CITATION REPORT List of articles citing

Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst

DOI: 10.1016/j.molcatb.2009.11.010 Journal of Molecular Catalysis B: Enzymatic, 2010, 62, 197-212

Source: https://exaly.com/paper-pdf/48006408/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
466	Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrenedivinylbenzene copolymer using response surface methodology. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2010 , 63, 170-178		60
465	Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2010 , 64, 1-22		219
464	Lipases from the genus Penicillium: Production, purification, characterization and applications. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2010 , 66, 43-54		61
463	Chemical modification and immobilisation of lipase B from Candida antarctica onto mesoporous silicates. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2010 , 66, 203-209		46
462	Two step ethanolysis: A simple and efficient way to improve the enzymatic biodiesel synthesis catalyzed by an immobilizedEtabilized lipase from Thermomyces lanuginosus. <i>Process Biochemistry</i> , 2010 , 45, 1268-1273	4.8	63
461	Investigation of the catalytic efficiency of a new mesoporous catalyst SnO2/WO3 towards oleic acid esterification. 2010 , 327, 73-79		51
460	Enzymes for the biofunctionalization of poly(ethylene terephthalate). 2011 , 125, 97-120		42
459	Poly(glycidyl methacrylate)-Polystyrene Diblocks Copolymer Grafted Nanocomposite Microspheres from Surface-Initiated Atom Transfer Radical Polymerization for Lipase Immobilization: Application in Flavor Ester Synthesis. 2010 , 49, 9655-9665		41
458	Optimization of Lipase Performance in Detergent Formulations for Hard Surfaces. 2011 , 50, 11502-115	510	13
457	Ionic liquid-based aqueous biphasic system for lipase extraction. 2011 , 13, 390-396		111
456	Optimization of process parameters for enhanced production of lipase by Penicillium notatum using agricultural wastes. 2011 , 10,		1
455	Hen egg white as a feeder protein for lipase immobilization. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2011 , 71, 113-118		49
454	Construction of a whole-cell catalyst displaying a fungal lipase for effective treatment of oily wastewaters. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2011 , 71, 166-170		19
453	Enzymatic transesterification of fats and oils from animal discards to fatty acid ethyl esters for potential fuel use. <i>Biomass and Bioenergy</i> , 2011 , 35, 4149-4157	5.3	19
452	Enzymatic synthesis and analytical monitoring of terpene ester by 1H NMR spectroscopy. 2011 , 65,		7
451	Kinetically controlled synthesis of monoglyceryl esters from chiral and prochiral acids methyl esters catalyzed by immobilized Rhizomucor miehei lipase. 2011 , 102, 507-12		23
450	Mesoporous organosilicas with large cage-like pores for high efficiency immobilization of enzymes. 2011 , 23, 2627-32		109

449	Effect of acyl migration in Lipozyme TL IM-catalyzed interesterification using a triacylglycerol model system. 2011 , 113, 1258-1265		16
448	Hydrolysis of triacetin catalyzed by immobilized lipases: effect of the immobilization protocol and experimental conditions on diacetin yield. <i>Enzyme and Microbial Technology</i> , 2011 , 48, 510-7	3.8	43
447	Simple and efficient immobilization of lipase B from Candida antarctica on porous styrene-divinylbenzene beads. <i>Enzyme and Microbial Technology</i> , 2011 , 49, 72-8	3.8	107
446	Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. <i>Enzyme and Microbial Technology</i> , 2011 , 49, 326-46	3.8	266
445	Production of olive oil enriched with medium chain fatty acids catalysed by commercial immobilised lipases. 2011 , 127, 993-8		53
444	Covalent immobilization of lipase onto amine functionalized polypropylene membrane and its application in green apple flavor (ethyl valerate) synthesis. <i>Process Biochemistry</i> , 2011 , 46, 372-378	4.8	61
443	Effects of the combined use of Thermomyces lanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. <i>Process Biochemistry</i> , 2011 , 46, 682-688	4.8	89
442	Study of Soybean Oil Hydrolysis Catalyzed by Thermomyces lanuginosus Lipase and Its Application to Biodiesel Production via Hydroesterification. 2010 , 2011, 618692		52
441	Enzymatic biodiesel synthesis using a byproduct obtained from palm oil refining. 2011 , 2011, 814507		40
440	Optimal production and biochemical properties of a lipase from Candida albicans. <i>International Journal of Molecular Sciences</i> , 2011 , 12, 7216-37	6.3	8
439		6.3	5
	Journal of Molecular Sciences, 2011 , 12, 7216-37	6.3	
439	Journal of Molecular Sciences, 2011, 12, 7216-37 Industrial Enzymes and Biocatalysis. 2012, 1183-1227 Highly efficient biosynthesis of sucrose-6-acetate with cross-linked aggregates of Lipozyme TL 100	6.3	5
439	Industrial Enzymes and Biocatalysis. 2012, 1183-1227 Highly efficient biosynthesis of sucrose-6-acetate with cross-linked aggregates of Lipozyme TL 100 L. 2012, 161, 27-33 Lipase-catalyzed incorporation of different Fatty acids into tripalmitin-enriched triacylglycerols:	6.3	5 32
439 438 437	Industrial Enzymes and Biocatalysis. 2012, 1183-1227 Highly efficient biosynthesis of sucrose-6-acetate with cross-linked aggregates of Lipozyme TL 100 L. 2012, 161, 27-33 Lipase-catalyzed incorporation of different Fatty acids into tripalmitin-enriched triacylglycerols: effect of reaction parameters. 2012, 60, 2377-84 Recyclable biocatalytic composites of lipase-linked magnetic macro-/nano-particles for glycerol	7.9	5 32 14
439 438 437 436	Industrial Enzymes and Biocatalysis. 2012, 1183-1227 Highly efficient biosynthesis of sucrose-6-acetate with cross-linked aggregates of Lipozyme TL 100 L. 2012, 161, 27-33 Lipase-catalyzed incorporation of different Fatty acids into tripalmitin-enriched triacylglycerols: effect of reaction parameters. 2012, 60, 2377-84 Recyclable biocatalytic composites of lipase-linked magnetic macro-/nano-particles for glycerol carbonate synthesis. 2012, 437-438, 90-95 Immobilization of lipase on cotton cloth using the layer-by-layer self-assembly technique.		5 32 14 36
439 438 437 436 435	Industrial Enzymes and Biocatalysis. 2012, 1183-1227 Highly efficient biosynthesis of sucrose-6-acetate with cross-linked aggregates of Lipozyme TL 100 L. 2012, 161, 27-33 Lipase-catalyzed incorporation of different Fatty acids into tripalmitin-enriched triacylglycerols: effect of reaction parameters. 2012, 60, 2377-84 Recyclable biocatalytic composites of lipase-linked magnetic macro-/nano-particles for glycerol carbonate synthesis. 2012, 437-438, 90-95 Immobilization of lipase on cotton cloth using the layer-by-layer self-assembly technique. International Journal of Biological Macromolecules, 2012, 50, 300-2 Evaluation of immobilized lipases on poly-hydroxybutyrate beads to catalyze biodiesel synthesis.	7.9	5 32 14 36 33

431	Preliminary Characterization of Novel Extra-cellular Lipase from Penicillium crustosum Under Solid-State Fermentation and its Potential Application for Triglycerides Hydrolysis. 2012 , 5, 1592-1600		8
430	Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. 2012 , 87, 2538-254	45	166
429	Optimization of immobilization conditions of Thermomyces lanuginosus lipase on olive pomace powder using response surface methodology. 2012 , 1, 39-44		37
428	Lipase-catalyzed regioselective hydrolysis of 3(5)-methylpyrazole-N-carboxylates in water-saturated organic solvents. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2012 , 74, 41-47		3
427	Fatty acids residue from palm oil refining process as feedstock for lipase catalyzed monoacylglicerol production under batch and continuous flow conditions. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2012 , 77, 53-58		20
426	Properties and biotechnological applications of porcine pancreatic lipase. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2012 , 78, 119-134		152
425	Effect of solid-phase chemical modification on the features of the lipase from Thermomyces lanuginosus. <i>Process Biochemistry</i> , 2012 , 47, 460-466	3	28
424	Lipase promiscuity and its biochemical applications. <i>Process Biochemistry</i> , 2012 , 47, 555-569 4.8	3	376
423	The slow-down of the CALB immobilization rate permits to control the inter and intra molecular modification produced by glutaraldehyde. <i>Process Biochemistry</i> , 2012 , 47, 766-774	3	49
422	Modulation of the properties of immobilized CALB by chemical modification with 2,3,4-trinitrobenzenesulfonate or ethylendiamine. Advantages of using adsorbed lipases on 4.8 hydrophobic supports. <i>Process Biochemistry</i> , 2012 , 47, 867-876	3	56
421	Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles. 2012 , 51, 2429-33		91
420	Solvent-free enzymatic synthesis of 1, 3-diacylglycerols by direct esterification of glycerol with saturated fatty acids. 2013 , 12, 65		42
419	Enzymatic production of zero-trans plastic fat rich in <code>Hinolenic</code> acid and medium-chain fatty acids from highly hydrogenated soybean oil, Cinnamomum camphora seed oil, and perilla oil by lipozyme TL IM. 2013 , 61, 1189-95		21
418	A comprehensive study on the activity and deactivation of immobilized Lecitase Ultra in esterifications of food waste streams to monoacylglycerols. 2013 , 6, 872-9		19
417	Hydrolysis of vegetable oils catalyzed by lipase extract powder from dormant castor bean seeds. 2013 , 44, 452-458		34
416	Characterization of the catalytic properties of lipases from plant seeds for the production of concentrated fatty acids from different vegetable oils. 2013 , 49, 462-470		36
415	Immobilization of Rhizopus oryzae lipase on magnetic Fe3O4-chitosan beads and its potential in phenolic acids ester synthesis. 2013 , 18, 787-795		31
414	Lipase-catalysed ester synthesis in solvent-free oil system: is it esterification or transesterification?. 2013 , 141, 2828-32		24

(2013-2013)

