From Theory to Practice: Sub-Nyquist Sampling of Spar

IEEE Journal on Selected Topics in Signal Processing 4, 375-391 DOI: 10.1109/jstsp.2010.2042414

Citation Report

#	Article	IF	CITATIONS
1	Compressive spectral estimation for nonstationary random processes. , 2009, , .		4
2	Uncertainty Relations for Shift-Invariant Analog Signals. IEEE Transactions on Information Theory, 2009, 55, 5742-5757.	1.5	27
3	Robust Recovery of Signals From a Structured Union of Subspaces. IEEE Transactions on Information Theory, 2009, 55, 5302-5316.	1.5	778
4	Cooperative compressive spectrum sensing by sub-Nyquist sampling. , 2009, , .		5
5	Compressed Sensing of Analog Signals in Shift-Invariant Spaces. IEEE Transactions on Signal Processing, 2009, 57, 2986-2997.	3.2	133
6	Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation. IEEE Transactions on Information Theory, 2010, 56, 505-519.	1.5	335
7	Compressed Genotyping. IEEE Transactions on Information Theory, 2010, 56, 706-723.	1.5	40
8	Modulated wideband converter with non-ideal lowpass filters. , 2010, , .		30
9	Empirical quantization for sparse sampling systems. , 2010, , .		2
10	Signal recovery from low frequency components. , 2010, , .		0
11	A Digital Demodulation Method for Amplitude Modulated Signal Based on Sub-Nyquist Sampling. , 2010, , .		1
12	On the Restricted Isometry of deterministically subsampled Fourier matrices. , 2010, , .		30
13	Recovering Signals From Lowpass Data. IEEE Transactions on Signal Processing, 2010, 58, 2636-2646.	3.2	10
14	Regularized Sampling of Multiband Signals. IEEE Transactions on Signal Processing, 2010, 58, 5624-5638.	3.2	8
15	A calibration system and perturbation analysis for the Modulated Wideband Converter. , 2010, , .		10
16	Direct spectrum sensing from compressed measurements. , 2010, , .		27
17	Super-resolution and reconstruction of sparse images carried by incoherent light. Optics Letters, 2010, 35, 1148.	1.7	75
18	Reduced-dimension multiuser detection. , 2010, , .		4

TATION REDO

IF ARTICLE CITATIONS # Sub-Nyquist acquisition hardware for wideband communication., 2010,,. 19 10 Xampling: Analog Data Compression., 2010,,. Block-Sparse Signals: Uncertainty Relations and Efficient Recovery. IEEE Transactions on Signal 21 3.2 1,009 Processing, 2010, 58, 3042-3054. Time-Delay Estimation From Low-Rate Samples: A Union of Subspaces Approach. IEEE Transactions on Signal Processing, 2010, 58, 3017-3031. Sampling of pulse streams: Achieving the rate of innovation., 2010, , . 23 1 Sub-Nyquist processing with the modulated wideband converter., 2010, , . 25 A cognitive radio architecture based on sub-Nyquist sampling., 2011,,. 9 Spectrum sensing and vector signal analysis preprocessing based on compressed sampling., 2011, , . 26 27 Multi-coset sampling for power spectrum blind sensing., 2011, , . 29 Xampling: Signal Acquisition and Processing in Union of Subspaces. IEEE Transactions on Signal 3.2 246 Processing, 2011, 59, 4719-4734. Spectrum sensing for cognitive radio architectures based on sub-Nyquist sampling schemes., 2011, , . 29 3 Expression of Concern: A random demodulator with a software-based integrator resetting scheme., Expression of Concern: Performance analysis of random demodulators with M-sequences and Kasami $\mathbf{31}$ 5 sequences., 2011,,. Compressive power spectral density estimation., 2011, , . 49 33 The polyphase random demodulator for wideband compressive sensing., 2011, , . 4 Power Spectrum Blind Sampling. IEEE Signal Processing Letters, 2011, 18, 443-446. Tone detection of non-uniformly undersampled signals with frequency excision., 2011, , . 35 2 Optical Analog-to-Digital Conversion System Based on Compressive Sampling. IEEE Photonics 1.3 Technology Letters, 2011, 23, 67-69.

	CITATION	Report	
#	Article	IF	CITATIONS
37	A 1GHz-bandwidth CMOS integrator for compressive sensing and RF applications. , 2011, , .		0
38	Wideband Spectrum Sensing at Sub-Nyquist Rates [Applications Corner]. IEEE Signal Processing Magazine, 2011, 28, 102-135.	4.6	117
39	Design of a CMOS A2I data converter: Theory, architecture and implementation. , 2011, , .		9
40	Sensing Matrix Optimization for Block-Sparse Decoding. IEEE Transactions on Signal Processing, 2011, 59, 4300-4312.	3.2	136
41	A Tree Based Recovery Algorithm for Block Sparse Signals. , 2011, , .		2
42	Belief Propagation Based Cooperative Compressed Spectrum Sensing in Wideband Cognitive Radio Networks. IEEE Transactions on Wireless Communications, 2011, 10, 3020-3031.	6.1	47
43	A blind recovery algorithm for spectrum-sparse signals sub-Nyquist sampling. , 2011, , .		1
44	Dual Branch Compressive Sensing for analog signal. , 2011, , .		0
45	Wideband spectrum sensing in modulated wideband converter based cognitive radio system. , 2011, , .		10
46	Cyclostationary feature detection from sub-Nyquist samples. , 2011, , .		19
47	Multi-antenna compressed wideband spectrum sensing for cognitive radio. , 2011, , .		7
48	A Novel Spectrum Sensing Algorithm Based on Compressive Sensing for Cognitive Radio. , 2011, , .		7
49	Wideband power spectrum sensing using sub-Nyquist sampling. , 2011, , .		20
50	Evaluation of the Wideband Compressive Radio Receiver for spectrum sensing. , 2011, , .		1
51	A NLLS based sub-nyquist rate spectrum sensing for wideband cognitive radio. , 2011, , .		19
52	A wideband spectrum sensing method for cognitive radio using sub-Nyquist sampling. , 2011, , .		29
53	Wideband compressed sensing for cognitive radios. , 2011, , .		2
54	Beating Nyquist with light: a compressively sampled photonic link. Optics Express, 2011, 19, 7339.	1.7	88

		CITATION REPORT		
# 55	ARTICLE Compressive laser ranging. Optics Letters, 2011, 36, 4794.		IF 1.7	Citations
56	Structured Compressed Sensing: From Theory to Applications. IEEE Transactions on Signal Pro 2011, 59, 4053-4085.	ocessing,	3.2	1,020
57	Compressive sensing for dynamic spectrum access networks: Techniques and tradeoffs. , 201	1,,.		13
58	Detection performance of compressively sampled radar signals. , 2011, , .			13
59	Identification of Parametric Underspread Linear Systems and Super-Resolution Radar. IEEE Transactions on Signal Processing, 2011, 59, 2548-2561.		3.2	107
60	Multichannel Sampling of Pulse Streams at the Rate of Innovation. IEEE Transactions on Signa Processing, 2011, 59, 1491-1504.	l	3.2	121
61	The compressive multiplexer for multi-channel compressive sensing. , 2011, , .			53
62	Shannon meets Nyquist: Capacity limits of sampled analog channels. , 2011, , .			5
63	Collaborative compressed spectrum sensing: what if spectrum is not sparse?. Electronics Lette 47, 519.	ers, 2011,	0.5	9
64	A practical design for compressive sampling system. , 2011, , .			0
65	SPARSE SIGNAL SENSING WITH NON-UNIFORM UNDERSAMPLING AND FREQUENCY EXCISIO	N.,2011,,.		4
66	Xampling in ultrasound imaging. Proceedings of SPIE, 2011, , .		0.8	20
67	Quick signal detection and dynamic resource allocation scheme for ultra-wideband radar. Proceedings of SPIE, 2011, , .		0.8	0
68	Xampling: analog to digital at sub-Nyquist rates. IET Circuits, Devices and Systems, 2011, 5, 8.		0.9	331
69	Near-Oracle Performance of Greedy Block-Sparse Estimation Techniques From Noisy Measurer IEEE Journal on Selected Topics in Signal Processing, 2011, 5, 1032-1047.	nents.	7.3	46
70	RF Front-End Concept and Implementation for Direct Sampling of Multiband Signals. IEEE Trar on Circuits and Systems II: Express Briefs, 2011, 58, 129-133.	isactions	2.2	21
71	Sampling and Reconstructing Signals From a Union of Linear Subspaces. IEEE Transactions on Information Theory, 2011, 57, 4660-4671.		1.5	103
72	Blind Compressed Sensing. IEEE Transactions on Information Theory, 2011, 57, 6958-6975.		1.5	208

# 73	ARTICLE Sub-Nyquist Sampling. IEEE Signal Processing Magazine, 2011, 28, 98-124.	IF 4.6	CITATIONS
74	A practical design for compressive sampling system. Proceedings of SPIE, 2011, , .	0.8	0
75	Approaching the capacity of sampled analog channels. , 2011, , .		0
76	Generic sensing hardware and real-time reconstruction for structured analog signals. , 2011, , .		11
77	Empirical divergence maximization for quantizer design: An analysis of approximation error. , 2011, , .		2
78	Signal recovery in shift-invariant spaces from partial frequency data. , 2011, , .		0
79	Promising Prospects in Mobile Search: Business As Usual or Techno-Economic Disruptions? [Social Sciences]. IEEE Signal Processing Magazine, 2011, 28, 131-135.	4.6	3
80	Distributed compressed wideband sensing in Cognitive Radio Sensor Networks. , 2011, , .		9
81	Novel Periodogram and Capon Spectral Analysis Based on Nonuniform Sampling. , 2011, , .		1
82	Summary based structures with improved sublinear recovery for compressed sensing. , 2011, , .		5
83	Sub-Nyquist sampling of short pulses. , 2011, , .		7
84	Frequency extrapolation by nonconvex compressive sensing. , 2011, , .		6
85	Live demonstration: MWC for real-time application. , 2011, , .		1
86	Research of Flexible Repeater Technique in Satellite Communications. Advanced Materials Research, 2012, 546-547, 1199-1204.	0.3	0
87	A Time-Encoding Machine Based High-Speed Analog-to-Digital Converter. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2, 552-563.	2.7	2
88	Single-channel spectrum sensing technique based on sub-Nyquist sampling. , 2012, , .		0
89	Microwave spectral analysis based on photonic compressive sampling with random demodulation. Optics Letters, 2012, 37, 4636.	1.7	48
90	Compressive sensing of sparse radio frequency signals using optical mixing. Optics Letters, 2012, 37, 4675.	1.7	132

# 91	ARTICLE SPADEDH: a sparsity-based denoising method of digital holograms without knowing the noise statistics. Optics Express, 2012, 20, 17250.	IF 1.7	CITATIONS
92	Characterization of a compressively sampled photonic link. Applied Optics, 2012, 51, 6448.	0.9	14
93	A blind spectrum recovery algorithm for sparse wideband signals based on backtracking. , 2012, , .		3
94	Hardware-efficient random sampling of fourier-sparse signals. , 2012, , .		2
95	Random circulant orthogonal matrix based Analog Compressed Sensing. , 2012, , .		5
96	Broadband & accurate multi-component RF sensing by photonic compressive sampling. , 2012, , .		0
97	Channel capacity under general nonuniform sampling. , 2012, , .		2
98	Performance analysis of Orthogonal Matching Pursuit under general perturbations. , 2012, , .		5
99	Efficient Inverse Cholesky Factorization for Alamouti Matrices in G-STBC and Alamouti-Like Matrices in OMP. , 2012, , .		2
100	Robustness of xampling-based RF receivers against analog mismatches. , 2012, , .		0
101	A flatness based recovery algorithm for sparse multiband signals without number of bands prior. , 2012, , .		0
102	Quantization reference voltage of the Modulated Wideband Converter. , 2012, , .		0
103	An analog sub-linear time sparse signal acquisition framework based on structured matrices. , 2012, , .		0
104	Acquisition of multiband signals with minimum sub-Nyquist sampling. , 2012, , .		3
105	Ultra-wideband channel estimation using multichannel sampling at the rate of innovation. , 2012, , .		1
106	Sparse signal recovery in Hilbert spaces. , 2012, , .		2
107	Towards an integrated circuit design of a compresssed sampling wireless receiver. , 2012, , .		4
108	A memristor-based random modulator for compressive sensing systems. , 2012, , .		9

#	ARTICLE	IF	Citations
110	A Nonuniform Sampler for Wideband Spectrally-Sparse Environments. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2, 516-529.	2.7	108
111	Compressive Wideband Power Spectrum Estimation. IEEE Transactions on Signal Processing, 2012, 60, 4775-4789.	3.2	187
112	Dual-frequency incoherent subsampling driven test response acquisition of spectrally sparse wideband signals with enhanced time resolution. , 2012, , .		1
113	Reconciling Compressive Sampling Systems for Spectrally Sparse Continuous-Time Signals. IEEE Transactions on Signal Processing, 2012, 60, 155-171.	3.2	65
114	Sub-Nyquist Sampling of Short Pulses. IEEE Transactions on Signal Processing, 2012, 60, 1134-1148.	3.2	42
115	Subsampled circulant matrix based analogue compressed sensing. Electronics Letters, 2012, 48, 767.	0.5	11
116	Spectrum Sensing for Networked System Using 1-Bit Compressed Sensing with Partial Random Circulant Measurement Matrices. , 2012, , .		7
117	Dictionary Optimization for Block-Sparse Representations. IEEE Transactions on Signal Processing, 2012, 60, 2386-2395.	3.2	119
118	Compressive sensing of analog signals using Discrete Prolate Spheroidal Sequences. Applied and Computational Harmonic Analysis, 2012, 33, 438-472.	1.1	97
119	Analog compressed sensing for RF propagation channel sounding. , 2012, , .		4
120	Xampling at the Rate of Innovation. IEEE Transactions on Signal Processing, 2012, 60, 1121-1133.	3.2	43
121	Golay meets Hadamard: Golay-paired Hadamard matrices for fast compressed sensing. , 2012, , .		10
122	Recursive \$ell_{1,infty}\$ Group Lasso. IEEE Transactions on Signal Processing, 2012, 60, 3978-3987.	3.2	27
123	Compressive sensing of block-sparse signals recovery based on sparsity adaptive regularized orthogonal matching pursuit algorithm. , 2012, , .		0
124	Reducing the Analog and Digital Bandwidth Requirements of RF Receivers for Measuring Periodic Sparse Waveforms. IEEE Transactions on Instrumentation and Measurement, 2012, 61, 2960-2971.	2.4	19
125	Multiple hypothesis testing for compressive wideband sensing. , 2012, , .		1
126	A group testing based spectrum hole search using a simple sub-Nyquist sampling scheme. , 2012, , .		3

