Soil beneficial bacteria and their role in plant growth pr

Annals of Microbiology 60, 579-598 DOI: 10.1007/s13213-010-0117-1

Citation Report

#	Article	IF	CITATIONS
1	Beneficial Interactions of Plant Growth Promoting Rhizosphere Microorganisms. Soil Biology, 2011, , 27-42.	0.6	21
2	Testing of microbial additives in the rooting of Norway spruce (Picea abies [L.] Karst.) stem cuttings. Journal of Forest Science, 2011, 57, 555-564.	0.5	4
3	Soil Bacteria Support and Protect Plants Against Abiotic Stresses. , 2011, , .		34
4	Interactions between Humic Substances and Hydrophobic Organic Pollutants and Their Applications to Soil Remediation. Bunseki Kagaku, 2011, 60, 895-909.	0.1	5
5	Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus. Plant Physiology, 2011, 156, 989-996.	2.3	1,059
6	Evaluation of Mineral and Bacterial Fertilization Influence on the Number of Microorganisms from the Nitrogen Cycle in Soil under Maize. Communications in Soil Science and Plant Analysis, 2012, 43, 2777-2788.	0.6	3
7	Organic Cereal/Forage Legume Rotation in a Mediterranean Calcareous Soil: Implications for Soil Parameters. Agroecology and Sustainable Food Systems, 0, , 120924081602006.	0.9	0
8	Seed-Colonizing Bacterial Communities Associated with the Suppression of Pythium Seedling Disease in a Municipal Biosolids Compost. Phytopathology, 2012, 102, 478-489.	1.1	23
9	Ethylene's Role in Phosphate Starvation Signaling: More than Just a Root Growth Regulator. Plant and Cell Physiology, 2012, 53, 277-286.	1.5	101
10	Chapter 3The inÂuence of heterogeneity on soil microbial processes in agroecosystems: Theory, evidence, and opportunities. , 2012, , 67-80.		4
11	Pathways to Agroecological Intensification of Soil Fertility Management by Smallholder Farmers in the Andean Highlands. Advances in Agronomy, 2012, 116, 125-184.	2.4	47
12	Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae. Applied Soil Ecology, 2012, 61, 147-157.	2.1	41
13	Microbial synthesis of antimony sulfide nanoparticles and their characterization. Annals of Microbiology, 2012, 62, 1419-1425.	1.1	19
14	Phosphorus Solubilization by Thermotolerant Bacillus subtilis Isolated from Cow Dung Microflora. Agricultural Research, 2012, 1, 273-279.	0.9	31
15	Despite Long-Term Compost Amendment Seasonal Changes are Main Drivers of Soil Fungal and Bacterial Population Dynamics in a Tuscan Vineyard. Geomicrobiology Journal, 2012, 29, 506-519.	1.0	12
16	Pseudomonas spp. isolates with high phosphate-mobilizing potential and root colonization properties from agricultural bulk soils under no-till management. Biology and Fertility of Soils, 2012, 48, 763-773.	2.3	28
17	Stimulated phytoextraction of metals from fly ash by microbial interventions. Environmental Technology (United Kingdom), 2012, 33, 2405-2413.	1.2	26
18	Exploring the plant-associated bacterial communities in Medicago sativa L. BMC Microbiology, 2012, 12, 78.	1.3	50

#	ARTICLE	IF	CITATIONS
19	The plant strengthening root endophyte Piriformospora indica: potential application and the biology behind. Applied Microbiology and Biotechnology, 2012, 96, 1455-1464.	1.7	207
20	Phytohormone production and colonization of canola (<i>Brassica napus</i> L.) roots by <i>Pseudomonas fluorescens</i> 6-8 under gnotobiotic conditions. Canadian Journal of Microbiology, 2012, 58, 170-178.	0.8	52
21	Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones. Journal of Microbiology, 2012, 50, 902-909.	1.3	87
22	Isolation and molecular characterization of a novel strain of Bacillus with antifungal activity from the sorghum rhizosphere. Genetics and Molecular Research, 2012, 11, 2665-2673.	0.3	14
23	Co-Occurrence Patterns of Plants and Soil Bacteria in the High-Alpine Subnival Zone Track Environmental Harshness. Frontiers in Microbiology, 2012, 3, 347.	1.5	54
24	Biocontrol features in an indigenous bacterial strain isolated from agricultural soil of Gujarat, India. Journal of Soil Science and Plant Nutrition, 2012, 12, 245-252.	1.7	15
25	Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 2012, 30, 1562-1574.	6.0	785
26	Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 2012, 28, 1327-1350.	1.7	1,866
27	Isolation and characterisation of aerobic endospore forming Bacilli from sugarcane rhizosphere for the selection of strains with agriculture potentialities. World Journal of Microbiology and Biotechnology, 2012, 28, 1593-1603.	1.7	24
28	Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils, 2012, 48, 489-499.	2.3	859
29	Microbial symbionts: a resource for the management of insectâ€related problems. Microbial Biotechnology, 2012, 5, 307-317.	2.0	131
30	Biology, Epidemiology and Management of the Pathogenic Fungus <i>Macrophomina phaseolina</i> (Tassi) Goid with Special Reference to Charcoal Rot of Soybean (<i>Glycine max</i> (L.) Merrill). Journal of Phytopathology, 2012, 160, 167-180.	0.5	136
31	Characterization and identification of actinomycetes isolated from â€~fired plots' under shifting cultivation in northeast Himalaya, India. Annals of Microbiology, 2013, 63, 561-569.	1.1	9
32	Comparison among bacterial communities present in arenized and adjacent areas subjected to different soil management regimes. Plant and Soil, 2013, 373, 339-358.	1.8	22
33	The effects of different fertilization conditions on bacterial plant growth promoting traits: guidelines for directed bacterial prospection and testing. Plant and Soil, 2013, 368, 267-280.	1.8	64
34	Pyrosequencing reveals how pulses influence rhizobacterial communities with feedback on wheat growth in the semiarid Prairie. Plant and Soil, 2013, 367, 493-505.	1.8	46
35	The <scp>PGPR</scp> strain <i><scp>P</scp>hyllobacterium brassicacearum </i> <scp>STM</scp> 196 induces a reproductive delay and physiological changes that result in improved drought tolerance in <i><scp>A</scp>rabidopsis</i> . New Phytologist, 2013, 200, 558-569.	3.5	211
36	Repression of oxalic acid-mediated mineral phosphate solubilization in rhizospheric isolates of Klebsiella pneumoniae by succinate. Archives of Microbiology, 2013, 195, 81-88.	1.0	33

#	Article	IF	CITATIONS
37	The new species Enterobacter oryziphilus sp. nov. and Enterobacter oryzendophyticus sp. nov. are key inhabitants of the endosphere of rice. BMC Microbiology, 2013, 13, 164.	1.3	55
38	Root transcriptome analysis of Arabidopsis thaliana exposed to beneficial Bacillus subtilis FB17 rhizobacteria revealed genes for bacterial recruitment and plant defense independent of malate efflux. Planta, 2013, 238, 657-668.	1.6	84
39	Transactions Among Microorganisms and Plant in the Composite Rhizosphere Habitat. , 2013, , 1-50.		10
40	Plant Microbe Symbiosis: Fundamentals and Advances. , 2013, , .		25
41	Multifaceted Plant-Associated Microbes and Their Mechanisms Diminish the Concept of Direct and Indirect PGPRs. , 2013, , 411-449.		49
42	Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine. World Journal of Microbiology and Biotechnology, 2013, 29, 2181-2193.	1.7	23
43	Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biology and Fertility of Soils, 2013, 49, 661-672.	2.3	257
44	Spent metal working fluids produced alterations on photosynthetic parameters and cell-ultrastructure of leaves and roots of maize plants. Journal of Hazardous Materials, 2013, 260, 220-230.	6.5	13
45	Characterization and identification of compost bacteria based on 16S rRNA gene sequencing. Annals of Microbiology, 2013, 63, 905-912.	1.1	20
46	Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. SpringerPlus, 2013, 2, 574.	1.2	79
47	The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant and Soil, 2013, 366, 585-603.	1.8	129
48	Practice and prospects of microbial preservation. FEMS Microbiology Letters, 2013, 339, 1-9.	0.7	122
49	Rock phosphate solubilization by four yeast strains. Annals of Microbiology, 2013, 63, 173-178.	1.1	24
51	Structure of the O-antigen of the lipopolysaccharide isolated from Pantoea ananatis AEP17, a rhizobacterium associated with rice. Carbohydrate Research, 2013, 369, 25-30.	1.1	5
52	Extracellular enzyme production and fungal mycelia degradation of antagonistic Streptomyces induced by fungal mycelia preparation of cucurbit plant pathogens. Annals of Microbiology, 2013, 63, 809-812.	1.1	25
53	Nitrogen supply influences plant growth and transcriptional responses induced by Enterobacter radicincitans in Solanum lycopersicum. Plant and Soil, 2013, 370, 641-652.	1.8	35
54	Plant Rhizosphere Microbial Communities. , 2013, , 56-84.		17
56	Polymicrobial Multi-functional Approach for Enhancement of Crop Productivity. Advances in Applied Microbiology, 2013, 82, 53-113.	1.3	79

#	Article	IF	CITATIONS
57	Inoculation of tomato plants with rhizobacteria enhances the performance of the phloem-feeding insect Bemisia tabaci. Frontiers in Plant Science, 2013, 4, 306.	1.7	38
58	Potential for Plant Growth Promotion of Rhizobacteria Associated with <i>Salicornia</i> Growing in Tunisian Hypersaline Soils. BioMed Research International, 2013, 2013, 1-13.	0.9	146
59	Plant Growth Promotion Potential Is Equally Represented in Diverse Grapevine Root-Associated Bacterial Communities from Different Biopedoclimatic Environments. BioMed Research International, 2013, 2013, 1-17.	0.9	40
60	Plant growth in Arabidopsis is assisted by compost soil-derived microbial communities. Frontiers in Plant Science, 2013, 4, 235.	1.7	48
61	Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Frontiers in Plant Science, 2013, 4, 120.	1.7	219
62	How can we exploit above–belowground interactions to assist in addressing the challenges of food security?. Frontiers in Plant Science, 2013, 4, 432.	1.7	35
63	Endophytic Bacteria: A Biotechnological Potential in Agrobiology System. , 2013, , 1-44.		16
64	Plant Growth-Promoting Rhizobacteria as Zinc Mobilizers: A Promising Approach for Cereals Biofortification. , 2013, , 217-235.		29
65	Exploitation of Rhizobacteria for Functional Traits in Mungbean. International Journal of Agriculture Environment and Biotechnology, 2013, 6, 533.	0.1	3
66	Induction of Drought Stress Resistance by Multi-Functional PGPR Bacillus licheniformis K11 in Pepper. Plant Pathology Journal, 2013, 29, 201-208.	0.7	286
67	Inoculants based in Autochthonous Microorganisms, a Strategy to Optimize Agronomic Performance of Biofertilizers. , 2013, , 301-328.		2
68	Applications of Plant Growth-Promoting Bacteria for. , 2013, , 191-238.		2
70	Multitrophic interactions among Western Corn Rootworm, Glomus intraradices and microbial communities in the rhizosphere and endorhiza of maize. Frontiers in Microbiology, 2013, 4, 357.	1.5	9
71	Characterization of epiphytic bacteria isolated from chickpea (Cicer arietinum L.) nodules. African Journal of Microbiology Research, 2014, 8, 1302-1309.	0.4	1
72	Dynamic Succession of Soil Bacterial Community during Continuous Cropping of Peanut (Arachis) Tj ETQq0 0 0 r	gBT_/Over 1.1	lock 10 Tf 50
73	Yeast as a Biofertilizer Alters Plant Growth and Morphology. Crop Science, 2014, 54, 785-790.	0.8	35
74	Genome Analysis of Bacillus amyloliquefaciens Subsp. plantarum UCMB5113: A Rhizobacterium That Improves Plant Growth and Stress Management. PLoS ONE, 2014, 9, e104651.	1.1	114

75	Nitrogen-Fixing Bacteria in Eucalyptus globulus Plantations. PLoS ONE, 2014, 9, e111313.	1.1	13

#	Article	IF	CITATIONS
76	A Model to Explain Plant Growth Promotion Traits: A Multivariate Analysis of 2,211 Bacterial Isolates. PLoS ONE, 2014, 9, e116020.	1.1	61
77	Potential Propagation by Seed and Cuttings of the Azorean Native <i>Calluna vulgaris</i> (L.) Hull. International Journal of Ecology, 2014, 2014, 1-7.	0.3	1
78	Composted Rice Husk Improves the Growth and Biochemical Parameters of Sunflower Plants. Journal of Botany, 2014, 2014, 1-6.	1.2	17
79	Efecto de rizobacterias promotoras de crecimiento vegetal solubilizadoras de fosfato en Lactuca sativa cultivar White Boston. Revista Colombiana De BiotecnologÃa, 2014, 16, 122-128.	0.5	11
80	Bioinformatics based structural characterization of glucose dehydrogenase (gdh) gene and growth promoting activity of Leclercia sp. QAU-66. Brazilian Journal of Microbiology, 2014, 45, 603-611.	0.8	20
81	Plant growth promoting potential of endophytic bacteria isolated from cashew leaves. African Journal of Biotechnology, 2014, 13, 3360-3365.	0.3	9
82	Genetic diversity and symbiotic compatibility among rhizobial strains and Desmodium incanum and Lotus spp. plants. Genetics and Molecular Biology, 2014, 37, 396-405.	0.6	15
83	Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing. Brazilian Journal of Microbiology, 2014, 45, 985-993.	0.8	14
84	The New Rhizospheric Bacteria Brevibacillus Benefits Eggplant and Peeper Growth and Productivity Under Organoponic System. Agricultural Research, 2014, 3, 395-398.	0.9	4
85	Transparent soil microcosms allow 3D spatial quantification of soil microbiological processes <i>in vivo</i> . Plant Signaling and Behavior, 2014, 9, e970421.	1.2	37
86	ACC-deaminase and/or nitrogen-fixing rhizobacteria and growth response of tomato (<i>Lycopersicon) Tj ETQq0</i>	0 0 rgBT /	Overlock 10
87	Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover. Frontiers in Plant Science, 2014, 5, 525.	1.7	144
88	Beneficial Interactions in the Rhizosphere. Biodiversity Community and Ecosystems, 2014, , 59-80.	0.2	2
89	Safe-Site Effects on Rhizosphere Bacterial Communities in a High-Altitude Alpine Environment. BioMed Research International, 2014, 2014, 1-9.	0.9	21
90	Amplicon pyrosequencing reveals the soil microbial diversity associated with invasive Japanese barberry (Berberis thunbergiiDC.). Molecular Ecology, 2014, 23, 1318-1332.	2.0	31
91	Modeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1684-1697.	1.3	133
92	Early growth of Brazilian tree <i>Dimorphandra wilsonii</i> is also threatened by African grass <i>Urochloa decumbens</i> . Journal of Plant Interactions, 2014, 9, 92-99.	1.0	5
93	Introduction: Soils and Their Promotion of Plant Growth. Biodiversity Community and Ecosystems, 2014, , 1-26.	0.2	3

#	Article	IF	CITATIONS
94	Key Applications of Plant Metabolic Engineering. PLoS Biology, 2014, 12, e1001879.	2.6	39
95	Microbial Community Responses to Organophosphate Substrate Additions in Contaminated Subsurface Sediments. PLoS ONE, 2014, 9, e100383.	1.1	28
96	Potential plant growth promoting activity of <i>Pseudomonas fluorescens</i> sp. isolated from cotton (<i>Gossypium hirsutum</i>) crop. Indian Journal of Agricultural Research, 2014, 48, 97.	0.0	2
97	Microbial Consortium of Plant Growth-Promoting Rhizobacteria Improves the Performance of Plants Growing in Stressed Soils: An Overview. , 2014, , 257-285.		19
98	Paenibacillus yonginensis sp. nov., a potential plant growth promoting bacterium isolated from humus soil of Yongin forest. Antonie Van Leeuwenhoek, 2014, 106, 935-945.	0.7	32
99	Phosphate solubilising microorganisms: role in phosphorus nutrition of crop plants-A review. Agricultural Reviews, 2014, 35, 159.	0.1	30
100	Screening of PGPR from saline desert of Kutch: Growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiological Research, 2014, 169, 66-75.	2.5	266
101	Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 2014, 26, 1-20.	1.6	1,532
102	Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview. Biology and Fertility of Soils, 2014, 50, 415-432.	2.3	111
103	A novel rhizobacterium Bk7 for biological control of brown sheath rot of rice caused by Pseudomonas fuscovaginae and its mode of action. European Journal of Plant Pathology, 2014, 138, 819-834.	0.8	21
104	Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant and Soil, 2014, 377, 111-126.	1.8	212
105	Effects of soil sterilization and biological agent inoculation on the root respiratory metabolism and plant growth of Cerasus sachalinensis Kom Scientia Horticulturae, 2014, 170, 189-195.	1.7	10
106	Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma, 2014, 251, 943-953.	1.0	66
107	Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Applied Microbiology and Biotechnology, 2014, 98, 5117-5129.	1.7	49
108	Synthetic microbial ecosystems for biotechnology. Biotechnology Letters, 2014, 36, 1141-1151.	1.1	52
109	Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement. Protoplasma, 2014, 251, 511-523.	1.0	80
110	Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Current Opinion in Biotechnology, 2014, 27, 168-175.	3.3	100
111	Soil fungi rather than bacteria were modified by invasive plants, and that benefited invasive plant growth. Plant and Soil, 2014, 378, 253-264.	1.8	49

#	Article	IF	CITATIONS
112	An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Annals of Botany, 2014, 113, 7-18.	1.4	100
113	Biological Control of Insect-Pest and Diseases by Endophytes. , 2014, , 231-256.		19
114	Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules. World Journal of Microbiology and Biotechnology, 2014, 30, 2371-2378.	1.7	33
115	Nutritional Stress in Dystrophic Savanna Soils of the Orinoco Basin. , 2014, , 343-375.		4
116	Use of Microbes for the Alleviation of Soil Stresses. , 2014, , .		15
117	Agricultural uses of plant biostimulants. Plant and Soil, 2014, 383, 3-41.	1.8	1,374
118	Threats and opportunities of plant pathogenic bacteria. Biotechnology Advances, 2014, 32, 215-229.	6.0	34
119	Agricultural soils, pesticides and microbial diversity. Current Opinion in Biotechnology, 2014, 27, 15-20.	3.3	226
120	Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 2014, 169, 76-82.	2.5	134
121	Reprogramming of fatty acid and oxylipin synthesis in rhizobacteria-induced systemic resistance in tomato. Plant Molecular Biology, 2014, 84, 455-467.	2.0	13
122	Hormonal and metabolic regulation of source–sink relations under salinity and drought: From plant survival to crop yield stability. Biotechnology Advances, 2014, 32, 12-30.	6.0	162
123	The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 2014, 32, 429-448.	6.0	754
124	Simultaneous profiling of seedâ€associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on <i><scp>T</scp>riticum</i> and <i><scp>B</scp>rassica</i> seeds. New Phytologist, 2014, 202, 542-553.	3.5	149
125	Phosphate Solubilizing Microorganisms. , 2014, , .		42
126	Pesticide relevance and their microbial degradation: a-state-of-art. Reviews in Environmental Science and Biotechnology, 2014, 13, 429-466.	3.9	186
127	IAA-producing rhizobacteria from chickpea (<i>Cicer arietinum</i> L.) induce changes in root architecture and increase root biomass. Canadian Journal of Microbiology, 2014, 60, 639-648.	0.8	33
128	Intracellular interactions involved in induced systemic resistance in tomato. Scientia Horticulturae, 2014, 176, 127-133.	1.7	21
129	Growth promotion and induction of antioxidant system of tomato seedlings (Solanum lycopersicum) Tj ETQq1 1	0.784314	f rggT /Overlo

#	ARTICLE	IF	CITATIONS
130	Molecular diversity and functional variability of environmental isolates of Bacillus species. SpringerPlus, 2014, 3, 312.	1.2	39
131	Different pioneer plant species select specific rhizosphere bacterial communities in a high mountain environment. SpringerPlus, 2014, 3, 391.	1.2	34
132	Identification of culturable bacterial endophyte community isolated from tissues of <i>Vitisvinifera</i> " <i>Glera</i> ― Plant Biosystems, 2014, 148, 508-516.	0.8	53
133	Bacterial community structures in rhizosphere microsites of ryegrass (Lolium perenne var. Nui) as revealed by pyrosequencing. Biology and Fertility of Soils, 2014, 50, 1253-1266.	2.3	31
134	Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Environmental Science and Pollution Research, 2014, 21, 10983-10996.	2.7	45
135	Phosphate solubilizing uranium tolerant bacteria associated with monazite sand of a natural background radiation site in South-West coast of India. Annals of Microbiology, 2014, 64, 1683-1689.	1.1	8
136	Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agronomy for Sustainable Development, 2014, 34, 737-752.	2.2	344
137	Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiology and Biochemistry, 2014, 82, 44-53.	2.8	95
140	Influence of psychrotolerant plant growth-promoting rhizobacteria (PGPR) as coinoculants with Rhizobium on growth parameters and yield of lentil (Lens culinaris Medikus). African Journal of Microbiology Research, 2015, 9, 258-264.	0.4	8
142	Isolation and selection of P-solubilizing and IAA-synthesizing microorganisms from the rhizosphere of Guanandi (Calophyllum brasiliensis). African Journal of Agricultural Research Vol Pp, 2015, 10, 4455-4460.	0.2	1
143	Rhizobium tropici exopolysaccharides as carriers improve the symbiosis of cowpea-Bradyrhizobium-Paenibacillus. African Journal of Microbiology Research, 2015, 9, 2037-2050.	0.4	11
144	Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots. PLoS ONE, 2015, 10, e0140252.	1.1	41
145	Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 810.	1.7	99
146	<i>Pochonia chlamydosporia</i> promotes the growth of tomato and lettuce plants. Acta Scientiarum - Agronomy, 2015, 37, 417.	0.6	23
147	Metagenome sequence of <scp><i>E</i></scp> <i>laphomyces granulatus</i> from sporocarp tissue reveals <scp>A</scp> scomycota ectomycorrhizal fingerprints of genome expansion and a <i><scp>P</scp>roteobacteria</i> â€rich microbiome. Environmental Microbiology, 2015, 17, 2952-2968.	1.8	34
148	Plant Growth Promoting Rhizobacteria for Value Addition: Mechanism of Action. Soil Biology, 2015, , 305-321.	0.6	13
149	Plant Growth-Promoting Rhizobacteria (PGPR): Emergence and Future Facets in Medicinal Plants. Soil Biology, 2015, , 109-131.	0.6	3
150	Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture. Journal of Microbial & Biochemical Technology, 2015, 07, .	0.2	183

