CITATION REPORT List of articles citing

Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments

DOI: 10.1007/s11831-010-9040-7 Archives of Computational Methods in Engineering, 2010, 17, 25-76.

Source: https://exaly.com/paper-pdf/47924673/citation-report.pdf

Version: 2024-04-09

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1169	Numerical Methods. 2010 , 50, 877-892		2
1168	Study on Particle Inconsistency Problem in Smoothed Particle Hydrodynamics. 2011 , 94-96, 1638-1641		1
1167	Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination. 2011 ,		46
1166	Simulation of mould filling process using smoothed particle hydrodynamics. 2011 , 21, 2684-2692		15
1165	A New Solid Boundary Treatment Algorithm For Smoothed Particle Hydrodynamics. 2011 ,		
1164	A 2D+t SPH model to study the breaking wave pattern generated by fast ships. 2011 , 27, 1199-1215		48
1163	Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics. 2011 , 408, 78-90		88
1162	K2_SPH method and its application for 2-D water wave simulation. 2011 , 10, 399-412		2
1161	Improved Incompressible Smoothed Particle Hydrodynamics method for simulating flow around bluff bodies. 2011 , 200, 1008-1020		93
1160	On some aspects of the CNEM implementation in 3D in order to simulate high speed machining or shearing. 2011 , 89, 940-958		19
1159	Numerical study of the flowing sequence of a pouring liquid. 2011 , 54, 1514-1519		3
1158	Numerical modeling of Kelvin⊞elmholtz instability using smoothed particle hydrodynamics. 2011 , 87, 988-1006		47
1157	Lattice Boltzmann modeling of pore-scale fluid flow through idealized porous media. 2011 , 67, 1720-17	734	43
1156	SPH truncation error in estimating a 3D function. 2011 , 44, 279-296		21
1155	NUMERICAL SIMULATION FOR SHOT-PEENING BASED ON SPH-COUPLED FEM. 2011 , 08, 731-745		4
1154	Numerical Simulation of Solidification by SPH in Sand Cast Process. 2011 , 314-316, 614-619		
1153	FRACTURE OF THIN PIPES WITH SPH SHELL FORMULATION. 2011 , 08, 369-395		11

1152 Staggered meshless solid-fluid coupling. 2012 , 31, 1-12	20
A STABILIZED PARTICLE METHOD FOR LARGE DEFORMATION DYNAMIC ANALYSIS OF STRUCTURES. 2012 , 12, 1250026	2
1150 SPH-Based Real-Time Wall-Fountain Simulation. 2012 ,	
EFFECT OF ELEVATED TEMPERATURE ON CONCRETE STRUCTURES BY BOUNDARY ELEMEN 2012 , 09, 1240014	NTS. 3
1148 Potential of stagnant water due to dam flooding. 2012 ,	
Direct Simulation of Lateral Migration of Buoyant Particles in Channel Flow Using GPU Comp 2012 ,	outing. 4
1146 Modeling Spray Formation in Gas Turbines: A New Meshless Approach. 2012 ,	
1145 Impact & Energy Absorption of Road Safety Barriers by Coupled SPH/FEM. 2012 , 3, 257-273	8
1144 NUMERICAL SIMULATION OF BALLAST WATER BY SPH METHOD. 2012 , 09, 1240002	13
$_{1143}$ Free-surface flow interactions with deformable structures using an SPHBEM model. 2012 , 5	- 426 4 47
-	5, 136-14/ 102
1142 SPH modeling of multiphase drop dynamics. 2012 ,	5, 136-147 102
••	
SPH modeling of multiphase drop dynamics. 2012, Nonlinear waves and wave-structure interactions in marine hydrodynamicsRecent progress.	2012 1
SPH modeling of multiphase drop dynamics. 2012 , Nonlinear waves and wave-structure interactions in marine hydrodynamicsRecent progress., 55, 3253-3256 Numerical Investigation of the Pouring Process of Liquid From an Open-Top Hydrostatic Col	2012 ₁ umn.
SPH modeling of multiphase drop dynamics. 2012, Nonlinear waves and wave-structure interactions in marine hydrodynamicsRecent progress., 55, 3253-3256 Numerical Investigation of the Pouring Process of Liquid From an Open-Top Hydrostatic Col 2012, Three-phase 3D modelling of a laser cutting process using smoothed particle hydrodynamics	2012 umn. s (SPH).
SPH modeling of multiphase drop dynamics. 2012, Nonlinear waves and wave-structure interactions in marine hydrodynamicsRecent progress., 55, 3253-3256 Numerical Investigation of the Pouring Process of Liquid From an Open-Top Hydrostatic Col 2012, Three-phase 3D modelling of a laser cutting process using smoothed particle hydrodynamics 2012,	2012 umn. s (SPH).
Nonlinear waves and wave-structure interactions in marine hydrodynamicsRecent progress. Nonlinear waves and wave-structure interactions in marine hydrodynamicsRecent progress. 55, 3253-3256 Numerical Investigation of the Pouring Process of Liquid From an Open-Top Hydrostatic Col 2012, Three-phase 3D modelling of a laser cutting process using smoothed particle hydrodynamics 2012, Mesoscale Simulation of Proton Transport in Proton Exchange Membranes. 2012, 116, 10476	2012 ₁ umn. s (SPH). 6-10489 48

1134	Simulation of surface-tension-driven interfacial flow with smoothed particle hydrodynamics method. 2012 , 59, 61-71	23
1133	An improved SPH method for modeling liquid sloshing dynamics. 2012 , 100-101, 18-26	147
1132	Particle packing algorithm for SPH schemes. 2012 , 183, 1641-1653	125
1131	Verification and validation of the Optimal Transportation Meshfree (OTM) simulation of terminal ballistics. 2012 , 42, 25-36	33
1130	A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows. 2012 , 47, 626-638	62
1129	Modelacili numlica de deslizamientos de ladera en embalses mediante el Mlodo de Partilulas y Elementos Finitos (PFEM). 2012 , 28, 112-123	9
1128	Numerical simulation of 3D-unsteady viscoelastic free surface flows by improved smoothed particle hydrodynamics method. 2012 , 177-178, 109-120	33
1127	Numerical modeling of dambreak-induced flood and inundation using smoothed particle hydrodynamics. 2012 , 448-449, 232-244	50
1126	Modeling low Reynolds number incompressible flows with curved boundaries using SPH. 2012 , 68, 1173-1188	6
1125	A robust weakly compressible SPH method and its comparison with an incompressible SPH. 2012 , 89, 939-956	118
1124	On the treatment of solid boundary in smoothed particle hydrodynamics. 2012 , 55, 244-254	91
1123	Examining a modified algorithm of smoothed particle hydrodynamics for a high velocity perforation of an aluminum beam. 2013 , 48, 1623-1636	1
1122	A marching-on in time meshless kernel based solver for full-wave electromagnetic simulation. 2013 , 62, 541-558	14
1121	3D SPH modelling of hydraulic jump in a very large channel. 2013 , 51, 158-173	48
112 0	A mesh-free method boundary condition technique in open channel flow simulation. 2013 , 51, 174-185	19
1119	Modeling Spray Formation in Gas Turbines A New Meshless Approach. 2013, 135,	15
1118	IMPACT SIMULATIONS USING SMOOTHED FINITE ELEMENT METHOD. 2013 , 10, 1350012	3
1117	SMOOTHED FINITE ELEMENT METHODS FOR THERMO-MECHANICAL IMPACT PROBLEMS. 2013 , 10, 1340010	4

(2013-2013)

1116	A three-dimensional SPH model for detailed study of free surface deformation, just behind a rectangular planing hull. 2013 , 35, 369-380	15
1115	Numerical modeling of oil spill containment by boom using SPH. 2013 , 56, 315-321	27
1114	A Smoothed Particle Hydrodynamics method with approximate Riemann solvers for simulation of strong explosions. 2013 , 88, 418-429	17
1113	SPH-based numerical simulations of flow slides in municipal solid waste landfills. 2013 , 31, 256-64	25
1112	A SPH-based particle method for simulating 3D transient free surface flows of branched polymer melts. 2013 , 202, 54-71	26
1111	Smoothed particle hydrodynamics modeling of linear shaped charge with jet formation and penetration effects. 2013 , 86, 77-85	35
1110	Improved Implicit SPH Method for simulating free surface flows of power law fluids. 2013 , 56, 2480-2490	7
1109	SPH simulation of selective withdrawal from microcavity. 2013 , 15, 481-490	11
1108	Numerical Study on the Influence of Different Anvils on Explosive Welding. 2013, 767, 114-119	4
1107	Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. 2013 , 184, 617-627	101
1106	Regulated tissue fluidity steers zebrafish body elongation. 2013 , 140, 573-82	92
1105	A second-order numerical method for elliptic equations with singular sources using local filter. 2013 , 26, 1398-1408	7
1104	Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method. 2013 , 25, 673-682	26
1103	Modelling of liquid sloshing with constrained floating baffle. 2013 , 122, 270-279	60
1102	Multiscale Modeling of Blood Flow: Coupling Finite Elements with Smoothed Dissipative Particle Dynamics. 2013 , 18, 2565-2574	21
1101	Numerical modeling of dam-break flood through intricate city layouts including underground spaces using GPU-based SPH method. 2013 , 25, 818-828	21
1100	SPH simulations of three-dimensional non-Newtonian free surface flows. 2013 , 256, 101-116	53
1099	An investigation into the pressure on solid walls in 2D sloshing using SPH method. 2013 , 59, 129-141	58

1098	Transient FokkerPlanckRolmogorov equation solved with smoothed particle hydrodynamics method. 2013 , 94, 535-553	12
1097	ISPH modelling of transient natural convection. 2013 , 27, 15-31	33
1096	Analysis of the discharge capacity of radial-gated spillways using CFD and ANN (Dliana Dam case study. 2013 , 51, 244-252	8
1095	Numerical simulation of large deformation in shear panel dampers using smoothed particle hydrodynamics. 2013 , 48, 245-254	21
1094	Direct numerical simulation of pore-scale flow in a bead pack: Comparison with magnetic resonance imaging observations. 2013 , 54, 228-241	44
1093	Understanding the behaviour of pulsed laser dry and wet micromachining processes by multi-phase smoothed particle hydrodynamics (SPH) modelling. 2013 , 46, 095101	20
1092	XRPIM versus XFEM. 2013 , 10, 1340006	1
1091	Finite element reconstruction approach for on-orbit spacecraft breakup dynamics simulation and fragment analysis. 2013 , 51, 423-433	5
1090	A review of macroscopic thrombus modeling methods. 2013 , 131, 116-24	47
1089	Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations. 2013 , 51, 731-741	53
1088	A comparative study of truly incompressible and weakly compressible SPH methods for free surface incompressible flows. 2013 , 73, n/a-n/a	6
1087	Adaptive finite elements using hierarchical mesh and its application to crack propagation analysis. 2013 , 253, 1-14	13
1086	Meshless numerical modeling of brittleliscous deformation: first results on boudinage and hydrofracturing using a coupling of discrete element method (DEM) and smoothed particle hydrodynamics (SPH). 2013 , 17, 373-390	35
1085	Particle refining and coarsening method for smoothed particle hydrodynamics simulations. 2013 , 6, 015009	2
1084	Flexible and rapid animation of brittle fracture using the smoothed particle hydrodynamics formulation. 2013 , 24, 215-224	7
1083	SIMULATION OF NORMAL PERFORATION OF ALUMINUM PLATES USING AXISYMMETRIC SMOOTHED PARTICLE HYDRODYNAMICS WITH CONTACT ALGORITHM. 2013 , 10, 1350039	15
1082	Relevance of solutions to the Navier-Stokes equations for explaining groundwater flow in fractured karst aquifers. 2013 , 49, 3148-3164	13
1081	Considering Artificial Viscosity in a SPH Model for Simulation of Transom Waves. 2013 , 1,	_

1080	A MULTI-SPHERE PARTICLE NUMERICAL MODEL FOR NON-INVASIVE INVESTIGATIONS OF NEURONAL HUMAN BRAIN ACTIVITY. 2013 , 36, 143-153	11
1079	Towards a Smoothed Particle Hydrodynamics Algorithm for Shocks Through Layered Materials. 2013 ,	1
1078	Comparison between SPH and MPS Methods for Numerical Simulations of Free Surface Flow Problems. 2014 , 70, I_67-I_72	7
1077	A Multiwell Disc Appliance Used to Deliver Quantifiable Accelerations and Shear Stresses at Sonic Frequencies. 2014 , 2, 71-88	2
1076	Updated lagrangian mixed finite element formulation for quasi and fully incompressible fluids. 2014 , 54, 1583-1596	14
1075	Stress Analysis of Gear Meshing Impact Based on SPH Method. 2014 , 2014, 1-7	7
1074	Interaction of Submerged Breakwater by a Solitary Wave Using WC-SPH Method. 2014 , 2014, 1-9	
1073	Dynamic Force on an Elbow Caused by a Traveling Liquid Slug. 2014 , 136,	8
1072	Coupled Multibody Dynamics and Smoothed Particle Hydrodynamics for Predicting Liquid Sloshing for Tanker Trucks. 2014 ,	3
1071	3D Numerical Wave Basin Based on Parallelized SPH Method. 2014 ,	1
1070	Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops using smoothed particle hydrodynamics. 2014 , 90, 013021	15
1069	A comparison of conventional and shear-rate dependent Mohr-Coulomb models for simulating landslides. 2014 , 11, 1478-1490	11
1068	High-performance parallel algorithms based on smoothed particles hydrodynamics for solving continuum mechanics problems. 2014 , 90, 773-777	1
1067	MULTI-MATERIAL EULERIAN METHOD AND PARALLEL COMPUTATION FOR 3D EXPLOSION AND IMPACT PROBLEMS. 2014 , 11, 1350079	17
1066	Analysis of explosion in concrete by axisymmetric FE-SPH adaptive coupling method. 2014 , 31, 758-774	7
1065	FPM Simulations of a High-Speed Water Jet Validation with CFD and Experimental Results. 2014 , 419-431	2
1064	A High Performance Computing Approach to the Simulation of Fluid-Solid interaction Problems with Rigid and Flexible Components. 2014 , 61, 227-251	12
1063	SPH simulations of 2D transient viscoelastic flows using Brownian configuration fields. 2014 , 208-209, 59-71	22

1062	Modelling outburst floods from moraine-dammed glacial lakes. 2014 , 134, 137-159	149
1061	MODIFIED FINITE PARTICLE METHOD: APPLICATIONS TO ELASTICITY AND PLASTICITY PROBLEMS. 2014 , 11, 1350050	4
1060	A multiscale SPH particle model of the near-wall dynamics of leukocytes in flow. 2014 , 30, 83-102	11
1059	Coupling of membrane element with material point method for fluidhembrane interaction problems. 2014 , 10, 199-211	21
1058	A new class of Moving-Least-Squares WENOBPH schemes. 2014 , 270, 278-299	47
1057	CFD simulation of micro-particle trapping under water tweezers. 2014 , 2, 259-264	
1056	Simulation at Extreme-Scale: Co-Design Thinking and Practices. <i>Archives of Computational Methods in Engineering</i> , 2014 , 21, 39-58	6
1055	A matrix-form GSMITFD solver for incompressible fluids and its application to hemodynamics. 2014 , 54, 999-1012	22
1054	Tied interface grid material point method for problems with localized extreme deformation. 2014 , 70, 50-61	20
1053	A new kernel function for SPH with applications to free surface flows. 2014 , 38, 3822-3833	30
1052	An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow. 2014 , 73, 284-292	23
1051	Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. 2014 , 92, 199-208	63
1050	Numerical simulation of wave interaction with porous structures using an improved smoothed particle hydrodynamic method. 2014 , 88, 88-100	52
1049	The elastoplastic analysis of a tunnel using the EFG method: A comparison of the EFGM with FEM and FDM. 2014 , 234, 82-113	8
1048	Efficient meshless SPH method for the numerical modeling of thick shell structures undergoing large deformations. 2014 , 65, 1-13	26
1047	On the implementation of a nonlinear shell-based SPH method for thin multilayered structures. 2014 , 108, 905-914	17
1046	A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows. 2014 , 79, 56-65	44
1045	Smoothed particle hydrodynamics simulations of flow separation at bends. 2014 , 90, 138-146	13

1044 Integral Representation for Continuous Matter Fields in Granular Dynamics. **2014**, 473-480

1043 A pore-scale smoothed particle hydrodynamics model for lithium-ion batteries. 2014 , 59, 2793-2810	
1042 Advances in Hydroinformatics. 2014,	О
1041 petaPar: A Scalable Petascale Framework for Meshfree/Particle Simulation. 2014 ,	2
1040 Application of B-splines and curved geometries to boundaries in SPH. 2014 , 76, 51-68	6
1039 Geo-disaster Modeling and Analysis: An SPH-based Approach. 2014 ,	6
Numerical simulations of wave interactions with vertical wave barriers using the SPH method. 2014 , 76, 223-245	24
Analysis of rigid tire traction performance on a sandy soil by 3D finite elementdiscrete element method. 2014 , 55, 29-37	33
1036 The method of finite spheres for wave propagation problems. 2014 , 142, 1-14	25
Coupling of SPH-ALE method and finite element method for transient fluid Itructure interaction. 2014, 103, 6-17	21
Analysis of the artificial viscosity in the smoothed particle hydrodynamics modelling of regular waves. 2014 , 52, 836-848	40
A new approach to model weakly nonhydrostatic shallow water flows in open channels with smoothed particle hydrodynamics. 2014 , 519, 1010-1019	13
Modelling and animation of impact and damage with Smoothed Particle Hydrodynamics. 2014 , 30, 909-917	4
Fluid Itructure interaction analysis of full scale vehicle-barrier impact using coupled SPHEEA. 2014, 42, 26-36	11
1030 A local adaptive discretization algorithm for Smoothed Particle Hydrodynamics. 2014 , 1, 131-145	21
1029 Particles-bridging the Gap between Solids and Fluids. 2014 , 10, 161-179	3
Analysis of the residual stress and bonding mechanism in the cold spray technique using experimental and numerical methods. 2014 , 252, 15-28	55
1027 A fast numerical approach for Whipple shield ballistic limit analysis. 2014 , 93, 112-120	7

