OptFlux: an open-source software platform for in silico

BMC Systems Biology 4, 45 DOI: 10.1186/1752-0509-4-45

Citation Report

#	Article	IF	CITATIONS
1	Evaluating the integration of proteomic data for the prediction of intracellular fluxes after knockout experiments. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 114-119.	0.4	1
2	Merlin: Metabolic Models Reconstruction using Genome-Scale Information. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 120-125.	0.4	6
3	Metabolic reconstruction, constraint-based analysis and game theory to probe genome-scale metabolic networks. Current Opinion in Biotechnology, 2010, 21, 502-510.	3.3	91
4	Optimization strategies for metabolic networks. BMC Systems Biology, 2010, 4, 113.	3.0	3
5	Computational Approaches in Metabolic Engineering. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-7.	3.0	19
6	Whole-Genome Metabolic Network Reconstruction and Constraint-Based Modeling⋆. Methods in Enzymology, 2011, 500, 411-433.	0.4	33
7	Connecting genotype to phenotype in the era of high-throughput sequencing. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 967-977.	1.1	28
8	Synthetic Biology & Bioinformatics Prospects in the Cancer Arena. , 2011, , .		0
9	Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nature Reviews Microbiology, 2011, 9, 131-137.	13.6	152
10	Metabolic flux network and analysis of fermentative hydrogen production. Biotechnology Advances, 2011, 29, 375-387.	6.0	108
11	A Systematic Modeling Approach to Elucidate the Triggering of the Stringent Response in Recombinant E. coli Systems. Advances in Intelligent and Soft Computing, 2011, , 313-320.	0.2	1
12	Systems biology of lactic acid bacteria: a critical review. Microbial Cell Factories, 2011, 10, S11.	1.9	64
13	FASIMU: flexible software for flux-balance computation series in large metabolic networks. BMC Bioinformatics, 2011, 12, 28.	1.2	55
14	A computational tool for the simulation and optimization of microbial strains accounting integrated metabolic/regulatory information. BioSystems, 2011, 103, 435-441.	0.9	17
15	An application programming interface for CellNetAnalyzer. BioSystems, 2011, 105, 162-168.	0.9	63
16	Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Current Opinion in Biotechnology, 2011, 22, 590-594.	3.3	246
17	Modeling Metabolic Networks for Mammalian Cell Systems: General Considerations, Modeling Strategies, and Available Tools. , 2011, 127, 71-108.		9
18	A New Approach to an Old Problem: Synthetic Biology Tools for Human Disease and Metabolism. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76, 145-154.	2.0	7

#	Article	IF	CITATIONS
19	An integrated computational environment for elementary modes analysis of biochemical networks. International Journal of Data Mining and Bioinformatics, 2012, 6, 382.	0.1	4
20	Truncated branch and bound achieves efficient constraint-based genetic design. Bioinformatics, 2012, 28, 1619-1623.	1.8	31
21	Plant Metabolic Pathways: Databases and Pipeline for Stoichiometric Analysis. , 2012, , 345-366.		3
22	Systematic Applications of Metabolomics in Metabolic Engineering. Metabolites, 2012, 2, 1090-1122.	1.3	20
23	Mathematical optimization applications in metabolic networks. Metabolic Engineering, 2012, 14, 672-686.	3.6	123
24	GEMSiRV: a software platform for GEnome-scale metabolic model simulation, reconstruction and visualization. Bioinformatics, 2012, 28, 1752-1758.	1.8	45
25	EMERGING ENGINEERING PRINCIPLES FOR YIELD IMPROVEMENT IN MICROBIAL CELL DESIGN. Computational and Structural Biotechnology Journal, 2012, 3, e201210016.	1.9	10
26	METABOLIC MODELLING IN THE DEVELOPMENT OF CELL FACTORIES BY SYNTHETIC BIOLOGY. Computational and Structural Biotechnology Journal, 2012, 3, e201210009.	1.9	19
27	Are we ready for genome-scale modeling in plants?. Plant Science, 2012, 191-192, 53-70.	1.7	59
28	Computational tools for the synthetic design of biochemical pathways. Nature Reviews Microbiology, 2012, 10, 191-202.	13.6	206
29	FluxMap: A VANTED add-on for the visual exploration of flux distributions in biological networks. BMC Systems Biology, 2012, 6, 33.	3.0	31
30	FAME, the Flux Analysis and Modeling Environment. BMC Systems Biology, 2012, 6, 8.	3.0	75
31	MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Systems Biology, 2012, 6, 94.	3.0	50
32	A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization. BioData Mining, 2012, 5, 2.	2.2	11
33	A JAVA application framework for scientific software development. Software - Practice and Experience, 2012, 42, 1015-1036.	2.5	10
34	Using Flux Balance Analysis to Guide Microbial Metabolic Engineering. Methods in Molecular Biology, 2012, 834, 197-216.	0.4	25
35	Exploring the gap between dynamic and constraint-based models of metabolism. Metabolic Engineering, 2012, 14, 112-119.	3.6	33
36	Computational tools for metabolic engineering. Metabolic Engineering, 2012, 14, 270-280.	3.6	93

