Reassessment of the cheirolepidiaceous conifer Frenelo Early Cretaceous (Hauterivian) of Portugal and palaeoer

Review of Palaeobotany and Palynology

161, 30-42

DOI: 10.1016/j.revpalbo.2010.03.002

Citation Report

#	Article	IF	CITATIONS
1	Review of the El Soplao Amber Outcrop, Early Cretaceous of Cantabria, Spain. Acta Geologica Sinica, 2010, 84, 959-976.	0.8	52
2	An Early Cretaceous flora from Cusano Mutri, Benevento, southern Italy. Cretaceous Research, 2012, 33, 116-134.	0.6	20

 $_{3}$ Climate and vegetation history of western Portugal inferred from Albian near-shore deposits (Galé) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

4	Two Brachyphyllum species from the Lower Cretaceous of Jiuquan Basin, Gansu Province, NW China and their affinities and palaeoenvironmental implications. Cretaceous Research, 2013, 41, 242-255.	0.6	22
5	Plant remains from the Lower Cretaceous Fossil-LagerstÃ æ e of Pietraroja, Benevento, southern Italy. Cretaceous Research, 2013, 46, 65-79.	0.6	9
6	Wetland megabias: ecological and ecophysiological filtering dominates the fossil record of hot spring floras. Palaeontology, 2013, 56, 523-556.	1.0	33
7	New Cenomanian florule and a leaf mine from southeastern Morocco: Palaeoecological and climatological inferences. Cretaceous Research, 2013, 40, 218-226.	0.6	9
8	Discovery of Pseudofrenelopsis from the Lower Cretaceous of Liupanshan Basin and its paleoclimatic significance. Cretaceous Research, 2014, 48, 193-204.	0.6	21
9	Palynological records from two cores in the Gongpoquan Basin, central East Asia: Evidence for floristic and climatic change during the Late Jurassic to Early Cretaceous. Review of Palaeobotany and Palynology, 2014, 204, 1-17.	0.8	23
10	Diversified fossil plant assemblages from the Maastrichtian in Isona (southeastern Pyrenees). Review of Palaeobotany and Palynology, 2014, 206, 45-59.	0.8	12
11	The palynoflora of the Lower Cretaceous strata of the Yingen-Ejinaqi Basin in North China and their implications for the evolution of early angiosperms. Cretaceous Research, 2014, 48, 23-38.	0.6	27
12	Plant remains from Early Cretaceous deposits on the Goban Spur, Bay of Biscay, North Atlantic Ocean, and their palaeoenvironmental significance. Palaeoworld, 2014, 23, 162-186.	0.5	9
13	The palynological record from Coniacian to lower Campanian continental sequences in the Songliao Basin, northeastern China and its implications for palaeoclimate. Cretaceous Research, 2015, 56, 226-236.	0.6	11
14	Effects of chemical preparation protocols on δ13C values of plant fossil samples. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438, 267-276.	1.0	11
15	Cheirolepidiacean foliage and pollen from Cretaceous high-latitudes of southeastern Australia. Gondwana Research, 2015, 27, 960-977.	3.0	55
16	Cretaceous conifers and angiosperms from the Bonarelli Level; Reassessment of Massalongo's plant fossil collections of "Monte Colleâ€; Lessini Mountains, northern Italy. Cretaceous Research, 2015, 52, 179-193.	0.6	5
17	Atmospheric palaeo-CO2 estimates based on the carbon isotope and stomatal data of Cheirolepidiaceae from the Lower Cretaceous of the Jiuquan Basin, Gansu Province. Cretaceous Research, 2016, 62, 142-153.	0.6	28
18	Geochemistry and mineralogy of the Lower Cretaceous of the Lusitanian Basin (western Portugal): Deciphering palaeoclimates from weathering indices and integrated vegetational data. Comptes Rendus - Geoscience, 2016, 348, 139-149.	0.4	17