1026	ModelaciB del funcionamiento hidrDlico de los dispositivos de aireaciB de desagBs de fondo de presas mediante el mEodo de partEulas y elementos finitos. 2014 , 30, 51-59	3
1025	The numerical investigation of spreading process of two viscoelastic droplets impact problem by using an improved SPH scheme. 2014 , 53, 977-999	16
1024	An SPH model for free surface flows with moving rigid objects. 2014 , 74, 684-697	32
1023	A Numerical Investigation Into the Impact Pressures of Different Base Forms Using SPH Method. 2014 ,	
1022	Modelling of Solitary Wave Run-up on an Onshore Coastal Cliff by Smoothed Particle Hydrodynamics Method. 2015 , 116, 88-96	3
1021	A Computational Method for the Simulation of Hot Spot Formations and Detonation in Polymer-Bonded Explosives. 2015 ,	1
1020	Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity. 2015 , 92, 013021	10
1019	Coupled Multibody Dynamics and Smoothed Particle Hydrodynamics for Modeling Vehicle Water Fording. 2015 ,	2
1018	A Total Lagrangian ANCF Liquid Sloshing Approach for Multibody System Applications. 2015,	
1017	Simulating plasma production from hypervelocity impacts. 2015 , 22, 093504	29
,	Simulating plasma production from hypervelocity impacts. 2015 , 22, 093504 A Total Lagrangian ANCF Liquid Sloshing Approach for Multibody System Applications. 2015 , 10,	29 17
,	A Total Lagrangian ANCF Liquid Sloshing Approach for Multibody System Applications. 2015 , 10,	
1016	A Total Lagrangian ANCF Liquid Sloshing Approach for Multibody System Applications. 2015 , 10,	17
1016	A Total Lagrangian ANCF Liquid Sloshing Approach for Multibody System Applications. 2015 , 10, Elastic-plastic effect study in hypervelocity impact by SPH method. 2015 , 94, 04059	17
1016 1015 1014	A Total Lagrangian ANCF Liquid Sloshing Approach for Multibody System Applications. 2015, 10, Elastic-plastic effect study in hypervelocity impact by SPH method. 2015, 94, 04059 A New Boundary Treatment Method for Smoothed Particle Hydrodynamics. 2015, 126, 655-659 Use of Coupled Smooth-Particle Hydrodynamics/Lagrangian Method in the Simulation of Deformable Projectile Penetration. 2015, 6, 419-437	17 1
1016 1015 1014 1013	A Total Lagrangian ANCF Liquid Sloshing Approach for Multibody System Applications. 2015, 10, Elastic-plastic effect study in hypervelocity impact by SPH method. 2015, 94, 04059 A New Boundary Treatment Method for Smoothed Particle Hydrodynamics. 2015, 126, 655-659 Use of Coupled Smooth-Particle Hydrodynamics/Lagrangian Method in the Simulation of Deformable Projectile Penetration. 2015, 6, 419-437 An adaptive GSM-CFD solver and its application to shock-wave boundary layer interaction. 2015, 25, 1282-13	17 1
1016 1015 1014 1013	A Total Lagrangian ANCF Liquid Sloshing Approach for Multibody System Applications. 2015, 10, Elastic-plastic effect study in hypervelocity impact by SPH method. 2015, 94, 04059 A New Boundary Treatment Method for Smoothed Particle Hydrodynamics. 2015, 126, 655-659 Use of Coupled Smooth-Particle Hydrodynamics/Lagrangian Method in the Simulation of Deformable Projectile Penetration. 2015, 6, 419-437 An adaptive GSM-CFD solver and its application to shock-wave boundary layer interaction. 2015, 25, 1282-13: A kernel gradient free (KGF) SPH method. 2015, 78, 691-707	17 1 5

(2015-2015)

1008	Time Domain Simulation of Sound Waves Using Smoothed Particle Hydrodynamics Algorithm with Artificial Viscosity. 2015 , 8, 321-335	3
1007	Discrete Element Framework for Modelling Extracellular Matrix, Deformable Cells and Subcellular Components. 2015 , 11, e1004544	21
1006	Bibliography. 2015 , 145-159	
1005	Deformation of Soft Tissue and Force Feedback Using the Smoothed Particle Hydrodynamics. 2015 , 2015, 598415	4
1004	Numerical Modeling for Discrete Multibody Interaction and Multifeild Coupling Dynamics Using the SPH Method. 2015 , 2015, 1-12	
1003	SPH Simulation of Acoustic Waves: Effects of Frequency, Sound Pressure, and Particle Spacing. 2015 , 2015, 1-7	3
1002	. 2015,	3
1001	Hybrid grid-particle method for fluid mixing simulation. 2015 , 2, 233-246	9
1000	Some numerical aspects of modelling flow around hydraulic structures using incompressible SPH. 2015 , 69, 1470-1483	9
999	A Software Component Approach for GPU Accelerated Physics-Based Blood Flow Simulation. 2015 ,	1
998	Literature Review of Accelerated CFD Simulation Methods towards Online Application. 2015 , 75, 3307-3314	20
997	Prediction of Cutting Forces in High Speed Machining of Ti6Al4V Using SPH Method. 2015,	7
996	Smoothed Particle Hydrodynamics and Model-Order Reduction for Efficient Modeling of Fluid-Structure Interaction. 2015 , 48, 352-353	
995	Numerical Modeling of an Aero-Engine Bearing Chamber Using the Meshless Smoothed Particle Hydrodynamics Method. 2015 ,	5
994	The Role of the Hand During Freestyle Swimming. 2015 , 137, 111007	20
993	Comparative study of the impact resistance of thin structures. 2015 , 99, 67-72	
992	SPH-based numerical simulation of catastrophic debris flows after the 2008 Wenchuan earthquake. 2015 , 74, 1137-1151	37
991	Offshore floating vertical axis wind turbines, dynamics modelling state of the art. Part III: Hydrodynamics and coupled modelling approaches. 2015 , 46, 296-310	25

990	Mesoscale Study of Proton Transport in Proton Exchange Membranes: Role of Morphology. 2015 , 119, 1753-1762	28
989	Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel. 2015 , 47, 015511	10
988	Numerical simulation of interactions between free surface and rigid body using a robust SPH method. 2015 , 98, 32-49	84
987	Influence of explosive weight and steel thickness on behavior of steel plates. 2015 , 16, 471-477	1
986	Nonlinear hydrodynamic and real fluid effects on wave energy converters. 2015, 229, 772-794	29
985	Application of smoothed particle hydrodynamics (SPH) and pore morphologic model to predict saturated water conductivity from X-ray CT imaging in a silty loam Cambisol. 2015 , 255-256, 27-34	20
984	Element fracture technique for hypervelocity impact simulation. 2015 , 55, 2293-2304	7
983	Prognosis for ballistic sensitivity of pre-notch in metallic beam through mesh-less computation reflecting material damage. 2015 , 67-68, 192-204	10
982	Identification of critical load for scratch adhesion strength of nitride-based thin films using wavelet analysis and a proposed analytical model. 2015 , 277, 216-221	23
981	Investigation of S-SPH for Hypervelocity Impact Calculations. 2015 , 103, 585-592	2
980	SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. 2015, 105, 160-175	27
979	An algorithm to improve consistency in Smoothed Particle Hydrodynamics. 2015 , 118, 148-158	30
978	Moving Particle Level-Set (MPLS) method for incompressible multiphase flow computation. 2015 , 196, 317-334	22
977	SPH Modeling Improvements for Hypervelocity Impacts. 2015 , 103, 326-333	2
976	Hybrid multiscale simulation of a mixing-controlled reaction. 2015 , 83, 228-239	19
975	Transient solution of 3D free surface flows using large time steps. 2015 , 158, 346-354	13
974	An SPH modeling of bubble rising and coalescing in three dimensions. 2015 , 294, 189-209	124
973	Analysis of wall boundary in moving particle semi-implicit method and a novel model of fluid wall interaction. 2015 , 29, 199-214	13

(2015-2015)

97	A novel meshless numerical method for modeling progressive failure processes of slopes. 2015 , 192, 139-153	27
97	A mesh-grading material point method and its parallelization for problems with localized extreme deformation. 2015 , 289, 291-315	17
97	Smoothed particle hydrodynamics in a generalized coordinate system with a finite-deformation constitutive model. 2015 , 103, 781-797	2
96	9 Predicting abrasive wear with coupled Lagrangian methods. 2015 , 2, 51-62	8
96	8 Modelling food digestion. 2015 , 255-305	9
96	An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids. 2015 , 297, 207-220	42
96	Efficient smoothed particle hydrodynamics method for the analysis of planar structures undergoing geometric nonlinearities. 2015 , 29, 2147-2155	6
96	A Smoothed Particle Hydrodynamics model for 3D solid body transport in free surface flows. 2015 , 116, 205-228	55
96	Geometrically nonlinear analysis of two-dimensional structures using an improved smoothed particle hydrodynamics method. 2015 , 32, 779-805	22
96	Incompressible smoothed particle hydrodynamics-moving IRBFN method for viscous flow problems. 2015 , 59, 172-186	6
96	Stochastic particle level set simulations of buoyancy-driven droplets in non-Newtonian fluids. 2015 , 226, 16-31	7
96	A Modified SPH Model for Simulating Water Surface Waves. 2015 , 116, 254-261	1
96	Smoothed particle hydrodynamics modeling and simulation of foundry filling process. 2015 , 25, 2321-2330	5
95	9 Machining Process Simulations with Smoothed Particle Hydrodynamics. 2015 , 31, 94-99	10
95	8 Effect of submerged breakwater geometry on free surface by SPH. 2015 ,	
95	A sharp interface method for SPH. 2015 , 302, 469-484	29
95	6 A Review on Fluid Simulation Method for Blood Flow Representation. 2015 , 129-141	3
95	A numerical study of the effect of particle properties on the radial distribution of suspensions in pipe flow. 2015 , 108, 1-12	13

954	An SPH model for multiphase flows with complex interfaces and large density differences. 2015 , 283, 169-188	117
953	Unconditionally stable meshless integration of time-domain Maxwell curl equations. 2015 , 255, 157-164	14
952	Modified smoothed particle hydrodynamics (MSPH) for the analysis of centrifugally assisted TiC-Fe-Al2O3 combustion synthesis. 2014 , 4, 3724	8
951	Engineering molecular dynamics simulation in chemical engineering. 2015 , 121, 200-216	15
950	Numerical Methods for FluidBtructure Interaction Models of Aortic Valves. <i>Archives of Computational Methods in Engineering</i> , 2015 , 22, 595-620	48
949	PANORMUS-SPH. A new Smoothed Particle Hydrodynamics solver for incompressible flows. 2015 , 106, 185-195	11
948	Dissipative Particle Dynamics (DPD): An Overview and Recent Developments. <i>Archives of Computational Methods in Engineering</i> , 2015 , 22, 529-556	113
947	Numerical Investigations of an Implicit Leapfrog Time-Domain Meshless Method. 2015 , 62, 898-912	14
946	Multiscale Modeling of Complex Dynamic Problems: An Overview and Recent Developments. Archives of Computational Methods in Engineering, 2016, 23, 101-138	12
945	Simulation on the Self-Compacting Concrete by an Enhanced Lagrangian Particle Method. 2016 , 2016, 1-11	2
944	An improvement for coupled EFGM-RPIM method. 2016 , 39, 825-832	
943	Modeling Food Digestion in the Oral Cavity. 2016 ,	2
942	A contribution to the definition of a new method to predict the catastrophic disintegration of spacecraft after collision with large orbital debris. 2016 , 127, 95-102	1
941	A Green's discrete transformation meshfree method for simulating transient diffusion problems. 2016 , 108, 252-270	8
940	An improved KGF-SPH with a novel discrete scheme of Laplacian operator for viscous incompressible fluid flows. 2016 , 81, 377-396	23
939	A new approach for fluid dynamics simulation: The Short-lived Water Cuboid Particle model. 2016 , 540, 437-456	1
938	Simulation of three-dimensional rapid free-surface granular flow past different types of obstructions using the SPH method. 2016 , 62, 335-347	25
937	Chip morphology predictions while machining hardened tool steel using finite element and smoothed particles hydrodynamics methods. 2016 , 17, 873-885	4

936 Formation control in quadrotor swarm aggregation using Smoothed Particle Hydrodynamics. **2016**,

935	Computation of Liquid Fuel Atomization and Mixing by Means of the SPH Method: Application to a Jet Engine Fuel Nozzle. 2016 ,	7
934	Implementation of varied particle container for Smoothed Particle Hydrodynamics - based aggregation for unmanned aerial vehicle quadrotor swarm. 2016 ,	4
933	Bending modes and transition criteria for a flexible fiber in viscous flows. 2016 , 28, 1043-1048	8
932	Modeling Hypervelocity-Impact-Induced Shock Waves for Characterizing Orbital Debris-Produced Damage. 2016 , 83,	7
931	Modeling of the Deformation Dynamics of Single and Twin Fluid Droplets Exposed to Aerodynamic Loads. 2016 , 301-320	
930	Numerical investigation of microfluidic sorting of microtissues. 2016 , 72, 251-263	4
929	Numerical investigation of fragmentation initiation threshold for sphere impacting on thin wall at hypervelocity. 2016 , 230, 967-980	1
928	Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme. 2016 , 25, 020204	2
927	Smoothed Particle Hydrodynamics [Methodology. 2016 , 191-260	
926	Modeling free-surface flow in porous media with modified incompressible SPH. 2016 , 68, 75-85	29
925	SPH modeling of adhesion in fast dynamics: Application to the Cold Spray process. 2016 , 344, 211-224	11
924	Simulation of wave mitigation by coastal vegetation using smoothed particle hydrodynamics method. 2016 , 693, 012013	2
923	Enabling fast, stable and accurate peridynamic computations using multi-time-step întegration. 2016 , 306, 382-405	13
922	3D numerical simulation of debris-flow motion using SPH method incorporating non-Newtonian fluid behavior. 2016 , 81, 1981-1998	46
921	Modeling of abrasive wear by the meshless smoothed particle hydrodynamics method. 2016 , 37, 94-99	7
920	Particle dispersion in a partially filled rotating cylindrical tank. 2016 , 111, 1-12	6
919	Experimental and numerical analysis of the formation behavior of intermediate layers at explosive welded Al/Fe joint interfaces. 2016 , 24, 100-106	57

918	High-order Eulerian incompressible smoothed particle hydrodynamics with transition to Lagrangian free-surface motion. 2016 , 326, 290-311	37
917	On MaxwellBtefan diffusion in Smoothed Particle Hydrodynamics. 2016 , 103, 548-554	9
916	An improved SPH approach for simulating 3D dam-break flows with breaking waves. 2016 , 311, 723-742	29
915	Simulation of Free-Surface Flow Using the Smoothed Particle Hydrodynamics (SPH) Method with Radiation Open Boundary Conditions. 2016 , 33, 2435-2460	8
914	Plasmallquid interactions: a review and roadmap. 2016 , 25, 053002	831
913	A generalized beta finite element method with coupled smoothing techniques for solid mechanics. 2016 , 73, 103-119	20
912	Unified modelling of granular media with Smoothed Particle Hydrodynamics. 2016 , 11, 1231-1247	55
911	Numerical modeling of free surface flow in hydraulic structures using Smoothed Particle Hydrodynamics. 2016 , 40, 9821-9834	8
910	A coupled Finite VolumeBmoothed Particle Hydrodynamics method for incompressible flows. 2016 , 310, 674-693	26
909	SPH-FEM simulation of shaped-charge jet penetration into double hull: A comparison study for steel and SPS. 2016 , 155, 135-144	23
908	High-accurate SPH method with Multidimensional Optimal Order Detection limiting. 2016, 310, 134-155	23
907	Numerical Modelling of Braided River Morphodynamics: Review and Future Challenges. 2016 , 10, 102-127	58
906	Laboratory and numerical study of the flow field of subaqueous block sliding on a slope. 2016 , 124, 371-383	5
905	Simulation of laser welding using advanced particle methods. 2016 , 39, 149-169	18
904	Design and Application of an Adaptive Time Delay Model for Flow Routing in Prismatic Trapezoidal Geometry River Reach. 2016 , 30, 5687-5698	0
903	The method of finite spheres in three-dimensional linear static analysis. 2016 , 173, 161-173	9
902	An overview of smoothed particle hydrodynamics for simulating multiphase flow. 2016 , 40, 9625-9655	80
901	Numerical analysis on seepage failures of dike due to water level-up and rainfall using a waterBoil-coupled smoothed particle hydrodynamics model. 2016 , 11, 1401-1418	25

900	Smoothed Particle Hydrodynamics modelling of poroelastic media. 2016 , 16, 469-470	3
899	On the modeling of viscous incompressible flows with smoothed particle hydro-dynamics. 2016 , 28, 731-745	60
898	A truncation error estimate of the interpolant of a particle method based on the Voronoi decomposition. 2016 , 8, 29-32	5
897	Vortical and nonlinear effects in the roll motion of a 2-D body in the free surface investigated by SPH. 2016 ,	
896	Experimental and Numerical Testing of Gas Pipeline Subjected to Excavator Elements Interference. 2016 , 138,	2
895	Numerical investigation of wave elevation and bottom pressure generated by a planing hull in finite-depth water. 2016 , 58, 281-291	16
894	Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. 2016 , 136, 11-34	231
893	Deposition and slag flow modeling with SPH for a generic gasifier with different coal ashes using fusibility data. 2016 , 172, 218-227	7
892	Simulation of chemical reaction localization using a multi-porosity reactive transport approach. 2016 , 48, 59-68	14
891	Mixed-mode fracture modeling with smoothed particle hydrodynamics. 2016 , 79, 73-85	17
890	A MUSCL smoothed particles hydrodynamics for compressible multi-material flows. 2016 , 39, 1093-1100	1
889	Numerical Modeling and Experimental Validation of Free Surface Flow Problems. <i>Archives of Computational Methods in Engineering</i> , 2016 , 23, 139-169	20
888	The Procter and Gamble Company: Current State and Future Needs in Materials Modeling. 2016 , 303-328	3
887	Hybrid Quasi Molecular-Continuum Modeling of Supercooled Large Droplet Dynamics for In-flight Icing Conditions. 2016 ,	
886	SPH numerical investigation of the velocity field and vorticity generation within a hydrofoil-induced spilling breaker. 2016 , 16, 267-287	15
885	Quasi-molecular modeling of a single supercooled large droplet impact. 2016 , 40, 4560-4571	1
884	Modeling and simulation of liquid I quid droplet heating in a laminar boundary layer. 2016 , 97, 653-661	10
883	Discrete element modeling of particle-based additive manufacturing processes. 2016 , 305, 537-561	58

882 Multi-scale Simulation of Newtonian and Non-Newtonian Multi-phase Flows. **2016**, 379-398

881	A smoothed particle hydrodynamics (SPH) model for simulating surface erosion by impacts of foreign particles. 2016 , 95, 267-278	44
880	Application of a New Rheological Model to Rock Avalanches: An SPH Approach. 2016, 49, 2353-2372	19
879	Smoothed Particle Hydrodynamics (SPH) simulation of a high-pressure homogenization process. 2016 , 20, 1	8
878	Smoothed Particle Hydrodynamics [Applications. 2016 , 261-352	
877	A new data assimilation procedure to develop a debris flow run-out model. 2016 , 13, 1083-1096	12
876	Analysis of landslide-generated impulsive waves using a coupled DDA-SPH method. 2016 , 64, 267-277	43
875	A three-dimensional model for flow slides in municipal solid waste landfills using smoothed particle hydrodynamics. 2016 , 75, 1	11
874	Open boundary conditions for ISPH and their application to micro-flow. 2016 , 307, 614-633	34
873	Modeling of landslide generated impulsive waves considering complex topography in reservoir area. 2016 , 75, 1	11
872	Mesh-free SPH modeling of sediment scouring and flushing. 2016 , 129, 67-78	29
871	An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids. 2016 , 201, 43-62	47
870	Efficient SPH simulation of time-domain acoustic wave propagation. 2016 , 62, 112-122	11
869	Ceres water regime: surface temperature, water sublimation and transient exo(atmo)sphere. 2016 , 455, 1892-1904	34
868	Improved SPH simulation of wave motions and turbulent flows through porous media. 2016 , 107, 14-27	50
867	A numerical cutting model for brittle materials using smooth particle hydrodynamics. 2016 , 82, 133-141	9
866	Application of the SPH method to solitary wave impact on an offshore platform. 2016 , 3, 155-166	16
865	Suspension modeling using smoothed particle hydrodynamics: Accuracy of the viscosity formulation and the suspended body dynamics. 2016 , 40, 2606-2618	10