413	Biocatalytic synthesis of chiral intermediate of pregabalin with high substrate loading by a newly isolated Morgarella morganii ZJB-09203. 2013 , 97, 4839-47		16
412	Polyacrolein/mesoporous silica nanocomposite: Synthesis, thermal stability and covalent lipase immobilization. 2013 , 143, 76-84		17
411	Quantitative turbidity assay for lipolytic enzymes in microtiter plates. 2013, 405, 8539-47		4
410	Enzymatic synthesis of extra virgin olive oil based infant formula fat analogues containing ARA and DHA: one-stage and two-stage syntheses. 2013 , 61, 10590-8		23
409	Immobilization of recombinant E. coli thermostable lipase by entrapment inside silica xerogel and nanocarbon-in-silica composites. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2013 , 98, 78-86		19
408	Preparation and application of epoxythitosan/alginate support in the immobilization of microbial lipases by covalent attachment. 2013 , 73, 160-167		46
407	Biotechnological prospects of the lipase from Mucor javanicus. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2013 , 93, 34-43		17
406	Carbon-in-silica matrices for the preparation of heterogeneous biocatalysts: The synthesis of carbon nanofibers on a Ni/SiO2 catalyst and the characterization of the resulting adsorbents for the immobilization of thermostable lipase. <i>Kinetics and Catalysis</i> , 2013 , 54, 749-760	1.5	7
405	Donor specificity and regioselectivity in Lipolase mediated acylations of methyl \oplus -glucopyranoside by vinyl esters of phenolic acids and their analogues. 2013 , 23, 5389-92		15
404	How to produce biodiesel easily using a green biocatalytic approach in sponge-like ionic liquids. 2013 , 6, 1328		59
403	Selective concentration of EPA and DHA using Thermomyces lanuginosus lipase is due to fatty acid selectivity and not regioselectivity. 2013 , 138, 615-20		71
402	Biocatalysis Through Thermostable Lipases: Adding Flavor to Chemistry. 2013 , 905-927		6
401	Geranyl acetate synthesis catalyzed by Thermomyces lanuginosus lipase immobilized on electrospun polyacrylonitrile nanofiber membrane. <i>Process Biochemistry</i> , 2013 , 48, 124-132	4.8	38
400	Immobilisation and application of lipases in organic media. 2013 , 42, 6406-36		588
399	Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene-divinylbenzene beads. 2013 , 134, 417-22		81
398	Immobilization and characterization of a thermostable lipase. 2013 , 15, 659-67		13
397	Biocatalytic preparation of dichloropropyl acrylates. Application to the synthesis of poly(dichloropropyl acrylates). <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2013 , 92, 7-13		5
396	Solid-phase modification with succinic polyethyleneglycol of aminated lipase B from Candida antarctica: Effect of the immobilization protocol on enzyme catalytic properties. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2013 , 87, 75-82		15

395	Solid lipid particles for oral delivery of peptide and protein drugs Ielucidating the release mechanism of lysozyme during lipolysis. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2013 , 85, 473-80	5.7	36
394	Acid lipase from Candida viswanathii: production, biochemical properties, and potential application. 2013 , 2013, 435818		25
393	Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. 2013 , 8, e73642		124
392	Optimized butyl butyrate synthesis catalyzed by Thermomyces lanuginosus lipase. 2013 , 29, 1416-21		18
391	Lipases. 2013 ,		1
390	Polyhydroyxalkanoate synthase fusions as a strategy for oriented enzyme immobilisation. <i>Molecules</i> , 2014 , 19, 8629-43	4.8	25
389	Organic synthesis of maize starch-based polymer using Rhizopus oryzae lipase, scale up, and its characterization. 2014 , 44, 321-31		6
388	Screening of filamentous fungi for lipase production: Hypocrea pseudokoningii a new producer with a high biotechnological potential. 2014 , 32, 74-83		21
387	Study on physicochemical properties of biocatalysts with thermostable lipase activity and final products of triglycerides[Interesterification. 2014 , 50, 709-721		2
386	Lipase-catalyzed interesterification of egg-yolk phosphatidylcholine and plant oils. 2014 , 65, e053		7
385	Biosynthesis of Flavour-Active Esters via Lipase-Mediated Reactions and Mechanisms. 2014 , 67, 1373		13
384	From structure to catalysis: recent developments in the biotechnological applications of lipases. 2014 , 2014, 684506		76
383	Efficient desymmetrization of 4,6-di-O-benzyl-myo-inositol by Lipozyme TL-IM. 2014 , 386, 7-11		4
382	Immobilization of Thermomyces lanuginosus lipase by different techniques on Immobead 150 support: characterization and applications. 2014 , 172, 2507-20		25
381	Engineering of Thermomyces lanuginosus lipase Lip: creation of novel biocatalyst for efficient biosynthesis of chiral intermediate of Pregabalin. 2014 , 98, 2473-83		23
380	Purification and evaluation of the enzymatic properties of a novel fructosyltransferase from Aspergillus oryzae: a potential biocatalyst for the synthesis of sucrose 6-acetate. 2014 , 36, 1015-20		16
379	Conformational dissection of Thermomyces lanuginosus lipase in solution. 2014 , 185, 88-97		17
378	A novel and robust recombinant Pichia pastoris yeast whole cell biocatalyst with intracellular overexpression of a Thermomyces lanuginosus lipase: preparation, characterization and application in biodiesel production. 2014 , 151, 43-8		72

377	Yeast cell surface display for lipase whole cell catalyst and its applications. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2014 , 106, 17-25		42
376	Comparison of the performance of commercial immobilized lipases in the synthesis of different flavor esters. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2014 , 105, 18-25		48
375	Methods for Lipase Immobilization and Their Use for Biodiesel Production from Vegetable Oil. 2014 , 36, 1203-1211		8
374	Immobilization of lipase on epoxy-activated Purolite ^[] A109 and its post-immobilization stabilization. <i>Process Biochemistry</i> , 2014 , 49, 637-646	4.8	36
373	Synthesis of functionalized polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application. 2014 , 88, 131-141		55
372	Immobilization of Thermomyces lanuginosus lipase on mesoporous poly-hydroxybutyrate particles and application in alkyl esters synthesis: Isotherm, thermodynamic and mass transfer studies. <i>Chemical Engineering Journal</i> , 2014 , 251, 392-403	14.7	63
371	Study of a new spectrophotometric end-point assay for lipase activity determination in aqueous media. <i>LWT - Food Science and Technology</i> , 2014 , 55, 536-542	5.4	26
370	Improvement of the stability and selectivity of Rhizomucor miehei lipase immobilized on silica nanoparticles: Selective hydrolysis of fish oil using immobilized preparations. <i>Process Biochemistry</i> , 2014 , 49, 1314-1323	4.8	40
369	Immobilization of porcine pancreatic lipase on poly-hydroxybutyrate particles for the production of ethyl esters from macaw palm oils and pineapple flavor. 2014 , 82, 139-149		53
368	Biocatalytic synthesis of short-chain flavor esters with high substrate loading by a whole-cell lipase from Aspergillus oryzae. 2014 , 45, 59-62		23
367	Secretome analysis of the thermophilic xylanase hyper-producer Thermomyces lanuginosus SSBP cultivated on corn cobs. 2014 , 41, 1687-96		24
366	Combi-lipase for heterogeneous substrates: a new approach for hydrolysis of soybean oil using mixtures of biocatalysts. 2014 , 4, 6863-6868		64
365	Magnetic Polymeric Beads Functionalized with Different Mixed-Mode Ligands for Reversible Immobilization of Trypsin. 2014 , 53, 132-140		27
364	Influencing factors on the synthesis of magnetically responsive lipases. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2014 , 110, 47-53		9
363	Transesterification of palm olein using sodium phosphate impregnated on an alumina support. 2014 , 484, 122-133		5
362	Production of thermostable lipase by Thermomyces lanuginosus on solid-state fermentation: selective hydrolysis of sardine oil. 2014 , 174, 1859-72		17
361	Enhanced production of Thermomyces lanuginosus lipase in Pichia pastoris via genetic and fermentation strategies. 2014 , 41, 1541-51		27
360	Structuralfunctional evaluation of ionic liquid libraries for the design of co-solvents in lipase-catalysed reactions. 2014 , 16, 4520-4523		33

359	Understanding the behavior of Thermomyces lanuginosus lipase in acylation of pyrimidine nucleosides possessing 2'-substituent. 2014 , 174, 556-63		4	
358	Biocatalytic designs for the conversion of renewable glycerol into glycerol carbonate as a value-added product. 2014 , 12, 1262-1270		6	
357	Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: an efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts. 2014 , 7, 55		29	
356	Covalent attachment of lipases on glyoxyl-agarose beads: application in fruit flavor and biodiesel synthesis. <i>International Journal of Biological Macromolecules</i> , 2014 , 70, 78-85	7.9	21	
355	Key residues responsible for enhancement of catalytic efficiency of Thermomyces lanuginosus lipase Lip revealed by complementary protein engineering strategy. 2014 , 188, 29-35		11	
354	Dry entrapment of enzymes by epoxy or polyester resins hardened on different solid supports. <i>Enzyme and Microbial Technology</i> , 2014 , 60, 47-55	3.8	8	
353	Modeling Embedded Optimization Strategy for the Formulation of Bacterial Lipase-Based Biodetergent. 2014 , 53, 514-520		4	
352	Evaluation of styrene-divinylbenzene beads as a support to immobilize lipases. <i>Molecules</i> , 2014 , 19, 76	29 ₄ ,485	44	
351	Process optimization of enzyme catalyzed production of dietary diacylglycerol (DAG) using TLIM as biocatalyst. <i>Journal of Oleo Science</i> , 2014 , 63, 169-76	1.6	7	
350	Effect of a double-structured microporous polymer support on the catalytic activity, stability and aggregation behavior of immobilized enzymes. 2015 , 64, 915-923		1	
349	Enhancement of stability of a lipase by subjecting to three phase partitioning (TPP): structures of native and TPP-treated lipase from Thermomyces lanuginosa. 2015 , 3,		10	
348	Study on the spectrophotometric detection of free fatty acids in palm oil utilizing enzymatic reactions. <i>Molecules</i> , 2015 , 20, 12328-40	4.8	9	
347	Structural insights into methanol-stable variants of lipase T6 from Geobacillus stearothermophilus. 2015 , 99, 9449-61		23	
346	Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems. 2015 , 42, 523-35		44	
345	Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. <i>Enzyme and Microbial Technology</i> , 2015 , 71, 53-7	3.8	355	
344	Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. <i>International Journal of Biological Macromolecules</i> , 2015 , 75, 44-50	7.9	92	
343	Improved performance of lipases immobilized on heterofunctional octyl-glyoxyl agarose beads. 2015 , 5, 11212-11222		113	
342	Synthesis and enzymatic resolution of racemic 2,3-epoxy propyl esters obtained from glycerol. 2015 , 56, 1696-1698		2	