#	Article	IF	CITATIONS
37	Model-driven elucidation of the inherent capacity of Geobacter sulfurreducens for electricity generation. Journal of Biological Engineering, 2013, 7, 14.	2.0	19
38	TNA4OptFlux – a software tool for the analysis of strain optimization strategies. BMC Research Notes, 2013, 6, 175.	0.6	2
39	Genome-scale stoichiometry analysis to elucidate the innate capability of the cyanobacterium Synechocystis for electricity generation. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1161-1180.	1.4	10
40	Application of Genome-Scale Metabolic Models in Metabolic Engineering. Industrial Biotechnology, 2013, 9, 203-214.	0.5	26
41	Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Applied Microbiology and Biotechnology, 2013, 97, 519-539.	1.7	50
42	Drug Discovery and Development via Synthetic Biology. , 2013, , 183-206.		9
43	Bacillus subtilis. Methods in Microbiology, 2013, 40, 87-117.	0.4	12
44	sybil – Efficient constraint-based modelling in R. BMC Systems Biology, 2013, 7, 125.	3.0	110
45	Evolutionary computation for predicting optimal reaction knockouts and enzyme modulation strategies. , 2013, , .		1
46	Bridging the layers: towards integration of signal transduction, regulation and metabolism into mathematical models. Molecular BioSystems, 2013, 9, 1576.	2.9	83
47	An integrated framework for strain optimization. , 2013, , .		3
48	Analysis of synthetic metabolic pathways solution space. , 2013, , .		1
49	Metabolic reconstruction and flux analysis of industrial Pichia yeasts. Applied Microbiology and Biotechnology, 2013, 97, 1865-1873.	1.7	13
50	Reconstruction of Genome-Scale Metabolic Networks. , 2013, , 229-250.		1
51	From measurement to implementation of metabolic fluxes. Current Opinion in Biotechnology, 2013, 24, 13-21.	3.3	13
52	Deriving metabolic engineering strategies from genomeâ€scale modeling with flux ratio constraints. Biotechnology Journal, 2013, 8, 581-594.	1.8	16
53	Genome-Scale Model Management and Comparison. Methods in Molecular Biology, 2013, 985, 3-16.	0.4	1
54	Automated Genome Annotation and Metabolic Model Reconstruction in the SEED and Model SEED. Methods in Molecular Biology, 2013, 985, 17-45.	0.4	124

#	Article	IF	Citations
55	Retrosynthetic Design of Heterologous Pathways. Methods in Molecular Biology, 2013, 985, 149-173.	0.4	17
56	lsotopically Nonstationary 13C Metabolic Flux Analysis. Methods in Molecular Biology, 2013, 985, 367-390.	0.4	36
57	Constraintâ€based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. Biotechnology Journal, 2013, 8, 595-604.	1.8	35
58	From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnology Advances, 2013, 31, 764-788.	6.0	139
59	Comparing methods for metabolic network analysis and an application to metabolic engineering. Gene, 2013, 521, 1-14.	1.0	47
60	Multiâ€scale modeling for sustainable chemical production. Biotechnology Journal, 2013, 8, 973-984.	1.8	14
61	Metabolic responses to recombinant bioprocesses in Escherichia coli. Journal of Biotechnology, 2013, 164, 396-408.	1.9	76
62	Dynamic strain scanning optimization: an efficient strain design strategy for balanced yield, titer, and productivity. DySScO strategy for strain design. BMC Biotechnology, 2013, 13, 8.	1.7	50
63	Elementary flux modes in a nutshell: Properties, calculation and applications. Biotechnology Journal, 2013, 8, 1009-1016.	1.8	91
64	MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics, 2013, 29, 815-816.	1.8	120
65	Integrated gene co-expression network analysis in the growth phase of Mycobacterium tuberculosis reveals new potential drug targets. Molecular BioSystems, 2013, 9, 2798.	2.9	22
66	Computational Intelligence in the Design of Synthetic Microbial Genetic Systems. Methods in Microbiology, 2013, , 1-37.	0.4	8
67	Exploration and comparison of inborn capacity of aerobic and anaerobic metabolisms of <i><i>Saccharomyces cerevisiae</i></i> for microbial electrical current production. Bioengineered, 2013, 4, 420-430.	1.4	9
68	A Compressed Sensing Based Basis-pursuit Formulation of the Room Algorithm. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 238-243.	0.4	2
69	Genome scale metabolic network reconstruction of the pathogen Enterococcus faecalis. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 131-136.	0.4	1
70	Identification of Metabolic Engineering Targets through Analysis of Optimal and Sub-Optimal Routes. PLoS ONE, 2013, 8, e61648.	1.1	16
71	Computational Strategies for a System-Level Understanding of Metabolism. Metabolites, 2014, 4, 1034-1087.	1.3	54
72	Development of bio-based fine chemical production through synthetic bioengineering. Microbial Cell Factories, 2014, 13, 173.	1.9	42

