One-pot synthesis of oleic acid-capped cadmium chalco

Journal of Nanoparticle Research 12, 101-109 DOI: 10.1007/s11051-008-9581-y

Citation Report

#	Article	IF	CITATIONS
1	Surface Treatment of CdSe Nanoparticles for Application in Hybrid Solar Cells: The Effect of Multiple Ligand Exchange with Pyridine. Journal of Physical Chemistry C, 2010, 114, 12784-12791.	1.5	194
2	One-pot synthesis of oleic acid-capped cadmium chalcogenides (CdE: EÂ=ÂSe, Te) nano-crystals. Journal of Nanoparticle Research, 2010, 12, 101-109.	0.8	17
3	Effects of mercaptopropionic acid as a stabilizing agent and Cd:Te ion ratio on CdTe and CdHgTe quantum dots properties. Journal of Materials Science: Materials in Electronics, 2012, 23, 1938-1943.	1.1	12
4	Growth kinetics of CdSe quantum dots generated in polar polymers. Dalton Transactions, 2012, 41, 14354.	1.6	4
5	Electrocatalysis for Polymer Electrolyte Fuel Cells: Recent Achievements and Future Challenges. ACS Catalysis, 2012, 2, 864-890.	5.5	728
6	Spray-assisted silar deposition of cadmium sulphide quantum dots on metal oxide films for excitonic solar cells. Journal of Power Sources, 2013, 240, 736-744.	4.0	19
7	Steric effects of carboxylic capping ligands on the growth of the CdSe quantum dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 439-449.	2.3	30
8	Ferroelectric Particles Generated through a Simple, Room-Temperature Treatment of CdSe Quantum Dots. Chemistry of Materials, 2015, 27, 3817-3820.	3.2	5
9	Enhancing luminescence of ZnO quantum dots by PEG and oleic acid via a sol–gel method. Journal of Materials Science: Materials in Electronics, 2015, 26, 1113-1118.	1.1	23
10	Holmium acetylacetonate, a compatibilizer between ZnO quantum dots and epoxy resin. Optical Materials Express, 2016, 6, 1757.	1.6	1
11	Surface defect modification of ZnO quantum dots based on rare earth acetylacetonate and their impacts on optical performance. Applied Surface Science, 2017, 398, 97-102.	3.1	8
12	Facile Synthesis of Ternary Alloy of CdSe1-xSx Quantum Dots with Tunable Absorption and Emission of Visible Light. Nanomaterials, 2018, 8, 979.	1.9	10
13	Solution-processed p-type nanocrystalline CoO films for inverted mixed perovskite solar cells. Journal of Colloid and Interface Science, 2020, 573, 78-86.	5.0	19
14	An insight into the surface engineering of colloidal PbSe quantum dots for polymer hybrid photovoltaic applications. Journal of Sol-Gel Science and Technology, 2021, 99, 295-314.	1.1	1
15	Dielectric properties of poly-(3-octylthiophene) thin films mixed with oleic acid capped cadmium selenide nanoparticles. RSC Advances, 2020, 10, 45139-45148.	1.7	2
16	Molecular Dynamics Simulation of Zno-Quantum-Dot Modification by Polyethylene Glycol and Oleic Acid. SSRN Electronic Journal, 0, , .	0.4	0