#	ARTICLE	IF	CITATIONS
127	Digital-Assisted Asynchronous Compressive Sensing Front-End. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2012, 2, 482-492.	2.7	12
128	A wide band reconfigurable radio using compressive sensing. , 2012, , .		2
129	Robustness of orthogonal matching pursuit for multiple measurement vectors in noisy scenario. , 2012, , .		9
130	Design of universal multicoset sampling patterns for compressed sensing of multiband sparse signals. , 2012, , .		18
131	Spectrum Sensing for Cognitive Radio : State-of-the-Art and Recent Advances. IEEE Signal Processing Magazine, 2012, 29, 101-116.	4.6	906
132	Block-Sparse Recovery via Convex Optimization. IEEE Transactions on Signal Processing, 2012, 60, 4094-4107.	3.2	116
133	Mathematics of Analogâ€ŧoâ€Digital Conversion. Communications on Pure and Applied Mathematics, 2012, 65, 1671-1696.	1.2	7
134	Efficient blind spectrum sensing for cognitive radio networks based on compressed sensing. Eurasip Journal on Wireless Communications and Networking, 2012, 2012, .	1.5	3
135	The Pros and Cons of Compressive Sensing for Wideband Signal Acquisition: Noise Folding versus Dynamic Range. IEEE Transactions on Signal Processing, 2012, 60, 4628-4642.	3.2	137
136	Signal recovery from multiple measurement vectors via tunable random projection and boost. Signal Processing, 2012, 92, 2901-2908.	2.1	6
137	Retrieval of sparse solutions of multiple-measurement vectors via zero-point attracting projection. Signal Processing, 2012, 92, 3075-3079.	2.1	4
139	Sparsity Order Estimation and its Application in Compressive Spectrum Sensing for Cognitive Radios. IEEE Transactions on Wireless Communications, 2012, 11, 2116-2125.	6.1	117
140	Compressive sensing off the grid. , 2012, , .		30
141	Cooperative compressive wideband power spectrum sensing. , 2012, , .		14
142	A photonic-assisted multi-channel compressive sampling system. , 2012, , .		0
143	Cyclostationary-based low complexity wideband spectrum sensing using compressive sampling. , 2012, , ·		28
144	Detection performance of multibranch and multichannel compressive receivers. , 2012, , .		1
145	Multiple Microwave Frequencies Acquiring by Photonics-Assisted Compressive Sampling. , 2012, , .		0

#	Article	lF	Citations
146	Collaborative Spectrum Sensing for Cognitive Radio Networks. , 2012, , .		1
147	Sparse microwave imaging: Principles and applications. Science China Information Sciences, 2012, 55, 1722-1754.	2.7	133
148	The impact of ADC nonlinearity in a mixed-signal compressive sensing system for frequency-domain sparse signals. Physical Communication, 2012, 5, 196-207.	1.2	11
149	Analysis Framework for Opportunistic Spectrum OFDMA and Its Application to the IEEE 802.22 Standard. IEEE Transactions on Vehicular Technology, 2012, 61, 2271-2293.	3.9	10
150	Integrated Multifrequency Recognition and Downconversion Based on Photonics-Assisted Compressive Sampling. IEEE Photonics Journal, 2012, 4, 664-670.	1.0	29
151	Bearing Estimation via Spatial Sparsity using Compressive Sensing. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48, 1358-1369.	2.6	65
152	Performance Bounds and Design Criteria for Estimating Finite Rate of Innovation Signals. IEEE Transactions on Information Theory, 2012, 58, 4993-5015.	1.5	24
153	Shannon Meets Nyquist: Capacity of Sampled Gaussian Channels. IEEE Transactions on Information Theory, 2013, 59, 4889-4914.	1.5	32
154	Compressed sensing of EEG using a random sampling ADC in 90nm CMOS. , 2013, , .		0
155	Experimental results on wideband spectrum sensing using random sampling ADC in 90nm CMOS. , 2013, , .		0
156	Effect of multipath channel models to the recovery algorithms on compressed sensing in UWB channel estimation. Journal of Electronics, 2013, 30, 254-260.	0.2	0
157	Multiâ€channels wideband digital reconnaissance receiver based on compressed sensing. IET Signal Processing, 2013, 7, 731-742.	0.9	10
158	Improved Sensing Pulses for Increased Human Head Depth Measurement Sensitivity With Electrical Impedance Spectroscopy. IEEE Transactions on Biomedical Engineering, 2013, 60, 3306-3313.	2.5	1
159	Perturbation Analysis of Orthogonal Matching Pursuit. IEEE Transactions on Signal Processing, 2013, 61, 398-410.	3.2	109
160	A novel Sub-Nyquist sampling of sparse wideband signals. , 2013, , .		5
161	Towards the realistic applications of compressed sensing in radar systems. , 2013, , .		0
162	Low dimensional multiuser detection exploiting low user activity. Journal of Communications and Networks, 2013, 15, 283-291.	1.8	1
163	VLSI Design of a Monolithic Compressive-Sensing Wideband Analog-to-Information Converter. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2013, 3, 552-565.	2.7	33

#	Article	IF	Citations
164	Sub-Nyquist Sampled Analog-to-Digital Conversion Based on Photonic Time Stretch and Compressive Sensing With Optical Random Mixing. Journal of Lightwave Technology, 2013, 31, 3395-3401.	2.7	25
165	Information recovery using undersampling in orthogonal frequency division multiplexing systems. , 2013, , .		0
166	Dynamic Single Branch Non-Uniform Sampler. , 2013, , .		3
167	A performance trade-off in wideband cognitive radio for flexible wireless systems. , 2013, , .		Ο
168	Compressive sensing in a photonic link for acquisition of spectrally-sparse wideband signals: Potentials and limitations. , 2013, , .		0
169	Ultrahigh-Resolution Photonic-Assisted Microwave Frequency Identification Based on Temporal Channelization. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 4275-4282.	2.9	45
170	Compressed sampling based on circulant matrix for analog signals. , 2013, , .		2
171	The performance of multichannel random demodulator for multiband signals. , 2013, , .		2
172	A frequency-folded ADC architecture with digital LO synthesis. , 2013, , .		4
173	Signal to symbol converters: Overview, opportunities and challenges. , 2013, , .		1
174	A modulation detector based on compressive sensing for vector measurement in cognitive radio. , 2013, , .		1
175	Asynchronous Binary Compressive Sensing for Wireless Body Sensor Networks. , 2013, , .		1
176	A sub-Nyquist reconfigurable receiver via random demodulation. , 2013, , .		5
177	Wideband radio frequency measurements: From instrumentation to sampling theory. IEEE Microwave Magazine, 2013, 14, 85-98.	0.7	15
178	Compressive Spectral Estimation for Nonstationary Random Processes. IEEE Transactions on Information Theory, 2013, 59, 3117-3138.	1.5	19
179	Spectral compressive sensing. Applied and Computational Harmonic Analysis, 2013, 35, 111-129.	1.1	351
180	Oblique Pursuits for Compressed Sensing. IEEE Transactions on Information Theory, 2013, 59, 6111-6141.	1.5	54
181	Analog compressed sensing for multiband signals with non-modulated Slepian basis. , 2013, , .		0

#	Article	IF	CITATIONS
182	Enhanced Sparse Bayesian Learning via Statistical Thresholding for Signals in Structured Noise. IEEE Transactions on Signal Processing, 2013, 61, 5430-5443.	3.2	23
183	Why Analog-to-Information Converters Suffer in High-Bandwidth Sparse Signal Applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 2273-2284.	3.5	50
184	Wideband Spectrum Sensing Based on Sub-Nyquist Sampling. IEEE Transactions on Signal Processing, 2013, 61, 3028-3040.	3.2	110
185	Compressive Sensing for Spread Spectrum Receivers. IEEE Transactions on Wireless Communications, 2013, 12, 2334-2343.	6.1	18
186	A Compressed Sensing Analog-to-Information Converter With Edge-Triggered SAR ADC Core. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 1135-1148.	3.5	44
187	DCSR: A dynamic channel and resolution sampling for a Compressive Sensing receiver to acquire GPS signals. , 2013, , .		2
188	An alternative recovery algorithm based on SLO for multiband signals. , 2013, , .		1
189	The effect of modulated wideband converter placement on compressive spectrum sensing. , 2013, , .		1
190	Cyclic spectrum reconstruction and cyclostationary detection from sub-Nyquist samples. , 2013, , .		10
191	Cyclostationary detection from sub-Nyquist samples for Cognitive Radios: Model reconciliation. , 2013, , .		0
192	Compressive Radar. , 2013, , .		0
193	Wideband Photonic Compressive Sampling Analog-to-Digital Converter for RF Spectrum Estimation. , 2013, , .		10
194	Multifrequency radio frequency sensing with photonics-assisted spectrum compression. Optics Letters, 2013, 38, 4386.	1.7	34
195	Photonic-assisted multi-channel compressive sampling based on effective time delay pattern. Optics Express, 2013, 21, 25700.	1.7	36
196	Deterministic under-sampling with error correction in OFDM systems. , 2013, , .		0
197	Analysis and Signal Recovery of Modulated Wideband Converter with Gain Mismatch. Applied Mechanics and Materials, 2013, 284-287, 2609-2614.	0.2	2
198	8â€channel 20ÂkHz to 200ÂMHz Nyquist and compressive sampler in 0.5 μm CMOS. Electronics Letters, 2013, 49, 23-25.	0.5	3
199	Design of configurable chipping sequence generator for highâ€speed parallel samplers. Electronics Letters, 2013, 49, 875-876.	0.5	0

ARTICLE IF CITATIONS Impact of channel models on compressed sensing recovery algorithmsâ€based ultraâ€wideband channel 200 1.5 51 estimation. IET Communications, 2013, 7, 1322-1330. Analysis of stroboscopic signal sampling for radar target detectors and range finders. IET Radar, Sonar and Navigation, 2013, 7, 451-458 UWB signal receiver with sub-Nyquist rate sampling based on compressed sensing. COMPEL - the 202 International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 0.5 1 2013, 33, 556-566. Frequency domain sensing system using random modulation preâ€integrator. IET Science, Measurement and Technology, 2013, 7, 166-170. The rapidly tuned analog-to-information converter., 2013,,. 204 1 Compressive time delay estimation using interpolation., 2013,,. 206 Spectral compressive sensing with polar interpolation., 2013,,. 16 Sub-Nyquist power spectrum reconstruction and support detection for cognitive radios., 2013,,. 208 On a new compressed sensing paradigm in the modulated wideband converter., 2013,,. 0 209 Minimax universal sampling for compound multiband channels., 2013, , . 210 Discrete random sampling theory., 2013, , . 9 A Compressive Sensing Based Secure Data Transmission Scheme., 2013, , . Adaptive block sampling for spectrum sensing., 2013, , . 212 0 Computationally-efficient blind sub-Nyquist sampling for sparse spectra., 2013, , . An achievable measurement rate-MSE tradeoff in compressive sensing through partial support 214 0 recovery., 2013,,. A spectrum sensing system based on sub-Nyquist rate sampling., 2013,,. CHAOTIC ANALOG-TO-INFORMATION CONVERSION: PRINCIPLE AND RECONSTRUCTABILITY WITH PARAMETER 216 IDENTIFIABILITY. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2 0.7 2013, 23, 1350198. Microwave spectrum sensing based on photonic time stretch and compressive sampling. Optics Letters, 2013, 38, 136.

#	Article	IF	CITATIONS
218	A COMPRESSIVE SENSING APPROACH FOR SYNTHETIC APERTURE IMAGING RADIOMETERS. Progress in Electromagnetics Research, 2013, 135, 583-599.	1.6	8
219	A COMPRESSIVE SENSING SIGNAL DETECTION FOR UWB RADAR. Progress in Electromagnetics Research, 2013, 141, 479-495.	1.6	5
220	Spectral efficient compressive transmission framework for wireless communication systems. IET Signal Processing, 2013, 7, 558-564.	0.9	12
221	Design of a Parallel Sampling Encoder for Analog to Information (A2I) Converters: Theory, Architecture and CMOS Implementation. Electronics (Switzerland), 2013, 2, 57-79.	1.8	4
222	Compressed Wideband Spectrum Sensing Based on Discrete Cosine Transform. Scientific World Journal, The, 2014, 2014, 1-5.	0.8	13
223	Undersampling in Orthogonal Frequency Division Multiplexing Telecommunication Systems. Applied Sciences (Switzerland), 2014, 4, 79-98.	1.3	8
224	Compressive Circulant Matrix Based Analog to Information Conversion. IEEE Signal Processing Letters, 2014, 21, 428-431.	2.1	22
225	Asynchronous compressed beamformer for portable diagnostic ultrasound systems. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 1791-1801.	1.7	9
226	Direction of arrival estimation of wideband signals using sub-Nyquist samples. , 2014, , .		2
227	Learning distributed jointly sparse systems by collaborative LMS. , 2014, , .		2
228	Hardware calibration of the modulated wideband converter. , 2014, , .		24
229	Radar pulse sensing based on photonic-assisted compressive sampling. , 2014, , .		3
230	Multiband signal reconstruction for random equivalent sampling. Review of Scientific Instruments, 2014, 85, 105109.	0.6	4
231	Reconstruction failure detection for wideband spectrum sensing with modulated wideband converter based sub-Nyquist sampling. , 2014, , .		1
232	An efficient implementation of the low-complexity multi-coset sub-Nyquist wideband radar electronic surveillance. , 2014, , .		5
233	Generation of Antipodal Random Vectors With Prescribed Non-Stationary 2-nd Order Statistics. IEEE Transactions on Signal Processing, 2014, 62, 1603-1612.	3.2	15
234	Dynamic compressive spectrum sensing method using adaptive compression sequences. , 2014, , .		0
235	Passive ultrasonics using sub-Nyquist sampling of high-frequency thermal-mechanical noise. Journal of the Acoustical Society of America, 2014, 135, EL364-EL370.	0.5	1

#	Article	IF	CITATIONS
236	Super-resolution line spectrum estimation with block priors. , 2014, , .		5
237	Adaptive three-dimensional feature specific imaging. Optical Engineering, 2014, 54, 031104.	0.5	0
238	Sparse Spectrum Sensing with Sub-Block Partition for Cognitive Radio Systems. , 2014, , .		0
239	Compressive spectrum sensing with sequences considering cross-correlation in frequency domain. , 2014, , .		0
240	Reconstruction performance of blind non uniform sampling in Cognitive Radio context. , 2014, , .		1
241	Enhanced data detection employing compressed sensing In wireless communications. , 2014, , .		1
242	Asynchronous compressive multi-channel radar for interference-robust vehicle collision avoidance systems. , 2014, , .		1
243	A new approach to near-theoretical sampling rate for modulated wideband converter. , 2014, , .		2
244	Circular sparse rulers based on co-prime sampling for compressive power spectrum estimation. , 2014, , ,		2
245	An approximate l <inf>0</inf> norm based signal reconstruction algorithm in the compressive sampling theory. , 2014, , .		1
246	Anti-noise-folding regularized subspace pursuit recovery algorithm for noisy sparse signals. , 2014, , .		2
247	Compressed sampling using structurally mixed cyclic measurement matrices. , 2014, , .		0
248	Sub-Nyquist Sampling for Power Spectrum Sensing in Cognitive Radios: A Unified Approach. IEEE Transactions on Signal Processing, 2014, 62, 3897-3910.	3.2	95
249	Sub-Nyquist sampling of OFDM signals for cognitive radios. , 2014, , .		5
250	Gridless compressive sensing. , 2014, , .		3
251	A sub-Nyquist sampling spectrum sensing system based on PXI bus for multiband signals. , 2014, , .		0
252	An efficient sub-Nyquist receiver architecture for spectrum blind reconstruction and direction of arrival estimation. , 2014, , .		35
253	GHz-wide sensing and decoding using the sparse Fourier transform. , 2014, , .		76