864	A general discrete element approach for particulate materials. 2017, 13, 267-286	2
863	Historical Origin and Recent Development on Normal Directional Impact Models for Rigid Body Contact Simulation: A Critical Review. <i>Archives of Computational Methods in Engineering</i> , 2017 , 24, 397-422	34
862	A review on models for the prediction of the diameter of jet grouting columns. 2017, 21, 641-669	13
861	Numerical Study of Impact Behaviors of Angular Particles on Metallic Surface Using Smoothed Particle Hydrodynamics. 2017 , 60, 693-710	7
860	Curvilinear smoothed particle hydrodynamics. 2017 , 83, 115-131	7
859	Substantiation of debris flow velocity from super-elevation: a numerical approach. 2017, 14, 633-647	13
858	Numerical simulation of metal removal in laser drilling using symmetric smoothed particle hydrodynamics. 2017 , 49, 69-77	8
857	Centroid sliding pyramid method for removability and stability analysis of fractured hard rock. 2017 , 12, 627-644	8
856	A weakly compressible SPH method based on a low-dissipation Riemann solver. 2017 , 335, 605-620	65
855	Robust boundary treatment for open-channel flows in divergence-free incompressible SPH. 2017 , 546, 464-475	7
854	Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. 2017 , 689, 323-331	118
853	Damage response of steel plate to underwater explosion: Effect of shaped charge liner. 2017 , 103, 38-49	48
852	Three-dimensional concrete impact and penetration simulations using the smoothed particle Galerkin method. 2017 , 106, 1-17	39
851	A Monte Carlo Algorithm for Immiscible Two-Phase Flow in Porous Media. 2017 , 116, 869-888	10
850	Ensemble distribution for immiscible two-phase flow in porous media. 2017 , 95, 023116	8
849	References. 447-474	
848	Wave runup on a surging vertical cylinder in regular waves. 2017 , 63, 229-241	10
847	Numerical modelling of supercritical flow in circular conduit bends using SPH method. 2017 , 29, 344-352	2

846	Lattice Boltzmann simulation of immiscible two-phase flow with capillary valve effect in porous media. 2017 , 53, 3770-3790	60
845	The numerical analysis of piezoelectric ceramics based on the Hermite-type RPIM. 2017 , 309, 170-182	17
844	An efficient LBM-DEM simulation method for suspensions of deformable preformed particle gels. 2017 , 167, 288-296	27
843	A computational model for failure of ductile material under impact. 2017 , 108, 334-347	17
842	Hydraulic fracture conductivity: effects of rod-shaped proppant from lattice-Boltzmann simulations and lab tests. 2017 , 104, 293-303	25
841	Perspective: Dissipative particle dynamics. 2017 , 146, 150901	281
840	Method of particular solutions using polynomial basis functions for the simulation of plate bending vibration problems. 2017 , 49, 452-469	34
839	Dynamic simulation of landslide dam behavior considering kinematic characteristics using a coupled DDA-SPH method. 2017 , 80, 172-183	40
838	An impulse-based model for impact between two concrete blocks. 2017 , 107, 96-107	2
837	A compressive interface-capturing scheme for computation of compressible multi-fluid flows. 2017 , 152, 164-181	19
836	Three-dimensional smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites. 2017 , 25, 055007	14
835	A corrected solid boundary treatment method for Smoothed Particle Hydrodynamics. 2017 , 31, 238-247	6
834	Parametric study on smoothed particle hydrodynamics for accurate determination of drag coefficient for a circular cylinder. 2017 , 10, 143-153	20
833	Virial stressBased model to simulate the silica glass densification with the discrete element method. 2017 , 112, 1909-1925	4
832	Modeling of droplet collisions using Smoothed Particle Hydrodynamics. 2017 , 95, 175-187	20
831	Three-dimensional simulation of two viscoelastic droplets impacting onto a rigid plate using smoothed particle hydrodynamics. 2017 , 58, 318-327	
830	Nonlinear finite element analysis of liquid sloshing in complex vehicle motion scenarios. 2017 , 405, 208-233	22
829	Smoothed particle hydrodynamics simulation of dual-scale flow during resin transfer molding. 2017 , 36, 1431-1438	6

828	Smoothed particle hydrodynamics and its applications in fluid-structure interactions. 2017 , 29, 187-216	112
827	Simulation of Seepage through Fixed Porous Media Using the Smoothed Particle Hydrodynamics Method. 2017 ,	1
826	Density independent hydrodynamics model for crowd coherency detection. 2017, 242, 28-39	21
825	Development of stress boundary conditions in smoothed particle hydrodynamics (SPH) for the modeling of solids deformation. 2017 , 4, 451-471	7
824	Dual-Support Smoothed Particle Hydrodynamics for Elastic Mechanics. 2017 , 14, 1750039	10
823	Modeling and simulation of injection molding process of polymer melt by a robust SPH method. 2017 , 48, 384-409	21
822	On the Factors Affecting the Accuracy and Robustness of Smoothed-Radial Point Interpolation Method. 2017 , 9, 43-72	4
821	Simulation and validation of asphalt foaming process for virtual experiments and optimisation of WMA production. 2017 , 18, 144-164	3
820	A novel hybrid stress meshless method for two-dimension elastic structure with a traction-free circular boundary. 2017 , 34, 2634-2650	
819	Real-Time Rendering Blood Flow Visualisation Using Particle Based Technique. 2017 , 645-655	1
818	A 3-D SPH model for simulating water flooding of a damaged floating structure. 2017 , 29, 831-844	15
817	Unified mesoscopic modeling and GPU-accelerated computational method for image-based pore-scale porous media flows. 2017 , 115, 1192-1202	17
816	Smoothed particle hydrodynamics (SPH) modeling of shot peening process. 2017 , 17, 799-825	1
815	Axis-symmetrical Riemann problem solved with standard SPH method. Development of a polar formulation with artificial viscosity. 2017 , 74, 3161-3174	5
814	Development of a two-phase SPH model for sediment laden flows. 2017 , 221, 259-272	28
813	Application of Smoothed Particle Hydrodynamics in analysis of shaped-charge jet penetration caused by underwater explosion. 2017 , 145, 177-187	17
812	Studying Normal and Oblique Perforation of Steel Plates with SPH Simulations. 2017, 09, 1750091	7
811	Development and initial validation of a novel smoothed-particle hydrodynamics-based simulation model of trabecular bone penetration by metallic implants. 2018 , 36, 1114-1123	2

810	Radial basis functions methods for boundary value problems: Performance comparison. 2017 , 84, 191-205	25
809	A study on the effect of double-tip inclined angle on micro-scratching process using smooth particle hydrodynamic method. 2017 , 9, 168781401772087	1
808	The overlapping particle technique for multi-resolution simulation of particle methods. 2017, 325, 434-462	24
807	Modeling Left Ventricular Blood Flow Using Smoothed Particle Hydrodynamics. 2017, 8, 465-479	35
806	Numerical flow simulation of fresh concrete with viscous granular material model and smoothed particle hydrodynamics. 2017 , 100, 263-274	15
805	A comprehensive study on the parameters setting in smoothed particle hydrodynamics (SPH) method applied to hydrodynamics problems. 2017 , 92, 77-95	45
804	Smoothed particle hydrodynamics with kernel gradient correction for modeling high velocity impact in two- and three-dimensional spaces. 2017 , 83, 141-157	30
803	Particle-Based Modeling of Asymmetric Flexible Fibers in Viscous Flows. 2017 , 22, 1015-1027	5
802	Shared-Memory parallelization of consistent particle method for violent wave impact problems. 2017 , 69, 87-99	19
801	Numerical study of smoothed particle hydrodynamics method in orthogonal cutting simulations [] Effects of damage criteria and particle density. 2017 , 30, 523-531	11
800	An algorithmic implementation of physical reflective boundary conditions in particle methods: Collision detection and response. 2017 , 29, 113602	7
799	Modeling the Relaxation of Oscillations in an Electrolyzer with a Free Boundary. 2017, 28, 185-194	
798	Mesoscale Validation of Simplifying Assumptions for Modeling the Plastic Deformation of Fluid-Saturated Porous Material. 2017 , 3, 23-44	4
797	Numerical studies to propose a ghost particle removed SPH (GR-SPH) method. 2017 , 42, 71-99	4
796	Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics. 2017 , 4, 473-486	14
795	A skewed kernel approach for the simulation of shocks using SPH. 2017 , 111, 383-400	4
794	Simulation of the orthogonal cutting of OFHC copper based on the smoothed particle hydrodynamics method. 2017 , 91, 265-272	6
793	Continuum modeling of rate-dependent granular flows in SPH. 2017 , 4, 119-130	10

(2017-2017)

792	Simulation of the cutting sequence of AISI 316L steel based on the smoothed particle hydrodynamics method. 2017 , 89, 643-650	7
791	Method for Estimating Normal Contact Parameters in Collision Modeling Using Discontinuous Deformation Analysis. 2017 , 17,	8
790	Modeling Soft Tissue Damage and Failure Using a Combined Particle/Continuum Approach. 2017 , 16, 249-261	24
789	Particle-Based Numerical Manifold Method to Model Dynamic Fracture Process in Rock Blasting. 2017 , 17,	25
788	Application of particle simulation methods to composite materials: a review. 2017 , 26, 1-22	13
787	Novel trends in numerical modelling of plant food tissues and their morphological changes during drying [A review. 2017 , 194, 24-39	20
786	An analytical model to predict the impact response of one-dimensional structures. 2017 , 22, 2253-2268	1
7 ⁸ 5	Simulation of liquid drop impact on dry and wet surfaces using SPH method. 2017 , 36, 2393-2399	23
784	A truly incompressible smoothed particle hydrodynamics based on artificial compressibility method. 2017 , 210, 10-28	10
783	Analysis of Shallow Water Problems Using Element-Free Galerkin Method. 2017 , 15, 223-230	4
783 782	Analysis of Shallow Water Problems Using Element-Free Galerkin Method. 2017 , 15, 223-230 SPH simulation of oblique shocks in compressible flows. 2017 , 84, 494-505	2
782	SPH simulation of oblique shocks in compressible flows. 2017 , 84, 494-505 SPH model for fluidstructure interaction and its application to debris flow impact estimation. 2017	2
782 781	SPH simulation of oblique shocks in compressible flows. 2017, 84, 494-505 SPH model for fluidEtructure interaction and its application to debris flow impact estimation. 2017, 14, 917-928 Mechanistic Approach for Simulating Hot-Spot Formations and Detonation in Polymer-Bonded	2 78
782 781 780	SPH simulation of oblique shocks in compressible flows. 2017, 84, 494-505 SPH model for fluidEtructure interaction and its application to debris flow impact estimation. 2017, 14, 917-928 Mechanistic Approach for Simulating Hot-Spot Formations and Detonation in Polymer-Bonded Explosives. 2017, 55, 585-598 Topology optimization of plane structures using smoothed particle hydrodynamics method. 2017,	2 78 11
782 781 780	SPH simulation of oblique shocks in compressible flows. 2017, 84, 494-505 SPH model for fluidstructure interaction and its application to debris flow impact estimation. 2017, 14, 917-928 Mechanistic Approach for Simulating Hot-Spot Formations and Detonation in Polymer-Bonded Explosives. 2017, 55, 585-598 Topology optimization of plane structures using smoothed particle hydrodynamics method. 2017, 110, 726-744	2 78 11
782 781 780 779 778	SPH model for fluidstructure interaction and its application to debris flow impact estimation. 2017, 14, 917-928 Mechanistic Approach for Simulating Hot-Spot Formations and Detonation in Polymer-Bonded Explosives. 2017, 55, 585-598 Topology optimization of plane structures using smoothed particle hydrodynamics method. 2017, 110, 726-744 A 3D smoothed particle hydrodynamics model for erosional dam-break floods. 2017, 31, 413-434 Integration of Geometry and Analysis for the Study of Liquid Sloshing in Vehicle System Dynamics.	2 78 11

774	Advanced load balancing for SPH simulations on multi-GPU architectures. 2017,	10
773	A Derivation of the Entropy-Based Relativistic Smoothed Particle Hydrodynamics by Variational Principle. 2017 , 68, 382	3
77 ²	VR Cardiovascular Blood Simulation as Decision Support for the Future Cyber Hospital. 2017,	2
771	Numerical and Experimental Studies on the Explosive Welding of Tungsten Foil to Copper. 2017 , 10,	35
770	Screen Space Rendering Solution for Multiphase SPH Simulation. 2017,	1
769	Modeling Sound Propagation Using the Corrective Smoothed Particle Method with an Acoustic Boundary Treatment Technique. 2017 , 22, 26	2
768	SWE-SPHysics Simulation of Dam Break Flows at South-Gate Gorges Reservoir. 2017, 9, 387	19
767	A smoothed particle hydrodynamics model for electrostatic transport of charged lunar dust on the moon surface. 2018 , 5, 539-551	9
766	Methods for controlling the local spatial and temporal resolution of vortex particle simulations of bluff body aerodynamics problems. 2018 , 166, 225-242	3
765	Improved reproducing kernel particle method for piezoelectric materials. 2018, 27, 010201	2
764	SPH method with applications of oscillating wave surge converter. 2018 , 152, 273-285	28
763	Numerical simulation of chipping formation process with smooth particle hydrodynamic (SPH) method for diamond drilling AIN ceramics. 2018 , 96, 2257-2269	7
762	A new high accuracy meshfree method to directly simulate fluid dynamics and heat transfer of weakly compressible fluids. 2018 , 123, 25-39	2
761	On the improvement of computational efficiency of smoothed particle hydrodynamics to simulate flexural failure of ice. 2018 , 4, 153-169	5
760	Testing and numerical simulation of a medium strength rock material under unconfined compression loading. 2018 , 10, 197-211	21
759	Armours for soft bodies: how far can bioinspiration take us?. 2018 , 13, 041004	19
758	Mesoscopic simulation and characterization of the morphological evolution in phase separating fluid mixtures. 2018 , 149, 267-281	2
757	A decoupled finite particle method for modeling incompressible flows with free surfaces. 2018 , 60, 606-633	58

(2018-2018)

756	Geometrically nonlinear bending analysis of functionally graded beam with variable thickness by a meshless method. 2018 , 189, 239-246	23
755	A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale. 2018 , 62, 1071-1085	11
754	Numerical study on antiknock measures of concrete gravity dam bearing underwater contact blast loading. 2018 , 10, 014101	10
753	Application of particle splitting method for both hydrostatic and hydrodynamic cases in SPH. 2018 , 34, 601-613	4
752	Coalescence of droplets laden with insoluble surfactant on a preset liquid film. 2018, 41, 14	1
751	A Comparative Review of Smoothed Particle Hydrodynamics, Dissipative Particle Dynamics and Smoothed Dissipative Particle Dynamics. 2018 , 15, 1850083	6
750	Simulating coupled dynamics of a rigid-flexible multibody system and compressible fluid. 2018, 61, 1	7
749	Possibilities of rock constitutive modelling and simulations. 2018,	1
748	Meshless Lagrangian SPH method applied to isothermal lid-driven cavity flow at low-Re numbers. 2018 , 5, 467-475	6
747	Everything you always wanted to know about SDPD? (?but were afraid to ask). 2018, 39, 103-124	32
747 746	Everything you always wanted to know about SDPD? (?but were afraid to ask). 2018, 39, 103-124 Neighbour lists for smoothed particle hydrodynamics on GPUs. 2018, 225, 140-148	32 19
746	Neighbour lists for smoothed particle hydrodynamics on GPUs. 2018 , 225, 140-148 Reproducing kernel particle method for coupled conduction adiation phase-change heat transfer.	19
74 ⁶	Neighbour lists for smoothed particle hydrodynamics on GPUs. 2018, 225, 140-148 Reproducing kernel particle method for coupled conduction adiation phase-change heat transfer. 2018, 120, 387-398 Asymmetric Adaptive Particle Refinement in SPH and Its Application in Soil Cutting Problems. 2018,	19
746 745 744	Neighbour lists for smoothed particle hydrodynamics on GPUs. 2018, 225, 140-148 Reproducing kernel particle method for coupled conduction adiation phase-change heat transfer. 2018, 120, 387-398 Asymmetric Adaptive Particle Refinement in SPH and Its Application in Soil Cutting Problems. 2018, 15, 1850052	19 2 3
746 745 744 743	Neighbour lists for smoothed particle hydrodynamics on GPUs. 2018, 225, 140-148 Reproducing kernel particle method for coupled conduction adiation phase-change heat transfer. 2018, 120, 387-398 Asymmetric Adaptive Particle Refinement in SPH and Its Application in Soil Cutting Problems. 2018, 15, 1850052 Radial basis reproducing kernel particle method for piezoelectric materials. 2018, 92, 171-179	19 2 3
746 745 744 743	Neighbour lists for smoothed particle hydrodynamics on GPUs. 2018, 225, 140-148 Reproducing kernel particle method for coupled conduction adiation phase-change heat transfer. 2018, 120, 387-398 Asymmetric Adaptive Particle Refinement in SPH and Its Application in Soil Cutting Problems. 2018, 15, 1850052 Radial basis reproducing kernel particle method for piezoelectric materials. 2018, 92, 171-179 A technique to remove the tensile instability in weakly compressible SPH. 2018, 62, 963-990	19 2 3 16

 $738 \qquad \text{Study of the interaction between dry granular flows and rigid barriers with an SPH model. \textbf{2018}, 42, 1217-1234 \\ 18 \qquad \qquad 18$

