LCI modelling approaches applied on recycling of mater sustainability, risk perception and eco-efficiency

International Journal of Life Cycle Assessment 15, 666-671 DOI: 10.1007/s11367-010-0201-6

Citation Report

#	Article	IF	CITATIONS
1	Life-cycle assessment of a 100% solar fraction thermal supply to a European apartment building using water-based sensible heat storage. Energy and Buildings, 2011, 43, 1231-1240.	3.1	46
2	Life ycle assessment of <i>in situ</i> thermal remediation. Remediation, 2012, 22, 75-92.	1.1	3
3	Modelling of Recycling in LCA. , 2012, , .		2
4	Life-Cycle Assessment of the Recycling of Magnesium Vehicle Components. Jom, 2013, 65, 1303-1309.	0.9	21
5	Adaptation of environmental data to national and sectorial context: application for reinforcing steel sold on the French market. International Journal of Life Cycle Assessment, 2013, 18, 926-938.	2.2	25
6	Life cycle assessment of H2 generation with high temperature electrolysis. International Journal of Hydrogen Energy, 2013, 38, 3865-3880.	3.8	47
7	Lowering the global warming impact of bridge rehabilitations by using Ultra High Performance Fibre Reinforced Concretes. Cement and Concrete Composites, 2013, 38, 1-11.	4.6	131
8	Comparative LCA to evaluate how much recycling is environmentally favourable for food packaging. Resources, Conservation and Recycling, 2013, 77, 61-68.	5.3	76
9	Sensitivity analysis of methodological choices in road pavement LCA. International Journal of Life Cycle Assessment, 2013, 18, 93-101.	2.2	71
10	An environmental life cycle assessment comparison of single-use and conventional process technology for the production of monoclonal antibodies. Journal of Cleaner Production, 2013, 41, 150-162.	4.6	58
11	Life cycle assessment of a railway bridge: comparison of two superstructure designs. Structure and Infrastructure Engineering, 2013, 9, 1149-1160.	2.0	36
12	A Systems Approach to Sustainable Technical Product Design. Journal of Industrial Ecology, 2013, 17, 605-617.	2.8	24
13	Carbon footprint of recycled biogenic products: the challenge of modelling CO2removal credits. International Journal of Sustainable Engineering, 2013, 6, 66-73.	1.9	14
14	Methodologies to measure the sustainability of materials – focus on recycling aspects. Revue De Metallurgie, 2013, 110, 3-16.	0.3	21
15	Tackling the Downcycling Issue—A Revised Approach to Value-Corrected Substitution in Life Cycle Assessment of Aluminum (VCS 2.0). Sustainability, 2013, 5, 4546-4560.	1.6	47
16	A model to assess the sustainability of manufacturing equipment using the example of a reusable frequency converter housing. , 2014, , .		1
17	A life cycle assessment of packaging options for contrast media delivery: comparing polymer bottle vs. glass bottle. International Journal of Life Cycle Assessment, 2014, 19, 1965-1973.	2.2	30
18	Assessment of Progressive Product Innovation on Key Environmental Indicators: Pampers® Baby Wipes from 2007–2013. Sustainability, 2014, 6, 5129-5142.	1.6	12