341	Highly Selective Biocatalytic Transesterification Reactions on Aryl 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoates. 2015 , 145, 919-929	4
340	Enzymatic reactors for biodiesel synthesis: Present status and future prospects. 2015 , 33, 511-25	124
339	Zeolite-Coated Porous Arrays: A Novel Strategy for Enzyme Encapsulation. 2015 , 25, 1832-1836	13
338	Tuning the catalytic properties of lipases immobilized on divinylsulfone activated agarose by altering its nanoenvironment. <i>Enzyme and Microbial Technology</i> , 2015 , 77, 1-7	57
337	Current status and new developments of biodiesel production using fungal lipases. <i>Fuel</i> , 2015 , 159, 52-6 7 .1	98
336	The Enzymatic Activity of Lipases Correlates with Polarity-Induced Conformational Changes: A Trp-Induced Quenching Fluorescence Study. 2015 , 54, 4186-96	21
335	Kinetic resolution of (E)-4-(2?,5?-dimethylphenyl)-but-3-en-2-ol and (E)-4-(benzo[d][1?,3?]dioxol-5?-yl)-but-3-en-2-ol through lipase-catalyzed transesterification. 2015 , 26, 702-709	11
334	Lipase catalyzed interesterification of Amazonian patau bil and palm stearin for preparation of specific-structured oils. 2015 , 52, 8268-75	13
333	Reactivation of lipases by the unfolding and refolding of covalently immobilized biocatalysts. 2015 , 5, 55588-55594	27
332	Lipase immobilization onto polyethylenimine coated magnetic nanoparticles assisted by divalent metal chelated ions. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2015 , 120, 75-83	60
331	Evaluation of divinylsulfone activated agarose to immobilize lipases and to tune their catalytic properties. <i>Process Biochemistry</i> , 2015 , 50, 918-927	71
330	Assembly of lipase and P450 fatty acid decarboxylase to constitute a novel biosynthetic pathway for production of 1-alkenes from renewable triacylglycerols and oils. 2015 , 8, 34	21
329	Potential new biocatalysts for biofuel production: The fungal lipases of Thermomyces lanuginosus and Rhizomucor miehei immobilized on zeolitic supports ion exchanged with transition metals. 2015 , 214, 166-180	14
328	Simple and Efficient Immobilization of Extracellular His-Tagged Enzyme Directly from Cell Culture Supernatant As Active and Recyclable Nanobiocatalyst: High-Performance Production of Biodiesel from Waste Grease. 2015 , 5, 3157-3161	57
327	Active biopolymers in green non-conventional media: a sustainable tool for developing clean chemical processes. 2015 , 51, 17361-74	27
326	Enzymatic synthesis and modification of structured phospholipids: recent advances in enzyme preparation and biocatalytic processes. 2015 , 99, 7879-91	19
325	Expression of a thermo-alkaline lipase gene from Talaromyces thermophilus in recombinant Pichia pastoris. 2015 , 103, 263-269	8
324	Synthesis and modification of polyurethane for immobilization of Thermomyces lanuginosus (TLL) lipase for ethanolysis of fish oil in solvent free system. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2015 , 122, 163-169	23

323	Study of acyl migration during enzymatic interesterification of liquid and fully hydrogenated soybean oil. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2015 , 122, 117-124		20
322	Synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid. 2015 , 198, 256-61		39
321	On the hunt for truly biocompatible ionic liquids for lipase-catalyzed reactions. 2015 , 5, 3386-3389		44
320	The combined use of ultrasound and molecular sieves improves the synthesis of ethyl butyrate catalyzed by immobilized Thermomyces lanuginosus lipase. 2015 , 22, 89-94		93
319	Immobilization of lipase in cage-type mesoporous organosilicas via covalent bonding and crosslinking. 2015 , 243, 173-183		43
318	Polyethyleneimine-modified superparamagnetic Fe3O4 nanoparticles for lipase immobilization: Characterization and application. 2015 , 149-150, 77-86		61
317	Synthesis of polyethyleneimine (PEI) and Eyclodextrin grafted PEI nanocomposites with magnetic cores for lipase immobilization and esterification. 2016 , 91, 375-384		26
316	Cloning, Expression and Characterization of a Novel Fructosyltransferase from Aspergillus oryzae ZZ-01 for the Synthesis of Sucrose 6-Acetate. <i>Catalysts</i> , 2016 , 6, 67	4	3
315	Reversible Immobilization of Lipases on Heterofunctional Octyl-Amino Agarose Beads Prevents Enzyme Desorption. <i>Molecules</i> , 2016 , 21,	4.8	48
314	Effect of ethyleneoxide groups of anionic surfactants on lipase activity. 2016 , 32, 1276-1282		11
313	Optimization of Enzymatic Synthesis of n-Propyl Acetate (Fruit Flavor Ester) (Effect of the Support on the Properties of Biocatalysts. 2016 , 203, 1432-1442		2
312	Kinetic, thermodynamic, optimization and reusability studies for the enzymatic synthesis of a saturated wax ester. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2016 , 133, S377-S387		20
311	Improved enantioselective esterification of dl-menthol catalyzed by immobilized TL 100L lipase. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2016 , 133, S271-S276		3
310	Reversible immobilization of lipases on octyl-glutamic agarose beads: A mixed adsorption that reinforces enzyme immobilization. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2016 , 128, 10-18		58
309	Collagen-Immobilized Lipases Show Good Activity and Reusability for Butyl Butyrate Synthesis. 2016 , 180, 826-840		4
308	Stabilization of lipase from Thermomyces lanuginosus by crosslinking in PEGylated polyurethane particles by polymerization: Application on fish oil ethanolysis. 2016 , 112, 54-60		16
307	Easy stabilization of interfacially activated lipases using heterofunctional divinyl sulfone activated-octyl agarose beads. Modulation of the immobilized enzymes by altering their nanoenvironment. <i>Process Biochemistry</i> , 2016 , 51, 865-874	4.8	69
306	The Dual Role of Lipids of the Lipoproteins in Trumenba, a Self-Adjuvanting Vaccine Against Meningococcal Meningitis B Disease. 2016 , 18, 1562-1575		47

305	Understanding the activation mechanism of Thermomyces lanuginosus lipase using rational design and tryptophan-induced fluorescence quenching. 2016 , 118, 1644-1660		9
304	Synthesis and evaluation of fluorogenic triglycerides as lipase assay substrates. 2016 , 198, 72-9		3
303	Lipase-Catalyzed Production of Biodiesel by Hydrolysis of Waste Cooking Oil Followed by Esterification of Free Fatty Acids. <i>JAOCS, Journal of the American Oil Chemistst Society</i> , 2016 , 93, 1615-1	628 624	31
302	Waste Frying Oils as Substrate for Enzymatic Lipolysis: Optimization of Reaction Conditions in O/W Emulsion. <i>JAOCS, Journal of the American Oil Chemistst Society</i> , 2016 , 93, 1487-1497	1.8	6
301	Simultaneous Enzyme/Whole-Cell Biotransformation of Plant Oils into C9 Carboxylic Acids. 2016 , 6, 754	7-755	3 50
300	Advantages of Heterofunctional Octyl Supports: Production of 1,2-Dibutyrin by Specific and Selective Hydrolysis of Tributyrin Catalyzed by Immobilized Lipases. 2016 , 1, 3259-3270		34
299	The near-ideal catalytic property of Candida antarctica lipase A to highly concentrate n-3 polyunsaturated fatty acids in monoacylglycerols via one-step ethanolysis of triacylglycerols. 2016 , 219, 466-478		29
298	Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester. <i>International Journal of Biological Macromolecules</i> , 2016 , 92, 900-909	7.9	39
297	Evaluation of different immobilized lipases in transesterification reactions using tributyrin: Advantages of the heterofunctional octyl agarose beads. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2016 , 133, 117-123		59
296	Kinetic model of biodiesel production catalyzed by free liquid lipase from Thermomyces lanuginosus. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2016 , 133, 55-64		29
295	DMSO enhanced conformational switch of an interfacial enzyme. 2016 , 105, 864-72		1
294	Enhanced performance of lipase via microcapsulation and its application in biodiesel preparation. 2016 , 6, 29670		26
293	Immobilization of lipase onto functional cyclomatrix polyphosphazene microspheres. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2016 , 132, 67-74		13
292	Evaluation of different commercial hydrophobic supports for the immobilization of lipases: tuning their stability, activity and specificity. 2016 , 6, 100281-100294		60
291	Molecular Mechanism behind Solvent Concentration-Dependent Optimal Activity of Thermomyces lanuginosus Lipase in a Biocompatible Ionic Liquid: Interfacial Activation through Arginine Switch. 2016 , 120, 11720-11732		11
290	Nanoencapsulated Lecitase Ultra and Thermomyces lanuginosus Lipase, a Comparative Structural Study. 2016 , 32, 6746-56		10
289	Enhanced activity of Thermomyces lanuginosus lipase by site-saturation mutagenesis for efficient biosynthesis of chiral intermediate of pregabalin. 2016 , 113, 12-18		20
288	Design of a coreBhell support to improve lipase features by immobilization. 2016 , 6, 62814-62824		53