737	Prediction of Pressure Variation at an Elbow Subsequent to a Liquid Slug Impact by Using Smoothed Particle Hydrodynamics. 2018 , 140,	7
736	Numerical modeling of density currents using an Incompressible Smoothed Particle Hydrodynamics method. 2018 , 167, 372-383	9
735	Snowflake Melting Simulation Using Smoothed Particle Hydrodynamics. 2018 , 123, 1811-1825	16
734	Smoothed Finite Element Methods (S-FEM): An Overview and Recent Developments. <i>Archives of Computational Methods in Engineering</i> , 2018 , 25, 397-435	117
733	Smoothed particle hydrodynamics simulation and experimental study of ultrasonic machining. 2018 , 232, 1875-1884	3
732	Flow Modeling in High-Pressure Die-Casting Processes Using SPH Model. 2018 , 12, 97-105	4
731	An improved SPH model for multiphase flows with large density ratios. 2018 , 86, 167-184	8
730	Numerical Investigation on the Water Entry of Convex Objects Using a Multiphase Smoothed Particle Hydrodynamics Model. 2018 , 15, 1850008	6
729	Investigation of hole formation by steel sphere impacting on thin plate at hypervelocity. 2018 , 126, 38-47	2
728	Coupled finite particle method with a modified particle shifting technology. 2018, 113, 179-207	46
727	Meshfree Methods: A Comprehensive Review of Applications. 2018 , 15, 1830001	53
726	Tool wear mechanism and its relation to material removal in ultrasonic machining. 2018 , 394-395, 96-108	15
725	Application of the incubation time criterion for dynamic brittle fracture. 2018 , 112, 66-73	6
724	Dynamic capillary phenomena using Incompressible SPH. 2018 , 176, 192-204	14
723	Investigation of Wave Characteristics in Oscillatory Motion of Partially Filled Rectangular Tanks. 2018 , 140,	18
722	Effects of abrasive material and particle shape on machining performance in micro ultrasonic machining. 2018 , 51, 373-387	20
721	A New Revised Scheme for SPH. 2018 , 15, 1850035	O

(2018-2018)

720	SPH-FDM boundary for the analysis of thermal process in homogeneous media with a discontinuous interface. 2018 , 117, 517-526	26
719	Smoothed particle hydrodynamics simulation for injection molding flow of short fiber-reinforced polymer composites. 2018 , 52, 1531-1539	4
718	Hydrodynamic design of multi-zone circulating reactors using CFD. 2018 , 96, 670-678	2
717	Numerical simulation of hypervelocity impact problem for spacecraft shielding elements. 2018 , 150, 56-62	33
716	A non-iterative local remeshing approach for simulating moving boundary transient diffusion problems. 2018 , 140, 23-37	7
715	Verification and validation of explicit moving particle simulation method for application to internal flooding analysis in nuclear reactor building. 2018 , 55, 461-477	12
714	Computational modeling of single-cell mechanics and cytoskeletal mechanobiology. 2018, 10, e1407	25
713	A hands-on approach to estimate debris flow velocity for rational mitigation of debris hazard. 2018 , 55, 941-955	7
712	Modeling of orthogonal cutting process of A2024-T351 with an improved SPH method. 2018 , 95, 905-919	15
711	Recent Advances in Horizontal Jet Grouting (HJG): An Overview. 2018 , 43, 1543-1560	25
710	Advances in numerical ditching simulation of flexible aircraft models. 2018, 23, 236-251	6
709	Smoothed particle hydrodynamics method for simulating waterfall flow. 2018 , 971, 012035	
708	Numerical Simulation of Wave Breaking Over a Submerged Step with SPH Method. 2018 , 01, 1840005	1
707	An Integrated Method of FVM and SPH for Treating Melting Process of Quartz Ingot. 2018,	О
706	Simulation of Fluid Flow in a Microchannel at Low Reynolds Number Using Dissipative Particle Dynamics. 2018 ,	
705	A Particle Strength Exchange Method for Metal Removal in Laser Drilling. 2018 , 72, 1548-1553	13
704	AMulti-GPU PCISPH Implementation with Efficient Memory Transfers. 2018,	1
703	. 2018,	3

702	Water entry of decelerating spheres simulations using improved ISPH method. 2018, 30, 1120-1133	16
701	Second-Order Symmetric Smoothed Particle Hydrodynamics Method for Transient Heat Conduction Problems with Initial Discontinuity. 2018 , 6, 215	1
700	Numerical simulation for fluid droplet impact on discrete particles with coupled SPH-DEM method. 2018 , 28, 2581-2605	4
699	Simulating Protein-Mediated Membrane Remodeling at Multiple Scales. 2018, 351-384	
698	Simulation of Angular Flow in a Shallow Basin Triggered by a Rotating Vertical Cylinder by SPH Method. 2018 , 881, 15-22	
697	Modeling Free Surface Flows Using Stabilized Finite Element Method. 2018 , 2018, 1-9	4
696	Smoothed Particle Hydrodynamics model of poroelasticity-fluid coupling. 2018 , 18, e201800448	1
695	Smoothed Particle Hydrodynamics for Ductile Solid Continua. 2018 , 1-50	
694	Impact Behavior of a Laterally Loaded Guardrail Post near Slopes by Hybrid SPH Model. 2018 , 2018, 1-12	2
693	Meshfree simulations of ultrasound vector flow imaging using smoothed particle hydrodynamics. 2018 , 63, 205011	12
692	An Efficient Numerical Method for Time Domain Computational Electromagnetic Simulation. 2018,	О
691	Ray Tracer based rendering solution for large scale fluid rendering. 2018 , 77, 65-79	4
690	Simulation of Flowing Red Blood Cells with and without Nanoparticle Dispersion Using Particle-based Numerical Methods. 2018 , 191-225	
689	Numerical simulation of laser impact spot welding. 2018 , 35, 396-406	15
688	Back-Spalling process of an Al2O3 ceramic plate subjected to an impact of steel ball. 2018 , 122, 451-471	8
687	A Smoothed Particle Hydrodynamics approach for thermo-capillary flows. 2018 , 176, 1-19	65
686	Highlighting numerical insights of an efficient SPH method. 2018 , 339, 899-915	8
685	On consistency and energy conservation in smoothed particle hydrodynamics. 2018 , 116, 601-632	13

684	Ligament formation and droplet breakup on disk-type and cup-type rotary atomizers. 2018, 84, 18-00132-18-	·00 <u>1</u> 32
683	Free-Surface Flow Simulations with Smoothed Particle Hydrodynamics Method using High-Performance Computing. 2018 ,	2
682	A RATIONALE OF THE STABILIZED ISPH METHOD DERIVATION OF A STABILIZATION TERM FROM AN ENERGY MINIMIZATION PROBLEM 2018 , 74, I_159-I_166	
681	Stress Wave Propagation Analysis in One-Dimensional Micropolar Rods with Variable Cross-Section Using Micropolar Wave Finite Element Method. 2018 , 10, 1850039	14
680	A Parallelized Water-Soil-Coupled SPH Model Considering the Effect of Permeability and Its Application in the Piping Simulation of Dike. 2018 , 289-298	
679	Investigation of Ground Displacement Induced by Hydraulic Jetting Using Smoothed Particle Hydrodynamics. 2018 , 68-75	
678	An efficient split-step and implicit pure mesh-free method for the 2D/3D nonlinear GrossPitaevskii equations. 2018 , 231, 19-30	13
677	SPH numerical investigation of characteristics of hydraulic jumps. 2018 , 18, 849-870	20
676	Comparison of the (1) and HBP models for simulating granular media. 2018 , 29, 1850050	3
675	Migration of Gas in Water Saturated Clays by Coupled Hydraulic-Mechanical Model. 2018 , 2018, 1-25	10
674	A multi-domain approach for smoothed particle hydrodynamics simulations of highly complex flows. 2018 , 340, 956-977	3
673	On the effect of the thermostat in non-equilibrium molecular dynamics simulations. 2018 , 41, 80	16
672	Meshfree modeling of a fluid-particle two-phase flow with an improved SPH method. 2018 , 116, 530-569	29
671	Smoothed particle hydrodynamics and modal reduction for efficient fluidEtructure interaction. 2018 , 24, 401-425	1
670	Mesoscopic coarse-grained representations of fluids rigorously derived from atomistic models. 2018 , 149, 044104	14
669	A Comparative Study on Violent Sloshing with Complex Baffles Using the ISPH Method. 2018 , 8, 904	18
668	Application of meshless local Petrov Galerkin method (MLPG5) for EIT forward problem. 2018, 4, 045036	О
667	Numerical simulation of Laser Fusion Additive Manufacturing processes using the SPH method. 2018 , 341, 163-187	56

666	Coupled finite particle method for simulations of wave and structure interaction. 2018, 140, 147-160	23
665	Simulation of Quasi-Static and Dynamic Collapses of Rectangular Granular Columns Using Smoothed Particle Hydrodynamics Method. 2018 , 18, 04018113	7
664	Introduction to Multiphysics Modelling. 2018 , 1-35	O
663	Highly efficient computation of Finite-Time Lyapunov Exponents (FTLE) on GPUs based on three-dimensional SPH datasets. 2018 , 175, 129-141	6
662	Lagrangian meshfree finite difference particle method with variable smoothing length for solving wave equations. 2018 , 10, 168781401878924	1
661	Instability of smoothed particle hydrodynamics applied to Poiseuille flows. 2018, 76, 1447-1457	О
660	Investigation of explosive welding through whole process modeling using a density adaptive SPH method. 2018 , 35, 169-189	27
659	A review of jet grouting practice and development. 2018 , 11, 1	33
658	Long duration SPH simulations of sloshing in tanks with a low fill ratio and high stretching. 2018 , 174, 179-199	36
657	Bending analysis of planar structures made of functionally graded material by a meshless method. 2018 , 527, 85-92	2
656	Characterising primary fragment in debris cloud formed by hypervelocity impact of spherical stainless steel projectile on thin steel plate. 2018 , 120, 118-125	13
655	Development of General Finite Differences for complex geometries using a sharp interface formulation. 2019 , 193, 103959	
654	A three-dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations. 2019 , 13, 337-352	10
653	Hysteretic behavior using the explicit material point method. 2019 , 6, 11-28	4
652	Preliminary effort in developing the smoothed material point method for impact. 2019 , 6, 45-53	4
651	A challenging dam structural analysis: large-scale implicit thermo-mechanical coupled contact simulation on Tianhe-II. 2019 , 63, 99-119	6
650	On the boundary conditions in Lagrangian particle methods and the physical foundations of continuum mechanics. 2019 , 31, 475-489	3
649	An optimal particle setup method with Centroidal Voronoi Particle dynamics. 2019 , 234, 72-92	7

648	Development of an SPH-based method to simulate the progressive failure of cohesive soil slope. 2019 , 78, 1	5
647	A Smoothed Particle Hydrodynamics (SPH) procedure for simulating cold spray process - A study using particles. 2019 , 377, 124812	16
646	Rapid Simulation of 3D Liquid Sloshing in the Lunar Soft-Landing Spacecraft. 2019 , 57, 4504-4513	4
645	A point-mass particle method for the simulation of immiscible multiphase flows on an Eulerian grid. 2019 , 397, 108835	2
644	Analyzing the Interaction of Vortex and Gaslliquid Interface Dynamics in Fuel Spray Nozzles by Means of Lagrangian-Coherent Structures (2D). 2019 , 12, 2552	4
643	Modified two-phase dilatancy SPH model for saturated sand column collapse simulations. 2019 , 260, 105219	7
642	A local Lagrangian gradient smoothing method for fluids and fluid-like solids: A novel particle-like method. 2019 , 107, 96-114	16
641	A smoothed particle element method (SPEM) for modeling fluid\(\beta\)tructure interaction problems with large fluid deformations. 2019 , 356, 261-293	32
640	On the application of SPH to solid mechanics. 2019 , 1268, 012077	1
639	The fracture process in quasi-brittle materials simulated using a lattice dynamical model. 2019 , 42, 2709-2724	0
	The Hacture process in quasi prictie materials simulated using a lattice dynamical model. 2012, 42, 2107 2124	0
638	An approximately consistent SPH simulation approach with variable particle resolution for engineering applications. 2019 , 106, 555-570	3
	An approximately consistent SPH simulation approach with variable particle resolution for	
638	An approximately consistent SPH simulation approach with variable particle resolution for engineering applications. 2019 , 106, 555-570 Response Analysis of Submerged Floating Tunnel Hit by Submarine Based on Smoothed-Particle	3
638 637	An approximately consistent SPH simulation approach with variable particle resolution for engineering applications. 2019 , 106, 555-570 Response Analysis of Submerged Floating Tunnel Hit by Submarine Based on Smoothed-Particle Hydrodynamics. 2019 , 2019, 1-12 Natural convection in a nanofluid-filled cavity with solid particles in an inner cross shape using ISPH	3
638 637 636	An approximately consistent SPH simulation approach with variable particle resolution for engineering applications. 2019, 106, 555-570 Response Analysis of Submerged Floating Tunnel Hit by Submarine Based on Smoothed-Particle Hydrodynamics. 2019, 2019, 1-12 Natural convection in a nanofluid-filled cavity with solid particles in an inner cross shape using ISPH method. 2019, 141, 390-406 A kernel gradient-free SPH method with iterative particle shifting technology for modeling	3 1 18
638 637 636	An approximately consistent SPH simulation approach with variable particle resolution for engineering applications. 2019, 106, 555-570 Response Analysis of Submerged Floating Tunnel Hit by Submarine Based on Smoothed-Particle Hydrodynamics. 2019, 2019, 1-12 Natural convection in a nanofluid-filled cavity with solid particles in an inner cross shape using ISPH method. 2019, 141, 390-406 A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils. 2019, 106, 571-587	3 1 18 22
638 637 636 635	An approximately consistent SPH simulation approach with variable particle resolution for engineering applications. 2019, 106, 555-570 Response Analysis of Submerged Floating Tunnel Hit by Submarine Based on Smoothed-Particle Hydrodynamics. 2019, 2019, 1-12 Natural convection in a nanofluid-filled cavity with solid particles in an inner cross shape using ISPH method. 2019, 141, 390-406 A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils. 2019, 106, 571-587 SPH simulation of surge waves generated by aerial and submarine landslides. 2019, 1245, 012062 Dual-support smoothed particle hydrodynamics in solid: variational principle and implicit	3 1 18 22

630	Micro-mechanism study on rock breaking behavior under water jet impact using coupled SPH-FEM/DEM method with Voronoi grains. 2019 , 108, 472-483	22
629	Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications. 2019 , 31, 011301	73
628	A Lagrangian approach for computational acoustics with particle-based method. 2019 , 108, 459-471	1
627	Numerical Study on the Collapse Behaviors of Shallow Tunnel Faces under Open-Face Excavation Condition Using Mesh-Free Method. 2019 , 145, 04019085	4
626	Computational issues of an electromagnetics transient meshless method. 2019 ,	
625	Smooth particle hydrodynamics for the analysis of stresses in soil around Jack-in Pile. 2019 , 1-27	3
624	Investigation of Hydrodynamically Dominated Membrane Rupture, Using Smoothed Particle HydrodynamicsEinite Element Method. 2019 , 4, 149	3
623	Possible causes of numerical oscillations in non-ordinary state-based peridynamics and a bond-associated higher-order stabilized model. 2019 , 357, 112592	38
622	A Numerical study on the hydrodynamic performance of an immersed foil: Uncertainty quantification of RANS and SPH methods. 2019 , 191, 104248	5
621	A Particle Method Based on a Generalized Finite Difference Scheme to Solve Weakly Compressible Viscous Flow Problems. 2019 , 11, 1086	1
620	Influence of surface tension on the molten pool morphology in laser melting. 2019 , 146, 106075	17
619	The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired solutions. 2019 , 13, 456-477	17
618	Tracking of material orientation in updated Lagrangian SPH. 2019 , 6, 449-460	1
617	Generalized Fickian approach for phase separating fluid mixtures in Smoothed Particle Hydrodynamics. 2019 , 179, 78-90	
616	A Comparative Study of Two Different Density Estimation Techniques for Multi-Phase Flow Simulations Using SPH. 2019 , 20, 29-47	5
615	A particle-based free surface detection method and its application to the surface tension effects simulation in smoothed particle hydrodynamics (SPH). 2019 , 383, 196-206	14
614	Viscous fingering phenomena in the early stage of polymer membrane formation. 2019 , 864, 97-140	51
613	A semi-resolved CFD D EM approach for particulate flows with kernel based approximation and Hilbert curve based searching strategy. 2019 , 384, 151-169	33

612	Investigation of DPD transport properties in modeling bioparticle motion under the effect of external forces: Low Reynolds number and high Schmidt scenarios. 2019 , 150, 054901	5
611	Predicting the damage on a target plate produced by hypervelocity impact using a decoupled finite particle method. 2019 , 98, 110-125	10
610	An Eulerian Dagrangian mixed discrete least squares meshfree method for incompressible multiphase flow problems. 2019 , 76, 193-224	2
609	Extension of the EPlus-SPH model for simulating Vortex-Induced-Vibration problems. 2019 , 90, 19-42	21
608	Drag Force Calculations in Polydisperse DEM Simulations with the Coarse-Grid Method: Influence of the Weighting Method and Improved Predictions Through Artificial Neural Networks. 2019 , 129, 837-853	6
607	Dynamic response of aluminum honeycomb sandwich panels subjected to hypervelocity impact by porous volcanic rock projectile. 2019 , 33, 2605-2616	3
606	A robust sharp interface method for SPH. 2019 , 106, 275-285	4
605	Modeling heat transfer subject to inhomogeneous Neumann boundary conditions by smoothed particle hydrodynamics and peridynamics. 2019 , 139, 948-962	8
604	Mesoscopic modelling and simulation of espresso coffee extraction. 2019 , 263, 181-194	8
603	SPH Simulation on the Coupled Failure of Slope-Building Adjacent to Water Triggered by the Rapid Drawdown of Water Level. 2019 , 2019, 1-12	2
602	Simulation of Groundwater Flow in an Unconfined Sloping Aquifer Using the Element-Free Galerkin Method. 2019 , 33, 2827-2845	12
601	An overview of particle-based numerical manifold method and its application to dynamic rock fracturing. 2019 , 11, 684-700	9
600	Numerical simulation of spudcan-soil interaction using an improved smoothed particle hydrodynamics (SPH) method. 2019 , 66, 213-226	3
599	Three-dimensional modeling of granular flow impact on rigid and deformable structures. 2019 , 112, 257-271	22
598	SPH-based method to simulate penetrating impact mechanics into ballistic gelatin: Toward an understanding of the perforation of human tissue. 2019 , 29, 100479	8
597	A combined Lagrangian and Eulerian method for simulating the melting process of quartz glass. 2019 , 105, 312-320	1
596	Deformation and fracture of cylindrical tubes under detonation loading: A review of numerical and experimental analyses. 2019 , 173, 114-132	11
595	Smoothed particle hydrodynamics for root growth mechanics. 2019 , 105, 20-30	1

594	A weakly compressible SPH method with WENO reconstruction. 2019 , 392, 1-18	21
593	Numerical simulation of seepage problem in porous media. 2019 , 9, 1	1
592	Non-local modeling for fluid flow coupled with heat transfer by using peridynamic differential operator. 2019 , 105, 104-121	17
591	Numerical solution of potential problems using radial basis reproducing kernel particle method. 2019 , 13, 102122	5
590	Simulation of Electrolyte Imbibition in Gas Diffusion Electrodes. 2019 , 91, 883-888	2
589	Modeling impact pressure on the surface of porous structure by macroscopic mesh-free method. 2019 , 182, 1-13	13
588	A novel in silico scale-up approach for hot melt extrusion processes. 2019 , 204, 257-269	10
587	Dealing with the Effect of Air in Fluid Structure Interaction by Coupled SPH-FEM Methods. 2019 , 12,	12
586	Coupling finite difference method with finite particle method for modeling viscous incompressible flows. 2019 , 90, 564-583	7
585	The smoothed particle hydrodynamics method via residual iteration. 2019 , 352, 237-245	5
584	Extension of SPH to simulate non-isothermal free surface flows during the injection molding process. 2019 , 73, 715-731	14
583	SPH-BEM simulation of underwater explosion and bubble dynamics near rigid wall. 2019 , 62, 1082-1093	9
582	Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis. 2019 , 35, 472-485	8
581	Fully implicit time integration in truly incompressible SPH. 2019 , 227, 1501-1514	1
580	Three-dimensional modeling of coalescence of bubbles using Lattice Boltzmann model. 2019 , 184, 178-186	2
579	Coupling of SPH with smoothed point interpolation method for violent fluid-structure interaction problems. 2019 , 103, 1-10	27
578	A comparative study of ductile and brittle materials due to single angular particle impact. 2019 , 428-429, 258-271	13
577	Mechanics of the stomach: A review of an emerging field of biomechanics. 2019 , 42, e201900001	23

