Near-Earth Interplanetary Coronal Mass Ejections Duri Catalog and Summary of Properties

Solar Physics 264, 189-237 DOI: 10.1007/s11207-010-9568-6

Citation Report

#	Article	IF	CITATIONS
1	DIRECT OBSERVATIONAL EVIDENCE OF FILAMENT MATERIAL WITHIN INTERPLANETARY CORONAL MASS EJECTIONS. Astrophysical Journal Letters, 2010, 723, L22-L27.	8.3	84
2	Selection effects in identifying magnetic clouds and the importance of the closest approach parameter. Annales Geophysicae, 2010, 28, 1539-1552.	1.6	27
3	Energy input into the upper atmosphere associated with high-speed solar wind streams in 2005. Journal of Geophysical Research, 2011, 116, .	3.3	24
4	Reversed two-cell convection in the Northern and Southern hemispheres during northward interplanetary magnetic field. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	18
5	Geoeffectiveness (<i>Dst</i> and <i>Kp</i>) of interplanetary coronal mass ejections during 1995–2009 and implications for storm forecasting. Space Weather, 2011, 9, .	3.7	66
6	DERIVING THE PHYSICAL PARAMETERS OF A SOLAR EJECTION WITH AN ISOTROPIC MAGNETOHYDRODYNAMIC EVOLUTIONARY MODEL. Astrophysical Journal, 2011, 741, 47.	4.5	8
7	COMMISSION 49: INTERPLANETARY PLASMA AND HELIOSPHERE. Proceedings of the International Astronomical Union, 2011, 7, 95-124.	0.0	0
8	CONSTRAINTS ON CORONAL MASS EJECTION EVOLUTION FROM IN SITU OBSERVATIONS OF IONIC CHARGE STATES. Astrophysical Journal, 2011, 730, 103.	4.5	69
9	IONIC COMPOSITION STRUCTURE OF CORONAL MASS EJECTIONS IN AXISYMMETRIC MAGNETOHYDRODYNAMIC MODELS. Astrophysical Journal, 2011, 740, 112.	4.5	41
10	WHAT CAUSES SCATTER-FREE TRANSPORT OF NON-RELATIVISTIC SOLAR ELECTRONS?. Astrophysical Journal, 2011, 728, 133.	4.5	29
11	MAGNETIC FIELD-LINE LENGTHS IN INTERPLANETARY CORONAL MASS EJECTIONS INFERRED FROM ENERGETIC ELECTRON EVENTS. Astrophysical Journal, 2011, 736, 106.	4.5	28
12	Equatorial coronal holes, solar wind high-speed streams, and their geoeffectiveness. Astronomy and Astrophysics, 2011, 526, A20.	5.1	52
13	Cyclic Reversal of Magnetic Cloud Poloidal Field. Solar Physics, 2011, 270, 331-346.	2.5	25
14	Comparing Solar Minimum 23/24 with Historical Solar Wind Records at 1 AU. Solar Physics, 2011, 274, 321-344.	2.5	128
15	High Speed Stream Properties and Related Geomagnetic Activity During the Whole Heliosphere Interval (WHI): 20 March to 16 April 2008. Solar Physics, 2011, 274, 303-320.	2.5	26
16	Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995 – 2009. Solar Physics, 2011, 270, 609-627.	2.5	112
17	Grad–Shafranov Reconstruction of Magnetic Clouds: Overview and Improvements. Solar Physics, 2011, 273, 205-219.	2.5	39
18	Models for coronal mass ejections. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1148-1155.	1.6	21

	CITATION REF	CITATION REPORT	
# 19	ARTICLE Interplanetary coronal mass ejections in the near-Earth solar wind during the minimum periods following solar cycles 22 and 23. Annales Geophysicae, 2011, 29, 1455-1467.	IF 1.6	CITATIONS 25
20	Long-Term Cosmic Ray Variability and the CME-Index. Advances in Astronomy, 2012, 2012, 1-8.	1.1	7
21	The pulsed nature of the nightside contribution to polar cap convection: repetitive substorm activity under steady interplanetary driving. Annales Geophysicae, 2012, 30, 1539-1553.	1.6	9
22	Evolution of chorus waves and their source electrons during storms driven by corotating interaction regions. Journal of Geophysical Research, 2012, 117, .	3.3	19
23	Coronal Mass Ejections: Observations. Living Reviews in Solar Physics, 2012, 9, 1.	22.0	447
24	Near-earth solar wind flows and related geomagnetic activity during more than four solar cycles (1963–2011). Journal of Space Weather and Space Climate, 2012, 2, A02.	3.3	95
25	Solar wind drivers of geomagnetic storms during more than four solar cycles. Journal of Space Weather and Space Climate, 2012, 2, A01.	3.3	106
26	TWO-PLASMA MODEL FOR LOW CHARGE STATE INTERPLANETARY CORONAL MASS EJECTION OBSERVATIONS. Astrophysical Journal, 2012, 760, 141.	4.5	32
27	<i>ACE</i> /SWICS OBSERVATIONS OF HEAVY ION DROPOUTS WITHIN THE SOLAR WIND. Astrophysical Journal, 2012, 760, 30.	4.5	24
28	Energetic Particle Precipitation and the Chemistry of the Mesosphere/Lower Thermosphere. Surveys in Geophysics, 2012, 33, 1281-1334.	4.6	188
29	Deep Solar Activity Minimum 2007 – 2009: Solar Wind Properties and Major Effects on the Terrestrial Magnetosphere. Solar Physics, 2012, 281, 461.	2.5	4
30	Observations of ICMEs and ICME-like Solar Wind Structures from 2007 – 2010 Using Near-Earth and STEREO Observations. Solar Physics, 2012, 281, 391.	2.5	30
31	What Are Special About Ground-Level Events?. Space Science Reviews, 2012, 171, 61-83.	8.1	50
32	Coincidence of composition and speed boundaries of the slow solar wind. Journal of Geophysical Research, 2012, 117, .	3.3	21
33	Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation. Journal of Geophysical Research, 2012, 117, .	3.3	143
34	The relation between coronal holes and coronal mass ejections during the rise, maximum, and declining phases of Solar Cycle 23. Journal of Geophysical Research, 2012, 117, .	3.3	34
35	Toward the probabilistic forecasting of high″atitude GPS phase scintillation. Space Weather, 2012, 10, .	3.7	32
36	LOW IONIZATION STATE PLASMA IN CORONAL MASS EJECTIONS. Astrophysical Journal, 2012, 758, 116.	4.5	10

	CITATION RE	CITATION REPORT		
#	Article	IF	CITATIONS	
37	FIRST MEASUREMENTS OF THE COMPLETE HEAVY-ION CHARGE STATE DISTRIBUTIONS OF C, O, AND Fe ASSOCIATED WITH INTERPLANETARY CORONAL MASS EJECTIONS. Astrophysical Journal, 2012, 751, 20.	4.5	33	
38	The interplanetary magnetic structure that guides solar relativistic particles. Astronomy and Astrophysics, 2012, 538, A32.	5.1	35	
39	Estimating Travel Times of Coronal Mass Ejections to 1 AU Using Multi-spacecraft Coronagraph Data. Solar Physics, 2012, 279, 477-496.	2.5	34	
40	Heliospheric Observations of STEREO-Directed Coronal Mass Ejections in 2008 – 2010: Lessons for Future Observations of Earth-Directed CMEs. Solar Physics, 2012, 279, 497-515.	2.5	20	
41	Forbush effects with a sudden and gradual onset. Geomagnetism and Aeronomy, 2012, 52, 292-299.	0.8	33	
42	Solar Wind Quasi-invariant for Slow and Fast Magnetic Clouds. Solar Physics, 2012, 277, 375-388.	2.5	5	
43	Solar and interplanetary precursors of geomagnetic storms in solar cycle 23. Advances in Space Research, 2013, 51, 395-410.	2.6	2	
44	Radial Speed Evolution of Interplanetary Coronal Mass Ejections During Solar Cycle 23. Solar Physics, 2013, 288, 331-353.	2.5	14	
45	Solar Orbiter. Solar Physics, 2013, 285, 25-70.	2.5	391	
46	Effect of Solar Wind Drag on the Determination of the Properties of Coronal Mass Ejections from Heliospheric Images. Solar Physics, 2013, 285, 281-294.	2.5	21	
47	Propagation of Fast Coronal Mass Ejections and Shock Waves Associated with Type II Radio-Burst Emission: An Analytic Study. Solar Physics, 2013, 285, 391-410.	2.5	12	
48	Coronal Hole Influence on the Observed Structure of Interplanetary CMEs. Solar Physics, 2013, 284, 59-75.	2.5	47	
49	Magnetic Field Configuration Models and Reconstruction Methods for Interplanetary Coronal Mass Ejections. Solar Physics, 2013, 284, 129-149.	2.5	69	
50	Using Statistical Multivariable Models to Understand the Relationship Between Interplanetary Coronal Mass Ejecta and Magnetic Flux Ropes. Solar Physics, 2013, 284, 217-233.	2.5	17	
51	Observational Evidence for a Double-Helix Structure in CMEs and Magnetic Clouds. Solar Physics, 2013, 284, 261-274.	2.5	5	
52	Effect of Electron Pressure on the Grad–Shafranov Reconstruction of Interplanetary Coronal Mass Ejections. Solar Physics, 2013, 284, 275-291.	2.5	15	
53	Space-Weathering of Solar System Bodies: A Laboratory Perspective. Chemical Reviews, 2013, 113, 9086-9150.	47.7	130	
54	Relative geo-effectiveness of coronal mass ejections with distinct features in interplanetary space. Planetary and Space Science, 2013, 82-83, 43-61.	1.7	19	

ARTICLE IF CITATIONS # GPS phase difference variation statistics: A comparison between phase scintillation index and proxy 2.6 28 55 indices. Advances in Space Research, 2013, 52, 1397-1405. A PLASMA Î² TRANSITION WITHIN A PROPAGATING FLUX ROPE. Astrophysical Journal, 2013, 779, 142. 4.5 Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of 57 Solar Eruptions – Sources of Non-recurrent Geomagnetic Storms and Forbush Decreases. Solar 2.5 25 Physics, 2013, 282, 175-199. Solar Energetic Particle Events in the 23rd Solar Cycle: Interplanetary Magnetic Field Configuration and Statistical Relationship with Flares and CMEs. Solar Physics, 2013, 282, 579-613. The Heliospheric Magnetic Field. Space Science Reviews, 2013, 176, 177-215. 59 8.1 32 Speeds and Arrival Times of Solar Transients Approximated by Self-similar Expanding Circular Fronts. Solar Physics, 2013, 285, 411-423. 2.5 Interplanetary origins of moderate (â^'100 nT < <i>Dst</i> ≤^'50 nT) geomagnetic storms during solar 61 2.4 66 cycle 23 (1996â€^a2008). Journal of Geophysical Research: Space Physics, 2013, 118, 385-392. Solar wind drivers of geomagnetic storms over more than four solar cycles. AIP Conference 0.4 Proceedings, 2013, , . Kinematics of interplanetary coronal mass ejections in the inner heliosphere. AIP Conference 63 0.4 1 Proceedings, 2013, , . Small solar wind transients: Stereo-A observations in 2009. AIP Conference Proceedings, 2013, , . 0.4 The influence of corotating interaction regions and high speed streams on electrons in the martian 3 65 0.4 magnetosheath and ionosphere. AIP Conference Proceedings, 2013, , . Near-Earth solar wind flows and geomagnetic activity over more than four solar cycles (1963-2011). 0.4 AIP Conference Proceedings, 2013, , . A Statistical Study on DH CMEs and Its Geoeffectiveness. ISRN Astronomy and Astrophysics, 2013, 2013, 67 0.2 7 1-13. Magnetic field and dynamic pressure ULF fluctuations in coronal-mass-ejection-driven sheath regions. Annales Geophysicae, 2013, 31, 1559-1567. 1.6 Observational aspects of IMF draping-related magnetosheath accelerations for northward IMF. 69 1.6 4 Annales Geophysicae, 2013, 31, 1779-1789. GPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm. 53 Annales Geophysicae, 2013, 31, 805-816. Evolution of interplanetary coronal mass ejections and magnetic clouds in the heliosphere. 0.0 71 0 Proceedings of the International Astronomical Union, 2013, 8, 245-254. Geomagnetic activity during the rising phase of solar cycle 24. Journal of Space Weather and Space 3.3 Climate, 2013, 3, A08.