		CITATION REPOR	SL	
#	Article	IF		CITATIONS
151	Enhanced Efficiency of Medicinal and Aromatic Plants by PGPRs. Soil Biology, 2015, , 43-	70. 0.0	6	7
152	Alleviation of Abiotic and Biotic Stresses in Plants by Azospirillum. , 2015, , 333-365.			14
153	Genome of Pseudomonas sp. FeS53a, a Putative Plant Growth-Promoting Bacterium Asso Rice Grown in Iron-Stressed Soils. Genome Announcements, 2015, 3, .	ociated with 0.4	8	2
154	A farmer friendly and economic IPM strategy to combat root-knot nematodes infesting le Food and Agriculture, 2015, 1, 1053214.	entil. Cogent 0.0	6	3
155	Role of arbuscular mycorrhizal symbiosis in phosphorus-uptake efficiency and aluminium barley growing in acid soils. Crop and Pasture Science, 2015, 66, 696.	tolerance in 0.2	7	32
156	Genetic Manipulation in Plants for Mitigation of Climate Change. , 2015, , .			2
157	Enhancing Nutrient Starvation Tolerance in Rice. , 2015, , 117-142.			4
158	Paenibacillus yonginensis DCY84T induces changes in Arabidopsis thaliana gene expressi aluminum, drought, and salt stress. Microbiological Research, 2015, 172, 7-15.	on against 2.5	5	100
159	Pseudomonas-Mediated Mitigation of Salt Stress and Growth Promotion in Glycine max. Research, 2015, 4, 31-41.	Agricultural 0.4	9	68
160	Alleviation of Abiotic Stress in Medicinal Plants by PGPR. Soil Biology, 2015, , 135-166.	0.	6	9
161	Plant-Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Soil Biology, 2015, ,	. 0.0	6	24
162	Evaluating the effectiveness of biofertilizer on salt tolerance of cotton (Gossypium hirsut Archives of Agronomy and Soil Science, 2015, 61, 1165-1177.	umL.). 1.3	3	7
163	Burkholderia fungorum promotes common bean growth in a dystrophic oxisol. Annals of Microbiology, 2015, 65, 1825-1832.	1.1	L	13
164	Rhizospheric <i>Enterobacter</i> enhanced maize seedling health and growth. Biocontrol Technology, 2015, 25, 359-372.	Science and O.4	5	8
165	Phosphate-Solubilizing Microorganisms: A Critical Review. , 2015, , 307-333.			22
166	Molecular Patterns of Rhizobacteria Involved in Plant Immunity Elicitation. Advances in B Research, 2015, , 21-56.	otanical O.4	5	8
167	Beneficial microorganisms for soybean (Glycine max (L.) Merr), with a focus on low root-z temperatures. Plant and Soil, 2015, 397, 411-445.	zone 1.8	8	20
168	Photosynthetic and Ultrastructure Parameters of Maize Plants are Affected During the Phyto-Rhizoremediation Process of Degraded Metal Working Fluids. International Journal Phytoremediation, 2015, 17, 1183-1191.	of 1.7	7	2

#	Article	IF	CITATIONS
169	Stenotrophomonas, Achromobacter, and Nonmelioid Burkholderia Species: Antimicrobial Resistance and Therapeutic Strategies. Seminars in Respiratory and Critical Care Medicine, 2015, 36, 099-110.	0.8	94
170	PGPRs and nitrogen-fixing legumes: a perfect team for efficient Cd phytoremediation?. Frontiers in Plant Science, 2015, 6, 81.	1.7	44
172	Whole-genome sequencing of <i>Bacillus subtilis</i> XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 925-937.	1.4	44
173	Effects of two plant growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase on oat growth in petroleum-contaminated soil. International Journal of Environmental Science and Technology, 2015, 12, 3887-3894.	1.8	23
174	The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME Journal, 2015, 9, 2261-2274.	4.4	548
175	Relative importance of soil physico-chemical characteristics and plant species identity to the determination of soil microbial community structure. Applied Soil Ecology, 2015, 91, 8-15.	2.1	26
177	Handbook for Azospirillum. , 2015, , .		30
178	Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environmental Science and Pollution Research, 2015, 22, 10788-10799.	2.7	188
179	Phytobeneficial Properties of Bacteria Isolated from the Rhizosphere of Maize in Southwestern Nigerian Soils. Applied and Environmental Microbiology, 2015, 81, 4736-4743.	1.4	62
180	Characterization of the Bioactive Metabolites from a Plant Growth-Promoting Rhizobacteria and Their Exploitation as Antimicrobial and Plant Growth-Promoting Agents. Applied Biochemistry and Biotechnology, 2015, 176, 529-546.	1.4	18
181	Anatomical changes induced by Azospirillum brasilense in in vitro rooting of pink lapacho. Plant Cell, Tissue and Organ Culture, 2015, 122, 175-184.	1.2	8
182	Rhizosphere microbiome selection by Epichloë endophytes of Festuca arundinacea. Plant and Soil, 2015, 396, 229-239.	1.8	25
183	Soil microbial inoculation increases corn yield and insect attack. Agronomy for Sustainable Development, 2015, 35, 1511-1519.	2.2	19
184	The lime–silicate question. Soil Biology and Biochemistry, 2015, 89, 172-183.	4.2	23
185	Isolation and characterization of rhizomicrobial isolates for phosphate solubilization and indole acetic acid production. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58, 847-855.	0.9	18
186	Molecular and functional characteristics of streptomycete communities in relation to soil factors and potato common scab. European Journal of Soil Biology, 2015, 70, 58-66.	1.4	11
187	Endophytic Bacteria Associated with <i>Hieracium piloselloides</i> : Their Potential for Hydrocarbon-Utilizing and Plant Growth-Promotion. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2015, 78, 860-870.	1.1	12
188	Organic Amendments and Soil Suppressiveness in Plant Disease Management. Soil Biology, 2015, , .	0.6	24

ARTICLE IF CITATIONS Challenging synergistic activity of poplar–bacteria association for the Cd phytostabilization. 189 2.7 19 Environmental Science and Pollution Research, 2015, 22, 19546-19561. Soil bacteria hold the key to root cluster formation. New Phytologist, 2015, 206, 1156-1162. 3.5 Isolation and characterization of bacteria from the rhizosphere and bulk soil of Stellera chamaejasme 191 0.8 9 L. Canadian Journal of Microbiology, 2015, 61, 171-181. The role of soil properties and it's interaction towards quality plant fiber: A review. Renewable and Sustainable Energy Reviews, 2015, 43, 1006-1015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools 193 1,759 1.8 for its alleviation. Saudi Journal of Biological Sciences, 2015, 22, 123-131. Common bean growth and health promoted by rhizobacteria and the contribution of magnesium to the observed responses. Applied Soil Ecology, 2015, 87, 49-55. 194 2.1 Rhizosphere as a tool to introduce a soil-isolated hydrocarbon-degrading bacterial consortium into a 195 1.9 13 wetland environment. International Biodeterioration and Biodegradation, 2015, 97, 135-142. Seleniferous soils as a source for production of selenium-enriched foods and potential of bacteria to 196 1.8 enhance plant selenium uptake. Plant and Soil, 2015, 386, 385-394. Siderophore Production by Microorganisms Isolated From a Podzol Soil Profile. Geomicrobiology 197 1.0 14 Journal, 2015, 32, 397-411. Improved plant resistance to drought is promoted by the rootâ€associated microbiome as a water 198 1.8 449 stressâ€dependent trait. Environmental Microbiology, 2015, 17, 316-331. Occurrence and variability of tobacco rhizosphere and phyllosphere bacterial communities 199 1.1 5 associated with nicotine biodegradation. Annals of Microbiology, 2015, 65, 163-173. Scientometric analysis of Colombian research on bio-inoculants for agricultural production. 200 Universitas Scientiarum, 2016, 21, 63. Efeito da aplicação de nitrogênio e de piraclostrobina em plantas de tomateiro cultivar Micro-Tom. 201 0.1 0 Revista Ceres, 2016, 63, 676-682. Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesquisa 1.0 49 Agropecuaria Tropical, 2016, 46, 149-158. Growth and Nutrient Uptake of Orchardgrass (Dactylis glomerata L.) and Meadow Fescue (Festuca) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 203 0.5 6 44, 296-301. Functional abilities of cultivable plant growth promoting bacteria associated with wheat (Triticum) Tj ETQq1 1 0.784314 rgBT "Overlo 204 Co-inoculation with diazotrophic bacteria in soybeans associated to urea topdressing. Ciencia E 205 1.512 Agrotecnologia, 2016, 40, 522-533. Comparison of Fungal Community in Black Pepper-Vanilla and Vanilla Monoculture Systems Associated 1.5 with Vanilla Fusarium Wilt Disease. Frontiers in Microbiology, 2016, 7, 117.

#	Article	IF	CITATIONS
207	Piriformospora indica: Potential and Significance in Plant Stress Tolerance. Frontiers in Microbiology, 2016, 7, 332.	1.5	272
208	Associations between Ectomycorrhizal Fungi and Bacterial Needle Endophytes in Pinus radiata: Implications for Biotic Selection of Microbial Communities. Frontiers in Microbiology, 2016, 7, 399.	1.5	21
209	A Carotenoid-Deficient Mutant in Pantoea sp. YR343, a Bacteria Isolated from the Rhizosphere of Populus deltoides, Is Defective in Root Colonization. Frontiers in Microbiology, 2016, 7, 491.	1.5	48
210	Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review. Molecules, 2016, 21, 573.	1.7	849
211	Tomato Plant Proteins Actively Responding to Fungal Applications and Their Role in Cell Physiology. Frontiers in Physiology, 2016, 7, 257.	1.3	16
212	Effect of plant growth promoting rhizobacteria (PGPR) in seed germination and root-shoot development of chickpea (Cicer arietinum L.) under different salinity condition. Research in Agriculture, Livestock and Fisheries, 2016, 3, 105-113.	0.1	14
213	Arbuscular mycorrhizal fungi affect plant tolerance andÂchemical defences to herbivory through different mechanisms. Journal of Ecology, 2016, 104, 561-571.	1.9	75
214	A consortium of rhizobacterial strains and biochemical growth elicitors improve cold and drought stress tolerance in rice (<i>Oryza sativa</i> L.). Plant Biology, 2016, 18, 471-483.	1.8	81
215	Halophilic Bacteria: Potential Bioinoculants for Sustainable Agriculture and Environment Management Under Salt Stress. , 2016, , 297-325.		5
216	Phylloplane associated plant bacteria of commercially superior wheat varieties exhibit superior plant growth promoting abilities. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2016, 9, 313-322.	1.1	37
217	Applications and Mechanisms of Plant Growth-Stimulating Rhizobacteria. , 2016, , 37-62.		11
218	Plant Growth-Promoting Rhizobacteria: Key Mechanisms of Action. , 2016, , 23-37.		27
219	Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiology Ecology, 2016, 92, fiw112.	1.3	179
220	Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress. South African Journal of Botany, 2016, 105, 19-24.	1.2	56
221	Efficacy of Biofertilizers: Challenges to Improve Crop Production. , 2016, , 17-40.		67
222	Medicago truncatula Gaertn. as a model for understanding the mechanism of growth promotion by bacteria from rhizosphere and nodules of alfalfa. Planta, 2016, 243, 1169-1189.	1.6	22
223	Regulation of Soluble Phosphate on the Ability of Phytate Mineralization and β-Propeller Phytase Gene Expression of Pseudomonas fluorescens JZ-DZ1, a Phytate-Mineralizing Rhizobacterium. Current Microbiology, 2016, 73, 915-923.	1.0	20
224	Bioprospecting of aerobic endospore-forming bacteria with biotechnological potential for growth promotion of banana plants. Scientia Horticulturae, 2016, 212, 81-90.	1.7	27

#	Article	IF	CITATIONS
225	Crop management as a driving force of plant growth promoting rhizobacteria physiology. SpringerPlus, 2016, 5, 1574.	1.2	22
226	Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean (Vigna radiata L.) under soil salinity by reducing sodium uptake and stress injury. Physiology and Molecular Biology of Plants, 2016, 22, 445-459.	1.4	70
228	Pesticides Pollution in Agricultural Soils of Pakistan. , 2016, , 199-229.		11
229	Boron Toxicity in Salt-Affected Soils and Effects on Plants. , 2016, , 259-286.		1
230	Potential Benefits of Soil Microorganisms on Medicinal and Aromatic Plants. ACS Symposium Series, 2016, , 75-90.	0.5	5
231	Remediation of metalliferous mines, revegetation challenges and emerging prospects in semi-arid and arid conditions. Environmental Science and Pollution Research, 2016, 23, 20131-20150.	2.7	24
232	The influence of microbial-based inoculants on N ₂ O emissions from soil planted with corn (<i>Zea mays</i> L.) under greenhouse conditions with different nitrogen fertilizer regimens. Canadian Journal of Microbiology, 2016, 62, 1041-1056.	0.8	15
233	Dissolution of Fluorapatite byPseudomonas fluorescensP35 Resulting in Fluorine Release. Geomicrobiology Journal, 2016, , 1-13.	1.0	10
234	Soybeans, Stress, and Plant Growth-Promoting Rhizobacteria. , 2016, , 177-203.		4
235	Microbial priming elicits improved plant growth promotion and nutrient uptake in pea. Israel Journal of Plant Sciences, 2016, 63, 191-207.	0.3	12
236	Editorial: Food Legume Diversity and Legume Research Policies. Crop Journal, 2016, 4, 339-343.	2.3	5
237	Interspecific cooperation: enhanced growth, attachment and strain-specific distribution in biofilms through <i>Azospirillum brasilense-Pseudomonas protegens</i> co-cultivation. FEMS Microbiology Letters, 2016, 363, fnw238.	0.7	11
238	Driving forces of soil bacterial community structure, diversity, and function in temperate grasslands and forests. Scientific Reports, 2016, 6, 33696.	1.6	308
239	Distanceâ€dependent effects of pathogenic fungi on seedlings of a legume tree: impaired nodule formation and identification of antagonistic rhizosphere bacteria. Journal of Ecology, 2016, 104, 1009-1019.	1.9	12
240	Ferric Uptake Regulator (FUR) protein: properties and implications in cyanobacteria. Annals of Microbiology, 2016, 66, 61-75.	1.1	18
241	Plant Growth Promoting Actinobacteria. , 2016, , .		15
242	Direct Plant Growth-Promoting Ability of Actinobacteria in Grain Legumes. , 2016, , 1-16.		9
243	Role of Endophytic Actinomycetes in Crop Protection: Plant Growth Promotion and Biological Control. , 2016, , 147-160.		4

#	Article	IF	CITATIONS
244	The Production and Potential of Biofertilizers to Improve Crop Yields. , 2016, , 71-92.		16
245	Study the Effects of Siderophore-Producing Bacteria on Zinc and Phosphorous Nutrition of Canola and Maize Plants. Communications in Soil Science and Plant Analysis, 2016, 47, 1517-1527.	0.6	16
246	Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Archives of Microbiology, 2016, 198, 987-993.	1.0	135
247	Plant functional groups, grasses versus forbs, differ in their impact on soil carbon dynamics with nitrogen fertilization. European Journal of Soil Biology, 2016, 75, 79-87.	1.4	15
249	Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting azospirilla from the rhizosphere of wheat. Brazilian Journal of Microbiology, 2016, 47, 542-550.	0.8	26
250	Effect of Continuous Monocropping of Tomato on Soil Microorganism and Microbial Biomass Carbon. Communications in Soil Science and Plant Analysis, 2016, 47, 1069-1077.	0.6	16
251	Total growth and root-cluster production by legumes and proteas depends on rhizobacterial strain, host species and nitrogen level. Annals of Botany, 2016, 118, 725-732.	1.4	8
252	Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. Science of the Total Environment, 2016, 566-567, 949-959.	3.9	112
253	Effect of various microorganisms on phosphorus uptake from insoluble Caâ€phosphates by cucumber plants. Journal of Plant Nutrition and Soil Science, 2016, 179, 454-465.	1.1	24
254	Improving Legume–Rhizobium Symbiosis for Copper Phytostabilization Through Genetic Manipulation of Both Symbionts. , 2016, , 183-193.		3
255	Lotus japonicus plants of the Gifu B-129 ecotype subjected to alkaline stress improve their Fe2+ bio-availability through inoculation with Pantoea eucalypti M91. Journal of Plant Physiology, 2016, 192, 47-55.	1.6	15
256	The effects of rice seed dressing with Paenibacillus yonginensis and silicon on crop development on South Korea's reclaimed tidal land. Field Crops Research, 2016, 188, 121-132.	2.3	12
257	Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Applied Soil Ecology, 2016, 99, 141-149.	2.1	117
258	Remediation of Heavy Metal-Contaminated Agricultural Soils Using Microbes. , 2016, , 115-132.		1
259	Microbial Inoculants in Sustainable Agricultural Productivity. , 2016, , .		40
260	Bioprospecting plant-associated microbiomes. Journal of Biotechnology, 2016, 235, 171-180.	1.9	53
262	Role of Plant Growth-Promoting Rhizobacteria (PGPR) as BioFertilizers in Stabilizing Agricultural Ecosystems. Sustainable Development and Biodiversity, 2016, , 71-87.	1.4	15
263	Ameliorative Effect of Humic Acid and Plant Growth-Promoting Rhizobacteria (PGPR) on Hungarian Vetch Plants under Salinity Stress. Communications in Soil Science and Plant Analysis, 2016, 47, 602-618.	0.6	21

ARTICLE IF CITATIONS Microbial Inoculants in Sustainable Agricultural Productivity., 2016,,. 38 264 Seed Bio-priming for Biotic and Abiotic Stress Management., 2016, , 211-228. 266 Microbial Inoculant: Modern Era of Fertilizers and Pesticides., 2016, , 319-343. 34 A Renaissance in Plant Growth-Promoting and Biocontrol Agents by Endophytes., 2016,, 37-60. Plant, Soil and Microbes., 2016, , . 268 35 Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. 269 Plant Molecular Biology, 2016, 90, 623-634. Plant Growth-Promoting Rhizobacteria: An Eco-friendly Approach for Sustainable Agroecosystem., 270 25 2016, , 181-201. Nutrient scavenging activity and antagonistic factors of non-photobiont lichen-associated bacteria: a 271 1.7 review. World Journal of Microbiology and Biotechnology, 2016, 32, 68. A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes 272 root formation in maize exposed to salt and aluminum stress. Journal of Plant Physiology, 2016, 191, 1.6 92 111-119. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants. Journal of 1.6 Plant Physiology, 2016, 192, 1-12. Temporal variation of diazotrophic community abundance and structure in surface and subsoil under four fertilization regimes during a wheat growing season. Agriculture, Ecosystems and Environment, 274 2.5 60 2016, 216, 116-124. The Siderophore Metabolome of Azotobacter vinelandii. Applied and Environmental Microbiology, 1.4 69 2016, 82, 27-39. Bacterial-Mediated Tolerance and Resistance to Plants Under Abiotic and Biotic Stresses. Journal of 276 2.8 138 Plant Growth Regulation, 2016, 35, 276-300. Microbial communities and primary succession in high altitude mountain environments. Annals of 1.1 46 Microbiology, 2016, 66, 43-60. Endophytes-assisted biocontrol: novel insights in ecology and the mode of action of Paenibacillus. 278 150 1.8 Plant and Soil, 2016, 405, 125-140. Drought Stress in Grain Legumes during Reproduction and Grain Filling. Journal of Agronomy and 279 293 Crop Science, 2017, 203, 81-102. Co-inoculation with Enterobacter and Rhizobacteria on Yield and Nutrient Uptake by Wheat (Triticum) Tj ETQq0 0 0 rgBT /Overlock 10 T 280 2.8 159 Regulation, 2017, 36, 608-617. Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat. 281 Journal of the Science of Food and Agriculture, 2017, 97, 3685-3690.