576	A three-dimensional coupled Euler-PIC method for penetration problems. 2019 , 119, 737-756	4
575	A new insight into the consistency of the SPH interpolation formula. 2019 , 356, 50-73	7
574	CFD and DEM modelling of particles plugging in shale pores. 2019 , 174, 1026-1038	6
573	Simulation Study on Expansive Jet Formation Characteristics of Polymer Liner. 2019 , 12,	13
572	A stabilized TLIWC SPH approach with GPU acceleration for three-dimensional fluid tructure interaction. 2019 , 86, 329-353	38
571	Local edge-enhanced active contour for accurate skin lesion border detection. 2019 , 20, 91	6
570	Survey on Experimental and Numerical Approaches to Model Underwater Explosions. 2019 , 7, 15	8
569	Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. 2019 , 62, 1	73
568	Smoothed particle hydrodynamics simulation: a tool for accurate characterization of microfluidic devices. 2019 , 115, 183-205	3
567	Improved fast Gauss transform for meshfree electromagnetic transients simulations. 2019 , 95, 130-136	2
566	Extracting-mapping scheme for the dynamic details in fluid re-simulations from videos. 2019 , 25, 371-381	
565	Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR. 2019 , 104, 240-258	57
564	Testing of smoothed particle hydrodynamics method for minor loss coefficient in three-dimensional water flow in circular vertical pipe contraction. 2019 , 270, 04014	
563	A Novel Method for Characterizing the Dynamic Behavior of Proppant Pillars With Fracture Closure in Pulse Fracturing. 2019 ,	O
562	Numerical studies on explosive welding with ANFO by using a density adaptive SPH method. 2019 , 41, 208-220	33
561	Investigating the Effect of Cutting Parameters of TiBAlBV on Surface Roughness Based on a SPH Cutting Model. 2019 , 9, 654	5
560	Numerical Analysis of the Behavior of A New Aeronautical Alloy (Ti555-03) Under the Effect of A High-Speed Water Jet. 2019 , 33, 114-126	5
559	Moving least squares reconstruction for sharp interface immersed boundary methods. 2019 , 90, 57-80	6

558	Dynamic simulation of flat water kayaking using a coupled biomechanical-smoothed particle hydrodynamics model. 2019 , 64, 252-273	10
557	Modeling and simulation of droplet impact on elastic beams based on SPH. 2019 , 75, 237-257	21
556	Numerical investigation of anguilliform locomotion by the SPH method. 2019, 30, 328-346	7
555	A multiphase SPH framework for solving the evaporation and combustion process of droplets. 2019 , 30, 1547-1575	1
554	GPU Simulation of Sloshing in a Vibrating Water Tank with Smooth Particle Hydrodynamics (SPH) Method. 2019 ,	
553	Comparative Study on Violent Sloshing with Water Jet Flows by Using the ISPH Method. 2019 , 11, 2590	5
552	Power law fluid model on wave mitigation, 2D simulation using smoothed particle hydrodynamics. 2019 , 1397, 012070	
551	A study on the oil transport in piston skirt-cylinder liner under fully flooded conditions using improved SPH simulations. 2019 , 109, 176-186	1
550	Particle Dynamics Subject to Impenetrable Boundaries: Existence and Uniqueness of Mild Solutions. 2019 , 51, 5049-5076	1
549	Modeling of liquid sloshing with application in robotics and automation. 2019 , 52, 253-258	2
548	Generation of electromagnetic effect and flash in hypervelocity impact of aluminum projectile on aluminum target. 2019 , 26, 113103	1
547	Dynamic response modeling of high-speed planing craft with enforced acceleration. 2019 , 192, 106493	5
546	The suction effect during freak wave slamming on a fixed platform deck: Smoothed particle hydrodynamics simulation and experimental study. 2019 , 31, 117108	37
545	WITHDRAWN: A novel Lagrangian finite element method with adaptive element-particle conversion ability for incompressible flows with free surfaces. 2019 ,	1
544	On the Boundary Condition and Related Instability in the Smoothed Particle Hydrodynamics. 2019 , 71, 1281	O
543	The simulation of some chemotactic bacteria patterns in liquid medium which arises in tumor growth with blow-up phenomena via a generalized smoothed particle hydrodynamics (GSPH) method. 2019 , 35, 875-892	6
542	A new SPH-based continuum framework with an embedded fracture process zone for modelling rock fracture. 2019 , 159, 40-57	27
541	Towards the modeling of the ditching of a ground-effect wing ship within the framework of the SPH method. 2019 , 82, 370-384	17

540	Study on the effects of abrasive particle shape on the cutting performance of Ti-6Al-4V materials based on the SPH method. 2019 , 101, 3167-3182	5
539	A review of reactive transport modeling in wellbore integrity problems. 2019 , 175, 785-803	20
538	Fluid-solid conjugate heat transfer modelling using weakly compressible smoothed particle hydrodynamics. 2019 , 151, 772-784	14
537	A hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sSSA) for advection-diffusion-reaction problems. 2019 , 378, 1-17	7
536	A Smoothed Particle Hydrodynamics Model for Laser Beam Melting of Ni-based Alloy 718. 2019 , 78, 2377-239	9424
535	Pore network extraction using geometrical domain decomposition. 2019 , 123, 70-83	22
534	Modeling strong discontinuities in the material point method using a single velocity field. 2019 , 345, 584-601	11
533	An integrated finite particle method with perfectly matched layer for modeling wave-structure interaction. 2019 , 61, 78-95	2
532	Stability analysis of soil slope based on a water-soil-coupled and parallelized Smoothed Particle Hydrodynamics model. 2019 , 108, 212-225	19
531	Adaptive resolution for multiphase smoothed particle hydrodynamics. 2019 , 239, 112-125	20
530	Crack nucleation and propagation in microcrystalline-cellulose based granules subject to uniaxial and triaxial load. 2019 , 559, 130-137	3
529	Parametric Study of a Unmanned Aerial Vehicle Ingestion Into a Business Jet Size Fan Assembly Model. 2019 , 141,	7
528	Enhancing smoothed particle hydrodynamics for shallow water equations on small scales by using the finite particle method. 2019 , 344, 360-375	6
527	A-SLEIPNNIR: A multiscale, anisotropic adaptive, particle level set framework for moving interfaces. Transport equation applications. 2019 , 377, 89-116	4
526	The Hermit-Type Reproducing Kernel Particle Method for Elasticity Problems. 2019, 16, 1846003	1
525	A 3-D coupled Smoothed Particle Hydrodynamics and Coarse-Grained model to simulate drying mechanisms of small cell aggregates. 2019 , 67, 219-233	6
524	Numerical Simulation of Failure Process of Buildings Under the Impact of Flow Slide. 2019 , 217-223	
523	A smooth particle hydrodynamic model for two-dimensional numerical simulation of TiBAlAV serrated chip deformation based on TANH constitutive law. 2019 , 233, 3004-3017	5

522 Smoothed Particle Hydrodynamics Method. **2019**, 17-65

521	Applications in Continuum Fluid Mechanics and Transport Phenomena. 2019 , 67-100	
520	Recent advances in modeling and simulation of nanofluid flowsPart II: Applications. 2019, 791, 1-59	337
519	A finite particle method with particle shifting technique for modeling particulate flows with thermal convection. 2019 , 128, 1245-1262	38
518	Three-dimensional material point method modeling of runout behavior of the Hongshiyan landslide. 2019 , 56, 1318-1337	19
517	Dynamic process simulation of construction solid waste (CSW) landfill landslide based on SPH considering dilatancy effects. 2019 , 78, 763-777	12
516	A dynamic particle refinement strategy in Smoothed Particle Hydrodynamics for FluidBtructure Interaction problems. 2019 , 100, 140-149	8
515	A mixed characteristic boundary condition for simulating viscous incompressible fluid flows around a hydrofoil. 2019 , 24, 73-85	6
514	Numerical Study on High Velocity Impact Welding Using a Modified SPH Method. 2019 , 16, 1846001	11
513	Numerical Simulation of Water Entry with Improved SPH Method. 2019 , 16, 1846004	9
512	SPH Method with Space-Based Variable Smoothing Length and Its Applications to Free Surface Flow. 2019 , 16, 1846002	2
511	SPH modeling of high velocity impact into ballistic gelatin. Development of an axis-symmetrical formulation. 2019 , 26, 1881-1888	10
510	Viscous Flow Past a NACA0012 Foil Below a Free Surface Through the Delta-Plus-SPH Method. 2019 , 16, 1846007	8
509	A New Formula for Predicting the Crater Size of a Target Plate Produced by Hypervelocity Impact. 2020 , 17, 1844004	1
508	SoillWater-Structure Interaction Algorithm in Smoothed Particle Hydrodynamics (SPH) with Application to Deep-Penetrating Problems. 2020 , 17, 1850135	4
507	Blast induced fracture modelling using smoothed particle hydrodynamics. 2020 , 135, 103235	21
506	On study of non-spherical bubble collapse near a rigid boundary. 2020 , 32, 523-535	6
505	Investigation on the spatial distribution characteristics of behind-armor debris formed by the perforation of EFP through steel target. 2020 , 16, 119-135	2

(2020-2020)

504	Dynamic simulation of rockslide-debris flow based on an elasticplastic framework using the SPH method. 2020 , 79, 451-465	4
503	Numerical study on mechanical and hydraulic behaviour of blast-induced fractured rock. 2020 , 36, 915-929	13
502	Smoothed Particle Hydrodynamics Simulation of Liquid Drop Impinging Hypoelastic Surfaces. 2020 , 17, 1940001	
501	Efficient local smoothed particle hydrodynamics with precomputed patches. 2020 , 97, 63-71	
500	Simulation of quasi-static axisymmetric collapse of granular columns using smoothed particle hydrodynamics and discrete element methods. 2020 , 15, 423-437	11
499	Parametric studies on smoothed particle hydrodynamic simulations for accurate estimation of open surface flow force. 2020 , 12, 85-101	7
498	Pricing European and American Options by SPH Method. 2020 , 17, 1950043	1
497	Simulating bubble dynamics in a buoyant system. 2020 , 92, 169-188	
496	A reproducing kernel particle method for solving generalized probability density evolution equation in stochastic dynamic analysis. 2020 , 65, 597-607	8
495	Simulating thin film flow using the shallow water equations and smoothed particle hydrodynamics. 2020 , 358, 112639	3
494	A weighted meshfree collocation method for incompressible flows using radial basis functions. 2020 , 401, 108964	11
493	A normalized iterative Smoothed Particle Hydrodynamics method. 2020 , 176, 171-180	3
492	New corrective scheme for DF-SPH. 2020 , 7, 471-478	О
491	Contemporary Meshfree Methods for Three Dimensional Heat Conduction Problems. <i>Archives of Computational Methods in Engineering</i> , 2020 , 27, 1413-1447	8
490	Mathematics of Smoothed Particle Hydrodynamics: A Study via Nonlocal Stokes Equations. 2020 , 20, 801-826	7
489	Characteristics of breaking vorticity in spilling and plunging waves investigated numerically by SPH. 2020 , 20, 233-260	11
488	Development of a Coupled DDABPH Method and its Application to Dynamic Simulation of Landslides Involving Solid Interaction. 2020 , 53, 113-131	22
487	Dissipative particle dynamics for modeling micro-objects in microfluidics: application to dielectrophoresis. 2020 , 19, 389-400	5

486	Numerical modelling of crack initiation, propagation and branching under dynamic loading. 2020 , 224, 106760	8
485	Investigation of the hemodynamic flow conditions and blood-induced stresses inside an abdominal aortic aneurysm by means of a SPH numerical model. 2020 , 36, e3263	2
484	Survey on Smoothed Particle Hydrodynamics and the Particle Systems. 2020, 8, 3087-3105	3
483	A new total-Lagrangian smooth particle hydrodynamics approximation for the simulation of damage and fracture of ductile materials. 2020 , 121, 2227-2245	4
482	An enhanced weakly-compressible MPS method for free-surface flows. 2020 , 360, 112771	12
481	Fragment spatial distribution of prismatic casing under internal explosive loading. 2020 , 16, 910-921	1
480	Numerical investigation of the solitary wave breaking over a slope by using the finite particle method. 2020 , 156, 103617	48
479	Semi-implicit operator splitting for the simulation of Herschel B ulkley flows with smoothed particle hydrodynamics. 2020 , 7, 699-704	O
478	Ballistic performance of ceramic and ceramic-metal composite plates with JH1, JH2 and JHB material models. 2020 , 137, 103469	21
477	Dual-criteria time stepping for weakly compressible smoothed particle hydrodynamics. 2020 , 404, 109135	10
476	A multi-phase SPH model based on Riemann solvers for simulation of jet breakup. 2020 , 111, 134-147	13
475	A hybrid generalized interpolated element-free Galerkin method for Stokes problems. 2020 , 111, 88-100	7
474	Pseudo-spring SPH simulations on the perforation of metal targets with different damage models. 2020 , 111, 55-77	3
473	Seismic Analysis of a Large LNG Tank considering the Effect of Liquid Volume. 2020 , 2020, 1-18	2
472	A versatile smoothed particle hydrodynamics code for graphic cards. 2020 , 33, 100410	2
471	Fluid-elastic structure interaction simulation by using ordinary state-based peridynamics and peridynamic differential operator. 2020 , 121, 126-142	9
470	Dynamic response of foam concrete under low-velocity impact: experiments and numerical simulation. 2020 , 146, 103693	10
469	An effective pure meshfree method for 1D/2D time fractional convection-diffusion problems on irregular geometry. 2020 , 118, 265-276	3

468 Numerical investigation of water droplet impact on horizontal beams. **2020**, 31, 2050118

467	Development of computational design tools for characterising and modelling cutting in ultra soft solids. 2020 , 40, 100964	5
466	A mimetic numerical scheme for multi-fluid flows with thermodynamic and geometric compatibility on an arbitrarily moving grid. 2020 , 132, 103324	3
465	Modeling robocasting with smoothed particle hydrodynamics: Printing gap-spanning filaments. 2020 , 36, 101488	1
464	On the propagation of nonlinear water waves in a three-dimensional numerical wave flume using the generalized finite difference method. 2020 , 119, 225-234	2
463	An advanced numerical treatment of EM absorption in human tissue. 2020 ,	
462	Wave-Structure Interaction for a Stationary Surface-Piercing Body Based on a Novel Meshless Scheme with the Generalized Finite Difference Method. 2020 , 8, 1147	3
461	The stability study of numerical solution of Fredholm integral equations of the first kind with emphasis on its application in boundary elements method. 2020 , 158, 134-151	2
460	Discrete element modeling of the machining processes of brittle materials: recent development and future prospective. 2020 , 109, 2795-2829	3
459	A New Parallel Framework of SPH-SWE for Dam Break Simulation Based on OpenMP. 2020 , 12, 1395	7
458	Meshfree modeling of near field two-liquid mixing process in the presence of different obstacles. 2020 , 213, 107625	7
457	Robust turbulence simulation for particle-based fluids using the Rankine vortex model. 2020 , 36, 2285-2298	2
456	Natural convection from cross blade inside a nanofluid-filled cavity using ISPH method. 2020 , 30, 4629-4648	1
455	A Study on Stable Regularized Moving Least-Squares Interpolation and Coupled with SPH Method. 2020 , 2020, 1-28	2
454	Dry-friction-induced self-excitation of a rectangular liquid-filled tank. 2020 , 102, 1337-1359	3
453	Hydrodynamics of onshore oscillating water column devices: A numerical study using smoothed particle hydrodynamics. 2020 , 218, 108226	6
452	Experimental and numerical investigation of hyper-elastic submerged structures strengthened with cable under seismic excitations. 2020 , 1-20	1
451	SPH-FE-Based Numerical Simulation on Dynamic Characteristics of Structure under Water Waves. 2020 , 8, 630	3

450	Experimental testing and numerical simulations of blast-induced fracture of dolomite rock. 2020 , 55, 2337-2352	8
449	Modeling hydrate-bearing sediment with a mixed smoothed particle hydrodynamics. 2020 , 66, 877-891	12
448	Research and development on hypervelocity impact protection using Whipple shield: An overview. 2020 ,	3
447	Improved ESPH Scheme with Automatic and Adaptive Numerical Dissipation. 2020, 12, 2858	7
446	Numerical simulation of metal machining process with Eulerian and Total Lagrangian SPH. 2020 , 117, 269-283	3
445	Effects of uniform circular motion on natural convection in a cavity filled with a nanofluid using incompressible SPH method. 2020 , 116, 104646	8
444	Smooth and Stepped Spillway Modeling Using the SPH Method. 2020 , 146, 04020054	4
443	Improvement of Pressure Calculations in the Moving Particle Semi-Implicit Method for Free-Surface Flows. 2020 , 17, 1950062	1
442	Experimental and numerical analysis of PMMA impact fracture. 2020 , 143, 103597	5
441	Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud. 2020 , 175, 99-117	7
440	Crashworthy design and energy absorption mechanisms for helicopter structures: A systematic literature review. 2020 , 114, 100618	20
439	Modelling of wave generation in a numerical tank by SPH method. 2020 , 6, 121-136	6
438	Smooth particle hydrodynamics and discrete element method coupling scheme for the simulation of debris flows. 2020 , 125, 103669	15
437	Modelling fluidEtructure interactions: a survey of methods and experimental verification. 2020 , 173, 159-172	2
436	A coupled smoothed particle hydrodynamic and finite particle method: An efficient approach for fluid-solid interaction problems involving free-surface flow and solid failure. 2020 , 118, 143-155	2
435	Study of the Factors Influencing Diffusive Tortuosity Based on Pore-Scale SPH Simulation of Granular Soil. 2020 , 132, 333-353	12
434	Numerical investigation of the effect of aeration and hydroelasticity on impact loading and structural response for elastic plates during water entry. 2020 , 201, 107098	2
433	Multiple Particle Manipulation under Dielectrophoresis Effect: Modeling and Experiments. 2020 , 36, 3016-3028	8

(2020-2020)