#	Article	IF	CITATIONS
73	Dependence of Forbush-decrease characteristics on parameters of solar eruptions. Journal of Physics: Conference Series, 2013, 409, 012150.	0.4	5
74	Galactic cosmic ray decreases associated with non-interacting magnetic clouds in the 23rd solar cycle. Proceedings of the International Astronomical Union, 2013, 8, 483-484.	0.0	1
75	The <i>Kp</i> index and solar wind speed relationship: Insights for improving space weather forecasts. Space Weather, 2013, 11, 339-349.	3.7	26
76	Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions. Astronomy and Astrophysics, 2013, 558, A85.	5.1	31
77	On the relationship between interplanetary coronal mass ejections and magnetic clouds. Annales Geophysicae, 2013, 31, 1251-1265.	1.6	60
78	Does spacecraft trajectory strongly affect detection of magnetic clouds?. Astronomy and Astrophysics, 2013, 550, A3.	5.1	28
79	A model of the magnetosheath magnetic field during magnetic clouds. Annales Geophysicae, 2014, 32, 157-173.	1.6	10
80	Structure of a reconnection layer poleward of the cusp: Extreme density asymmetry and a guide field. Journal of Geophysical Research: Space Physics, 2014, 119, 7343-7362.	2.4	9
81	Mean shape of interplanetary shocks deduced from in situ observations and its relation with interplanetary CMEs. Astronomy and Astrophysics, 2014, 565, A99.	5.1	25
82	Aspects of magnetosphere–ionosphere coupling in sawtooth substorms: a case study. Annales Geophysicae, 2014, 32, 1277-1291.	1.6	4
83	M–I coupling across the auroral oval at dusk and midnight: repetitive substorm activity driven by interplanetary coronal mass ejections (CMEs). Annales Geophysicae, 2014, 32, 333-351.	1.6	13
84	High-latitude GPS phase scintillation and cycle slips during high-speed solar wind streams and interplanetary coronal mass ejections: a superposed epoch analysis. Earth, Planets and Space, 2014, 66, .	2.5	39
85	SOLAR ENERGETIC PARTICLE EVENTS IN DIFFERENT TYPES OF SOLAR WIND. Astrophysical Journal, 2014, 791, 4.	4.5	15
86	Influence of heliospheric and geomagnetic activity on the dynamics of the relativistic electron fluxes in the Earth's outer radiation belt around the minimum of the solar activity in 2008–2010. Geomagnetism and Aeronomy, 2014, 54, 558-567.	0.8	0
87	Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nature Communications, 2014, 5, 3481.	12.8	223
88	Magnetic clouds' structure in the magnetosheath as observed by Cluster and Geotail: four case studies. Annales Geophysicae, 2014, 32, 1247-1261.	1.6	10
89	Kinematics of Interacting ICMEs and Related Forbush Decrease: Case Study. Solar Physics, 2014, 289, 351-368.	2.5	42
90	A statistical analysis of properties of small transients in the solar wind 2007–2009: STEREO and Wind observations. Journal of Geophysical Research: Space Physics, 2014, 119, 689-708.	2.4	51

ARTICLE IF CITATIONS # Solar Energetic Particles and Associated EIT Disturbances in Solar Cycle 23. Solar Physics, 2014, 289, 2.5 42 91 2601-2631. Interplanetary Coronal Mass Ejections, Associated Features, and Transient Modulation of Galactic Cosmic Rays. Solar Physics, 2014, 289, 2177-2205. 2.5 Kinematic Properties of Slow ICMEs and an Interpretation of a Modified Drag Equation for Fast and 93 2.5 19 Moderate ICMEs. Solar Physics, 2014, 289, 2157-2175. The source, statistical properties, and geoeffectiveness of longâ€duration southward interplanetary 94 2.4 magnetic field intervals. Journal of Geophysical Research: Space Physics, 2014, 119, 658-669. A new class of complex ejecta resulting from the interaction of two CMEs and its expected 95 4.0 54 geoeffectiveness. Geophysical Research Letters, 2014, 41, 769-776. Study of local regularities in solar wind data and ground magnetograms. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 112, 10-19. 1.6 > 25 MeV Proton Events Observed by the High Energy Telescopes on the STEREO A and B Spacecraft 97 and/or at Earth During the First â¹/4 Seven Years of the STEREO Mission. Solar Physics, 2014, 289, 3059-3107.^{2.5} 195 CONNECTING SPEEDS, DIRECTIONS AND ARRIVAL TIMES OF 22 CORONAL MASS EJECTIONS FROM THE SUN TO 4.5 145 1 AU. Astrophysical Journal, 2014, 787, 119. IS SOLAR CYCLE 24 PRODUCING MORE CORONAL MASS EJECTIONS THAN CYCLE 23?. Astrophysical Journal 99 8.3 54 Letters, 2014, 784, L27. Magnetic clouds and origins in STEREO era. Journal of Geophysical Research: Space Physics, 2014, 119, 2.4 24 3237-3246. Influence of interplanetary coronal mass ejections on the peak intensity of solar energetic particle 101 2.4 29 events. Journal of Geophysical Research: Space Physics, 2014, 119, 4185-4209. COMBINED MULTIPOINT REMOTE AND IN SITU OBSERVATIONS OF THE ASYMMETRIC EVOLUTION OF A FAST 8.3 SOLAR CORONAL MASS EJECTION. Astrophysical Journal Letters, 2014, 790, L6. HELIOSPHERIC PROPAGATION OF CORONAL MASS EJECTIONS: COMPARISON OF NUMERICAL WSA-ENLIL+CONE MODEL AND ANALYTICAL DRAG-BASED MODEL. Astrophysical Journal, Supplement 103 7.7 76 Series, 2014, 213, 21. Are There Different Populations of Flux Ropes in the Solar Wind?. Solar Physics, 2014, 289, 2633-2652. 104 2.5 38 Identification of Interplanetary Coronal Mass Ejections at Ulysses Using Multiple Solar Wind 105 2.536 Signatures. Solar Physics, 2014, 289, 3843-3894. Solar Wind Electron Strahls Associated with a High-Latitude CME: Ulysses Observations. Solar Physics, 2014, 289, 4239-4266. Statistical Study of ICMEs and Their Sheaths During Solar Cycle 23 (1996 – 2008). Solar Physics, 2014, 2.5 107 28 289, 3137-3157. Solar Sources of Interplanetary Coronal Mass Ejections During the Solar Cycle 23/24 Minimum. Solar Physics, 2014, 289, 3773-3797.

#	Article	IF	CITATIONS
109	MHD heliosphere with boundary conditions from a tomographic reconstruction using interplanetary scintillation data. Journal of Geophysical Research: Space Physics, 2014, 119, 7981-7997.	2.4	26
110	Magnetic field sector structure and origins of solar wind streams in 2012. Journal of Space Weather and Space Climate, 2014, 4, A24.	3.3	11
111	Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture. Space Weather, 2015, 13, 374-385.	3.7	65
112	The solar wind during current and past solar minima and maxima. Journal of Geophysical Research: Space Physics, 2015, 120, 10,250.	2.4	19
113	Thermospheric and geomagnetic responses to interplanetary coronal mass ejections observed by ACE and GRACE: Statistical results. Journal of Geophysical Research: Space Physics, 2015, 120, 8848-8860.	2.4	28
114	Modeling variations in CR density in magnetic clouds. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 637-639.	0.6	1
115	VARIATIONS IN SOLAR WIND FRACTIONATION AS SEEN BY <i>ACE</i> /SWICS AND THE IMPLICATIONS FOR <i>GENESIS</i> MISSION RESULTS. Astrophysical Journal, 2015, 812, 1.	4.5	24
116	Energetic particles, tangential discontinuities, and solar flux tubes. Journal of Geophysical Research: Space Physics, 2015, 120, 8281-8287.	2.4	23
117	Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury. Journal of Geophysical Research: Space Physics, 2015, 120, 6101-6118.	2.4	88
118	THERMALIZATION OF HEAVY IONS IN THE SOLAR WIND. Astrophysical Journal, 2015, 812, 170.	4.5	24
119	Comparing generic models for interplanetary shocks and magnetic clouds axis configurations at 1 AU. Journal of Geophysical Research: Space Physics, 2015, 120, 3328-3349.	2.4	34
120	Extreme geomagnetic disturbances due to shocks within CMEs. Geophysical Research Letters, 2015, 42, 4694-4701.	4.0	46
121	Modeling the behavior of the cosmic ray density in magnetic clouds. Journal of Physics: Conference Series, 2015, 632, 012051.	0.4	1
122	Ionospheric forecasts for the European region for space weather applications. Journal of Space Weather and Space Climate, 2015, 5, A9.	3.3	16
123	New hemispheric geomagnetic indices α with 15 min time resolution. Journal of Geophysical Research: Space Physics, 2015, 120, 9943-9958.	2.4	1
124	Statistical Evidence for Contributions of Flares and Coronal Mass Ejections to Major Solar Energetic Particle Events. Solar Physics, 2015, 290, 819-839.	2.5	78
125	Kinematics of ICMEs/Shocks: Blast Wave Reconstruction Using Type-II Emissions. Solar Physics, 2015, 290, 2439-2454.	2.5	16
126	Solar Stormwatch: tracking solar eruptions. Astronomy and Geophysics, 2015, 56, 4.20-4.24.	0.2	5

#	Article	IF	CITATIONS
127	Density variations of galactic cosmic rays in magnetic clouds. Geomagnetism and Aeronomy, 2015, 55, 430-441.	0.8	2
128	Wind Magnetic Clouds for 2010 – 2012: Model Parameter Fittings, Associated Shock Waves, and Comparisons to Earlier Periods. Solar Physics, 2015, 290, 2265-2290.	2.5	28
129	A new fourâ€plasma categorization scheme for the solar wind. Journal of Geophysical Research: Space Physics, 2015, 120, 70-100.	2.4	95
130	EVIDENCE FOR LOCAL ACCELERATION OF SUPRATHERMAL HEAVY ION OBSERVATIONS DURING INTERPLANETARY CORONAL MASS EJECTIONS. Astrophysical Journal, 2015, 799, 57.	4.5	4
131	Shocks inside CMEs: A survey of properties from 1997 to 2006. Journal of Geophysical Research: Space Physics, 2015, 120, 2409-2427.	2.4	60
132	Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars. Nature Communications, 2015, 6, 7135.	12.8	142
133	THE FIRST TASTE OF A HOT CHANNEL IN INTERPLANETARY SPACE. Astrophysical Journal, 2015, 803, 96.	4.5	12
134	Climatology of GPS phase scintillation at northern high latitudes for the period from 2008 to 2013. Annales Geophysicae, 2015, 33, 531-545.	1.6	61
135	Ensemble Modeling of CMEs Using the WSA–ENLIL+Cone Model. Solar Physics, 2015, 290, 1775-1814.	2.5	170
136	CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND. Astrophysical Journal, 2015, 801, 99.	4.5	12
137	Galactic Cosmic Ray Density Variations in Magnetic Clouds. Solar Physics, 2015, 290, 1429-1444.	2.5	49
138	ON THE THERMODYNAMICS AND OTHER CONSTITUTIVE PROPERTIES OF A CLASS OF STRONGLY MAGNETIZED MATTER OBSERVED IN ASTROPHYSICS. Astrophysical Journal, 2015, 805, 70.	4.5	5
139	NEAR-EARTH COSMIC RAY DECREASES ASSOCIATED WITH REMOTE CORONAL MASS EJECTIONS. Astrophysical Journal, 2015, 801, 5.	4.5	11
140	GLOBAL TRENDS OF CME DEFLECTIONS BASED ON CME AND SOLAR PARAMETERS. Astrophysical Journal, 2015, 805, 168.	4.5	94
141	Decrease in SYM-H during a storm main phase without evidence of a ring current injection. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 134, 118-129.	1.6	10
142	CORONAL MASS EJECTIONS AND THE SOLAR CYCLE VARIATION OF THE SUN'S OPEN FLUX. Astrophysical Journal Letters, 2015, 809, L24.	8.3	16
143	Yearly Comparison of Magnetic Cloud Parameters, Sunspot Number, and Interplanetary Quantities for the Wind Mission. Solar Physics, 2015, 290, 553-578.	2.5	18
144	Geoeffectiveness of Coronal Mass Ejections in the SOHO Era. Solar Physics, 2015, 290, 579-612.	2.5	43

#	Article	IF	Citations
145	Lack of relationship between geoeffectiveness and orientations of magnetic clouds with bipolar Bz and unipolar southward Bz. Planetary and Space Science, 2015, 115, 27-34.	1.7	1
146	RELATIVE CONTRIBUTION OF THE MAGNETIC FIELD BARRIER AND SOLAR WIND SPEED IN ICME-ASSOCIATED FORBUSH DECREASES. Astrophysical Journal, 2016, 828, 104.	4.5	24
147	Statistical characterization of ionosphere anomalies and their relationship to space weather events. Journal of Space Weather and Space Climate, 2016, 6, A5.	3.3	17
148	Planar magnetic structures in coronal mass ejection-driven sheath regions. Annales Geophysicae, 2016, 34, 313-322.	1.6	43
149	Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays. Astronomy and Astrophysics, 2016, 592, A118.	5.1	53
150	Quantitative model for the generic 3D shape of ICMEs at 1 AU. Astronomy and Astrophysics, 2016, 595, A19.	5.1	12
151	Role of solar wind speed and interplanetary magnetic field during two-step Forbush decreases caused by Interplanetary Coronal Mass Ejections. Astrophysics and Space Science, 2016, 361, 1.	1.4	20
152	A wavelet based approach to Solar–Terrestrial Coupling. Advances in Space Research, 2016, 57, 2234-2244.	2.6	17
153	Magnetic field inversions at 1ÂAU: Comparisons between mapping predictions and observations. Journal of Geophysical Research: Space Physics, 2016, 121, 10,728.	2.4	2
154	Anomalously low C6+/C5+ ratio in solar wind: ACE/SWICS observation. AIP Conference Proceedings, 2016, , .	0.4	3
155	Statistical analysis of the mid-latitude trough position during different categories of magnetic storms and different storm intensities. Earth, Planets and Space, 2016, 68, .	2.5	16
156	ON SOLAR WIND ORIGIN AND ACCELERATION: MEASUREMENTS FROM ACE. Astrophysical Journal, 2016, 829, 117.	4.5	29
157	Comparison of algorithms for determination of solar wind regimes. Journal of Geophysical Research: Space Physics, 2016, 121, 8215-8227.	2.4	21
158	DERIVING THE PROPERTIES OF CORONAL PRESSURE FRONTS IN 3D: APPLICATION TO THE 2012 MAY 17 GROUND LEVEL ENHANCEMENT. Astrophysical Journal, 2016, 833, 45.	4.5	83
159	The coherent relation between the solar wind proton speed and O7+/O6+ ratio and its coronal sources. AIP Conference Proceedings, 2016, , .	0.4	3
160	CHALLENGING SOME CONTEMPORARY VIEWS OF CORONAL MASS EJECTIONS. I. THE CASE FOR BLAST WAVES. Astrophysical Journal, 2016, 824, 92.	4.5	7
161	PREDICTION OF GEOMAGNETIC STORM STRENGTH FROM INNER HELIOSPHERIC IN SITU OBSERVATIONS. Astrophysical Journal, 2016, 833, 255.	4.5	28
162	A GLOBAL MAGNETIC TOPOLOGY MODEL FOR MAGNETIC CLOUDS. IV Astrophysical Journal, 2016, 823, 3.	4.5	7

