Effect of lipid raft disruption on TRPV1 receptor activat and transfected cell line

European Journal of Pharmacology 628, 67-74 DOI: 10.1016/j.ejphar.2009.11.052

Citation Report

#	Article	IF	CITATIONS
1	Activation of TRPC6 channels promotes endocannabinoid biosynthesis in neuronal CAD cells. Neurochemistry International, 2010, 57, 76-83.	3.8	10
2	Lipid Raft Redox Signaling: Molecular Mechanisms in Health and Disease. Antioxidants and Redox Signaling, 2011, 15, 1043-1083.	5.4	102
3	Methodological Considerations to Understand the Sensory Function of TRP Channels. Current Pharmaceutical Biotechnology, 2011, 12, 3-11.	1.6	13
4	Voltageâ€dependent anion channel as a resident protein of lipid rafts: postâ€transductional regulation by estrogens and involvement in neuronal preservation against Alzheimer's disease. Journal of Neurochemistry, 2011, 116, 820-827.	3.9	41
5	The α7 nicotinic acetylcholine receptor function in hippocampal neurons is regulated by the lipid composition of the plasma membrane. Journal of Physiology, 2011, 589, 3163-3174.	2.9	50
6	Nociception, neurogenic inflammation and thermoregulation in TRPV1 knockdown transgenic mice. Cellular and Molecular Life Sciences, 2011, 68, 2589-2601.	5.4	29
7	Lipid Rafts Control P2X3 Receptor Distribution and Function in Trigeminal Sensory Neurons of a Transgenic Migraine Mouse Model. Molecular Pain, 2011, 7, 1744-8069-7-77.	2.1	34
8	Identification of a Binding Motif in the S5 Helix That Confers Cholesterol Sensitivity to the TRPV1 Ion Channel. Journal of Biological Chemistry, 2011, 286, 24966-24976.	3.4	119
9	Building Excitable Membranes. Neuroscientist, 2012, 18, 70-81.	3.5	22
10	Multisteric TRPV1 nocisensor: a target for analgesics. Trends in Pharmacological Sciences, 2012, 33, 646-655.	8.7	106
11	Cholesterol level influences opioid signaling in cell models and analgesia in mice and humans. Journal of Lipid Research, 2012, 53, 1153-1162.	4.2	32
12	Regulation of Ion Channels by Membrane Lipids. , 2012, 2, 31-68.		69
13	TRPV1 in Cell Signaling: Molecular Mechanisms of Function and Modulation. , 2012, , 69-102.		1
14	Somatosensory scaffolding structures. Frontiers in Molecular Neuroscience, 2012, 5, 2.	2.9	8
15	Lutein Inhibits the Function of the Transient Receptor Potential A1 Ion Channel in Different In Vitro and In Vivo Models. Journal of Molecular Neuroscience, 2012, 46, 1-9.	2.3	11
16	Functionally Important Amino Acid Residues in the Transient Receptor Potential Vanilloid 1 (TRPV1) Ion Channel - An Overview of the Current Mutational Data. Molecular Pain, 2013, 9, 1744-8069-9-30.	2.1	68
17	Effect of Cholesterol Depletion on the Pore Dilation of TRPV1. Molecular Pain, 2013, 9, 1744-8069-9-1.	2.1	62
18	Role of Death Receptors Belonging to the TNF Family in Capsaicin-Induced Apoptosis of Tumor Cells. , 2013, , 19-46.		1