432	Smooth Nonlinear Hysteresis Model for Coupled Biaxial Soil-Pipe Interaction in Sandy Soils. 2020 , 146, 04020035	1
431	Simulation of Skeletal Muscles in Real-Time with Parallel Computing in GPU. 2020 , 10, 2099	2
430	Analysis of Movement Law and Influencing Factors of Hill-Drop Fertilizer Based on SPH Algorithm. 2020 , 10, 1643	2
429	A Semi-Infinite Numerical Wave Tank Using Discrete Particle Simulations. 2020 , 8, 159	2
428	3D Thermal Simulation of a Laser Drilling Process with Meshfree Methods. 2020 , 4, 58	5
427	Perspective Review on Subsea Jet Trenching Technology and Modeling. 2020 , 8, 460	1
426	SPH Simulation of Structures Impacted by Tailing Debris Flow and Its Application to the Buffering Effect Analysis of Debris Checking Dams. 2020 , 2020, 1-17	2
425	Coupling lattice Boltzmann and material point method for fluid-solid interaction problems involving massive deformation. 2020 , 121, 5546-5567	2
424	A particle refinement scheme with hybrid particle interacting technique for multi-resolution SPH. 2020 , 118, 108-123	7
423	Ship hull slamming analysis with smoothed particle hydrodynamics method. 2020 , 101, 102268	12
422	A local gradient smoothing method for solving strong form governing equation. 2020 , 84, 104073	3
421	Dynamics of fluid-filled space multibody systems considering the microgravity effects. 2020 , 148, 103809	4
421 420	Dynamics of fluid-filled space multibody systems considering the microgravity effects. 2020 , 148, 103809 The meshless analysis of wave equations based on the RRKPM. 2020 , 16, 102980	
		4
420	The meshless analysis of wave equations based on the RRKPM. 2020 , 16, 102980	0
420 419	The meshless analysis of wave equations based on the RRKPM. 2020 , 16, 102980 Impact of Pile Punching on Adjacent Piles: Insights from a 3D Coupled SPH-FEM Analysis. 2020 , 1, 47-58	0
420 419 418	The meshless analysis of wave equations based on the RRKPM. 2020 , 16, 102980 Impact of Pile Punching on Adjacent Piles: Insights from a 3D Coupled SPH-FEM Analysis. 2020 , 1, 47-58 Study on the Installation Characteristics of the Screw Pile with Grooves on Hard Ground. 2020 , 428, 012085 A Coupled Eulerian-Lagrangian Framework for the Modeling and Simulation of Turbulent	0

414	Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method. 2020 , 94, 102942	20
413	Dynamic response of clamped sandwich beams with fluid-fillied corrugated cores. 2020 , 139, 103533	14
412	An integrated smoothed particle hydrodynamics model for complex interfacial flows with large density ratios. 2020 , 92, 950-975	1
411	Four Modes of Droplet Permeation Through a Micro-pore with a T-Shaped Junction During Spreading. 2020 , 132, 219-240	O
410	On motion analysis and elastic response of floating offshore wind turbines. 2020 , 6, 71-90	7
409	SPH Fluid Tactile Rendering for Ultrasonic Mid-Air Haptics. 2020 , 13, 116-122	2
408	Mechanical performance and crashworthiness of plates and extrusions subjected to cutting: An overview. 2020 , 148, 106612	7
407	Numerical modeling of the tool-rock penetration process using FEM coupled with SPH technique. 2020 , 189, 107008	13
406	Simulating incompressible flow on moving meshfree grids. 2020 , 200, 104464	2
405	Smoothed Particle Hydrodynamics Modeling with Advanced Boundary Conditions for Two-Dimensional Dam-Break Floods. 2020 , 12, 1142	5
404	A Holistic View on Urea Injection for NOx Emission Control: Impingement, Re-atomization, and Deposit Formation. 2020 , 6, 228-243	7
403	Prediction of Electrolyte Distribution in Technical Gas Diffusion Electrodes: From Imaging to SPH Simulations. 2020 , 132, 381-403	5
402	Truncation error estimates of approximate operators in a generalized particle method. 2020, 37, 565-598	2
401	Modeling of van der Waals force with smoothed particle hydrodynamics: Application to the rupture of thin liquid films. 2020 , 83, 719-735	2
400	Processing capabilities of micro ultrasonic machining for hard and brittle materials: SPH analysis and experimental verification. 2020 , 63, 159-169	9
399	Hydrostatic Response of Deployable Hyperbolic-Paraboloid Umbrellas as Coastal Armor. 2020 , 146, 04020096	5 6
398	Assessment of breaking waves and liquid sloshing impact. 2020 , 100, 1837-1925	13
397	Meshless method IReview on recent developments. 2020 , 26, 1598-1603	4

(2021-2020)

396	Comparison of surface tension generation methods in smoothed particle hydrodynamics for dynamic systems. 2020 , 203, 104540	4
395	Continuous smoothed particle hydrodynamics for cracked nonconvex bodies by diffraction criterion. 2020 , 108, 102584	4
394	Stress-Particle Smoothed Particle Hydrodynamics: An application to the failure and post-failure behaviour of slopes. 2020 , 366, 113034	3
393	A meshless method for topology optimization of structures under multiple load cases. 2020 , 25, 173-179	5
392	The meshless analysis of wave propagation based on the Hermit-type RRKPM. 2020 , 134, 106154	5
391	Smoothed Particle Hydrodynamics Simulations of Whole Blood in Three-Dimensional Shear Flow. 2020 , 17, 2050009	1
390	Penetration of annular and general jets into underwater plates. 2021 , 8, 289-296	2
389	The study on performances of kernel types in solid dynamic problems by smoothed particle hydrodynamics. 2021 , 8, 407-421	О
388	Simulation of water evaporation under natural conditions state-of-the-art overview. 2021, 3, 242-249	3
387	A CUDA-based implementation of an improved SPH method on GPU. 2021 , 409, 125482	1
386	Bleeding Simulation With Improved Visual Effects for Surgical Simulation Systems. 2021 , 51, 686-695	6
385	Adaptive Total Lagrangian Eulerian SPH for high-velocity impacts. 2021 , 192, 106108	2
384	Particle-based simulation of cold spray: Influence of oxide layer on impact process. 2021 , 37, 101517	6
383	Theoretical method for generating solitary waves using plunger-type wavemakers and its Smoothed Particle Hydrodynamics validation. 2021 , 106, 102414	9
382	On a new algorithm for incorporating the contact angle forces in a simulation using the shallow water equation and smoothed particle hydrodynamics. 2021 , 215, 104793	0
381	Application of SPH to Single and Multiphase Geophysical, Biophysical and Industrial Fluid Flows. 2021 , 35, 22-78	6
380	Advances in ballistic penetrating impact simulations on thin structures using Smooth Particles Hydrodynamics: A state of the art. 2021 , 159, 107206	3
379	Novel pressure inlet and outlet boundary conditions for Smoothed Particle Hydrodynamics, applied to real problems in porous media flow. 2021 , 429, 110029	1

378	Semi-decoupled first-order correction for smoothed particle hydrodynamics. 2021 , 93, 314-325	1
377	Semi-resolved CFD-DEM modeling of gas-particle two-phase flow in the micro-abrasive air jet machining. 2021 , 381, 585-600	4
376	Peridynamic modeling of delaminations in laminated composite beams using refined zigzag theory. 2021 , 112, 102832	5
375	Lagrangian radial basis function-based particle hydrodynamics method and its application for viscous flows. 2021 , 122, 1964-1989	2
374	Static and dynamic analysis of thin functionally graded shell with in-plane material inhomogeneity. 2021 , 193, 106165	11
373	Parametric Modeling of Depth-Limited Wave Spectra under Hurricane Conditions with Applications to Kinetic Umbrellas against Storm Surge Inundation. 2021 , 13, 251	2
372	Smoothed Particle Hydrodynamics Simulation of Orthogonal Cutting with Enhanced Thermal Modeling. 2021 , 11, 1020	4
371	Numerical analysis of dynamic compaction using FEM-SPH coupling method. 2021 , 140, 106420	7
370	Numerical simulation of droplet impinging icing process on a low-temperature wall with smoothed particle hydrodynamics (SPH) method. 2021 , 258-258	
369	Numerical Study of the 3D Variable Coefficient Heat Transfer Problem by Using the Finite Pointset Method. 2021 , 46, 3483-3502	
368	Investigation of particle method and FEM coupling method for automotive airbag. 2021, 1-20	
367	Adapted SIMPLE Algorithm for Incompressible SPH Fluids with a Broad Range Viscosity. 2021 , PP,	
366	A study of the wave impact loads on a fixed column-slab combined structure with a GPU-accelerated SPH method. 1-12	
365	A novel approach to determine residual stress field during FSW of AZ91 Mg alloy using combined smoothed particle hydrodynamics/neuro-fuzzy computations and ultrasonic testing. 2021 ,	6
364	Overview. 2021 , 91-100	
363	Smoothed-Particle-Hydrodynamics for the control of robotic swarms and parametric associations. 2021 , 1-1	
362	A local refinement purely meshless scheme for time fractional nonlinear Schrdinger equation in irregular geometry region*. 2021 , 30, 020202	
361	A BPHBPIM coupled method for fluid Structure interaction problems. 2021 , 101, 103210	9

(2021-2021)

360	An accurate SPH Volume Adaptive Scheme for modeling strongly-compressible multiphase flows. Part 1: Numerical scheme and validations with basic 1D and 2D benchmarks. 2021 , 426, 109937	6
359	An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. 2021 , 221, 108552	29
358	Smoothed Particle Hydrodynamics Modeling of Natural Convection Around a Heated Horizontal Cylinder: A Comparison With Experiments. 2021 , 143,	
357	The Effect of Iterative Procedures on the Robustness and Fidelity of Augmented Lagrangian SPH. 2021 , 13, 472	O
356	Multi-Resolution SPH Simulation of a Laser Powder Bed Fusion Additive Manufacturing Process. 2021 , 11, 2962	14
355	Hydrodynamics of Regular Breaking Wave.	
354	Enhancing the Iterative Smoothed Particle Hydrodynamics Method. 2021 , 11, 2628	
353	Meshless analysis of bi-directional functionally graded beam structures based on physical neutral surface. 2021 , 259, 113502	1
352	Simulating electrohydrodynamics with smoothed particle hydrodynamics based on a charge-conservative approach. 2021 , 124, 41-51	2
351	Meshless Numerical Analysis of Phase Change Problems in Artificial Freezing Technology Applied in Geo-Media. 2150023	O
350	Efficient smoothed particle radiation hydrodynamics I: Thermal radiative transfer. 2021 , 429, 109996	1
349	Meshless SPH analysis for transient heat conduction in the functionally graded structures. 2021 , 24, 100664	Ο
348	Modelling Pasty Material Behaviour Using the Discrete Element Method. 2021 , 3, 119-128	1
347	Verification and application of 2-D DDA-SPH method in solving fluidEtructure interaction problems. 2021 , 102, 103252	2
346	SPH-FEM simulation of concrete breaking process due to impact of high-speed water jet. 2021 , 11, 045226	1
345	Smoothed Particle Hydrodynamics Simulations of Water Flow in a 90° Pipe Bend. 2021 , 13, 1081	1
344	A Local Semi-Fixed Ghost Particles Boundary Method for WCSPH. 2021 , 9, 416	0
343	The particle-attached element interpolation for density correction in smoothed particle hydrodynamics. 2021 , 154, 102972	2

342	Numerical Investigation on the Kinetic Characteristics of the Yigong Debris Flow in Tibet, China. 2021 , 13, 1076	3
341	Virtual Experiments of Particle Mixing Process with the SPH-DEM Model. 2021, 14,	4
340	MPS-Based Model to Solve One-Dimensional Shallow Water Equations. 2021 , 57, e2020WR028742	1
339	A particle-based modelling approach to food processing operations. 2021 , 127, 14-57	3
338	Smoothed Particle Hydrodynamics Simulations of Turbulent Flow in Curved Pipes With Different Geometries: A Comparison With Experiments. 2021 , 143,	1
337	A dimensionless numerical mesh-free model for the compressible fluid flows. 2021 , 221, 104845	2
336	Numerical Simulation of Vehicle-Lighting Pole Crash Tests: Parametric Study of Factors Influencing Predicted Occupant Safety Levels. 2021 , 14,	1
335	An entropy-stable Smooth Particle Hydrodynamics algorithm for large strain thermo-elasticity. 2021 , 379, 113736	4
334	SPH simulations of 3D dam-break flow against various forms of the obstacle: Toward an optimal design. 2021 , 229, 108978	7
333	Smoothed peridynamics for the extremely large deformation and cracking problems: Unification of peridynamics and smoothed particle hydrodynamics. 2021 , 44, 2444-2461	6
332	Application of Smooth Particle Hydrodynamics to Particular Flow Cases Solved by Saint-Venant Equations. 2021 , 13, 1671	
331	Smooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanks. 2021 , 229, 108925	8
330	Angular particle impact on ductile materials using the Lagrangian gradient smoothing method. 1-19	
329	Ballistic impact response of an alumina-based granular material: Experimental and numerical analyses. 2021 , 385, 273-286	1
328	How to Modify LAMMPS: From the Prospective of a Particle Method Researcher. 2021 , 5, 30	3
327	An SPH framework for fluid s olid and contact interaction problems including thermo-mechanical coupling and reversible phase transitions. 2021 , 8,	1
326	Generation of Gravity Waves by Pedal-Wavemakers. 2021 , 6, 222	0
325	Theoretical modeling and experimental analysis of single-grain scratching mechanism of fused quartz glass. 2021 , 293, 117090	2

324	A fully resolved SPH-DEM method for heterogeneous suspensions with arbitrary particle shape. 2021 , 387, 509-526	12
323	Research and application of SPH parallel algorithm based on particle decomposition. 2021 , 1985, 012005	
322	SBFE Virtual Particle Boundary: A New Non-reflecting Boundary in SPH.	
321	A discrete scheme of the fluid motion equation based on the pore-scale SPH method. 2021 , 11, 075102	
320	Particle Dynamics with Elastic Collision at the Boundary: Existence and Partial Uniqueness of Solutions. 2021 , 174, 1	
319	A fluidEtructure interaction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. 2021 , 104, 103312	15
318	Smooth particle hydrodynamics simulation of dam-break impacting different obstacles. 2021 , 1985, 012003	
317	Multi-resolution technique integrated with smoothed particle element method (SPEM) for modeling fluid-structure interaction problems with free surfaces. 2021 , 64, 1	5
316	An arbitrary Lagrangian Eulerian smoothed particle hydrodynamics (ALE-SPH) method with a boundary volume fraction formulation for fluid-structure interaction. 2021 , 128, 274-289	1
315	Advances in the Whipple Shield Design and Development:. 2021 , 1	1
315 314	Advances in the Whipple Shield Design and Development:. 2021 , 1 Numerical Simulation of Thermal Field in Mass Concrete With Pipe Water Cooling. 9,	1
		0
314	Numerical Simulation of Thermal Field in Mass Concrete With Pipe Water Cooling. 9,	
314	Numerical Simulation of Thermal Field in Mass Concrete With Pipe Water Cooling. 9, Numerical Investigation of Surge Waves Generated by Submarine Debris Flows. 2021, 13, 2276 Analysis of Elastic Problems Using the Improved Interpolating Complex Variable Element	O
314 313 312	Numerical Simulation of Thermal Field in Mass Concrete With Pipe Water Cooling. 9, Numerical Investigation of Surge Waves Generated by Submarine Debris Flows. 2021, 13, 2276 Analysis of Elastic Problems Using the Improved Interpolating Complex Variable Element Free Galerkin Method. 2021, 9, 1967 A least squares recursive gradient meshfree collocation method for superconvergent structural	0
314 313 312 311	Numerical Simulation of Thermal Field in Mass Concrete With Pipe Water Cooling. 9, Numerical Investigation of Surge Waves Generated by Submarine Debris Flows. 2021, 13, 2276 Analysis of Elastic Problems Using the Improved Interpolating Complex Variable Element Free Galerkin Method. 2021, 9, 1967 A least squares recursive gradient meshfree collocation method for superconvergent structural vibration analysis. 2021, 68, 1063-1096 Comprehensive thermo-mechanical simulation of friction surfacing of aluminum alloys using	O 1
314 313 312 311 310	Numerical Simulation of Thermal Field in Mass Concrete With Pipe Water Cooling. 9, Numerical Investigation of Surge Waves Generated by Submarine Debris Flows. 2021, 13, 2276 Analysis of Elastic Problems Using the Improved Interpolating Complex Variable Element Free Galerkin Method. 2021, 9, 1967 A least squares recursive gradient meshfree collocation method for superconvergent structural vibration analysis. 2021, 68, 1063-1096 Comprehensive thermo-mechanical simulation of friction surfacing of aluminum alloys using smoothed particle hydrodynamics method. 2021, 419, 127274 A novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems	O 1 1 1

306	On differences and comparisons of peridynamic differential operators and nonlocal differential operators. 1	4
305	A Simplified Framework for Modelling Viscoelastic Fluids in Discrete Multiphysics. 2021 , 5, 61	1
304	Numerical Study on the Hydrodynamic Characteristics of a Double-Row Floating Breakwater Composed of a Pontoon and an Airbag. 2021 , 9, 983	O
303	Improved element-particle coupling strategy with ESPH and particle shifting for modeling sloshing with rigid or deformable structures. 2021 , 114, 102774	11
302	Comparison of explosive welding of pure titanium/SUS 304 austenitic stainless steel and pure titanium/SUS 821L1 duplex stainless steel. 2021 , 31, 2687-2702	2
301	Study of the Dilatancy/Contraction Mechanism of Landslide Fluidization Behavior Using an Initially Saturated Granular Column Collapse Simulation. 2021 , 57, e2020WR028802	O
300	Overcoming excessive numerical dissipation in SPH modeling of water waves. 2021 , 170, 104018	5
299	Development of surrogate predictive models for the nonlinear elasto-plastic response of medium density fibreboard-based sandwich structures. 2021 , 4, 302-314	2
298	A novel smoothed particle hydrodynamics and finite element coupling scheme for fluid\(\text{\textstyle{\textstyle{1}}}\) tructure interaction: The sliding boundary particle approach. 2021 , 383, 113922	4
297	An improved smoothed particle hydrodynamics approach using new inverse kernel function. 2021 ,	O
296	Towards a High Order Convergent ALE-SPH Scheme with Efficient WENO Spatial Reconstruction. 2021 , 13, 2432	2
295	Coupling between turbulence and solar-like oscillations: a combined Lagrangian PDF/SPH approach. I. The stochastic wave equation.	O
294	Numerical simulations of adhesive spreading during bonding-induced squeeze. 1-33	1
293	A finite particle method (FPM) for Lagrangian simulation of conservative solute transport in heterogeneous porous media. 2021 , 156, 104043	O
292	SPH simulations of water entry problems using an improved boundary treatment. 2021 , 238, 109679	2
291	Prediction of multiphase flows with sharp interfaces using anisotropic mesh optimisation. 2021 , 160, 103044	1
290	Evaluation of numerical simulation methods and ice material models for intermediate-velocity hail impact simulation. 2021 , 244, 112831	О
289	An RKPM-based formulation of the generalized probability density evolution equation for stochastic dynamic systems. 2021 , 66, 103152	1