	CITATION REF	PORT	
#	Article	IF	CITATIONS
163	Forbush Decrease Prediction Based on Remote Solar Observations. Solar Physics, 2016, 291, 285-302.	2.5	12
164	Detailed Analysis of Solar Data Related to Historical Extreme Geomagnetic Storms: 1868 – 2010. Solar Physics, 2016, 291, 1483-1531.	2.5	40
165	Cosmic rays during great geomagnetic storms in cycle 23 of solar activity. Geomagnetism and Aeronomy, 2016, 56, 143-150.	0.8	7
166	The association between space weather conditions and emergency hospital admissions for myocardial infarction during different stages of solar activity. Journal of Atmospheric and Solar-Terrestrial Physics, 2016, 149, 52-58.	1.6	11
168	Statistical Study of the Interplanetary Coronal Mass Ejections from 1995 to 2015. Solar Physics, 2016, 291, 2419-2439.	2.5	80
169	COMPOSITION OF CORONAL MASS EJECTIONS. Astrophysical Journal, 2016, 826, 10.	4.5	46
170	TRANSIENT GALACTIC COSMIC-RAY MODULATION DURING SOLAR CYCLE 24: A COMPARATIVE STUDY OF TWO PROMINENT FORBUSH DECREASE EVENTS. Astrophysical Journal, 2016, 827, 13.	4.5	25
171	The trailing edges of highâ€speed streams at 1 AU. Journal of Geophysical Research: Space Physics, 2016, 121, 6107-6140.	2.4	29
172	Longitudinal conjunction between MESSENGER and STEREO A: Development of ICME complexity through stream interactions. Journal of Geophysical Research: Space Physics, 2016, 121, 6092-6106.	2.4	58
173	On the reduced geoeffectiveness of solar cycle 24: A moderate storm perspective. Journal of Geophysical Research: Space Physics, 2016, 121, 8188-8202.	2.4	24
174	Small solar wind transients at 1ÂAU: STEREO observations (2007–2014) and comparison with nearâ€Earth wind results (1995–2014). Journal of Geophysical Research: Space Physics, 2016, 121, 5005-5024.	2.4	33
175	Verification of highâ€speed solar wind stream forecasts using operational solar wind models. Space Weather, 2016, 14, 495-510.	3.7	64
176	AVERAGE SPATIAL DISTRIBUTION OF COSMIC RAYS BEHIND THE INTERPLANETARY SHOCKâ€"GLOBAL MUON DETECTOR NETWORK OBSERVATIONS. Astrophysical Journal, 2016, 825, 100.	4.5	6
177	The plasma structure of coronal hole solar wind: Origins and evolution. Journal of Geophysical Research: Space Physics, 2016, 121, 5055-5087.	2.4	64
178	Typical Profiles and Distributions of Plasma and Magnetic Field Parameters in Magnetic Clouds at 1 AU. Solar Physics, 2016, 291, 2145-2163.	2.5	28
179	Factors affecting the geoeffectiveness of shocks and sheaths at 1ÂAU. Journal of Geophysical Research: Space Physics, 2016, 121, 10861-10879.	2.4	63
180	LONG-TERM TRENDS IN THE SOLAR WIND PROTON MEASUREMENTS. Astrophysical Journal, 2016, 832, 66.	4.5	12
181	Interaction of high-speed and transient fluxes of solar wind at the maximum of solar cycle 24. Bulletin of the Lebedev Physics Institute, 2016, 43, 287-290.	0.6	4

#	Article	IF	CITATIONS
182	North/South Hemispheric Periodicities in the \${>},25mbox{ MeV}\$ Solar Proton Event Rate During the Rising and Peak Phases of Solar Cycle 24. Solar Physics, 2016, 291, 2117-2134.	2.5	7
183	Improving solar wind persistence forecasts: Removing transient space weather events, and using observations away from the Sun-Earth line. Space Weather, 2016, 14, 802-818.	3.7	15
184	The effect of solar activity on the evolution of solar wind parameters during the rise of the 24th cycle. Solar System Research, 2016, 50, 44-55.	0.7	5
185	Observations of high and low Fe charge states in individual solar wind streams with coronal-hole origin. Astronomy and Astrophysics, 2016, 593, A70.	5.1	16
186	A CIRCULAR-CYLINDRICAL FLUX-ROPE ANALYTICAL MODEL FOR MAGNETIC CLOUDS. Astrophysical Journal, 2016, 823, 27.	4.5	67
187	Extreme Geomagnetic Storms – 1868 – 2010. Solar Physics, 2016, 291, 1447-1481.	2.5	45
188	On geomagnetic storms and associated solar activity phenomena observed during 1996–2009. Acta Astronautica, 2016, 121, 179-199.	3.2	11
189	Relationships Between Interplanetary Coronal Mass Ejection Characteristics and Geoeffectiveness in the Rising Phase of Solar Cycles 23 and 24. Solar Physics, 2016, 291, 1547-1560.	2.5	13
190	Predicting coronal mass ejections transit times to Earth with neural network. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1542-1548.	4.4	32
191	Magnetic Flux and Helicity of Magnetic Clouds. Solar Physics, 2016, 291, 531-557.	2.5	26
192	On the origins and timescales of geoeffective IMF. Space Weather, 2016, 14, 406-432.	3.7	65
193	Study of the Cosmic-Ray Modulation During the Passage of ICMEs and CIRs. Solar Physics, 2016, 291, 559-580.	2.5	41
194	Geoeffectiveness of the coronal mass ejections associated with solar proton events. Research in Astronomy and Astrophysics, 2016, 16, 014.	1.7	6
195	Latitudinal and longitudinal behavior of the geomagnetic field during a disturbed period: A case study using wavelet techniques. Advances in Space Research, 2016, 58, 2148-2163.	2.6	13
196	Interplanetary Coronal Mass Ejections Resulting from Earth-Directed CMEs Using SOHO and ACE Combined Data During Solar Cycle 23. Solar Physics, 2017, 292, 1.	2.5	17
197	Preconditioning of Interplanetary Space Due to Transient CME Disturbances. Astrophysical Journal, 2017, 835, 141.	4.5	51
198	ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS. Astrophysical Journal, 2017, 834, 147.	4.5	16
199	AN ANOMALOUS COMPOSITION IN SLOW SOLAR WIND AS A SIGNATURE OF MAGNETIC RECONNECTION IN ITS SOURCE REGION. Astrophysical Journal, Supplement Series, 2017, 228, 4.	7.7	20

#	ARTICLE	IF	CITATIONS
200	Study of the geoeffectiveness of interplanetary magnetic clouds. Planetary and Space Science, 2017, 139, 1-10.	1.7	3
201	Calculating travel times and arrival speeds of CMEs to Earth: An analytic tool for space weather forecasting. Space Weather, 2017, 15, 464-483.	3.7	13
202	Possible causes of the discrepancy between the predicted and observed parameters of high-speed solar wind streams. Cosmic Research, 2017, 55, 20-29.	0.6	7
203	The Interaction of Successive Coronal Mass Ejections: A Review. Solar Physics, 2017, 292, 1.	2.5	149
204	Lowâ€frequency electromagnetic cyclotron waves in and around magnetic clouds: STEREO observations during 2007–2013. Journal of Geophysical Research: Space Physics, 2017, 122, 4879-4894.	2.4	11
205	Statistical properties and geoeffectiveness of southward interplanetary magnetic field with emphasis on weakly southward <i>B</i> _{<i>z</i>} events. Journal of Geophysical Research: Space Physics, 2017, 122, 4921-4934.	2.4	4
206	Solar and interplanetary activities of isolated and non-isolated coronal mass ejections. Indian Journal of Physics, 2017, 91, 711-720.	1.8	0
207	A Study of the Earth-Affecting CMEs of Solar Cycle 24. Solar Physics, 2017, 292, 1.	2.5	36
208	Investigation of the Geoeffectiveness of Disk-Centre Full-Halo Coronal Mass Ejections. Solar Physics, 2017, 292, 1.	2.5	10
209	Deflection and Rotation of CMEs from Active Region 11158. Solar Physics, 2017, 292, 1.	2.5	32
210	On-Disc Observations of Flux Rope Formation Prior to Its Eruption. Solar Physics, 2017, 292, 71.	2.5	52
212	Concerning the heliumâ€ŧoâ€hydrogen number density ratio in very slow ejecta and winds near solar minimum. Journal of Geophysical Research: Space Physics, 2017, 122, 1487-1512.	2.4	2
213	An Alternative Method for Identifying Interplanetary Magnetic Cloud Regions. Astrophysical Journal, 2017, 837, 156.	4.5	8
214	Solar flare associated coronal mass ejections causing geo-effectiveness and Forbush decreases. Astrophysics and Space Science, 2017, 362, 1.	1.4	3
215	Study of seismic activity during the ascending and descending phases of solar activity. Indian Journal of Physics, 2017, 91, 595-606.	1.8	5
216	Geoeffective Properties of Solar Transients and Stream Interaction Regions. Space Science Reviews, 2017, 212, 1271-1314.	8.1	133
217	Importance of CME Radial Expansion on the Ability of Slow CMEs to Drive Shocks. Astrophysical Journal, 2017, 848, 75.	4.5	29
218	Earth-Affecting Coronal Mass Ejections Without Obvious Low Coronal Signatures. Solar Physics, 2017, 292, 1.	2.5	49

#	Article	IF	CITATIONS
219	Characterization of the Complex Ejecta Measured In Situ on 19 – 22 March 2001 by Six Different Methods. Solar Physics, 2017, 292, 1.	2.5	6
220	Assessing the Nature of Collisions of Coronal Mass Ejections in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2017, 232, 5.	7.7	19
221	The Influence of Coronal Mass Ejections on the Mass-loss Rates of Hot-Jupiters. Astrophysical Journal, 2017, 846, 31.	4.5	60
222	Geomagnetic Effects of Corotating Interaction Regions. Solar Physics, 2017, 292, 1.	2.5	18
223	On the Relation between the In Situ Properties and the Coronal Sources of the Solar Wind. Astrophysical Journal, 2017, 846, 135.	4.5	37
224	On Flare-CME Characteristics from Sun to Earth Combining Remote-Sensing Image Data with In Situ Measurements Supported by Modeling. Solar Physics, 2017, 292, 93.	2.5	36
225	Forbush Decrease: A New Perspective with Classification. Solar Physics, 2017, 292, 1.	2.5	19
226	The Presence of Turbulent and Ordered Local Structure within the ICME Shock-sheath and Its Contribution to Forbush Decrease. Astrophysical Journal, 2017, 844, 121.	4.5	20
227	Ranking ICME's efficiency for geomagnetic and ionospheric storms and risk of false alarms. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 164, 39-47.	1.6	5
228	Solar wind magnetic field background spectrum from fluid to kinetic scales. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1052-1059.	4.4	16
229	Validation of the CME Geomagnetic Forecast Alerts Under the COMESEP Alert System. Solar Physics, 2017, 292, 1.	2.5	5
230	The Physical Processes of CME/ICME Evolution. Space Science Reviews, 2017, 212, 1159-1219.	8.1	179
231	Coronal mass ejections and their sheath regions in interplanetary space. Living Reviews in Solar Physics, 2017, 14, 5.	22.0	262
232	Evolution of Proton and Alpha Particle Velocities through the Solar Cycle. Astrophysical Journal, 2017, 850, 164.	4.5	16
233	The Origin of Solar Filament Plasma Inferred from In Situ Observations of Elemental Abundances. Astrophysical Journal Letters, 2017, 836, L11.	8.3	28
234	Passage of ICMEs, Their Associated Shock Structure, and Transient Modulation of Galactic Cosmic Rays. Solar Physics, 2017, 292, 1.	2.5	2
235	Pseudo-automatic Determination of Coronal Mass Ejections' Kinematics in 3D. Astrophysical Journal, 2017, 842, 134.	4.5	9
236	Statistical comparison of the ICME's geoeffectiveness of different types and different solar phases from 1995 to 2014. Journal of Geophysical Research: Space Physics, 2017, 122, 5931-5948.	2.4	51

#	Article	IF	CITATIONS
237	Origin and Ion Charge State Evolution of Solar Wind Transients during 4 – 7 August 2011. Solar Physics, 2017, 292, 1.	2.5	24
238	Long-term changes in space weather effects on the Earth's ionosphere. Advances in Space Research, 2017, 59, 351-365.	2.6	8
239	Using the Coronal Evolution to Successfully Forward Model CMEs' In Situ Magnetic Profiles. Journal of Geophysical Research: Space Physics, 2017, 122, 11,810.	2.4	17
240	Direct and indirect electron precipitation effect on nitric oxide in the polar middle atmosphere, using a fullâ€range energy spectrum. Journal of Geophysical Research: Space Physics, 2017, 122, 8679-8693.	2.4	23
241	Features of solar wind streams on June 21–28, 2015 as a result of interactions between coronal mass ejections and recurrent streams from coronal holes. Cosmic Research, 2017, 55, 389-395.	0.6	2
242	Space Weather Forecasting at IZMIRAN. Geomagnetism and Aeronomy, 2017, 57, 869-876.	0.8	8
243	Suprathermal helium in corotating interaction regions: combined observations from SOHO/CELIAS/STOF and ACE/SWICS. Astronomy and Astrophysics, 2017, 599, A13.	5.1	9
244	The Contribution of Geomagnetic Activity to Polar Ozone Changes in the Upper Atmosphere. Advances in Meteorology, 2017, 2017, 1-7.	1.6	3
245	Tests for coronal electron temperature signatures in suprathermal electron populations at 1†AU. Annales Geophysicae, 2017, 35, 1275-1291.	1.6	8
246	Solar forcing for CMIP6 (v3.2). Geoscientific Model Development, 2017, 10, 2247-2302.	3.6	293
247	Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model. Journal of Space Weather and Space Climate, 2018, 8, A18.	3.3	21
248	Fitting and Reconstruction of Thirteen Simple Coronal Mass Ejections. Solar Physics, 2018, 293, 1.	2.5	18
249	Halo coronal mass ejections during Solar Cycle 24: reconstruction of the global scenario and geoeffectiveness. Journal of Space Weather and Space Climate, 2018, 8, A09.	3.3	22
250	Characteristics and Energy Dependence of Recurrent Galactic Cosmic-Ray Flux Depressions and of a Forbush Decrease with LISA Pathfinder. Astrophysical Journal, 2018, 854, 113.	4.5	26
251	Kinetic theory and fast wind observations of the electron strahl. Monthly Notices of the Royal Astronomical Society, 2018, 474, 115-127.	4.4	34
252	Geomagnetic response of interplanetary coronal mass ejections in the Earth's magnetosphere. Planetary and Space Science, 2018, 154, 1-4.	1.7	5
253	Evidence of Energy and Charge Sign Dependence of the Recovery Time for the 2006 December Forbush Event Measured by the PAMELA Experiment. Astrophysical Journal, 2018, 853, 76.	4.5	27