ITATION REDO

щ		15	CITATIONS
#	Allocation colutions for secondary material production and ond of life recovery Droposals for	IF	CITATIONS
19	product policy initiatives. Resources, Conservation and Recycling, 2014, 88, 1-12.	5.3	96
20	Design of a sustainable packaging in the food sector by applying LCA. International Journal of Life Cycle Assessment, 2014, 19, 206-217.	2.2	26
21	Sustainable production of helical pinion gears: Environmental effects and product quality. International Journal of Precision Engineering and Manufacturing - Green Technology, 2014, 1, 37-41.	2.7	21
22	Environmental consequence analysis for resource depletion. Chemical Engineering Research and Design, 2014, 92, 849-861.	2.7	16
23	Life cycle assessment of automotive lightweighting through polymers under US boundary conditions. International Journal of Life Cycle Assessment, 2014, 19, 538-545.	2.2	41
24	The European Commission Organisation Environmental Footprint method: comparison with other methods, and rationales for key requirements. International Journal of Life Cycle Assessment, 2014, 19, 387-404.	2.2	45
25	Internet of Things and BOM-Based Life Cycle Assessment of Energy-Saving and Emission-Reduction of Products. IEEE Transactions on Industrial Informatics, 2014, 10, 1252-1261.	7.2	136
26	Thin-Film Photovoltaic Power Generation Offers Decreasing Greenhouse Gas Emissions and Increasing Environmental Co-benefits in the Long Term. Environmental Science & Technology, 2014, 48, 9834-9843.	4.6	61
27	Multiple data sets and modelling choices in a comparative LCA of disposable beverage cups. Science of the Total Environment, 2014, 494-495, 129-143.	3.9	43
28	How can a life cycle inventory parametric model streamline life cycle assessment in the wooden pallet sector?. International Journal of Life Cycle Assessment, 2014, 19, 901-918.	2.2	29
29	A life cycle assessment of residential waste management and prevention. International Journal of Life Cycle Assessment, 2014, 19, 1607-1622.	2.2	24
30	Variation in LCA results for disposable polystyrene beverage cups due to multiple data sets and modelling choices. Environmental Modelling and Software, 2014, 51, 123-135.	1.9	24
31	Environmental impacts of bamboo-based construction materials representing global production diversity. Journal of Cleaner Production, 2014, 69, 117-127.	4.6	94
32	From Economic General Equilibrium to Ecological System Services for Nature Conservation and Management: A Methodological Analysis and an Empirical Study Based on 30 Italian Industries. SSRN Electronic Journal, 0, , .	0.4	0
33	Urban infrastructure mines: on the economic and environmental motives of cable recovery from subsurface power grids. Journal of Cleaner Production, 2015, 104, 353-363.	4.6	15
34	Global or local construction materials for post-disaster reconstruction? Sustainability assessment of twenty post-disaster shelter designs. Building and Environment, 2015, 92, 692-702.	3.0	36
35	Analysis of interactions among barriers of eco-efficiency in electronics packaging industry. Journal of Cleaner Production, 2015, 101, 16-25.	4.6	54
36	Recycled Plastic Quality Indicator Development Using Material Testing Results and Radar Chart. Advanced Materials Research, 0, 1119, 821-827.	0.3	7

	Сіта	tion Report	
#	Article	IF	CITATIONS
37	Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions. Environmental Science & Technology, 2015, 49, 12535-12542.	4.6	128
38	Four Sustainability Paradigms for Environmental Management: A Methodological Analysis and an Empirical Study Based on 30 Italian Industries. Sustainability, 2016, 8, 504.	1.6	19
39	Life Cycle Assessment in WEEE Recycling. , 2016, , 177-207.		6
40	An anticipatory approach to quantify energetics of recycling CdTe photovoltaic systems. Progress in Photovoltaics: Research and Applications, 2016, 24, 735-746.	4.4	23
41	Methodological issues in life cycle assessment for remanufactured products: a critical review of existing studies and an illustrative case study. Journal of Cleaner Production, 2016, 126, 21-37.	4.6	57
42	Estimating direct climate impacts of end-of-life solar photovoltaic recovery. Solar Energy Materials and Solar Cells, 2016, 156, 27-36.	3.0	26
43	Critical review of guidelines against a systematic framework with regard to consistency on allocation procedures for recycling in LCA. International Journal of Life Cycle Assessment, 2016, 21, 994-1008.	2.2	69
44	Life cycle assessment of the manufacture and operation of solid oxide electrolyser components and stacks. International Journal of Hydrogen Energy, 2016, 41, 13786-13796.	3.8	26
46	Developing a systematic framework for consistent allocation in LCA. International Journal of Life Cycle Assessment, 2016, 21, 976-993.	2.2	114
48	Comparison of different methods to include recycling in LCAs of aluminium cans and disposable polystyrene cups. Waste Management, 2016, 48, 565-583.	3.7	64
49	Life cycle assessment of hybrid vehicles recycling: Comparison of three business lines of dismantling. Waste Management, 2016, 50, 184-193.	3.7	25
50	Environmental influence assessment of China's multi-crystalline silicon (multi-Si) photovoltaic modules considering recycling process. Solar Energy, 2017, 143, 132-141.	2.9	114
51	The energy requirements and environmental impacts of sheet metal forming: An analysis of five forming processes. Journal of Materials Processing Technology, 2017, 244, 116-135.	3.1	54
52	Buildings environmental impacts' sensitivity related to LCA modelling choices of construction materials. Journal of Cleaner Production, 2017, 156, 805-816.	4.6	149
53	Towards harmonizing natural resources as an area of protection in life cycle impact assessment. International Journal of Life Cycle Assessment, 2017, 22, 1912-1927.	2.2	70
54	Environmental assessment of deep energy refurbishment for energy efficiency-case study of an office building in New Zealand. Building and Environment, 2017, 117, 274-287.	3.0	37
55	Method and application of characterisation of life cycle impact data of construction materials using geographic information systems. International Journal of Life Cycle Assessment, 2017, 22, 1210-1219.	2.2	17
56	End-of-life modelling in life cycle assessment—material or product-centred perspective?. International Journal of Life Cycle Assessment, 2017, 22, 1288-1301.	2.2	20