#	Article	IF	CITATIONS
282	Rhizobial diversity and function in rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.) plants: A review. South African Journal of Botany, 2017, 110, 80-86.	1.2	12
283	Nanomaterial Effects on Soil Microorganisms. Soil Biology, 2017, , 137-200.	0.6	12
284	Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russian Journal of Plant Physiology, 2017, 64, 235-241.	0.5	81
285	Microbial Manipulation of Auxins and Cytokinins in Plants. Methods in Molecular Biology, 2017, 1569, 61-72.	0.4	5
286	A novel extracellular lowâ€ŧemperature active phytase from <i>Bacillus aryabhattai</i> RS1 with potential application in plant growth. Biotechnology Progress, 2017, 33, 633-641.	1.3	16
287	Spatial heterogeneity of plant–soil feedbacks increases per capita reproductive biomass of species at an establishment disadvantage. Oecologia, 2017, 183, 1077-1086.	0.9	29
288	Auxins and Cytokinins in Plant Biology. Methods in Molecular Biology, 2017, , .	0.4	15
289	Bio-inoculation of Plant Growth-promoting Rhizobacterium Enterobacter cloacae ZNP-3 Increased Resistance Against Salt and Temperature Stresses in Wheat Plant (Triticum aestivum L.). Journal of Plant Growth Regulation, 2017, 36, 783-798.	2.8	39
291	Root chemical traits and their roles in belowground biotic interactions. Pedobiologia, 2017, 65, 58-67.	0.5	65
292	Polyphosphate-accumulating bacterial community colonizing the calcium bodies of terrestrial isopod crustaceans Titanethes albus and Hyloniscus riparius. FEMS Microbiology Ecology, 2017, 93, .	1.3	2
293	Double genetically modified symbiotic system for improved Cu phytostabilization in legume roots. Environmental Science and Pollution Research, 2017, 24, 14910-14923.	2.7	25
294	Spectrophotometric Assays to Evaluate the Rhizospheric Microbes Mediated Drought Tolerance in Plants. , 2017, , 413-429.		3
295	Survey of Plant Growth-Promoting Mechanisms in Native Portuguese Chickpea Mesorhizobium Isolates. Microbial Ecology, 2017, 73, 900-915.	1.4	39
296	Microbial Strategies for Vegetable Production. , 2017, , .		14
297	Bacterial Rhizoplane Colonization Patterns of Buchloe dactyloides Growing in Metalliferous Mine Tailings Reflect Plant Status and Biogeochemical Conditions. Microbial Ecology, 2017, 74, 853-867.	1.4	20
298	Interactions between soil phototrophs and vascular plants in Himalayan cold deserts. Soil Biology and Biochemistry, 2017, 115, 568-578.	4.2	16
299	Adaptation, specialization, and coevolution within phytobiomes. Current Opinion in Plant Biology, 2017, 38, 109-116.	3.5	51
300	Plant growth-promoting abilities and biocontrol efficacy of Streptomyces sp. UPMRS4 against Pyricularia oryzae. Biological Control, 2017, 112, 55-63.	1.4	52

#	Article	IF	CITATIONS
301	Influence of plant-growth-promoting bacteria on germination, growth and nutrients' uptake of <i>Onobrychis sativa</i> L.Âunder drought stress. Journal of Plant Interactions, 2017, 12, 200-208.	1.0	60
302	Hostâ€specific effects of soil microbial filtrates prevail over those of arbuscular mycorrhizae in a fragmented landscape. Ecological Applications, 2017, 27, 1946-1957.	1.8	11
303	Organic Micropollutants in the Environment: Ecotoxicity Potential and Methods for Remediation. , 2017, , 65-99.		16
304	Antifungal genes expressed in transgenic pea (Pisum sativum L.) do not affect root colonization of arbuscular mycorrhizae fungi. Mycorrhiza, 2017, 27, 683-694.	1.3	3
305	A Pan-Genomic Approach to Understand the Basis of Host Adaptation in Achromobacter. Genome Biology and Evolution, 2017, 9, 1030-1046.	1.1	40
306	Functional and phylogenetic diversity of cultivable rhizobacterial endophytes of sorghum [Sorghum bicolor (L.) Moench]. Antonie Van Leeuwenhoek, 2017, 110, 925-943.	0.7	17
307	Halophilic rhizobacteria from Distichlis spicata promote growth and improve salt tolerance in heterologous plant hosts. Symbiosis, 2017, 73, 179-189.	1.2	39
308	Imaging Nutrient Distribution in the Rhizosphere Using FTIR Imaging. Analytical Chemistry, 2017, 89, 4831-4837.	3.2	12
309	An auxin secreting Pseudomonas putida rhizobacterial strain that negatively impacts water-stress tolerance in Arabidopsis thaliana. Rhizosphere, 2017, 3, 16-19.	1.4	20
311	Role of Root Nodule Bacteria in Improving Soil Fertility and Growth Attributes of Leguminous Plants Under Arid and Semiarid Environments. Soil Biology, 2017, , 39-60.	0.6	3
312	Plant Growth-Promoting Rhizobacteria and Its Role in Sustainable Agriculture. , 2017, , 195-206.		1
313	Simultaneous P-Solubilizing and Biocontrol Activity of Rhizobacteria Isolated from Rice Rhizosphere Soil. , 2017, , 207-215.		1
315	Soil Microbiome and Their Effects on Nutrient Management for Plants. , 2017, , 117-143.		7
316	Rhizosphere Microorganisms Towards Soil Sustainability and Nutrient Acquisition. , 2017, , 31-49.		6
317	Microbes: Bioresource in Agriculture and Environmental Sustainability. , 2017, , 361-376.		10
318	Microbial Biofertilizer Interventions in Augmenting Agroforestry. , 2017, , 421-442.		1
319	Quantifying components of the phosphorus cycle in temperate forests. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1243.	2.8	44
320	Pseudomonas fluorescens R68 assisted enhancement in growth and fertilizer utilization of Amaranthus tricolor (L.). 3 Biotech, 2017, 7, 256.	1.1	16

ARTICLE IF CITATIONS Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil 321 1.9 86 chemical and bacterial properties. European Journal of Agronomy, 2017, 90, 34-42. Rhizotrophs: Plant Growth Promotion to Bioremediation., 2017,,. Effectiveness of plant growth promoting rhizobacteria on Bromus tomentellus Boiss seed 324 germination, growth and nutrients uptake under drought stress. South African Journal of Botany, 1.2 22 2017, 113, 11-18. Bioremediation of Heavy Metals for Sustainable Agriculture., 2017,, 275-289. Modifying the Rhizosphere of Agricultural Crops to Improve Yield and Sustainability: Azospirillum as 326 3 a Model Rhizotroph. , 2017, , 15-37. Rhizotrophs in Saline Agriculture., 2017, , 101-123. Application of Bioinoculants for Seed Quality Improvement. Microorganisms for Sustainability, 2017, , 328 0.4 2 265-280. Role of Biofertilizers in Sustainable Agriculture Under Abiotic Stresses. Microorganisms for 329 0.4 Sustainability, 2017, , 281-301. 330 Bacterial Volatiles for Plant Growth., 2017, , 335-353. 0 Role of Plant Growth-Promoting Rhizobacteria for Improving Crop Productivity in Sustainable Agriculture., 2017, , 673-693. Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain. Annals of Microbiology, 2017, 67, 332 1.1 52 655-668. Emerging Significance of Rhizospheric Probiotics and Its Impact on Plant Health: Current Perspective Towards Sustainable Agriculture., 2017, , 233-251. Plant-Microbe Interactions in Adaptation of Agricultural Crops to Abiotic Stress Conditions., 2017, 334 91 163-200. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A 1.6 199 review. Ecological Engineering, 2017, 107, 8-32. Microbes from mined sites: Harnessing their potential for reclamation of derelict mine sites. 336 3.7 87 Environmental Pollution, 2017, 230, 495-505. Belowground microbes mitigate plant-plant competition. Plant Science, 2017, 262, 175-181. Cyanogenic Pseudomonas spp. strains are concentrated in the rhizosphere of alpine pioneer plants. 338 2.522 Microbiological Research, 2017, 194, 20-28. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and 4.2 enrich beneficial bacteria. Soil Biology and Biochemistry, 2017, 104, 208-217.

ARTICLE IF CITATIONS A 3-year field study exhibits no apparent effect of the transgenic Cucumber mosaic virus-resistant pepper (Capsicum annuum L.) on soil fungal populations and communities. Applied Soil Ecology, 2017, 340 2.1 1 109, 40-48. The drivers underlying biogeographical patterns of bacterial communities in soils under sugarcane 341 2.1 cultivation. Applied Soil Ecology, 2017, 110, 12-20. Characterisation of Pseudomonas spp. and Ochrobactrum sp. isolated from volcanic soil. Antonie Van 342 0.7 66 Leeuwenhoek, 2017, 110, 253-270. Soils mediate the impact of fine woody debris on invasive and native grasses as whole trees are mechanically shredded into firebreaks in piñon-juniper woodlands. Journal of Arid Environments, 343 1.2 2017, 137, 60-68. Functional traits dominate the diversity-related selection of bacterial communities in the 344 220 4.4 rhizosphere. ISME Journal, 2017, 11, 56-66. Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure. Microbial Ecology, 2017, 73, 417-434. 1.4 46 Plant growth-promoting potential of endophytic bacteria isolated from roots of wild Dodonaea 346 1.8 62 viscosa L. Plant Growth Regulation, 2017, 81, 399-408. Volatiles and Food Security., 2017,,. 347 Effects of plant growth-promoting rhizobacteria on organic lettuce production. Acta Horticulturae, 348 0.1 5 2017, , 265-272. El gÃ©nero Bacillus como agente de control biol \hat{A}^3 gico y sus implicaciones en la bioseguridad agr \hat{A} cola. 349 0.2 44 Revista Mexicana De Fitopatologia, 2017, 36, . Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse 350 1.3 423 Environments. Frontiers in Physiology, 2017, 8, 667. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. Frontiers in 574 Plant Science, 2017, 8, 172. Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in 352 1.7 42 Hydroponics with Plant Growth-Promoting Microorganisms. Frontiers in Plant Science, 2017, 8, 674. Application of Endophytic Pseudomonas fluorescens and a Bacterial Consortium to Brassica napus Can Increase Plant Height and Biomass under Greenhouse and Field Conditions. Frontiers in Plant 1.7 Science, 2017, 8, 2193. Valorization of Phosphorus Secondary Raw Materials by Acidithiobacillus ferrooxidans. Molecules, 354 1.7 16 2017, 22, 473. Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic Environments. Frontiers in 86 Microbiology, 2017, 8, 1736. Soil fertility challenges and Biofertiliser as a viable alternative for increasing smallholder farmer 356 0.6 54 crop productivity in sub-Saharan Africa. Cogent Food and Agriculture, 2017, 3, 1400933. Complete genome sequence of Paenibacillus yonginensis DCY84T, a novel plant Symbiont that 1.5 promotes growth via induced systemic resistance. Standards in Genomic Sciences, 2017, 12, 63.

CITATION REPORT

#

#	ARTICLE	IF	CITATIONS
358	Changes of enzyme activities related to oxidative stress in rice plants inoculated with random mutants of a Pseudomonas fluorescens strain able to improve plant fitness upon biotic and abiotic conditions. Functional Plant Biology, 2017, 44, 1063.	1.1	4
359	Differences among Soilâ€Inhabiting Microbial Communities in Poa annua Turf throughout the Growing Season. Crop Science, 2017, 57, S-262.	0.8	16
360	The Role of Soil Beneficial Bacteria in Wheat Production: A Review. , 0, , .		7
361	Isolation and characterization of N ₂ â€fixing bacteria from giant reed and switchgrass for plant growth promotion and nutrient uptake. Journal of Basic Microbiology, 2018, 58, 459-471.	1.8	43
362	Effects of Azospirillum brasilense and Pseudomonas fluorescens on nitrogen transformation and enzyme activity in the rice rhizosphere. Journal of Soils and Sediments, 2018, 18, 1453-1465.	1.5	20
363	Characterization of Indole-3-acetic Acid Biosynthesis and the Effects of This Phytohormone on the Proteome of the Plant-Associated Microbe <i>Pantoea</i> sp. YR343. Journal of Proteome Research, 2018, 17, 1361-1374.	1.8	28
364	Rhizobacteria improve sugarcane growth and photosynthesis under wellâ€watered conditions. Annals of Applied Biology, 2018, 172, 309-320.	1.3	13
365	Stimulating effects of two plant growth-promoting bacteria, Enterobacter ludwigii Ez-185-17 and Raoultella terrigena Ez-555-6, on flax culture. AIP Conference Proceedings, 2018, , .	0.3	4
366	Isolation of a Phytase-Producing Bacterial Strain from Agricultural Soil and its Characterization and Application as an Effective Eco-Friendly Phosphate Solubilizing Bioinoculant. Communications in Soil Science and Plant Analysis, 2018, 49, 984-994.	0.6	20
367	Influence of Plant Growth-Promoting Rhizobacteria on Corn Growth Under Different Fertility Sources. Communications in Soil Science and Plant Analysis, 2018, 49, 1239-1255.	0.6	29
369	Freeze Injure and Antioxidant Enzyme Activity of Grapevine (Vitis Vinifera) Under Bio-Boron Fertilizer Applications. Erwerbs-Obstbau, 2018, 60, 3-10.	0.5	7
370	Molecular Insights into the Involvement of a Never Ripe Receptor in the Interaction Between Two Beneficial Soil Bacteria and Tomato Plants Under Well-Watered and Drought Conditions. Molecular Plant-Microbe Interactions, 2018, 31, 633-650.	1.4	23
371	Microorganisms for Green Revolution. Microorganisms for Sustainability, 2018, , .	0.4	5
372	Purple cornâ€associated rhizobacteria with potential for plant growth promotion. Journal of Applied Microbiology, 2018, 124, 1254-1264.	1.4	14
373	Long-term agronomic practices alter the composition of asymbiotic diazotrophic bacterial community and their nitrogen fixation genes in an acidic red soil. Biology and Fertility of Soils, 2018, 54, 329-339.	2.3	21
374	Plant Growth Promotion and Biocontrol Mediated by Plant-Associated Bacteria. Microorganisms for Sustainability, 2018, , 45-80.	0.4	15
375	Legume, Microbiome, and Regulatory Functions of miRNAs in Systematic Regulation of Symbiosis. Microorganisms for Sustainability, 2018, , 255-282.	0.4	8
376	Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. Microorganisms for Sustainability, 2018, , 21-43.	0.4	35

#	Article	IF	CITATIONS
377	Building Bioeconomy in Agriculture: Harnessing Soil Microbes for Sustaining Ecosystem Services. World Sustainability Series, 2018, , 261-277.	0.3	2
378	Role of Microorganisms in Alleviating Abiotic Stresses. Microorganisms for Sustainability, 2018, , 115-128.	0.4	8
379	Methanol exchange dynamics between a temperate cropland soil and the atmosphere. Atmospheric Environment, 2018, 176, 229-239.	1.9	27
380	Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome, 2018, 6, 3.	4.9	194
381	Reanalysis of microbiomes in soils affected by apple replant disease (ARD): Old foes and novel suspects lead to the proposal of extended model of disease development. Applied Soil Ecology, 2018, 129, 24-33.	2.1	30
382	Root–Microbe Interactions: Understanding and Exploitation of Microbiome. Soil Biology, 2018, , 323-339.	0.6	5
383	Unfolding the Role of Rhizomicrobiome Toward Sustainable Agriculture. Soil Biology, 2018, , 341-365.	0.6	4
384	Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Microbiological Research, 2018, 210, 12-25.	2.5	56
385	Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 2018, 156, 225-246.	2.9	529
386	Bacterial communities in mining soils and surrounding areas under regeneration process in a former ore mine. Brazilian Journal of Microbiology, 2018, 49, 489-502.	0.8	30
387	Structure of surface polysaccharides from Aeromonas sp. AMG272, a plant-growth promoting rhizobacterium isolated from rice rhizosphere. Carbohydrate Research, 2018, 462, 1-6.	1.1	7
388	Deciphering the Mechanisms of Endophyte-Mediated Biofortification of Fe and Zn in Wheat. Journal of Plant Growth Regulation, 2018, 37, 174-182.	2.8	53
389	Impact of management regimes on fruit quality of sweet cherry (<i>Prunus avium</i> L.). Agroecology and Sustainable Food Systems, 2018, 42, 493-503.	1.0	5
390	Screening of tropically derived, multi-trait plant growth- promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiological Research, 2018, 206, 33-42.	2.5	92
391	Duration of continuous cropping with straw return affects the composition and structure of soil bacterial communities in cotton fields. Canadian Journal of Microbiology, 2018, 64, 167-181.	0.8	42
392	Intensify production, transform biomass to energy and novel goods and protect soils in Europe—A vision how to mobilize marginal lands. Science of the Total Environment, 2018, 616-617, 1101-1123.	3.9	93
393	Does plant—Microbe interaction confer stress tolerance in plants: A review?. Microbiological Research, 2018, 207, 41-52.	2.5	446
394	Mutualism between Klebsiella SGM 81 and Dianthus caryophyllus in modulating root plasticity and rhizospheric bacterial density. Plant and Soil, 2018, 424, 273-288.	1.8	22

#	Article	IF	CITATIONS
395	Structure and Species Composition in Logged-over Swamp Forest, Bengkalis, Riau. E3S Web of Conferences, 2018, 68, 01005.	0.2	2
396	Multiple shoot bud induction and plant regeneration studies of <i>Pongamia pinnata</i> . Plant Biotechnology, 2018, 35, 325-334.	0.5	8
398	Effect of Long-Term Soil Management on the Mutual Interaction Among Soil Organic Matter, Microbial Activity and Aggregate Stability in a Vineyard. Pedosphere, 2018, 28, 288-298.	2.1	54
399	Genome-wide analysis of root hair-preferential genes in rice. Rice, 2018, 11, 48.	1.7	21
400	Effects of Field Inoculation with VAM and Bacteria Consortia on Root Growth and Nutrients Uptake in Common Wheat. Sustainability, 2018, 10, 3286.	1.6	30
401	Beneficial Microorganisms for the Management of Soil Phosphorus. Sustainable Agriculture Reviews, 2018, , 53-75.	0.6	4
402	Sustainable Agriculture Reviews 32. Sustainable Agriculture Reviews, 2018, , .	0.6	0
403	Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Frontiers in Plant Science, 2018, 9, 1655.	1.7	298
404	Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007–2017). Antibiotics, 2018, 7, 93.	1.5	240
405	Agricultural Microbial Genetic Resources: Application and Preservation at Microbial Resource Centers. Soil Biology, 2018, , 141-173.	0.6	1
406	Perspectives of Microbial Inoculation for Sustainable Development and Environmental Management. Frontiers in Microbiology, 2018, 9, 2992.	1.5	111
407	Land-Use Intensity Rather Than Plant Functional Identity Shapes Bacterial and Fungal Rhizosphere Communities. Frontiers in Microbiology, 2018, 9, 2711.	1.5	62
408	Influence of Light on Plant–Phyllosphere Interaction. Frontiers in Plant Science, 2018, 9, 1482.	1.7	90
409	Bacterial community shaped by heavy metals and contributing to health risks in cornfields. Ecotoxicology and Environmental Safety, 2018, 166, 259-269.	2.9	49
410	Use of Some Bacteria and Mycorrhizae as Biofertilizers in Vegetable Growing and Beneficial Effects in Salinity and Drought Stress Conditions. , 2018, , .		1
411	Isolation and prospection of diazotrophic rhizobacteria associated with sugarcane under organic management. Anais Da Academia Brasileira De Ciencias, 2018, 90, 3813-3829.	0.3	9
412	Growth-promoting potential of bacterial biomass in the banana micropropagated plants. Revista Brasileira De Engenharia Agricola E Ambiental, 2018, 22, 782-787.	0.4	6
413	How Rainforest Conversion to Agricultural Systems in Sumatra (Indonesia) Affects Active Soil Bacterial Communities. Frontiers in Microbiology, 2018, 9, 2381.	1.5	44

#	ARTICLE	IF	CITATIONS
414	Isolation and characterization of starch degrading rhizobacteria from soil of Jimma University Main Campus, Ethiopia. African Journal of Microbiology Research, 2018, 12, 788-795.	0.4	5
415	Deciphering the bacterial composition in the rhizosphere of Baphicacanthus cusia (NeeS) Bremek. Scientific Reports, 2018, 8, 15831.	1.6	15
416	A resourceful methodology to profile indolic auxins produced by rhizo-fungi using spectrophotometry and HPTLC. 3 Biotech, 2018, 8, 413.	1.1	9
417	Inoculation of Sinorhizobium saheli YH1 Leads to Reduced Metal Uptake for Leucaena leucocephala Grown in Mine Tailings and Metal-Polluted Soils. Frontiers in Microbiology, 2018, 9, 1853.	1.5	14
418	Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turkish Journal of Botany, 2018, 42, 183-196.	0.5	33
419	Interaction of plant growth promoting bacteria with tomato under abiotic stress: A review. Agriculture, Ecosystems and Environment, 2018, 267, 129-140.	2.5	104
420	Conventional and nonconventional strategies for controlling bacterial contamination in fuel ethanol fermentations. World Journal of Microbiology and Biotechnology, 2018, 34, 80.	1.7	30
421	Current Perspectives on Rhizobacterial-EPS interactions in Alleviation of Stress Responses: Novel Strategies for Sustainable Agricultural Productivity. , 2018, , 33-55.		6
422	Plant growth promoting rhizobacteria reduce aphid population and enhance the productivity of bread wheat. Brazilian Journal of Microbiology, 2018, 49, 9-14.	0.8	33
423	What is the agronomic potential of biofertilizers for maize? A meta-analysis. FEMS Microbiology Ecology, 2018, 94, .	1.3	37
424	High turnover of faecal microbiome from algal feedstock experimental manipulations in the Pacific oyster (<i>Crassostrea gigas</i>). Microbial Biotechnology, 2018, 11, 848-858.	2.0	22
425	Evidence-based logic chains demonstrate multiple impacts of trace metals on ecosystem services. Journal of Environmental Management, 2018, 223, 150-164.	3.8	20
426	Towards the Mechanisms of Nutrient Solubilization and Fixation in Soil System. , 2018, , 229-257.		7
427	Role of PCPR in Sustainable Agriculture: Molecular Approach Toward Disease Suppression and Growth Promotion. , 2018, , 259-290.		19
428	Role of Rhizospheric Microbes in Soil. , 2018, , .		17
429	Rhizosphere biodiversity as a premise for application in bio-economy. Agriculture, Ecosystems and Environment, 2018, 265, 524-534.	2.5	32
430	Metatranscriptomics and Amplicon Sequencing Reveal Mutualisms in Seagrass Microbiomes. Frontiers in Microbiology, 2018, 9, 388.	1.5	113
431	Continuously Monocropped Jerusalem Artichoke Changed Soil Bacterial Community Composition and Ammonia-Oxidizing and Denitrifying Bacteria Abundances. Frontiers in Microbiology, 2018, 9, 705.	1.5	44