#	Article	IF	CITATIONS
255	Polarization properties of low frequency electromagnetic cyclotron waves associated with magnetic clouds. Astrophysics and Space Science, 2018, 363, 1.	1.4	0
256	Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations. Solar Physics, 2018, 293, 1.	2.5	115
257	Substorm Occurrence and Intensity Associated With Three Types of Solar Wind Structure. Journal of Geophysical Research: Space Physics, 2018, 123, 485-496.	2.4	15
258	Using Forbush Decreases to Derive the Transit Time of ICMEs Propagating from 1 AU to Mars. Journal of Geophysical Research: Space Physics, 2018, 123, 39-56.	2.4	17
259	Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects. Solar Physics, 2018, 293, 1.	2.5	16
260	Solar wind stream interaction regions throughout the heliosphere. Living Reviews in Solar Physics, 2018, 15, 1.	22.0	195
261	A New Tool for CME Arrival Time Prediction using Machine Learning Algorithms: CAT-PUMA. Astrophysical Journal, 2018, 855, 109.	4.5	50
262	Sun-to-Earth MHD Simulation of the 2000 July 14 "Bastille Day―Eruption. Astrophysical Journal, 2018, 856, 75.	4.5	118
263	STEREO Observations of Interplanetary Coronal Mass Ejections in 2007–2016. Astrophysical Journal, 2018, 855, 114.	4.5	55
264	Correlation of ICME Magnetic Fields at Radially Aligned Spacecraft. Solar Physics, 2018, 293, 52.	2.5	26
265	Properties of the HPSâ€ICMEâ€CIR Interaction Event of 9–10 September 2011. Journal of Geophysical Research: Space Physics, 2018, 123, 2535-2556.	2.4	6
266	Statistical Study of ICMEs with Low Mean Carbon Charge State Plasmas Detected from 1998 to 2011. Astrophysical Journal, 2018, 868, 124.	4.5	7
267	Shock deceleration in interplanetary coronal mass ejections (ICMEs) beyond Mercury's orbit until one AU. Journal of Space Weather and Space Climate, 2018, 8, A54.	3.3	6
268	What causes the variability in the properties of energetic storm particle (ESP) events?. Journal of Physics: Conference Series, 2018, 1100, 012008.	0.4	9
269	Ultralow Frequency Waves as an Intermediary for Solar Wind Energy Input Into the Radiation Belts. Journal of Geophysical Research: Space Physics, 2018, 123, 10,090.	2.4	12
270	The Identification of a Planar Magnetic Structure within the ICME Shock Sheath and Its influence on Galactic Cosmic-Ray Flux. Astrophysical Journal, 2018, 866, 118.	4.5	18
271	Geoeffectiveness of Stream Interaction Regions From 1995 to 2016. Space Weather, 2018, 16, 1960-1971.	3.7	36
272	Some Problems of Identifying Types of Large-Scale Solar Wind and Their Role in the Physics of the Magnetosphere: 2. Cosmic Research, 2018, 56, 331-342.	0.6	3

#	Article	IF	CITATIONS
273	Forecasting Periods of Strong Southward Magnetic Field Following Interplanetary Shocks. Space Weather, 2018, 16, 2004-2021.	3.7	11
274	Multiple Satellite Analysis of the Earth's Thermosphere and Interplanetary Magnetic Field Variations Due to ICME/CIR Events During 2003–2015. Journal of Geophysical Research: Space Physics, 2018, 123, 8884-8894.	2.4	15
275	An operational solar wind prediction system transitioning fundamental science to operations. Journal of Space Weather and Space Climate, 2018, 8, A39.	3.3	9
276	Determining the Alpha to Proton Density Ratio for the New Horizons Solar Wind Observations. Astrophysical Journal, 2018, 866, 85.	4.5	10
277	Three-dimensional MHD Simulation of Solar Wind Using a New Boundary Treatment: Comparison with In Situ Data at Earth. Astrophysical Journal, 2018, 866, 18.	4.5	38
278	Magnetic Clouds: Solar Cycle Dependence, Sources, and Geomagnetic Impacts. Solar Physics, 2018, 293, 135.	2.5	22
279	Long-Term Changes in the Number and Magnitude of Forbush-Effects. Geomagnetism and Aeronomy, 2018, 58, 615-624.	0.8	10
280	Boundary of the Slow Solar Wind. Astrophysical Journal, 2018, 864, 139.	4.5	21
281	Evolution of relative magnetic helicity. Astronomy and Astrophysics, 2018, 613, A27.	5.1	15
282	Effects of Geometries and Substructures of ICMEs on Geomagnetic Storms. Solar Physics, 2018, 293, 1.	2.5	2
283	Influence of Earth-directed Coronal Mass Ejections on the Sun's Shadow Observed by the Tibet-III Air Shower Array. Astrophysical Journal, 2018, 860, 13.	4.5	7
284	Three-phase Evolution of a Coronal Hole. I. 360° Remote Sensing and In Situ Observations. Astrophysical Journal, 2018, 861, 151.	4.5	33
285	On the Spatial Coherence of Magnetic Ejecta: Measurements of Coronal Mass Ejections by Multiple Spacecraft Longitudinally Separated by 0.01 au. Astrophysical Journal Letters, 2018, 864, L7.	8.3	47
286	Kinetic Properties of an Interplanetary Shock Propagating inside a Coronal Mass Ejection. Astrophysical Journal Letters, 2018, 859, L4.	8.3	7
287	Tracking Filament Evolution in the Low Solar Corona Using Remote Sensing and In Situ Observations. Astrophysical Journal, 2018, 860, 51.	4.5	6
288	A new short-term forecasting model for the total electron content storm time disturbances. Journal of Space Weather and Space Climate, 2018, 8, A33.	3.3	27
289	Evaluating the Skill of Forecasts of the Nearâ€Earth Solar Wind Using a Space Weather Monitor at L5. Space Weather, 2018, 16, 814-828.	3.7	22
290	A Stealth CME Bracketed between Slow and Fast Wind Producing Unexpected Geoeffectiveness. Astrophysical Journal, 2018, 860, 78.	4.5	20

#	Article	IF	CITATIONS
291	Multi-spacecraft observations and transport simulations of solar energetic particles for the May 17th 2012 event. Astronomy and Astrophysics, 2018, 612, A116.	5.1	16
292	Single ICMEs and Complex Transient Structures in the Solar Wind in 2010 – 2011. Solar Physics, 2018 293, 1.	' 2.5	13
293	Ionospheric Responses to CME―and CIRâ€Driven Geomagnetic Storms Along 30°E–40°E Over the African Sector From 2001 to 2015. Space Weather, 2018, 16, 538-556.	3.7	22
294	Main Properties of Forbush Effects Related to High-Speed Streams from Coronal Holes. Geomagnetism and Aeronomy, 2018, 58, 154-168.	0.8	30
295	Observational Study of an Earth-affecting Problematic ICME from STEREO. Astrophysical Journal, 2018, 863, 108.	4.5	15
296	Verification of real-time WSAâ ``ENLIL+Cone simulations of CME arrival-time at the CCMC from 2010 to 2016. Journal of Space Weather and Space Climate, 2018, 8, A17.	3.3	68
297	Solar Wind Classification Via k -Means Clustering Algorithm. , 2018, , 397-424.		16
298	Difference in the parameters of ICMEs in Ejecta and Sheath region and their impact on Dst index during 1997–2014. Advances in Space Research, 2018, 62, 692-706.	2.6	4
299	CME Arrival Time Prediction Using Convolutional Neural Network. Astrophysical Journal, 2019, 881, 15.	4.5	21
300	Observation-based modelling of magnetised coronal mass ejections with EUHFORIA. Astronomy and Astrophysics, 2019, 626, A122.	5.1	72
301	Solar Wind Streams of Different Types and High-Latitude Substorms. Geomagnetism and Aeronomy, 2019, 59, 1-6.	0.8	9
302	Unusual Plasma and Particle Signatures at Mars and STEREO-A Related to CME–CME Interaction. Astrophysical Journal, 2019, 880, 18.	4.5	22
303	Multipoint Observations of the June 2012 Interacting Interplanetary Flux Ropes. Frontiers in Astronomy and Space Sciences, 2019, 6, .	2.8	29
304	Solar Wind Properties and Geospace Impact of Coronal Mass Ejectionâ€Driven Sheath Regions: Variation and Driver Dependence. Space Weather, 2019, 17, 1257-1280.	3.7	35
305	Properties and Geoeffectiveness of Solar Wind Highâ€Speed Streams and Stream Interaction Regions During Solar Cycles 23 and 24. Journal of Geophysical Research: Space Physics, 2019, 124, 3871-3892.	2.4	50
306	Formation of Coronal Mass Ejections in the Solar Corona and Propagation of the Resulting Plasma Streams in the Heliosphere. Plasma Physics Reports, 2019, 45, 889-920.	0.9	4
307	Development of a Fast CME and Properties of a Related Interplanetary Transient. Solar Physics, 2019, 294, 1.	2.5	14
308	Coexistence of a planar magnetic structure and an Alfvén wave in the shock-sheath of an interplanetary coronal mass ejection. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1638-1643.	4.4	15

#	Article	IF	CITATIONS
309	Direct Detection of Solar Angular Momentum Loss with the Wind Spacecraft. Astrophysical Journal Letters, 2019, 885, L30.	8.3	20
310	Statistical analysis of interplanetary coronal mass ejections and their geoeffectiveness during the solar cycles 23 and 24. Astrophysics and Space Science, 2019, 364, 1.	1.4	5
311	The Enhancement of the Energetic Particle Intensities in ICMEs. Astrophysical Journal, 2019, 885, 54.	4.5	6
312	CME–HSS Interaction and Characteristics Tracked from Sun to Earth. Solar Physics, 2019, 294, 121.	2.5	40
313	Multipoint Study of Successive Coronal Mass Ejections Driving Moderate Disturbances at 1 au. Astrophysical Journal, 2019, 878, 37.	4.5	21
314	Application of the Electromotive Force as a Shock Front Indicator in the Inner Heliosphere. Astrophysical Journal, 2019, 878, 30.	4.5	3
315	Potential role of energetic particle observations in geomagnetic storm forecasting. Advances in Space Research, 2019, 64, 801-813.	2.6	3
316	Large-Scale and Small-Scale Solar Wind Structures Formed during Interaction of Streams in the Heliosphere. Cosmic Research, 2019, 57, 18-28.	0.6	1
317	On the prediction of geoeffectiveness of CMEs during the ascending phase of SC24 using a logistic regression method. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 193, 105036.	1.6	8
318	Interaction of the Extended Envelope of a Hot Jupiter with a Narrow Coronal Mass Ejection. Astronomy Reports, 2019, 63, 365-371.	0.9	9
319	Quantifying the Contribution of Microbursts to Global Electron Loss in the Radiation Belts. Journal of Geophysical Research: Space Physics, 2019, 124, 1111-1124.	2.4	20
320	Storm Time Mesoscale Plasma Flows in the Nightside Highâ€Latitude Ionosphere: A Statistical Survey of Characteristics. Geophysical Research Letters, 2019, 46, 4079-4088.	4.0	8
321	Mass loss via solar wind and coronal mass ejections during solar cycles 23 and 24. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4671-4685.	4.4	21
322	Electron Acceleration by ICME-driven Shocks at 1 au. Astrophysical Journal, 2019, 875, 104.	4.5	19
323	Automatic Detection of Interplanetary Coronal Mass Ejections from In Situ Data: A Deep Learning Approach. Astrophysical Journal, 2019, 874, 145.	4.5	13
324	A Comparative Study of 2017 July and 2012 July Complex Eruptions: Are Solar Superstorms "Perfect Storms―in Nature?. Astrophysical Journal, Supplement Series, 2019, 241, 15.	7.7	23
325	Studying the properties of interplanetary counterpart of halo-CMEs and their influences on Dst index. Advances in Space Research, 2019, 64, 287-298.	2.6	2
326	Some Properties of the Solar Wind Turbulence at 1 AU Statistically Examined in the Different Types of Solar Wind Plasma. Journal of Geophysical Research: Space Physics, 2019, 124, 2406-2424.	2.4	27