#	Article	IF	CITATIONS
73	CBFA: phenotype prediction integrating metabolic models with constraints derived from experimental data. BMC Systems Biology, 2014, 8, 123.	3.0	7
74	An integrated network visualization framework towards metabolic engineering applications. BMC Bioinformatics, 2014, 15, 420.	1.2	6
75	Computational Approaches for Microalgal Biofuel Optimization: A Review. BioMed Research International, 2014, 2014, 1-12.	0.9	21
76	Computational approaches to metabolic engineering utilizing systems biology and synthetic biology. Computational and Structural Biotechnology Journal, 2014, 11, 28-34.	1.9	22
77	Reg4OptFlux: an OptFlux plug-in that comprises meta-heuristics approaches for Metabolic engineering using integrated models. , 2014, , .		0
78	MetaNET - a web-accessible interactive platform for biological metabolic network analysis. BMC Systems Biology, 2014, 8, 130.	3.0	9
79	FastPros: screening of reaction knockout strategies for metabolic engineering. Bioinformatics, 2014, 30, 981-987.	1.8	43
80	Metabolomics and systems pharmacology: why and how to model the human metabolic network for drug discovery. Drug Discovery Today, 2014, 19, 171-182.	3.2	140
81	Computational tools for modeling xenometabolism of the human gut microbiota. Trends in Biotechnology, 2014, 32, 157-165.	4.9	22
82	Advances in metabolic engineering of yeast <i>Saccharomyces cerevisiae</i> for production of chemicals. Biotechnology Journal, 2014, 9, 609-620.	1.8	221
83	Software platforms to facilitate reconstructing genomeâ€scale metabolic networks. Environmental Microbiology, 2014, 16, 49-59.	1.8	69
84	Reconstruction of a highâ€quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in <i>Streptomyces coelicolor</i> A3(2). Biotechnology Journal, 2014, 9, 1185-1194.	1.8	58
85	Synthetic biology of avermectin for production improvement and structure diversification. Biotechnology Journal, 2014, 9, 316-325.	1.8	29
86	Computer-aided design for metabolic engineering. Journal of Biotechnology, 2014, 192, 302-313.	1.9	26
87	Software applications for flux balance analysis. Briefings in Bioinformatics, 2014, 15, 108-122.	3.2	94
88	Tailoring strain construction strategies for muconic acid production in S. cerevisiae and E. coli. Metabolic Engineering Communications, 2014, 1, 19-28.	1.9	35
89	Database and tools for metabolic network analysis. Biotechnology and Bioprocess Engineering, 2014, 19, 568-585.	1.4	19
90	Saccharomyces cerevisiae: a potential host for carboxylic acid production from lignocellulosic feedstock?. Applied Microbiology and Biotechnology, 2014, 98, 7299-7318.	1.7	20

#	Article	IF	CITATIONS
91	iOD907, the first genomeâ€scale metabolic model for the milk yeast <i>Kluyveromyces lactis</i> . Biotechnology Journal, 2014, 9, 776-790.	1.8	52
92	Computational comparison of mediated current generation capacity of Chlamydomonas reinhardtii in photosynthetic and respiratory growth modes. Journal of Bioscience and Bioengineering, 2014, 118, 565-574.	1.1	9
94	Metabolic flux prediction in cancer cells with altered substrate uptake. Biochemical Society Transactions, 2015, 43, 1177-1181.	1.6	8
95	Salmonella typhimuriumandEscherichia colidissimilarity: Closely related bacteria with distinct metabolic profiles. Biotechnology Progress, 2015, 31, 1217-1225.	1.3	19
96	FlexFlux: combining metabolic flux and regulatory network analyses. BMC Systems Biology, 2015, 9, 93.	3.0	48
97	Intracellular metabolic flux analysis of <scp>CHO</scp> cells supplemented with wheat hydrolysates for improved <scp>mAb</scp> production and cellâ€growth. Journal of Chemical Technology and Biotechnology, 2015, 90, 291-302.	1.6	12
98	Succinate Overproduction: A Case Study of Computational Strain Design Using a Comprehensive Escherichia coli Kinetic Model. Frontiers in Bioengineering and Biotechnology, 2014, 2, 76.	2.0	46
99	RobOKoD: microbial strain design for (over)production of target compounds. Frontiers in Cell and Developmental Biology, 2015, 3, 17.	1.8	17
100	Using Bioconductor Package BiGGR for Metabolic Flux Estimation Based on Gene Expression Changes in Brain. PLoS ONE, 2015, 10, e0119016.	1.1	17
101	<i>Synechocystis</i> sp. PCC6803 metabolic models for the enhanced production of hydrogen. Critical Reviews in Biotechnology, 2015, 35, 184-198.	5.1	7
102	Engineering Escherichia coli for methanol conversion. Metabolic Engineering, 2015, 28, 190-201.	3.6	166
103	Genome-scale modeling for metabolic engineering. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 327-338.	1.4	82
104	Current status and future perspectives of kinetic modeling for the cell metabolism with incorporation of the metabolic regulation mechanism. Bioresources and Bioprocessing, 2015, 2, .	2.0	17
105	Contemplating 3-Hydroxypropionic Acid Biosynthesis in Klebsiella pneumoniae. Indian Journal of Microbiology, 2015, 55, 131-139.	1.5	5
106	Double and multiple knockout simulations for genome-scale metabolic network reconstructions. Algorithms for Molecular Biology, 2015, 10, 1.	0.3	25
107	Metabolic Fluxes in Lactic Acid Bacteria—A Review. Food Biotechnology, 2015, 29, 185-217.	0.6	11
108	<i>In silico</i> deletion of <i>PtsG</i> gene in <i>Escherichia coli</i> genome-scale model predicts increased succinate production from glycerol. Journal of Biomolecular Structure and Dynamics, 2015, 33, 2380-2389.	2.0	11
109	Critical assessment of genome-scale metabolic networks: the need for a unified standard. Briefings in Bioinformatics, 2015, 16, 1057-1068.	3.2	62