CITATION REPORT

#	Article	IF	CITATIONS
19	Chemical Structure and Morphology of Dorsal Root Ganglion Neurons from Naive and Inflamed Mice. Journal of Biological Chemistry, 2014, 289, 34241-34249.	3.4	24
20	Cholesterol binding to ion channels. Frontiers in Physiology, 2014, 5, 65.	2.8	160
21	Cholesterol sensitises the transient receptor potential channel TRPV3 to lower temperatures and activator concentrations. Cell Calcium, 2014, 55, 59-68.	2.4	20
22	A hyperexcitability phenotype in mouse trigeminal sensory neurons expressing the R192Q Cacna1a missense mutation of familial hemiplegic migraine type-1. Neuroscience, 2014, 266, 244-254.	2.3	23
23	Brain Natriuretic Peptide Constitutively Downregulates P2X3 Receptors by Controlling their Phosphorylation State and Membrane Localization. Molecular Pain, 2015, 11, s12990-015-0074.	2.1	15
24	Synthesis of novel 13α-18-norandrostane–ferrocene conjugates via homogeneous catalytic methods and their investigation on TRPV1 receptor activation. Steroids, 2015, 104, 284-293.	1.8	9
25	Effects of Some Natural Carotenoids on TRPA1- and TRPV1-Induced Neurogenic Inflammatory Processes In Vivo in the Mouse Skin. Journal of Molecular Neuroscience, 2015, 56, 113-121.	2.3	23
26	Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals. Pharmacological Research, 2015, 100, 101-116.	7.1	84
27	TRP channels interaction with lipids and its implications in disease. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1818-1827.	2.6	52
28	β2-adrenoceptor agonist-evoked reactive oxygen species generation in mouse atria: implication in delayed inotropic effect. European Journal of Pharmacology, 2015, 765, 140-153.	3.5	26
29	Perineural capsaicin induces the uptake and transganglionic transport of choleratoxin b subunit by nociceptive c-fiber primary afferent neurons. Neuroscience, 2015, 311, 243-252.	2.3	10
30	Influence of membrane cholesterol in the molecular evolution and functional regulation of TRPV4. Biochemical and Biophysical Research Communications, 2015, 456, 312-319.	2.1	47
31	Role of TRP channels in the cardiovascular system. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H157-H182.	3.2	152
32	Structural and Functional Interactions between Transient Receptor Potential Vanilloid Subfamily 1 and Botulinum Neurotoxin Serotype A. PLoS ONE, 2016, 11, e0143024.	2.5	19
33	Agonistâ€induced sensitisation of the irritant receptor ion channel TRPA1. Journal of Physiology, 2016, 594, 6643-6660.	2.9	31
34	A novel 3-(4,5-diphenyl-1,3-oxazol-2-yl)propanal oxime compound is a potent Transient Receptor Potential Ankyrin 1 and Vanilloid 1 (TRPA1 and V1) receptor antagonist. Neuroscience, 2016, 324, 151-162.	2.3	22
35	Capsaicin-Sensitive Sensory Nerves Mediate the Cellular and Microvascular Effects of H2S via TRPA1 Receptor Activation and Neuropeptide Release. Journal of Molecular Neuroscience, 2016, 60, 157-170.	2.3	27
36	Structure-Driven Pharmacology of Transient Receptor Potential Channel Vanilloid 1. Molecular Pharmacology, 2016, 90, 300-308.	2.3	18

CITATION REPORT

#	Article	IF	CITATIONS
37	Estrogen-dependent up-regulation of TRPA1 and TRPV1 receptor proteins in the rat endometrium. Journal of Molecular Endocrinology, 2016, 56, 135-149.	2.5	57
38	Lipids as central modulators of sensory TRP channels. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1615-1628.	2.6	49
39	Cholesterol regulates polymodal sensory transduction in Müller glia. Glia, 2017, 65, 2038-2050.	4.9	42
40	Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biology, 2017, 7, 170069.	3.6	215
41	Preferential selection of Arginine at the lipid-water-interface of TRPV1 during vertebrate evolution correlates with its snorkeling behaviour and cholesterol interaction. Scientific Reports, 2017, 7, 16808.	3.3	27
42	Multiple Mechanisms of Regulation of Transient Receptor Potential Ion Channels by Cholesterol. Current Topics in Membranes, 2017, 80, 139-161.	0.9	25
43	Downregulation of adenosine and adenosine A1 receptor contributes to neuropathic pain in resiniferatoxin neuropathy. Pain, 2018, 159, 1580-1591.	4.2	27
44	P2X receptor channels in chronic pain pathways. British Journal of Pharmacology, 2018, 175, 2219-2230.	5.4	135
45	Treatment with methyl-β-cyclodextrin prevents mechanical allodynia in resiniferatoxin neuropathy in a mouse model. Biology Open, 2019, 8, .	1.2	4
46	Effect of Dialkyl Ammonium Cationic Surfactants on the Microfluidity of Membranes Containing Raft Domains. Journal of Oleo Science, 2018, 67, 67-75.	1.4	2
47	Carboxamido steroids inhibit the opening properties of transient receptor potential ion channels by lipid raft modulation. Journal of Lipid Research, 2018, 59, 1851-1863.	4.2	21
48	Miltefosine treatment reduces visceral hypersensitivity in a rat model for irritable bowel syndrome via multiple mechanisms. Scientific Reports, 2019, 9, 12530.	3.3	14
49	Regulation of Membrane Calcium Transport Proteins by the Surrounding Lipid Environment. Biomolecules, 2019, 9, 513.	4.0	37
50	Mechanism of local anesthetic-induced disruption of raft-like ordered membrane domains. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1381-1389.	2.4	21
51	TRP ion channels: Proteins with conformational flexibility. Channels, 2019, 13, 207-226.	2.8	16
52	Cholesterol as a Key Molecule That Regulates TRPV1 Channel Function. Advances in Experimental Medicine and Biology, 2019, 1135, 105-117.	1.6	18
53	TRP Channels as Sensors of Chemically-Induced Changes in Cell Membrane Mechanical Properties. International Journal of Molecular Sciences, 2019, 20, 371.	4.1	55
54	Disruption of palmitate-mediated localization; a shared pathway of force and anesthetic activation of TREK-1 channels. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183091.	2.6	26