Waste Frying Oil Hydrolysis in a Reverse Micellar System. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 1025-1031	8.3	6	
Investigation of the Reuse of Immobilized Lipases in Biodiesel Synthesis: Influence of Different Solvents in Lipase Activity. 2016 , 179, 485-96		29	
Lateral Protein-Protein Interactions at Hydrophobic and Charged Surfaces as a Function of pH and Salt Concentration. 2016 , 120, 3303-10		10	
Hydrophobic microenvironment optimization for efficient immobilization of lipases on octadecyl functionalised resins. 2016 , 72, 7323-7328		24	
Comparative study on hydrolysis of oils by lipase immobilized biocatalytic PS membranes using biphasic enzyme membrane reactor. 2016 , 4, 1797-1809		13	
Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. <i>Journal of Molecular Catalysis B: Enzymatic</i> , 2016 , 127, 67-75		41	
A new approach to synthesis of benzyl cinnamate: Optimization by response surface methodology. 2016 , 206, 44-9		27	
Application of lipases to regiospecific interesterification of exotic oils from an Amazonian area. 2016 , 218, 13-20		12	
Thiol and urea functionalized magnetic nanoparticles with highly enhanced loading capacity and thermal stability for lipase in transesterification. 2016 , 35, 224-230		23	
Zinc Oxide Nanoparticles Supported Lipase Immobilization for Biotransformation in Organic Solvents: A Facile Synthesis of Geranyl Acetate, Effect of Operative Variables and Kinetic Study. 2016 , 178, 1630-51		20	
Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. <i>Enzyme and Microbial Technology</i> , 2016 , 84, 56-67	3.8	105	
High-yield synthesis of bioactive ethyl cinnamate by enzymatic esterification of cinnamic acid. 2016 , 190, 629-633		35	
Chemical amination of lipases improves their immobilization on octyl-glyoxyl agarose beads. 2016 , 259, 107-118		54	
Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway. 2017 , 37, 26-36		32	
Improvement of the enzymatic synthesis of ethyl valerate by esterification reaction in a solvent system. 2017 , 47, 100-109		15	
An investigation of lipase catalysed sonochemical synthesis: A review. 2017 , 38, 503-529		59	
Effect of immobilization rate and enzyme crowding on enzyme stability under different conditions. The case of lipase from Thermomyces lanuginosus immobilized on octyl agarose beads. <i>Process Biochemistry</i> , 2017 , 56, 117-123	4.8	95	
Understanding the functional properties of bio-inorganic nanoflowers as biocatalysts by deciphering the metal-binding sites of enzymes. 2017 , 5, 4478-4486		37	
	Investigation of the Reuse of Immobilized Lipases in Biodiesel Synthesis: Influence of Different Solvents in Lipase Activity. 2016, 179, 485-96 Lateral Protein-Protein Interactions at Hydrophobic and Charged Surfaces as a Function of pH and Salt Concentration. 2016, 120, 3303-10 Hydrophobic microenvironment optimization for efficient immobilization of lipases on octadecyl functionalised resins. 2016, 72, 7323-7328 Comparative study on hydrolysis of oils by lipase immobilized biocatalytic PS membranes using biphasic enzyme membrane reactor. 2016, 4, 1797-1809 Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. Journal of Molecular Catalysis B: Enzymatic, 2016, 127, 67-75 A new approach to synthesis of benzyl cinnamate: Optimization by response surface methodology. 2016, 206, 44-9 Application of lipases to regiospecific interesterification of exotic oils from an Amazonian area. 2016, 218, 13-20 Thiol and urea functionalized magnetic nanoparticles with highly enhanced loading capacity and thermal stability for lipase in transesterification. 2016, 35, 224-230 Zinc Oxide Nanoparticles Supported Lipase Immobilization for Biotransformation in Organic solvents: A Facile Synthesis of Geranyl Acetate, Effect of Operative Variables and Kinetic Study. 2016, 178, 1630-51 Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Enzyme and Microbial Technology, 2016, 84, 56-67 High-yield synthesis of bioactive ethyl cinnamate by enzymatic esterification of cinnamic acid. 2016, 190, 629-633 Chemical amination of lipases improves their immobilization on octyl-glyoxyl agarose beads. 2016, 190, 629-633 Improvement of the enzymatic synthesis of ethyl valerate by esterification reaction in a solvent system. 2017, 47, 100-109 An investigation of lipase catalysed sonochemical synthesis: A revie	Investigation of the Reuse of Immobilized Lipases in Biodiesel Synthesis: Influence of Different Solvents in Lipase Activity. 2016, 179, 485-96 Lateral Protein-Protein Interactions at Hydrophobic and Charged Surfaces as a Function of pH and Salt Concentration. 2016, 120, 3303-10 Hydrophobic microenvironment optimization for efficient immobilization of lipases on octadecyl functionalised resins. 2016, 72, 7323-7328 Comparative study on hydrolysis of oils by lipase immobilized biocatalytic PS membranes using biphasic enzyme membrane reactor. 2016, 4, 1797-1809 Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. Journal of Molecular Catalysis B: Enzymatic, 2016, 127, 67-75 A new approach to synthesis of benzyl cinnamate: Optimization by response surface methodology. 2016, 206, 44-9 Application of lipases to regiospecific interesterification of exotic oils from an Amazonian area. 2016, 218, 13-20 Thiol and urea functionalized magnetic nanoparticles with highly enhanced loading capacity and thermal stability for lipase in transesterification. 2016, 35, 224-230 Zinc Oxide Nanoparticles Supported Lipase Immobilization for Biotransformation in Organic Solvents: A Facile Synthesis of Geranyl Acetate, Effect of Operative Variables and Kinetic Study. 2016, 178, 1630-51 Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Enzyme and Microbial Technology, 2016, 84, 56-67 High-yield synthesis of bioactive ethyl cinnamate by enzymatic esterification of cinnamic acid. 2016, 190, 629-633 Chemical amination of lipases improves their immobilization on octyl-glyoxyl agarose beads. 2016, 259, 107-118 Harnessing biodiesel-producing microbes: from genetic engineering of lipase to metabolic engineering of fatty acid biosynthetic pathway. 2017, 37, 26-36 Improvement of the enzymatic synthesis	Investigation of the Reuse of Immobilized Lipases in Biodiesel Synthesis: Influence of Different Solvents in Upase Activity, 2016, 179, 485-96 Lateral Protein-Protein Interactions at Hydrophobic and Charged Surfaces as a Function of pH and Salt Concentration. 2016, 120, 3303-10 Hydrophobic microenvironment optimization for efficient immobilization of lipases on octadecyl functionalised resins, 2016, 72, 7223-7328 Comparative study on hydrolysis of oils by lipase immobilized biocatalytic PS membranes using biphasic enzyme membrane reactor. 2016, 4, 1797-1809 Synthesis of butyl butyrate in batch and continuous enzymatic reactors using Thermomyces lanuginosus lipase immobilized in Immobead 150. Journal of Molecular Catalysis B: Enzymatic, 2016, 127, 67-75 A new approach to synthesis of benzyl cinnamate: Optimization by response surface methodology. 2016, 206, 449 2016, 206, 449 Thiol and urea functionalized magnetic nanoparticles with highly enhanced loading capacity and thermal stability for lipase in transesterification. 2016, 35, 224-230 Thiol and urea functionalized magnetic nanoparticles with highly enhanced loading capacity and thermal stability for lipase in transesterification. 2016, 35, 224-230 Zinc Oxide Nanoparticles Supported Upase Immobilization for Biotransformation in Organic Solvents: A Facile Synthesis of Geranyl Acetate, Effect of Operative Variables and Kinetic Study. 2016, 178, 1630-51 Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification of cinnamic acid. 2016, 199, 629-633 Chemical amination of lipases improves their immobilization on octyl-glyoxyl agarose beads. 2016, 199, 629-631 High-yield synthesis of bioactive ethyl cinnamate by enzymatic esterification reaction in a solvent-free system. Enzyme and Microbial Technology, 2016, 84, 56-67 High-yield synthesis of bioactive ethyl cinnamate by enzymatic esterification reaction in a solvent free free of fathy acid biosy

(2017-2017)

269	Production of Whole-Cell Lipase from Streptomyces clavuligerus in a Bench-Scale Bioreactor and Its First Evaluation as Biocatalyst for Synthesis in Organic Medium. 2017 , 183, 218-240		6
268	High activity and selectivity immobilized lipase on Fe3O4 nanoparticles for banana flavour synthesis. <i>Process Biochemistry</i> , 2017 , 56, 98-108	4.8	41
267	Fabrication and characterization of nanofibers based on poly(lactic acid)/chitosan blends by electrospinning and their functionalization with phospholipase A1. 2017 , 18, 514-524		20
266	Enzyme catalyzed biodiesel production from rubber seed oil containing high free fatty acid. 2017 , 14, 687-693		18
265	Production of new human milk fat substitutes by enzymatic acidolysis of microalgae oils from Nannochloropsis oculata and Isochrysis galbana. 2017 , 238, 129-138		24
264	Study of the physicochemical interactions between Thermomyces lanuginosus lipase and silica-based supports and their correlation with the biochemical activity of the biocatalysts. 2017 , 79, 525-532		5
263	Is there a future for enzymatic biodiesel industrial production in microreactors?. 2017 , 201, 124-134		58
262	Coimmobilization of enzymes in bilayers using pei as a glue to reuse the most stable enzyme: Preventing pei release during inactivated enzyme desorption. <i>Process Biochemistry</i> , 2017 , 61, 95-101	4.8	40
261	Design of a lipase-nano particle biocatalysts and its use in the kinetic resolution of medicament precursors. 2017 , 125, 104-115		74
2 60	Nanoarmoring: strategies for preparation of multi-catalytic enzyme polymer conjugates and enhancement of high temperature biocatalysis. 2017 , 7, 29563-29574		12
259	Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support. <i>Fuel</i> , 2017 , 200, 1-10	7.1	101
258	Interfacial activation of M37 lipase: A multi-scale simulation study. 2017 , 1859, 340-349		15
257	Effect of protein load on stability of immobilized enzymes. <i>Enzyme and Microbial Technology</i> , 2017 , 98, 18-25	3.8	146
256	Effect of high salt concentrations on the stability of immobilized lipases: Dramatic deleterious effects of phosphate anions. <i>Process Biochemistry</i> , 2017 , 62, 128-134	4.8	34
255	Identification of lipolytic enzymes isolated from bacteria indigenous to wood species for application in the pulping industry. 2017 , 15, 114-124		39
254	Industrial Enzymes and Biocatalysis. 2017 , 1571-1638		4
253	Engineering Lipases: walking the fine line between activity and stability. 2017, 4, 114008		5
252	Activity and stability analysis of covalent conjugated lysozyme-single walled carbon nanotubes: potential biomedical and industrial applications. 2017 , 7, 48692-48701		7