#	Article	IF	CITATIONS
254	Spectrum sensing for cognitive radio using multicoset sampling. , 2014, , .		9
255	Sub-band filtering in compressive domain. , 2014, , .		1
256	Compressed sensing based speech enhancement. , 2014, , .		6
257	Interference detection & amp; filtering in satellite transponder. , 2014, , .		2
258	Compressed sensing in array signal processing based on modulated wideband converter. , 2014, , .		1
259	Chaotic analogueâ€ŧoâ€information conversion with chaotic state modulation. IET Signal Processing, 2014, 8, 373-380.	0.9	27
260	OFDM and Multicarrier Signal Processing. Academic Press Library in Signal Processing, 2014, 2, 187-293.	0.8	11
261	Time-Reversal Wireless Paradigm for Green Internet of Things: An Overview. IEEE Internet of Things Journal, 2014, 1, 81-98.	5.5	110
262	The Convergence Guarantees of a Non-Convex Approach for Sparse Recovery. IEEE Transactions on Signal Processing, 2014, 62, 3754-3767.	3.2	64
263	Compressive spectrum sensing algorithm based on robust detection criterion with ratio of residual matrix. , 2014, , .		0
264	Accurate and efficient modeling of random demodulation based compressive sensing systems with a general filter. , 2014, , .		8
265	Backward Adaptation for Power Efficient Sampling. IEEE Transactions on Signal Processing, 2014, 62, 4327-4338.	3.2	6
266	The Restricted Isometry Property for Banded Random Matrices. IEEE Transactions on Signal Processing, 2014, 62, 5073-5084.	3.2	9
267	Sensitivity of compressive sensing architectures based on time interleaved analog-to-digital converters to channel mismatches. , 2014, , .		1
268	Compressive sensing based intercell interference channel estimation for heterogeneous network. , 2014, , .		7
269	Sparse information recovery in OFDM environment. , 2014, , .		0
270	Spectral compressive sensing with model selection. , 2014, , .		1
271	Signature-assisted rendezvous in OFDM-based cognitive networks using sub-Nyquist samples. , 2014, , .		3

#	Article	IF	CITATIONS
272	Sampling schemes and detection algorithms for wideband spectrum sensing. , 2014, , .		7
273	Compressive Sparsity Order Estimation for Wideband Cognitive Radio Receiver. IEEE Transactions on Signal Processing, 2014, 62, 4984-4996.	3.2	30
274	A Measurement Rate-MSE Tradeoff for Compressive Sensing Through Partial Support Recovery. IEEE Transactions on Signal Processing, 2014, 62, 4643-4658.	3.2	3
275	Channel gain mismatch and time delay calibration for modulated wideband converterâ€based compressive sampling. IET Signal Processing, 2014, 8, 211-219.	0.9	7
276	Channel Capacity Under Sub-Nyquist Nonuniform Sampling. IEEE Transactions on Information Theory, 2014, 60, 4739-4756.	1.5	16
277	Minimum Variance Estimation of a Sparse Vector Within the Linear Gaussian Model: An RKHS Approach. IEEE Transactions on Information Theory, 2014, 60, 6555-6575.	1.5	4
278	A Method to Reduce Sampling Rate of the ADC in Feedback Channel for Wideband Digital Predistortion. Circuits, Systems, and Signal Processing, 2014, 33, 2655-2665.	1.2	4
279	Filling the Spectral Holes: Novel/Future Wireless Communications and Radar Receiver Architectures. IEEE Microwave Magazine, 2014, 15, 45-56.	0.7	23
280	A low-complexity sub-Nyquist sampling system for wideband Radar ESM receivers. , 2014, , .		6
281	Bias Compensation When Identifying Static Nonlinear Functions Using Averaged Measurements. IEEE Transactions on Instrumentation and Measurement, 2014, 63, 1855-1862.	2.4	4
282	Compressed Sensing Detector for Wideband Radar Using the Dominant Scatterer. IEEE Signal Processing Letters, 2014, 21, 1275-1279.	2.1	4
283	On the perturbation of measurement matrix in non-convex compressed sensing. Signal Processing, 2014, 98, 143-149.	2.1	9
284	Adaptive Identification and Recovery of Jointly Sparse Vectors. IEEE Transactions on Signal Processing, 2014, 62, 354-362.	3.2	7
285	Cyclic spectrum reconstruction from sub-Nyquist samples. , 2014, , .		1
286	Uniform Linear Array Based Spectrum Sensing from Sub-Nyquist Samples. , 2014, , .		0
287	Compressive energy detection for blind coarse wideband sensing: Comparative performance study. , 2015, , .		1
288	Cyclostationary-based jammer detection algorithm for wide-band radios using compressed sensing. , 2015, , .		9
289	Performance comparison of Compressive Spread Spectrum communication system using different reconstruction algorithms. , 2015, , .		0

#	Article	IF	CITATIONS
290	Recovery of multiband signals using group binary compressive sensing. , 2015, , .		2
291	Model calibration for compressive sampling system with non-ideal lowpass filter. , 2015, , .		5
292	Model order estimation for sparse wideband signal compressive sensing. , 2015, , .		0
293	Prototype design of multicoset sampling based on compressed sensing. , 2015, , .		2
294	An ultra-wideband frequency Domain receiver for software defined radio applications. , 2015, , .		1
295	Hybrid interference canceller enabled spread spectrum receiver. , 2015, , .		1
296	Complex LO waveforms for wideband systems: Some frequency-converter measurement implications. , 2015, , .		0
297	A Diagonal Structure for Analog-to-Information Conversion in Compressed Sampling. , 2015, , .		0
298	Uniform Linear Array Based Spectrum Sensing from Sub-Nyquist Samples. , 2015, , .		1
299	A numerical implementation of gridless compressed sensing. , 2015, , .		7
300	Generalised sampling theory with rational sampling factors. IET Signal Processing, 2015, 9, 235-247.	0.9	1
301	A Simplified Multiband Sampling and Detection Method Based on MWC Structure for Mm Wave Communications in 5G Wireless Networks. International Journal of Antennas and Propagation, 2015, 2015, 1-10.	0.7	5
302	19.4 A 2.7-to-3.7GHz rapid interferer detector exploiting compressed sampling with a quadrature analog-to-information converter. , 2015, , .		10
303	Compressive wideband spectrum sensing based on single channel. Electronics Letters, 2015, 51, 693-695.	0.5	32
304	Spectral Feature Detection With Sub-Nyquist Sampling for Wideband Spectrum Sensing. IEEE Transactions on Wireless Communications, 2015, 14, 3978-3990.	6.1	16
305	A Random Sequence Generation Method for Random Demodulation Based Compressive Sampling System. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2015, 8, 105-114.	0.2	4
306	Parametric estimation of UWB signals with sub-Nyquist sampling. , 2015, , .		1
307	Compressive wideband direction of arrival estimation. , 2015, , .		1

#	Article	IF	CITATIONS
308	The performance analysis of hard spectrum sensing schemes based on non-reconstruction compressed sampling. , 2015, , .		0
309	An Orthogonal Matching Pursuit with Thresholding Algorithm for Block-Sparse Signal Recovery. , 2015, , .		1
310	Spectrum Detection and Parameter Estimation with Compressive Sampling for mW Composite Sequence in Cognitive Radio System. , 2015, , .		1
311	Single-channel compressive sampling of electrical data for non-intrusive load monitoring. , 2015, , .		5
312	Sparsity order estimation for sub-Nyquist sampling and recovery of sparse multiband signals. , 2015, , .		8
313	Lowpass/bandpass signal reconstruction and digital filtering from nonuniform samples. , 2015, , .		3
314	Greedy minimization of l <inf>1</inf> -norm with high empirical success. , 2015, , .		0
315	Joint channel estimation and data recovery of communication systems with sub-Nyquist receiver. , 2015, , .		3
316	Cooperative wideband spectrum sensing over Rician and Nakagami fading channels. , 2015, , .		1
317	Photonic compressive sensing of GHz-band RF signals. , 2015, , .		2
318	Signal parameter estimation performance under a sampling rate constraint. , 2015, , .		3
319	A Multi-Bit Pseudo-Random Measurement Matrix Construction Method Based on Discrete Chaotic Sequences in an MWC Under-Sampling System. , 2015, , .		1
320	Block MMV for the reconstruction of multiband signals. , 2015, , .		2
321	OperA: Operator-Based Annihilation for Finite-Rate-of-Innovation Signal Sampling. Applied and Numerical Harmonic Analysis, 2015, , 461-484.	0.1	2
322	Spectrum estimation for cognitive radar. , 2015, , .		5
323	Distributed cooperative spectrum sensing from sub-Nyquist samples for Cognitive Radios. , 2015, , .		5
324	Wideband spectrum sensing receiver for cognitive radio application. , 2015, , .		1
325	ISAR image analysis and recovery with unavailable or heavily corrupted data. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51, 2093-2106.	2.6	37

		CITATION R	EPORT	
#	Article		IF	CITATIONS
326	Wideband spectrum sensing using Welch periodogram in cognitive radio. , 2015, , .			3
327	The Restless Multi-Armed Bandit Formulation of the Cognitive Compressive Sensing Pr Transactions on Signal Processing, 2015, 63, 1183-1198.	oblem. IEEE	3.2	30
328	Compression Limits for Random Vectors with Linearly Parameterized Second-Order Sta Transactions on Information Theory, 2015, 61, 1410-1425.	atistics. IEEE	1.5	44
329	Low Cost Sparse Multiband Signal Characterization Using Asynchronous Multi-Rate Sa Algorithms and Hardware. Journal of Electronic Testing: Theory and Applications (JETTA 85-98.	mpling: A), 2015, 31,	0.9	9
330	Compressive RCS Measurements. Circuits, Systems, and Signal Processing, 2015, 34, 2	1379-1389.	1.2	0
331	Compressive sensing and sparse decomposition in precision machining process monitor theory to applications. Mechatronics, 2015, 31, 3-15.	oring: From	2.0	12
332	Intelligent wheelchair system based on sEMG and head gesture. Journal of China Unive and Telecommunications, 2015, 22, 74-95.	rsities of Posts	0.8	7
333	Optical multi-coset sampling of GHz-band chirped signals. Proceedings of SPIE, 2015, ,		0.8	1
334	An Enhanced Compressed Sensing-Based Interference-Resistant Receiver for LTE Syste	ms. , 2015, , .		2
335	Robust recovery of wideband block-sparse spectrum based on MAP and MMSE estimat	tor. , 2015, , .		1
336	Model calibration of non-ideal lowpass filter in modulated wideband converter for com sampling. COMPEL - the International Journal for Computation and Mathematics in Ele Electronic Engineering, 2015, 34, 941-951.	pressive octrical and	0.5	5
337	Consensus on State and Time: Decentralized Regression With Asynchronous Sampling Transactions on Signal Processing, 2015, 63, 2972-2985.	;. IEEE	3.2	8
338	Sparsity-Aware Learning. , 2015, , 403-448.			1
339	Compressed sensing based multi-rate sub-Nyquist sampling system. Journal of China U Posts and Telecommunications, 2015, 22, 89-95.	Iniversities of	0.8	0
340	State of the art and prospects of structured sensing matrices in compressed sensing. F Computer Science, 2015, 9, 665-677.	Frontiers of	1.6	22
341	Wideband Power Spectrum Sensing for Cognitive Radios Based on Sub-Nyquist Sampl Personal Communications, 2015, 84, 919-933.	ing. Wireless	1.8	3
342	Time-Interleaved 20-GHz Modulated Wideband Converter Based on Random Optical Sa Photonics Technology Letters, 2015, 27, 1022-1025.	ampling. IEEE	1.3	12
343	Analog to information converter based on random demodulation. , 2015, , .			6

# 344	ARTICLE Passive wireless local area network radar network using compressive sensing technique. IET Radar, Sonar and Navigation, 2015, 9, 84-91.	IF 0.9	Citations 6
345	Pitfalls and possibilities of radar compressive sensing. Applied Optics, 2015, 54, C1.	0.9	11
346	A wide dynamic range four-port spectrum sensor for cognitive radio. , 2015, , .		1
347	Compressive spectrum sensing of radar pulses based on photonic techniques. Optics Express, 2015, 23, 4517.	1.7	20
348	Sub-Nyquist sampling achieves optimal rate-distortion. , 2015, , .		4
349	Moving off the grid in an experimental, compressively sampled photonic link. Optics Express, 2015, 23, 18052.	1.7	1
350	Centralized cooperative spectrum sensing from sub-Nyquist samples for Cognitive Radios. , 2015, , .		13
351	Efficient cooperative compressive spectrum sensing by identifying multi-candidate and exploiting deterministic matrix. Eurasip Journal on Advances in Signal Processing, 2015, 2015, .	1.0	1
352	Wideband Sparse Signal Acquisition With Dual-rate Time-Interleaved Undersampling Hardware and Multicoset Signal Reconstruction Algorithms. IEEE Transactions on Signal Processing, 2015, 63, 6486-6497.	3.2	18
353	Viterbi Detection for Compressively Sampled FHSS-GFSK Signals. IEEE Transactions on Signal Processing, 2015, 63, 5965-5975.	3.2	7
354	An attack on antenna subset modulation for millimeter wave communication. , 2015, , .		14
355	Spectral Super-Resolution With Prior Knowledge. IEEE Transactions on Signal Processing, 2015, 63, 5342-5357.	3.2	58
356	Joint spectrum sensing and direction of arrival recovery from sub-Nyquist samples. , 2015, , .		16
357	Low rate sampling techniques for UWB systems: A survey. , 2015, , .		2
358	Robust and fast iterative algorithm based on Levenberg-Marquardt and spectral extrapolation for wideband digital predistortion of RF power amplifiers. , 2015, , .		2
359	Wideband Rapid Interferer Detector Exploiting Compressed Sampling With a Quadrature Analog-to-Information Converter. IEEE Journal of Solid-State Circuits, 2015, 50, 3047-3064.	3.5	52
360	Spectrum Position Sensing for Sparse Multiband Signal with Finite Rate of Innovation. , 2015, , .		2
361	Quadrature compressive sampling of multiband radar signals at sub-Landau rate. , 2015, , .		1

#	Article	IF	CITATIONS
362	Covariance-based OFDM spectrum sensing with sub-Nyquist samples. Signal Processing, 2015, 109, 261-268.	2.1	14
363	Sub-Nyquist rate ADC sampling-based compressive channel estimation. Wireless Communications and Mobile Computing, 2015, 15, 639-648.	0.8	14
364	Theory and Design of a Quadrature Analog-to-Information Converter for Energy-Efficient Wideband Spectrum Sensing. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 527-535.	3.5	69
365	Sparse representation-based joint angle and Doppler frequency estimation for MIMO radar. Multidimensional Systems and Signal Processing, 2015, 26, 179-192.	1.7	17
366	Broadband Cooperative Spectrum Sensing Based on Distributed Modulated Wideband Converter. Sensors, 2016, 16, 1602.	2.1	14
367	Benchmarking compressed sensing, super-resolution, and filter diagonalization. International Journal of Quantum Chemistry, 2016, 116, 1097-1106.	1.0	3
368	Modulated wideband convertor for $\hat{l}\pm$ -bandlimited signals in fractional fourier domain. , 2016, , .		2
369	Sparse linear regression via generalized orthogonal least-squares. , 2016, , .		11
370	Array signal recovery algorithm for a single-RF-channel DBF array. Eurasip Journal on Advances in Signal Processing, 2016, 2016, .	1.0	3
371	Compressed sampling signal detection method based on modulated wideband converter. , 2016, , .		2
372	Novel adaptive non-uniform sub-Nyquist sampling technique for cooperative wideband spectrum sensing. , 2016, , .		5
373	Compressive Sampling for Efficient Astrophysical Signals Digitizing: From Compressibility Study to Data Recovery. Journal of Astronomical Instrumentation, 2016, 05, .	0.8	2
374	Interference detection in centralized cooperative spectrum sensing from sub-Nyquist samples. , 2016, , .		0
375	Compressed sensing for astrophysical signals. , 2016, , .		2
376	Band-pass compressive sampling as an enabling technology for rapid wideband RF spectrum sensing. , 2016, , .		4
377	Implementation of Compressive Sensing with Real-Time Signals over TV White Space Spectrum in Cognitive Radio. , 2016, , .		2
378	Low sampling rate technique based frequency-domain random demodulation for broadband digital predistortion. Journal of China Universities of Posts and Telecommunications, 2016, 23, 47-52.	0.8	2
379	Measurement matrix design for compressed sensing based time delay estimation. , 2016, , .		3