#	Article	IF	CITATIONS
111	Engineering Methylobacterium extorquens for de novo synthesis of the sesquiterpenoid α-humulene from methanol. Metabolic Engineering, 2015, 32, 82-94.	3.6	91
112	Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Research, 2015, 43, 3899-3910.	6.5	121
113	Development and application of efficient pathway enumeration algorithms for metabolic engineering applications. Computer Methods and Programs in Biomedicine, 2015, 118, 134-146.	2.6	7
114	M-path: a compass for navigating potential metabolic pathways. Bioinformatics, 2015, 31, 905-911.	1.8	26
115	Applications of genome-scale metabolic network model in metabolic engineering. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 339-348.	1.4	77
116	MOST: a software environment for constraint-based metabolic modeling and strain design. Bioinformatics, 2015, 31, 610-611.	1.8	10
117	Bilevel optimization techniques in computational strain design. Computers and Chemical Engineering, 2015, 72, 363-372.	2.0	35
118	Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems. Frontiers in Microbiology, 2016, 7, 673.	1.5	109
119	Constraint Based Modeling Going Multicellular. Frontiers in Molecular Biosciences, 2016, 3, 3.	1.6	32
120	Facilitate Collaborations among Synthetic Biology, Metabolic Engineering and Machine Learning. ChemBioEng Reviews, 2016, 3, 45-54.	2.6	16
121	The influence of the pentose's pathway of the Clostridium Acetobutylicum on the production of butanol: Insights from mathematical modeling. AIP Conference Proceedings, 2016, , .	0.3	0
122	Bioinformatics for the synthetic biology of natural products: integrating across the Design–Build–Test cycle. Natural Product Reports, 2016, 33, 925-932.	5.2	58
123	Biosynthesis of therapeutic natural products using synthetic biology. Advanced Drug Delivery Reviews, 2016, 105, 96-106.	6.6	52
126	Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures—Systems biologyâ€based interpretation using genomeâ€scale metabolic flux balance model and multivariate data analysis. Biotechnology Progress, 2016, 32, 1163-1173.	1.3	10
127	Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis. Metabolic Engineering Communications, 2016, 3, 216-226.	1.9	78
128	Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling. Advances in Biochemical Engineering/Biotechnology, 2016, 160, 75-102.	0.6	4
129	Development of an Integrated Framework for Minimal Cut Set Enumeration in Constraint-Based Models. Advances in Intelligent Systems and Computing, 2016, , 193-201.	0.5	2
130	Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae. Metabolic Engineering Communications, 2016, 3, 153-163.	1.9	51

#	Article	IF	CITATIONS
131	A case study in flux balance analysis: Lysine, a cephamycin C precursor, can also increase clavulanic acid production. Biochemical Engineering Journal, 2016, 112, 42-53.	1.8	7
132	Designing intracellular metabolism for production of target compounds by introducing a heterologous metabolic reaction based on a Synechosystis sp. 6803 genome-scale model. Microbial Cell Factories, 2016, 15, 13.	1.9	16
133	Exploring <i>De Novo</i> metabolic pathways from pyruvate to propionic acid. Biotechnology Progress, 2016, 32, 303-311.	1.3	16
134	The elementary flux modes of a manufacturing system: a novel approach to explore the relationship of network structure and function. International Journal of Production Research, 2016, 54, 4145-4160.	4.9	6
135	Model-guided metabolic gene knockout of gnd for enhanced succinate production in Escherichia coli from glucose and glycerol substrates. Computational Biology and Chemistry, 2016, 61, 130-137.	1.1	23
136	Model-assisted formate dehydrogenase-O (<i>fdoH</i>) gene knockout for enhanced succinate production in <i>Escherichia coli</i> from glucose and glycerol carbon sources. Journal of Biomolecular Structure and Dynamics, 2016, 34, 2305-2316.	2.0	10
137	Model-aided <i>atpE</i> gene knockout strategy in <i>Escherichia coli</i> for enhanced succinic acid production from glycerol. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1705-1716.	2.0	14
138	<i>In Silico</i> Constraint-Based Strain Optimization Methods: the Quest for Optimal Cell Factories. Microbiology and Molecular Biology Reviews, 2016, 80, 45-67.	2.9	103
139	Genome-Wide Semi-Automated Annotation of Transporter Systems. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14, 443-456.	1.9	14
140	Genome-scale metabolic models as platforms for strain design and biological discovery. Journal of Biomolecular Structure and Dynamics, 2017, 35, 1863-1873.	2.0	19
141	Design Automation in Synthetic Biology. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023978.	2.3	67
142	Development of a Framework for Metabolic Pathway Analysis-Driven Strain Optimization Methods. Interdisciplinary Sciences, Computational Life Sciences, 2017, 9, 46-55.	2.2	1
143	Use of CellNetAnalyzer in biotechnology and metabolic engineering. Journal of Biotechnology, 2017, 261, 221-228.	1.9	83
144	FOCuS: a metaheuristic algorithm for computing knockouts from genome-scale models for strain optimization. Molecular BioSystems, 2017, 13, 1355-1363.	2.9	10
145	Tapping into Salmonella typhimurium LT2 genome in a quest to explore its therapeutic arsenal: A metabolic network modeling approach. Biomedicine and Pharmacotherapy, 2017, 86, 57-66.	2.5	1
146	Experimental design and metabolic flux analysis tools to optimize industrially relevant <i>Haemophilus influenzae</i> type b growth medium. Biotechnology Progress, 2017, 33, 1508-1519.	1.3	2
147	Transposon Sequencing Uncovers an Essential Regulatory Function of Phosphoribulokinase for Methylotrophy. Current Biology, 2017, 27, 2579-2588.e6.	1.8	34
148	Isotopically Nonstationary Metabolic Flux Analysis (INST-MFA) of Photosynthesis and Photorespiration in Plants. Methods in Molecular Biology, 2017, 1653, 167-194.	0.4	21