	CITATIO	on Report	
#	Article	IF	CITATIONS
327	On recurrent Forbush Decreases. Journal of Physics: Conference Series, 2019, 1181, 012009.	0.4	2
328	Suprathermal Ion Backgrounds of Solar Energetic Particle Events. Astrophysical Journal, 2019, 872, 89.	4.5	17
329	Empirical Modeling of CME Evolution Constrained to ACE/SWICS Charge State Distributions. Astrophysical Journal, 2019, 874, 164.	4.5	25
330	Generic Magnetic Field Intensity Profiles of Interplanetary Coronal Mass Ejections at Mercury, Venus, and Earth From Superposed Epoch Analyses. Journal of Geophysical Research: Space Physics, 2019, 124, 812-836.	2.4	62
331	Forecasting the Structure and Orientation of Earthbound Coronal Mass Ejections. Space Weather, 2019, 17, 498-526.	3.7	65
332	Mass ejections from the solar atmosphere. Physics-Uspekhi, 2019, 62, 847-864.	2.2	8
333	Active Region Modulation of Coronal Hole Solar Wind. Astrophysical Journal, 2019, 887, 146.	4.5	13
334	Assessing the Performance of EUHFORIA Modeling the Background Solar Wind. Solar Physics, 2019, 294, 170.	2.5	29
335	Rapid intensification of tropical cyclones in the context of the solar wind-magnetosphere-ionosphere-atmosphere coupling. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 183, 36-60.	1.6	7
336	Comparison between statistical properties of Forbush decreases caused by solar wind disturbances from coronal mass ejections and coronal holes. Advances in Space Research, 2019, 63, 1100-1109.	2.6	24
337	Benchmarking CME Arrival Time and Impact: Progress on Metadata, Metrics, and Events. Space Weather, 2019, 17, 6-26.	3.7	47
338	Open-field Coronal Structures Neighbouring the Sunspot of AR 8535. Solar Physics, 2020, 295, 1.	2.5	3
339	Visualizing and Interpreting Unsupervised Solar Wind Classifications. Frontiers in Astronomy and Space Sciences, 2020, 7, .	2.8	8
340	Uncertainty Estimates of Solar Wind Prediction Using HMI Photospheric Vector and Spatial Standard Deviation Synoptic Maps. Solar Physics, 2020, 295, 1.	2.5	3
341	20ÂYears of ACE Data: How Superposed Epoch Analyses Reveal Generic Features in Interplanetary CME Profiles. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028150.	2.4	23
342	Empirical modelling of auroral absorption during disturbed periods of interplanetary coronal mass ejection events. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 207, 105364.	1.6	1
343	The Solar Orbiter mission. Astronomy and Astrophysics, 2020, 642, A1.	5.1	514
344	On extreme space weather events: Solar eruptions, energetic protons and geomagnetic storms. Advances in Space Research, 2020, 66, 1977-1991.	2.6	6

#	Article	IF	CITATIONS
345	Coherence of Coronal Mass Ejections in Near-Earth Space. Solar Physics, 2020, 295, 1.	2.5	10
346	The Evolution of Longâ€Duration Cusp Spot Emission During Lobe Reconnection With Respect to Fieldâ€Aligned Currents. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027922.	2.4	13
347	Evolution of Coronal Mass Ejections and the Corresponding Forbush Decreases: Modeling vs. Multi-Spacecraft Observations. Solar Physics, 2020, 295, 1.	2.5	18
348	Equatorial and low-latitude ionospheric TEC response to CIR-driven geomagnetic storms at different longitude sectors. Advances in Space Research, 2020, 66, 1947-1966.	2.6	15
349	Predicting the Time of Arrival of Coronal Mass Ejections at Earth From Heliospheric Imaging Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027885.	2.4	5
350	Properties of Solar Wind Structures at Mercury's Orbit. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028281.	2.4	5
351	Ionospheric Response to Strong Geomagnetic Storms During 2000–2005: An IMF Clock Angle Perspective. Radio Science, 2020, 55, e2020RS007061.	1.6	4
352	Consequences of a Solar Wind Stream Interaction Region on the Low Latitude Ionosphere: Event of 7 October 2015. Solar Physics, 2020, 295, 1.	2.5	4
353	On the Radial and Longitudinal Variation of a Magnetic Cloud: ACE, Wind, ARTEMIS and Juno Observations. Solar Physics, 2020, 295, 1.	2.5	19
354	Comparative statistical study of characteristics of plasma in planar and non-planar ICME sheaths during solar cycles 23 and 24. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2498-2508.	4.4	12
355	A Study of a Magnetic Cloud Propagating Through Largeâ€Amplitude Alfvén Waves. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027638.	2.4	4
356	Exploring the common origins of the Forbush decrease phenomenon caused by the interplanetary counterpart of coronal mass ejections or corotating interaction regions. Physical Review D, 2020, 101, .	4.7	6
357	Proton-proton collisional age to order solar wind types. Astronomy and Astrophysics, 2020, 636, A103.	5.1	2
358	Machine Learning Approach for Solar Wind Categorization. Earth and Space Science, 2020, 7, e2019EA000997.	2.6	14
359	Forecasting the Ambient Solar Wind with Numerical Models. II. An Adaptive Prediction System for Specifying Solar Wind Speed near the Sun. Astrophysical Journal, 2020, 891, 165.	4.5	24
360	The Value of CME Arrival Time Forecasts for Space Weather Mitigation. Space Weather, 2020, 18, e2020SW002507.	3.7	12
361	A statistical study of the long-term evolution of coronal hole properties as observed by SDO. Astronomy and Astrophysics, 2020, 638, A68.	5.1	19
362	Exploring Thermospheric Variations Triggered by Severe Geomagnetic Storm on 26 August 2018 Using GRACE Followâ€On Data. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027731.	2.4	12

#	Article	IF	CITATIONS
363	On the Relationship Between the Transit Time of ICMEs and Strength of the Initiated Geomagnetic Storms. Solar Physics, 2020, 295, 1.	2.5	4
364	A Solar entric Approach to Improving Estimates of Exposure Processes for Coronal Mass Ejections. Risk Analysis, 2020, 40, 1020-1039.	2.7	1
365	Characterisation of suprathermal electron pitch-angle distributions. Astronomy and Astrophysics, 2020, 635, A79.	5.1	8
366	Interplanetary consequences and geoeffectiveness of CME associated with major solar flare from NOAA AR 12673. Research in Astronomy and Astrophysics, 2020, 20, 023.	1.7	6
367	Comparing the Properties of ICMEâ€Induced Forbush Decreases at Earth and Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027662.	2.4	14
368	Stronger Southward Magnetic Field and Geoeffectiveness of ICMEs Containing Prominence Materials Measured from 1998 to 2011. Astrophysical Journal, 2020, 891, 79.	4.5	9
369	Laboratory Study of Bilateral Supernova Remnants and Continuous MHD Shocks. Astrophysical Journal, 2020, 896, 167.	4.5	7
370	Scaling arguments for a plasma experiment relevant to an interplanetary coronal mass ejection. Physics of Plasmas, 2020, 27, 062902.	1.9	Ο
371	CME–CME Interactions as Sources of CME Geoeffectiveness: The Formation of the Complex Ejecta and Intense Geomagnetic Storm in 2017 Early September. Astrophysical Journal, Supplement Series, 2020, 247, 21.	7.7	78
372	Interplanetary Coronal Mass Ejections as the Driver of Non-recurrent Forbush Decreases. Astrophysical Journal, 2020, 890, 101.	4.5	22
373	Statistical study of geomagnetic storm effects on the occurrence of ionospheric irregularities over equatorial/low-latitude region of Africa from 2001 to 2017. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 199, 105198.	1.6	10
374	Radial Evolution of Coronal Mass Ejections Between MESSENGER, <i>Venus Express</i> , STEREO, and L1: Catalog and Analysis. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027084.	2.4	45
375	Evolution of a Longâ€Duration Coronal Mass Ejection and Its Sheath Region Between Mercury and Earth on 9–14 July 2013. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027213.	2.4	25
376	The compound stream event of March 20-25, 2011 as measured by the STEREO B spacecraft. Astrophysics and Space Science, 2020, 365, 1.	1.4	0
377	New Metric for Minimum Variance Analysis Validation in the Study of Interplanetary Magnetic Clouds. Solar Physics, 2020, 295, 1.	2.5	6
378	Characteristics of SEPs during solar cycles 21–24. Journal of Astrophysics and Astronomy, 2020, 41, 1.	1.0	2
379	Low Geoâ€Effectiveness of Fast Halo CMEs Related to the 12 Xâ€Class Flares in 2002. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027529.	2.4	11
380	MHD Modeling of the Background Solar Wind in the Inner Heliosphere From 0.1 to 5.5 AU: Comparison With In Situ Observations. Space Weather, 2020, 18, e2019SW002262.	3.7	7

#	ARTICLE	IF	CITATIONS
381	Relationships between Interplanetary Coronal Mass Ejection Characteristics and Geoeffectiveness in the Declining Phase of Solar Cycles 23 and 24. Solar Physics, 2020, 295, 1.	2.5	5
382	Flux Erosion of Magnetic Clouds by Reconnection With the Sun's Open Flux. Geophysical Research Letters, 2020, 47, e2019GL086372.	4.0	15
383	A Geoeffective CME Caused by the Eruption of a Quiescent Prominence on 29 September 2013. Solar Physics, 2020, 295, 1.	2.5	6
384	Principal component analysis in the modeling of HILDCAAs during the Solar Minimum of Cycle 23/24. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 213, 105516.	1.6	0
385	First Look at a Geomagnetic Storm With Santa Maria Digisonde Data: <i>F</i> Region Responses and Comparisons Over the American Sector. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028663.	2.4	8
386	Deriving CME Density From Remote Sensing Data and Comparison to Inâ€6itu Measurements. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028380.	2.4	20
387	Statistical associations of teleconnection indices and space weather with spring weather pattern in the Eastern Baltic region. International Journal of Climatology, 2021, 41, E3034.	3.5	0
388	Evaluation of a potential field source surface model with elliptical source surfaces via ballistic back mapping of in situ spacecraft data. Astronomy and Astrophysics, 2021, 645, A83.	5.1	4
389	Introducing the Sun and SEPs. Lecture Notes in Physics, 2021, , 1-18.	0.7	0
390	Latitudinal Dependence of the Ionospheric Slab Thickness for Estimation of Ionospheric Response to Geomagnetic Storms. Atmosphere, 2021, 12, 164.	2.3	1
391	Study of transient modulation of galactic cosmic rays due to interplanetary manifestations of coronal mass ejections: 2010 - 2017. Astrophysics and Space Science, 2021, 366, 1.	1.4	5
392	Operational Dst index prediction model based on combination of artificial neural network and empirical model. Journal of Space Weather and Space Climate, 2021, 11, 38.	3.3	7
393	Study of the evolution of the geomagnetic disturbances during the passage of high-speed streams from coronal holes in solar cycle 2009-2016. Astrophysics and Space Science, 2021, 366, 1.	1.4	1
394	Lower-thermosphere–ionosphere (LTI) quantities: current status of measuring techniques and models. Annales Geophysicae, 2021, 39, 189-237.	1.6	25
395	On the Rigidity Spectrum of Cosmic-Ray Variations within Propagating Interplanetary Disturbances: Neutron Monitor and SOHO/EPHIN Observations at â^¼1–10 GV. Astrophysical Journal, 2021, 908, 5.	4.5	9
396	Magnetic Cloud and Sheath in the Ground-level Enhancement Event of 2000 July 14. II. Effects on the Forbush Decrease. Astrophysical Journal, 2021, 908, 236.	4.5	5
397	Associations between Space Weather Events and the Incidence of Acute Myocardial Infarction and Deaths from Ischemic Heart Disease. Atmosphere, 2021, 12, 306.	2.3	6
398	The Intensity and Evolution of the Extreme Solar and Geomagnetic Storms in 1938 January. Astrophysical Journal, 2021, 909, 197.	4.5	9

#	Article	IF	CITATIONS
399	Estimating the Magnetic Structure of an Erupting CME Flux Rope From AR12158 Using Data-Driven Modeling. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	11
400	Possible Associations between Space Weather and the Incidence of Stroke. Atmosphere, 2021, 12, 334.	2.3	4
401	Why are ELEvoHI CME Arrival Predictions Different if Based on STEREOâ€A or STEREOâ€B Heliospheric Imager Observations?. Space Weather, 2021, 19, e2020SW002674.	3.7	11
402	Implementing the MULTI-VP coronal model in EUHFORIA: Test case results and comparisons with the WSA coronal model. Astronomy and Astrophysics, 2021, 648, A35.	5.1	21
403	Joint Geoeffectiveness and Arrival Time Prediction of CMEs by a Unified Deep Learning Framework. Remote Sensing, 2021, 13, 1738.	4.0	7
404	Identifying the Coronal Source Regions of Solar Wind Streams from Total Solar Eclipse Observations and in situ Measurements Extending over a Solar Cycle. Astrophysical Journal Letters, 2021, 911, L4.	8.3	13
405	CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport. Space Weather, 2021, 19, e2020SW002654.	3.7	18
406	Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA. Astronomy and Astrophysics, 2021, 649, A69.	5.1	15
407	Largeâ€Scale Dune Aurora Event Investigation Combining Citizen Scientists' Photographs and Spacecraft Observations. AGU Advances, 2021, 2, e2020AV000338.	5.4	0
408	Relative field line helicity of a large eruptive solar active region. Astronomy and Astrophysics, 2021, 649, A107.	5.1	5
409	Geoeffectiveness Prediction of CMEs. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	4
410	Drag-Based Model (DBM) Tools for Forecast of Coronal Mass Ejection Arrival Time and Speed. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	18
411	A Quarter Century of <i>Wind</i> Spacecraft Discoveries. Reviews of Geophysics, 2021, 59, e2020RG000714.	23.0	52
412	Elemental Abundances of Prominence Material inside ICMEs. Astrophysical Journal, 2021, 912, 51.	4.5	14
413	The Effects of Magnetic Boundary on the Uniform Distribution of Energetic Particle Intensities Observed by Multiple Spacecraft. Astrophysical Journal, 2021, 913, 66.	4.5	2
414	Uncovering erosion effects on magnetic flux rope twist. Astronomy and Astrophysics, 2021, 650, A176.	5.1	14
415	Geosynchronous Magnetopause Crossings and Their Relationships With Magnetic Storms and Substorms. Space Weather, 2021, 19, e2020SW002704.	3.7	1
416	Space weather: the solar perspective. Living Reviews in Solar Physics, 2021, 18, 1.	22.0	114