#	Article	IF	CITATIONS
57	Multi-Life Cycle Assessment for sustainable products: A systematic review. Journal of Cleaner Production, 2017, 165, 677-696.	4.6	41
58	Is gravel becoming scarce? Evaluating the local criticality of construction aggregates. Resources, Conservation and Recycling, 2017, 126, 25-33.	5.3	83
59	The search for an appropriate end-of-life formula for the purpose of the European Commission Environmental Footprint initiative. International Journal of Life Cycle Assessment, 2017, 22, 1441-1458.	2.2	98
60	Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies. Resources, Conservation and Recycling, 2017, 117, 249-261.	5.3	17
61	The environmental impact of activities after life: life cycle assessment of funerals. International Journal of Life Cycle Assessment, 2017, 22, 715-730.	2.2	12
62	Lightweighting shipping containers: Life cycle impacts on multimodal freight transportation. Transportation Research, Part D: Transport and Environment, 2018, 62, 418-432.	3.2	14
63	Life cycle assessment of thin-wall ductile cast iron for automotive lightweighting applications. Sustainable Materials and Technologies, 2018, 15, 1-8.	1.7	18
64	Response to "Comment on †Toward Estimating Displaced Primary Production from Recycling: A Case Study of U.S. Aluminum'― Journal of Industrial Ecology, 2018, 22, 211-212.	2.8	Ο
65	A Multi-objective Framework for Assessment of Recycling Strategies for Photovoltaic Modules based on Life Cycle Assessment. Waste and Biomass Valorization, 2018, 9, 147-159.	1.8	25
66	Are we still keeping it "real� Proposing a revised paradigm for recycling credits in attributional life cycle assessment. International Journal of Life Cycle Assessment, 2018, 23, 181-190.	2.2	27
67	LCA of Buildings and the Built Environment. , 2018, , 695-722.		12
68	Industrial or Traditional Bamboo Construction? Comparative Life Cycle Assessment (LCA) of Bamboo-Based Buildings. Sustainability, 2018, 10, 3096.	1.6	60
69	Life cycle assessment and life cycle costing of container-based single-family housing in Canada: A case study. Building and Environment, 2019, 163, 106332.	3.0	39
70	Methodological Approaches to End-Of-Life Modelling in Life Cycle Assessments of Lithium-Ion Batteries. Batteries, 2019, 5, 51.	2.1	67
71	Widening understanding of low embodied impact buildings: Results and recommendations from 80 multi-national quantitative and qualitative case studies. Journal of Cleaner Production, 2019, 235, 378-393.	4.6	53
72	Environmental comparison of indoor floor coverings. Science of the Total Environment, 2019, 693, 133519.	3.9	17
73	Life cycle assessment of emerging Ni–Co hydroxide charge storage electrodes: impact of graphene oxide and synthesis route. RSC Advances, 2019, 9, 18853-18862.	1.7	10
74	Life cycle assessment of city buses powered by electricity, hydrogenated vegetable oil or diesel. Transportation Research, Part D: Transport and Environment, 2019, 75, 211-222.	3.2	71