#	Article	IF	CITATIONS
149	Reconstruction and analysis of a genome-scale metabolic model of Nannochloropsis gaditana. Algal Research, 2017, 26, 354-364.	2.4	32
150	Industrial Biotechnology: Discovery to Delivery. , 2017, , 1495-1570.		3
151	<i>In silico</i> and <i>in vivo</i> stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered <i>E. coli</i> . Journal of Biomolecular Structure and Dynamics, 2017, 35, 1874-1889.	2.0	7
152	Synthetic Biology. , 2017, , 239-269.		3
153	In Silico Approaches to Metabolic Engineering. , 2017, , 161-200.		3
154	Synthetic biology strategies towards the development ofÂnewÂbioinspired technologies for medical applications. , 2017, , 451-497.		5
155	Genome-Scale Metabolic Modeling of Archaea Lends Insight into Diversity of Metabolic Function. Archaea, 2017, 2017, 1-18.	2.3	21
156	Balancing gene expression without library construction via a reusable sRNA pool. Nucleic Acids Research, 2017, 45, 8116-8127.	6.5	56
157	Computational Studies and Biosynthesis of Natural Products with Promising Anticancer Properties. , 2017, , .		5
158	OptPipe - a pipeline for optimizing metabolic engineering targets. BMC Systems Biology, 2017, 11, 143.	3.0	13
159	Building Metabolic Models From First Principles. , 2017, , 201-221.		0
160	Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane. Metabolic Engineering, 2018, 47, 323-333.	3.6	89
161	The Genome-Based Metabolic Systems Engineering to Boost Levan Production in a Halophilic Bacterial Model. OMICS A Journal of Integrative Biology, 2018, 22, 198-209.	1.0	12
164	<i>Escherichia coli</i> genome-scale metabolic gene knockout of lactate dehydrogenase (<i>ldhA</i>), increases succinate production from glycerol. Journal of Biomolecular Structure and Dynamics, 2018, 36, 3680-3686.	2.0	1
165	Interference of the oscillating glycolysis with the oscillating tryptophan synthesis in the E. coli cells. Computers and Chemical Engineering, 2018, 108, 395-407.	2.0	10
166	Reconstructing High-Quality Large-Scale Metabolic Models with merlin. Methods in Molecular Biology, 2018, 1716, 1-36.	0.4	13
167	Analyzing and Designing Cell Factories with OptFlux. Methods in Molecular Biology, 2018, 1716, 37-76.	0.4	4
168	Metabolic models and gene essentiality data reveal essential and conserved metabolism in prokaryotes. PLoS Computational Biology, 2018, 14, e1006556.	1.5	16

#	Article	IF	CITATIONS
169	Assessing <i>Escherichia coli</i> metabolism models and simulation approaches in phenotype predictions: Validation against experimental data. Biotechnology Progress, 2018, 34, 1344-1354.	1.3	1
170	Formate Promotes <i>Shigella</i> Intercellular Spread and Virulence Gene Expression. MBio, 2018, 9, .	1.8	26
171	IN SILICO GENOME-SCALE RECONSTRUCTION AND ANALYSIS OF THE SHEWANELLA LOIHICA PV-4 METABOLIC NETWORK. Journal of Biological Systems, 2018, 26, 373-397.	0.5	3
172	Escher-FBA: a web application for interactive flux balance analysis. BMC Systems Biology, 2018, 12, 84.	3.0	44
173	In silico optimization of a bioreactor with an E. coli culture for tryptophan production by using a structured model coupling the oscillating glycolysis and tryptophan synthesis. Chemical Engineering Research and Design, 2018, 135, 207-221.	2.7	4
174	Methods for automated genome-scale metabolic model reconstruction. Biochemical Society Transactions, 2018, 46, 931-936.	1.6	51
175	Development and validation of an updated computational model of Streptomyces coelicolor primary and secondary metabolism. BMC Genomics, 2018, 19, 519.	1.2	20
176	Genetic Optimization Algorithm for Metabolic Engineering Revisited. Metabolites, 2018, 8, 33.	1.3	13
177	Metabolic flux analysis and the NAD(P)H/NAD(P)+ ratios in chemostat cultures of Azotobacter vinelandii. Microbial Cell Factories, 2018, 17, 10.	1.9	28
178	Reconstruction of a genome-scale metabolic model for Actinobacillus succinogenes 130Z. BMC Systems Biology, 2018, 12, 61.	3.0	22
179	Targeted Repression of Essential Genes To Arrest Growth and Increase Carbon Partitioning and Biofuel Titers in Cyanobacteria. ACS Synthetic Biology, 2018, 7, 1669-1675.	1.9	68
180	Application of Computation in the Biosynthesis of Phytochemicals. , 2018, , 255-276.		Ο
181	In Silico Predictions for Fucoxanthin Production by the Diatom Phaeodactylum Tricornutum. Advances in Intelligent Systems and Computing, 2019, , 139-148.	0.5	0
182	Metabolic flux analysis for metabolome data validation of naturally xylose-fermenting yeasts. BMC Biotechnology, 2019, 19, 58.	1.7	17
183	Comparison of pathway analysis and constraint-based methods for cell factory design. BMC Bioinformatics, 2019, 20, 350.	1.2	2
184	iDS372, a Phenotypically Reconciled Model for the Metabolism of Streptococcus pneumoniae Strain R6. Frontiers in Microbiology, 2019, 10, 1283.	1.5	20
185	Biological conversion of methane to putrescine using genome-scale model-guided metabolic engineering of a methanotrophic bacterium Methylomicrobium alcaliphilum 20Z. Biotechnology for Biofuels, 2019, 12, 147.	6.2	35
186	Discovery and implementation of a novel pathway for n-butanol production via 2-oxoglutarate. Biotechnology for Biofuels, 2019, 12, 230.	6.2	12

