysis–Gas Chromatography–Mass Spectrometry. Environmental Science & Technology, 2022, 56, 13774-13785.	4.6	25
977	Polylactic Acid/Halloysite Nanotube Bionanocomposite Films for Food Packaging. Advanced Structured Materials, 2023, , 141-168.	0.3	0
978	Polymeric Systems for the Delivery of Herbicides to Improve Weed Control Efficiency. , 0, , .		1
979	Poly(<scp>l</scp> -lactide- <i>co</i> -ε-caprolactone) Matrix Composites Produced in One Step by <i>In Situ</i> Polymerization in TP-RTM. ACS Applied Polymer Materials, 2022, 4, 6797-6802.	2.0	0
980	Factors Affecting Mechanical Properties of Reinforced Bioplastics: A Review. Polymers, 2022, 14, 3737.	2.0	33
981	Biopolymers and Biomimetic Materials in Medical and Electronic-Related Applications for Environment–Health–Development Nexus: Systematic Review. Journal of Bionic Engineering, 2022, 19, 1562-1577.	2.7	9
982	Polylactic Acid Film Coated with Electrospun Gelatin/Chitosan Nanofibers Containing Betel Leaf Ethanolic Extract: Properties, Bioactivities, and Use for Shelf-Life Extension of Tilapia Slices. Molecules, 2022, 27, 5877.	1.7	5
983	Introductory Chapter: Polyimides - Importance and Its Applications. , 0, , .		0
984	Mixed mode failure curve for an interface crack between single crystal silicon and silicone rubber. Theoretical and Applied Fracture Mechanics, 2022, , 103640.	2.1	0
985	A comprehensive review on fused deposition modelling of polylactic acid. Progress in Additive Manufacturing, 2023, 8, 775-799.	2.5	19
986	New Structural Nanocomposite Based on PLGA and Al2O3 NPs as a Balance between Antibacterial Activity and Biocompatibility with Eukaryotic Cells. Journal of Composites Science, 2022, 6, 298.	1.4	4
987	Surface Modified Carbon Nanotubes in Food Packaging. ACS Symposium Series, 0, , 199-233.	0.5	0
988	Study on the structure and properties of choline chloride toughened polylactide composites. Polymer Bulletin, 2023, 80, 9237-9252.	1.7	2
989	Effect of Epoxidized and Maleinized Corn Oil on Properties of Polylactic Acid (PLA) and Polyhydroxybutyrate (PHB) Blend. Polymers, 2022, 14, 4205.	2.0	5
990	Smart Film Based on Polylactic Acid, Modified with Polyaniline/ZnO/CuO: Investigation of Physicochemical Properties and Its Use of Intelligent Packaging of Orange Juice. Food and Bioprocess Technology, 2022, 15, 2803-2825.	2.6	18
991	Synthesis, properties, and applications of polylactic <scp>acidâ€based</scp> polymers. Polymer Engineering and Science, 2023, 63, 22-43.	1.5	29

		CITATION REPORT		
#	Article		IF	CITATIONS
992	Renewable Resources for Bio-plastics. RSC Green Chemistry, 2022, , 775-833.		0.0	0
993	Lactic Acid for Green Chemical Industry: Recent Advances in and Future Prospects for Production Technology, Recovery, and Applications. Fermentation, 2022, 8, 609.		1.4	20
994	Structure, Properties, and Release Kinetics of the Polymer/Insect Repellent System Poly (l-Lactic) Tj E	.TQq0 0 0 rgBT	/Overloc 2.0	k ₁ 10 Tf 50 6
995	Flame rating of nano clay/MCC/PLA composites with both reinforced strength and toughness. Journa of Polymer Research, 2022, 29, .	al	1.2	1
996	Life cycle analysis of polylactic acids from different wet waste feedstocks. Journal of Cleaner Production, 2022, 380, 135110.		4.6	9
997	The potential use of <i>Zymomonas mobilis</i> for the food industry. Critical Reviews in Food Scien and Nutrition, 0, , 1-21.	ce	5.4	0
1000	Regio- and stereoselective biocatalytic hydration of fatty acids from waste cooking oils en route to hydroxy fatty acids and bio-based polyesters. Enzyme and Microbial Technology, 2023, 163, 110164	ŀ.	1.6	3