#	Article	IF	Citations
417	Study of two interacting interplanetary coronal mass ejections encountered by Solar Orbiter during its first perihelion passage. Astronomy and Astrophysics, 2021, 656, A5.	5.1	9
418	Properties of Interplanetary Fast Shocks Close to the Martian Environment. Astrophysical Journal, 2021, 914, 14.	4.5	5
419	Coronal mass ejections observed by heliospheric imagers at 0.2 and 1 au. Astronomy and Astrophysics, 2021, 650, A31.	5.1	9
420	Evolution of Interplanetary Coronal Mass Ejection Complexity: A Numerical Study through a Swarm of Simulated Spacecraft. Astrophysical Journal Letters, 2021, 916, L15.	8.3	14
421	Multipoint remote and <i>in situ</i> observations of interplanetary coronal mass ejection structures during 2011 and associated geomagnetic storms. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1186-1197.	4.4	1
422	The Effect of Stream Interaction Regions on ICME Structures Observed in Longitudinal Conjunction. Astrophysical Journal, 2021, 916, 40.	4.5	22
423	Probabilistic Drag-Based Ensemble Model (DBEM) Evaluation for Heliospheric Propagation of CMEs. Solar Physics, 2021, 296, 1.	2.5	19
424	Solar Cycle Dependence of ICME Composition. Solar Physics, 2021, 296, 1.	2.5	12
425	Investigating Remote-Sensing Techniques to Reveal Stealth Coronal Mass Ejections. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	12
426	2019 International Women's Day event. Astronomy and Astrophysics, 2021, 652, A159.	5.1	8
427	The Flux of Flux Ropes Embedded Within Magnetic Clouds Near 5 AU. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028594.	2.4	1
428	Modeling the Observed Distortion of Multiple (Ghost) CME Fronts in STEREO Heliospheric Imagers. Astrophysical Journal Letters, 2021, 917, L16.	8.3	9
429	Multi-spacecraft study of the solar wind at solar minimum: Dependence on latitude and transient outflows. Astronomy and Astrophysics, 2021, 652, A105.	5.1	9
430	HaloSat Observations of Heliospheric Solar Wind Charge Exchange. Astrophysical Journal, 2021, 918, 41.	4.5	8
431	Three-Dimensional Parameters of the Earth-Impacting CMEs Based on the GCS Model. Universe, 2021, 7, 361.	2.5	2
432	Dragâ€Based CME Modeling With Heliospheric Images Incorporating Frontal Deformation: ELEvoHI 2.0. Space Weather, 2021, 19, e2021SW002836.	3.7	13
433	The unusual widespread solar energetic particle event on 2013 August 19. Astronomy and Astrophysics, 2021, 653, A137.	5.1	15
434	Radial Sizes and Expansion Behavior of ICMEs in Solar Cycles 23 and 24. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	2

#	Article	IF	CITATIONS
435	Responses of the Indian Equatorial Ionization Anomaly to two CME-induced geomagnetic storms during the peak phase of solar cycle 24. Advances in Space Research, 2021, 68, 3417-3434.	2.6	6
436	Tracing the ICME plasma with a MHD simulation. Astronomy and Astrophysics, 2021, 654, L3.	5.1	3
437	A Double Disturbed Lunar Plasma Wake. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028789.	2.4	5
438	Statistical Association between Space Weather and Meteorological Variables During Winter in the Baltic Sea Region. Geomagnetism and Aeronomy, 2021, 61, 117-127.	0.8	0
439	Evidence for Recurrent Auroral Activity in the Twelfth and Seventeenth Centuries. Thirty Years of Astronomical Discovery With UKIRT, 2015, , 61-90.	0.3	3
440	Eruptive Prominences and Their Impact on the Earth and Our Life. Astrophysics and Space Science Library, 2015, , 433-453.	2.7	9
441	On Flare-CME Characteristics from Sun to Earth Combining Remote-Sensing Image Data with In Situ Measurements Supported by Modeling. , 2017, , 203-224.		1
442	The Interaction of Successive Coronal Mass Ejections: A Review. , 2017, , 79-115.		2
443	Exhaustive study of three-time periods of solar activity due to single active regions: sunspot, flare, CME, and geo-effectiveness characteristics. Astrophysics and Space Science, 2020, 365, 1.	1.4	4
444	Evaluating the Performance of a Plasma Analyzer for a Space Weather Monitor Mission Concept. Space Weather, 2020, 18, e2020SW002559.	3.7	9
445	Disparity among low first ionization potential elements. Astronomy and Astrophysics, 2018, 619, A79.	5.1	5
446	Assessment of CESE-HLLD ambient solar wind model results using multipoint observation. Journal of Space Weather and Space Climate, 2020, 10, 44.	3.3	5
447	USE OF INCIDENT AND REFLECTED SOLAR PARTICLE BEAMS TO TRACE THE TOPOLOGY OF MAGNETIC CLOUDS. Astrophysical Journal, 2012, 750, 146.	4.5	25
448	Testing the impact of coronal mass ejections on cosmic-ray intensity modulation with algorithm selected Forbush decreases. Monthly Notices of the Royal Astronomical Society, 2021, 502, 300-312.	4.4	9
449	Some Problems of Identifying Types of Large-Scale Solar Wind and Their Role in Magnetosphere Physics: 3. Use of Published Incorrect Data. Cosmic Research, 2020, 58, 338-356.	0.6	2
450	Some Problems of Identifying Types of Large-Scale Solar Wind and Their Role in the Physics of the Magnetosphere: 4. The "Lost Driver― Cosmic Research, 2020, 58, 492-500.	0.6	2
451	Recurrent and sporadic Forbush decreases during solar cycles 23–24. SolneÄno-zemnaâ Fizika, 2019, 5, 28-34.	0.9	13
452	Objectively Determining States of the Solar Wind Using Machine Learning. Astrophysical Journal, 2020, 889, 153.	4.5	12

#	Article	IF	CITATIONS
453	Inconsistencies Between Local and Global Measures of CME Radial Expansion as Revealed by Spacecraft Conjunctions. Astrophysical Journal, 2020, 899, 119.	4.5	24
454	Simulation of the Interplanetary B _z Using a Data-driven Heliospheric Solar Wind Model. Astrophysical Journal, 2020, 900, 76.	4.5	7
455	Abundances and Charge States of Heavy Ions in ICMEs Highly Related to Speed and Solar Activity. Astrophysical Journal, 2020, 900, 123.	4.5	7
456	Using the "Ghost Front―to Predict the Arrival Time and Speed of CMEs at Venus and Earth. Astrophysical Journal, 2020, 899, 143.	4.5	9
457	Recurrent Solar Energetic Particle Flux Enhancements Observed near Earth and Mars. Astrophysical Journal, 2020, 902, 13.	4.5	4
458	Prediction of the In Situ Coronal Mass Ejection Rate for Solar Cycle 25: Implications for Parker Solar Probe In Situ Observations. Astrophysical Journal, 2020, 903, 92.	4.5	27
459	Properties of the Sheath Regions of Coronal Mass Ejections with or without Shocks from STEREO in situ Observations near 1 au. Astrophysical Journal, 2020, 904, 177.	4.5	13
460	Magnetic Cloud and Sheath in the Ground-level Enhancement Event of 2000 July 14. I. Effects on the Solar Energetic Particles. Astrophysical Journal, 2020, 904, 151.	4.5	4
461	Interplanetary Magnetic Flux Rope Observed at Ground Level by HAWC. Astrophysical Journal, 2020, 905, 73.	4.5	2
462	Estimation of Turbulent Heating of Solar Wind Protons at 1 au. Astrophysical Journal, 2020, 905, 137.	4.5	8
463	Do All Interplanetary Coronal Mass Ejections Have a Magnetic Flux Rope Structure Near 1 au?. Astrophysical Journal Letters, 2020, 901, L21.	8.3	9
464	Outer radiation belt and inner magnetospheric response to sheath regions of coronal mass ejections: a statistical analysis. Annales Geophysicae, 2020, 38, 683-701.	1.6	17
465	Magnetic field fluctuation properties of coronal mass ejection-driven sheath regions in the near-Earth solar wind. Annales Geophysicae, 2020, 38, 999-1017.	1.6	21
466	Interplanetary coronal mass ejection induced forbush decrease event:a simulation study with one-dimensional stochastic differential method. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 139601.	0.5	5
467	Gas envelopes of exoplanets — hot Jupiters. Physics-Uspekhi, 2021, 64, 747-800.	2.2	10
468	Forbush Effects Created by Coronal Mass Ejections with Magnetic Clouds. Geomagnetism and Aeronomy, 2021, 61, 678-687.	0.8	7
469	Magnetic Structure and Propagation of Two Interacting CMEs From the Sun to Saturn. Journal of Geophysical Research: Space Physics, 2021, 126, .	2.4	16
470	Predicting the CME arrival time based on the recommendation algorithm. Research in Astronomy and Astrophysics, 2021, 21, 190.	1.7	4

#	Article	IF	CITATIONS
471	Comparative Analysis of the 2020 November 29 Solar Energetic Particle Event Observed by Parker Solar Probe. Astrophysical Journal, 2021, 920, 123.	4.5	12
472	Earth-affecting solar transients: a review of progresses in solar cycle 24. Progress in Earth and Planetary Science, 2021, 8, 56.	3.0	56
473	Fieldâ€Aligned and Ionospheric Currents by AMPERE and SuperMAG During HSS/SIRâ€Driven Storms. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029437.	2.4	5
474	The Heliospheric Magnetic Field. Space Sciences Series of ISSI, 2011, , 177-215.	0.0	0
475	Statistical Study of ICMEs and Their Sheaths During Solar Cycle 23 (1996 – 2008). , 2014, , 515-535.		0
477	The Physical Processes of CME/ICME Evolution. Space Sciences Series of ISSI, 2017, , 165-225.	0.0	0
478	Validation of the CME Geomagnetic Forecast Alerts Under the COMESEP Alert System. , 2017, , 689-702.		0
479	Geoeffective Properties of Solar Transients and Stream Interaction Regions. Space Sciences Series of ISSI, 2017, , 295-338.	0.0	2
480	A Study of the Earth-Affecting CMEs of Solar Cycle 24. , 2017, , 7-26.		0
481	Characterization of the Complex Ejecta Measured In Situ on 19 – 22 March 2001 by Six Different Methods. , 2017, , 323-345.		0
482	Origin and Ion Charge State Evolution of Solar Wind Transients during 4 – 7 August 2011. , 2017, , 281-309.		0
483	Earth-Affecting Coronal Mass Ejections Without Obvious Low Coronal Signatures. , 2017, , 153-178.		0
484	Investigation of the Geoeffectiveness of Disk-Centre Full-Halo Coronal Mass Ejections. , 2017, , 59-78.		0
485	Geomagnetic Effects of Corotating Interaction Regions. , 2017, , 577-596.		0
486	Deflection and Rotation of CMEs from Active Region 11158. , 2017, , 137-151.		0
487	Statistical Analysis of Solar Events Associated with Storm Sudden Commencements over One Year of Solar Maximum During Cycle 23: Propagation from the Sun to the Earth and Effects. , 2018, , 377-438.		0
488	Fitting and Reconstruction of Thirteen Simple Coronal Mass Ejections. , 2018, , 565-575.		0
489	Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations. , 2018, , 27-57.		1

#	Article	IF	CITATIONS
490	Correlation Between the Magnetic Field and Plasma Parameters at 1 AU. , 2018, , 621-633.		0
491	Fe/O ratio behavior as an indicator of solar plasma state at different solar activity manifestations and in periods of their absence. SolneÄno-zemnaâ Fizika, 2018, 4, 29-50.	0.9	0
492	Fe/O ratio behavior as an indicator of solar plasma state at different solar activity manifestations and in periods of their absence. SolneÄno-zemnaâ Fizika, 2018, , 33-58.	0.2	0
493	Recurrent and sporadic Forbush decreases during solar cycles 23–24. SolneÄno-zemnaâ Fizika, 2019, 5, 39-47.	0.2	1
494	Development of a formalism for computing in situ transits of Earth-directed CMEs – Part 2: Towards a forecasting tool. Annales Geophysicae, 2020, 38, 657-681.	1.6	2
495	On the Production of He ⁺ of Solar Origin in the Solar Wind. Astrophysical Journal, 2020, 899, 11.	4.5	9
496	Outer Van Allen belt trapped and precipitating electron flux responses to two interplanetary magnetic clouds of opposite polarity. Annales Geophysicae, 2020, 38, 931-951.	1.6	4
497	Comparative Analyses of Plasma Properties and Composition in Two Types of Small-scale Interplanetary Flux-ropes. Astrophysical Journal Letters, 2020, 899, L29.	8.3	5
498	Categorization of Coronal Mass Ejection-driven Sheath Regions: Characteristics of STEREO Events. Astrophysical Journal, 2021, 921, 57.	4.5	8
499	Polar Mesosphere Summer Echoes and Possible Signatures of Pulsating Aurora Detected by the Meteor Radar. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028855.	2.4	1
500	Magnetohydrodynamic Turbulent Evolution of a Magnetic Cloud in the Outer Heliosphere. Astrophysical Journal Letters, 2020, 905, L12.	8.3	10
501	Solar Origin of Bare Ion Anomalies in the Solar Wind and Interplanetary Coronal Mass Ejections. Astrophysical Journal, 2021, 921, 93.	4.5	10
502	Understanding the Origins of Problem Geomagnetic Storms Associated with "Stealth―Coronal Mass Ejections. Space Science Reviews, 2021, 217, 82.	8.1	25
503	A Simple Technique for Identifying the Propagation Direction of CMEs in 3D Space. Solar Physics, 2021, 296, 1.	2.5	2
504	Domain of Influence Analysis: Implications for Data Assimilation in Space Weather Forecasting. Frontiers in Astronomy and Space Sciences, 2020, 7, .	2.8	3
505	Behavior of the Speed and Temperature of the Solar Wind during Interplanetary Disturbances Creating Forbush Decreases. Geomagnetism and Aeronomy, 2020, 60, 521-529.	0.8	7
506	Solar wind temperature–velocity relationship over the last five solar cycles and Forbush decreases associated with different types of interplanetary disturbance. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2786-2797.	4.4	8
507	Uncovering the process that transports magnetic helicity to coronal mass ejection flux ropes. Advances in Space Research, 2022, 70, 1601-1613.	2.6	8