#	Article	IF	CITATIONS
432	Klebsiella pneumoniae SnebYK Mediates Resistance Against Heterodera glycines and Promotes Soybean Growth. Frontiers in Microbiology, 2018, 9, 1134.	1.5	36
433	Effects of Pb Smelting on the Soil Bacterial Community near a Secondary Lead Plant. International Journal of Environmental Research and Public Health, 2018, 15, 1030.	1.2	25
434	Induced Salt Tolerance of Perennial Ryegrass by a Novel Bacterium Strain from the Rhizosphere of a Desert Shrub Haloxylon ammodendron. International Journal of Molecular Sciences, 2018, 19, 469.	1.8	65
435	Harnessing Soil Rhizobacteria for Improving Drought Resilience in Legumes. , 2018, , 235-275.		25
436	Temperature and soil microorganisms interact to affect Dodonaea viscosa growth on mountainsides. Plant Ecology, 2018, 219, 759-774.	0.7	6
437	Importance of Soil Temperature for the Growth of Temperate Crops under a Tropical Climate and Functional Role of Soil Microbial Diversity. Microbes and Environments, 2018, 33, 144-150.	0.7	24
438	Less abundant bacterial groups are more affected than the most abundant groups in composted tannery sludge-treated soil. Scientific Reports, 2018, 8, 11755.	1.6	15
439	<i>Pseudomonas knackmussii</i> MLR6, a rhizospheric strain isolated from halophyte, enhances salt tolerance in <i>Arabidopsis thaliana</i> . Journal of Applied Microbiology, 2018, 125, 1836-1851.	1.4	26
440	Distributing regionally, distinguishing locally: examining the underlying effects of local land use on airborne bacterial biodiversity. Environmental Microbiology, 2018, 20, 3529-3542.	1.8	26
441	Drought-mitigating Pseudomonas putida GAP-P45 modulates proline turnover and oxidative status in Arabidopsis thaliana under water stress. Annals of Microbiology, 2018, 68, 579-594.	1.1	29
442	Identification and molecular phylogeny analysis using random amplification of polymorphic DNA (RAPD) and 16SrRNA sequencing of N2 fixing tea field soil bacteria from North Bengal tea gardens. African Journal of Microbiology Research, 2018, 12, 655-663.	0.4	5
443	Plant growth-promoting bacteria Kosakonia radicincitans mediate anti-herbivore defense in Arabidopsis thaliana. Planta, 2018, 248, 1383-1392.	1.6	35
444	A decade of understanding secondary metabolism in Pseudomonas spp. for sustainable agriculture and pharmaceutical applications. Environmental Sustainability, 2018, 1, 3-17.	1.4	15
445	Rhizospheric bacterial isolates of grass pea (LathyrusÂsativusL.) endowed with multiple plant growthÂpromoting traits. Journal of Applied Microbiology, 2018, 125, 1786-1801.	1.4	17
446	Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil. Microbiological Research, 2018, 214, 47-59.	2.5	67
447	Potential of Biopriming in Enhancing Crop Productivity and Stress Tolerance. , 2018, , 127-145.		9
448	Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiological Research, 2018, 214, 101-113.	2.5	68
449	Advances in Seed Priming. , 2018, , .		24

#	Article	IF	CITATIONS
450	Organic substrate for transplant production in organic nurseries. A review. Agronomy for Sustainable Development, 2018, 38, 1.	2.2	83
451	Novel Perspectives of Biotic and Abiotic Stress Tolerance Mechanism in Actinobacteria. , 2018, , 235-244.		7
452	â€~Concord' grapevine nutritional status and chlorosis rank associated with fungal and bacterial root zone microbiomes. Plant Physiology and Biochemistry, 2018, 129, 429-436.	2.8	4
453	Growth-Promoting Ability of Rhodopseudomonas palustris G5 and Its Effect on Induced Resistance in Cucumber Against Salt Stress. Journal of Plant Growth Regulation, 2019, 38, 180-188.	2.8	45
454	Microbial Biofertilizers: Types and Applications. Soil Biology, 2019, , 1-19.	0.6	31
455	Plant-Microbiome Interactions in Agroecosystem: An Application. , 2019, , 251-291.		3
456	Ectomycorrhizal Fungi: Role as Biofertilizers in Forestry. Soil Biology, 2019, , 67-82.	0.6	7
457	Status and Prospects of Bacterial Inoculants for Sustainable Management of Agroecosystems. Soil Biology, 2019, , 137-172.	0.6	14
458	Comprehensive assessment of paddy soil quality under land consolidation: a novel perspective of microbiology. PeerJ, 2019, 7, e7351.	0.9	8
459	Microbe-Mediated Plant Growth Promotion: A Mechanistic Overview on Cultivable Plant Growth-Promoting Members. Soil Biology, 2019, , 435-463.	0.6	6
460	Saline Soil-based Agriculture by Halotolerant Microorganisms. , 2019, , .		19
461	Development of Salt Tolerance in Crops Employing Halotolerant Plant Growth–Promoting Rhizobacteria Associated with Halophytic Rhizosphere Soils. , 2019, , 75-101.		3
462	The effect of arbuscular mycorrhizal fungi Rhizophagus intraradices and soil microbial community on a model plant community in a post-mining soil. Plant Ecology, 2019, 220, 789-800.	0.7	7
463	Microbial Interactions in Soil Formation and Nutrient Cycling. , 2019, , 363-382.		17
465	Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Reviews in Environmental Science and Biotechnology, 2019, 18, 597-616.	3.9	76
466	Application of signaling molecules in reducing metal accumulation in alfalfa and alleviating metal-induced phytotoxicity in Pb/Cd-contaminated soil. Ecotoxicology and Environmental Safety, 2019, 182, 109459.	2.9	31
467	Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways. Bioresource Technology, 2019, 291, 121853.	4.8	83
468	Salinity: An Overview. Soil Biology, 2019, , 3-18.	0.6	24

#	Article	IF	CITATIONS
469	Salinity Stress-Dependent Coordination of Metabolic Networks in Relation to Salt Tolerance in Plants. Soil Biology, 2019, , 401-422.	0.6	3
471	Optimization of culture medium and growth conditions of the plant growth-promoting bacterium Herbaspirillum seropedicae BR11417 for its use as an agricultural inoculant using response surface methodology (RSM). Plant and Soil, 2020, 451, 75.	1.8	4
472	Rhizospheric Microbiomes: Biodiversity, Mechanisms of Plant Growth Promotion, and Biotechnological Applications for Sustainable Agriculture. , 2019, , 19-65.		100
473	Plant growth-promoting microbes for abiotic stress tolerance in plants. , 2019, , 89-105.		6
474	Plant Growth-Promoting Rhizobacteria as Biological Tools for Nutrient Management and Soil Sustainability. , 2019, , 95-110.		4
475	Exploring Potential Soil Bacteria for Sustainable Wheat (Triticum aestivum L.) Production. Sustainability, 2019, 11, 3361.	1.6	31
476	Functional diversity of cultivable endophytes from Cicer arietinum and Pisum sativum: Bioprospecting their plant growth potential. Biocatalysis and Agricultural Biotechnology, 2019, 20, 101229.	1.5	28
477	Co-inoculation effect of Rhizobium and Achillea millefolium L. oil extracts on growth of common bean (Phaseolus vulgaris L.) and soil microbial-chemical properties. Scientific Reports, 2019, 9, 15178.	1.6	166
478	Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity. International Journal of Environmental Research and Public Health, 2019, 16, 3873.	1.2	71
480	Seed Coating: A Tool for Delivering Beneficial Microbes to Agricultural Crops. Frontiers in Plant Science, 2019, 10, 1357.	1.7	189
481	Some characteristics of phosphate solubilizing rhizobacteria as an ecological strategy for sustainable agriculture. Materials Today: Proceedings, 2019, 13, 1224-1228.	0.9	5
482	The role of indigenous Rhizobia on Paraserianthes falcataria (L) Nielsen seedlings in nickel post mining lands. IOP Conference Series: Earth and Environmental Science, 2019, 308, 012039.	0.2	3
483	Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome, 2019, 7, 146.	4.9	202
484	Co-existence of Leclercia adecarboxylata (LSE-1) and Bradyrhizobium sp. (LSBR-3) in nodule niche for multifaceted effects and profitability in soybean production. World Journal of Microbiology and Biotechnology, 2019, 35, 172.	1.7	21
485	Harnessing the soil microbial wealth for enhancement of plant secondary metabolites in medicinal and aromatic plants. , 2019, , 179-190.		1
487	Effect of Re-acidification on Buffalo Grass Rhizosphere and Bulk Microbial Communities During Phytostabilization of Metalliferous Mine Tailings. Frontiers in Microbiology, 2019, 10, 1209.	1.5	24
488	Promotion of growth, yield and fiber quality attributes of Egyptian cotton by <i>bacillus</i> strains in combination with mineral fertilizers. Journal of Plant Nutrition, 2019, 42, 2337-2348.	0.9	9
489	Humic Acid Fertilizer Improved Soil Properties and Soil Microbial Diversity of Continuous Cropping Peanut: A Three-Year Experiment. Scientific Reports, 2019, 9, 12014.	1.6	110

#	Article	IF	CITATIONS
490	Comparison and Selection of Three-Core Cable and Single-Core Cable. IOP Conference Series: Earth and Environmental Science, 2019, 300, 042047.	0.2	3
491	Nitrogenâ€dependent bacterial community shifts in root, rhizome and rhizosphere of nutrientâ€efficient <i>Miscanthus</i> x <i>giganteus</i> from longâ€ŧerm field trials. GCB Bioenergy, 2019, 11, 1334-1347.	2.5	30
492	Screening of plant growth promoting bacteria (PGPB) from rhizosphere and bulk soil of <i>Caragana microphylla</i> in different habitats and their effects on the growth of <i>Arabidopsis</i> seedlings. Biotechnology and Biotechnological Equipment, 2019, 33, 921-930.	0.5	13
493	An expectation-maximization algorithm enables accurate ecological modeling using longitudinal microbiome sequencing data. Microbiome, 2019, 7, 118.	4.9	28
494	Pseudomonas fluorescens affects nutrient dynamics in plant-soil system for melon production. Chilean Journal of Agricultural Research, 2019, 79, 223-233.	0.4	7
495	Soybean Interaction with Engineered Nanomaterials: A Literature Review of Recent Data. Nanomaterials, 2019, 9, 1248.	1.9	30
496	Genetic Screening and Expression Analysis of Psychrophilic Bacillus spp. Reveal Their Potential to Alleviate Cold Stress and Modulate Phytohormones in Wheat. Microorganisms, 2019, 7, 337.	1.6	74
497	Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatalysis and Agricultural Biotechnology, 2019, 21, 101326.	1.5	108
498	Monitoring of Rice Transcriptional Responses to Contrasted Colonizing Patterns of Phytobeneficial Burkholderia s.l. Reveals a Temporal Shift in JA Systemic Response. Frontiers in Plant Science, 2019, 10, 1141.	1.7	19
499	Effective lead immobilization by phosphate rock solubilization mediated by phosphate rock amendment and phosphate solubilizing bacteria. Chemosphere, 2019, 237, 124540.	4.2	43
500	Abiotic stress resistance, plant growth promotion and antifungal potential of halotolerant bacteria from a Tunisian solar saltern. Microbiological Research, 2019, 229, 126331.	2.5	33
501	Deciphering rhizosphere microbiome for the development of novel bacterial consortium and its evaluation for salt stress management in solanaceous crops in India. Indian Phytopathology, 2019, 72, 479-488.	0.7	17
502	Application of <i>Trichoderma</i> Strains and Metabolites Enhances Soybean Productivity and Nutrient Content. Journal of Agricultural and Food Chemistry, 2019, 67, 1814-1822.	2.4	67
503	Plant geographic origin and phylogeny as potential drivers of community structure in rootâ€inhabiting fungi. Journal of Ecology, 2019, 107, 1720-1736.	1.9	27
504	Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis, 2019, 78, 115-123.	1.2	48
505	Topographical alterations render bacterial biofilms susceptible to chemical and mechanical stress. Biomaterials Science, 2019, 7, 220-232.	2.6	25
506	Effect of phosphogypsum addition in the composting process on the physico-chemical proprieties and the microbial diversity of the resulting compost tea. Environmental Science and Pollution Research, 2019, 26, 21404-21415.	2.7	15
507	Research Progress and Perspective on Drought Stress in Legumes: A Review. International Journal of Molecular Sciences, 2019, 20, 2541.	1.8	214

#	Article	IF	CITATIONS
508	Comparison of community composition between Microcystis colony-attached and free-living bacteria, and among bacteria attached with Microcystis colonies of various sizes in culture. Aquatic Ecology, 2019, 53, 465-481.	0.7	11
509	Effect of phosphate solubilising bacteria (Enterobacter cloacae) on phosphorus uptake efficiency in sugarcane (Saccharum officinarum L.). Soil Research, 2019, 57, 333.	0.6	12
510	Culturable endophytic bacteria of <i>Camellia</i> species endowed with plant growth promoting characteristics. Journal of Applied Microbiology, 2019, 127, 825-844.	1.4	40
511	Soil-Plant-Microbe Interactions in Salt-affected Soils. , 2019, , 203-235.		5
512	Effects of Agricultural Management on Rhizosphere Microbial Structure and Function in Processing Tomato Plants. Applied and Environmental Microbiology, 2019, 85, .	1.4	29
513	Climatic impacts on the bacterial community profiles of cork oak soils. Applied Soil Ecology, 2019, 143, 89-97.	2.1	15
514	A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World Journal of Microbiology and Biotechnology, 2019, 35, 90.	1.7	91
515	Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of the Total Environment, 2019, 682, 779-799.	3.9	146
516	Bacillus thuringiensis as a Biofertilizer and Biostimulator: a Mini-Review of the Little-Known Plant Growth-Promoting Properties of Bt. Current Microbiology, 2019, 76, 1379-1385.	1.0	78
517	Biochemical traits of Bacillus subtilis MF497446: Its implications on the development of cowpea under cadmium stress and ensuring food safety. Ecotoxicology and Environmental Safety, 2019, 180, 384-395.	2.9	18
518	Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA. Acta Physiologiae Plantarum, 2019, 41, 1.	1.0	37
519	Changes in the Soil Microbiome in Eggplant Monoculture Revealed by High-Throughput Illumina MiSeq Sequencing as Influenced by Raw Garlic Stalk Amendment. International Journal of Molecular Sciences, 2019, 20, 2125.	1.8	14
520	Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils. Environment International, 2019, 126, 791-801.	4.8	52
521	The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiology Letters, 2019, 366, .	0.7	63
522	Effects of tillage managements and maize straw returning on soil microbiome using 16S rDNA sequencing. Journal of Integrative Plant Biology, 2019, 61, 765-777.	4.1	44
523	Salt stress and hydroxyectoine enhance phosphate solubilisation and plant colonisation capacity of Kosakonia radicincitans. Journal of Advanced Research, 2019, 19, 91-97.	4.4	19
524	Physiological Diversity of Spitsbergen Soil Microbial Communities Suggests Their Potential as Plant Growth-Promoting Bacteria. International Journal of Molecular Sciences, 2019, 20, 1207.	1.8	14
525	The Prospects of Bio-Fertilizer Technology for Productive and Sustainable Agricultural Growth. , 2019, , 233-253.		9

#	Article	IF	Citations
527	Role of Melatonin and Plantâ€Growthâ€Promoting Rhizobacteria in the Growth and Development of Plants. Clean - Soil, Air, Water, 2019, 47, 1800459.	0.7	35
528	Morphological and physiological characteristics of endornavirus-infected and endornavirus-free near-isogenic lines of bell pepper (Capsicum annuum). Scientia Horticulturae, 2019, 250, 104-112.	1.7	9
529	Draft Genome Analysis Offers Insights Into the Mechanism by Which Streptomyces chartreusis WZS021 Increases Drought Tolerance in Sugarcane. Frontiers in Microbiology, 2018, 9, 3262.	1.5	39
530	Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech, 2019, 9, 73.	1.1	156
531	Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 2019, 125, 365-385.	4.8	1,135
532	Microbial diversity and bioremediation of rhizospheric soils from Trindade Island - Brazil. Journal of Environmental Management, 2019, 236, 358-364.	3.8	13
533	Molecular mechanism underlying -mediated plant improvement/protection for sustainable agriculture. Acta Biochimica Et Biophysica Sinica, 2019, 51, 229-242.	0.9	18
534	Morphoanatomy and Chlorophyll of Lettuce Plants Induced by Rhizobacteria. Journal of Agricultural Studies, 2019, 7, 196.	0.2	1
535	Strategies for preventing and controlling pesticide toxicity. , 2019, , 265-304.		0
536	Compatibility of MO PLUS biofertilizer and Paenybacillus polymyxa to stimulate rice germination. Journal of Physics: Conference Series, 2019, 1341, 022017.	0.3	2
537	Response of cocoa leaves morphophysiological characters to application of different microbes formulation. IOP Conference Series: Earth and Environmental Science, 2019, 343, 012013.	0.2	0
538	Bacillus spp. as plant growth-promoting bacteria in cotton under greenhouse conditions. Australian Journal of Crop Science, 2019, , 2003-2014.	0.1	12
539	Characterisation of bacteria from the cultures of a Chlorella strain isolated from textile wastewater and their growth enhancing effects on the axenic cultures of Chlorella vulgaris in low nutrient media. Algal Research, 2019, 44, 101666.	2.4	21
540	Phyto and Rhizo Remediation. Microorganisms for Sustainability, 2019, , .	0.4	2
541	Plant–microbe associations for enhancement of agricultural productivity. , 2019, , 63-76.		2
542	Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2019, , .	0.6	18
543	Annual replication is essential in evaluating the response of the soil microbiome to the genetic modification of maize in different biogeographical regions. PLoS ONE, 2019, 14, e0222737.	1.1	8
544	Possible Roles of Rhizospheric and Endophytic Microbes to Provide a Safe and Affordable Means of Crop Biofortification. Agronomy, 2019, 9, 764.	1.3	38

#	Article	IF	CITATIONS
545	Rhizosphere Metagenomics of Paspalum scrobiculatum L. (Kodo Millet) Reveals Rhizobiome Multifunctionalities. Microorganisms, 2019, 7, 608.	1.6	20
546	Genome-Wide Transcriptome Analysis of Rice Seedlings after Seed Dressing with Paenibacillus yonginensis DCY84T and Silicon. International Journal of Molecular Sciences, 2019, 20, 5883.	1.8	15
547	Effects of tobacco–peanut relay intercropping on soil bacteria community structure. Annals of Microbiology, 2019, 69, 1531-1536.	1.1	20
548	Response of rhizosphere bacterial community of Taxus chinensis var. mairei to temperature changes. PLoS ONE, 2019, 14, e0226500.	1.1	7
549	Comparative Genomic Analysis of Soil Dwelling Bacteria Utilizing a Combinational Codon Usage and Molecular Phylogenetic Approach Accentuating on Key Housekeeping Genes. Frontiers in Microbiology, 2019, 10, 2896.	1.5	7
550	Synergistic Effect of Biochar and Plant Growth Promoting Rhizobacteria on Alleviation of Water Deficit in Rice Plants under Salt-Affected Soil. Agronomy, 2019, 9, 847.	1.3	54
551	Enterobacter ludwigii, isolated from the gut microbiota of Helicoverpa zea, promotes tomato plant growth and yield without compromising anti-herbivore defenses. Arthropod-Plant Interactions, 2019, 13, 271-278.	0.5	13
552	Seed mucilage interacts with soil microbial community and physiochemical processes to affect seedling emergence on desert sand dunes. Plant, Cell and Environment, 2019, 42, 591-605.	2.8	18
553	Integrated phytobial heavy metal remediation strategies for a sustainable clean environment - A review. Chemosphere, 2019, 217, 925-941.	4.2	132
554	Hidden miners – the roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems. Plant and Soil, 2019, 434, 7-45.	1.8	180
555	D ₂ O-Isotope-Labeling Approach to Probing Phosphate-Solubilizing Bacteria in Complex Soil Communities by Single-Cell Raman Spectroscopy. Analytical Chemistry, 2019, 91, 2239-2246.	3.2	44
556	Diesel degrading bacterial endophytes with plant growth promoting potential isolated from a petroleum storage facility. 3 Biotech, 2019, 9, 35.	1.1	17
557	Investigating the effect of <i>Azospirillum brasilense</i> and <i>Rhizobium pisi</i> on agronomic traits of wheat (<i>Triticum aestivum</i> L.). Archives of Agronomy and Soil Science, 2019, 65, 1554-1564.	1.3	34
558	The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiological Research, 2019, 219, 26-39.	2.5	145
559	The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere, 2019, 9, 18-26.	1.4	59
560	Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicology and Environmental Safety, 2019, 167, 218-226.	2.9	190
561	Signal Transduction in Leaf Senescence: An Overview. , 2019, , 41-59.		2
562	Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum) Tj ETQq1 1 0.78431	4 rgBT /Ov	erlock 10 Tf