1001	PLA-ZnO/TiO2 Nanocomposite Obtained by Ultrasound-Assisted Melt-Extrusion for Adsorption of Methylene Blue. Nanomaterials, 2022, 12, 4248.		1.9	1
1002	Polymers Use as Mulch Films in Agriculture—A Review of History, Problems and Current Trends. Polymers, 2022, 14, 5062.		2.0	25
1003	Grafting of ammonium polyphosphate onto poly(lactic acid) and its effect on flame retardancy and mechanical properties. Iranian Polymer Journal (English Edition), 2023, 32, 225-238.		1.3	2
1004	Biodegradable Mulch Films Based on Starch/Poly (Lactic Acid)/Poly (Îμ-Caprolactone) Ternary Blends Journal of Polymers and the Environment, 0, , .		2.4	1
1005	Microbial Production of Pyruvic, Lactic, and 3-Hydroxy Propionic Acid from Renewable Resources. , 2023, , 1-23.			0
1006	Effect of Thermal and Hydrothermal Accelerated Aging on 3D Printed Polylactic Acid. Polymers, 2022 14, 5256.	<u>2</u> ,	2.0	9
1007	Bio-Formwork. , 0, 2, 65-70.			1
1008	Chemical Structures, Properties, and Applications of Selected Crude Oil-Based and Bio-Based Polyme Polymers, 2022, 14, 5551.	ers.	2.0	2
1009	Ring-Opening Co- and Terpolymerization of Epoxides, Cyclic Anhydrides, and <scp>l</scp> -Lactide L Constrained Aluminum Inden Complexes. Inorganic Chemistry, 2022, 61, 20616-20628.	lsing	1.9	5
1010	Potential Use of Cow Manure for Poly(Lactic Acid) Production. Sustainability, 2022, 14, 16753.		1.6	4
1011	A road map on synthetic strategies and applications of biodegradable polymers. Polymer Bulletin, 20 80, 11507-11556.)23,	1.7	1

#	Article	IF	CITATIONS
1012	Polylactic Acid. , 2022, , 739-748.		0
1013	Naturally Derived Cements Learned from the Wisdom of Ancestors: A Literature Review Based on the Experiences of Ancient China, India and Rome. Materials, 2023, 16, 603.	1.3	1
1014	3D printing of polylactic acid: recent advances and opportunities. International Journal of Advanced Manufacturing Technology, 2023, 125, 1015-1035.	1.5	39
1015	Mechanical and Thermal Properties of Bamboo Fiber–Reinforced PLA Polymer Composites: A Critical Study. International Journal of Polymer Science, 2022, 2022, 1-15.	1.2	23
1016	Effect of Nanocalcium Carbonate Content on the Properties of PLA Nanocomposites. Journal of Composites and Biodegradable Polymers, 2017, 5, 26-33.	0.3	5
1017	In-Mold Electronics on Poly(Lactic Acid): towards a more sustainable mass production of plastronic devices. International Journal of Advanced Manufacturing Technology, 2023, 125, 2643-2660.	1.5	2
1018	Bioplastics: Innovation for Green Transition. Polymers, 2023, 15, 517.	2.0	15
1019	Biopolymer Non-Parametric Analysis: A Degradation Study under Accelerated Destructive Tests. Polymers, 2023, 15, 620.	2.0	3
1020	Hydrothermal treatment of plastic waste within a circular economy perspective. Sustainable Chemistry and Pharmacy, 2023, 32, 100991.	1.6	12
1022	Multilayer antimicrobial films based on starch and PLA with superficially incorporated ferulic or cinnamic acids for active food packaging purposes. , 2023, 2, 100250.		3
1023	Biodegradable Polymers for Industrial Applications. , 2022, , 1-26.		0
1024	Angle and direction effect on the performance of manual music box with PLA-base manufacturing using 3D printing. AIP Conference Proceedings, 2023, , .	0.3	0
1025	A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging. International Journal of Biological Macromolecules, 2023, 234, 123715.	3.6	63
1026	Potential Perspectives and Sustainability of Bioplastics Developed from Horticulture. , 2023, 14, .		0