(2020-2021)

288	Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: From solid fracture to granular behaviour and multiphase flows in porous media. 2021 , 138, 104315	17
287	Development of coupled DDA-SPH method for dynamic modelling of interaction problems between rock structure and soil. 2021 , 146, 104890	1
286	A consistency-driven particle-advection formulation for weakly-compressible smoothed particle hydrodynamics. 2021 , 230, 105140	О
285	A stabilized collocation method based on the efficient gradient reproducing kernel approximations for the boundary value problems. 2021 , 132, 446-459	3
284	Review of transport mechanisms and numerical simulation studies of preformed particle gel for conformance control. 2021 , 206, 109051	10
283	An approach for permeable boundary conditions in SPH. 2021 , 444, 110562	O
282	A Mindlin shell model based on the corrective smoothed particle method and accuracy implementation of the free boundary. 2021 , 385, 114028	1
281	Three-dimensional numerical simulation of selective laser melting process based on SPH method. 2021 , 71, 224-236	O
280	On the determination of grid size/smoothing distance in un/semi-resolved CFD-DEM simulation of particulate flows. 2021 , 394, 73-82	3
279	An improved thermal model for SPH metal cutting simulations on GPU. 2021 , 100, 728-750	4
278	Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows. 2022 , 101, 214-238	8
277	Hydrodynamics with complex boundary motions by non-inertial SPH method and its application in attitude-liquid-control coupled dynamics of a liquid-filled quadrotor UAV. 2022 , 163, 108066	O
276	Towards Mesh-Free Patient-Specific Mitral Valve Modeling. 2021 , 66-75	1
275	The development of smoothed particle hydrodynamics (SPH) method for modeling the interaction movement of fluid layers in between two soil layers in flat surface condition. 622, 012008	
274	A parameter-free total Lagrangian smooth particle hydrodynamics algorithm applied to problems with free surfaces. 2021 , 8, 859-892	2
273	An Improved Convergence Result for the Smoothed Particle Hydrodynamics Method. 2021 , 53, 1239-1262	2
272	Development of computationally efficient augmented Lagrangian SPH for incompressible flows and its quantitative comparison with WCSPH simulating flow past a circular cylinder. 2020 , 121, 4187-4207	6
271	Comparison Between Two Numerical Methods SPH/FEM and CEL by Numerical Simulation of an Impacting Water Jet. 2020 , 50-60	1

270	Advanced Particle-Based Techniques for Complex Fluids and Multiscale Flow Processes. 2020 , 361-392	2
269	Towards an Efficient Implementation of an Accurate SPH Method. 2020 , 3-10	1
268	Particle-Based Approach for Simulation of Nonlinear Material Behavior in Contact Zones. 2021 , 67-89	2
267	A Lagrangian Pramework for the Simulation of Rigid and Deformable Bodies in Fluid. 2014 , 33-52	2
266	Smoothed Particle Hydrodynamics Applied to Cartilage Deformation. 2015 , 151-165	2
265	Smoothed Particle Hydrodynamics for investigating hydraulic and mechanical behaviour of an embankment under action of flooding and overburden loads. 2018 , 94, 31-45	8
264	Midtown splines: An optimal charge assignment for electrostatics calculations. 2020 , 153, 224117	O
263	Quantifying hydrodynamic collective states of magnetic colloidal spinners and rollers. 2019, 4,	8
262	Incompressible smoothed particle hydrodynamics modeling of thermal convection. 2013 , 6, 211-235	2
261	Validation of SPH-FE Numerical Modeling of the Interaction between a High-Speed Water Jet and a PMMA Target by CEL Model and Experimental Study. 2020 , 21, 227-238	2
260	An Improved CSPM Approach for Accurate Second-Derivative Approximations with SPH. 2017 , 05, 168-184	10
259	Obtaining Precise Churning Loss for a Gearbox Using Advanced Smoothed Particle Hydrodynamics.	3
258	Numerical Simulation for the Hybrid Process of Sheet Metal Forming and Injection Molding Using Smoothed Particle Hydrodynamics Method.	3
257	Incompressible fluid simulation on CUDA using SPH method. 2012 , 12,	1
256	Numerical simulation of droplet impact onto liquid films with smoothed particle hydrodynamics. 2012 , 61, 244701	5
255	A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method. 2013 , 62, 064702	9
254	An improved pre-processing method for somooth particle hydrodynamics. 2014 , 63, 144702	4
253	Simulation of three-dimensional transient heat conduction problem with variable coefficients based on the improved parallel smoothed particle hydrodynamics method. 2017 , 66, 130201	3

252	Simulation of two-dimensional nonlinear problem with solitary wave based on split-step finite pointset method. 2019 , 68, 140203	2
251	A numerical model for the simulation of oillite interaction. 2021 , 33, 102117	O
250	Theoretical Modeling and Experimental Analysis of Single-Particle Erosion Mechanism of Optical Glass. 2021 , 12,	2
249	The Multi-Advective Water Mixing Approach for Transport through Heterogeneous Media. 2021 , 14, 6562	2
248	Comparison between the Lagrangian and Eulerian Approach for Simulating Regular and Solitary Waves Propagation, Breaking and Run-Up. 2021 , 11, 9421	1
247	A general SPH framework for transient seepage flows through unsaturated porous media considering anisotropic diffusion. 2021 , 387, 114169	3
246	The first order symmetric SPH method for transient heat conduction problems. 2011 , 60, 090206	6
245	A 3D Meshless Approach for Transient Electromagnetic PDEs. 2012 , 107-112	
244	Dissipative particle dynamics simulation of flow around a mesoscopic sphere with different Reynolds numbers. 2012 , 61, 064704	
243	Lagrangian Simulation of a Fluid with Solid Particle Loading Performed on Supercomputers. 2013 , 405-421	
242	A corrected smoothed particle hydrodynamics approach to solve the non-isothermal	
	non-Newtonian viscous fluid flow problems. 2014 , 63, 210203	2
241		2
241	non-Newtonian viscous fluid flow problems. 2014 , 63, 210203	2
·	non-Newtonian viscous fluid flow problems. 2014 , 63, 210203 SPH Modeling for Flow Slides in Landfills. 2014 , 115-132 Study on the droplet impact on hydrophobic surface in terms of van der Waals surface tension	2
240	non-Newtonian viscous fluid flow problems. 2014 , 63, 210203 SPH Modeling for Flow Slides in Landfills. 2014 , 115-132 Study on the droplet impact on hydrophobic surface in terms of van der Waals surface tension model. 2015 , 64, 114701	1
240	non-Newtonian viscous fluid flow problems. 2014, 63, 210203 SPH Modeling for Flow Slides in Landfills. 2014, 115-132 Study on the droplet impact on hydrophobic surface in terms of van der Waals surface tension model. 2015, 64, 114701 The State of the Art of SPH Modelling for Flow-slide Propagation. 2015, 155-164 Modeling of landslide generated waves in Three Gorges Reservoir, China using SPH method. 2016,	
240 239 238	non-Newtonian viscous fluid flow problems. 2014, 63, 210203 SPH Modeling for Flow Slides in Landfills. 2014, 115-132 Study on the droplet impact on hydrophobic surface in terms of van der Waals surface tension model. 2015, 64, 114701 The State of the Art of SPH Modelling for Flow-slide Propagation. 2015, 155-164 Modeling of landslide generated waves in Three Gorges Reservoir, China using SPH method. 2016, 2, 1183-1188	

234	Upon Bulk Cavitation Appearing in Underwater Explosions. 2017 , 23, 71-78	
233	Modeling of Orthogonal Metal Cutting Using Adaptive Smoothed Particle Hydrodynamics. 2018, 133-143	2
232	Simulation of Abrasive Wear with a Coupled Approach Considering Particles of Different Sizes. 2018 , 49-67	
231	SPH-FDM Boundary Method for the Heat Conduction of Geotechnical Materials Considering Phase Transition. 2018 , 291-295	
230	A RATIONALE OF THE STABILIZED ISPH METHOD II AN OPTIMIZATION OF RELAXATION COEFFICIENT BASED ON ERROR ESTIMATES 12019, 75, I_187-I_194	1
229	Numerical study of nonlinear Schrölinger equation with high-order split-step corrected smoothed particle hydrodynamics method. 2019 , 68, 090203	2
228	Smoothed Particle Hydrodynamics for Ductile Solid Continua. 2019 , 1415-1463	
227	Sensitivity Analysis of Tire-Soil Interaction Using Finite Element Analysis and Smoothed Particle Hydrodynamics Techniques.	
226	High Precise Benchmarks by CSD (Computational Solid Dynamics) with Meshfree Methods.	O
225	Numerical Modelling of Metal Forming by SPH with Multi-GPU Acceleration.	
224	D⊠enli Dalgalar Beten Bir Say⊌al Dalga Tank⊞ SPH YBtemi ile Modellenmesi. 551-570	O
223	Nonprehensile Manipulation Control and Task Planning for Deformable Object Manipulation: Results from the RoDyMan Project. 2020 , 76-100	1
222	Development of a Novel Method to Simulate Cavity Preservation in Automotive Industry.	
221	Numerical Modeling of Orthogonal Machining Process Using Smoothed Particle Hydrodynamics Parametric Study. 2021 , 497-509	
220	Meshfree simulation and experimental validation of extreme thermomechanical conditions in friction stir extrusion. 1	1
219	Examples of Decompositions for Time and Space Domains and Discretization of Equations for General Purpose Computational Fluid Dynamics Programs and Historical Perspective of Some Key Developments. 2020 , 119-154	
218	One dimensional particle simulation analysis based on SPH method. 2020,	
217	. 2020,	O

216	The Fragile Points Method (FPM) to solve two-dimensional hyperbolic telegraph equation using point stiffness matrices. 2022 , 134, 11-21	1
215	Modeling of Failure Resulting from High-Velocity Ballistic Impact. 2020 , 1-30	
214	Comparison of Slope Stability Using Smoothed Particle Hydrodynamics, Finite Element Method, and Limit Equilibrium Method. 2020 , 295-310	
213	Microscopic and Macroscopic Fragmentation Characteristics under Hypervelocity Impact Based on MD and SPH Method. 2021 , 11,	O
212	Microjet formation from the grooved surface of aluminum under shock waves with different pulse durations. 2020 , 28, 065013	O
211	Performance Evaluation of ANCF Tetrahedral Elements in the Analysis of Liquid Sloshing. 2020, 5,	
210	Hydrodynamic Analysis Techniques for Coupled SeakeepingBloshing in Zero Speed Vessels: A Review. 2021 , 143,	1
209	Numerical simulation of fluidEtructure interaction with SPH method. 2020 , 2020, 958-965	1
208	Simulating multi-phase sloshing flows with the SPH method. 2022 , 118, 102989	2
207	A force-driven model for passenger evacuation in bus fires. 2022 , 589, 126591	
206	Rationally Designed TiO Nanostructures of Continuous Pore Network for Fast-Responding and Highly Sensitive Acetone Sensor 2021 , 5, e2100941	3
205	Investigation of the Thermal Field on Solid Propellant Grain with Cracks by Moving Particle Semi-Implicit Method.	
204	On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid tructure interaction problems in ocean engineering. 2021 , 117, 102938	4
203	High performance CFD simulations of sloshing in a moving tank with SPH method. 2021,	
202	Tsunami wave impact assessment for residences in Pattinapakkam, Chennai coast using DualSPHysics. 2022 , 49, 102127	
201	Interfacial investigation of explosion-welded Al/steel plate: The microstructure, mechanical properties and residual stresses. 2022 , 833, 142525	2
200	A continuum consistent discrete particle method for continuumdiscontinuum transitions and complex fracture problems. 2022 , 390, 114460	
199	An improved RBF based differential quadrature method. 2022 , 135, 299-314	1

A high-efficient splitting step reduced-dimension pure meshless method for transient 2D/3D Maxwell equations in complex irregular domain. 2022 , 136, 131-143	
Eulerian incompressible smoothed particle hydrodynamics on multiple GPUs. 2022, 273, 108263	1
Development of SPH for simulation of non-isothermal viscoelastic free surface flows with application to injection molding. 2022 , 104, 782-805	О
Experimental and Numerical Study on Strength of Concrete Slabs under High Speed Projectiles. 2021 , 28, 21-34	
The Mathematics of Smoothed Particle Hydrodynamics (SPH) Consistency. 2021 , 7,	1
Physics-informed neural networks (PINNs) for fluid mechanics: a review. 1	30
A Review of SPH Techniques for Hydrodynamic Simulations of Ocean Energy Devices. 2022 , 15, 502	6
The simulation of sediment transport and erosion caused by free-surface flow based on two-phase SPH model with the improved Shields criterion. 2022 , 72, 169-186	O
Prediction of Concrete Fragments Amount and Travel Distance under Impact Loading Using Deep Neural Network and Gradient Boosting Method 2022 , 15,	O
Smoothed particle hydrodynamics for blood flow analysis: development of particle lifecycle algorithm. 1	O
Nonlinear modelling of series-type pendulum tuned mass damper-tuned liquid damper. 1-26	
Approximately consistent SPH simulations of the anisotropic dispersion of a contaminant plume. 1	
The Size Effect on Contact Angles and Dynamic Behaviors of Droplets on Microcolumn and Microstrip Array Surfaces. 2101568	0
On the equivalence of Eulerian Smoothed Particle Hydrodynamics, Total Lagrangian Smoothed Particle Hydrodynamics and molecular dynamics simulations for solids. 2022 , 391, 114591	3
Multiscale modeling of impact through molecular dynamics and smooth particle hydrodynamics. 2022 , 593, 126903	3
Physical process-based runout modeling and hazard assessment of catastrophic debris flow using SPH incorporated with ArcGIS: A case study of the Hongchun gully. 2022 , 212, 106052	O
Polynomisches Kontaktmodell zur Abbildung pastßen Materialverhaltens in DEM-Simulationen. 2022 , 167, 61-65	
An improved particle method for simulating Fluid-Structure Interactions: The multi-resolution SPH-VCPM approach. 2022 , 247, 110779	1
	Eulerian incompressible smoothed particle hydrodynamics on multiple GPUs. 2022, 273, 108263 Development of SPH for simulation of non-isothermal viscoelastic free surface flows with application to injection molding. 2022, 104, 782-805 Experimental and Numerical Study on Strength of Concrete Slabs under High Speed Projectiles. 2021, 28, 21-34 The Mathematics of Smoothed Particle Hydrodynamics (SPH) Consistency. 2021, 7, Physics-informed neural networks (PINNs) for fluid mechanics: a review. 1 A Review of SPH Techniques for Hydrodynamic Simulations of Ocean Energy Devices. 2022, 15, 502 The simulation of sediment transport and erosion caused by free-surface flow based on two-phase SPH model with the improved Shields criterion. 2022, 72, 169-186 Prediction of Concrete Fragments Amount and Travel Distance under Impact Loading Using Deep Neural Network and Gradient Boosting Method 2022, 15, 502 Smoothed particle hydrodynamics for blood flow analysis: development of particle lifecycle algorithm. 1 Nonlinear modelling of series-type pendulum tuned mass damper-tuned liquid damper. 1-26 Approximately consistent SPH simulations of the anisotropic dispersion of a contaminant plume. 1 The Size Effect on Contact Angles and Dynamic Behaviors of Droplets on Microcolumn and Microstrip Array Surfaces. 2101568 On the equivalence of Eulerian Smoothed Particle Hydrodynamics, Total Lagrangian Smoothed Particle Hydrodynamics and molecular dynamics simulations for solids. 2022, 391, 114591 Multiscale modelling of impact through molecular dynamics and smooth particle hydrodynamics. 2022, 593, 126903 Physical process-based runout modeling and hazard assessment of catastrophic debris flow using SPH incorporated with ArcGIs: A case study of the Hongchun gully. 2022, 212, 106052 Polynomisches Kontaktmodell zur Abbildung pastBen Materialverhaltens in DEM-Simulationen. 2022, 167, 61-65 An improved particle method for simulating Fluid-Structure Interactions: The multi-resolution

163

2022, 393, 114716

Modeling of Failure Resulting from High-Velocity Ballistic Impact. 2022, 303-332 180 An Optimized GPU Implementation of Weakly-Compressible SPH Using CUDA-Based Strategies. 179 2022, 354-369 Smoothed Particle Hydrodynamics-Based Viscous Deformable Object Modelling. 2022, 73-102 178 Heterogeneous Distribution of Mechanical Properties of Single-Particle Cold Spray Impacts. 2022, 31, 498-507 Simulation of Dam-Break Flow Impact on Wet Riverbed based on SPH and Wireless Sensor 176 Networks. 2022. Exhaustion of a Steam Liquid Flow through a Channel with a Monodispersed Grain Layer. 2022, 69, 129-136 175 Application of smoothed particle hydrodynamics method for simulating the flooding process of a 174 O damaged ship cabin in full-time domain. 2022, 248, 110716 Cell-based model shows complex rearrangement of tissue mechanical properties are needed for 173 roots to grow in hard soil. Numerical investigation of collision between massive ice floe and marine structure using coupled 1 172 SPH-FEM method, 1-11 Effect of wettability on the water entry of spherical projectiles: Numerical analysis using smoothed 171 particle hydrodynamics. 2022, 12, 035014 Numerical and Experimental Studies of Free-Fall Drop Impact Tests Using Strain Gauge, 170 O Piezoceramic, and Fiber Optic Sensors. 2022, 3, 313-338 Meshless Generalized Finite Difference Method for the Propagation of Nonlinear Water Waves 169 \circ under Complex Wave Conditions. 2022, 10, 1007 Fluid Structure interaction approach with smoothed particle hydrodynamics and particle Spring 168 2 systems. 2022, 392, 114728 An extended Boussinesq theory for interfacial fluid mechanics. 2022, 133, 1 167 Performance analysis of a tuned point absorber using SPH calm water and wave tank simulations. 166 1 2022, Effects of Membrane Structure on Oil-Water Separation by Smoothed Particle Hydrodynamics.. 165 2022, 12, An investigation into the nonlinear effects in the roll motion of 2-D bodies by SPH method. 2022, 164 248, 110679

Implicit iterative particle shifting for meshless numerical schemes using kernel basis functions.