#	Article	IF	CITATIONS
55	Antinociceptive Effects of Lipid Raft Disruptors, a Novel Carboxamido-Steroid and Methyl β-Cyclodextrin, in Mice by Inhibiting Transient Receptor Potential Vanilloid 1 and Ankyrin 1 Channel Activation. Frontiers in Physiology, 2020, 11, 559109.	2.8	7
56	Taste the Pain: The Role of TRP Channels in Pain and Taste Perception. International Journal of Molecular Sciences, 2020, 21, 5929.	4.1	35
57	Local Ca ²⁺ signals couple activation of TRPV1 and ANO1 sensory ion channels. Science Signaling, 2020, 13, .	3.6	23
58	Lipid Raft Destabilization Impairs Mouse TRPA1 Responses to Cold and Bacterial Lipopolysaccharides. International Journal of Molecular Sciences, 2020, 21, 3826.	4.1	15
59	Control of Lipid Bilayer Phases of Cell-Sized Liposomes by Surface-Engineered Plasmonic Nanoparticles. Langmuir, 2020, 36, 7741-7746.	3.5	7
60	Role of Cangliosides in Peripheral Pain Mechanisms. International Journal of Molecular Sciences, 2020, 21, 1005.	4.1	21
61	Control of Lipid Self-Assembled Structures & Assessment of Lipid Membrane Fluidity by Fluorescence Spectroscopy. Journal of Oleo Science, 2020, 69, 83-91.	1.4	0
62	Structural insights into the gating mechanisms of TRPV channels. Cell Calcium, 2020, 87, 102168.	2.4	55
63	Modulation of Sensory Nerve Function by Insulin: Possible Relevance to Pain, Inflammation and Axon Growth. International Journal of Molecular Sciences, 2020, 21, 2507.	4.1	7
64	Inhibition of transient receptor potential vanilloid 1 (TRPV1) channel regulates chikungunya virus infection in macrophages. Archives of Virology, 2021, 166, 139-155.	2.1	25
65	Hemokinin-1 as a Mediator of Arthritis-Related Pain via Direct Activation of Primary Sensory Neurons. Frontiers in Pharmacology, 2020, 11, 594479.	3.5	5
66	Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy. Pain Reports, 2021, 6, e922.	2.7	6
67	TRPV1 Ion Channel: Structural Features, Activity Modulators, and Therapeutic Potential. Biochemistry (Moscow), 2021, 86, S50-S70.	1.5	16
68	Analgesic Effects of Lipid Raft Disruption by Sphingomyelinase and Myriocin via Transient Receptor Potential Vanilloid 1 and Transient Receptor Potential Ankyrin 1 Ion Channel Modulation. Frontiers in Pharmacology, 2020, 11, 593319.	3.5	8
69	Cell cycle dependence on the mevalonate pathway: Role of cholesterol and non-sterol isoprenoids. Biochemical Pharmacology, 2022, 196, 114623.	4.4	11
70	Proof-of-Concept for the Analgesic Effect and Thermoregulatory Safety of Orally Administered Multi-Target Compound SZV 1287 in Mice: A Novel Drug Candidate for Neuropathic Pain. Biomedicines, 2021, 9, 749.	3.2	1
71	Comparative Analysis of Single-Molecule Dynamics of TRPV1 and TRPV4 Channels in Living Cells. International Journal of Molecular Sciences, 2021, 22, 8473.	4.1	3
72	Analyzing the Carotenoid Composition of Melilot (Melilotus officinalis (L.) Pall.) Extracts and the Effects of Isolated (All-E)-lutein-5,6-epoxide on Primary Sensory Neurons and Macrophages. Molecules, 2021, 26, 503.	3.8	4