#	Article	IF	Citations
509	Origin of Extremely Intense Southward Component of Magnetic Field (Bs) in ICMEs. Frontiers in Physics, 2021, 9, .	2.1	4
511	Variable X-Ray Emission of Comet 46P/Wirtanen. Planetary Science Journal, 2021, 2, 224.	3.6	3
512	Solar EUVâ€enhancement and thermospheric disturbances. Space Weather, 2021, 19, e2021SW002840.	3.7	1
514	Different Sporadicâ€E (Es) Layer Types Development During the August 2018 Geomagnetic Storm: Evidence of Auroral Type (Es _a) Over the SAMA Region. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	10
515	Probabilistic hazard assessment: Application to geomagnetic activity. Journal of Space Weather and Space Climate, 2022, 12, 4.	3.3	1
516	Modeling the Lunar Wake Response to a CME Using a Hybrid PIC Model. Planetary Science Journal, 2022, 3, 4.	3.6	0
517	Generic profile of a long-lived corotating interaction region and associated recurrent Forbush decrease. Astronomy and Astrophysics, 2022, 658, A187.	5.1	8
518	Parameter Distributions for the Dragâ€Based Modeling of CME Propagation. Space Weather, 2022, 20, .	3.7	7
519	Comparison of Helium Abundance between ICMEs and Solar Wind near 1 au. Astrophysical Journal, 2022, 925, 137.	4.5	5
520	Charge State Calculation for Global Solar Wind Modeling. Astrophysical Journal, 2022, 926, 35.	4.5	8
521	The Extended Field-aligned Suprathermal Proton Beam and Long-lasting Trapped Energetic Particle Population Observed Upstream of a Transient Interplanetary Shock. Astrophysical Journal, 2022, 925, 198.	4.5	6
522	Phase Space Density Analysis of Outer Radiation Belt Electron Energization and Loss During Geoeffective and Nongeoeffective Sheath Regions. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	2
523	RU-net: A Residual U-net for Automatic Interplanetary Coronal Mass Ejection Detection. Astrophysical Journal, Supplement Series, 2022, 259, 8.	7.7	2
524	Magnetograph Saturation and the Open Flux Problem. Astrophysical Journal, 2022, 926, 113.	4.5	14
525	Exploring the Origin of Stealth Coronal Mass Ejections with Magnetofrictional Simulations. Solar Physics, 2022, 297, 1.	2.5	2
526	The Frequencyâ€Domain Characterization of Cosmic Ray Intensity Variations Before Forbush Decreases Associated With Geomagnetic Storms. Space Weather, 2022, 20, .	3.7	1
527	Causes and Consequences of Magnetic Complexity Changes within Interplanetary Coronal Mass Ejections: A Statistical Study. Astrophysical Journal, 2022, 927, 102.	4.5	16
528	New Findings Relating Tidal Variability and Solar Activity in the Low Latitude MLT Region. Journal of Geophysical Research: Space Physics, 2022, 127,	2.4	9

#	Article	IF	CITATIONS
529	Evidence of a complex structure within the 2013 August 19 coronal mass ejection. Astronomy and Astrophysics, 2022, 662, A45.	5.1	9
530	Preliminary investigation of the multivariate relations between program-selected forbush decreases, worldwide lightning frequency, sunspot number and other solar-terrestrial drivers. European Physical Journal Plus, 2022, 137, 1.	2.6	3
531	Influence of coronal hole morphology on the solar wind speed at Earth. Astronomy and Astrophysics, 0, , .	5.1	4
532	Dynamic Time Warping as a Means of Assessing Solar Wind Time Series. Astrophysical Journal, 2022, 927, 187.	4.5	10
533	Propagation characteristics of coronal mass ejections (CMEs) in the corona and interplanetary space. Reviews of Modern Plasma Physics, 2022, 6, 1.	4.1	12
534	Charge States, Helium Abundance, and FIP Bias of the Interplanetary CMEs Classified by Flares and Hot Channels. Astrophysical Journal, 2022, 928, 136.	4.5	3
535	Magnetosheath Jet Occurrence Rate in Relation to CMEs and SIRs. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	13
536	Interplanetary Coronal Mass Ejections from MAVEN Orbital Observations at Mars. Astrophysical Journal, 2021, 923, 4.	4.5	7
537	Resolving the Ambiguity of a Magnetic Cloud's Orientation Caused by Minimum Variance Analysis Comparing it with a Force-Free Model. Solar Physics, 2021, 296, 1.	2.5	1
538	A Catalog of Interplanetary Coronal Mass Ejections Observed by Juno between 1 and 5.4 au. Astrophysical Journal, 2021, 923, 136.	4.5	8
539	Solar Wind Anomalies at 1 au and Their Associations with Large-scale Structures. Astrophysical Journal, 2021, 923, 105.	4.5	1
540	Significant Variations of Thermospheric Nitric Oxide Cooling during the Minor Geomagnetic Storm on 6 May 2015. Universe, 2022, 8, 236.	2.5	7
541	On Modeling ICME Cross-Sections as Static MHD Columns. Solar Physics, 2022, 297, .	2.5	2
555	Impacts of CMEs on Earth Based on Logistic Regression and Recommendation Algorithm. Space: Science & Technology, 2022, 2022, .	2.5	1
556	On the utility of flux rope models for CME magnetic structure below 30 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si146.svg"><mml:mrow><mml:msub><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow>< Advances in Space Research, 2022, 70, 1614-1640.</mml:mrow></mml:msub></mml:mrow></mml:math 	26 mml : mo>â	Š™ ^c /mml:mc
557	Properties of Stormâ€Time Magnetic Flux Transport. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	1
558	Statistical associations between geomagnetic activity, solar wind, solar proton events, and winter NAO and AO indices. Earth and Space Science, 0, , .	2.6	0
559	Impact of Soft Electron Precipitation on the Thermospheric Neutral Mass Density During Geomagnetic Storms: GITM Simulations. Geophysical Research Letters, 2022, 49, .	4.0	5

#	Article	IF	CITATIONS
560	Characteristics and Geoeffectiveness of Small-scale Magnetic Flux Ropes in the Solar Wind. Journal of Astronomy and Space Sciences, 2017, 34, 237-244.	1.0	1
561	Features of the Behavior of Time Parameters of Forbush Decreases Associated with Different Types of Solar and Interplanetary Sources. Geomagnetism and Aeronomy, 2022, 62, 17-31.	0.8	4
562	The Solar Wind Parker Spiral Angle Distributions and Variations at 1 au. Astrophysical Journal, 2022, 931, 105.	4.5	11
563	Estimating the Transit Speed and Time of Arrival of Interplanetary Coronal Mass Ejections Using CME and Solar Flare Data. Universe, 2022, 8, 327.	2.5	5
564	Properties of the Geomagnetic Storm Main Phase and the Corresponding Solar Wind Parameters on 21–22 October 1999. Universe, 2022, 8, 346.	2.5	3
565	Solar Wind Charge Exchange Soft X-Ray Emissions in the Magnetosphere during an Interplanetary Coronal Mass Ejection Compared to Its Driven Sheath. Astrophysical Journal Letters, 2022, 932, L1.	8.3	6
566	Assessment of solar wind driven ionospheric storm forecasts: The case of the Solar Wind driven autoregression model for Ionospheric Forecast (SWIF). Advances in Space Research, 2023, 72, 5577-5586.	2.6	0
567	Over-expansion of coronal mass ejections modelled using 3D MHD EUHFORIA simulations. Advances in Space Research, 2022, 70, 1663-1683.	2.6	8
568	Modulation of Solar Wind Impact on the Earth's Magnetosphere during the Solar Cycle. Universe, 2022, 8, 330.	2.5	0
569	Similarities and Differences between Forbush Decreases Associated with Streams from Coronal Holes, Filament Ejections, and Ejections from Active Regions. Geomagnetism and Aeronomy, 2022, 62, 159-177.	0.8	4
570	Magnetic cloud prediction model for forecasting space weather relevant properties of Earth-directed coronal mass ejections. Astronomy and Astrophysics, 2022, 665, A110.	5.1	6
571	Periodic Solar Wind Structures Observed in Measurements of Elemental and Ionic Composition in situ at L1. Astrophysical Journal, 2022, 933, 198.	4.5	6
572	Rate of Change of Large-Scale Solar-Wind Structure. Solar Physics, 2022, 297, .	2.5	4
573	Multi-spacecraft Observations of the Evolution of Interplanetary Coronal Mass Ejections between 0.3 and 2.2 au: Conjunctions with the Juno Spacecraft. Astrophysical Journal, 2022, 933, 127.	4.5	9
574	Forbush decreases associated with coronal mass ejections from active and non-active regions: statistical comparison. Monthly Notices of the Royal Astronomical Society, 2022, 515, 4430-4444.	4.4	5
575	Depletion of Heavy Ion Abundances in Slow Solar Wind and Its Association with Quiet Sun Regions. Universe, 2022, 8, 393.	2.5	2
576	Electron Flux Variability and Ultra‣ow Frequency Wave Activity in the Outer Radiation Belt Under the Influence of Interplanetary Coronal Mass Ejections and Highâ€Speed Solar Wind Streams: A Statistical Analysis From the Van Allen Probes Era. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	1
577	Factors of geomagnetic storms during the solar cycles 23 and 24: A comparative statistical study. Scientific Research and Essays, 2022, 17, 46-56.	0.4	1

		CITATION REPORT		
#	Article		IF	CITATIONS
578	Predicting the Geoeffectiveness of CMEs Using Machine Learning. Astrophysical Journal,	2022, 934, 176.	4.5	2
579	Effects from dayside magnetosphere to distant tail unleashed by a bifurcated, non-recon interplanetary current sheet. Frontiers in Physics, 0, 10, .	necting	2.1	1
580	Solar Energetic Particle Events and Forbush Decreases Driven by the Same Solar Sources 2022, 8, 403.	. Universe,	2.5	1
581	Solar Energetic-Particle Ground-Level Enhancements and the Solar Cycle. Solar Physics, 2	022, 297, .	2.5	4
582	Review of Environmental Monitoring by Means of Radio Waves in the Polar Regions: Fror to Geospace. Surveys in Geophysics, 2022, 43, 1609-1698.	n Atmosphere	4.6	2
583	A Semi-empirical Approach to the Dynamic Coupling of CMEs and Solar Wind. Astrophys 2022, 937, 24.	ical Journal,	4.5	0
584	Manifestation of Gravitational Settling in Coronal Mass Ejections Measured in the Helios Astrophysical Journal, 2022, 936, 83.	phere.	4.5	8
585	Investigating the Asymmetry of Magnetic Field Profiles of "Simple―Magnetic Ejecta Expansion-modified Flux Rope Model. Astrophysical Journal, 2022, 937, 86.	through an	4.5	1
586	Automatic Detection of Interplanetary Coronal Mass Ejections in Solar Wind In Situ Data Weather, 0, , .	. Space	3.7	0
587	North–South IMF Disturbance Detection via an Adaptive Filter Approach. Atmosphere,	2022, 13, 1482.	2.3	0
588	Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Influence of the Solar Activity Decrease. Universe, 2022, 8, 472.	Analysis: 5.	2.5	8
589	The role of the inner radiation belt dynamic in the generation of auroral-type sporadic E-la south American magnetic anomaly. Frontiers in Astronomy and Space Sciences, 0, 9, .	ayers over	2.8	6
590	Predicting CME arrival time through data integration and ensemble learning. Frontiers in and Space Sciences, 0, 9, .	Astronomy	2.8	7
591	Near-Earth Interplanetary Coronal Mass Ejections and Their Association with DH Type II R During Solar Cycles 23 and 24. Solar Physics, 2022, 297, .	adio Bursts	2.5	4
592	The State of the White-Light Corona over the Minimum and Ascending Phases of Solar C 25 – Comparison with Past Cycles. Solar Physics, 2022, 297, .	ycle	2.5	2
593	Dependence of radiation belt flux depletions at geostationary orbit on different solar drivintense geomagnetic storms. Frontiers in Astronomy and Space Sciences, 0, 9, .	vers during	2.8	1
594	Statistical Plasma Properties of the Planar and Nonplanar ICME Magnetic Clouds during S 23 and 24. Astrophysical Journal, 2022, 938, 146.	Solar Cycles	4.5	10
595	Modeling of Solar Wind Disturbances Associated with Coronal Mass Ejections and Verific Forecast Results. Universe, 2022, 8, 565.	ation of the	2.5	4

#	Article	IF	CITATIONS
596	Association of the Main Phase of the Geomagnetic Storms in Solar Cycles 23 and 24 With Corresponding Solar Wind″MF Parameters. Journal of Geophysical Research: Space Physics, 2022, 127, .	2.4	5
597	Impulse-driven oscillations of the near-Earth's magnetosphere. Annales Geophysicae, 2022, 40, 641-663.	1.6	1
598	Characterizing the specific energy and pressure in near-Earth magnetic clouds. Astronomy and Astrophysics, 0, , .	5.1	0
599	Multi-Spacecraft Observations of an Interplanetary Coronal Mass Ejection Interacting with Two Solar-Wind Regimes Observed by the Ulysses and Twin-STEREO Spacecraft. Solar Physics, 2022, 297, .	2.5	2
600	The Solar Cycle Dependence of In Situ Properties of Two Types of Interplanetary CMEs during 1999–2020. Astrophysical Journal, 2022, 940, 103.	4.5	4
601	On the importance of investigating CME complexity evolution during interplanetary propagation. Frontiers in Astronomy and Space Sciences, 0, 9, .	2.8	3
602	Interior Heating of Rocky Exoplanets from Stellar Flares with Application to TRAPPIST-1. Astrophysical Journal Letters, 2022, 941, L7.	8.3	6
603	Polytropic Behavior in the Structures of Interplanetary Coronal Mass Ejections. Astrophysical Journal Letters, 2022, 941, L26.	8.3	3
604	Upstream Solar Wind Prediction up to Mars by an Operational Solar Wind Prediction System. Space Weather, 2023, 21, .	3.7	1
605	Further investigation of the effect of upstream solar-wind fluctuations on solar-wind/magnetosphere coupling: Is the effect real?. Frontiers in Astronomy and Space Sciences, 0, 9, .	2.8	3
606	The 14 December 2020 total solar eclipse effects on geomagnetic field variations and plasma density over South America. Journal of Geophysical Research: Space Physics, 0, , .	2.4	0
607	Detailed composition of iron ions in interplanetary coronal mass ejections based on a multipopulation approach. Astronomy and Astrophysics, 2023, 671, A63.	5.1	3
608	Statistical Comparison of Magnetic Clouds with Non-magnetic Clouds in Interplanetary Coronal Mass Ejections for Solar Cycle 24. Kongjian Kexue Xuebao, 2017, 37, 381.	0.4	1
609	Cosmic ray cutoff rigidity governing by solar wind and magnetosphere parameters during the 2017 Sep 6–9 solar-terrestrial event. Journal of Atmospheric and Solar-Terrestrial Physics, 2023, 246, 106067.	1.6	1
610	Characterizing In-Situ Solar Wind Observations Using Clustering Methods. Communications in Computer and Information Science, 2022, , 125-138.	0.5	0
611	Parker Solar Probe: Four Years of Discoveries at Solar Cycle Minimum. Space Science Reviews, 2023, 219, .	8.1	41
612	Interplanetary Scintillation Observations of Solar-Wind Disturbances During Cycles 23 and 24. Solar Physics, 2023, 298, .	2.5	1
613	Study on Geoeffectiveness of Interplanetary Coronal Mass Ejections by Support Vector Machine ormalsize. Kongjian Kexue Xuebao, 2019, 39, 295.	0.4	1