#	Article	IF	CITATIONS
187	Concomitant consumption of glucose and lactate: A novel batch production process for CHO cells. Biochemical Engineering Journal, 2019, 151, 107358.	1.8	13
188	Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology. Microorganisms, 2019, 7, 409.	1.6	39
189	Metabolic fluxes-oriented control of bioreactors: a novel approach to tune micro-aeration and substrate feeding in fermentations. Microbial Cell Factories, 2019, 18, 150.	1.9	12
190	Constraint-Based Modeling of Metabolic Interactions in and Between Astrocytes and Neurons. Springer Series in Computational Neuroscience, 2019, , 393-420.	0.3	0
191	Yeast Genome-Scale Metabolic Models for Simulating Genotype–Phenotype Relations. Progress in Molecular and Subcellular Biology, 2019, 58, 111-133.	0.9	11
192	OptRAM: In-silico strain design via integrative regulatory-metabolic network modeling. PLoS Computational Biology, 2019, 15, e1006835.	1.5	41
193	Turnover Dependent Phenotypic Simulation: A Quantitative Constraint-Based Simulation Method That Accommodates All Main Strain Design Strategies. ACS Synthetic Biology, 2019, 8, 976-988.	1.9	1
194	Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nature Protocols, 2019, 14, 639-702.	5.5	833
195	Gsmodutils: a python based framework for test-driven genome scale metabolic model development. Bioinformatics, 2019, 35, 3397-3403.	1.8	2
196	In vitro fucoxanthin production by the Phaeodactylum tricornutum diatom. Studies in Natural Products Chemistry, 2019, 63, 211-242.	0.8	9
197	A New Synthetic Pathway for the Bioproduction of Glycolic Acid From Lignocellulosic Sugars Aimed at Maximal Carbon Conservation. Frontiers in Bioengineering and Biotechnology, 2019, 7, 359.	2.0	27
198	Metabolic flux balance analysis during lactate and glucose concomitant consumption in HEK293 cell cultures. Biotechnology and Bioengineering, 2019, 116, 388-404.	1.7	21
199	Mapping Salmonella typhimurium pathways using 13C metabolic flux analysis. Metabolic Engineering, 2019, 52, 303-314.	3.6	3
200	Recent Advances, Challenges, and Opportunities in Bioremediation of Hazardous Materials. , 2019, , 517-568.		39
201	Resources and tools for the high-throughput, multi-omic study of intestinal microbiota. Briefings in Bioinformatics, 2019, 20, 1032-1056.	3.2	10
202	Metabolic flux analysis ofSaccharomyces cerevisiaeduring redox potential–controlled very highâ€gravity ethanol fermentation. Biotechnology and Applied Biochemistry, 2020, 67, 140-147.	1.4	5
203	GeneReg: a constraint-based approach for design of feasible metabolic engineering strategies at the gene level. Bioinformatics, 2021, 37, 1717-1723.	1.8	12
204	A Genome-Scale Metabolic Model of 2,3-Butanediol Production by Thermophilic Bacteria Geobacillus icigianus. Microorganisms, 2020, 8, 1002.	1.6	10

#	Article	IF	Citations
206	Genome-Scale Metabolic Model of the Human Pathogen Candida albicans: A Promising Platform for Drug Target Prediction. Journal of Fungi (Basel, Switzerland), 2020, 6, 171.	1.5	16
207	An insight to flux-balance analysis for biochemical networks. Biotechnology and Genetic Engineering Reviews, 2020, 36, 32-55.	2.4	16
208	Unlocking the biosynthesis of sesquiterpenoids from methane via the methylerythritol phosphate pathway in methanotrophic bacteria, using α-humulene as a model compound. Metabolic Engineering, 2020, 61, 69-78.	3.6	31
209	In silico Metabolic Flux Data Flexibilization for Advanced Bioreactor Control Applications. Industrial Biotechnology, 2020, 16, 61-66.	0.5	1
210	Key Challenges in Designing CHO Chassis Platforms. Processes, 2020, 8, 643.	1.3	9
211	NIHBA: a network interdiction approach for metabolic engineering design. Bioinformatics, 2020, 36, 3482-3492.	1.8	7
212	MEMOTE for standardized genome-scale metabolic model testing. Nature Biotechnology, 2020, 38, 272-276.	9.4	314
213	Towards computer-aided design of cellular structure. Physical Biology, 2020, 17, 023001.	0.8	4
214	The Methods and Tools for Molecular Network Construction. , 2021, , 14-28.		0
215	MEWpy: a computational strain optimization workbench in Python. Bioinformatics, 2021, 37, 2494-2496.	1.8	13
216	Synthetic biology design tools for metabolic engineering. , 2021, , 65-77.		2
217	Recent trends in the development of high-performance microbial cell factories for production of bio-based chemicals. , 2021, , 241-246.		1
218	Metals and methylotrophy: Via global gene expression studies. Methods in Enzymology, 2021, 650, 185-213.	0.4	1
219	The Metano Modeling Toolbox MMTB: An Intuitive, Web-Based Toolbox Introduced by Two Use Cases. Metabolites, 2021, 11, 113.	1.3	2
221	Machine learning applied for metabolic fluxâ€based control of microâ€aerated fermentations in bioreactors. Biotechnology and Bioengineering, 2021, 118, 2076-2091.	1.7	8
223	Understanding FBA Solutions under Multiple Nutrient Limitations. Metabolites, 2021, 11, 257.	1.3	4
224	Proteome Regulation Patterns Determine Escherichia coli Wild-Type and Mutant Phenotypes. MSystems, 2021, 6, .	1.7	6
226	Genome-scale metabolic modeling of P. thermoglucosidasius NCIMB 11955 reveals metabolic bottlenecks in anaerobic metabolism. Metabolic Engineering, 2021, 65, 123-134.	3.6	14