251	Improved stability of immobilized lipases via modification with polyethylenimine and glutaraldehyde. <i>Enzyme and Microbial Technology</i> , 2017 , 106, 67-74	3.8	46
250	Isotherm, kinetic, mechanism and thermodynamic studies of adsorption of a microbial lipase on a mesoporous and hydrophobic resin. <i>Chemical Engineering Journal</i> , 2017 , 311, 1-12	14.7	52
249	Liquid lipases for enzymatic concentration of n-3 polyunsaturated fatty acids in monoacylglycerols via ethanolysis: Catalytic specificity and parameterization. 2017 , 224, 445-456		44
248	A comparative study on kinetics and substrate specificities of Phospholipase A with Thermomyces lanuginosus lipase. 2017 , 488, 149-154		7
247	Competition of Thermomyces lanuginosus lipase with its hydrolysis products at the oil-water interface. 2017 , 149, 280-287		7
246	Productive Chain of Biofuels and Industrial Biocatalysis. 2017 , 545-581		2
245	The E factor 25 years on: the rise of green chemistry and sustainability. 2017, 19, 18-43		611
244	Controlled lid-opening in Thermomyces lanuginosus lipase- An engineered switch for studying lipase function. 2017 , 1865, 20-27		25
243	Highly efficient enzymatic synthesis of novel polydatin prodrugs with potential anticancer activity. <i>Process Biochemistry</i> , 2017 , 52, 209-213	4.8	4
242	Enzymatic coating of cotton with poly (ethylene glutarate). <i>Process Biochemistry</i> , 2017 , 59, 91-96	4.8	6
241	Catalytic, Kinetic and Thermodynamic Characteristics of an Extracellular Lipase from Penicillium notatum. 2017 , 147, 281-291		17
240	Immobilized Lipases on Functionalized Silica Particles as Potential Biocatalysts for the Synthesis of Fructose Oleate in an Organic Solvent/Water System. <i>Molecules</i> , 2017 , 22,	4.8	28
239	Microbial Production of Added-Value Ingredients: State of the Art. 2017 , 1-32		1
238	Stabilization of a Lipolytic Enzyme for Commercial Application. <i>Catalysts</i> , 2017 , 7, 91	4	6
237	Immobilization of Lipases on Magnetic Collagen Fibers and Its Applications for Short-Chain Ester Synthesis. <i>Catalysts</i> , 2017 , 7, 178	4	12
236	Approaching Immobilization of Enzymes onto Open Porous Basotect (1) . <i>Catalysts</i> , 2017 , 7, 359	4	2
235	Modulation of the regioselectivity of Thermomyces lanuginosus lipase via biocatalyst engineering for the Ethanolysis of oil in fully anhydrous medium. 2017 , 17, 88		28
234	Structured Mono- and Diacylglycerols with a High Content of Medium Chain Fatty Acids. <i>Journal of Oleo Science</i> , 2017 , 66, 991-996	1.6	11

233	Enzymatic Production of Biodiesel: Strategies to Overcome Methanol Inactivation. 2018 , 13, e1700155	40
232	Synthesis of novel medium-long-medium type structured lipids from microalgae oil via two-step enzymatic reactions. <i>Process Biochemistry</i> , 2018 , 68, 108-116	11
231	Enzymatic synthesis of structured lipids from liquid and fully hydrogenated high oleic sunflower oil. 2018 , 21, 702-716	7
230	Transesterification of Waste Frying Oil and Soybean Oil by Combi-lipases Under Ultrasound-Assisted Reactions. 2018 , 186, 576-589	52
229	Comparative study of stirred and fluidized tank reactor for hydroxyl-kojic acid derivatives synthesis and their biological activities. 2018 , 43, 205-219	6
228	Lipase catalysed biodiesel synthesis with integrated glycerol separation in continuously operated microchips connected in series. 2018 , 47, 80-88	19
227	In-flow protein immobilization monitored by magnetic resonance imaging. 2018, 47, 25-30	3
226	Lipase Regioselective O-Acetylations of a myo-Inositol Derivative: Efficient Desymmetrization of 1,3-Di-O-benzyl-myo-inositol. 2018 , 2018, 386-391	8
225	Enzymatic preparation of "functional oil" rich in feruloylated structured lipids with solvent-free ultrasound pretreatment. 2018 , 248, 272-278	13
224	Synthesis of lipase polymer hybrids with retained or enhanced activity using the grafting-from strategy. 2018 , 137, 338-345	29
223	Enzymatic synthesis of ethyl esters from waste oil using mixtures of lipases in a plug-flow packed-bed continuous reactor. 2018 , 34, 952-959	28
222	Thermomyces lanuginosus lipase immobilized on magnetic nanoparticles and its application in the hydrolysis of fish oil. 2018 , 42, e12549	12
221	Understanding the silica-based sol-gel encapsulation mechanism of Thermomyces lanuginosus lipase: The role of polyethylenimine. <i>Molecular Catalysis</i> , 2018 , 449, 106-113	5
220	Kinetic and thermodynamic studies on the enzymatic synthesis of wax ester catalyzed by lipase immobilized on glutaraldehyde-activated rice husk particles. 2018 , 41, 991-1002	28
219	Selective synthesis of partial glycerides of conjugated linoleic acids via modulation of the catalytic properties of lipases by immobilization on different supports. 2018 , 245, 39-46	17
218	Macroporous carbon aerogel as a novel adsorbent for immobilized enzymes and a support for the lipase-active heterogeneous biocatalysts for conversion of triglycerides and fatty acids. 2018 , 25, 1017-1026	9
217	Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors. 2018 , 210, 268-278	46
216	Enzymes in Bioconversion and Food Processing. 2018 , 19-40	1

215	Performance of 3-[4-(bromomethyl)phenyl]-7-(diethylamino) coumarin as a derivatization reagent for the analysis of medium and long chain fatty acids using HPLC with LIF detection. 2018 , 1100-1101, 50-57		5
214	Immobilization and characterization of lipase from an indigenous Bacillus aryabhattai SE3-PB isolated from lipid-rich wastewater. 2018 , 48, 898-905		4
213	Applications of Supercritical Fluids for Biodiesel Production. 2018 , 261-284		7
212	Enzymatic Synthesis of Nucleic Acid Derivatives by Immobilized Enzymes. 2018 , 107-128		2
211	Microstructured devices for biodiesel production by transesterification. 2018 , 8, 1005-1020		13
210	A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. 2018 , 5,		90
209	Design of a New Multienzyme Complex Synthesis System Based on Yarrowia lipolytica Simultaneously Secreted and Surface Displayed Fusion Proteins for Sustainable Production of Fatty Acid-Derived Hydrocarbons. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 17035-17043	8.3	13
208	Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. <i>Process Biochemistry</i> , 2018 , 75, 99-120	4.8	83
207	Incorporation of capric acid in pumpkin seed oil by sn-1,3 regioselective lipase-catalyzed acidolysis. 2018 , 25, A302		3
206	How the Triton X-100 modulates the activity/stability of the Thermomyces lanuginose lipase: Insights from experimental and molecular docking approaches. <i>International Journal of Biological Macromolecules</i> , 2018 , 120, 2410-2417	7.9	9
205	Preparation of ion-exchange supports via activation of epoxy-SiO with glycine to immobilize microbial lipase - Use of biocatalysts in hydrolysis and esterification reactions. <i>International Journal of Biological Macromolecules</i> , 2018 , 120, 2354-2365	7.9	16
204	Elucidation of lid open and orientation of lipase activated in interfacial activation by amphiphilic environment. <i>International Journal of Biological Macromolecules</i> , 2018 , 119, 1211-1217	7.9	24
203	Immobilization of a Mesophilic Lipase on Graphene Oxide: Stability, Activity, and Reusability Insights. 2018 , 609, 247-272		11
202	Heterogeneous Biocatalysts Prepared by Immuring Enzymatic Active Components inside Silica Xerogel and Nanocarbons-In-Silica Composites. <i>Catalysts</i> , 2018 , 8, 177	4	3
201	Stabilization of Immobilized Lipases by Intense Intramolecular Cross-Linking of Their Surfaces by Using Aldehyde-Dextran Polymers. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	24
200	Performance of Different Immobilized Lipases in the Syntheses of Short- and Long-Chain Carboxylic Acid Esters by Esterification Reactions in Organic Media. <i>Molecules</i> , 2018 , 23,	4.8	21
199	Production of Biofuels from Biomass by Fungi. 2018 , 21-45		O
198	Highly stable adsorptive and covalent immobilization of Thermomyces lanuginosus lipase on tailor-made porous carbon material. 2018 , 138, 63-73		21

197	Kinetics and Optimization of Lipophilic Kojic Acid Derivative Synthesis in Polar Aprotic Solvent Using Lipozyme RMIM and Its Rheological Study. <i>Molecules</i> , 2018 , 23,	4.8	10
196	Effects of a combination of lipases immobilised on desilicated and thiol-modified ZSM-5 for the synthesis of ethyl esters from macauba pulp oil in a solvent-free system. 2018 , 562, 241-249		19
195	Integrating enzyme immobilization and protein engineering: An alternative path for the development of novel and improved industrial biocatalysts. 2018 , 36, 1470-1480		149
194	Enzymatic Synthesis of Glycerol Carbonate Using a Lipase Immobilized on Magnetic Organosilica Nanoflowers as a Catalyst. 2018 , 3, 6642-6650		34
193	Solid-State Fermentation for the Production of Lipases for Environmental and Biodiesel Applications. 2018 , 123-168		6
192	Preliminary economic assessment: a valuable tool to establish biocatalytic process feasibility with an in-lab immobilized lipase. 2019 , 94, 409-417		5
191	Ultrasonic-pretreated lipase-catalyzed synthesis of medium-long-medium lipids using different fatty acids as -2 acyl-site donors. 2019 , 7, 2361-2373		4
190	Lipase Production by Solid-State Cultivation of Thermomyces Lanuginosus on By-Products from Cold-Pressing Oil Production. 2019 , 7, 465		11
189	Influence of Betaine- and Choline-based Eutectic Solvents on Lipase Activity. 2019 , 5, 57-68		2
188	Biochemical aspects of lipase immobilization at polysaccharides for biotechnology. 2019 , 272, 102016		21
187	Industrial applications of immobilized enzymes Areview. <i>Molecular Catalysis</i> , 2019 , 479, 110607	3.3	224
186	Suitability of Recombinant Lipase Immobilised on Functionalised Magnetic Nanoparticles for Fish Oil Hydrolysis. <i>Catalysts</i> , 2019 , 9, 420	4	21
185	Pickering gel emulsion stabilized by enzyme immobilized polymeric nanoparticles: a robust and recyclable biocatalyst system for biphasic catalysis. 2019 , 4, 1459-1465		16
184	Lecitase ultra: A phospholipase with great potential in biocatalysis. <i>Molecular Catalysis</i> , 2019 , 473, 11040)5 3	24
183	Preparation, functionalization and characterization of rice husk silica for lipase immobilization via adsorption. <i>Enzyme and Microbial Technology</i> , 2019 , 128, 9-21	3.8	30
182	From high oleic vegetable oils to hydrophobic starch derivatives: I. Development and structural studies. 2019 , 214, 124-130		15
181	Surface functionalization of graphene oxide by amino acids for Thermomyces lanuginosus lipase adsorption. 2019 , 546, 211-220		20
180	Strategies for Enzymatic Synthesis of Omega-3 Structured Triacylglycerols from Camelina sativa Oil Enriched in EPA and DHA. 2019 , 121, 1800412		5