#	Article	IF	CITATIONS
380	Recovery guarantees for mixed norm â,," <inf>p1, p2</inf> block sparse representations. , 2016, , .		1
381	A mixer frontend for a four-channel Modulated Wideband Converter with 62 dB blocker rejection. , 2016, , .		15
382	Spatially resolved sub-Nyquist sensing of multiband signals with arbitrary antenna arrays. , 2016, , .		2
383	An Implementation Method of Sub-Nyquist Sampling for Spectrum-Sparse Signals. , 2016, , .		1
384	Compressed Power Spectral Density Estimation via Group-Based Total Variation Minimization. , 2016, , .		0
385	Frequency-domain adaptive sparse signal reconstruction at sub-Nyquist rate. , 2016, , .		0
386	A Frequency Estimation Method Based on MWC Discrete Compressed Sampling Structure. , 2016, , .		1
387	Wideband spectrum energy detection without reconstruction based on compressed samples. , 2016, , .		1
388	A study on mixing sequences in modulated wideband converters. , 2016, , .		1
389	Wideband demodulator for optical waveforms. , 2016, , .		0
390	Sequential time interleaved random equivalent sampling for repetitive signal. Review of Scientific Instruments, 2016, 87, 125106.	0.6	5
391	An array-based compressed sensing receiver architecture. , 2016, , .		0
392	Piecewise sparse signal recovery via piecewise orthogonal matching pursuit. , 2016, , .		4
393	Multimode waveguide speckle patterns for compressive sensing. Optics Letters, 2016, 41, 2529.	1.7	51
394	Compressive Detection of Random Subspace Signals. IEEE Transactions on Signal Processing, 2016, 64, 4166-4179.	3.2	25
395	Generalized Sampling Expansions with Multiple Sampling Rates for Lowpass and Bandpass Signals in the Fractional Fourier Transform Domain. IEEE Transactions on Signal Processing, 2016, 64, 4861-4874.	3.2	96
396	Compressive sensing in time reversal radars: Incoherency analysis. , 2016, , .		0
397	Effects of PRBS jitter on random demodulation analog-to-information converters. , 2016, , .		9

#	Article	IF	CITATIONS
398	A novel and efficient compressive multiplexer for multi-channel compressive sensing based on modulated wideband converter. , 2016, , .		1
399	Practical sub-Nyquist sampling via array-based compressed sensing receiver architecture. , 2016, , .		0
400	Reliable and Efficient Sub-Nyquist Wideband Spectrum Sensing in Cooperative Cognitive Radio Networks. IEEE Journal on Selected Areas in Communications, 2016, 34, 2750-2762.	9.7	103
401	A sparse-graph-coded filter bank approach to minimum-rate spectrum-blind sampling. , 2016, , .		0
402	Frequencyâ€domain wideband compressive spectrum sensing. IET Communications, 2016, 10, 1655-1664.	1.5	9
403	Accelerating the computation of bath spectral densities with super-resolution. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	2
404	Blind and adaptive reconstruction approach for non-uniformly sampled wideband signal. , 2016, , .		4
405	Simulation and analysis of compressed sensing technique as sampling and data compression and reconstruction of signals using convex programming. , 2016, , .		1
406	Maritime vehicle tracking using underwater gliders and particle filters. , 2016, , .		1
407	A hardware implementation of random demodulation analog-to-information converter. IEICE Electronics Express, 2016, 13, 20160465-20160465.	0.3	8
408	Modulated wideband converter with run length limited sequences. IEICE Electronics Express, 2016, 13, 20160670-20160670.	0.3	10
409	On sub-Nyquist spectrum sensing for wideband cognitve radios. , 2016, , .		1
410	Wide-band sensing and optimization for cognitive radio networks using multi-rate sub-Nyquist spectrum sensing (MS3). , 2016, , .		1
411	Performance Analysis of Chaotic Sampling and Detection in CS-DCSK UWB System. , 2016, , .		3
412	Construction of chaotic sensing matrix for fractional bandlimited signal associated by fractional fourier transform. , 2016, , .		1
413	Maximizing the benefit of existing equipment for nonlinear and communication measurements. , 2016, ,		7
414	Photonics-assisted compressive sampling systems. , 2016, , .		0
415	Frequency spectrum analysis of compressed sampling datum based on modulated wideband converter. , 2016, , .		1

#	Article	IF	CITATIONS
416	Online calibration of Modulated Wideband Converter. , 2016, , .		6
417	The chirp-based analog to information conversion in the LFM pulse compression radar. , 2016, , .		0
418	Cooperative spectrum sensing based on Block Stagewise Orthogonal Matching Pursuit. , 2016, , .		1
419	Compressed sensing for frequency hopping communication signals via analog to information converter. , 2016, , .		0
420	Sparse multi-band signal recovery based on support refining for modulated wideband converter. , 2016, , .		1
421	Sub-Nyquist sampling and detection in Costas coded pulse compression radars. Eurasip Journal on Advances in Signal Processing, 2016, 2016, .	1.0	3
422	Recovery of signals with time-varying spectral support based on the modulated wideband converter. , 2016, , .		1
423	Wideband Spectrum Reconstruction with Multicoset Sub-Nyquist Sampling and Collision Classification. , 2016, , .		2
424	Discrete blind reconstruction method for multiâ€coset sampling. IET Signal Processing, 2016, 10, 465-470.	0.9	3
425	Event Discrimination of Fiber Disturbance Based on Filter Bank in DMZI Sensing System. IEEE Photonics Journal, 2016, 8, 1-14.	1.0	11
426	A survey on compressive sensing techniques for cognitive radio networks. Physical Communication, 2016, 20, 61-73.	1.2	100
427	Improved algorithm based on modulated wideband converter for multiband signal reconstruction. Eurasip Journal on Wireless Communications and Networking, 2016, 2016, .	1.5	8
428	Carrier frequency and bandwidth estimation of cyclostationary multiband signals. , 2016, , .		13
429	Sampling Streams of Pulses With Unknown Shapes. IEEE Transactions on Signal Processing, 2016, 64, 5450-5465.	3.2	6
430	Achieving Autonomous Compressive Spectrum Sensing for Cognitive Radios. IEEE Transactions on Vehicular Technology, 2016, 65, 1281-1291.	3.9	34
431	Cooperative Wideband Spectrum Sensing Based on Sub-Nyquist Sparse Fast Fourier Transform. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63, 39-43.	2.2	25
432	Characterization of a Compressive Sensing Preprocessor for Vector Signal Analysis. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 1319-1330.	2.4	7
433	Data-Assisted Low Complexity Compressive Spectrum Sensing on Real-Time Signals Under Sub-Nyquist Rate JEFE Transactions on Wireless Communications 2016 15 1174-1185	6.1	90

#	Article	IF	CITATIONS
434	Application of Compressive Sensing in Cognitive Radio Communications: A Survey. IEEE Communications Surveys and Tutorials, 2016, 18, 1838-1860.	24.8	183
435	Wideband Spectrum Sensing on Real-Time Signals at Sub-Nyquist Sampling Rates in Single and Cooperative Multiple Nodes. IEEE Transactions on Signal Processing, 2016, 64, 3106-3117.	3.2	145
436	Analog Multiband: Efficient Bandwidth Scaling for mm-Wave Communication. IEEE Journal on Selected Topics in Signal Processing, 2016, 10, 470-484.	7.3	1
437	Off-the-Grid Line Spectrum Denoising and Estimation With Multiple Measurement Vectors. IEEE Transactions on Signal Processing, 2016, 64, 1257-1269.	3.2	194
438	Compressive Covariance Sensing: Structure-based compressive sensing beyond sparsity. IEEE Signal Processing Magazine, 2016, 33, 78-93.	4.6	107
439	Adaptive non-uniform sampling of sparse signals for Green Cognitive Radio. Computers and Electrical Engineering, 2016, 52, 253-265.	3.0	5
440	Cooperative Wideband Spectrum Sensing Over Fading Channels. IEEE Transactions on Vehicular Technology, 2016, 65, 1382-1394.	3.9	72
441	Adaptive Compressed Spectrum Sensing Based on Cross Validation in WideBand Cognitive Radio System. IEEE Systems Journal, 2017, 11, 2422-2431.	2.9	18
442	Recovery Error Analysis of Noisy Measurement in Compressed Sensing. Circuits, Systems, and Signal Processing, 2017, 36, 137-155.	1.2	4
443	Suppressing the Effects of Aliasing and IQ Imbalance on Multiband Spectrum Sensing. IEEE Transactions on Vehicular Technology, 2017, 66, 1074-1086.	3.9	9
445	Wideband delay and Direction of Arrival Estimation using sub-Nyquist sampling. Signal Processing, 2017, 135, 67-80.	2.1	3
446	Group Sparse Recovery via the \$ell ^0(ell ^2)\$ Penalty: Theory and Algorithm. IEEE Transactions on Signal Processing, 2017, 65, 998-1012.	3.2	31
447	CaSCADE: Compressed Carrier and DOA Estimation. IEEE Transactions on Signal Processing, 2017, 65, 2645-2658.	3.2	95
448	Predecision for Wideband Spectrum Sensing With Sub-Nyquist Sampling. IEEE Transactions on Vehicular Technology, 2017, 66, 6908-6920.	3.9	22
449	A Primal Douglas–Rachford Splitting Method for the Constrained Minimization Problem in Compressive Sensing. Circuits, Systems, and Signal Processing, 2017, 36, 4022-4049.	1.2	9
450	Random Triggering-Based Sub-Nyquist Sampling System for Sparse Multiband Signal. IEEE Transactions on Instrumentation and Measurement, 2017, 66, 1789-1797.	2.4	102
451	A Mixer Front End for a Four-Channel Modulated Wideband Converter With 62-dB Blocker Rejection. IEEE Journal of Solid-State Circuits, 2017, 52, 1286-1294.	3.5	27
452	An Improved Recovery Algorithm Based on ISD for Multiband Signals. , 2017, , .		2

ARTICLE IF CITATIONS # On the Minimax Capacity Loss Under Sub-Nyquist Universal Sampling. IEEE Transactions on Information 453 1.5 6 Theory, 2017, 63, 3348-3367. Frequency estimation of multiple sinusoids with three sub-Nyquist channels. Signal Processing, 2017, 454 2.1 139, 96-101. Sparsity Independent Sub-Nyquist Rate Wideband Spectrum Sensing on Real-Time TV White Space. IEEE 455 3.9 30 Transactions on Vehicular Technology, 2017, 66, 8784-8794. Fast Algorithms for Demixing Sparse Signals From Nonlinear Observations. IEEE Transactions on 456 Signal Processing, 2017, 65, 4209-4222. Spectral Coexistence in radar using Xampling., 2017,,. 457 2 Compressed cyclostationary detection for Cognitive Radio., 2017,,. High-Throughput Photonic Time-Stretch Optical Coherence Tomography with Data Compression. IEEE 459 1.0 22 Photonics Journal, 2017, 9, 1-15. Super-resolution delay-Doppler estimation for sub-Nyquist radar via atomic norm minimization., 2017, 460 A novel traffic sign recognition algorithm based on sparse representation and dictionary learning. 462 0.8 2 Journal of Intelligent and Fuzzy Systems, 2017, 32, 3775-3784. Finding Optimal Polices for Wideband Spectrum Sensing Based on Constrained POMDP Framework. 6.1 IEEE Transactions on Wireless Communications, 2017, 16, 5311-5324. Sub-Nyquist Cyclostationary Detection for Cognitive Radio. IEEE Transactions on Signal Processing, 464 3.2 68 2017, 65, 3004-3019. A multichannel compressed sampling method for fractional bandlimited signals. Signal Processing, 2.1 2017, 134, 139-148. Periodic Signal Compressors. IFAC-PapersOnLine, 2017, 50, 6465-6470. 466 0.5 0 Sub-Nyquist spectrum sensing for wideband cognitive radios: a survey. International Journal of 0.1 Wireless and Mobile Computing, 2017, 12, 107 Defense against jamming attacks in wide-band radios using cyclic spectral analysis and compressed 468 2 sensing., 2017, ,. A calibration for the modulated wideband converter using sinusoids with unknown phases. , 2017, , . A ULA-Based MWC Discrete Compressed Sampling Structure for Carrier Frequency and AOA Estimation. 470 2.6 19 IEEE Access, 2017, 5, 14154-14164. 471 Sparsity-Based Super Resolution for SEM Images. Nano Letters, 2017, 17, 5437-5445. 4.5

#	Article	IF	CITATIONS
472	Carrier Frequency and DOA Estimation of Sub-Nyquist Sampling Multi-Band Sensor Signals. IEEE Sensors Journal, 2017, 17, 7470-7478.	2.4	23
473	High-SNR spectrum measurement based on Hadamard encoding and sparse reconstruction. Applied Physics B: Lasers and Optics, 2017, 123, 1.	1.1	3
474	Rate-distortion trade-offs in acquisition of signal parameters. , 2017, , .		10
475	Experimental characterization of a RF mixer for wideband data acquisition systems. , 2017, , .		6
476	A finite rate of innovation multichannel sampling hardware system for multi-pulse signals. , 2017, , .		0
477	Multiple subspace matching pursuit for spectrum sensing. , 2017, , .		0
478	A Fully Passive Compressive Sensing SAR ADC for Low-Power Wireless Sensors. IEEE Journal of Solid-State Circuits, 2017, 52, 2154-2167.	3.5	34
479	Sub-Nyquist sampling for short pulses with Gabor frames. Eurasip Journal on Wireless Communications and Networking, 2017, 2017, .	1.5	0
480	Applications of RF aperture-array spatially-bandpass 2-D IIR filters in sub-Nyquist spectrum sensing, wideband doppler radar and radio astronomy beamforming. Multidimensional Systems and Signal Processing, 2017, 28, 1523-1548.	1.7	2
481	Generalized Coprime Sampling of Toeplitz Matrices for Spectrum Estimation. IEEE Transactions on Signal Processing, 2017, 65, 81-94.	3.2	38
482	Polynomial Fourier domain as a domain of signal sparsity. Signal Processing, 2017, 130, 243-253.	2.1	28
483	Efficient Parameters for Compressed Sensing Recovery Algorithms. Wireless Personal Communications, 2017, 94, 1715-1736.	1.8	1
484	Spectrum Sharing Solution for Automotive Radar. , 2017, , .		24
485	Joint 2D-DOA and Carrier Frequency Estimation Technique Using Nonlinear Kalman Filters for Cognitive Radio. IEEE Access, 2017, 5, 25097-25109.	2.6	8
486	Design of acquisition system with real time sampling rate of 5Gsps. , 2017, , .		2
487	Performance Analysis of Sparsity-Based Parameter Estimation. IEEE Transactions on Signal Processing, 2017, 65, 6478-6488.	3.2	5
488	Joint DOA and frequency estimation with sub-Nyquist sampling based on trilinear decomposition and SVD. , 2017, , .		4
489	Active spectrum sensing with sequential sub-Nyquist sampling. , 2017, , .		0

# 490	ARTICLE Multiband TDOA estimation from sub-Nyquist samples with distributed wideband sensing nodes. , 2017, , .	IF	CITATIONS 0
491	Performance guarantees of signal recovery via blockâ€OMP with thresholding. IET Signal Processing, 2017, 11, 952-960.	0.9	0
492	Cyclostationary-based jammer detection for wideband radios using compressed sensing and artificial neural network. International Journal of Distributed Sensor Networks, 2017, 13, 155014771774890.	1.3	2
493	Defense against stealthy jamming attacks in wide-band radios: A physical layer approach. , 2017, , .		2
494	Joint DOA and frequency estimation with subâ€Nyquist sampling for more sources than sensors. IET Radar, Sonar and Navigation, 2017, 11, 1798-1801.	0.9	12
495	Code properties analysis for the implementation of a modulated wideband converter. , 2017, , .		5
496	A multi-channel sub-nyquist sampling method based on spectrum co-prime permutation. , 2017, , .		1
497	Completely blind sensing of multi-band signals. , 2017, , .		1
498	Compressive symbol detection via template matching. , 2017, , .		1
499	Exponential stability of systems under periodic sampling of the second order. , 2017, , .		1
500	Quadrature Compressive Sampling for Multiband Radar Echo Signals. IEEE Access, 2017, 5, 19742-19760.	2.6	9
501	An iterative message passing approach for compressive spectrum sensing. , 2017, , .		1
502	Analogue to information converter design using analogue chua circuit for IoT devices. , 2017, , .		0
503	Power spectral density estimation from random interleaved samples. , 2017, , .		Ο
504	High-resolution wideband spectrum sensing based on sparse Bayesian learning. , 2017, , .		1
505	Sub-band equalization filter design for improving dynamic range performance of modulated wideband converter. , 2017, , .		1
506	A novel matrix optimization for compressive sampling based sub-Nyquist OFDM receiver in cognitive radio. , 2017, , .		0
507	A Wideband Spectrum Sensing Based on ESPRIT Algorithm. , 2017, , .		0