CITATION REPORT

#	RTICLE		CITATIONS
19	CO2 and temperature decoupling at the million-year scale during the Cretaceous Greenhouse. Scientific Reports, 2017, 7, 8310.		31
20	Palaeobotanical records associated with the first dinosaur defined in Spain: Palynostratigraphy, taxonomy and palaeoenvironmental remarks. Cretaceous Research, 2018, 90, 318-334.	0.6	13
21	Late Early Cretaceous climate and p CO 2 estimates in the Liupanshan Basin, Northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 503, 26-39.	1.0	6
22	Palynological assemblage from the lower Cenomanian plant-bearing LagerstÃ t te of Jaunay-Clan-Ormeau-Saint-Denis (Vienne, western France): Stratigraphic and paleoenvironmental implications. Review of Palaeobotany and Palynology, 2019, 271, 104102.	0.8	6
23	New insights into the morphology and taxonomy of the Cretaceous conifer Frenelopsis based on a new species from the Albian of San Just, Teruel, Spain. Cretaceous Research, 2019, 95, 21-36.	0.6	8
24	Late Cretaceous paleoclimate change and its impact on uranium mineralization in the Kailu Depression, southwest Songliao Basin. Ore Geology Reviews, 2019, 104, 403-421.	1.1	8
25	Chronostratigraphy and terrestrial palaeoclimatology of Berriasian–Hauterivian strata of the Cedar Mountain Formation, Utah, USA. Geological Society Special Publication, 2020, 498, 75-100.	0.8	12
26	Friisia lusitanica gen. et sp. nov., a new podocarpaceous ovuliferous cone from the Lower Cretaceous of Lusitanian Basin, western Portugal. Cretaceous Research, 2020, 108, 104352.	0.6	4
27	Early Cretaceous palynology and paleoclimate of the Hanxia-Hongliuxia Area, Jiuxi Basin, China. Review of Palaeobotany and Palynology, 2020, 281, 104259.	0.8	10
28	Coniferâ€dominant palynoflora from the Lower Cretaceous in Ordos Basin, China: Biostratigraphical and palaeoclimatic implications. Geological Journal, 2021, 56, 1549-1563.	0.6	1
29	Some Conifers from The Early Cretaceous (Late Aptian – Early Albian) of Catefica, Lusitanian Basin, Western Portugal. Fossil Imprint, 2018, 74, 317-326.	0.3	11
30	Clays and Vegetation: Comparing Palaeoclimatic Signatures in the Portuguese Lower Cretaceous. Springer Geology, 2014, , 649-653.	0.2	Ο
31	A new Hauterivian palynoflora from the Vale Cortiço site (central Portugal), and its palaeoecological implications for western Iberia. Acta Palaeobotanica, 2019, 59, 215-228.	0.2	6
32	Cretaceous climate variations indicated by palynoflora in South China. Palaeoworld, 2022, 31, 507-520.	0.5	2
33	The â€~Base Cretaceous Unconformity' in a basin-centre setting, Danish Central Graben, North Sea: A cored record of resedimentation and condensation accompanying transgression and basinal overturn. Marine and Petroleum Geology, 2022, 137, 105489.	1.5	9
34	Terrestrial records of Early Cretaceous paleoclimate fluctuations in the Yin'e Basin, northern China: Evidence from sedimentology and palynomorphs in lacustrine sediments. Sedimentary Geology, 2022, 432, 106110.	1.0	16
35	Frenelopsis antunesii sp. nov., a new cheirolepidiaceous conifer from the Lower Cretaceous of Figueira da Foz Formation in western Portugal. Review of Palaeobotany and Palynology, 2022, 300, 104643.	0.8	7
36	Palaeoecology and palaeoclimate of an Early Cretaceous peat mire in East Laurasia (Hailar Basin, Inner) Tj ETQq1	1 0.7843	14 ggBT /Over

		CITATION REPORT	
#	Article	IF	CITATIONS
37	The palynology of the Toarcian Oceanic Anoxic Event at Dormettingen, southwest Germany, emphasis on changes in vegetational dynamics. Review of Palaeobotany and Palynology, 202104701.	with 22, 304, 0.8	3
38	A new species of the cheirolepidiaceous conifer Pseudofrenelopsis from the Lower Cretaceou Figueira da Foz Formation, Portugal. Review of Palaeobotany and Palynology, 2023, 309, 104	us of 0.8 4821.	1
39	Middle-Late Eocene Climate in the Pearl River Mouth Basin: Evidence from a Palynological an Geological Element Record in the Xijiang Main Subsag. Minerals (Basel, Switzerland), 2023, I	d 0.8	0