179	Reuse of immobilized lipases in the transesterification of waste fish oil for the production of biodiesel. 2019 , 140, 1-8		46
178	Transesterification of microalgae for biodiesel production. 2019 , 469-510		5
177	Direct enzymatic ethanolysis of potential biomass for co-production of sustainable biodiesel and nutraceutical eicosapentaenoic acid. 2019 , 12, 78		5
176	Enzymatic ethanolysis subjected to Schizochytrium biomass: Sequential processing for DHA enrichment and biodiesel production. 2019 , 184, 159-171		15
175	Cost analysis of oil cake-to-biodiesel production in packed-bed micro-flow reactors with immobilized lipases. 2019 , 128, 98-102		11
174	Enzyme-Catalyzed Transesterification for Biodiesel Production. 2019 , 53-87		O
173	Lipase-catalyzed aza-Michael addition of amines to acrylates in supercritical carbon dioxide. 2019 , 94, 3981-3986		7
172	Efficient enzymatic degradation of poly (e-caprolactone) by an engineered bifunctional lipase-cutinase. 2019 , 160, 120-125		27
171	Lipase-catalyzed selective enrichment of omega-3 polyunsaturated fatty acids in acylglycerols of cod liver and linseed oils: Modeling the binding affinity of lipases and fatty acids. <i>International Journal of Biological Macromolecules</i> , 2019 , 123, 261-268	7.9	14
170	Formation of calcium phosphate coatings within polycaprolactone scaffolds by simple, alkaline phosphatase based method. 2019 , 96, 319-328		11
169	Biocatalyst engineering of Thermomyces Lanuginosus lipase adsorbed on hydrophobic supports: Modulation of enzyme properties for ethanolysis of oil in solvent-free systems. 2019 , 289, 126-134		31
168	Effects of Eyclodextrin on the enzymatic hydrolysis of hemp seed oil by lipase Candida sp.99 1 25. 2019 , 129, 688-693		6
167	Synthesis of a green polyurethane foam from a biopolyol obtained by enzymatic glycerolysis and its use for immobilization of lipase NS-40116. 2019 , 42, 213-222		19
166	Optimized procedure for the preparation of an enzymatic nanocatalyst to produce a bio-lubricant from waste cooking oil. <i>Chemical Engineering Journal</i> , 2019 , 377, 120273	14.7	29
165	Waxberry-like hierarchically porous ethyl-bridged hybrid silica microsphere: A substrate for enzyme catalysis and high-performance liquid chromatography. 2019 , 1587, 79-87		4
164	Comparison of acid, basic and enzymatic catalysis on the production of biodiesel after RSM optimization. 2019 , 135, 1-9		60
163	Potential application of Thermomyces lanuginosus lipase (TLL) immobilized on nonporous polystyrene particles. 2019 , 38, 608-613		14
162	Integrated Functional-Omics Analysis of Thermomyces lanuginosus Reveals its Potential for Simultaneous Production of Xylanase and Substituted Xylooligosaccharides. 2019 , 187, 1515-1538		6

(2020-2019)

161	Highly active and stable Fe3O4/Au nanoparticles supporting lipase catalyst for biodiesel production from waste tomato. 2019 , 474, 135-146		54
160	Production of diacylglycerols through glycerolysis with SBA-15 supported Thermomyces lanuginosus lipase as catalyst. <i>Journal of the Science of Food and Agriculture</i> , 2020 , 100, 1426-1435	4.3	7
159	Development and economic evaluation of an eco-friendly biocatalytic synthesis of emollient esters. 2020 , 43, 495-505		7
158	Coimmobilization of different lipases: Simple layer by layer enzyme spatial ordering. <i>International Journal of Biological Macromolecules</i> , 2020 , 145, 856-864	7.9	24
157	High Pressure Processing of Lipase (Thermomyces lanuginosus): Kinetics and Structure Assessment. 2020 , 122, 1900289		4
156	Immobilization of Thermoalkalophilic Lipase from Bacillus atrophaeus FSHM2 on Amine-Modified Graphene Oxide Nanostructures: Statistical Optimization and Its Application for Pentyl Valerate Synthesis. 2020 , 191, 579-604		6
155	Main Structural Targets for Engineering Lipase Substrate Specificity. Catalysts, 2020, 10, 747	4	16
154	Substrate hydrophobicity and enzyme modifiers play a major role in the activity of lipase from Thermomyces lanuginosus. 2020 , 10, 5913-5924		5
153	A novel environment-friendly synthetic technology of dibutyl itaconate. 2020 , 95, 2879-2885		3
152	Regioselective Synthesis of Palm-Based Sorbitol Esters as Biobased Surfactant by Lipase from Thermomyces lanuginosus in Nonaqueous Media. 2020 , 23, 1067-1077		2
151	Designing a Support for Lipase Immobilization Based On Magnetic, Hydrophobic, and Mesoporous Silica. 2020 , 36, 10147-10155		7
150	Remarkable elasticity and enzymatic degradation of bio-based poly(butylene adipate-co-furanoate): replacing terephthalate. 2020 , 22, 7778-7787		16
149	Synthesis of MCFA and PUFA rich oils by enzymatic structuring of flax oil with single cell oils. <i>LWT-Food Science and Technology</i> , 2020 , 133, 109928	5.4	3
148	Multi-Combilipases: Co-Immobilizing Lipases with Very Different Stabilities Combining Immobilization via Interfacial Activation and Ion Exchange. The Reuse of the Most Stable Co-Immobilized Enzymes after Inactivation of the Least Stable Ones. <i>Catalysts</i> , 2020 , 10, 1207	4	10
147	Immobilization of lipase on the modified magnetic diatomite earth for effective methyl esterification of isoamyl alcohol to synthesize banana flavor. 2020 , 10, 447		3
146	Microbial lipases and their industrial applications: a comprehensive review. 2020 , 19, 169		154
145	Rhizopus oryzae Lipase, a Promising Industrial Enzyme: Biochemical Characteristics, Production and Biocatalytic Applications. <i>Catalysts</i> , 2020 , 10, 1277	4	19
144	Interfacial microenvironment for lipase immobilization: Regulating the heterogeneity of graphene oxide. Chemical Engineering Journal, 2020, 394, 125038	14.7	8

143	Sonohydrolysis using an enzymatic cocktail in the preparation of free fatty acid. 2020, 10, 254		12
142	Green preparation of lipase@Ca3(PO4)2 hybrid nanoflowers using bone waste from food production for efficient synthesis of clindamycin palmitate. 2020 , 89, 383-391		9
141	One Pot Use of Combilipases for Full Modification of Oils and Fats: Multifunctional and Heterogeneous Substrates. <i>Catalysts</i> , 2020 , 10, 605	4	35
140	Monoglycerides as an Antifungal Agent. 2020 ,		
139	Enzymatic Transesterification of Waste Frying Oil from Local Restaurants in East Colombia Using a Combined Lipase System. 2020 , 10, 3566		2
138	Improved Catalytic Properties of Thermomyces lanuginosus Lipase Immobilized onto Newly Fabricated Polydopamine-Functionalized Magnetic Fe3O4 Nanoparticles. 2020 , 8, 629		6
137	Immobilization of lipase Eversa Transform 2.0 on poly(urea-urethane) nanoparticles obtained using a biopolyol from enzymatic glycerolysis. 2020 , 43, 1279-1286		6
136	Expression and characterization of a CALB-type lipase from Sporisorium reilianum SRZ2 and its potential in short-chain flavor ester synthesis. 2020 , 14, 868-879		3
135	A New Spectrophotometric Assay for Measuring the Hydrolytic Activity of Lipase from Thermomyces lanuginosus: A Kinetic Modeling. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 48	318 ⁸ 482	e6 ⁴
134	Ultrasonic-promoted enzymatic preparation, identification and multi-active studies of nature-identical phenolic acid glycerol derivatives 2020 , 10, 11139-11147		2
133	Effects of Enzyme Loading and Immobilization Conditions on the Catalytic Features of Lipase From Immobilized on Octyl-Agarose Beads. 2020 , 8, 36		40
132	Sustainable Enzymatic Synthesis of a Solketal Ester P rocess Optimization and Evaluation of Its Antimicrobial Activity. <i>Catalysts</i> , 2020 , 10, 218	4	12
131	Immobilized Biocatalysts of Eversa Transform 2.0 and Lipase from Thermomyces Lanuginosus: Comparison of Some Properties and Performance in Biodiesel Production. <i>Catalysts</i> , 2020 , 10, 738	4	16
130	Improved immobilization of lipase from Thermomyces lanuginosus on a new chitosan-based heterofunctional support: Mixed ion exchange plus hydrophobic interactions. <i>International Journal of Biological Macromolecules</i> , 2020 , 163, 550-561	7.9	27
129	Colloidal graphene oxide enhances the activity of a lipase and protects it from oxidative damage: Insights from physicochemical and molecular dynamics investigations. 2020 , 567, 285-299		9
128	Use of polyethylenimine to produce immobilized lipase multilayers biocatalysts with very high volumetric activity using octyl-agarose beads: Avoiding enzyme release during multilayer production. <i>Enzyme and Microbial Technology</i> , 2020 , 137, 109535	3.8	14
127	Production and characterization of biodiesel from oil of fish waste by enzymatic catalysis. 2020 , 153, 1346-1354		35
126	Immobilization of Lipozyme TL 100L for methyl esterification of soybean oil deodorizer distillate. 2020 , 10, 51		8