	Сіт.	ation Repo	RT	
#	Article	IF	-	CITATIONS
508	Coherent superresolution imaging via grating-based illumination. Applied Optics, 2017, 56, A79.	2	.1	12
509	WINDOW: wideband demodulator for optical waveforms. Optics Express, 2017, 25, 19444.	1	.7	0
510	Design of a Single Channel Modulated Wideband Converter for Wideband Spectrum Sensing: Theory, Architecture and Hardware Implementation. Sensors, 2017, 17, 1035.	2	.1	15
511	Adaptive and Blind Wideband Spectrum Sensing Scheme Using Singular Value Decomposition. Wireles Communications and Mobile Computing, 2017, 2017, 1-14.	s o	.8	5
512	On the security of compressed encryption with partial unitary sensing matrices embedding a secret keystream. Eurasip Journal on Advances in Signal Processing, 2017, 2017, .	1.	.0	4
513	Compressive cyclostationary spectrum sensing with a constant false alarm rate. Eurasip Journal on Wireless Communications and Networking, 2017, 2017, .	1.	.5	2
514	IMAGE RECONSTRUCTION FROM HIGHLY SPARSE AND LIMITED ANGULAR DIFFRACTION TOMOGRAPH COMPRESSED SENSING APPROACH. Progress in Electromagnetics Research, 2017, 158, 21-36.	Y USING 1.	.6	3
515	A Low Computational Complexity Algorithm for Compressive Wideband Spectrum Sensing. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100.A, 294-300.	Ο	.2	5
516	Detection Method for Satellite Communication Interfering Signals Based on Compressive Sensing. , 2017, , .			0
517	Spectrum Sensing Using Co-Prime Array Based Modulated Wideband Converter. Sensors, 2017, 17, 10	52. 2	.1	6
518	A multiple-input Nyquist folding receiver architecture for low SNR wideband spectrum sensing. , 2017, , .			2
519	A novel compressive sampling system for chirp signal. IEICE Electronics Express, 2017, 14, 20170204-20170204.	Ο	.3	2
520	Generalized Random Demodulator Associated with Fractional Fourier Transform. Circuits, Systems, and Signal Processing, 2018, 37, 5161-5173.	1.	.2	7
521	A Systematic Review of Compressive Sensing: Concepts, Implementations and Applications. IEEE Acces 2018, 6, 4875-4894.	^{iS,} 2	.6	339
522	Blind Sub-Nyquist Spectrum Sensing With Modulated Wideband Converter. IEEE Transactions on Vehicular Technology, 2018, 67, 4278-4288.	3.	.9	30
523	An Active Sequential Xampling Detector for Spectrum Sensing. IEEE Transactions on Cognitive Communications and Networking, 2018, 4, 192-205.	4	.9	2
524	A Sub-Nyquist Radar Electronic Surveillance System. IEEE Access, 2018, 6, 10080-10091.	2	.6	1
525	Efficient Spectrum Availability Information Recovery for Wideband DSA Networks: A Weighted Compressive Sampling Approach. IEEE Transactions on Wireless Communications, 2018, 17, 2162-217	⁶	.1	28

#	Article	IF	Citations
526	Indistinguishability and Energy Sensitivity of Gaussian and Bernoulli Compressed Encryption. IEEE Transactions on Information Forensics and Security, 2018, 13, 1722-1735.	4.5	16
527	Secure Communications With Asymptotically Gaussian Compressed Encryption. IEEE Signal Processing Letters, 2018, 25, 80-84.	2.1	10
528	Frequency Locator Polynomial for Wideband Sparse Spectrum Sensing With Multichannel Subsampling. IEEE Transactions on Signal Processing, 2018, 66, 789-803.	3.2	14
529	Feedback Acquisition and Reconstruction of Spectrum-Sparse Signals by Predictive Level Comparisons. IEEE Signal Processing Letters, 2018, 25, 496-500.	2.1	4
530	Analog-to-Digital Cognitive Radio: Sampling, Detection, and Hardware. IEEE Signal Processing Magazine, 2018, 35, 137-166.	4.6	62
531	Dynamic Compressive Wide-Band Spectrum Sensing Based on Channel Energy Reconstruction in Cognitive Internet of Things. IEEE Transactions on Industrial Informatics, 2018, 14, 2598-2607.	7.2	80
532	Spectrum Blind Recovery and Application in Non-uniform Sampling Based Automatic Modulation Classifier. Circuits, Systems, and Signal Processing, 2018, 37, 3457-3486.	1.2	3
533	Compressive sensingâ€based adaptive sparse predistorter design for power amplifier linearization. International Journal of Circuit Theory and Applications, 2018, 46, 812-826.	1.3	4
534	Sparse-Bayesian-Learning-Based Wideband Spectrum Sensing With Simplified Modulated Wideband Converter. IEEE Access, 2018, 6, 6058-6070.	2.6	16
535	New CO ₂ Concentration Predictions and Spectral Estimation Applied to the Vostok Ice Core. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 145-151.	2.7	1
536	A Novel Matrix Optimization for Compressive Sampling-Based Sub-Nyquist OFDM Receiver in Cognitive Radio. Circuits, Systems, and Signal Processing, 2018, 37, 5069-5086.	1.2	1
537	Intentional Aliasing Method to Improve Sub-Nyquist Sampling System. IEEE Transactions on Signal Processing, 2018, 66, 3311-3326.	3.2	7
538	How to Make Analog-to-Information Converters Work in Dynamic Spectrum Environments With Changing Sparsity Conditions. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 1775-1784.	3.5	11
539	Autonomous Compressive-Sensing-Augmented Spectrum Sensing. IEEE Transactions on Vehicular Technology, 2018, 67, 6970-6980.	3.9	27
540	A Reconfigurable Architecture Using a Flexible LO Modulator to Unify High-Sensitivity Signal Reception and Compressed-Sampling Wideband Signal Detection. IEEE Journal of Solid-State Circuits, 2018, 53, 1577-1591.	3.5	14
541	Spectrum Sharing Radar: Coexistence via Xampling. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54, 1279-1296.	2.6	75
542	A Frequency-Folded ADC Channelizer With Digital Equalization and Relaxed Anti-Alias Filtering. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 2304-2317.	3.5	8
543	R-FFAST: A Robust Sub-Linear Time Algorithm for Computing a Sparse DFT. IEEE Transactions on Information Theory, 2018, 64, 451-466.	1.5	14

ARTICLE IF CITATIONS # A Sub-Nyquist Sampling Algorithm for Fractional Bandlimited Signals Based on AIC. IEEE Transactions 544 2.2 12 on Circuits and Systems II: Express Briefs, 2018, 65, 406-410. Orthogonal circulant structure and chaotic phase modulation based analog to information 545 2.1 conversion. Signal Processing, 2018, 144, 104-117. Compressive Sensing Signal Reconstruction Using LO-Norm Normalized Least Mean Fourth Algorithms. 546 1.2 10 Circuits, Systems, and Signal Processing, 2018, 37, 1724-1752. Non-Uniform Wavelet Sampling for RF Analog-to-Information Conversion. IEEE Transactions on 547 Circuits and Systems I: Regular Papers, 2018, 65, 471-484. Influence of linear vibration on the errors of three-axis FOGs in the measurement while drilling 548 1.4 4 systems. Optik, 2018, 156, 204-223. A Frequency Estimation Method Based on Improved MWC Discrete Compressed Sampling Structure., 2018, , . Implementation of Modulated Wideband Converter compressed sensing scheme based on COTS 550 7 lowpass filter with amplitude and phase compensation for spectrum monitoring., 2018, , . Convolutional Autoencoder for Compressive Symbol Detection., 2018,,. 552 A Novel Greedy Algorithm for Joint Sparse Recovery Through Information Transfer., 2018, , . 0 Analog to Information Conversion for Sparse Signals Band-limited in Fractional Fourier Domain., 2018, , . Distributed Wideband Sensing for Faded Dynamic Spectrum Access with Changing Occupancy., 2018,,. 554 4 Wideband Spectrum Sensing Based on Single-Channel Sub-Nyquist Sampling for Cognitive Radio. Sensors, 2018, 18, 2222. 2.1 Spectrum Sensing Falsification Detection in Dense Cognitive Radio Networks using a Greedy Method., 556 1 2018,,. Compressed sensing based sub-Nyquist sampling of multiple sinusoids with dual rate channels. Review 0.6 of Scientific Instruments, 2018, 89, 125113 Wideband spectrum sensing based on serial multi-coset sampling for cognitive radio. IEICE Electronics 558 0.3 1 Express, 2018, 15, 20180457-20180457. Hardware Design of DC-3GHz Compressed Sensing Receiver Based on Modulated Wideband Converter., 560 Biomedical Data Reduction with Sub-Nyquist Sampling and Wavelet Decomposition., 2018,,. 0 An Efficient Greedy Algorithm for Wide Band Spectrum Sensing in Cognitive Radio Networks., 2018, , .

#	Article	IF	CITATIONS
562	Advancing High-Speed Transmissions over OCDMA Networks by Employing an Intelligently Structured Receiver for Noise Mitigation. Applied Sciences (Switzerland), 2018, 8, 2408.	1.3	14
563	Wideband Sparse Signal Acquisition Based on Serial Multi-Coset Sampling. Mathematical Problems in Engineering, 2018, 2018, 1-7.	0.6	2
564	Efficient Model-Free Learning to Overcome Hardware Nonidealities in Analog-to-Information Converters. , 2018, , .		2
565	A Sparsity Adaptive Greedy Iterative Algorithm for Compressed Sensing. , 2018, , .		0
566	Compressed Learning for Image Classification: A Deep Neural Network Approach. Handbook of Numerical Analysis, 2018, 19, 3-17.	0.9	25
567	Multiple Orthogonal Least Squares for Joint Sparse Recovery. , 2018, , .		5
568	Sub-Nyquist Radar Systems: Temporal, Spectral, and Spatial Compression. IEEE Signal Processing Magazine, 2018, 35, 35-58.	4.6	46
569	Support Recovery for MWC Based on Random Reduction and Null Space. , 2018, , .		0
570	A Self-Adaptive Progressive Support Selection Scheme for Collaborative Wideband Spectrum Sensing. Sensors, 2018, 18, 3011.	2.1	7
571	A code-free optical undersampling technique for broadband microwave spectrum measurement. , 2018, , .		0
572	Super-Resolution Pulse-Doppler Radar Sensing via One-Bit Sampling. , 2018, , .		9
573	Recovery of Block-Structured Sparse Signal Using Block-Sparse Adaptive Algorithms via Dynamic Grouping. IEEE Access, 2018, 6, 56069-56083.	2.6	10
574	Analog Multiplication in Random Demodulation Analog–to–Information Converters. Journal of Physics: Conference Series, 2018, 1065, 052048.	0.3	7
575	Joint carrier frequency and DOA estimation using a modified ULA based MWC discrete compressed sampling receiver. IET Radar, Sonar and Navigation, 2018, 12, 873-881.	0.9	12
576	FAST ANTENNA FAR-FIELD MEASUREMENT FOR SPARSE SAMPLING TECHNOLOGY. Progress in Electromagnetics Research M, 2018, 72, 145-152.	0.5	3
577	Big Data Processing Architecture for Radio Signals Empowered by Deep Learning: Concept, Experiment, Applications and Challenges. IEEE Access, 2018, 6, 55907-55922.	2.6	47
578	Frequency Estimation of Multiple Components using Chinese Remainder Theorem. , 2018, , .		3
579	Phased-Array-Based Sub-Nyquist Sampling for Joint Wideband Spectrum Sensing and Direction-of-Arrival Estimation. IEEE Transactions on Signal Processing, 2018, 66, 6110-6123.	3.2	28

#	Article	IF	CITATIONS
580	Channel Energy Statistics Learning in Compressive Spectrum Sensing. IEEE Transactions on Wireless Communications, 2018, 17, 7910-7921.	6.1	17
581	Detection and Frequency Estimation of Frequency Hopping Spread Spectrum Signals Based on Channelized Modulated Wideband Converters. Electronics (Switzerland), 2018, 7, 170.	1.8	15
582	A Low-Complexity Sub-Nyquist Blind Signal Detection Algorithm For Cognitive Radio. , 2018, , .		2
583	PRBS Selection for Velocity Measurements with Compressive Sampling-Based DS-CDMA Radio Navigation Receivers. , 2018, , .		5
584	Linear Array SAR Imaging Algorithm Using the Redundant Frame and Truncated SVD Based on Compressed Sensing. , 2018, , .		1
585	Low Complexity Sub-Nyquist Wideband Spectrum Sensing for Cognitive Radio. IEEE Access, 2018, 6, 45166-45176.	2.6	11
586	Demonstration of speckle-based compressive sensing system for recovering RF signals. Optics Express, 2018, 26, 21390.	1.7	22
587	A New Compensating Method of Non-Ideal Lowpass Filters in Modulated Wideband Converter. , 2018, , .		3
588	A Sub-Nyquist Spectrum Sensing Method Based on Joint Recovery of Distributed MWCs. , 2018, , .		0
589	Sparse Multiband Signal Acquisition Receiver With Co-Prime Sampling. IEEE Access, 2018, 6, 25261-25269.	2.6	20
590	An efficient method for physical fields mapping through crowdsensing. Pervasive and Mobile Computing, 2018, 48, 69-83.	2.1	10
590 591	An efficient method for physical fields mapping through crowdsensing. Pervasive and Mobile Computing, 2018, 48, 69-83. Digital compensation of lowpass filters imperfection in the Modulated Wideband Converter compressed sensing scheme for radio frequency monitoring. Signal Processing, 2018, 152, 292-310.	2.1 2.1	10 12
590 591 592	An efficient method for physical fields mapping through crowdsensing. Pervasive and Mobile Computing, 2018, 48, 69-83. Digital compensation of lowpass filters imperfection in the Modulated Wideband Converter compressed sensing scheme for radio frequency monitoring. Signal Processing, 2018, 152, 292-310. A random demodulation architecture for sub-sampling acoustic emission signals in structural health monitoring. Journal of Sound and Vibration, 2018, 431, 390-404.	2.1 2.1 2.1	10 12 19
590 591 592 593	An efficient method for physical fields mapping through crowdsensing. Pervasive and Mobile Computing, 2018, 48, 69-83. Digital compensation of lowpass filters imperfection in the Modulated Wideband Converter compressed sensing scheme for radio frequency monitoring. Signal Processing, 2018, 152, 292-310. A random demodulation architecture for sub-sampling acoustic emission signals in structural health monitoring. Journal of Sound and Vibration, 2018, 431, 390-404. A Discrete-Time RF Signal-Processing Technique for Blocker-Tolerant Receivers With Wide Instantaneous Bandwidth. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 4376-4389.	2.1 2.1 2.1 3.5	10 12 19 4
 590 591 592 593 594 	An efficient method for physical fields mapping through crowdsensing. Pervasive and Mobile Computing, 2018, 48, 69-83. Digital compensation of lowpass filters imperfection in the Modulated Wideband Converter compressed sensing scheme for radio frequency monitoring. Signal Processing, 2018, 152, 292-310. A random demodulation architecture for sub-sampling acoustic emission signals in structural health monitoring. Journal of Sound and Vibration, 2018, 431, 390-404. A Discrete-Time RF Signal-Processing Technique for Blocker-Tolerant Receivers With Wide Instantaneous Bandwidth. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 4376-4389. An Optimized Circulant Measurement Matrix Construction Method Used in Modulated Wideband Converter for Wideband Spectrum Sensing. , 2018, , .	2.1 2.1 2.1 3.5	10 12 19 4
 590 591 592 593 594 595 	An efficient method for physical fields mapping through crowdsensing. Pervasive and Mobile Computing, 2018, 48, 69-83. Digital compensation of lowpass filters imperfection in the Modulated Wideband Converter compressed sensing scheme for radio frequency monitoring. Signal Processing, 2018, 152, 292-310. A random demodulation architecture for sub-sampling acoustic emission signals in structural health monitoring. Journal of Sound and Vibration, 2018, 431, 390-404. A Discrete-Time RF Signal-Processing Technique for Blocker-Tolerant Receivers With Wide Instantaneous Bandwidth. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 4376-4389. An Optimized Circulant Measurement Matrix Construction Method Used in Modulated Wideband Converter for Wideband Spectrum Sensing. , 2018, , .	2.1 2.1 2.1 3.5	10 12 19 4 0
 590 591 592 593 594 595 596 	An efficient method for physical fields mapping through crowdsensing. Pervasive and Mobile Computing, 2018, 48, 69-83.Digital compensation of lowpass filters imperfection in the Modulated Wideband Converter compressed sensing scheme for radio frequency monitoring. Signal Processing, 2018, 152, 292-310.A random demodulation architecture for sub-sampling acoustic emission signals in structural health monitoring. Journal of Sound and Vibration, 2018, 431, 390-404.A Discrete-Time RF Signal-Processing Technique for Blocker-Tolerant Receivers With Wide Instantaneous Bandwidth. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 4376-4389.An Optimized Circulant Measurement Matrix Construction Method Used in Modulated Wideband Converter for Wideband Spectrum Sensing., 2018, , .Photonics-enabled compressive sensing with spectral encoding using an incoherent broadband source. Optics Letters, 2018, 43, 330.Sparsity-based super-resolution microscopy from correlation information. Optics Express, 2018, 26, 18238.	2.1 2.1 2.1 3.5 1.7	 10 12 19 4 0 5 47