1027	Development of a Xanthan Gum Based Superabsorbent and Water Retaining Composites for Agricultural and Forestry Applications. Molecules, 2023, 28, 1952.	1.7	10
1028	Agriculture waste to bioplastics: a perfect substitution of plastics. , 2023, , 299-314.		1
1029	Biodegradable Polymers for Industrial Applications. , 2023, , 451-476.		0
1030	Biodegradable Plastics as a Solution to the Challenging Situation of Plastic Waste Management. , 2023, , 479-499.		1

#	Article	IF	CITATIONS
1031	An integrated multi-criteria decision-making framework for the selection of sustainable biodegradable polymer for food packaging applications. Environment, Development and Sustainability, 2024, 26, 8399-8420.	2.7	2
1032	Biobased materials for increasing the shelf life of food products. , 2023, , 231-243.		0
1033	Sustainable, processable and cytocompatible bioelastomers based on polycaprolactone and biobased polyester elastomer via dynamic vulcanization. Polymer International, 0, , .	1.6	2
1034	A "one-step―approach to the highly efficient synthesis of lactide through the confinement catalysis of covalent organic frameworks. Green Chemistry, 2023, 25, 3103-3110.	4.6	5
1035	Bioresource Polymer Composite for Energy Generation and Storage: Developments and Trends. Chemical Record, 2024, 24, .	2.9	4
1036	Biobased composites of poly(butylene furanoate) copolymers and hemp. Journal of Polymer Science, 2023, 61, 1528-1536.	2.0	5
1037	PolymilchsÃ u re. , 2023, , 779-789.		0
1038	Spectral Imaging of UV-Blocking Carbon Dot-Based Coatings for Food Packaging Applications. Coatings, 2023, 13, 785.	1.2	2
1041	Lactic Acid Production from Fungal Machineries and Mechanism of PLA Synthesis: Application of AI-Based Technology for Improved Productivity. , 2023, , 211-256.		0
1043	Enzyme-catalyzed synthesis of polyesters, polyamides, and poly(ester-co-amide)s: a promising approach toward a greener synthetic pathway. , 2023, , 21-71.		0
1053	Studies on the properties of different blending ratios of polypropylene and poly-lactide acid blends. AIP Conference Proceedings, 2023, , .	0.3	0
1054	Sustainable materials and infrastructures for the food industry. , 2023, , 147-182.		1
1055	Bioconjugated materials as potential vehicles for delivery of antibiotics/drugs. Comprehensive Analytical Chemistry, 2023, , .	0.7	0
1056	Renewable bio-based materials: A journey towards the development of sustainable ecosystem. , 2023, , 31-75.		3
1079	Mechanical Properties of PLA Printed Samples in Different Printing Directions and Orientations Using Fused Filament Fabrication, Part 1: Methodology. Lecture Notes in Mechanical Engineering, 2024, , 643-657.	0.3	0
1080	Use of Biodegradable Polymers and Plastics- A Suitable Alternate to Prevent Environmental Contamination. , 2023, , 160-197.		0
1082	Analysis of Alternative Soil Binders and Their Effect on Soil: A Review. Lecture Notes in Civil Engineering, 2024, , 397-421.	0.3	0
1097	Fermentation of Polyesters (PHA and PLA). , 2023, , 122-166.		0

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1098	Production of Thermoplastic Starch Pellets and Their Robotic Deposition for Biodegrada Non-standard Formworks. Sustainable Development Goals Series, 2024, , 581-596.	able	0.2	0
1103	Recent trends in lactic acid-producing microorganisms through microbial fermentation synthesis of polylactic acid. Archives of Microbiology, 2024, 206, .	for the	1.0	1
1105	Bioplastics: solution to a green environment and sustainability. , 2024, , 261-269.			0
1113	Man-Made Bio-based and Biodegradable Fibers for Textile Applications. Sustainable Tex 229-280.	tiles, 2024, ,	0.4	0