#	Article	IF	Citations
563	A Comprehensive Review on Rice Responses and Tolerance to Salt Stress. , 2019, , 133-158.		33
564	Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable Agriculture. , 2019, , 129-157.		88
565	Larger plants promote a greater diversity of symbiotic nitrogenâ€fixing soil bacteria associated with an Australian endemic legume. Journal of Ecology, 2019, 107, 977-991.	1.9	38
566	Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi Journal of Biological Sciences, 2019, 26, 1882-1895.	1.8	134
567	Effectiveness of plant growth-promoting rhizobacterium Pantoea sp. BRM17 in enhancing canola growth on phosphogypsum-amended soil. Pedosphere, 2020, 30, 570-576.	2.1	12
568	Influence of Cadmium-Tolerant and Plant Growth-Promoting Rhizobacteria on Cadmium Accumulation and Growth Response of Wheat Seedlings Under Mountain Ecosystem. Agricultural Research, 2020, 9, 56-65.	0.9	13
569	Phosphorus and ammonium removal characteristics from aqueous solutions by a newly isolated plant growth-promoting bacterium. Environmental Technology (United Kingdom), 2020, 41, 2603-2617.	1.2	4
570	PGPRs affected photosynthetic capacity and nutrient uptake in different <i>Salvia</i> species. Journal of Plant Nutrition, 2020, 43, 108-121.	0.9	13
571	Promoting Effects on Watermelon and Fermentation Optimization of Plantibacter sp. WZW03. Journal of Plant Growth Regulation, 2020, 39, 970-980.	2.8	1
572	In Planta Colonization and Role of T6SS in Two Rice <i>Kosakonia</i> Endophytes. Molecular Plant-Microbe Interactions, 2020, 33, 349-363.	1.4	30
573	Rice sprout endophytic Enterobacter sp. SE-5 could improve tolerance of mature rice plants to salt or Cd2+ in soils. Archives of Agronomy and Soil Science, 2020, 66, 873-883.	1.3	4
574	Longâ€ŧerm effects of nitrogen and phosphorus fertilization on soil microbial community structure and function under continuous wheat production. Environmental Microbiology, 2020, 22, 1066-1088.	1.8	87
575	Plant growth–promoting bacteria and their role in environmental management. , 2020, , 161-175.		4
576	Rhizosphere bacteria assembly derived from fumigation and organic amendment triggers the direct and indirect suppression of tomato bacterial wilt disease. Applied Soil Ecology, 2020, 147, 103364.	2.1	34
577	Identification of genetic loci for leaf hair development in rice through genome-wide association study. Plant Growth Regulation, 2020, 90, 101-108.	1.8	1
578	Wheatâ€associated microbiota and their correlation with stripe rust reaction. Journal of Applied Microbiology, 2020, 128, 544-555.	1.4	19
579	Unveiling Plant-Beneficial Function as Seen in Bacteria Genes from Termite Mound Soil. Journal of Soil Science and Plant Nutrition, 2020, 20, 421-430.	1.7	18
580	Variation in soil microbial population and enzyme activities under faba bean as affected by pentachlorophenol. Applied Soil Ecology, 2020, 150, 103466.	2.1	23

		CITATION	Report	
#	Article		IF	CITATIONS
581	<i>Pseudomonas fluorescens</i> LBUM677 differentially increases plant biomass, tota and lipid composition in three oilseed crops. Journal of Applied Microbiology, 2020, 12		1.4	23
582	Medicago truncatula root developmental changes by growth-promoting microbes isola Fabaceae, growing on organic farms, involve cell cycle changes and WOX5 gene expres 2020, 251, 25.	ted from ssion. Planta,	1.6	5
583	Optimization of PGPR and silicon fertilization using response surface methodology for growth, yield and biochemical parameters of French bean (Phaseolus vulgaris L.) under Biocatalysis and Agricultural Biotechnology, 2020, 23, 101463.	enhanced saline stress.	1.5	39
584	Revisiting the plant growth-promoting rhizobacteria: lessons from the past and objecti future. Archives of Microbiology, 2020, 202, 665-676.	ves for the	1.0	60
585	Influence of rehydration on transcriptome during resuscitation of desiccated Pseudom KT2440. Annals of Microbiology, 2020, 70, .	onas putida	1.1	4
587	Native rhizobia from southern Brazilian grassland promote the growth of grasses. Rhizo 16, 100240.	osphere, 2020,	1.4	13
588	Consequences of Salinity Stress on the Quality of Crops and Its Mitigation Strategies f Crop Production: An Outlook of Arid and Semi-arid Regions. , 2020, , 503-533.	or Sustainable		31
589	Biofilm forming rhizobacteria enhance growth and salt tolerance in sunflower plants by antioxidant enzymes activity. Plant Physiology and Biochemistry, 2020, 156, 242-256.		2.8	61
590	Ectomycorrhizal Fungi as Biofertilizers in Forestry. , 0, , .			7
591	Exploring the Microbiota of East African Indigenous Leafy Greens for Plant Growth, Hea Resilience. Frontiers in Microbiology, 2020, 11, 585690.	lth, and	1.5	5
592	Soil Salinity and Food Security in India. Frontiers in Sustainable Food Systems, 2020, 4		1.8	180
593	Microbiological studies on Rhizobium leguminosarum isolated from pea (Pisum sativur Bangladesh Journal of Botany, 2020, 48, 1223-1229.	η L.).	0.2	0
594	Bacteria Isolated from the Aeration Chamber of Wastewater Treatment Plants Used in and Promotion of Wheat Growth. Agronomy, 2020, 10, 1792.	the Biocontrol	1.3	4
595	Effect of encapsulated plant growth promoting microorganisms on soil biochemical pa development of fruit tree seedlings. Australian Journal of Crop Science, 2020, , 3006-30	rameters and 014.	0.1	3
596	The mode of action of plant associated Burkholderia against grey mould disease in gra through traits and genomic analyses. Scientific Reports, 2020, 10, 19393.	pevine revealed	1.6	17
598	Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi Jour Biological Sciences, 2020, 27, 3634-3640.	nal of	1.8	84
599	Crop Protection Under Drought Stress. , 2020, , 145-170.			5
600	Metagenomic profiling of bacterial diversity and community structure in termite moun surrounding soils. Archives of Microbiology, 2020, 202, 2697-2709.	ds and	1.0	23

#	Article	IF	CITATIONS
601	Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. Journal of Plant Nutrition, 2020, 43, 3062-3092.	0.9	70
602	Advances in Plant Microbiome and Sustainable Agriculture. Microorganisms for Sustainability, 2020, ,	0.4	10
603	Optimizing Boron Seed Coating Level and Boron-Tolerant Bacteria for Improving Yield and Biofortification of Chickpea. Journal of Soil Science and Plant Nutrition, 2020, 20, 2471-2478.	1.7	17
604	Effects of plants competition on critical bacteria selection and pollutants dynamics in a long-term polyculture constructed wetland. Bioresource Technology, 2020, 316, 123927.	4.8	25
605	Trifolium repens-Associated Bacteria as a Potential Tool to Facilitate Phytostabilization of Zinc and Lead Polluted Waste Heaps. Plants, 2020, 9, 1002.	1.6	13
606	Application of Bacteria as a Prominent Source of Biofertilizers. , 2020, , .		3
607	Crop Protection Under Changing Climate. , 2020, , .		4
608	Role of plant growth-promoting bacteria in sustainable agriculture. Biocatalysis and Agricultural Biotechnology, 2020, 30, 101842.	1.5	48
609	Temporal variation in soil bacterial communities can be confounded with spatial variation. FEMS Microbiology Ecology, 2020, 96, .	1.3	2
610	High-Throughput Customization of Plant Microbiomes for Sustainable Agriculture. Frontiers in Plant Science, 2020, 11, 569742.	1.7	14
611	Relevance of Plant Growth Promoting Microorganisms and Their Derived Compounds, in the Face of Climate Change. Agronomy, 2020, 10, 1179.	1.3	61
612	Molecular Characteristics of Rhizobia Isolated from Arachis hypogaea Grown under Stress Environment. Sustainability, 2020, 12, 6259.	1.6	8
613	Indicators for assessment of soil quality: a mini-review. Environmental Monitoring and Assessment, 2020, 192, 604.	1.3	53
614	The Growth Promotion of Peppers (Capsicum annuum L.) by Trichoderma guizhouense NJAU4742-Based Biological Organic Fertilizer: Possible Role of Increasing Nutrient Availabilities. Microorganisms, 2020, 8, 1296.	1.6	25
615	Chlorophyll Fluorescence Parameters and Antioxidant Defense System Can Display Salt Tolerance of Salt Acclimated Sweet Pepper Plants Treated with Chitosan and Plant Growth Promoting Rhizobacteria. Agronomy, 2020, 10, 1180.	1.3	92
616	Exploring Rice Root Microbiome; The Variation, Specialization and Interaction of Bacteria and Fungi In Six Tropic Savanna Regions in Ghana. Sustainability, 2020, 12, 5835.	1.6	12
617	Plant-PGPR interaction study of plant growth-promoting diazotrophs <i>Kosakonia radicincitans</i> BA1 and <i>Stenotrophomonas maltophilia</i> COA2 to enhance growth and stress-related gene expression in <i>Saccharum</i> spp Journal of Plant Interactions, 2020, 15, 427-445.	1.0	32
618	Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Frontiers in Microbiology, 2020, 11, 622926.	1.5	88

ARTICLE

The Effects of Biofertilizers on Growth, Soil Fertility, and Nutrients Uptake of Oil Palm (Elaeis) Tj ETQq0 0 0 rgBT /Overlock 10, Tf 50 742

620	Biogeographic differences in plant–soil biota relationships contribute to the exotic range expansion of Verbascum thapsus. Ecology and Evolution, 2020, 10, 13057-13070.	0.8	3
621	Effects of Rhizobium Inoculation on N2 Fixation, Phytochemical Profiles and Rhizosphere Soil Microbes of Cancer Bush Lessertia frutescens (L.). Agronomy, 2020, 10, 1675.	1.3	5
622	Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp BMC Plant Biology, 2020, 20, 220.	1.6	80
623	Linking Comparative Genomics of Nine Potato-Associated Pseudomonas Isolates With Their Differing Biocontrol Potential Against Late Blight. Frontiers in Microbiology, 2020, 11, 857.	1.5	32
624	Organic Amendments Modulate Soil Microbiota and Reduce Virus Disease Incidence in the TSWV-Tomato Pathosystem. Pathogens, 2020, 9, 379.	1.2	27
625	Effect of vegetation on soil bacteria and their potential functions for ecological restoration in the Hulun Buir Sandy Land, China. Journal of Arid Land, 2020, 12, 473-494.	0.9	8
626	Biofertilizers with beneficial rhizobacteria improved plant growth and yield in chili (Capsicum) Tj ETQq1 1 0.7843	14.rgBT /C 1.9	Overlock 10
627	Antimony-oxidizing bacteria alleviate Sb stress in Arabidopsis by attenuating Sb toxicity and reducing Sb uptake. Plant and Soil, 2020, 452, 397-412.	1.8	20
628	Correlation between soil microbial communities and tobacco aroma in the presence of different fertilizers. Industrial Crops and Products, 2020, 151, 112454.	2.5	28
629	Cropping systems in agriculture and their impact on soil health-A review. Global Ecology and Conservation, 2020, 23, e01118.	1.0	113
630	Facing Climate Change: Application of Microbial Biostimulants to Mitigate Stress in Horticultural Crops. Agronomy, 2020, 10, 794.	1.3	77
631	Microbial formulation and growth of cereals, pulses, oilseeds and vegetable crops. Sustainable Environment Research, 2020, 30, .	2.1	22
632	Role of plant growth–promoting rhizobacteria in mitigation of heavy metals toxicity to Oryza sativa L. , 2020, , 373-390.		1
633	Effects of Seed-Applied Biofertilizers on Rhizosphere Biodiversity and Growth of Common Wheat (Triticum aestivum L.) in the Field. Frontiers in Plant Science, 2020, 11, 72.	1.7	83
634	Phyto-Microbiome in Stress Regulation. Environmental and Microbial Biotechnology, 2020, , .	0.4	17
635	Agriculturally important microbial biofilms: Biodiversity, ecological significances, and biotechnological applications. , 2020, , 221-265.		25
636	Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, 2020, , .	1.4	134

#	Article	IF	CITATIONS
637	Nitrogen and Phosphorus Absorption and Yield of Tomato Increased by Regulating the Bacterial Community under Greenhouse Conditions via the Alternate Drip Irrigation Method. Agronomy, 2020, 10, 315.	1.3	7
638	Exploring the efficacy of antagonistic rhizobacteria as native biocontrol agents against tomato plant diseases. 3 Biotech, 2020, 10, 320.	1.1	31
639	The arbuscular mycorrhizal fungus Rhizophagus intraradices and other microbial groups affect plant species in a copper-contaminated post-mining soil. Journal of Trace Elements in Medicine and Biology, 2020, 62, 126594.	1.5	6
640	Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Science of the Total Environment, 2020, 743, 140682.	3.9	261
641	Preparation of activated nano charcoal from pomegranate peel and use it to adsorption drug methylene blue from aqueous solution. AIP Conference Proceedings, 2020, , .	0.3	4
642	Amelioration effect of salt-tolerant plant growth-promoting bacteria on growth and physiological properties of rice (Oryza sativa) under salt-stressed conditions. Archives of Microbiology, 2020, 202, 2419-2428.	1.0	45
643	Microbial Secondary Metabolites: Effectual Armors to Improve Stress Survivability in Crop Plants. , 2020, , 47-70.		0
644	Molecular mechanism of plant-microbe interactions. , 2020, , 85-136.		1
645	Algae for the production of bio-based products. , 2020, , 203-243.		10
646	Influence of mycorrhizal or microbial complex inoculation on laurustinus plants irrigated with reclaimed water. Journal of Horticultural Science and Biotechnology, 2020, 95, 661-672.	0.9	3
647	Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth. Mycorrhiza, 2020, 30, 63-77.	1.3	17
648	The biocontrol agent Streptomyces pactum increases Pseudomonas koreensis populations in the rhizosphere by enhancing chemotaxis and biofilm formation. Soil Biology and Biochemistry, 2020, 144, 107755.	4.2	39
649	Sowing Methods Influence Soil Bacterial Diversity and Community Composition in a Winter Wheat-Summer Maize Rotation System on the Loess Plateau. Frontiers in Microbiology, 2020, 11, 192.	1.5	10
650	Alleviation of Salinity Induced Oxidative Stress in Chenopodium quinoa by Fe Biofortification and Biochar—Endophyte Interaction. Agronomy, 2020, 10, 168.	1.3	19
651	Identification of new microbial functional standards for soil quality assessment. Soil, 2020, 6, 17-34.	2.2	39
652	Pectin drives microbial phosphorus solubilization in soil: Evidence from isolation-based and community-scale approaches. European Journal of Soil Biology, 2020, 97, 103169.	1.4	7
653	Assembly and shifts of the bacterial rhizobiome of field grown transgenic maize line carrying mcry1Ab and mcry2Ab genes at different developmental stages. Plant Growth Regulation, 2020, 91, 113-126.	1.8	8
654	Beneficial Endophytic Bacterial Populations Associated With Medicinal Plant Thymus vulgaris Alleviate Salt Stress and Confer Resistance to Fusarium oxysporum. Frontiers in Plant Science, 2020, 11, 47.	1.7	69

#	Article	IF	CITATIONS
655	Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports, 2020, 10, 177.	1.6	168
656	Harnessing symbiotic plant–fungus interactions to unleash hidden forces from extreme plant ecosystems. Journal of Experimental Botany, 2020, 71, 3865-3877.	2.4	17
657	A beneficial role of arbuscular mycorrhizal fungi in influencing the effects of silver nanoparticles on plant-microbe systems in a soil matrix. Environmental Science and Pollution Research, 2020, 27, 11782-11796.	2.7	22
658	Endophytic bacteria in plant disease management. , 2020, , 61-89.		18
659	Effect of increasing soil carbon content on tobacco aroma and soil microorganisms. Phytochemistry Letters, 2020, 36, 42-48.	0.6	7
660	Inoculation with Azospirillum lipoferum or Azotobacter chroococcum Reinforces Maize Growth by Improving Physiological Activities Under Saline Conditions. Journal of Plant Growth Regulation, 2020, 39, 1293-1306.	2.8	108
661	Soil microbial mechanisms promoting ultrahigh rice yield. Soil Biology and Biochemistry, 2020, 143, 107741.	4.2	38
662	Investigating the effect of Glomus mosseae, Bacillus subtilis and Trichoderma harzianum on plant growth and controlling Meloidogyne javanica in tomato. Indian Phytopathology, 2020, 73, 293-300.	0.7	12
663	Impacts of organic fertilization with a drip irrigation system on bacterial and fungal communities in cotton field. Agricultural Systems, 2020, 182, 102820.	3.2	17
664	Pseudomonas fluorescens promote photosynthesis, carbon fixation and cadmium phytoremediation of hyperaccumulator Sedum alfredii. Science of the Total Environment, 2020, 726, 138554.	3.9	43
665	Comparison of Soil Bacterial Communities from Juvenile Maize Plants of a Long-Term Monoculture and a Natural Grassland. Agronomy, 2020, 10, 341.	1.3	6
666	Growth and Yield Response of Upland Rice to Application of Plant Growth-Promoting Rhizobacteria. Journal of Plant Growth Regulation, 2021, 40, 494-508.	2.8	29
667	Influence of soil structure on the spread of <scp><i>Pseudomonas fluorescens</i></scp> in soil at microscale. European Journal of Soil Science, 2021, 72, 141-153.	1.8	29
668	Impacts of payment for ecosystem services of mountain agricultural landscapes on farming women in Nepal. Geo Journal, 2021, 86, 1389-1423.	1.7	6
669	Influence of the plant growth promoting Rhizobium panacihumi on aluminum resistance in Panax ginseng. Journal of Ginseng Research, 2021, 45, 442-449.	3.0	12
670	Maximizing growth and productivity of onion (Allium cepa L.) by Spirulina platensis extract and nitrogen-fixing endophyte Pseudomonas stutzeri. Archives of Microbiology, 2021, 203, 169-181.	1.0	30
671	Long-term organic and inorganic fertilization alters the diazotrophic abundance, community structure, and co-occurrence patterns in a vertisol. Science of the Total Environment, 2021, 766, 142441.	3.9	25
672	Molecular Aspects of Plant Growth Promotion and Protection by <i>Bacillus subtilis</i> . Molecular Plant-Microbe Interactions, 2021, 34, 15-25.	1.4	134

#	Article	IF	CITATIONS
673	Plant–soil interactions limit lifetime fitness outside a native plant's geographic range margin. Ecology, 2021, 102, e03254.	1.5	11
674	Characterization of Lysinibacillus fusiformis strain S4C11: In vitro, in planta, and in silico analyses reveal a plant-beneficial microbe. Microbiological Research, 2021, 244, 126665.	2.5	20
675	Rhizosphere soil microbiomes: As driver of agriculture commodity and industrial application. , 2021, , 183-195.		3
676	Bacterial inoculation positively affects the quality and quantity of flax under deficit irrigation regimes. Journal of Applied Microbiology, 2021, 131, 321-338.	1.4	2
677	The diverse functional genes of maize rhizosphere microbiota assessed using shotgun metagenomics. Journal of the Science of Food and Agriculture, 2021, 101, 3193-3201.	1.7	13
678	Role of Recombinant DNA Technology in Biofertilizer Production. , 2021, , 143-163.		0
679	Quasi-steady uptake and bacterial community assembly in a mathematical model of soil-phosphorus mobility. Journal of Theoretical Biology, 2021, 509, 110530.	0.8	1
681	Succession of the composition and co-occurrence networks of rhizosphere microbiota is linked to Cd/Zn hyperaccumulation. Soil Biology and Biochemistry, 2021, 153, 108120.	4.2	33
682	Speciation and Fractionation of Phosphorus Affected by Enterobacter cloacae in the Rhizosphere of Sugarcane (Saccharum officinarum L.). Journal of Soil Science and Plant Nutrition, 2021, 21, 187-199.	1.7	6
683	Molecular Identification and In Vitro Plant Growth-Promoting Activities of Culturable Potato (Solanum tuberosum L.) Rhizobacteria in Tanzania. Potato Research, 2021, 64, 67-95.	1.2	15
684	Review: Bokashi technology as a promising technology for crop production in Europe. Journal of Horticultural Science and Biotechnology, 2021, 96, 145-152.	0.9	22
685	Potential application of plant growth promoting bacteria in bioenergy crop production. , 2021, , 109-123.		1
686	Biotechnology and Bioinformatics of Endophytes in Biocontrol, Bioremediation, and Plant Growth Promotion. Sustainable Development and Biodiversity, 2021, , 181-205.	1.4	4
687	Microbial-based inoculants in sustainable agriculture: Current perspectives and future prospects. , 2021, , 167-181.		6
688	Biofertilizers: Mechanisms and application. , 2021, , 151-166.		14
690	Sugarcane microbiome: role in sustainable production. , 2021, , 225-242.		2
691	First reported quantitative microbiota in different livestock manures used as organic fertilizers in the Northeast of Thailand. Scientific Reports, 2021, 11, 102.	1.6	14
692	A Promising Approach of Managing Seed-Borne Pathogens Through Plant Growth-Promoting Microbes. , 2021, , 315-338.		0

CITATION	I REPORT	
ARTICLE Toward the mitigation of biotic and abiotic stresses through plant growth promoting rhizobacteria. , 2021, , 161-172.	IF	Citations
Ameliorative effect of indole-3-acetic acid- and siderophore-producing <i>Leclercia adecarboxylata</i> MO1 on cucumber plants under zinc stress. Journal of Plant Interactions, 2021, 16, 30-41.	1.0	27
Whole Genome Sequencing and Root Colonization Studies Reveal Novel Insights in the Biocontrol Potential and Growth Promotion by Bacillus subtilis MBI 600 on Cucumber. Frontiers in Microbiology, 2020, 11, 600393.	1.5	41
Biofertilizers: Microbes for Agricultural Productivity. Sustainable Development and Biodiversity, 2021, , 407-469.	1.4	3
Microbial Diversity and Multifunctional Microbial Biostimulants for Agricultural Sustainability. , 2021, , 141-184.		0
Emerging approaches to manipulate the plant microbiome and implications. , 2021, , 63-68.		Ο
Microbial Communities Based Biofilmed Biofertilizers Enhance Soil Fertility and Plant Growth in Hevea Ecosystem: Evidences from Seedlings and Immature Plants. Microorganisms for Sustainability, 2021, , 363-379.	0.4	0
Plant growth-promoting rhizobacteria and their role as bio-inoculants for sustainable agriculture under stressful environments. , 2021, , 313-321.		1
Plant Growth-Promoting Bacteria: Effective Tools for Increasing Nutrient Use Efficiency and Yield of Crops. Sustainable Development and Biodiversity, 2021, , 293-313.	1.4	2
Science of Microorganisms for the Restoration of Polluted sites for Safe and Helathy Environment , 2021, , 127-150.		0
Advances in fungi: Rejuvenation of polluted sites. , 2021, , 251-275.		5
The importance of plant growth–promoting rhizobacteria for plant productivity. , 2021, , 69-80.		3
Role of AM Fungi and PGPR in Alleviating Stress Responses and Inducing Defense Mechanism. , 2021, , 355-371.		0
PEG 6000 Tarafından Oluşturulan Kuraklık Stresinde Büyüyen Bitki Büyümesini Teşvik Eden Rizobakterilerin Amino Asit ve Hormon İçeriği. European Journal of Science and Technology, 0, , .	0.5	0
Molecular Basis of Plant–Microbes Interaction in Remediating Metals and Inorganic Pollutants. , 2021, , 385-403.		1
FUNCTIONING OF PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR) AND THEIR MODE OF ACTIONS: AN OVERVIEW FROM CHEMISTRY POINT OF VIEW. Plant Archives, 2021, 21, 628-634.	√ 0.1	2
Use of microbial biostimulants in organic farming. , 2021, , 59-73.		2
Aerogels as promising materials for antibacterial applications: a mini-review. Biomaterials Science, 2021, 9, 7034-7048.	2.6	15