#	Article	IF	CITATIONS
598	A Modulo-Based Architecture for Analog-to-Digital Conversion. IEEE Journal on Selected Topics in Signal Processing, 2018, 12, 825-840.	7.3	31
599	Hardware platform of Analog-to-Information converter using Non Uniform Wavelet Bandpass Sampling for RF signal activity detection. , 2018, , .		6
600	Energy-Aware Adaptive Rate and Resolution Sampling of Spectrally Sparse Signals Leveraging VCMA-MTJ Devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 679-692.	2.7	15
601	Non-Uniform Sub-Nyquist Optical Sampling by Acousto-Optic Delay Modulation. Journal of Lightwave Technology, 2018, 36, 5058-5066.	2.7	5
602	Wideband Spectrum Sensing: A Bayesian Compressive Sensing Approach. Sensors, 2018, 18, 1839.	2.1	18
603	Experimental studies on the instantaneous fluid–structure interaction of an air-inflated flexible membrane in turbulent flow. Journal of Fluids and Structures, 2018, 80, 405-440.	1.5	40
604	Sub-Nyquist Spectrum Sensing Based on Modulated Wideband Converter in Cognitive Radio Sensor Networks. IEEE Access, 2018, 6, 40411-40419.	2.6	15
605	Joint frequency and twoâ€dimensional direction of arrival estimation for Electronic Support systems based on subâ€Nyquist sampling. IET Radar, Sonar and Navigation, 2018, 12, 889-899.	0.9	9
606	Dimension-Reduced Direction-of-Arrival Estimation Based on \$ell_{2,1}\$ -Norm Penalty. IEEE Access, 2018, 6, 44433-44444.	2.6	18
607	Recording and Replay System for Multi-band RF Signals Using Compressed Sensing Technique. , 2018, , .		0
608	Sub-Nyquist Sampling Receiver for Overlay Cognitive Radio Users. IEEE Transactions on Signal Processing, 2018, 66, 4160-4169.	3.2	8
609	Adaptive Data-Driven Wideband Compressive Spectrum Sensing for Cognitive Radio Networks. Journal of Communications and Information Networks, 2018, 3, 84-92.	3.5	10
610	Design and analysis of a hardware-efficient compressed sensing architecture for data compression in power quality data acquisition. , 2018, , .		3
611	LPI Radar Waveform Recognition Based on Multi-Branch MWC Compressed Sampling Receiver. IEEE Access, 2018, 6, 30342-30354.	2.6	13
612	A multi-sensor sub-Nyquist power spectrum blind sampling approach for low-power wireless sensors in operational modal analysis applications. Mechanical Systems and Signal Processing, 2019, 116, 879-899.	4.4	17
613	A deterministic sparse FFT for functions with structured Fourier sparsity. Advances in Computational Mathematics, 2019, 45, 519-561.	0.8	13
614	Sparse multiband signal spectrum sensing with asynchronous coprime sampling. Cluster Computing, 2019, 22, 4693-4702.	3.5	5
615	Nearly Optimal Restricted Isometry Condition for Rank Aware Order Recursive Matching Pursuit. IEEE Transactions on Signal Processing, 2019, 67, 4449-4463.	3.2	12

#	Article	IF	CITATIONS
616	A Fast and Noise-Robust Algorithm for Joint Sparse Recovery Through Information Transfer. IEEE Access, 2019, 7, 37735-37748.	2.6	4
617	A 2–18 GHz Compressed Sensing Receiver With Broadband LO Chain in 0.13-\$mu\$ m BiCMOS. IEEE Microwave and Wireless Components Letters, 2019, 29, 620-622.	2.0	7
618	A universal sampling method for reconstructing signals with simple Fourier transforms. , 2019, , .		6
619	Sparse signal detection with spatial diversity using multi-rate sampling. , 2019, , .		0
620	Review: Wideband Spectrum Sensing for Next Generation Wireless Networks. , 2019, , .		0
621	Frequency Hopping Signals Tracking and Sorting Based on Dynamic Programming Modulated Wideband Converters. Applied Sciences (Switzerland), 2019, 9, 2906.	1.3	5
622	An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach. Energies, 2019, 12, 2764.	1.6	37
623	Improvement of Image Reconstruction Algorithm Based on CS. Lecture Notes in Computer Science, 2019, , 121-130.	1.0	0
624	Wideband Power Spectrum Estimation Based on Sub-Nyquist Sampling in Cognitive Radio Networks. IEEE Access, 2019, 7, 115339-115347.	2.6	1
625	Property Investigation on the Additive White Gaussian Noise After Sub-Nyquist Sampling. IEEE Access, 2019, 7, 122820-122826.	2.6	6
626	Design of Broadband Compressed Sampling Receiver Based on Concurrent Alternate Random Sequences. IEEE Access, 2019, 7, 135525-135538.	2.6	10
627	Joint Carrier and 2D-DOA Estimation for MWC Based on Two L-Shaped Arrays. , 2019, , .		3
628	Spline-Like Chebyshev Polynomial Representation for Compressed Sensing. , 2019, , .		3
629	Compressive Digital Receiver: First Performance Measurements. , 2019, , .		0
630	Compressed sensing model for vibration signals of mechanical faults based on modulated wideband converters. Journal of Physics: Conference Series, 2019, 1237, 052001.	0.3	0
631	Multiband sparse signal reconstruction through direct one-bit sampling. Review of Scientific Instruments, 2019, 90, 084702.	0.6	1
632	A double screening orthogonal-matching-pursuit algorithm for compressed sensing receiver with high column correlation sensing matrix. IEICE Electronics Express, 2019, 16, 20190419-20190419.	0.3	1
633	Multiband signal acquisition using improved modulated wideband converter. Journal of Engineering, 2019, 2019, 657-661.	0.6	0

ARTICLE IF CITATIONS # Radar and Communication Coexistence: An Overview: A Review of Recent Methods. IEEE Signal 634 4.6 328 Processing Magazine, 2019, 36, 85-99. Joint Sampling and Recovery of Correlated Sources., 2019,,. 636 Time Reversal for IoT., 2019, , 549-582. 0 A Real-Time, 1.89-GHz Bandwidth, 175-kHz Resolution Sparse Spectral Analysis RISC-V SoC in 16-nm FinFET. 3.5 IEEE Journal of Solid-State Circuits, 2019, 54, 1993-2008. Bayesian Compressive Sensing of Sparse Signals with Unknown Clustering Patterns. Entropy, 2019, 21, 638 1.1 20 247. Compressive Subspace Learning Based Wideband Spectrum Sensing for Multiantenna Cognitive Radio. IEEE Transactions on Vehicular Technology, 2019, 68, 6636-6648. Detection of Linkage Between Solar and Lunar Cycles and Runoff of the World's Large Rivers. Earth 640 1.1 8 and Space Science, 2019, 6, 914-930. A Fine Spectrum Sensing Procedure based on Modulated Wideband Converter., 2019, , . 641 642 Compressive Wideband Frequency Spectrum Sensing Based on MUSIC., 2019, , . 2 643 System Power Minimization in Non-contiguous Spectrum Access., 2019, , 839-868. 644 Analog to Digital Cognitive Radio., 2019, , 329-377. 1 Spectrum Sensing, Database, and Its Hybrid., 2019, , 207-243. 645 Sparse Detection Algorithms Based on Two-Dimensional Compressive Sensing for Sub-Nyquist Pulse 646 2.6 5 Doppler Radar Systems. IEEE Access, 2019, 7, 18649-18661. Distribution-Aware Block-Sparse Recovery via Convex Optimization. IEEE Signal Processing Letters, 647 2.1 2019, 26, 528-532. Frequency estimation algorithm without reconstruction based on MWC CS structure. Electronics 648 0.5 4 Letters, 2019, 55, 155-157. Taking Compressive Sensing to the Hardware Level: Breaking Fundamental Radio-Frequency Hardware 649 19 Performance Tradeoffs. IEEE Signal Processing Magazine, 2019, 36, 81-100. 650 Interferer-Robust Compressed Sensing Receiver Based on Mixer Harmonics., 2019, , . 5 Sparse Random Block-Banded Toeplitz Matrix for Compressive Sensing. IEICE Transactions on 651 0.4 Communications, 2019, E102.B, 1565-1578.

#	Article	IF	CITATIONS
652	Design of random equivalent sampling control module based on FPGA. , 2019, , .		1
653	Unsupervised k-means combined with SOFM structure adaptive radar signal sorting algorithm. , 2019, ,		6
654	Impacts of the transmitter signal key parameters on the Compressed Sensing spectrum reconstruction for IoT Cognitive Radio applications. , 2019, , .		2
655	Localization of radio emitters by wideband compressive sampling. , 2019, , .		2
656	Impact of Blanket Jamming on Signal Recovery from Compressed Measurements. , 2019, , .		0
657	Security Assessment of Wideband Spectrum Sensors. , 2019, , .		0
658	A Novel Boost Algorithm Exploiting Adjacent Sparsity Pattern. , 2019, , .		0
659	Rank deficiency in coprime sampling. , 2019, , .		0
660	Compressed Spectrum Sensing Using Sparse Recovery Convergence Patterns through Machine Learning Classification. , 2019, , .		1
661	On Timing Skews of Multicoset Samplers in Compressive Spectrum Sensing for Millimeter-Wave. , 2019, , .		0
662	Low-Bit Quantization Methods for Modulated Wideband Converter Compressed Sensing. , 2019, , .		1
663	Structured dictionary optimization: application to the modulated wideband converter. , 2019, , .		2
664	Antenna Far-Field Measurement Exploiting Compressed Sensing. , 2019, , .		1
665	Quickest physicalâ€layer MGD anomaly detection for jamming attacks in centralized modulated wideband converterâ€based ROC curve. International Journal of Communication Systems, 2019, 32, e4159.	1.6	1
666	Relevant support recovery algorithm in modulated wideband converter. IET Communications, 2019, 13, 2883-2888.	1.5	1
667	Compressive Digital Receiver: First Results on Sensitivity, Dynamic Range and Instantaneous Bandwidth Measurements. , 2019, , .		3
668	Antenna Cross-correlation based Compressive Subspace Learning for Wideband Spectrum Sensing. , 2019, , .		0
669	Joint DOA and frequency estimation with sub-Nyquist sampling. Signal Processing, 2019, 154, 87-96.	2.1	19

#	Article	IF	CITATIONS
670	Compressive Sampling Rate Optimization for Multiple Measurement Vector Problems. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 2019, 43, 101-108.	1.5	1
671	Limits on Sparse Data Acquisition: RIC Analysis of Finite Gaussian Matrices. IEEE Transactions on Information Theory, 2019, 65, 1578-1588.	1.5	19
672	AgileSAR: Achieving Wide-Swath Spaceborne SAR Based on Time-Space Sampling. IEEE Access, 2019, 7, 674-686.	2.6	5
673	An Improved Signal Reconstruction of Modulated Wideband Converter Using a Sensing Matrix Built upon Synchronized Modulated Signals. Circuits, Systems, and Signal Processing, 2019, 38, 3187-3210.	1.2	13
674	An Efficient Wideband Spectrum Sensing Algorithm for Unmanned Aerial Vehicle Communication Networks. IEEE Internet of Things Journal, 2019, 6, 1768-1780.	5.5	39
675	EEG Monitoring: Performance Comparison of Compressive Sensing Reconstruction Algorithms. Advances in Intelligent Systems and Computing, 2019, , 9-17.	0.5	2
676	A novel fast two stage method for wideband spectrum sensing. Physical Communication, 2019, 33, 172-177.	1.2	5
677	Coprime sampling with embedded random delays. Signal Processing, 2019, 158, 150-155.	2.1	4
678	Stable soft extrapolation of entire functions. Inverse Problems, 2019, 35, 015011.	1.0	7
679	A Practical Fault Diagnosis Algorithm Based on Aperiodic Corrected-Second Low-Frequency Processing for Microgrid Inverter. IEEE Transactions on Industrial Informatics, 2019, 15, 3889-3898.	7.2	9
680	Sharp sufficient conditions for stable recovery of block sparse signals by block orthogonal matching pursuit. Applied and Computational Harmonic Analysis, 2019, 47, 948-974.	1.1	44
681	E-Optimal Sensor Selection for Compressive Sensing-Based Purposes. IEEE Transactions on Big Data, 2020, 6, 51-65.	4.4	10
682	Fast Compressed Power Spectrum Estimation: Toward a Practical Solution for Wideband Spectrum Sensing. IEEE Transactions on Wireless Communications, 2020, 19, 520-532.	6.1	25
683	A Cognitive Sub-Nyquist MIMO Radar Prototype. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 937-955.	2.6	23
684	Block-sparse signal recovery based on orthogonal matching pursuit via stage-wise weak selection. Signal, Image and Video Processing, 2020, 14, 97-105.	1.7	6
685	Multi-rate coprime sampling for frequency estimation with increased degrees of freedom. Signal Processing, 2020, 166, 107258.	2.1	5
686	Theoretical Analysis of Noise Figure for Modulated Wideband Converter. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 298-308.	3.5	8
687	Sub-Nyquist sampling with independent measurements. Signal Processing, 2020, 170, 107435.	2.1	4