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
227	Towards a Systems Biology Approach to Understanding the Lichen Symbiosis: Opportunities and Challenges of Implementing Network Modelling. Frontiers in Microbiology, 2021, 12, 667864.	1.5	15
228	Enhancing Sesquiterpenoid Production from Methane via Synergy of the Methylerythritol Phosphate Pathway and a Short-Cut Route to 1-Deoxy-D-xylulose 5-Phosphate in Methanotrophic Bacteria. Microorganisms, 2021, 9, 1236.	1.6	11
229	A multi-objective hybrid machine learning approach-based optimization for enhanced biomass and bioactive phycobiliproteins production in Nostoc sp. CCC-403. Bioresource Technology, 2021, 329, 124908.	4.8	33
230	The Effect of the Expression of the Antiapoptotic BHRF1 Gene on the Metabolic Behavior of a Hybridoma Cell Line. Applied Sciences (Switzerland), 2021, 11, 6258.	1.3	1
232	Modelâ€guided development of an evolutionarily stable yeast chassis. Molecular Systems Biology, 2021, 17, e10253.	3.2	6
233	The Design-Build-Test-Learn cycle for metabolic engineering of Streptomycetes. Essays in Biochemistry, 2021, 65, 261-275.	2.1	17
234	Combinatorial Optimization of Succinate Production in Escherichia coli. Lecture Notes in Networks and Systems, 2022, , 155-164.	0.5	1
235	Genome Scale Modeling to Study the Metabolic Competition between Cells in the Tumor Microenvironment. Cancers, 2021, 13, 4609.	1.7	15
236	A CCM-based modular and hybrid kinetic model to simulate the tryptophan synthesis in a fed-batch bioreactor using modified E. coli cells. Computers and Chemical Engineering, 2021, 153, 107450.	2.0	4
237	Model-Guided Identification of Gene Deletion Targets for Metabolic Engineering in Saccharomyces cerevisiae. Methods in Molecular Biology, 2014, 1152, 281-294.	0.4	2
238	Investigating Host–Pathogen Behavior and Their Interaction Using Genome-Scale Metabolic Network Models. Methods in Molecular Biology, 2014, 1184, 523-562.	0.4	10
239	Isotopically Nonstationary MFA (INST-MFA) of Autotrophic Metabolism. Methods in Molecular Biology, 2014, 1090, 181-210.	0.4	29
241	Stoichiometric and Constraint-Based Analysis of Biochemical Reaction Networks. Modeling and Simulation in Science, Engineering and Technology, 2014, , 263-316.	0.4	12
242	Microalgal Systems Biology for Biofuel Production. , 2015, , 3-21.		2
243	Challenges in the Application of Synthetic Biology Toward Synthesis of Commodity Products by Cyanobacteria via "Direct Conversion― Advances in Experimental Medicine and Biology, 2018, 1080, 3-26.	0.8	12
244	Integrating the Bioinformatics and Omics Tools for Systems Analysis of Abiotic Stress Tolerance in Oryza sativa (L.). , 2019, , 59-77.		3
245	In silico Simulation for Enhancing Production of Organic Acids in Zymomonas mobilis. Computer Aided Chemical Engineering, 2012, 31, 900-904.	0.3	1
250	Large-Scale Bi-Level Strain Design Approaches and Mixed-Integer Programming Solution Techniques. PLoS ONE, 2011, 6, e24162.	1.1	77