#

#	Article	IF	CITATIONS
711	Transcriptome profiling of gene expression in phosphate-solubilizing bacterium <i>Acinetobacter</i> sp. strain m01 interacting with melon (<i>Cucumis melo</i> L.) seedling. Journal of Plant Interactions, 2021, 16, 385-397.	1.0	2
712	Bioentrepreneurship in Environmental Biotechnology. Advances in Business Strategy and Competitive Advantage Book Series, 2021, , 254-271.	0.2	0
713	Soil microbial community structure and functionality changes in response to longâ€ŧerm metal and radionuclide pollution. Environmental Microbiology, 2021, 23, 1670-1683.	1.8	36
714	Desiccation-tolerant rhizobacteria. , 2021, , 81-100.		Ο
715	Pathways of Phosphorus Absorption and Early Signaling between the Mycorrhizal Fungi and Plants. Phyton, 2021, 90, 1321-1338.	0.4	12
716	Harnessing the Potential of Microbes for Rejuvenating Soils from Mining Sites: An Initiative for Environmental Balance and Value Addition. Earth and Environmental Sciences Library, 2021, , 149-181.	0.3	0
717	Role of PGPR in Conferring Drought Stress Tolerance in Rice. , 2021, , 425-448.		1
718	Augmenting the Abiotic Stress Tolerance in Plants Through Microbial Association. , 2021, , 179-198.		1
719	Application of Soil Microorganisms for Agricultural and Environmental Sustainability: A Review. Rhizosphere Biology, 2021, , 151-175.	0.4	3
720	<i>Lysinibacillus</i> Species: Their Potential as Effective Bioremediation, Biostimulant, and Biocontrol Agents. Reviews in Agricultural Science, 2021, 9, 103-116.	0.9	21
721	Critical Review of Polyphosphate and Polyphosphate Accumulating Organisms for Agricultural Water Quality Management. Environmental Science & Technology, 2021, 55, 2722-2742.	4.6	21
722	Profiling of Metabolites of Bacillus spp. and Their Application in Sustainable Plant Growth Promotion and Biocontrol. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	39
723	Trends in Soil Microbial Inoculants Research: A Science Mapping Approach to Unravel Strengths and Weaknesses of Their Application. Agriculture (Switzerland), 2021, 11, 158.	1.4	17
724	The roles of plant growth promoting rhizobacteria in sustainable vegetable production in Ethiopia. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	35
725	Pseudomonas koreensis promotes tomato growth and shows potential to induce stress tolerance via auxin and polyphenolâ€related pathways. Plant and Soil, 2021, 462, 141-158.	1.8	7
726	Identification of Beneficial Microbial Consortia and Bioactive Compounds with Potential as Plant Biostimulants for a Sustainable Agriculture. Microorganisms, 2021, 9, 426.	1.6	37
727	The Photosynthetic Bacterium Rhodopseudomonas palustris Strain PS3 Exerts Plant Growth-Promoting Effects by Stimulating Nitrogen Uptake and Elevating Auxin Levels in Expanding Leaves. Frontiers in Plant Science, 2021, 12, 573634.	1.7	24
728	Organic Amendments Combined with Plant Growth-Promoting Rhizobacteria (<i>Azospirillum) Tj ETQq1 1 0.784</i>	314 rgBT 0.6	/Overlock 10 14
	Sodic-Soils in Egypt. Communications in Soil Science and Plant Analysis, 2021, 52, 1416-1433.		

#	Article	IF	CITATIONS
729	Interactions between cover crops and soil microorganisms increase phosphorus availability in conservation agriculture. Plant and Soil, 2021, 463, 307-328.	1.8	26
731	Efficacy of bioinoculants to control of bacterial and fungal diseases of rice (Oryza sativa L.) in northwestern Himalaya. Brazilian Journal of Microbiology, 2021, 52, 687-704.	0.8	6
732	Integrated Application of Rapeseed Cake and Green Manure Enhances Soil Nutrients and Microbial Communities in Tea Garden Soil. Sustainability, 2021, 13, 2967.	1.6	21
733	Rhizobacteria Associated with a Native Solanaceae Promote Plant Growth and Decrease the Effects of Fusariumoxysporum in Tomato. Agronomy, 2021, 11, 579.	1.3	9
735	Biochar remediation of soil: linking biochar production with function in heavy metal contaminated soils. Plant, Soil and Environment, 2021, 67, 183-201.	1.0	23
737	Population density influenced the stimulatory or inhibitory effect of inoculated Bacillus sp. on mustard (Brassica juncea L.) under water deficit stress. Biologia (Poland), 2021, 76, 1419-1432.	0.8	0
738	Bioaugmentation of Soil with Pseudomonas monteilii Strain Eliminates Inhibition of Okra (Abelmoschus esculentus) Seed Germination by m-Cresol. Current Microbiology, 2021, 78, 1892-1902.	1.0	3
739	Rhizospheric Phosphate Solubilizing Bacillus atrophaeus GQJK17 S8 Increases Quinoa Seedling, Withstands Heavy Metals, and Mitigates Salt Stress. Sustainability, 2021, 13, 3307.	1.6	16
740	Streptomyces spp. enhance vegetative growth of maize plants under saline stress. Brazilian Journal of Microbiology, 2021, 52, 1371-1383.	0.8	24
741	Fungal endophytes can eliminate the plant growth–defence tradeâ€off. New Phytologist, 2021, 230, 2105-2113.	3.5	47
742	A biological agent modulates the physiology of barley infected with Drechslera teres. Scientific Reports, 2021, 11, 8330.	1.6	9
744	Effects of three strains of Pseudomonas fluorescens to soil-borne fungal pathogens and silkworm, Bombyx mori. International Journal of Tropical Insect Science, 0, , 1.	0.4	1
745	Effect of Bacillus spp. on Lettuce Growth and Root Associated Bacterial Community in a Small-Scale Aquaponics System. Agronomy, 2021, 11, 947.	1.3	20
746	A Seed Mucilage-Degrading Fungus From the Rhizosphere Strengthens the Plant-Soil-Microbe Continuum and Potentially Regulates Root Nutrients of a Cold Desert Shrub. Molecular Plant-Microbe Interactions, 2021, 34, 538-546.	1.4	1
748	Encapsulation of Pseudomonas libanensis in alginate beads to sustain bacterial viability and inoculation of Vigna unguiculata under drought stress. 3 Biotech, 2021, 11, 293.	1.1	8
749	Changes in soil phosphorus availability and associated microbial properties after chicken farming in Lei bamboo (<i>Phyllostachys praecox</i>) forest ecosystems. Land Degradation and Development, 2021, 32, 3008-3022.	1.8	13
750	Biotechnological utilization: the role of Zea mays rhizospheric bacteria in ecosystem sustainability. Applied Microbiology and Biotechnology, 2021, 105, 4487-4500.	1.7	20
751	Seed biostimulant Bacillus sp. MGW9 improves the salt tolerance of maize during seed germination. AMB Express, 2021, 11, 74.	1.4	17

ARTICLE IF CITATIONS Plant-Microbe Interactions in Alleviating Abiotic Stressâ€"A Mini Review. Frontiers in Agronomy, 2021, 3, 752 1.5 33 Soil-Associated Bacillus Species: A Reservoir of Bioactive Compounds with Potential Therapeutic 754 1.6 Activity against Human Pathogens. Microorganisms, 2021, 9, 1131. Potential for plant growth promotion of Kocuria arsenatis Strain ST19 on tomato under salt stress 755 1.2 8 conditions. South African Journal of Botany, 2021, 138, 94-104. Kirazda Pseudomonas syringae pv. syringae'nin Biyolojik Kontrolünde Yararlı Bakterilerin Kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 2021, 52, 176-189. Profiling of Plant Growth-Promoting Metabolites by Phosphate-Solubilizing Bacteria in Maize 757 12 1.6 Rhizosphere. Plants, 2021, 10, 1071. Effects of a compound microbial agent and plants on soil properties, enzyme activities, and bacterial composition of Pisha sandstone. Environmental Science and Pollution Research, 2021, 28, 53353-53364. Role of Local Biofertilizer in Enhancing the Oxidative Stress Defence Systems of Date Palm Seedling 759 0.8 13 (Phoenix dactylifera) against Abiotic Štress. Applied and Environmental Soil Science, 2021, 2021, 1-13. Halotolerant Bacillus spizizenii FMH45 promoting growth, physiological, and antioxidant parameters of tomato plants exposed to salt stress. Plant Cell Reports, 2021, 40, 1199-1213. 2.8 Compost and PGP-Based Biostimulant as Alternative to Peat and NPK Fertilization in Chestnut 761 0.9 4 (Castanea Sativa Mill.) Nursery Production. Forests, 2021, 12, 850. Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant 1.8 Growth-Promoting Microorganisms Under Stress. Frontiers in Sustainable Food Systems, 2021, 5, . The Influence of Soil Fertilization on the Distribution and Diversity of Phosphorus Cycling Genes and 763 17 1.0 Microbes Community of Maize Rhizosphere Using Shotgun Metagenomics. Genes, 2021, 12, 1022. Identifying Hidden Viable Bacterial Taxa in Tropical Forest Soils Using Amplicon Sequencing of 764 1.3 Enrichment Cultures. Biology, 2021, 10, 569. Glyphosate: A Review on the Current Environmental Impacts from a Brazilian Perspective. Bulletin of 765 1.3 10 Environmental Contamination and Toxicology, 2021, 107, 385-397. Strategies to mitigate the adverse effect of drought stress on crop plantsâ€"influences of soil bacteria: A review. Pedosphere, 2021, 31, 496-509. 2.1 Investigation of ACC-Deaminase and Indole Acetic Acid Producing Bacteria from Rhizospheric Soils in 767 0.30 Ağrı Province. Journal of the Institute of Science and Technology, 0, , 933-942. Inoculation of plant growth promoting-methane utilizing bacteria in different N-fertilizer regime influences methane emission and crop growth of flooded paddy. Science of the Total Environment, 3.9 2021, 775, 145826. Physicochemical and Characterization of Nitrogen Fixing Bacteria from Soil Samples Within the Vicinity of Telecommunication Mast (Site No: 000148) Located at Karfi Town Kura Local Government, 769 0.10 Kano Śtate. UMYU Journal of Microbiology Research, 2021, 6, 77-85. Wetting/spreading on porous media and on deformable, soluble structured substrates as a model system for studying the effect of morphology on biofilms wetting and for assessing anti-biofilm 770 3.4 methods. Current Opinion in Colloid and Interface Science, 2021, 53, 101426.

#	Article	IF	CITATIONS
772	Assembly strategies of the wheat root-associated microbiome in soils contaminated with phenanthrene and copper. Journal of Hazardous Materials, 2021, 412, 125340.	6.5	25
773	Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia (Poland), 2021, 76, 2687-2709.	0.8	34
774	Isolation and characterization of fluorescent Pseudomonas with bio-control potential against Ralstonia solanacearum. Indian Phytopathology, 0, , 1.	0.7	3
775	Ecological Study of Aquaponics Bacterial Microbiota over the Course of a Lettuce Growth Cycle. Water (Switzerland), 2021, 13, 2089.	1.2	10
776	<i>Lysobacter enzymogenes</i> antagonizes soilborne bacteria using the type <scp>IV</scp> secretion system. Environmental Microbiology, 2021, 23, 4673-4688.	1.8	18
777	Mycorrhizal-Assisted Phytoremediation and Intercropping Strategies Improved the Health of Contaminated Soil in a Peri-Urban Area. Frontiers in Plant Science, 2021, 12, 693044.	1.7	15
778	Responses of cucumber (<i>Cucumis sativus</i> L) rhizosphere microbial community to some agronomic management practices. FEMS Microbiology Ecology, 2021, 97, .	1.3	4
779	Using fermentation waste of ethanolâ€producing yeast for bacterial riboflavin production and recycling of spent bacterial mass for enhancing the growth of oily plants. Journal of Applied Microbiology, 2021, , .	1.4	1
780	Possible role of arbuscular mycorrhizal fungi and associated bacteria in the recruitment of endophytic bacterial communities by plant roots. Mycorrhiza, 2021, 31, 527-544.	1.3	18
781	Identification of basmati rice (Oryza sativa L.) rhizobacteria and their effect on plant growth traits for sustainable development in agriculture. Proceedings of the Indian National Science Academy, 2021, 87, 469-486.	0.5	3
782	Organic Amendments Alter Soil Hydrology and Belowground Microbiome of Tomato (Solanum) Tj ETQq0 0 0 rgB	T /Oyerlocl	k 10 Tf 50 34
783	Biological Control of Take-All and Growth Promotion in Wheat by Pseudomonas chlororaphis YB-10. Pathogens, 2021, 10, 903.	1.2	12
784	Deciphering Trifolium pratense L. holobiont reveals a microbiome resilient to future climate changes. MicrobiologyOpen, 2021, 10, e1217.	1.2	6
785	Soil microbes and seed mucilage promote growth of the desert ephemeral plant Nepeta micrantha under different water conditions. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 280, 151845.	0.6	7
786	Isolation and Characterization of Pseudomonas chlororaphis Strain ST9; Rhizomicrobiota and in Planta Studies. Plants, 2021, 10, 1466.	1.6	7
787	Contribution of Arbuscular Mycorrhizal Fungi, Phosphate–Solubilizing Bacteria, and Silicon to P Uptake by Plant. Frontiers in Plant Science, 2021, 12, 699618.	1.7	137
788	Alteration in expression level of some growth and stress-related genes after rhizobacteria inoculation to alleviate drought tolerance in sensitive rice genotype. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	9
789	Induction of tolerance to cryogenic protocols in Solanum tuberosum by salicylic acid is mediated by enzymatic antioxidant activity and hydrogen peroxide. Journal of Horticultural Science and Biotechnology, 0, , 1-10.	0.9	1

#	Article	IF	CITATIONS
790	The use of indigenous bacterial community as inoculant for plant growth promotion in soybean cultivation. Archives of Agronomy and Soil Science, 2023, 69, 135-150.	1.3	12
791	Effects of dominant plant growth on the nutrient composition and bacterial community structure of manganese residues. International Journal of Phytoremediation, 2022, 24, 525-535.	1.7	2
792	Plant Growth-Promoting Microbe Mediated Uptake of Essential Nutrients (Fe, P, K) for Crop Stress Management: Microbe–Soil–Plant Continuum. Frontiers in Agronomy, 2021, 3, .	1.5	14
793	Micro-catchment water harvesting-based rehabilitation ameliorated soil microbial abundance, diversity and function in a degraded dryland. Applied Soil Ecology, 2021, 164, 103938.	2.1	5
794	Plant growth promoting rhizobacteria and their biological properties for soil enrichment and growth promotion. Journal of Plant Nutrition, 2022, 45, 273-299.	0.9	24
795	Fresh Compost Tea Application Does Not Change Rhizosphere Soil Bacterial Community Structure, and Has No Effects on Soybean Growth or Yield. Plants, 2021, 10, 1638.	1.6	5
796	Abundance and Symbiotic Rhizobia Colonizing Soybean (Glycine max) in Soils of Kakamega County, Western Kenya. International Journal of Agronomy, 2021, 2021, 1-7.	0.5	2
797	Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. Planta, 2021, 254, 49.	1.6	19
798	Soil-Applied Boron Combined with Boron-Tolerant Bacteria (Bacillus sp. MN54) Improve Root Proliferation and Nodulation, Yield and Agronomic Grain Biofortification of Chickpea (Cicer) Tj ETQq0 0 0 rgBT /C)verlock 1(0 Tfr250 417 To
799	Efecto de bioestimulantes radiculares sobre el crecimiento en plantas de aguacate. Revista Mexicana De Ciencias Agricolas, 2021, 12, 1139-1144.	0.0	0
800	Use of plant extracts from healthy soybean and potato plants for treatments of plants of the same species. Research, Society and Development, 2021, 10, e225101220351.	0.0	0
801	A Review of Recent Advances and Future Directions in the Management of Salinity Stress in Finger Millet. Frontiers in Plant Science, 2021, 12, 734798.	1.7	8
802	Plant–Microbe Interaction: Aboveground to Belowground, from the Good to the Bad. International Journal of Molecular Sciences, 2021, 22, 10388.	1.8	27
803	Effects of agrochemicals on the beneficial plant rhizobacteria in agricultural systems. Environmental Science and Pollution Research, 2021, 28, 60406-60424.	2.7	8
804	Chemistry-specific responses due to rice-microbe interactions in the rhizosphere to counteract mefenacet stress. Pesticide Biochemistry and Physiology, 2021, 179, 104970.	1.6	1
805	The efficiency of potential food wasteâ€degrading bacteria under harsh conditions. Journal of Applied Microbiology, 2022, 132, 340-350.	1.4	7
806	Biostimulants for the Regulation of Reactive Oxygen Species Metabolism in Plants under Abiotic Stress. Cells, 2021, 10, 2537.	1.8	84
807	Soil mineralization as effects of plant growth promoting bacteria isolated from microalgae in wastewater and rice straw application in a long-term paddy rice in Central Viet Nam. Environmental Technology and Innovation, 2021, 24, 101982.	3.0	7

#	Article	IF	CITATIONS
809	Insights into endophytic bacterial diversity of rice grown across the different agro-ecological regions of West Bengal, India. World Journal of Microbiology and Biotechnology, 2021, 37, 184.	1.7	4
810	Is —— the rhizosphere a source of applicable multi-beneficial microorganisms for plant enhancement?. Saudi Journal of Biological Sciences, 2022, 29, 1246-1259.	1.8	28
811	Plant growth promoting endophyte Burkholderia contaminans NZ antagonizes phytopathogen Macrophomina phaseolina through melanin synthesis and pyrrolnitrin inhibition. PLoS ONE, 2021, 16, e0257863.	1.1	18
812	Bioprospecting Trichoderma: A Systematic Roadmap to Screen Genomes and Natural Products for Biocontrol Applications. Frontiers in Fungal Biology, 2021, 2, .	0.9	22
813	Interactive Effect of Organic and Inorganic Amendments along with Plant Growth Promoting Rhizobacteria on Ameliorating Salinity Stress in Maize. , 0, , .		0
814	Intercropping increases soil extracellular enzyme activity: A meta-analysis. Agriculture, Ecosystems and Environment, 2021, 319, 107489.	2.5	52
815	A global review of rubber plantations: Impacts on ecosystem functions, mitigations, future directions, and policies for sustainable cultivation. Science of the Total Environment, 2021, 796, 148948.	3.9	31
816	Balanced fertilization over four decades has sustained soil microbial communities and improved soil fertility and rice productivity in red paddy soil. Science of the Total Environment, 2021, 793, 148664.	3.9	50
817	Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiological Research, 2021, 252, 126842.	2.5	65
818	Supplying silicon alters microbial community and reduces soil cadmium bioavailability to promote health wheat growth and yield. Science of the Total Environment, 2021, 796, 148797.	3.9	35
819	Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. Current Research in Microbial Sciences, 2021, 2, 100054.	1.4	47
820	Bioprospecting of endophytic bacteria from nodules and roots of Vigna radiata, Vigna unguiculata and Cajanus cajan for their potential use as bioinoculants. Plant Gene, 2021, 28, 100326.	1.4	16
821	Effects of the commercial biostimulant BC204 on the rhizosphere microbial community of Solanum lycopersicum L. South African Journal of Botany, 2021, 143, 52-60.	1.2	4
822	Isolation and characterization of plant growth promoting rhizobacteria isolated from organically grown high yielding pole type native pea (Pisum sativum L.) variety Dentami of Sikkim, India. Current Research in Microbial Sciences, 2021, 2, 100068.	1.4	3
823	Soil carbon supplementation: Improvement of root-surrounding soil bacterial communities, sugar and starch content in tobacco (N. tabacum). Science of the Total Environment, 2022, 802, 149835.	3.9	15
824	Relaunch cropping on marginal soils by incorporating amendments and beneficial trace elements in an interdisciplinary approach. Science of the Total Environment, 2022, 803, 149844.	3.9	6
825	Understanding assisted phytoremediation: Potential tools to enhance plant performance. , 2022, , 1-24.		3
826	Reduction of Cu and nitrate leaching risk associated with EDDS-enhanced phytoextraction process by exogenous inoculation of plant growth promoting rhizobacteria. Chemosphere, 2022, 287, 132288.	4.2	10