#	Article	IF	CITATIONS
688	Tensor Completion From Regular Sub-Nyquist Samples. IEEE Transactions on Signal Processing, 2020, 68, 1-16.	3.2	37
689	Secure and Efficient Compressed Sensing-Based Encryption With Sparse Matrices. IEEE Transactions on Information Forensics and Security, 2020, 15, 1999-2011.	4.5	14
690	A Method Exploiting Compressive Sampling for Localization of Radio Frequency Emitters. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 2325-2334.	2.4	4
691	Interference-Aware Cognitive Radar: A Remedy to the Automotive Interference Problem. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 2326-2339.	2.6	16
692	Intra-Pulse Modulation Recognition for Fractional Bandlimited Signals Based on a Modified MWC-Based Digital Receiver. IEEE Access, 2020, 8, 85067-85082.	2.6	2
693	High sampling rate or high resolution in a sub-Nyquist sampling system. Measurement: Journal of the International Measurement Confederation, 2020, 166, 108175.	2.5	7
694	Feedback Receivers: Specification and State-of-the-Art Review. , 2020, , .		0
695	An Implementation of Pre-Quantized Random Demodulator Based on Amplitude-to-Pulse Converter. , 2020, , .		1
696	End-to-End Deep Learning-Based Compressive Spectrum Sensing in Cognitive Radio Networks. , 2020, , .		11
697	Detection of Electromagnetic Interference Attacks on Sensor Systems. , 2020, , .		35
698	Improved Recognition of Sub-Nyquist Sampled Cyclic Features using Graph Filter-bank De-noiser. , 2020, , .		0
699	Analog-to-Information Conversion for Nonstationary Signals. IEEE Access, 2020, 8, 134067-134083.	2.6	4
700	A Joint Optimization Algorithm Using Adaptive Minimum Coset Number Based Discrete Multi-Coset Sampling. IEEE Access, 2020, 8, 168659-168670.	2.6	5
701	An Effective Reconstruction Algorithm Based on Modulated Wideband Converter for Wideband Spectrum Sensing. IEEE Access, 2020, 8, 152239-152247.	2.6	4
702	A Calibration Technique for Simultaneous Estimation of Actual Sensing Matrix Coefficients on Modulated Wideband Converters. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 5561-5573.	3.5	10
703	A Blind Recovery Algorithm Based on SPG for Multiband Signals. , 2020, , .		Ο
704	Reduction of Misdetections in Sub-Nyquist Spectrum Sensing. , 2020, , .		0
705	Learning Based Reconfigurable Sub-nyquist Sampling Framework for Ultra-wideband Angular Sensing. , 2020, , .		2

#	Article	IF	CITATIONS
706	Sub-Nyquist Ultra-Wideband Sparse Signal Reception via Variable Frequency Comb. Journal of Lightwave Technology, 2020, 38, 4625-4631.	2.7	2
707	Temporal super resolution imaging inspired by structured illumination microscopy. Optics Communications, 2020, 467, 125742.	1.0	5
708	Low Energy Consumption Compressed Spectrum Sensing Based on Channel Energy Reconstruction in Cognitive Radio Network. Sensors, 2020, 20, 1264.	2.1	12
709	Frequency-Domain Entropy-Based Blind Support Recovery from Multiple Measurement Vectors. IEEE Signal Processing Letters, 2020, 27, 980-984.	2.1	0
710	Sub-Nyquist Spectrum Sensing of Sparse Wideband Signals Using Low-Density Measurement Matrices. IEEE Transactions on Signal Processing, 2020, 68, 3723-3737.	3.2	11
711	Implementation of Mixing Sequence Optimized Modulated Wideband Converter for Ultra-Wideband Frequency Hopping Signals Detection. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 4698-4710.	2.6	10
712	Binary Sequence Set Design for Interferer Rejection in Multi-Branch Modulation. IEEE Transactions on Signal Processing, 2020, 68, 3769-3778.	3.2	0
713	Broadband Microwave Spectrum Sensing Based on Photonic RF Channelization and Compressive Sampling. IEEE Photonics Journal, 2020, 12, 1-9.	1.0	10
714	Sparsity-Aware Learning: Concepts and Theoretical Foundations. , 2020, , 427-472.		0
715	Low-Complexity Reconfigurable and Intelligent Ultrawideband Angular Sensing. IEEE Systems Journal, 2020, 14, 4931-4942.	2.9	6
716	Detection of Arc Faults in PV Systems Using Compressed Sensing. IEEE Journal of Photovoltaics, 2020, 10, 676-684.	1.5	15
717	Joint Sparse Recovery Using Signal Space Matching Pursuit. IEEE Transactions on Information Theory, 2020, 66, 5072-5096.	1.5	21
718	Reliable and efficient phase shift calibration algorithm for DMWC. International Journal of Electronics, 2021, 108, 201-217.	0.9	0
719	Field Agnostic Sub-Nyquist Spectrum Reconstruction and Source Localization. IEEE Sensors Journal, 2021, 21, 9731-9741.	2.4	2
720	A Compressed Sampling Receiver Based on Modulated Wideband Converter and a Parameter Estimation Algorithm for Fractional Bandlimited LFM Signals. Circuits, Systems, and Signal Processing, 2021, 40, 918-957.	1.2	2
721	Compressive Sensing-Based Continuous EEG Monitoring: Seizure Detection Performance Comparison of Different Classifiers. Lecture Notes in Electrical Engineering, 2021, , 459-468.	0.3	1
722	A rapid coarse-grained blind wideband spectrum sensing method for cognitive radio networks. Computer Communications, 2021, 166, 234-243.	3.1	10
723	Sub-Nyquist Sampling in Shift-Invariant Spaces. , 2021, , .		1

#	Article	IF	CITATIONS
724	Patch Based Video Summarization With Block Sparse Representation. IEEE Transactions on Multimedia, 2021, 23, 732-747.	5.2	24
725	BiLiMO: Bit-Limited MIMO Radar via Task-Based Quantization. IEEE Transactions on Signal Processing, 2021, 69, 6267-6282.	3.2	9
726	High-Precision Sub-Nyquist Sampling System Based on Modulated Wideband Converter for Communication Device Testing. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 378-388.	3.5	8
727	Structure-Aware Compressive Sensing for Magnetic Flux Leakage Detectors: Theory and Experimental Validation. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	2.4	2
728	Compressible Latent-Space Invertible Networks for Generative Model-Constrained Image Reconstruction. IEEE Transactions on Computational Imaging, 2021, 7, 209-223.	2.6	13
729	Uncertainty Relations and Sparse Signal Recovery. , 2021, , 163-196.		0
730	Power Scalable Angle of Arrival Estimation Using Pilot Design With Orthogonal Subsequences. IEEE Open Journal of the Communications Society, 2021, 2, 1690-1709.	4.4	1
731	Time-Frequency Sparse Reconstruction of Non-Uniform Sampling for Non-Stationary Signal. IEEE Transactions on Vehicular Technology, 2021, 70, 11145-11153.	3.9	10
732	Joint estimation of carrier frequency and two-dimensional arrival angle based on L-shaped delay array modulation wideband converter. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 084303-084303.	0.2	0
733	Highâ€Resolution Water Vapor Maps Obtained by Merging Interferometric Synthetic Aperture Radar and GPS Measurements. Journal of Geophysical Research D: Atmospheres, 2021, 126, .	1.2	6
734	CS-Based Modulation Recognition ofÂSparse Multiband Signals Exploiting Cyclic Spectral Density and MLP. Lecture Notes in Electrical Engineering, 2021, , 604-611.	0.3	0
735	A Spectral Analyzer Based on Dual Coprime DFT Filter Banks and Sub-Decimation. IEICE Transactions on Communications, 2022, E105.B, 11-20.	0.4	0
736	An Adaptive Weight Learning-Based Multitask Deep Network for Continuous Blood Pressure Estimation Using Electrocardiogram Signals. Sensors, 2021, 21, 1595.	2.1	13
737	Data recovery with sub-Nyquist sampling: fundamental limit and a detection algorithm. Frontiers of Information Technology and Electronic Engineering, 2021, 22, 232-243.	1.5	4
738	Compressive Sensing: Methods, Techniques, and Applications. IOP Conference Series: Materials Science and Engineering, 2021, 1099, 012012.	0.3	12
739	Multiantenna-Assisted Wideband Spectrum Sensing Based on Sub-Nyquist Sampling. IEEE Wireless Communications Letters, 2021, 10, 795-799.	3.2	6
740	Compressive sampling and reconstruction in shift-invariant spaces associated with the fractional Gabor transform. Defence Technology, 2022, 18, 976-994.	2.1	2
741	A Novel Sparse Measurement Matrix for CS-DCSK UWB System. , 2021, , .		1

-			_	
C^{-1}	TAT	ON	DED	ODT
	IAL		KEP	ORT

#	Article	IF	CITATIONS
742	Cram ${\rm \tilde{A}}$ ©r-Rao Bounds for spectral parametric estimation with compressive multiband architectures. , 2021, 111, 102955.		0
743	Compressive sensing based on optical mixing using a spectral shaper with bipolar coding. Optics Express, 2021, 29, 16422.	1.7	6
744	Joint Carrier and 2D-DOA Estimation for L-Shaped Array Based on Sub-Nyquist Sampling. , 2021, , .		4
745	Band Measurement Matrix Based Analog to Information Conversion. , 2021, , .		0
746	Scalable spectrum database construction mechanisms for efficient wideband spectrum access management. Physical Communication, 2021, 46, 101318.	1.2	2
747	A Compressed Sensing Recovery Algorithm Based on Support Set Selection. Electronics (Switzerland), 2021, 10, 1544.	1.8	2
748	Sub-Nyquist spectrum sensing and learning challenge. Frontiers of Computer Science, 2021, 15, 1.	1.6	2
749	Hybrid Analog-Digital MIMO Radar Receivers With Bit-Limited ADCs. , 2021, , .		0
750	Random Acquisition in Compressive Sensing. International Journal of Ambient Computing and Intelligence, 2021, 12, 140-165.	0.8	3
751	A Novel Low-Complexity Cyclostationary Feature Detection Using Sub-Nyquist Samples for Wideband Spectrum Sensing. Circuits, Systems, and Signal Processing, 2021, 40, 6371-6386.	1.2	3
752	Adaptive Cluster Structured Sparse Bayesian Learning with Application to Compressive Reconstruction for Chirp Signals. Signal Processing, 2022, 190, 108343.	2.1	2
753	An Industrial B-Mode Phased Array Ultrasonic Imaging Reconstruction Algorithm Based on FRI Sampling. Journal of Sensors, 2021, 2021, 1-11.	0.6	0
754	Generalized Analog-to-Information Converter With Analysis Sparse Prior. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 3574-3586.	3.5	5
755	A Survey on Spectrum Sensing and Learning Technologies for 6C. IEICE Transactions on Communications, 2021, E104.B, 1207-1216.	0.4	8
756	Joint spectrum sensing and DOA estimation with sub-Nyquist sampling. Signal Processing, 2021, 189, 108260.	2.1	10
757	Third-Order Statistics Reconstruction From Compressive Measurements. IEEE Transactions on Signal Processing, 2021, 69, 2888-2901.	3.2	1
758	Research on Compressed Sensing Algorithm Based on C-RAN Forward Link. , 2021, , .		0
759	Task-Based Analog-to-Digital Converters. IEEE Transactions on Signal Processing, 2021, 69, 5403-5418.	3.2	12

#	Article	IF	CITATIONS
760	Adaptive Compressed Spectrum Sensing for Multiband Signals. IEEE Transactions on Wireless Communications, 2021, 20, 7642-7654.	6.1	8
761	Adaptive Reconstruction Algorithm Based on Compressed Sensing Broadband Receiver. Wireless Communications and Mobile Computing, 2021, 2021, 1-12.	0.8	1
762	Reconfigurable and Intelligent Ultrawideband Angular Sensing: Prototype Design and Validation. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-15.	2.4	6
763	Spectral Detection of Frequency-Sparse Signals: Compressed Sensing vs. Sweeping Spectrum Scanning. IEEE Access, 2021, 9, 30060-30070.	2.6	6
764	Under-Sampling Digital Predistortion of Power Amplifier Using Multi-Tone Mixing Feedback Technique. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 490-501.	2.9	3
765	An Invitation to Compressive Sensing. Applied and Numerical Harmonic Analysis, 2013, , 1-39.	0.1	100
766	A Survey of Compressed Sensing. Applied and Numerical Harmonic Analysis, 2015, , 1-39.	0.1	20
767	An Overview of Computational Sparse Models and Their Applications in Artificial Intelligence. Studies in Computational Intelligence, 2013, , 345-369.	0.7	8
768	Absolute distance measurement of rough surfaces using asynchronous optical sampling. Optical Engineering, 2019, 58, 1.	0.5	2
769	Utilizing the sparsity of quasi-distributed sensing systems for sub-Nyquist signal reconstruction. , 2019, , .		1
771	Photonic technologies for undersampling and compressive sensing of high-speed RF signals. , 2016, , .		2
772	Principle of integrated filtering and digitizing based on periodic signal multiplying. Optics Letters, 2019, 44, 1766.	1.7	7
773	Wideband Power Spectrum Sensing and Reconstruction Based on Single Channel Sub-Nyquist Sampling. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99.A, 167-176.	0.2	6
774	Block Sparse Signal Reconstruction Using Block-Sparse Adaptive Filtering Algorithms. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2016, 20, 1119-1126.	0.5	4
775	Super-Resolution Information Collection in Underwater Sensor Networks with Random Node Deployment: A Compressed Sensing Approach. Journal of Networks, 2012, 7, .	0.4	5
776	Low Power and Low Cost Millimeter-Wave Digital Beamformer Using An Orthogonal Coding Scheme. , 2021, , .		1
777	Random sampling for effective spectrum sensing in cognitive radio time slotted environment. Physical Communication, 2021, 49, 101482.	1.2	6
778	Automatic Clustering Collaborative Compressed Spectrum Sensing in Wide-Band Heterogeneous Cognitive Radio Networks. IEICE Transactions on Communications, 2011, E94.B, 3569-3578.	0.4	0

#	Article	IF	CITATIONS
779	Multi-component RF Recognition and Extraction by Photonic Compressive Sampling. , 2012, , .		0
780	Performance Analysis of Photonic-Assisted Multi-Channel Compressive Sampling. , 2012, , .		Ο
781	Photonics-AssistedMultiple RF Frequencies Recognition Based on Compressive Sampling. , 2012, , .		2
782	Wideband Photonic Compressive Sampling. , 2012, , .		2
784	NON-UNIFORM SAMPLING FOR SPECTRAL ANALYSIS OF MULTI-BAND SIGNALS. , 2013, , .		0
785	Compressive Wideband Power Spectrum Analysis for Eeg Signals Using Fastica And Neural Network. IOSR Journal of Electronics and Communication Engineering, 2013, 5, 1-7.	0.1	Ο
786	Sub-Nyquist Sampling and Compressed Sensing in Cognitive Radio Networks. Signals and Communication Technology, 2014, , 149-185.	0.4	1
787	Investigation of information bandwidth oriented spectrum sensing method. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 030701.	0.2	6
788	Reconstruction verification for random demodulator based compressed sampling. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 228401.	0.2	0
789	CR Technology and Activation Plan for White Space Utilization. The Journal of Korean Institute of Communications and Information Sciences, 2014, 398, 779-789.	0.0	2
790	An Algorithm for a Sub-Nyquist Rate AM and FM Software-Defined Radio Based on the Market Paradigm. Science Journal of Circuits Systems and Signal Processing, 2015, 4, 18.	0.1	0
791	DOA estimation of array radar via compressive sampling and matrix completion. , 2015, , 171-175.		Ο
792	The Possibilities of 5G Communicationusing Xampling Process. International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering, 2015, 3, 72-76.	0.2	0
793	Measurement Matrix Calibration Method for Modulated Wideband Converter under Imperfect Periodic Pseudorandom Waveform. Journal of Communications, 2016, , .	1.3	Ο
794	Algoritmo para sensado de espectro de banda ancha basado en transformada dispersa de Fourier. DYNA (Colombia), 2016, 83, 79.	0.2	0
795	Local Wideband Spectrum Sensing Dynamic Algorithm Based on Compressive Sensing. International Journal of Engineering and Technology, 2016, 8, 2221-2233.	0.1	Ο
796	Analog to Digital Cognitive Radio. , 2017, , 1-49.		3
797	Off-Grid Frequency Estimation with Random Measurements. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100.A, 2493-2497.	0.2	0