#	Article	IF	CITATIONS
75	Pollution control efficiency of China's iron and steel industry: Evidence from different manufacturing processes. Journal of Cleaner Production, 2019, 240, 118184.	4.6	28
76	Resource and environmental impacts of using second-hand laptop computers: A case study of commercial reuse. Waste Management, 2019, 88, 268-279.	3.7	40
77	Green Principles for Vehicle Lightweighting. Environmental Science & Technology, 2019, 53, 4063-4077.	4.6	36
78	Environmental assessment of multi-functional building elements constructed with digital fabrication techniques. International Journal of Life Cycle Assessment, 2019, 24, 1027-1039.	2.2	21
79	The ISO 14067 approach to open-loop recycling of paper products: Making it operational. Journal of Cleaner Production, 2019, 224, 264-274.	4.6	17
80	Commentary to "Ac-counting for carbon emissions: simulating absence through experimental sites of material politics― Sustainability Accounting, Management and Policy Journal, 2019, 11, 641-650.	2.4	1
81	Circular building materials: Carbon saving potential and the role of business model innovation and public policy. Resources, Conservation and Recycling, 2019, 141, 308-316.	5.3	146
82	Causal inference for quantifying displaced primary production from recycling. Journal of Cleaner Production, 2019, 210, 1076-1084.	4.6	8
83	How to manage biocomposites wastes end of life? A life cycle assessment approach (LCA) focused on polypropylene (PP)/wood flour and polylactic acid (PLA)/flax fibres biocomposites. Waste Management, 2019, 83, 184-193.	3.7	70
84	Embodied energy data implications for optimal specification of building envelopes. Building Research and Information, 2020, 48, 429-445.	2.0	22
85	Life cycle thinking tools: Life cycle assessment, life cycle costing and social life cycle assessment. , 2020, , 39-56.		14
86	Development of a Life Cycle Assessment Allocation Approach for Circular Economy in the Built Environment. Sustainability, 2020, 12, 9579.	1.6	44
87	Life cycle energy use and environmental implications of high-performance perovskite tandem solar cells. Science Advances, 2020, 6, eabb0055.	4.7	60
88	Comparison of environmental assessment methods when reusing building components: A case study. Sustainable Cities and Society, 2020, 61, 102322.	5.1	78
89	Environmental performance of an electric vehicle composed of 47% polymers and polymer composites. Sustainable Materials and Technologies, 2020, 25, e00189.	1.7	6
90	Theoretical and Practical Approaches of Circular Economy for Business Models and Technological Solutions. Resources, 2020, 9, 76.	1.6	52
91	Allocation of Environmental Impacts in Circular and Cascade Use of Resources—Incentive-Driven Allocation as a Prerequisite for Cascade Persistence. Sustainability, 2020, 12, 4366.	1.6	12
92	Environmental impact minimization of reticular structures made of reused and new elements through Life Cycle Assessment and Mixed-Integer Linear Programming. Energy and Buildings, 2020, 215, 109827.	3.1	34

#	Article	IF	CITATIONS
93	Life-Cycle Assessment of Recycling Postconsumer High-Density Polyethylene and Polyethylene Terephthalate. Advances in Civil Engineering, 2020, 2020, 1-15.	0.4	17
95	Life-Cycle Analysis of Vehicle Lightweighting: A Review. , 2021, , 91-104.		1
96	Climate Change Implications of Bio-Based and Marine-Biodegradable Plastic: Evidence from Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyhexanoate). Environmental Science & Technology, 2021, 55, 3380-3388.	4.6	22
97	LCA Practices of Plastics and Their Recycling: A Critical Review. Applied Sciences (Switzerland), 2021, 11, 3305.	1.3	18
98	A user workflow for combining process simulation and pinch analysis considering ecological factors. Chemical Product and Process Modeling, 2020, .	0.5	1
99	Quantifying the environmental impact of clustering strategies in waste management: A case study for plastic recycling from large household appliances. Waste Management, 2021, 126, 497-507.	3.7	8
100	Life cycle assessment of recycling strategies for perovskite photovoltaic modules. Nature Sustainability, 2021, 4, 821-829.	11.5	87
101	Life Cycle Greenhouse Gas Emissions of Acetylated Cellulose Nanofiber-Reinforced Polylactic Acid Based on Scale-Up from Lab-Scale Experiments. ACS Sustainable Chemistry and Engineering, 2021, 9, 10444-10452.	3.2	14
102	Carbon footprint reduction potential of waste management strategies in tourism. Environmental Development, 2021, 39, 100617.	1.8	38
103	Assessing the life-cycle environmental impacts of the wood pallet sector in the United States. Journal of Cleaner Production, 2021, 320, 128726.	4.6	13
104	Multifunctionality in Life Cycle Inventory Analysis: Approaches and Solutions. LCA Compendium, 2021, , 73-95.	0.8	4
105	Life-Cycle Analysis of Vehicle Lightweighting: A Review. , 2019, , 1-15.		1
106	Pavement Life Cycle Assessment. Green Energy and Technology, 2014, , 1-40.	0.4	9
107	Recycling, Life-Cycle-Assessment und Rohstoffverfügbarkeit. , 2013, , 727-766.		1
108	Challenges in Life Cycle Assessment: An Overview of Current Gaps and Research Needs. LCA Compendium, 2014, , 207-258.	0.8	57
109	Exploring future copper demand, recycling and associated greenhouse gas emissions in the EU-28. Global Environmental Change, 2020, 63, 102093.	3.6	56
110	Metrics for the sustainability value of steel. Materiaux Et Techniques, 2014, 102, 505.	0.3	3
111	The Interpretation of Circular Priorities to Central European Business Environment with Focus on Hungary. Visegrad Journal on Bioeconomy and Sustainable Development, 2017, 6, 2-9.	0.3	8