#	Article	IF	CITATIONS
827	Dry Matter Production, Partitioning, and Seed Yield Under Soil Water Deficit: A Review. , 2021, , 585-702.		1
828	Approach Towards Sustainable Crop Production by Utilizing Potential Microbiome. Microorganisms for Sustainability, 2021, , 239-257.	0.4	0
829	Microbial biofertilizer: Types, applications, and current challenges for sustainable agricultural production. , 2021, , 3-19.		3
830	Seed Priming: A Cost-effective Strategy to Impart Abiotic Stress Tolerance. , 2021, , 459-480.		5
831	Protection of Strawberry Plants against Charcoal Rot Disease (Macrophomina phaseolina) Induced by Azospirillum brasilense. Agronomy, 2021, 11, 195.	1.3	11
832	PGPR: The Redeemer of Rice from Abiotic Stress. , 2021, , 101-135.		0
833	Rhizobacters as Remedy of Stress Tolerance in Potato. , 2021, , 395-412.		0
834	Use of PGPR to Optimize Soil and Crop Productivity Under Abiotic Stress. Rhizosphere Biology, 2021, , 227-249.	0.4	0
835	Alleviation of Diverse Abiotic Stress in Plants Through the Fungal Communities. Fungal Biology, 2021, , 251-268.	0.3	0
836	Application of bacterial biostimulants in promoting growth and disease prevention in crop plants. , 2021, , 393-410.		6
837	Profiling of antimicrobial metabolites of plant growth promoting Pseudomonas spp. isolated from different plant hosts. 3 Biotech, 2021, 11, 48.	1.1	12
838	Unraveling Mechanisms and Impact of Microbial Recruitment on Oilseed Rape (Brassica napus L.) and the Rhizosphere Mediated by Plant Growth-Promoting Rhizobacteria. Microorganisms, 2021, 9, 161.	1.6	28
839	Improving Resilience Against Drought Stress Among Crop Plants Through Inoculation of Plant Growth-Promoting Rhizobacteria. , 2021, , 387-408.		9
841	Impact of Biotic, Abiotic Stressors: Biotechnologies for Alleviating Plant Stress. , 2014, , 87-120.		3
842	Genomics and Post-genomics Approaches for Elucidating Molecular Mechanisms of Plant Growth-Promoting Bacilli. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2019, , 161-200.	0.6	6
843	Bacillus Species: A Potential Plant Growth Regulator. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2019, , 29-47.	0.6	4
844	Plant Growth Promotion by ACC Deaminase-Producing Bacilli Under Salt Stress Conditions. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2019, , 81-95.	0.6	7
845	Utilization of Endophytic Bacteria Isolated from Legume Root Nodules for Plant Growth Promotion. Sustainable Development and Biodiversity, 2019, , 145-176.	1.4	5

#	Article	IF	CITATIONS
846	Plant–Microbes Relationships in Soil Ecological System and Benefits Accruable to Food Health. Sustainable Development and Biodiversity, 2019, , 177-190.	1.4	2
847	Microbial Consortium as Biofertilizers for Crops Growing Under the Extreme Habitats. Sustainable Development and Biodiversity, 2020, , 381-424.	1.4	12
848	Phyllospheric Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications. Sustainable Development and Biodiversity, 2020, , 113-172.	1.4	51
849	Involvement of Microbes in Different Abiotic Stress Environments of Cropping Lands. , 2020, , 441-479.		1
850	Plant Microbiome and Its Important in Stressful Agriculture. , 2020, , 13-48.		12
851	Combined Use of Beneficial Bacteria and Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant Cryptogamic Diseases: Evidence, Methodology, and Limits. Soil Biology, 2021, , 429-468.	0.6	3
852	Unravelling the Role of Endophytes in Micronutrient Uptake and Enhanced Crop Productivity. Soil Biology, 2021, , 63-85.	0.6	5
853	Microphos: Principles, Production and Application Strategies. , 2014, , 1-30.		4
854	Phytoremediation Using Rhizobia. , 2015, , 95-114.		15
855	Plant Growth-Promoting Rhizobacteria of Medicinal Plants in NW Himalayas: Current Status and Future Prospects. Soil Biology, 2015, , 381-412.	0.6	8
856	Combining Biocontrol Agents and Organics Amendments to Manage Soil-Borne Phytopathogens. Soil Biology, 2015, , 457-478.	0.6	17
857	Techniques to Study Microbial Phytohormones. Sustainable Development and Biodiversity, 2015, , 1-27.	1.4	16
858	Exploitation of Phytohormone-Producing PGPR in Development of Multispecies Bioinoculant Formulation. Sustainable Development and Biodiversity, 2015, , 297-317.	1.4	9
859	Azospirillum sp. as a Challenge for Agriculture. Sustainable Development and Biodiversity, 2015, , 29-51.	1.4	10
860	Soil Bacteria and Phytohormones for Sustainable Crop Production. Sustainable Development and Biodiversity, 2015, , 87-103.	1.4	32
861	The Importance of Phytohormones and Microbes in Biofertilizers. Sustainable Development and Biodiversity, 2015, , 105-158.	1.4	41
862	Plant Growth Promoting Rhizobacteria Associated to Halophytes: Potential Applications in Agriculture. Tasks for Vegetation Science, 2016, , 411-425.	0.6	10
863	Using Conditional Probability and a Nonlinear Kriging Technique to Predict Potato Early Die Caused by Verticllium Dahliae. Communications in Computer and Information Science, 2016, , 142-151.	0.4	1

#	Article	IF	Citations
864	Role of Plant Growth-Promoting Rhizobacteria (PGPR) in the Improvement of Vegetable Crop Production Under Stress Conditions. , 2017, , 81-97.		5
865	Plant Growth-Promoting Rhizobium: Mechanisms and Biotechnological Prospective. Soil Biology, 2017, , 105-134.	0.6	20
866	Mycorrhizae: A Sustainable Industry for Plant and Soil Environment. , 2017, , 473-502.		32
867	Bioinoculants: Understanding Chickpea Rhizobia in Providing Sustainable Agriculture. , 2013, , 185-215.		2
868	The Complex Molecular Signaling Network in Microbe–Plant Interaction. , 2013, , 169-199.		23
869	The Sustainable Use of Delftia in Agriculture, Bioremediation, and Bioproducts Synthesis. , 2016, , 227-247.		14
870	Drought-Tolerant Phosphorus-Solubilizing Microbes: Biodiversity and Biotechnological Applications for Alleviation of Drought Stress in Plants. Microorganisms for Sustainability, 2019, , 255-308.	0.4	76
871	Role of PGPR for Alleviating Aluminum Toxicity in Acidic Soil. Microorganisms for Sustainability, 2019, , 309-326.	0.4	1
872	Plant Growth-Promoting Rhizobacteria: Benign and Useful Substitute for Mitigation of Biotic and Abiotic Stresses. Microorganisms for Sustainability, 2019, , 81-101.	0.4	8
873	Plant Growth-Promoting Rhizobacteria: An Overview in Agricultural Perspectives. Microorganisms for Sustainability, 2019, , 345-361.	0.4	19
874	Seed Biopriming Through Beneficial Rhizobacteria for Mitigating Soil-Borne and Seed-Borne Diseases. Microorganisms for Sustainability, 2019, , 201-215.	0.4	3
875	Soil: Microbial Cell Factory for Assortment with Beneficial Role in Agriculture. , 2019, , 63-92.		2
876	Interactions in Soil-Microbe-Plant System: Adaptation to Stressed Agriculture. , 2019, , 131-171.		10
877	Microbe-Mediated Tolerance in Plants Against Biotic and Abiotic Stresses. , 2019, , 173-217.		1
878	Microbial Inoculation of Seeds for Better Plant Growth and Productivity. , 2019, , 523-550.		3
879	Soil-Plant and Microbial Interaction in Improving Salt Stress. , 2019, , 217-235.		3
880	Potentiality of Plant Growth-Promoting Rhizobacteria in Easing of Soil Salinity and Environmental Sustainability. , 2019, , 21-58.		3
881	Field Application of Rhizobial Inoculants in Enhancing Faba Bean Production in Acidic Soils: An Innovative Strategy to Improve Crop Productivity. , 2019, , 147-180.		3

ARTICLE IF CITATIONS Ameliorating Plant Salt Stress Through Bacterial Inoculation: Prospects and Challenges., 2019, 882 2 253-268. Role of Soil Microbiome and Enzyme Activities in Plant Growth Nutrition and Ecological Restoration of Soil Health. Microorganisms for Sustainability, 2019, , 99-132. 0.4 884 Plant-Microbe Interactions in Wastewater-Irrigated Soils., 2020, , 673-699. 1 Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of 885 Nutrients to Plants. Environmental and Microbial Biotechnology, 2020, , 147-203. Impact of Nanoparticles on PGPR and Soil Nutrient Contents., 2020, , 247-257. 886 3 Mechanisms of Plant Growth Promotion and Functional Annotation in Mitigation of Abiotic Stress. 887 0.4 Microorganisms for Sustainability, 2020, , 105-150. Microbes-Mediated Mitigation of Drought Stress in Plants: Recent Trends and Future Challenges. 888 0.4 6 Microorganisms for Sustainability, 2020, , 199-218. The Rhizosphere Microbiome and Its Role in Plant Growth in Stressed Conditions. Microorganisms for 0.4 Sustainability, 2020, , 503-529. Perspectives of Plant Growth-Promoting Rhizobacteria in Conferring Salinity Tolerance in Crops. 890 1 2019, , 299-313. Plant–microbe interactions in plants and stress tolerance. , 2020, , 355-396. 14 Growth and aluminum tolerance of maize roots mediated by auxin- and cytokinin-producing Bacillus 892 2.0 36 toyonensis requires polar auxin transport. Environmental and Experimental Botany, 2020, 176, 104064. Isolation and selection of highly effective phosphate solubilizing bacterial strains to promote wheat 894 growth in Egyptian calcareous soils. Bulletin of the National Research Centre, 2019, 43, . Solubilization of inorganic phosphate by Pseudomonas strains isolated from rice rhizosphere. 895 0.4 3 International Journal of Biosciences, 2015, 6, 116-124. Influence of photoluminophore-modified agro textile spunbond on growth and photosynthesis of cabbage and lettuce plants. Optics Express, 2019, 27, 31967. 896 1.7 A Drought Resistance-Promoting Microbiome Is Selected by Root System under Desert Farming. PLoS 897 400 1.1 ONE, 2012, 7, e48479. Effects of Fertilization and Sampling Time on Composition and Diversity of Entire and Active Bacterial 898 54 Communities in German Grassland Soils. PLoS ONE, 2015, 10, e0145575. Hybrid genome assembly and annotation of Paenibacillus pasadenensis strain R16 reveals insights on 899 1.1 10 endophytic life style and antifungal activity. PLoS ONE, 2018, 13, e0189993. Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions. PLoS ONE, 1.1 2018, 13, e0193119.

#	Article	IF	CITATIONS
901	Effect of native growth promoting bacteria and commercial biofertilizers on growth and yield of wheat (Triticum aestivum) and barley (Hordeum vulgare) under salinity stress conditions. Cellular and Molecular Biology, 2019, 65, 22-27.	0.3	10
902	Impact of Crude Oil on Functional Groups of Culturable Bacteria and Colonization of Symbiotic Microorganisms in the <i>Clitoria-Brachiaria</i> Rhizosphere Grown in Mesocosms. Acta Biologica Colombiana, 2019, 24, 343-353.	0.1	7
903	Plant growth-promoting endophytic bacteria on maize and sorghum1. Pesquisa Agropecuaria Tropical, 0, 49, .	1.0	19
904	Crescimento de girassol em função da inoculação de sementes com bactérias endofÃticas. Pesquisa Agropecuaria Tropical, 2014, 44, 142-150.	1.0	9
905	Screening and Identification of Harmful and Beneficial Microorganisms Associated with Replanting Disease in Rhizosphere Soil of Pseudostellariae heterophylla. International Journal of Agriculture and Biology, 2015, 17, 458-466.	0.2	16
906	Mitigation of salinity in chickpea by Plant Growth Promoting Rhizobacteria and salicylic acid. Eurasian Journal of Soil Science, 2019, 8, 221-228.	0.2	6
908	Biological alternates to synthetic fertilizers: efficiency and future scopes. Indian Journal of Agricultural Research, 2018, , .	0.0	5
909	Fungal Siderophores Production in Vitro as Affected by Some Abiotic Factors. International Journal of Current Microbiology and Applied Sciences, 2016, 5, 210-222.	0.0	5
910	Intercropping System, Rhizobia Inoculation, Phosphorus and Potassium Fertilization: A Strategy of Soil Replenishment for Improved Crop Yield. International Journal of Current Microbiology and Applied Sciences, 2016, 5, 504-522.	0.0	13
911	Phosphorous and Phosphate Solubilising Bacteria and their Role in Plant Nutrition. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 2133-2144.	0.0	130
912	Screening of Native Rhizobia and Pseudomonas Strains for Plant Growth Promoting Activities. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 616-625.	0.0	14
913	Role of Azotobacter sp. Isolates as a Plant Growth Promoting Agent and their Antagonistic Potentiality against Soil Borne Pathogen (Rhizoctonia solani) under in vitro Condition. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 2830-2836.	0.0	3
914	Sundry of PGPR as a Potential Source of Plant Growth Promotion in Arid and Semi-Arid Regions. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 455-461.	0.0	3
915	Effect of Organic Manures, Biofertilizers and NPK on Vegetative Growth, Yield, Fruit Quality and Soil Fertility of Eureka Lemon Trees (Citrus limon (L.) Burm) Journal of Soil Sciences and Agricultural Engineering, 2016, 7, 767-774.	0.0	10
916	Starch- and cellulose-related microbial diversity of soil sown with sugarcane crops in the Papaloapan Basin, a megadiverse region of Mexico. Nova Scientia, 2018, 10, 222-243.	0.0	1
918	Plant Growth Promoting Rhizobacteria (PGPR) - Prospective and Mechanisms: A Review. Journal of Pure and Applied Microbiology, 2018, 12, 733-749.	0.3	31
919	Impact of Chlorpyrifos on Plant Growth Promoting Rhizobacteria Isolated from Abelmoschus esculentus. Journal of Pure and Applied Microbiology, 2018, 12, 2149-2157.	0.3	8
920	Rhizobacteriome: Promising Candidate for Conferring Drought Tolerance in Crops. Journal of Pure and Applied Microbiology, 2020, 14, 73-92.	0.3	16

#	Article	IF	CITATIONS
921	Osmotic stress tolerance, PGP traits and RAPD analysis of Bradyrhizobium japonicum strains. Genetika, 2013, 45, 75-86.	0.1	7
922	Selection and RAPD analysis of Pseudomonas ssp. isolates able to improve biological viability of potato seed tubers. Genetika, 2013, 45, 237-249.	0.1	4
923	In vitro and in vivo effects of Pseudomonas spp. and Bacillus sp. on Fusarium acuminatum, Botrytis cinerea and Aspergillus niger infecting Cucumber. Pesticidi I Fitomedicina = Pesticides and Phytomedicine, 2015, 30, 169-178.	0.1	4
924	PGPR Potentially Improve Growth of Tomato Plants in Salt-Stressed Environment. Turkish Journal of Agriculture: Food Science and Technology, 2016, 4, 455.	0.1	7
925	Antagonistic features displayed by Plant Growth Promoting Rhizobacteria (PGPR): A Review. Journal of Plant Science and Phytopathology, 2017, 1, 038-043.	0.4	68
926	Bacterial diversity associated with the rhizosphere of wheat plants (Triticum aestivum): Toward a metagenomic analysis. Phyton, 2012, 81, 81-87.	0.4	16
927	Review on Quality Enhancement of Bamboo Utilization: Preservation, Modification and Applications. Asian Journal of Plant Sciences, 2017, 17, 1-18.	0.2	10
928	Effect of Bio-fertilizer and Chemical Fertilizer on Growth and Yield in Cucumber (Cucumis sativus) in Green House Condition. Pakistan Journal of Biological Sciences, 2015, 18, 129-134.	0.2	29
929	Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioengineering, 2015, 2, 183-205.	0.6	222
930	Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils. AIMS Bioengineering, 2016, 3, 211-229.	0.6	38
931	Plant probiotic bacteria: solutions to feed the world. AIMS Microbiology, 2017, 3, 502-524.	1.0	48
932	Effectiveness of Fungal Bacterial Interactions as Biofilmed Biofertilizers on Enhancement of Root Growth of Hevea Seedlings. Journal of Environmental Professionals Sri Lanka, 2014, 3, 25.	0.2	14
933	ACC-deaminase and/or nitrogen fixing rhizobacteria and growth of wheat (Triticum Aestivum L.). Journal of Soil Science and Plant Nutrition, 2015, , 0-0.	1.7	7
934	Effects of <i>Bradyrhizobium japonicum</i> Inoculation and Supplementation with Phosphorus on Macronutrients Uptake in Cowpea (<i>Vigna) Tj ETQq1 1 C</i>).7 84 314 r	gBZ3/Overloc
935	Available Approaches of Remediation and Stabilisation of Metal Contamination in Soil: A Review. American Journal of Plant Sciences, 2018, 09, 2033-2052.	0.3	6
936	Phosphate Solubilization by <i>Bacillus subtilis</i> and <i>Serratia marcescens</i> Isolated from Tomato Plant Rhizosphere. Journal of Environmental Protection, 2018, 09, 266-277.	0.3	35
937	Métodos de dispensa do antagonista Pseudomonas putida (UFV-0073) no biocontrole da mancha-bacteriana e pinta-bacteriana do tomateiro. Revista Brasileirade Ciencias Agrarias, 2015, 10, 123-127.	0.3	1
938	Isolation and Characterization of Plant Growth-Promoting Bacillus amyloliquefaciens Strain sks_bnj_1 and its Influence on Rhizosphere Soil Properties and Nutrition of Soybean (Glycine max L.) Tj ETQq1 1	0.084314	rgBGT /Overlo

#	Article	IF	CITATIONS
939	Bacterial community in the roots and rhizosphere of Hypericum silenoides Juss. 1804. African Journal of Microbiology Research, 2012, 6, .	0.4	15
940	Performance studies of free-living tomato (Lycopersicon exculentum L.) rhizospheric Bacillus for their multiple plant growth promoting activity. Journal of Soil Science and Environmental Management, 2012, 3, .	0.4	2
941	Technologies of microbial inoculation in rice - A Review. Agricultural Reviews, 2015, 36, 125.	0.1	7
942	The Role of Microbial Enzyme Systems in Plant Growth Promotion. Climate Change and Environmental Sustainability, 2017, 5, 122.	0.3	14
943	COREMIC: a web-tool to search for a niche associated CORE MICrobiome. PeerJ, 2018, 6, e4395.	0.9	23
944	Soil bacterial and fungal communities of six bahiagrass cultivars. PeerJ, 2019, 7, e7014.	0.9	10
945	Identifying potential threats to soil biodiversity. PeerJ, 2020, 8, e9271.	0.9	60
946	Biological function of <i>Klebsiella variicola</i> and its effect on the rhizosphere soil of maize seedlings. PeerJ, 2020, 8, e9894.	0.9	18
947	Effects of Rhizosphere Microorganisms and Wood Vinegar Mixtures on Rice Growth and Soil Properties. Hang'uk Jakmul Hakhoe Chi, 2015, 60, 355-365.	0.2	9
948	Mechanisms of Phosphate Solubilization by PSB (Phosphate-solubilizing Bacteria) in Soil. Han'guk T'oyang Piryo Hakhoe Chi Han'guk T'oyang Piryo Hakhoe, 2012, 45, 169-176.	0.1	16
949	Effects of Phosphorus and Bradyrhizobium japonicum on Growth and Chlorophyll Content of Cowpea (Vigna unguiculata (L) Walp). American Journal of Experimental Agriculture, 2014, 4, 1120-1136.	0.2	20
950	Characterization of Plant Growth Promoting Rhizobacteria Isolated from Chickpea (Cicer arietinum). British Microbiology Research Journal, 2015, 6, 32-40.	0.2	9
951	Effects of Bradyrhizobium japonicum and Phosphorus Supplementation on the Productivity of Legumes. International Journal of Plant & Soil Science, 2014, 3, 894-910.	0.2	13
952	Contribution of Arbuscular Mycorrhizal Fungi (AM Fungi) and Rhizobium Inoculation on Crop Growth and Chemical Properties of Rhizospheric Soils in High Plants. IOSR Journal of Agriculture and Veterinary Science, 2014, 7, 45-55.	0.1	10
953	Extremophiles in Saline Environment: Potential for Sustainable Agriculture. Microorganisms for Sustainability, 2021, , 1-16.	0.4	0
954	Beneficial Microbes and Basal Fertilization in Antagonism of Banana Fusarium Wilt. Agronomy, 2021, 11, 2043.	1.3	3
955	Root-Associated Bacteria Community Characteristics of Antarctic Plants: Deschampsia antarctica and Colobanthus quitensis—a Comparison. Microbial Ecology, 2022, 84, 808-820.	1.4	9
956	Interaction between Grasses and Epichloë Endophytes and Its Significance to Biotic and Abiotic Stress Tolerance and the Rhizosphere. Microorganisms, 2021, 9, 2186.	1.6	19