125	Selective immobilization of Bacillus subtilis lipase A from cell culture supernatant: Improving catalytic performance and thermal resistance. <i>Process Biochemistry</i> , 2020 , 92, 214-223	μ.8	4
124	On the taught new tricks of enzymes immobilization: An all-inclusive overview. 2020 , 152, 104613		90
123	Transesterification in Microreactors-Overstepping Obstacles and Shifting Towards Biodiesel Production on a Microscale. 2020 , 11,		11
122	A new heterofunctional support for enzyme immobilization: PEI functionalized FeO MNPs activated with divinyl sulfone. Application in the immobilization of lipase from Thermomyces lanuginosus. Enzyme and Microbial Technology, 2020 , 138, 109560	.8	39
121	Exploring novel lipolytic activity from the Paranaense rainforest. 2021 , 42, 4372-4379		1
120	Heterogeneous biocatalytical esterification by recombinant Thermomyces lanuginosus lipase immobilized on macroporous carbon aerogel. 2021 , 379, 36-41		4
119	Simultaneous esterification and transesterification of waste phoenix seed oil with a high free fatty acid content using a free lipase catalyst to prepare biodiesel. <i>Biomass and Bioenergy</i> , 2021 , 144, 105930 ⁵	5.3	13
118	Insight into the in-situ solvent-free lipase-catalyzed coating on cotton with polyesters. <i>Process Biochemistry</i> , 2021 , 102, 82-91	μ.8	1
117	Acylglycerol synthesis including EPA and DHA from rainbow trout (Oncorhynchus mykiss) belly flap oil and caprylic acid catalyzed by Thermomyces lanuginosus lipase under supercritical carbon dioxide. 2021 , 247, 499-511		2
116	Liquid lipase preparations designed for industrial production of biodiesel. Is it really an optimal solution?. 2021 , 164, 1566-1587		42
115	Thermo-alkali-stable lipase from a novel: statistical optimization, enzyme purification, immobilization and its application in biodiesel production. 2021 , 51, 225-240		4
114	Heterogeneous Biocatalysts for the Final Stages of Deep Processing of Renewable Resources into Valuable Products.		Ο
113	Dancing with oils - the interaction of lipases with different oil/water interfaces. 2021 , 17, 7086-7098		О
112	Degradation of Plastics by Fungi. 2021 , 650-661		Ο
111	Continuous Integrated Process of Biodiesel Production and Purification The End of the Conventional Two-Stage Batch Process?. 2021 , 14, 403		3
110	Solvent-free esterifications mediated by immobilized lipases: a review from thermodynamic and kinetic perspectives. 2021 , 11, 5696-5711		17
109	Ultrasound-assisted lipase-catalyzed synthesis of ethyl acetate: process optimization and kinetic study. 2021 , 35, 255-263		4
108	Immobilization of lipases onto the halogen & haloalkanes modified SBA-15: Enzymatic activity and glycerolysis performance study. <i>International Journal of Biological Macromolecules</i> , 2021 , 169, 239-250	7.9	3

107	Co-fermentation of municipal waste streams: Effects of pretreatment methods on volatile fatty acids production. <i>Biomass and Bioenergy</i> , 2021 , 145, 105950	5.3	5
106	Reviewing research on the synthesis of CALB-catalyzed sugar esters incorporating systematic mapping principles. 2021 , 41, 865-878		3
105	Agroindustrial Wastes as a Support for the Immobilization of Lipase from : Synthesis of Hexyl Laurate. 2021 , 11,		2
104	Calix[4]arene tetracarboxylic acid-treated lipase immobilized onto metal-organic framework: Biocatalyst for ester hydrolysis and kinetic resolution. <i>International Journal of Biological Macromolecules</i> , 2021 , 175, 79-86	7.9	7
103	Efficient improvement of surface displayed lipase from Rhizomucor miehei in PichiaPink□ protease-deficient system. 2021 , 180, 105804		3
102	Surface charge engineering of Thermomyces lanuginosus lipase improves enzymatic activity and biodiesel synthesis. 2021 , 43, 1403-1411		1
101	Selective degradation of synthetic polymers through enzymes immobilized on nanocarriers. 2021 , 11, 363-371		3
100	Rigid Polyurethane Foam Obtained from Enzymatic Glycerolysis: Evaluation of the Influence of Lipase on Biopolyol Composition and Polymer Characteristics. 2021 , 29, 3900		2
99	Influence of the chain length of the fatty acids present in different oils and the pore diameter of the support on the catalytic activity of immobilized lipase for ethyl ester production. 2021 , 38, 511-522		3
98	Multicatalytic Hybrid Materials for Biocatalytic and Chemoenzymatic CascadesBtrategies for Multicatalyst (Enzyme) Co-Immobilization. <i>Catalysts</i> , 2021 , 11, 936	4	5
97	Development of a fast and efficient method to analyze microplastics in planktonic samples. 2021 , 168, 112379		6
96	Chemically Modified Lipase from Thermomyces lanuginosus with Enhanced Esterification and Transesterification Activities. 2021 , 13, 4524		1
95	Biolubricant production under zero-waste Moringa oleifera Lam biorefinery approach for boosting circular economy. 2021 , 167, 113542		10
94	Exploring the structural and catalytic features of lipase enzymes immobilized on g-C3N4: A novel platform for biocatalytic and photocatalytic reactions. 2021 , 337, 116612		4
93	Lipase-active heterogeneous biocatalysts for enzymatic synthesis of short-chain aroma esters. 2021 , 36, 102124		1
92	A Novel Lipase from Efficiently Hydrolyses C8-C10 Methyl Esters for the Preparation of Medium-Chain Triglycerides' Precursors. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	2
91	Trends in lipase immobilization: Bibliometric review and patent analysis. <i>Process Biochemistry</i> , 2021 , 110, 37-51	4.8	14
90	Enzyme-support interactions and inactivation conditions determine Thermomyces lanuginosus lipase inactivation pathways: Functional and florescence studies. <i>International Journal of Biological Macromolecules</i> , 2021 , 191, 79-91	7.9	5

89	Microbial extremozymes: Novel sources and industrial applications. 2022, 67-88		1
88	Development of isotope-enriched phosphatidylinositol-4- and 5-phosphate cellular mass spectrometry probes. 2021 , 12, 2549-2557		O
87	Advanced applications of green materials in catalysis applications. 2021, 545-571		0
86	Integrated Green and Enzymatic Process to Produce Omega-3 Acylglycerols from Echium plantagineum Using Immobilized Lipases. <i>JAOCS, Journal of the American Oil ChemiststSociety</i> , 2021 , 98, 341-352	1.8	2
85	Overview of Immobilized Enzymes' Applications in Pharmaceutical, Chemical, and Food Industry. 2020 , 2100, 27-63		16
84	Immobilization of Lipases by Adsorption on Hydrophobic Supports: Modulation of Enzyme Properties in Biotransformations in Anhydrous Media. 2020 , 2100, 143-158		9
83	Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil. 2021 , 15, 1		10
82	ULTRASOUND-ASSISTED TRANSESTERIFICATION OF SOYBEAN OIL USING COMBI-LIPASE BIOCATALYSTS. 2019 , 36, 995-1005		12
81	Lipase Production by Aspergillus niger C by Submerged Fermentation. 62,		9
80	Cell Surface Display of Lipase in. 2020 , 8, 544058		2
79	Characterization of Organic Solvent Stable Lipase from Pseudomonas sp. BCNU 106. 2016 , 26, 603-607		1
78	Erratum to Trends in lipase immobilization: Bibliometric review and patent analysis[[Process Biochem. 110 (2021) 3751]. <i>Process Biochemistry</i> , 2021 ,	4.8	О
77	Enzymes as Biocatalysts for Lipid-based Bioproducts Processing. 333-358		
76	Literature Review: What Has Been Explored About Enzymatic Synthesis of ST and SD?. 2017, 17-34		
75	IMOBILIZA 🛮 🖟 DE LIPASE DE Thermomyces lanuginosus EM NANOPART 🖟 ŒULA MAGN 🗷 TICA DE HIDROXIAPATITA E OXIDO DE FERRO.		
74	Introduction. 2019 , 1-30		
73	Organic Modifications of SBA-15 Improves the Enzymatic Properties of its Supported TLL. <i>Journal of Oleo Science</i> , 2020 , 69, 893-905	1.6	
72	Recombinant strains producing thermostable lipase from Thermomyces lanuginosus and their use in heterogeneous biocatalysis, including in the processes of low-temperature synthesis of esters. 2021 , 37, 5-19		

71	Biodiesel production in oil biorefinery and by-products utilization. 2022 , 109-150		O
70	Transesterification of palm kernel oil with ethanol catalyzed by a combination of immobilized lipases with different specificities in continuous two-stage packed-bed reactor. <i>Fuel</i> , 2022 , 310, 122343	7.1	5
69	Supplementation of bile acids and lipase in broiler diets for better nutrient utilization and performance: Potential effects and future implications. 2020 ,		О
68	Comparative fungal diversity and dynamics in plant compartments at different developmental stages under root-zone restricted grapevines. 2021 , 21, 317		1
67	Simplified Method to Optimize Enzymatic Esters Syntheses in Solvent-Free Systems: Validation Using Literature and Experimental Data. <i>Catalysts</i> , 2021 , 11, 1357	4	1
66	Combination of high throughput and structural screening to assess protein stability - a screening perspective. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2021 , 171, 1-1	5.7	2
65	Utilization of Lignocellulosic Agro-Waste as an Alternative Carbon Source for Industrial Enzyme Production. 2022 , 221-233		
64	Encapsulation of lipases by nucleotide/metal ion coordination polymers: Enzymatic properties and their applications in glycerolysis and esterification studies <i>Journal of the Science of Food and Agriculture</i> , 2022 ,	4.3	1
63	Immobilization of Thermomyces lanuginosus lipase via ionic adsorption on superparamagnetic iron oxide nanoparticles: Facile synthesis and improved catalytic performance. <i>Chemical Engineering Journal</i> , 2022 , 431, 134128	14.7	0
62	Microbial Degradation of Plastics and Approaches to Make it More Efficient. <i>Microbiology</i> , 2021 , 90, 671	I- 7 .0 <mark>.1</mark>	5
61	Enzyme technology in the production of flavors and food additives. 2022, 45-55		1
60	A review of synthesis of esters with aromatic, emulsifying, and lubricant properties by biotransformation using lipases <i>Biotechnology and Bioengineering</i> , 2021 ,	4.9	4
59	Applications of immobilized lipases in enzymatic reactors: A review. <i>Process Biochemistry</i> , 2022 , 114, 1-20	4.8	5
58	Enzymatic ethanolysis of high free fatty acid jatropha oil using Eversa Transform. <i>Energy Advances</i> ,		
57	Eco-friendly production of trimethylolpropane triesters from refined and used soybean cooking oils using an immobilized low-cost lipase (Eversa>① Transform 2.0) as heterogeneous catalyst. <i>Biomass</i>	5.3	9
	and Bioenergy, 2021 , 155, 106302	J.J	
56		<i>y</i> -y	
56 55	and Bioenergy, 2021 , 155, 106302	0.3	1