162	Coupled particle and mesh method in an Euler frame for unsteady flows around the pitching airfoil. 2022 , 138, 159-176	3
161	Feasibility of Kinetic Umbrellas as Deployable Flood Barriers during Landfalling Hurricanes. 2022 , 148,	1
160	Projection-tree reduced-order modeling for fast N-body computations. 2022, 459, 111141	1
159	A dynamic relaxation method with operator splitting and random-choice strategy for SPH. 2022 , 458, 111105	1
158	A consistent multiphase flow model with a generalized particle shifting scheme resolved via incompressible SPH. 2022 , 458, 111079	2
157	A mortar segment-to-segment contact method for stabilized total-Lagrangian smoothed particle hydrodynamics. 2022 , 107, 20-38	10
156	An efficient and generalized solid boundary condition for SPH: Applications to multi-phase flow and fluid tructure interaction. 2022 , 94, 276-292	О
155	Investigation of Numerical Modelling Techniques for Predicting Highly Nonlinear Extreme Waves in Shallow and Deep Water. 2021 ,	
154	Damage effect of pile wharf under underwater explosion load. 1-19	0
153	A Novel Improved Coupled Dynamic Solid Boundary Treatment for 2D Fluid Sloshing Simulation. 2021 , 9, 1395	3
152	Particle-Based Numerical Modelling of Liquid Marbles: Recent Advances and Future Perspectives. Archives of Computational Methods in Engineering, 1 7.8	
151	Towards a macroscopically consistent discrete method for granular materials: Delaunay strain-based formulation. 1	O
150	Study on abrasive particle impact modeling and cutting mechanism. 2022 , 10, 96-119	1
149	A Novel Meshfree Analysis of Transient Heat Conduction Problems Using RRKPM. 2022 , 131, 1793-1814	
148	Strain Behavior of Aluminum Alloys Under Dynamic Compression and Tensile. 2022, 413-453	
147	A new noninvasive and patient-specific hemodynamic index for the severity of renal stenosis and outcome of interventional treatment 2022 , e3611	1
146	Numerical Study of Wave Dynamics over Island Reefs Based on Smoothed Particle Hydrodynamics Method. 2022 , 2022, 1-14	
145	The internal substructure method for shock wave input in 2D fluid-structure interaction analysis with unbounded domain using doubly-asymptotic ABC. 1-14	

144	Investigation on the bouncing and coalescence behaviors of bubble pairs based on an improved APR-SPH method. 2022 , 255, 111401	1
143	VecDualSPHysics: A vectorized implementation of Smoothed Particle Hydrodynamics method for simulating fluid flows on multi-core processors. 2022 , 463, 111234	O
142	Analysis of the cutting fluid behavior with a modified micro single-lip deep hole drilling tool. 2022 , 38, 93-104	O
141	Parallel adaptive weakly-compressible SPH for complex moving geometries. 2022 , 277, 108377	O
140	A pseudo-spring based SPH framework for studying fatigue crack propagation. 2022, 106986	1
139	Study on the weakly compressible SPH method for improving pressure distribution of violent fluid-structure impact flows.	Ο
138	An Interactively Corrected Smoothed Particle Hydrodynamics (IC-SPH) for Simulating Solute Transport in a Non-uniform Velocity Field.	O
137	A Survey on SPH Methods in Computer Graphics. 2022 , 41, 737-760	O
136	Numerical Computation of Sloshing-Induced Force in Complex Ship Tanks under the Excitation of Ship Rolling Motion Based on the MPS Method. 2022 , 12, 5130	0
135	Meshfree Simulation and Analysis of Contact Conditions and Microstructure Evolution in Shear Assisted Processing and Extrusion.	
134	????????SPH-ASR????. 2022 ,	
133	A GPU-Based Plus-SPH Model for Non-Newtonian Multiphase Flows. 2022 , 14, 1734	Ο
132	Coupled multibody dynamics and computational fluid dynamics approach for amphibious vehicles in the surf zone. 2022 , 257, 111607	0
131	SPH-ASR study of drop impact on a heated surface with consideration of inclined angle and evaporation. 2022 , 141, 235-249	0
130	Modeling of Solitary Wave Interaction with Curved Face Seawalls Using Numerical Method. 2022 , 2022, 1-12	
129	A splitting method for the numerical simulation of free surface flows with sediment deposition and resuspension.	
128	Review of Smooth Particle Hydrodynamics and its Applications for Environmental Flows.	
127	The Effective Thermal Conductivity of Unsaturated Porous Media Deduced by Pore-Scale SPH Simulation. 10,	5

126	Simulation Analysis of Concrete Pumping Based on Smooth Particle Hydrodynamics and Discrete Elements Method Coupling. 2022 , 15, 4294	
125	Numerical simulation for liquid sloshing with baffle by the CLSVOF/IB method. 2022 , 258, 111732	
124	A smoothed particle hydrodynamics approach for phase field modeling of brittle fracture. 2022 , 398, 115191	O
123	3D multi-resolution SPH modeling of the water entry dynamics of free-fall lifeboats. 2022 , 257, 111648	1
122	Discontinuous Galerkin isogeometric analysis with peridynamic model for crack simulation of shell structure. 2022 , 398, 115193	O
121	Dynamic simulation of the water inrush process in tunnel construction using a three-dimensional coupled discontinuous deformation analysis and smoothed particle hydrodynamics method. 2022 , 127, 104612	0
120	?????????SPH????. 2022 ,	
119	SPH-FEM simulations of microwave-treated basalt strength. 2022 , 32, 2003-2018	
118	Interface investigation of Ti/Al explosively welded composites with 1060 interlayer: morphology, formation, and development. 1-22	
117	Experimental and Numerical Investigation of Floating Large Woody Debris Impact on a Masonry Arch Bridge. 2022 , 10, 911	O
116	juSPH: A Julia-based open-source package of parallel Smoothed Particle Hydrodynamics (SPH) for dam break problems. 2022 , 19, 101151	
115	Lagrangian meshfree particle method (SPH) based simulation for granular flow in a rotating drum with regularized (1) elastoplastic model. 2022, 408, 117699	
114	Comparison of hydrodynamic performance of floating breakwater with taut, slack, and hybrid mooring systems: An SPH-based preliminary investigation. 2022 , 258, 111818	O
113	A highly efficient and accurate Lagrangian E ulerian stabilized collocation method (LESCM) for the fluid E igid body interaction problems with free surface flow. 2022 , 398, 115238	O
112	Dynamic modelling of soil-rock-mixture slopes using the coupled DDA-SPH method. 2022 , 307, 106772	O
111	Extension of 3-D coupled DDA-SPH method for dynamic analysis of soil-structure interaction problems. 2022 , 111, 436-453	O
110	A general Bayesian nonlinear estimation method using resampled Smooth Particle Hydrodynamics solutions of the underlying FokkerPlanck Equation. 2022 , 146, 104134	
109	??????????-????????????. 2022,	

108 ?????????SPH????. **2022,**

107	Decoupled Finite Particle Method With Normalized Kernel (DFPM-NK): A Computationally Efficient Method for Simulating Solute Transport in Heterogeneous Porous Media. 2022 , 58,	
106	A Voronoi strain-based method for granular materials and continua.	
105	An overview of debris-flow mathematical modelling. 2022 , 232, 104135	O
104	Analysis of contact conditions and microstructure evolution in shear assisted processing and extrusion using smoothed particle hydrodynamics method. 2022 , 221, 111010	O
103	A review on numerical simulation of proppant transport: Eulerian[lagrangian views. 2022 , 217, 110902	О
102	An efficient MPS refined technique with adaptive variable-size particles. 2022, 143, 663-676	O
101	A decoupled SPH-FEM analysis of hydrodynamic wave pressure on hyperbolic-paraboloid thin-shell coastal armor and corresponding structural response. 2022 , 268, 114738	O
100	A finite particle method based on a Riemann solver for modeling incompressible flows. 2022 , 124, 74-88	
99	Semi-resolved CFD-DEM simulation of fine particle migration with heat transfer in heterogeneous porous media. 2022 , 197, 123349	O
98	A semi-resolved CFD-DEM coupling model using a two-way domain expansion method. 2022 , 469, 111532	O
97	Investigations on the hydroelastic slamming of deformable wedges by using the smoothed particle element method. 2022 , 114, 103732	1
96	Microstructure and mechanical properties investigation of explosively welded titanium/copper/steel trimetallic plate. 2022 , 192, 112250	O
95	A numerical approach for fluid-particle-structure interactions problem with CFD-DEM-CSD coupling method. 2022 , 152, 105007	O
94	A distributed-memory MPI parallelization scheme for multi-domain incompressible SPH. 2022 , 170, 53-67	O
93	COMPUTATIONAL ALGORITHMS FOR MULTIPHASE HYDRODYNAMICS MODELS AND FILTRATION. 2022 , 46-61	O
92	Digital twin application in ground simulating space debris system with laser-driven flyer technology. 2022 , 1-1	O
91	Study on the vidcous flow around foils with a multi-resolution smooth particle hydrodynamics method. 2022 , 40, 661-669	O

90	Application of Smoothed Particle Hydrodynamics (SPH) for the Simulation of Flow-Like Landslides on 3D Terrains. 2023 , 135, 357-376	O
89	Study of the Imbibition Phenomenon in Porous Media by the Smoothed Particle Hydrodynamic (SPH) Method. 2022 , 24, 1212	2
88	Laser damage evolution by defects on diamond fly-cutting KDP surfaces. 2022, 107794	0
87	Modelling of tuna around fish aggregating devices: the importance of ocean flow and prey.	O
86	SPH-Based Numerical Study on the Influence of Baffle Height and Inclination on the Interaction between Granular Flows and Baffles. 2022 , 14, 3063	O
85	Smoothed particle method for fluid-structure interaction. 2022 , 52, 104702	O
84	Dissolution characteristics of solutes with different shapes using the moving particle semi-implicit method.	О
83	Numerical simulation of impact and entrainment behaviors of debris flow by using SPHDEMBEM coupling method. 2022 , 14, 1020-1047	O
82	A volumetric-smoothed particle hydrodynamics based Eulerian-Lagrangian framework for simulating proppant transport. 2022 , 111129	O
81	Parallel algorithm for particle-grid dual discretization.	O
80	A Simple Eulerian-Lagrangian Weakly Compressible Smoothed Particle Hydrodynamics (EL-WCSPH) Method for Fluid Flow and Heat Transfer.	O
79	A multi-resolution SPH-FEM method for fluidEtructure interactions. 2022 , 401, 115659	O
78	Applicable Investigation of SPH in Characterization of Fluid Flow in Uniform and Non-Uniform Periodic Porous Media. 2022 , 14, 14320	О
77	SPH modeling and investigation of cold spray additive manufacturing with multi-layer multi-track powders. 2022 , 84, 565-586	O
76	Study of the Fragile Points Method for solving two-dimensional linear and nonlinear wave	0
	equations on complex and cracked domains. 2023 , 146, 44-55	O
75	equations on complex and cracked domains. 2023 , 146, 44-55 A partitioned continuous surface stress model for multiphase smoothed particle hydrodynamics. 2023 , 472, 111716	0
75 74	A partitioned continuous surface stress model for multiphase smoothed particle hydrodynamics.	

72	Unified description of fluids and solids in Smoothed Particle Hydrodynamics. 2023, 439, 127579	0
71	Towards SPH simulations of cavitating flows with an EoSB cavitation model. 2023, 39,	1
70	An integrative SPH method for heat transfer problems involving fluid-structure interaction. 2023 , 39,	0
69	Smoothed particle hydrodynamics: Methodology development and recent achievement. 2022 , 34, 767-805	1
68	A high-efficient accurate coupled mesh-free scheme for 2D/3D space-fractional convection-diffusion/Burgers' problems. 2022 ,	1
67	A Numerical Investigation of the Energy Efficiency Enhancement of Oscillating Water Column Wave Energy Converter Systems. 2022 , 15, 8276	1
66	Analysis method of the water inrush and collapse in jointed rock mass tunnels: A case study. 2023 , 146, 838-850	2
65	Mesh-free discretization of peridynamic shell structures and coupling model with isogeometric analysis. 2023 , 277, 108997	O
64	Coupled finite element-discrete element method (FEM/DEM) for modelling hypervelocity impacts. 2023 , 203, 296-307	O
63	A new particle shifting technique for SPH methods based on Voronoi diagram and volume compensation. 2023 , 404, 115788	O
62	Numerical investigation and experimental study on fracture processes of central flawed sandstone Brazilian discs. 2023 , 262-263, 112054	О
61	An enhanced implicit viscosity ISPH method for simulating free-surface flow coupled with solid-liquid phase change. 2023 , 474, 111809	O
60	Domain partitioning material point method for simulating shock in polycrystalline energetic materials. 2023 , 404, 115815	О
59	Sensory augmentation for subsea robot teleoperation. 2023 , 145, 103836	O
58	A novel MPI-based parallel smoothed particle hydrodynamics framework with dynamic load balancing for free surface flow. 2023 , 284, 108608	О
57	Simulation of van der Waals liquid droplets within a hot air atmosphere using the smoothed particle hydrodynamics method. 2023 , 202, 123749	O
56	Research Progress of SPH Simulations for Complex Multiphase Flows in Ocean Engineering. 2022 , 15, 9000	О
55	Dynamic response of wind turbine blade surface material under water droplet high velocity impact. 2022 , 2306, 012016	O

54	High-velocity impact study of an advanced ceramic using finite element model coupling with a machine learning approach. 2022 ,	0
53	Evaluation and sensitivity analysis of three-dimensional numerical simulation for aerated deflector-generated jets in spillways.	O
52	Mesh-Free Methods with Special Focus on SPH. 2023 , 655-710	0
51	Introduction. 2023, 1-65	O
50	Visualization in virtual reality: a systematic review.	1
49	Kernel broken smooth particle hydrodynamics method for crack propagation simulation applied in layered rock cells and tunnels. 2023 ,	Ο
48	SPHydro: Promoting smoothed particle hydrodynamics method toward extensive applications in ocean engineering. 2023 , 35, 017116	1
47	Numerical simulating wave propagation over solid obstructions using a non-hydrostatic free surface flow model combined immersed boundary method. 2023 , 269, 113526	O
46	Numerical simulation and experimental verification of heterogeneous granite impacted by abrasive water jet based on SPH-FEM coupling algorithm. 2023 , 416, 118233	0
45	Energy-conserving formulation of the CSF model for the simulation of surface tension at fluid-fluid interfaces with smoothed particle hydrodynamics. 2023 , 476, 111895	O
44	An improved calibration of Karagozian & amp; Case concrete/cementitious model for strain-hardening fibre-reinforced cementitious composites under explosion and penetration loadings. 2023 , 137, 104911	2
43	A modified friction-viscous solid boundary of the SPH method for landslide simulation. 2023 , 155, 105238	O
42	ParallelDualSPHysics: supporting efficient parallel fluid simulations through MPI-enabled SPH method. 2022 ,	0
41	Architectural Knitted Windbreaks for Improved Wind Comfort in the City: A Wind Tunnel Study of Custom-Designed Porous Textile Screens. 2023 , 13, 34	O
40	On methodology and application of smoothed particle hydrodynamics in fluid, solid and biomechanics. 2023 , 39,	О
39	Advances in Additive Manufacturing and Its Numerical Modelling. 2023, 1-21	O
38	Numerical modeling of shaped charge jet penetration into ceramicThetal double-layered medium using smoothed particle hydrodynamics. 2023 , 175, 104526	О
37	Experimental and numerical investigation on the ballistic performance of aluminosilicate glass with different nosed projectiles. 2023 ,	O

36	Experimental Investigations Concerning a Novel Dynamic Hydroforming Process Using Numerical Study Based on a FEM: Smoothed Particle Hydrodynamic Coupling Method.	O
35	Numerical simulation the fracture of rock in the framework of plastic-bond-based SPH and its applications. 2023 , 157, 105359	Ο
34	Simulation of soil-tool interaction using smoothed particle hydrodynamics (SPH). 2023 , 229, 105671	O
33	Simulation of brittle fractures using energy-bond-based smoothed particle hydrodynamics. 2023 , 248, 108236	O
32	Study on the propagation of regular water waves in a numerical wave flume with the ESPHC model. 2023 , 135, 103559	О
31	Modelling and analysis of salt-convection effect on oxide reduction process for uranium oxides using smoothed particle hydrodynamics. 2023 , 206, 123965	O
30	Dynamic failures of water controlling radial gates of hydro-power plants: Advancements and future perspectives. 2023 , 148, 107168	0
29	Meshless Fragile Points Method (FPM) in a 2D and 3D potential compressible subsonic fluid flow. 2023 , 151, 538-547	O
28	Hydrodynamic investigation on the submerged tunnel suspended from a fixed platform using SPH method. 2023 , 277, 114357	0
27	Point to point time optimal handling of unmounted rigid objects and liquid-filled containers. 2023 , 184, 105286	O
26	Adaptive partition of unity interpolation method with moving patches. 2023, 210, 49-65	0
25	Drop-vapour coexistence in smoothed particle hydrodynamics. 2023 , 151, 56-67	O
24	Smoothed particle hydrodynamics for modelling cold-water coral habitats in changing oceans. 2023 , 192, 102358	0
23	Investigation of the energy conversion process of a single bubble collapsing near different boundaries. 2023 , 277, 114063	O
22	A GPU-accelerated adaptive particle refinement for multi-phase flow and fluid-structure coupling SPH. 2023 , 279, 114514	0
21	Characterization of flow-blurring atomization with Smoothed Particle Hydrodynamics (SPH). 2023 , 164, 104442	O
20	A kernel derivative free SPH method. 2023 , 17, 100355	0
19	SPH simulation and experimental validation of the dynamic response of floating offshore wind turbines in waves. 2023 , 205, 393-409	Ο

18	An essentially non-hourglass formulation for total Lagrangian smoothed particle hydrodynamics. 2023 , 407, 115915	O
17	An energy-stable Smoothed Particle Hydrodynamics discretization of the Navier-Stokes-Cahn-Hilliard model for incompressible two-phase flows. 2023 , 479, 111997	o
16	Dual-Support Smoothed Particle Hydrodynamics in Solid: Variational Principle and Implicit Formulation. 2023 , 181-208	0
15	Numerical modelling of the mechanical behaviour of Aluminosilicate Glass: A comparison between two simulation approaches. 2023 , 1275, 012026	o
14	Cold Spray Coatings of Complex Concentrated Alloys: Critical Assessment of Milestones, Challenges, and Opportunities. 2023 , 13, 538	1
13	Particle-based model shows complex rearrangement of tissue mechanical properties are needed for roots to grow in hard soil. 2023 , 19, e1010916	o
12	A Non-Equilibrium Interpolation Scheme for IB-LBM Optimized by Approximate Force. 2023 , 12, 298	0
11	An improved smooth particle hydrodynamics method for modelling crack propagation in layered rock cells and slopes. 2023 , 82,	o
10	Numerical modeling of caldera formation using Smoothed Particle Hydrodynamics (SPH). 2023 , 234, 887-902	0
9	Implementation of improved spatial derivative discretization in DualSPHysics: simulation and convergence study.	o
8	Gravel arrester beds as a safety measure at the motorway exit ramps: experimental and numerical study. 1-16	0
7	Numerical model of the Gross P itaevskii equation for rotating Bose E instein condensates using smoothed-particle hydrodynamics. 2023 , 35, 047102	o
6	Numerical analysis of water droplet impact on the curved surface of wind turbine blades. 2022,	0
5	Expansion of consistent particle method to solve solid mechanics problems.	o
4	DiSECt: a differentiable simulator for parameter inference and control in robotic cutting.	0
3	Gaussian process hydrodynamics.	o
2	Numerical Investigation on Protective Mechanism of Metal Cover Plate for Alumina Armor against Impact of Fragment by FE-Converting-SPH Method. 2023 , 16, 3405	0
1	Convolution Hierarchical Deep-learning Neural Networks (C-HiDeNN): finite elements, isogeometric analysis, tensor decomposition, and beyond.	o