	CITATION REPORT	
Article	IF	Citations
Isolation of Lipid Rafts by the Detergent-Based and Non-detergent-Based Methods for Localization GPCRs with Immunoblotting and Laser Scanning Confocal Microscopy. Methods in Molecular Biol 2021, 2268, 1-20.	n of ogy, 0.9	0
Pharmacology of the Capsaicin Receptor, Transient Receptor Potential Vanilloid Type-1 Ion Channe 2014, 68, 39-76.	el. ,	44
Lipid Regulation of Cardiac Ion Channels in Heart Disease. , 2013, , 77-100.		1
GPR55 and its Interaction with Membrane Lipids: Comparison with Other Endocannabinoid-Bindin Receptors. Current Medicinal Chemistry, 2012, 20, 64-78.	ng 2.4	13
Membrane raft disruption results in neuritic retraction prior to neuronal death in cortical neurons. BioScience Trends, 2012, 6, 183-191.	3.4	18
Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. ELife, 2019, 8, .	6.0	47
Membrane cholesterol regulates TRPV4 function, cytoskeletal expression, and the cellular respons to tension. Journal of Lipid Research, 2021, 62, 100145.	Se 4.2	21
Membrane Interactivity Shared by Receptor- Acting Drugs. Journal of Advances in Medical and Pharmaceutical Sciences, 0, , 1-19.	0.2	0
The Role of Cholesterol in Membrane Localization of TRPV5 Calcium Channels in Jurkat Human T C Cell and Tissue Biology, 2020, 14, 309-315.	Cells. 0.4	0
Antinociceptive effect of garlic, garlic preparations and derivative compounds. European Journal o Pain, 2022, 26, 947-964.	f 2.8	6
High-fat diet induced alterations in plasma membrane cholesterol content impairs insulin receptor binding and signalling in mouse liver but is ameliorated by atorvastatin. Biochimica Et Biophysica / - Molecular Basis of Disease, 2022, 1868, 166372.		5
Effect of Lipid Raft Disruptors on Cell Membrane Fluidity Studied by Fluorescence Spectroscopy. International Journal of Molecular Sciences, 2022, 23, 13729.	4.1	7
The triple function of the capsaicin-sensitive sensory neurons: In memoriam JÃ;nos SzolcsÃ;nyi. Temperature, 2023, 10, 13-34.	3.0	2
Cholesterol Regulation of Membrane Proteins Revealed by Two-Color Super-Resolution Imaging. Membranes, 2023, 13, 250.	3.0	10
Regulation of ThermoTRP Channels by PIP2 and Cholesterol. Advances in Experimental Medicine a Biology, 2023, , 245-277.	nd 1.6	3
AIBP regulates TRPV1 activation in chemotherapy-induced peripheral neuropathy by controlling lip raft dynamics and proximity to TLR4 in dorsal root ganglion neurons. Pain, 2023, 164, e274-e285.		5

90	Lipid raft disruption as an opportunity for peripheral analgesia. Current Opinion in Pharmacology, 2024, 75, 102432.	3.5	1
	Cyclodextrin derivatives decrease Transient Receptor Potential vanilloid 1 and Ankyrin 1 ion channel		

activation via altering the surrounding membrane microenvironment by cholesterol depletion. Frontiers in Cell and Developmental Biology, 0, 12, .

#

73

75

77

79

81

84

86

88