53	More efficient enzymatic cascade reactions by spatially confining enzymes via the SpyTag/SpyCatcher technology. <i>Molecular Catalysis</i> , 2022 , 521, 112188	3.3	1
52	Preparation of a Six-Enzyme Multilayer Combi-Biocatalyst: Reuse of the Most Stable Enzymes after Inactivation of the Least Stable One. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 3920-3934	8.3	3
51	Characteristics of Crosslinking Polymers Play Major Roles in Improving the Stability and Catalytic Properties of Immobilized Lipase <i>International Journal of Molecular Sciences</i> , 2022 , 23,	6.3	О
50	Fatty acid ethyl esters production from distillers corn oil by enzymatic catalysis. <i>JAOCS, Journal of the American Oil ChemiststSociety</i> ,	1.8	O
49	Chemical amination of immobilized enzymes for enzyme coimmobilization: Reuse of the most stable immobilized and modified enzyme <i>International Journal of Biological Macromolecules</i> , 2022 ,	7.9	3
48	Decyl esters production from soybean-based oils catalyzed by lipase immobilized on differently functionalized rice husk silica and their characterization as potential biolubricants <i>Enzyme and Microbial Technology</i> , 2022 , 157, 110019	3.8	2
47	Precision polymer nanofibers with a responsive polyelectrolyte corona designed as a modular, functionalizable nanomedicine platform. <i>Polymer Chemistry</i> ,	4.9	2
46	Parametric comparison of biodiesel transesterification processes using non-edible feedstocks: Castor bean and jatropha oils. <i>Biofuels, Bioproducts and Biorefining</i> ,	5.3	O
45	Image_1.TIF. 2020 ,		
44	Image_2.TIF. 2020 ,		
43	Image_2.TIF. 2020 , Image_3.TIF. 2020 ,		
43	Image_3.TIF. 2020 ,	5.4	1
43	Image_3.TIF. 2020, Image_4.TIF. 2020, Enzymatic interesterification of palm olein in a continuous packed bed reactor: Effect of process parameters on the properties of fats and immobilized Thermomyces lanuginosus lipase. LWT - Food	5.4	1 O
43 42 41	Image_3.TIF. 2020, Image_4.TIF. 2020, Enzymatic interesterification of palm olein in a continuous packed bed reactor: Effect of process parameters on the properties of fats and immobilized Thermomyces lanuginosus lipase. LWT - Food Science and Technology, 2022, 162, 113459 Biocatalytic Heterogeneous Processes of Low-Temperature Synthesis of Diol Monoesters. Kinetics		
43 42 41 40	Image_3.TIF. 2020, Enzymatic interesterification of palm olein in a continuous packed bed reactor: Effect of process parameters on the properties of fats and immobilized Thermomyces lanuginosus lipase. LWT - Food Science and Technology, 2022, 162, 113459 Biocatalytic Heterogeneous Processes of Low-Temperature Synthesis of Diol Monoesters. Kinetics and Catalysis, 2022, 63, 188-196 pH-Switchable Pickering Interfacial Biocatalysis: One-Pot Enzymatic Synthesis of Phytosterol Esters	1.5	0
43 42 41 40 39	Image_3.TIF. 2020, Enzymatic interesterification of palm olein in a continuous packed bed reactor: Effect of process parameters on the properties of fats and immobilized Thermomyces lanuginosus lipase. LWT - Food Science and Technology, 2022, 162, 113459 Biocatalytic Heterogeneous Processes of Low-Temperature Synthesis of Diol Monoesters. Kinetics and Catalysis, 2022, 63, 188-196 pH-Switchable Pickering Interfacial Biocatalysis: One-Pot Enzymatic Synthesis of Phytosterol Esters with Low-Value Rice Bran Oil. ACS Sustainable Chemistry and Engineering,	8.3	O 2

35	Improved Synthesis of ⊞Glycerol Monolaurate Using Lipozyme TL IM. <i>Journal of Oleo Science</i> , 2022 , 71, 1013-1020	1.6	
34	The Influence of pH on the Lipase Digestion of Nanosized Triolein, Diolein and Monoolein Films. 2,		
33	Tuning Immobilized Commercial Lipase Preparations Features by Simple Treatment with Metallic Phosphate Salts. <i>Molecules</i> , 2022 , 27, 4486	4.8	1
32	Improved thermostability of Thermomyces lanuginosus lipase by molecular dynamics simulation and in silico mutation prediction and its application in biodiesel production. <i>Fuel</i> , 2022 , 327, 125039	7.1	O
31	Chemoenzymatic synthesis of both enantiomers of propafenone hydrochloride through lipase-catalyzed process. <i>Molecular Catalysis</i> , 2022 , 529, 112540	3.3	2
30	An improved process for the preparation of ethyl-(R)-2-hydroxy-4-phenylbutyrate, (R)-HPB ester by lipase from Thermomyces lanuginosus. <i>Bioresource Technology Reports</i> , 2022 , 19, 101163	4.1	
29	Amphiphilic Nanointerface: Inducing the Interfacial Activation for Lipase.		1
28	Discovery of the Key Mutation Site Influencing the Thermostability of Thermomyces lanuginosus Lipase by Rosetta Design Programs. 2022 , 23, 8963		
27	Immobilization of Thermomyces lanuginosus lipase through isocyanide-based multi component reaction on multi-walled carbon nanotube: application for kinetic resolution of rac-ibuprofen. 2022 , 35, e00759		
26	Determination of immobilized lipase stability depends on the substrate and activity determination condition: Stress inactivations and optimal temperature as biocatalysts stability indicators. 2022 , 29, 100823		O
25	Current biotechnologies on depolymerization of polyethylene terephthalate (PET) and repolymerization of reclaimed monomers from PET for bio-upcycling: A critical review. 2022 , 363, 12793	31	О
24	Anisotropic protein-protein interactions in dilute and concentrated solutions. 2023 , 629, 794-804		O
23	Modulation of the Catalytic Properties of Immobilized Recombinant Lipase from Thermomyces lanuginosus in the Reaction of Esterification by the Selection of an Adsorbent. 2022 , 58, 540-550		О
22	Protein engineering to improve the stability of Thermomyces lanuginosus lipase in methanol. 2022 , 187, 108659		O
21	Waste Derived Supports for Immobilization of Lipase Towards Enhancing Efficiency and Reusability of Enzymes. 2022 , 135-160		0
20	Lipase and Its Unique Selectivity: A Mini-Review. 2022 , 2022, 1-11		O
19	The immobilization protocol greatly alters the effects of metal phosphate modification on the activity/stability of immobilized lipases. 2022 ,		1
18	Tuning Immobilized Enzyme Features by Combining Solid-Phase Physicochemical Modification and Mineralization. 2022 , 23, 12808		O

CITATION REPORT

17	Improved Catalytic Performance of Lipase Eversa ^[] Transform 2.0 via Immobilization for the Sustainable Production of Flavor EstersAdsorption Process and Environmental Assessment Studies. 2022 , 12, 1412	1
16	Immobilization of Thermomyces lanuginosus lipase on a new hydrophobic support (Streamline phenyl) Strategies to improve stability and reusability. 2023 , 163, 110166	1
15	Synthesis of organic-inorganic hybrid nanoflowers of lipases from Candida antarctica type B (CALB) and Thermomyces lanuginosus (TLL): Improvement of thermal stability and reusability. 2023 , 163, 110167	О
14	Fabrication of immobilized lipases for efficient preparation of 1,3-dioleoyl-2-palmitoylglycerol. 2023 , 408, 135236	О
13	Recent advances and future prospects for biolubricant base stocks production using lipases as environmentally friendly catalysts: a mini-review. 2023 , 39,	2
12	Process optimization for enzymatic production of a valuable biomass-based ester from levulinic acid.	O
11	Mineralization of Lipase from Thermomyces lanuginosus Immobilized on Methacrylate Beads Bearing Octadecyl Groups to Improve Enzyme Features. 2022 , 12, 1552	O
10	Recombinant Strains Producing Thermomyces lanuginosus Thermostable Lipase and their Use in Heterogeneous Biocatalysis, Including Processes of Low-Temperature Synthesis of Esters. 2022 , 58, 887-898	О
9	Cross-linked lipase particles with improved activity; application of a non-toxic linker for cross-linking. 2023 , 173, 114371	O
8	Employing Engineered Enolase Promoter for Efficient Expression of Thermomyces lanuginosus Lipase in Yarrowia lipolytica via a Self-Excisable Vector. 2023 , 24, 719	1
7	Introduction to agro-industrial waste. 2023 , 1-18	О
6	Enzymatic synthesis of propionyl-fructooligosaccharides and their evaluation as a gut microbiota modulator. 2023 , 108782	O
5	Biocatalytic conversion of fatty acids into drop-in biofuels: Towards sustainable energy sources. 2023 , 3, 100049	О
4	Chicken tallow, a low-cost feedstock for the two-step lipase-catalysed synthesis of biolubricant. 1-15	O
3	Effect of high-pressure technologies on enzyme activity and stability. 2023 , 49-75	О
2	Design of a New Chemoenzymatic Process for Producing Epoxidized Monoalkyl Esters from Used Soybean Cooking Oil and Fusel Oil. 2023 , 13, 543	O
1	Thermostable enzyme research advances: a bibliometric analysis. 2023 , 21,	0