#	Article	IF	CITATIONS
251	Design Constraints on a Synthetic Metabolism. PLoS ONE, 2012, 7, e39903.	1.1	11
252	The Artificial Intelligence Workbench: a retrospective review. Advances in Distributed Computing and Artificial Intelligence Journal, 2016, 5, 73-85.	1.1	4
255	Estimation of biomass composition from genomic and transcriptomic information. Journal of Integrative Bioinformatics, 2016, 13, 285.	1.0	7
256	An overview of pathway prediction tools for synthetic design of microbial chemical factories. AIMS Bioengineering, 2015, 2, 1-14.	0.6	5
257	Model-driven in Silico glpC Gene Knockout Predicts Increased Succinate Production from Glycerol in Escherichia Coli . AIMS Bioengineering, 2015, 2, 40-48.	0.6	4
258	Role of a Web-based Software Platform for Systems Biology. Journal of Computer Science and Systems Biology, 2011, 04, .	0.0	9
260	Enhancing Elementary Flux Modes Analysis Using Filtering Techniques in an Integrated Environment. Advances in Intelligent and Soft Computing, 2010, , 217-224.	0.2	0
261	Highlighting Metabolic Strategies Using Network Analysis over Strain Optimization Results. Lecture Notes in Computer Science, 2011, , 109-120.	1.0	0
262	A Software Platform for Evolutionary Computation with Pluggable Parallelism and Quality Assurance. International Federation for Information Processing, 2011, , 45-50.	0.4	0
263	A Study on the Robustness of Strain Optimization Algorithms. Advances in Intelligent and Soft Computing, 2011, , 329-336.	0.2	0
264	Computational Tools for Strain Optimization by Tuning the Optimal Level of Gene Expression. Advances in Intelligent and Soft Computing, 2012, , 251-258.	0.2	1
266	Quantitative Metabolomics and Its Application in Metabolic Engineering of Microbial Cell Factories Exemplified by the Baker's Yeast. , 0, , .		0
267	FBA Analysis, Plant-Pathogen Interactions. , 2013, , 733-736.		0
268	Network Visualization Tools to Enhance Metabolic Engineering Platforms. Advances in Intelligent Systems and Computing, 2013, , 137-144.	0.5	1
270	Optimization of Clostridium acetobutylicum metabolism for biobutanol production using in silico tools , 0, , .		0
271	Systems Metabolic Engineering of <i>Arabidopsis</i> for Increased Cellulose Production. FASEB Journal, 2015, 29, 887.26.	0.2	1
277	Engineering Natural Product Biosynthetic Pathways to Produce Commodity and Specialty Chemicals. , 2020, , 352-376.		0
278	Integrated Translation Framework for Endocrine Disruptors in the area of Computational Toxicology. Issues in Toxicology, 2020, , 80-120.	0.2	1

- # ARTICLE
- Metabolomics and flux balance analysis., 2022, , 337-365. 281

IF CITATIONS

281	Metabolomics and flux balance analysis. , 2022, , 337-365.		1
282	Synthetic biology for smart drug biosynthesis and delivery. , 2022, , 349-360.		0
283	A Genome-Scale Metabolic Model for the Human Pathogen Candida Parapsilosis and Early Identification of Putative Novel Antifungal Drug Targets. Genes, 2022, 13, 303.	1.0	3
284	OptDesign: Identifying Optimum Design Strategies in Strain Engineering for Biochemical Production. ACS Synthetic Biology, 2022, 11, 1531-1541.	1.9	6
286	Tryptophan Production Maximization in a Fed-Batch Bioreactor with Modified E. coli Cells, by Optimizing Its Operating Policy Based on an Extended Structured Cell Kinetic Model. Bioengineering, 2021, 8, 210.	1.6	4
287	CNApy: a CellNetAnalyzer GUI in Python for analyzing and designing metabolic networks. Bioinformatics, 2022, 38, 1467-1469.	1.8	8
288	Visualising Metabolic Pathways and Networks: Past, Present, Future. , 2022, , 237-267.		2
293	In silico strain optimization by adding reactions to metabolic models. Journal of Integrative Bioinformatics, 2012, 9, 202.	1.0	0
294	In Silico Design Strategies for the Production of Target Chemical Compounds Using Iterative Single-Level Linear Programming Problems. Biomolecules, 2022, 12, 620.	1.8	0
296	Trimming Gene Deletion Strategies for Growth-Coupled Production in Constraint-Based Metabolic Networks: TrimGdel. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2023, 20, 1540-1549.	1.9	2
297	A pipeline for the reconstruction and evaluation of context-specific human metabolic models at a large-scale. PLoS Computational Biology, 2022, 18, e1009294.	1.5	8
298	Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Nature Communications, 2022, 13, .	5.8	39
299	Designer bacterial cell factories for improved production of commercially valuable non-ribosomal peptides. Biotechnology Advances, 2022, 60, 108023.	6.0	3
302	StrainDesign: a comprehensive Python package for computational design of metabolic networks. Bioinformatics, 2022, 38, 4981-4983.	1.8	10
303	Machine learning-guided prediction of potential engineering targets for microbial production of lycopene. Bioresource Technology, 2023, 369, 128455.	4.8	2
304	Antioxidant Green Factories: Toward Sustainable Production of Vitamin E in Plant <i>In Vitro</i> Cultures. ACS Omega, 2023, 8, 3586-3605.	1.6	7
305	Systems biology's role in leveraging microalgal biomass potential: Current status and future perspectives. Algal Research, 2023, 69, 102963.	2.4	1
306	Gene Deletion Algorithms for Minimum Reaction Network Design by Mixed-Integer Linear Programming for Metabolite Production in Constraint-Based Models: gDel_minRN. Journal of Computational Biology, 2023, 30, 553-568.	0.8	3

.

#	Article	IF	CITATIONS
307	Vibrio cholerae Alkalizes Its Environment via Citrate Metabolism to Inhibit Enteric Growth <i>In Vitro</i> . Microbiology Spectrum, 2023, 11, .	1.2	0
316	Integration of Metabolomics and Flux Balance Analysis: Applications and Challenges. , 2024, , 199-237.		Ο
318	Development and applications of genome-scale metabolic network models. Advances in Applied Microbiology, 2024, , .	1.3	0
319	Flux Balance Analysis of Mammalian Cell Systems. Methods in Molecular Biology, 2024, , 119-134.	0.4	Ο
320	Application of computation in the study of biosynthesis of phytochemicals. , 2024, , 321-355.		0