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
614	Twisted Coronal Mass Ejection on 4 August 2011. Kongjian Kexue Xuebao, 2019, 39, 591.	0.4	0
615	A machine learning-based model for the next 3-day geomagnetic index (Kp) forecast. Frontiers in Astronomy and Space Sciences, 0, 10, .	2.8	4
616	Additional flight delays and magnetospheric–ionospheric disturbances during solar storms. Scientific Reports, 2023, 13, .	3.3	3
617	Interaction of a coronal mass ejection and a stream interaction region: A case study. Astronomy and Astrophysics, 2023, 672, A168.	5.1	1
618	Development of Forbush Decreases Associated with Coronal Ejections from Active Regions and non-Active Regions. Geomagnetism and Aeronomy, 2022, 62, S40-S53.	0.8	2
619	Comparison of the Composition of ICMEs from Active Regions and Quiet-Sun Regions. Astrophysical Journal, 2023, 945, 163.	4.5	2
620	Statistical comparison of time profiles of Forbush decreases associated with coronal mass ejections and streams from coronal holes in solar cycles 23–24. Monthly Notices of the Royal Astronomical Society, 2023, 521, 4544-4560.	4.4	1
621	Double Superposed Epoch Analysis of Geomagnetic Storms and Corresponding Solar Wind and IMF in Solar Cycles 23 and 24. Space Weather, 2023, 21, .	3.7	3
622	Propagation of coronal mass ejections from the Sun to the Earth. Journal of Astrophysics and Astronomy, 2023, 44, .	1.0	4
623	Magnetosheath Jet Formation Influenced by Parameters in Solar Wind Structures. Journal of Geophysical Research: Space Physics, 2023, 128, .	2.4	5
624	L1 and Off Sunâ€Earth Line Visibleâ€Light Imaging of Earthâ€Directed CMEs: An Analysis of Inconsistent Observations. Space Weather, 2023, 21, .	3.7	0
625	Earth's magnetotail variability during supersubstorms (SSSs): A study on solar wind–magnetosphere–ionosphere coupling. Advances in Space Research, 2023, 72, 1208-1223.	2.6	0
626	Statistical Analysis of Interplanetary Shocks from Mercury to Jupiter. Solar Physics, 2023, 298, .	2.5	4
627	Space Weather in the Saturn–Titan System. Astrophysical Journal, 2023, 948, 37.	4.5	0
628	Dynamical Response of Solar Wind Charge Exchange Soft X-Ray Emission in Earth's Magnetosphere to the Solar Wind Proton Flux. Astrophysical Journal, 2023, 948, 69.	4.5	1
629	Forecasting the transit times of earth-directed halo CMEs using artificial neural network: A case study application with GCS forward-modeling technique. Journal of Atmospheric and Solar-Terrestrial Physics, 2023, 247, 106080.	1.6	2
630	Search for Solar Sources of Interplanetary Coronal Mass Ejections Using the Reverse Model of Magnetodynamic Interaction of the Solar Wind in the Heliosphere. Astronomy Reports, 2023, 67, 280-287.	0.9	0
631	Investigating the variations in the composition and heating of interacting ICMEs. Frontiers in Astronomy and Space Sciences, 0, 10, .	2.8	0

ARTICLE IF CITATIONS # Rotation and interaction of the CMEs of September 8 and 10, 2014, tested with EUHFORIA. Astronomy 632 5.1 7 and Astrophysics, 2023, 675, A136. Properties of Forbush Decreases with AMS-02 Daily Proton Flux Data. Astrophysical Journal, 2023, 950, 4.5 23. High-energy (>40 MeV) Proton Intensity Enhancements Associated with the Passage of 634 4.5 1 Interplanetary Shocks at 1 au. Astrophysical Journal, 2023, 950, 89. Unrestricted Solar Energetic Particle Access to the Moon While Within the Terrestrial Magnetotail. 636 4.0 1 Geophysical Research Letters, 2023, 50, . The Dynamic Evolution of Multipoint Interplanetary Coronal Mass Ejections Observed with 8.3 BepiColombo, Tianwen-1, and MAVEN. Astrophysical Journal Letters, 2023, 951, L14. The S-Web Origin of Composition Enhancement in the Slow-to-moderate Speed Solar Wind. 638 4.5 3 Astrophysical Journal, 2023, 949, 14. CME propagation through the heliosphere: Status and future of observations and model development. 2.6 Advances in Space Research, 2023, ,. Possible connection between solar activity and local seismicity. Terrestrial, Atmospheric and Oceanic 640 0 0.6 Sciences, 2023, 34, . Evolution of the Radial Size and Expansion of Coronal Mass Ejections Investigated by Combining 641 4.5 Remote and In Situ Observations. Astrophysical Journal, 2023, 952, 7. The Eastâ€West Asymmetry of Particle Intensity in Energetic Storm Particle Events. Journal of 642 2.4 1 Geophysical Research: Space Physics, 2023, 128, . Correlations between space weather parameters during intense geomagnetic storms: Analytical study. Advances in Space Research, 2023, 72, 3440-3453. Scope and limitations of ad hoc neural network reconstructions of solar wind parameters. 644 5.1 0 Astronomy and Astrophysics, 0, , . Comparing Energetic Storm Particle Heavy-ion Properties in Solar Cycles 23 and 24. Astrophysical Journal, 2023, 953, 176. 645 4.5 Key Signatures of Prominence Materials and Category of Cold Materials Identified by Random Forest 647 0 7.7 Classifier. Astrophysical Journal, Supplement Series, 2023, 268, 25. Annual Variations in the Near-Earth Solar Wind. Solar Physics, 2023, 298, . 648 Magnetospheric Response to a Pressure Pulse in a Threeâ€Dimensional Hybridâ€Vlasov Simulation. Journal 649 2.4 0 of Geophysical Research: Space Physics, 2023, 128, . Occurrence of heavy precipitation influenced by solar wind high-speed streams through vertical 2.8 atmospheric coupling. Frontiers in Astronomy and Space Sciences, 0, 10, .

#	Article	IF	CITATIONS
651	Three-day Forecasting of Solar Wind Speed Using SDO/AIA Extreme-ultraviolet Images by a Deep-learning Model. Astrophysical Journal, Supplement Series, 2023, 267, 45.	7.7	1
652	Turbulent Origins of Particle Intensity Dropout in Gradual Solar Energetic Particle Events During Solar Cycle 23. Astrophysical Journal, 2023, 954, 26.	4.5	0
653	Physics-driven Machine Learning for the Prediction of Coronal Mass Ejections' Travel Times. Astrophysical Journal, 2023, 954, 151.	4.5	2
654	Studying the polytropic behavior of an ICME using Multi-spacecraft observation by STEREO-A, STEREO-B, and WIND. Advances in Space Research, 2024, 73, 1064-1072.	2.6	1
655	Solar Energetic-Particle-Associated Coronal Mass Ejections Observed by the Mauna Loa Solar Observatory Mk3 and Mk4 Coronameters. Solar Physics, 2023, 298, .	2.5	0
656	Proton Temperature Anisotropy within the Interplanetary Coronal Mass Ejections Sheath at 1 au. Astrophysical Journal Letters, 2023, 955, L5.	8.3	0
657	3D MHD Time-dependent Charge State Ionization and Recombination Modeling of the Bastille Day Coronal Mass Ejection. Astrophysical Journal, 2023, 955, 65.	4.5	2
658	Diurnal variability of the magnetospheric convective electric field (MCEF) from 1996 to 2019: Comparative investigation into the signatures of the geoeffectiveness of coronal mass ejections and magnetic clouds. Scientific Research and Essays, 2023, 18, 45-55.	0.4	0
659	The role of extreme geomagnetic storms in the Forbush decrease profile observed by neutron monitors. Journal of Atmospheric and Solar-Terrestrial Physics, 2023, 252, 106146.	1.6	1
660	Prediction of the Transit Time of Coronal Mass Ejections with an Ensemble Machine-learning Method. Astrophysical Journal, Supplement Series, 2023, 268, 69.	7.7	0
661	An Empirical Model for Estimating the Velocities and Delays of Interplanetary Coronal Mass Ejections. Geomagnetism and Aeronomy, 2023, 63, 564-573.	0.8	0
662	The Contribution and FIP Bias of Three Types of Materials inside ICMEs Associated with Different Flare Intensities. Astrophysical Journal, 2023, 956, 129.	4.5	0
663	East–West Asymmetry in Interplanetary-Scintillation-Level Variation Associated with Solar-Wind Disturbances. Solar Physics, 2023, 298, .	2.5	0
664	Highâ€Energy Electron Flux Enhancement Pattern in the Outer Radiation Belt in Response to the Interplanetary Coronal Mass Ejections. Journal of Geophysical Research: Space Physics, 2023, 128, .	2.4	0
665	The Variation of Ionospheric O ⁺ and H ⁺ Outflow on Storm Timescales. Journal of Geophysical Research: Space Physics, 2023, 128, .	2.4	0
666	Unraveling the Thermodynamic Enigma between Fast and Slow Coronal Mass Ejections. Astrophysical Journal, 2023, 958, 92.	4.5	0
667	A Comparative Study of Ground-level Enhancement Events of Solar Energetic Particles. Astrophysical Journal, 2023, 958, 122.	4.5	3
668	Combining STEREO heliospheric imagers and Solar Orbiter to investigate the evolution of the 2022 March 10 CME. Astronomy and Astrophysics, 2024, 682, A107.	5.1	0

#	Article	IF	CITATIONS
669	Magnetic Cavities in the Solar Wind, Their Influence on the Bow Shock Position and Geomagnetic Activity. , 2023, 5, 75-90.		0
670	A Bayesian approach to the drag-based modelling of ICMEs. Journal of Space Weather and Space Climate, 0, , .	3.3	0
671	The Effect of Magnetic Field Line Topology on ICME-related GCR Modulation. Astrophysical Journal, 2023, 959, 133.	4.5	0
672	Kilometric Type II Radio Emissions in Wind/WAVES TNR Data and Association with Interplanetary Structures Near Earth. Solar Physics, 2023, 298, .	2.5	0
673	Forbush Decreases and Geomagnetic Disturbances: 1. Events Associated with Different Types of Solar and Interplanetary Sources. Geomagnetism and Aeronomy, 2023, 63, 686-700.	0.8	1
674	On the Role of Alfvénic Fluctuations as Mediators of Coherence within Interplanetary Coronal Mass Ejections: Investigation of Multi-spacecraft Measurements at 1 au. Astrophysical Journal, 2024, 961, 135.	4.5	0
675	The Radial Interplanetary Field Strength at Sunspot Minimum as Polar Field Proxy and Solar Cycle Predictor. Astrophysical Journal Letters, 2024, 961, L27.	8.3	0
676	A new method of measuring Forbush decreases. Astronomy and Astrophysics, 2024, 683, A168.	5.1	0
677	The Width of Magnetic Ejecta Measured near 1 au: Lessons from STEREO-A Measurements in 2021–2022. Astrophysical Journal, 2024, 962, 193.	4.5	0
678	Classification of Enhanced Geoeffectiveness Resulting from High-speed Solar Wind Streams Compressing Slower Interplanetary Coronal Mass Ejections. Astrophysical Journal Letters, 2024, 963, L25.	8.3	0
679	EUHFORIA modelling of the Sun-Earth chain of the magnetic cloud of 28 June 2013. Astronomy and Astrophysics, 2024, 683, A28.	5.1	0
680	On the Mesoscale Structure of Coronal Mass Ejections at Mercury's Orbit: BepiColombo and Parker Solar Probe Observations. Astrophysical Journal, 2024, 963, 108.	4.5	0
681	Main Time Characteristics of Cosmic Ray Variations and Related Parameters in Magnetic Clouds. Geomagnetism and Aeronomy, 2024, 64, 24-31.	0.8	0
682	CME Arrival Time Prediction via Fusion of Physical Parameters and Image Features. Astrophysical Journal, Supplement Series, 2024, 271, 31.	7.7	0
683	CME Arrival Modeling with Machine Learning. Astrophysical Journal, 2024, 963, 121.	4.5	0
684	Helium Abundance Periods Observed by the Solar Probe Cup on Parker Solar Probe: Encounters 1–14. Astrophysical Journal, 2024, 964, 81.	4.5	0
685	Correlation of Coronal Mass Ejection Shock Temperature with Solar Energetic Particle Intensity. Astrophysical Journal, 2024, 964, 114.	4.5	0