Access, Visualization, and Interoperability of Air Quality Giovanni Online Tool

IEEE Journal of Selected Topics in Applied Earth Observations a 3, 359-370

DOI: 10.1109/jstars.2010.2047940

Citation Report

#	Article	IF	CITATIONS
1	Access, Visualization, and Interoperability of Air Quality Remote Sensing Data Sets via the Giovanni Online Tool. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3, 359-370.	2.3	26
2	Google Earth and Google Fusion Tables in support of time-critical collaboration: Mapping the deepwater horizon oil spill with the AVIRIS airborne spectrometer. Earth Science Informatics, 2011, 4, 169-179.	1.6	24
3	Evaluating the Performance of SVM in Dust Aerosol Discrimination and Testing its Ability in an Extended Area. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 1849-1858.	2.3	23
4	Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives. International Journal of Remote Sensing, 2012, 33, 3966-3986.	1.3	257
5	Building a Web-Services Based Geospatial Online Analysis System. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5, 1780-1792.	2.3	12
6	The Geoprocessing Web. Computers and Geosciences, 2012, 47, 3-12.	2.0	87
7	Use of the NASA Giovanni Data System for Geospatial Public Health Research: Example of Weather-Influenza Connection. ISPRS International Journal of Geo-Information, 2014, 3, 1372-1386.	1.4	21
8	A "Resource Package"-Oriented Approach for Remote Sensing Analysis Modeling — Dust Storm Monitoring Model as Example. International Journal of Software Engineering and Knowledge Engineering, 2014, 24, 731-757.	0.6	3
9	Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmospheric Environment, 2014, 94, 647-662.	1.9	186
10	Semantically Enhanced Catalogue Search Model for Remotely Sensed Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 1256-1264.	2.3	0
11	Spatial and temporal evaluation of long term trend (2005–2014) of OMI retrieved NO2 and SO2 concentrations in Henan Province, China. Atmospheric Environment, 2017, 154, 151-166.	1.9	87
12	Minimum aerosol layer detection sensitivities and their subsequent impacts on aerosol optical thickness retrievals in CALIPSO level 2 data products. Atmospheric Measurement Techniques, 2018, 11, 499-514.	1.2	40
13	Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146, 91-107.	4.9	69
14	Analysis of SO ₂ Pollution Changes of Beijing-Tianjin-Hebei Region over China Based on OMI Observations from 2006 to 2017. Advances in Meteorology, 2018, 2018, 1-15.	0.6	20
15	AirQ2: Quito Air Quality Monitoring and Visualization Tool. , 2019, , .		1
16	Optical Properties of Canadian Biomass Burning Particles Over Europe Observed with Calipso and Ground-Based Lidar Systems. EPJ Web of Conferences, 2020, 237, 08016.	0.1	0
17	Application of satellite data and GIS services for studying air pollutants in Lithuania (case study:) Tj ETQq0 0 0 rg	gBT /Overlo	ock ₉ 10 Tf 50 1

18Geospatial analysis of COVID-19 lockdown effects on air quality in the South and Southeast Asian
region. Science of the Total Environment, 2021, 756, 144009.3.936

#	Article	IF	CITATIONS
19	AOD Forecasting using Prophet Model Across Four Major Urban Areas in India. , 2021, , .		3
20	Biogenic secondary organic aerosol formation in an urban area of eastern central India: Seasonal variation, size distribution and source characterization. Environmental Research, 2021, 195, 110802.	3.7	10
21	Aerosol Characteristics and Its Impact on Regional Climate Over Northern India. Springer Atmospheric Sciences, 2021, , 37-56.	0.4	0
22	International reanalysis cooperation on carbon satellites data. , 2019, , .		2
23	Pandemic spotlight on urban water quality. Ecological Processes, 2020, 9, 22.	1.6	36
24	Mapping and analysis using multisource oceanic satellite data and google earth engine. SHS Web of Conferences, 2022, 145, 01023.	0.1	0
26	Visualization Platform for Multi-Scale Air Pollution Monitoring and Forecast. , 2024, , .		0

CITATION REPORT

 $Visualization\ Platform\ for\ Multi-Scale\ Air\ Pollution\ Monitoring\ and\ Forecast.\ ,\ 2024,\ ,\ .$ 26