ARTICLE IF CITATIONS Spectrum Sensing, Database, and Its Hybrid., 2017, , 1-37. 798 0 System Power Minimization in Non-contiguous Spectrum Access., 2017, , 1-30. 799 Sub-band equalization of modulated wideband converter for improved dynamic range performance., 800 0 2017,,. Researches on the Wideband Spectrum Sensing Prototype System Based on MWC. International Journal of Signal Processing Systems, 2017, 5, 70-74. Support Recovery for Multiband Spectrum Sensing Based on Modulated Wideband Converter with 802 SwSOMP Algorithm. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and 0.2 1 Telecommunications Engineering, 2018, , 146-159. Spectrum Sensing Based on Modulated Wideband Converter with CoSaMP Reconstruction Algorithm. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications 0.2 Engineering, 2018, , 139-148. A Fast Cyclic Spectrum Detection Algorithm for MWC Based on Lorentzian Norm. Lecture Notes of the 804 Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2018, , 0.2 1 177-188. Wideband Cognitive Radio Networks Based Compressed Spectrum Sensing: A Survey. Journal of Signal 0.8 and Information Processing, 2018, 09, 122-151. Photonic compressive sensing enabled data efficient time stretch optical coherence tomography. 822 0 2018,,. 824 The implementation and application research development of compressive sensing., 2018,,. Successiveâ€phase correction calibration method for modulated wideband converter system. IET Signal 825 0.9 8 Processing, 2019, 13, 624-632. Review of analog-to-information converters. Issues of Radio Electronics, 2019, , 6-12. 0.1 An FFTâ€Based High SNR MWC Backâ€End Architecture with Analog Lowâ€Pass Filter Compensation. Chinese 828 0.7 0 Journal of Electronics, 2020, 29, 563-573. A Realization of Adaptive Compressive Sensing System., 2020,,. 829 830 Diagonal Remainder Matrix Based Analog to Information Conversion., 2020,,. 0 Cross Validation Based Adaptive Compressed Spectrum Sensing without Testing Set., 2020,,. Wideband spectrum sensing based on modulated wideband converter with nested array. IET 832 1.52 Communications, 2021, 15, 224-231. Intelligent Reconfigurable Wideband Spectrum Characterization for 5G Applications., 2021, , .

#	Article	IF	CITATIONS
834	Stairs Sequence based Analog to Information Conversion for spectrum sensing of multiband signals. , 2020, , .		2
835	Wide field coded aperture super resolution imaging. , 2021, , .		0
836	SPACE-BORNE COMPRESSED SENSING BASED RECEIVER FOR ACCURATE LOCALIZATION OF GROUND-BASED RADARS. Progress in Electromagnetics Research C, 2020, 99, 251-267.	0.6	1
837	Photonic compressive sensing of sparse radio frequency signals with a single dual-electrode Mach–Zehnder modulator. Optics Letters, 2020, 45, 5708.	1.7	13
838	Decoding and measurement of frequencyâ€hopping spread spectrum signals using an adaptive algorithmâ€based compressive sensing. International Journal of Communication Systems, 2021, 34, .	1.6	1
840	Impacts of chaotic mixing sequence on the Compressed Sensing blind spectrum reconstruction. , 2021, , , \cdot		2
841	Leveraging Waveform Structure to Develop a Power Scalable AoA Estimation. IEEE Open Journal of the Communications Society, 2021, 2, 2739-2759.	4.4	0
842	Multi-Resolution and Multi-Rate UWB ESM Receiver Design via Direct RF Sub-Nyquist Sampling. , 2020, , .		1
843	Alias-free Discrete-time FIR System Realisation Using Hybrid Stratified Sampling. , 2020, , .		0
844	Compressive sampling for linear frequency modulated signals based on Gabor frame. , 2020, , .		0
845	A Semi-blind Greedy Support Recovery Algorithm with Adjustable Stop Threshold. , 2020, , .		0
846	Optimal Selection of ADC Frequencies in Multirate Sampling Receivers. , 2020, , .		0
847	Third-Order Cumulants Reconstruction from Compressive Measurements. , 2020, , .		1
848	Theoretical Analysis on Noise Performance of Modulated Wideband Converters for Analog Testing. , 2020, , .		1
849	Task-Based Analog-to-Digital Converters for Bandlimited Systems. , 2021, , .		1
850	Modulated Wideband Converter Compressed Sensing Spectrum Reconstruction in Multi-Level Power of Transmitters Signal Scenarios. , 2021, , .		0
851	Calibration of Analog to Information Converter based Sampling System. , 2021, , .		1
852	Joint System Calibration and Signal Recovery Based on Bilinear Inverse Equation for Modulated Wideband Converter. , 2021, , .		0

#	Article	IF	Citations
853	High-speed 600-GHz-Band Terahertz Imaging System Using Polygon Mirror. , 2021, , .		1
854	Compressive Wideband Spectrum Sensing and Signal Recovery With Unknown Multipath Channels. IEEE Transactions on Wireless Communications, 2022, 21, 5305-5316.	6.1	4
855	Sub-Nyquist sampling system for pulse streams based on non-ideal filters. , 2022, 123, 103380.		4
856	The effect of perturbation and noise folding on the recovery performance of low-rank matrix via the nuclear norm minimization. Intelligent Systems With Applications, 2022, 13, 200058.	1.9	1
857	Joint wideband spectrum and DOA estimation with compressed sampling based on L-shaped co-prime array. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2022, , .	0.2	0
858	Sampling and Reconstruction of Sparse Signals in Shift-Invariant Spaces: Generalized Shannon's Theorem Meets Compressive Sensing. IEEE Transactions on Signal Processing, 2022, 70, 438-451.	3.2	4
859	Joint carrier and DOA estimation for multi-band sources based on sub-Nyquist sampling coprime array with large time lags. Signal Processing, 2022, 195, 108466.	2.1	7
860	Joint Spectrum, Carrier, and DOA Estimation With Beamforming MWC Sampling System. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-15.	2.4	11
861	Toward Integrated Large-Scale Environmental Monitoring Using WSN/UAV/Crowdsensing: A Review of Applications, Signal Processing, and Future Perspectives. Sensors, 2022, 22, 1824.	2.1	45
862	A Modulated Wideband Converter Calibration Technique Based on a Single Measurement of a White Noise Signal with Advanced Resynchronization Preprocessing. Electronics (Switzerland), 2022, 11, 774.	1.8	4
863	Group sparse recovery via group square-root elastic net and the iterative multivariate thresholding-based algorithm. AStA Advances in Statistical Analysis, 0, , 1.	0.4	1
864	A Delayed and Subsampled Wideband Sparse Array for Joint Angle and Frequency Estimation. , 2021, , .		1
865	Absolute Distance Measurement over a Wide Range Based on Dual Femtosecond Lasers. , 2021, , .		0
866	Machine Learning Empowered Spectrum Sensing Under a Sub-Sampling Framework. IEEE Transactions on Wireless Communications, 2022, 21, 8205-8215.	6.1	5
868	Shockwave Signal Downsampling Rate Acquisition Based on Sparse Fourier Transform. IEEE Access, 2022, 10, 44076-44087.	2.6	1
869	Dictionary optimization for greedy recovery in Modulated Wideband Converter based sub-Nyquist sensing. Signal Processing, 2022, , 108607.	2.1	1
870	Wideband spectrum sensing based on advanced sub-Nyquist sampling structure. Eurasip Journal on Advances in Signal Processing, 2022, 2022, .	1.0	1
871	Analysis of sampling aperture impact on Nyquist folding receiver output. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2022, , .	0.2	0

#	Article	IF	CITATIONS
872	Compressed Sensing. , 2022, , 155-175.		0
873	Spectrum Analysis for Multiband Signals With Nonuniform Sub-Nyquist Sampling in the Fractional Fourier Domain. IEEE Transactions on Signal Processing, 2022, 70, 3632-3646.	3.2	4
874	I-Q Multi-Coset Sampling and Timing SkewÂCalibration for Wideband Spectrum Sensing at Sub-Nyquist Rates. SSRN Electronic Journal, 0, , .	0.4	0
875	Hardware prototype blind calibration of MWC based on BGPC. , 2022, , .		0
876	Approaching Sub-Nyquist Boundary: Optimized Compressed Spectrum Sensing Based on Multicoset Sampler for Multiband Signal. IEEE Transactions on Signal Processing, 2022, 70, 4225-4238.	3.2	4
877	Improved Sub-Nyquist Sampling Spectrum Sensing: a Model Order Selection Approach. , 2022, , .		1
878	Compressive-Sampling Spectrum Scanning with a Beamforming Receiver for Rapid, Directional, Wideband Signal Detection. , 2022, , .		0
879	Joint frequency and DOA estimation of sub-Nyquist sampling multi-band sources with unfolded coprime arrays. Multidimensional Systems and Signal Processing, 2022, 33, 1257-1272.	1.7	1
880	A Sequence-Based Compressed Sensing Receiver for Impulsive Frequency Shift Keying. , 2022, , .		0
881	Photonic-assisted space-frequency two-dimensional compressive radar receiver for high-resolution and wide-range detection. Optics Express, 2022, 30, 31017.	1.7	2
882	Characteristics analysis of blade tip timing signals in synchronous resonance and frequency recovery based on subspace pursuit algorithm. Mechanical Systems and Signal Processing, 2023, 183, 109632.	4.4	12
883	Minimizing Image Quality Loss After Channel Count Reduction for Plane Wave Ultrasound via Deep Learning Inference. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2849-2861.	1.7	4
884	A Mixing Sequence Optimization Method for Focused Compressed Sampling Based on Modulated Wideband Converter. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, , 1-1.	2.2	0
885	Surpassing the Nyquist Sampling Limit via Postmodulation. Physical Review Applied, 2022, 18, .	1.5	2
886	Hybrid Transform Based Compressive Sensing of Image with Better Quality Using Denoising Convolution Neural Network. Wireless Personal Communications, 0, , .	1.8	1
887	A Modulated Wideband Converter Model Based on Linear Algebra and Its Application to Fast Calibration. Sensors, 2022, 22, 7381.	2.1	1
888	Non-equal arm surface measurement offemtosecond optical frequency comb usingSavitzky-Golay filtering algorithm. Applied Optics, 0, , .	0.9	1
889	Sparse Signal and Image Reconstruction Algorithm for Adaptive Dual Thresholds Matching Pursuit Based on Variable-step Backtracking Strategy. Circuits, Systems, and Signal Processing, 0, , .	1.2	1

#	Article	IF	CITATIONS
890	Revisiting Model Order Selection: A Sub-Nyquist Sampling Blind Spectrum Sensing Scheme. IEEE Transactions on Wireless Communications, 2023, 22, 3371-3383.	6.1	1
891	Compressive Sampling Framework for 2D-DOA and Polarization Estimation in mmWave Polarized Massive MIMO Systems. IEEE Transactions on Wireless Communications, 2023, 22, 3071-3083.	6.1	47
892	Joint Block Support Recovery for Sub-Nyquist Sampling Cooperative Spectrum Sensing. IEEE Wireless Communications Letters, 2023, 12, 85-88.	3.2	0
893	Development and Analysis of Sparse Spasmodic Sampling Techniques. , 2022, , .		Ο
894	Spectrum Sensing Using Software Defined Radio for Cognitive Radio Networks: A Survey. IEEE Access, 2022, 10, 131887-131908.	2.6	3
895	Wideband spectrum sensing using step-sampling based on the multi-path nyquist folding receiver. Defence Technology, 2024, 31, 523-536.	2.1	0
896	Efficient Implementation of Mixing Sequence-Based Van der Pol–Duffing System on the Modulated Wideband Converter Compressed Sensing Scheme. Arabian Journal for Science and Engineering, 0, , .	1.7	1
897	Overview of Talkative Power Conversion Technologies. IEEE Open Journal of Power Electronics, 2023, 4, 67-80.	4.0	6
898	Photonics-assisted compressed sensing radar receiver for frequency domain non-sparse signal sampling based on dictionary learning. Optics Letters, 2023, 48, 767.	1.7	2
899	Over the Limits of Traditional Sampling: Advantages and Issues of AICs for Measurement Instrumentation. Sensors, 2023, 23, 861.	2.1	3
900	Photonics-assisted Frequency and DOA estimation via Frequency-Spatial Compressed Sensing. , 2022, , .		0
901	Minimum-Rate Spectrum-Blind Sampling Based on Sparse-Graph Codes. IEEE Transactions on Signal Processing, 2023, 71, 587-600.	3.2	0
902	I-Q multi-coset sampling and timing skew calibration for wideband spectrum sensing at sub-Nyquist rates. , 2023, 135, 103946.		0
903	Random code shifting based ultra-wideband photonic compressive receiver with image-frequency distinction. Optics Express, 2023, 31, 8725.	1.7	1
904	On the Effects of PRBS Non-Idealities in Signal Reconstruction from AICs. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-11.	2.4	5
905	A modified column block Toeplitz matrix for compressed sensing. Signal, Image and Video Processing, 0, , .	1.7	0
906	A Compensation Method for MWC Hardware Based on Single Measurement. , 2022, , .		0
907	A Method Based on Random Demodulator and Waveform Matching Dictionary to Estimate LFM Signal Parameter. Journal of Sensors, 2023, 2023, 1-11.	0.6	2

IF ARTICLE CITATIONS # Wideband Signal Detection Algorithm Based on Compressed Sensing., 2023,,. 916 0 A Low Complexity Mixed-Field Sources Parameter Estimation Framework at Sub-Nyquist Sampling Rates. 923 Compressive Sensing of Natural Images with Hybrid Transform based Sensing Matrix., 2023,,. 926 0 Performance Comparison of OMP and IGE OMP with Various Measurement Matrices in Compressive 927 Sensing., 2023, , . Semi-supervised Multivariate Time Series Classification by Subsample Correlation Prediction., 2023,,. 929 0 Expelliarmus: Command Cancellation Attacks on Smartphones using Electromagnetic Interference., 2023,,. 932 Wideband Photonic Compressive Sensing System Based on Bipolar Optical Chaos., 2023,,. 0 Application of Compressed Sensing to Ocean Remote Sensing with an HF Radar., 2023,,. 936 Cascaded Compensation of Filter Phase Imperfections in Random Demodulation., 2023,,. 0 Compressed Gridless Frequency Estimation by Segmented Atomic Norm Minimization for Random Demodulation., 2023,,. 939 Model Selection in High-Dimensional Block-Sparse General Linear Regression., 2023,,. 0 Photonic-Assisted Compressive Sensing with Dispersion Fiber., 2023,,. 946 Power-Aware Analog to Digital Converters. Applied and Numerical Harmonic Analysis, 2023, , 415-452. 947 0.1 0 ADC-Bank: Detecting Acoustic Out-of-Band Signal Injection onÂlnertial Sensors. Lecture Notes of the 948 0.2 Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2024, , 53-72. Sparse radio frequency signal sampling based on 1-bit quantized photonic compressive sensing system. 949 0 , 2023, , . Multi-antenna Photonic Frequency-Spatial Compressed Sensing Array for Joint Frequency and DOA Sub-Nyquist Sampling-Based Wideband Spectrum Pre-Sensing via Branch-to-Maximum Energy Ratio., 951 0

CITATION REPORT

2023,,.