#	Article	IF	CITATIONS
112	DEALING WITH LCA MODELING FOR THE END OF LIFE OF MECHATRONIC PRODUCTS. Environmental Engineering and Management Journal, 2015, 14, 1691-1704.	0.2	8
113	Korean Consumers' Recognition of Risks Depending on the Provision of Safety Information for Chemical Products. International Journal of Environmental Research and Public Health, 2020, 17, 1207.	1.2	7
114	Biogenic carbon in buildings: a critical overview of LCA methods. Buildings and Cities, 2020, 1, 504-524.	1.1	110
115	Comparison of GHG emissions from circular and conventional building components. Buildings and Cities, 2020, 1, 379.	1.1	14
116	Exploring Opportunities to Improve Life Cycle Environmental Performance of a Complex Product. Lecture Notes in Production Engineering, 2013, , 735-744.	0.3	2
117	Integrated Model of Bioenergy and Agriculture System. , 2015, , .		0
119	Assessment and Improvement. , 2019, , 183-203.		0
120	An LCA methodolody for assessing the environmental impacts of building components before and after refurbishment. Journal of Cleaner Production, 2021, 327, 129527.	4.6	19
121	How much potable water is saved by wastewater recycling? Quasi-experimental evidence from California. Resources, Conservation and Recycling, 2022, 176, 105948.	5.3	9
122	Cement Composites with Wood Waste—Design, Features, and Proposal of Application. ACI Materials Journal, 2020, 117, .	0.3	4
123	Sachbilanz. , 2020, , 43-99.		1
124	Second life and recycling: Energy and environmental sustainability perspectives for high-performance lithium-ion batteries. Science Advances, 2021, 7, eabi7633.	4.7	94
126	The Inclusion of End-of-Life Modeling in the Life Cycle Energy Optimization Methodology. Journal of Mechanical Design, Transactions of the ASME, 2021, 143, .	1.7	3
127	Environmental benefits of remanufacturing mechanical products: a harmonized meta-analysis of comparative life cycle assessment studies. Journal of Environmental Management, 2022, 306, 114479.	3.8	18
128	Reducing the environmental impacts of aluminum extrusion. Resources, Conservation and Recycling, 2022, 179, 106120.	5.3	10
130	Assessment of Sustainability. Green Energy and Technology, 2022, , 49-79.	0.4	1
131	Trend towards virtual and hybrid conferences may be an effective climate change mitigation strategy. Nature Communications, 2021, 12, 7324.	5.8	57
132	Allocation in recycling of compositesÂ-Âthe case of life cycle assessment of products from carbon fiber composites. International Journal of Life Cycle Assessment, 2022, 27, 419-432.	2.2	13

#	Article	IF	CITATIONS
133	Can carbon fiber composites have a lower environmental impact than fiberglass?. Resources, Conservation and Recycling, 2022, 181, 106234.	5.3	14
134	Smart Garbage Monitoring and Alert System:An Eco-Efficient Approach towards Environmental Sustainability and Recycling. , 2021, , .		0
135	Innovative Ceramic Floor for Resilient Cities. Enquiry, 2021, 18, 29-50.	0.3	0
136	Life Cycle Impact Assessment of Recycled Aggregate Concrete, Geopolymer Concrete, and Recycled Aggregate-Based Geopolymer Concrete. Sustainability, 2021, 13, 13515.	1.6	30
137	An Aggregated Embodied and Operational Energy Approach. , 0, , .		0
138	Circular Economy of Packaging and Relativity of Time in Packaging Life Cycle. Resources, Conservation and Recycling, 2022, 184, 106393.	5.3	4
139	Evaluating â€~reuse' in the current LCA framework – Impact of reuse and reusability in different life cycle stages. IOP Conference Series: Earth and Environmental Science, 2022, 1078, 012015.	0.2	1
140	A review on the handling of discounting in eco-efficiency analysis. Clean Technologies and Environmental Policy, 2023, 25, 3-20.	2.1	5
141	Development of an advanced methodology for assessing the environmental impacts of refurbishments. IOP Conference Series: Earth and Environmental Science, 2022, 1078, 012103.	0.2	0
142	Review of Life Cycle Assessments for Steel and Environmental Analysis of Future Steel Production Scenarios. Sustainability, 2022, 14, 14131.	1.6	10
143	Comparison of Electric Vehicle Lithium-Ion Battery Recycling Allocation Methods. Environmental Science & Technology, 2022, 56, 17977-17987.	4.6	10
144	Sustainability assessment of recycled aggregate concrete structures: A critical view on the current stateâ€ofâ€knowledge and practice. Structural Concrete, 2023, 24, 1956-1979.	1.5	10
151	Production and Recycling of Biocomposites: Present Trends and Future Perspectives. , 2023, , 389-403.		1
158	Life cycle assessment (LCA). , 2024, , 701-721.		0