#	ARTICLE Insights into soil bacterial and physicochemical properties of annual ryegrass-maize rotation (ARMR)	IF	CITATIONS
957 961	system in southern China. Scientífic Reports, 2021, 11, 20125. Potencial de rizobactérias no crescimento de mudas de sibipiruna (caesalpinia peltophoroides BENTH). Revista Arvore, 2013, 37, 211-218.	1.6 0.5	2
963	Sustainable Agriculture and Plant Growth Promoting Rhizobacteria. , 2014, , 327-341.		0
965	Conditional Probability and Integrated Pest Management - Using a Nonlinear Kriging Technique to Predict Infectious Levels of Verticillium dahliae in Michigan Potato Fields. , 2015, , .		0
966	Effect of different clipping times on forage quality of three cereal crops at two locations of sulaimani region. Journal of Zankoy Sulaimani - Part A, 2015, 17, 1-8.	0.1	1
967	Rhizofiltration of Lead Contaminated Soil by Helianthus annuus amended with Bacillus megaterium and EDTA. Fine Focus, 2015, 1, 95-108.	0.2	0
968	Efecto de la inoculación simple y combinada con Hongos Formadores de Micorriza Arbuscular (HFMA) y Rizobacterias Promotoras de Crecimiento Vegetal (BPCV) en plántulas micropropagadas de mora (Rubus glaucus L.). Ciencia Tecnologia Agropecuaria, 2015, 16, 95-103.	0.3	4
969	Isolation and characterization of bacteria and yeasts from contaminated soil. Journal of Agricultural Sciences (Belgrade), 2016, 61, 247-256.	0.1	2
970	Effect of integrated phosphorus management on growth, yield and quality of lentil (Lens culinaris). Indian Journal of Agricultural Research, 2015, , .	0.0	2
971	The alleviation of reforestation challenges by beneficial soil microorganisms. Reforesta, 2016, , 238-260.	0.4	6
972	Chapter 4 Environmental Impact of Pesticide Use on Microbial Communities and Soil Bioprocesses: A Physiological, Biochemical, and Molecular Perspective. , 2016, , 67-96.		0
973	Characterization of agrobacterium tumefaciens Strains isolated from root nodules of vigna Trilobata (l) verdc. Cultivars International Journal of Pharma and Bio Sciences, 2016, 7, .	0.1	0
974	Chapter 7 Rhizobacteria. , 2016, , 241-262.		1
975	Comparison of Single Culture and the Consortium of Growth-Promoting Rhizobacteria from Three Tomato (Lycopersicon esculentum Mill) Varieties. Advances in Plants & Agriculture Research, 2016, 5, .	0.3	5
977	Agronomic performance, variance component, and diversity of sixty-two sweet potato accessions. Biodiversitas, 2016, 18, .	0.2	9
979	Chapter 15. Population Diversity of Fusarium Spp. and its Interaction with Plant Growth Promoting Rhizobacteria. , 2017, , 417-436.		0
981	Biosynthesis of Ag ₃ PO ₄ nanoparticles in the absence of phosphate source using a phosphorus mineralising bacterium. IET Nanobiotechnology, 2018, 12, 18-24.	1.9	3
983	Application of Plant-Microbe Interactions in Contaminated Agroecosystem Management. , 2018, , 63-100.		2

#	Article	IF	CITATIONS
984	Impact of inoculant and foliar fertilization on root system parameters of pea (Pisum sativum l.). Polish Journal of Soil Science, 2018, 51, 23.	0.3	2
986	Isolation and Characteristics of Biotechnologically Important Antagonistic Thermophilic Bacteria from Rhizosphere of <i>Haloxylon salicornicum</i> . Polish Journal of Microbiology, 2018, 67, 49-58.	0.6	2
988	Changes in Resident Soil Bacterial Communities in Response to Inoculation of Soil with Beneficial Bacillus spp Microbiology and Biotechnology Letters, 2018, 46, 253-260.	0.2	2
989	Effect of Different Herbicidal Treatments on Soil Microflora in Maize - Greengram Crop Sequence. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 1230-1238.	0.0	0
990	Mikrobaközösségek metabolikus aktivitása és 16S rRNS gén alapú filogenetikai diverzitása kukorica monokultúra rizoszfA©ra-talajban. Agrokemia Es Talajtan, 2018, 67, 227-244.	0.1	0
991	Free-Living PGPRs in Biotic Stress Management. Microorganisms for Sustainability, 2019, , 275-324.	0.4	2
992	Cadmium Stress Tolerance in Plants and Role of Beneficial Soil Microorganisms. Microorganisms for Sustainability, 2019, , 213-234.	0.4	2
993	Actinobacteria for Biotic Stress Management. Microorganisms for Sustainability, 2019, , 363-378.	0.4	4
994	Identification of Plant Growth Promoting Rhizobacteria as Biofertilizer for Salt Stress Environment. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 2633-2645.	0.0	0
996	Plant-Microbe Communication: New Facets for Sustainable Agriculture. , 2019, , 547-573.		2
997	Omics Data Integration in Microbial Research for Agricultural and Environmental Applications. , 2019, , 461-491.		2
998	Hiệu quả cá»§a hai dòng vi khuẩn cố định đạm và hòa tan lân lên sinh trƺởng và năng suá huyện Vũng Liêm, tỉnh Vĩnh Long. Tap Chi Khoa Hoc = Journal of Science, 2019, 55(Công nghệ Sin	≌¥t lúa lR h n㻀), 1	2 50404 tá [°] 41.
999	New Age Agricultural Bioinputs. , 2019, , 353-380.		5
1000	Plant Growth-Promoting Endophytic Bacteria and Their Potential to Improve Agricultural Crop Yields. , 2019, , 143-169.		1
1001	Study on the Soil Fertilizing Activities of Salt Tolerant Yeast Isolates. Journal of Biotechnology & Bioresearch, 2019, 1, .	0.0	0
1004	Aplikasi Jenis ZPT Terhadap Induksi Akar Setek 3 Varietas Krisan Pot (Dendranthema grandiflora Tzvelev) Tj ETQq1 31-40.	1 0.7843 0.1	14 rgBT /O O
1005	Effect of Cow Urine and Plant Growth Promoting Rhizobacteria (PGPR) on Seed Germination, Growth and Survival of Karonda (Carissa carandas L.) Seedlings. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 1967-1978.	0.0	0
1006	Genetically Modified Microbes as Biofertilizers. , 2020, , 275-293.		3

#	Article	IF	CITATIONS
1007	CONTENT OF ORGANIC ACIDS IN THE CULTURAL MEDIUM OF BACILLUS SUBTILIS IMV B-7023 AT CULTIVATION WITH DIFFERENT SOURCES OF THE PHOSPHORUS NUTRIENT. Journal of Microbiology, Biotechnology and Food Sciences, 2020, 10, 73-77.	0.4	1
1008	Plant Growth-Promoting Rhizobacteria (PGPR): Strategies to Improve Heavy Metal Stress Under Sustainable Agriculture. , 2022, , 189-208.		2
1009	Phytoremediation mechanisms and plant eco-physiological response to microorganic contaminants in integrated vertical-flow constructed wetlands. Journal of Hazardous Materials, 2022, 424, 127611.	6.5	21
1010	A Different Point of View of Plant-Bacterial Interactions: RNA-Seq Analysis of a PGP Bacterial Endophyte Colonizing Rapeseed Plants. Biology and Life Sciences Forum, 2021, 4, 90.	0.6	0
1012	Revivification of rhizobacteria-promoting plant growth for sustainable agricultural development. , 2022, , 353-368.		0
1013	Rhizosphere effect alters the soil microbiome composition and C, N transformation in an arid ecosystem. Applied Soil Ecology, 2022, 170, 104296.	2.1	25
1014	Screening and Characterization of Phosphate-Solubilizing Rhizobia Isolated from Hedysarum pallidum in the Northeast of Morocco. Environmental and Microbial Biotechnology, 2020, , 113-124.	0.4	2
1015	Plant-Microbe Interactions under Adverse Environment. , 2020, , 717-751.		1
1016	Portraying Microbial Beneficence for Ameliorating Soil Health and Plant Growth. Soil Biology, 2020, , 287-312.	0.6	0
1017	Beetroot and radish root yield in organic double-cropping production system. Ratarstvo I Povrtarstvo, 2020, 57, 93-98.	0.6	0
1018	Isolation and characterization of bacteria from two soil samples and their effect on wheat (Triticum) Tj ETQq0 0 0 2020, 3, 254.	rgBT /Ove 0.4	erlock 10 Tf 5 5
1019	Biofertilizers and Biopesticides: Microbes for Sustainable Agriculture. Microorganisms for Sustainability, 2020, , 257-279.	0.4	5
1020	Paracoccus aeridis sp. nov., an indole-producing bacterium isolated from the rhizosphere of an orchid, Aerides maculosa. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 1720-1728.	0.8	11
1021	Compost-derived indole-3-acetic-acid-producing bacteria and their effects on enhancing the secondary fermentation of a swine manure-corn stalk composting. Chemosphere, 2022, 291, 132750.	4.2	12
1022	Boosting antioxidant defense mechanism of mungbean with foliar application of gibberellic acid to alleviate cadmium toxicity. Plant Physiology Reports, 2021, 26, 741-748.	0.7	8
1023	How Do Nature-Based Solutions Improve Environmental and Socio-Economic Resilience to Achieve the Sustainable Development Goals? Reforestation and Afforestation Cases from the Republic of Korea. Sustainability, 2021, 13, 12171.	1.6	7
1024	Positive interactions are common among culturable bacteria. Science Advances, 2021, 7, eabi7159.	4.7	107
1025	Characterization of Plant Growth Promoting Rhizobacteria Isolated from an Arid Area Soil of Date Palm in Saudi Arabia. Journal of Applied Sciences, 2020, 20, 196-207.	0.1	1

#	Article	IF	CITATIONS
1026	Structure of microbial communities in amended and unamended acid-generating mine wastes along gradients of soil amelioration and revegetation. Applied Soil Ecology, 2020, 155, 103645.	2.1	10
1027	Succession of Microbial Communities in Waste Soils of an Iron Mine in Eastern China. Microorganisms, 2021, 9, 2463.	1.6	7
1028	Soil Microbial and Nematode Community Response to the Field Application of Recycled Bio-Based Fertilisers in Irish Grassland. Sustainability, 2021, 13, 12342.	1.6	8
1029	Evaluation of diverse range microbes for their plant growth promoting abilities and their pesticide compatibility. Environment Conservation Journal, 0, , 47-58.	0.1	0
1030	Characterization and evaluation of extracellular hydrolytic proteins from rhizobacterial antagonists isolated from Fusarium oxysporum f. sp. ciceris infected chickpea fields. Indian Phytopathology, 2022, 75, 165-177.	0.7	0
1031	Monoterpene Enrichments Have Positive Impacts on Soil Bacterial Communities and the Potential of Application in Bioremediation. Plants, 2021, 10, 2536.	1.6	5
1032	Effective colonisation by a bacterial synthetic community promotes plant growth and alters soil microbial community. , 2022, 1, 30-42.		29
1033	Effect of integrated biofertilizers with chemical fertilizers on the oil palm growth and soil microbial diversity. Biocatalysis and Agricultural Biotechnology, 2022, 39, 102237.	1.5	18
1034	Deciphering bacteria associated with a pre-parasitic stage of the root-knot nematode Meloidogyne hapla in nemato-suppressive and nemato-conducive soils. Applied Soil Ecology, 2022, 172, 104344.	2.1	9
1036	Recent Trends in Organic Farming. , 2021, , 507-545.		10
1038	Microbial inoculation to improve plant performance in mineâ€waste substrates: A test using pigeon pea (<i>Cajanus cajan</i>). Land Degradation and Development, 2022, 33, 497-511.	1.8	15
1039	Characterization of plant growth-promoting bacteria isolated from the rhizosphere of Robinia pseudoacacia growing in metal-contaminated mine tailings in eastern Morocco. Journal of Environmental Management, 2022, 304, 114321.	3.8	12
1040	Effects of plant growth-promoting rhizobacteria on the molecular responses of maize under drought and heat stresses: A review. Pedosphere, 2022, 32, 90-106.	2.1	28
1041	Insight into the root growth, soil quality, and assembly of the root-associated microbiome in the virus-free Chrysanthemum morifolium. Industrial Crops and Products, 2022, 176, 114362.	2.5	4
1042	Pollution gradients shape the co-occurrence networks and interactions of sedimentary bacterial communities in Taihu Lake, a shallow eutrophic lake. Journal of Environmental Management, 2022, 305, 114380.	3.8	36
1043	Solubilization of Phosphate by the Bacillus under Salt Stress and in the Presence of Osmoprotectant Compounds. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Agriculture, 2011, 68, .	0.0	0
1044	A portable Hyperspectral imaging system to assess the effect of different nutrient management practices on Chamomile (Chamomila recutita). , 2020, , .		1
1045	Effects of Elevated Temperature on the Tropical Soil Bacterial Diversity. Sains Malaysiana, 2020, 49, 2335-2344.	0.3	Ο

IF

CITATIONS

Detection and Identification of Plant Growth Promoting Bacteria from Sorghum (Sorghum bicolor L.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 1046 0.2 0 497-515. Microbial Diversity in Tobacco Rhizosphere Soil at Different Growth Stages. Journal of Biobased 1047 0.1 Materials and Bioenergy, 2021, 15, 606-614. Microbial impact on climate-smart agricultural practices., 2022, , 203-236. 5 1048 The Impact of Sugarcane Brown Rust and Host Resistance on the Phyllosphere Bacterial Community. 1049 0.9 Sugar Tech, 2022, 24, 1420-1429. How Does Land Consolidation Affect Soil Fungal Community Structure? Take Heavy Metal 1050 1.2 2 Contaminated Areas in Eastern China for Example. Land, 2022, 11, 142. Harnessing phytomicrobiome signals for phytopathogenic stress management. Journal of Biosciences, 2022, 47, 1. Effects of vegetation on soil cyanobacterial communities through time and space. New Phytologist, 1052 3.5 3 2022, 234, 435-448. Effect of nitrogen fixation and phosphate solubilizing bacteria on growth and yield of lowland rice 1053 0.3 in different soil type. AIP Conference Proceedings, 2022, , . Effect Mechanism of Land Consolidation on Soil Bacterial Community: A Case Study in Eastern China. 1054 3 1.2 International Journal of Environmental Research and Public Health, 2022, 19, 845. The Mode of Integration Between Azotobacter and Rhizobium Affect Plant Growth, Yield, and Physiological Responses of Pea (Pisum sativum L.). Journal of Soil Science and Plant Nutrition, 2022, 1.7 22, 1238-1251. Plant Growth-promoting Effects of Viable and Dead Spores of <i>Bacillus pumilus</i> TUAT1 1056 2 0.7 on <i>Setaria viridis</i>. Microbes and Environments, 2022, 37, n/a. Plant growth, soil properties, and microbial community four years after thermal desorption. 1057 0.9 Agronomy Journal, 2022, 114, 1011-1026. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. 1058 1.4 105 Current Research in Microbial Sciences, 2022, 3, 100094. Bio-priming of seeds: Plant stress management and its underlying cellular, biochemical and molecular 1059 2.7 mechanisms. Plant Stress, 2022, 3, 100052. Soil Nutritional Status Drives the Co-occurrence of Nodular Bacterial Species and Arbuscular Mycorrhizal Fungi Modulating Plant Nutrition and Growth of Vigna unguiculata L. (Walp) in 1061 7 1.7 Grassland and Savanna Ecosystems in KwaZulu-Natal, South Africa. Journal of Soil Science and Plant Nutrition, 0, , 1. Green Manures Alter Taxonomic and Functional Characteristics of Soil Bacterial Communities. 1062 1.4 Microbial Ecology, 2023, 85, 684-697. Regulative effect of imazethapyr on Arabidopsis thaliana growth and rhizosphere microbial 1063 1.8 12 community through multiple generations of culture. Plant and Soil, 2022, 473, 625-637.

1064	Stimulating effects of reduced graphene oxide on the growth and nitrogen fixation activity of nitrogen-fixing bacterium Azotobacter chroococcum. Chemosphere, 2022, 294, 133702.	4.2	8	
------	--	-----	---	--

57

ARTICLE

#

#	Article	IF	CITATIONS
1065	Bacillus spp. Facilitated Abiotic Stress Mitigation in Rice. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2022, , 285-318.	0.6	2
1066	Role of rhizobacteria from plant growth promoter to bioremediator. , 2022, , 309-328.		1
1067	Mode of action of different microbial products in plant growth promotion. , 2022, , 85-120.		2
1068	Pseudomonas and Bacillus: A biological tool for crop protection. , 2022, , 145-158.		3
1069	Bacillus subtilis: A Multifarious Plant Growth Promoter, Biocontrol Agent, and Bioalleviator of Abiotic Stress. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2022, , 561-580.	0.6	15
1070	Correlation between molecular microbial community and nitrogen cycling on ornithogenic soil affected by tsunami in Japan. Ecological Genetics and Genomics, 2022, 23, 100114.	0.3	0
1071	Unlocking the strength of plant growth promoting <i>Pseudomonas</i> in improving crop productivity in normal and challenging environments: a review. Journal of Plant Interactions, 2022, 17, 220-238.	1.0	47
1072	Application of plant–soil feedbacks in the selection of crop rotation sequences. Ecological Applications, 2022, 32, e2501.	1.8	21
1073	Effect of <i>Burkholderia</i> sp. and <i>Pseudomonas</i> spp. inoculation on growth, yield, and absorption of inorganic components in tomato â€~Micro-Tom' under salinity conditions. Journal of Plant Interactions, 2022, 17, 277-289.	1.0	3
1074	Seed priming with boron and. Crop and Pasture Science, 2022, 73, 494-502.	0.7	10
1075	A review of field management practices impacting root health in sugarcane. Advances in Agronomy, 2022, , 79-162.	2.4	2
1076	Plant–Microbe Interactions in Combating Abiotic Stresses. Advances in Science, Technology and Innovation, 2022, , 217-234.	0.2	2
1077	Spatial Distribution of the Pepper Blight (Phytophthora capsici) Suppressive Microbiome in the Rhizosphere. Frontiers in Plant Science, 2021, 12, 748542.	1.7	1
1078	Different Soil Microbes in Rhizosphere are Recruited by Different Tomato Phenotypes Relating to Fruit Color Formations. SSRN Electronic Journal, 0, , .	0.4	0
1079	Investigating the Potential of Endophytic Lactic Acid Bacteria Isolated from Papaya Seeds as Plant Growth Promoter and Antifungal Agent. Pertanika Journal of Science and Technology, 2022, 45, 207-233.	0.1	4
1080	Rhizosphere engineering through pesticides-degrading beneficial bacteria. , 2022, , 239-257.		1
1081	The bioremediation of agricultural soils polluted with pesticides. , 2022, , 15-39.		2
1084	Understanding the Small World: The Microbes. , 2022, , 1-61.		2

IF

ARTICLE #

1085 Seed Priming with Phytohormones., 0,,.

CITATIONS

1085	Seed Priming with Phytohormones. , 0, , .		0
1086	Bacteria isolated from Triticum monococcum ssp. monococcum roots can improve wheat hologenome in agriculture. Molecular Biology Reports, 2022, , 1.	1.0	1
1087	Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation. Scientific Reports, 2022, 12, 2758.	1.6	19
1088	Cell-Free Supernatant Obtained From a Salt Tolerant Bacillus amyloliquefaciens Strain Enhances Germination and Radicle Length Under NaCl Stressed and Optimal Conditions. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	6
1089	Comparison of the Effect of Fertilization with Ash from Wood Chips on Bacterial Community in Podzolic and Chernozem Soils for the Cultivation of Winter Oilseed Rape: A Preliminary Study. Agronomy, 2022, 12, 576.	1.3	3
1090	Profound Change in Soil Microbial Assembly Process and Co-occurrence Pattern in Co-inoculation of Bradyrhizobium japonicum 5038 and Bacillus aryabhattai MB35-5 on Soybean. Frontiers in Microbiology, 2022, 13, 846359.	1.5	6
1091	Deep-Rooted Plant Species Recruit Distinct Bacterial Communities in the Subsoil. Phytobiomes Journal, 2022, 6, 236-246.	1.4	0
1093	Plant Growth-Promoting Rhizobacteria-Mediated Adaptive Responses of Plants Under Salinity Stress. Journal of Plant Growth Regulation, 2023, 42, 1307-1326.	2.8	21
1094	Biocontrol Methods in Avoidance and Downsizing of Mycotoxin Contamination of Food Crops. Processes, 2022, 10, 655.	1.3	8
1095	The Impact of Bio-Based Fertilizer Integration Into Conventional Grassland Fertilization Programmes on Soil Bacterial, Fungal, and Nematode Communities. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	2
1097	Soil health and crop response of biochar: an updated analysis. Archives of Agronomy and Soil Science, 2023, 69, 1085-1110.	1.3	16
1098	Microbial community from species rich meadow supports plant specialists during meadow restoration. Functional Ecology, 2022, 36, 1573-1584.	1.7	5
1099	Biocontrol activity of anti-salinity Bacillus mesonae H20-5 against Bacterial wilt in different tomato cultivars. Biological Control, 2022, 169, 104869.	1.4	2
1100	Plant growth promoting rhizobacteria improve growth and yield related attributes of chili under low nitrogen availability. PLoS ONE, 2021, 16, e0261468.	1.1	9
1101	Impacts of soilâ€borne disease on plant yield and farm profit in dairying soils. , 2022, 1, 16-29.		8
1103	The influence of rhizosphere soil fungal diversity and complex community structure on wheat root rot disease. PeerJ, 2021, 9, e12601.	0.9	4
1104	Ecological adaptation and phylogenetic analysis of microsymbionts nodulating Polhillia, Wiborgia and Wiborgiella species in the Cape fynbos, South Africa. Scientific Reports, 2021, 11, 23614.	1.6	1
1105	Optimization of Growing Medium and Preservation Methods for Plant Beneficial Bacteria, and Formulating a Microbial Biopreparation for Raspberry Naturalization. Agronomy, 2021, 11, 2521.	1.3	4

#	Article	IF	CITATIONS
1106	The potential of PGPR in bioremediation of soils with heavy metal contamination. International Journal of Agricultural and Applied Sciences, 2021, 2, 20-27.	0.1	0
1107	Role of Rhizobacterial Bacilli in Zinc Solubilization. , 2022, , 361-377.		9
1108	Bioinoculants—Natural Biological Resources for Sustainable Plant Production. Microorganisms, 2022, 10, 51.	1.6	40
1110	Directions for future research to use silicon and silicon nanoparticles to increase crops tolerance to stresses and improve their quality. , 2022, , 349-367.		0
1111	Silicon- and nanosilicon-mediated drought and waterlogging stress tolerance in plants. , 2022, , 121-152.		2
1112	Usage and disposal strategies of environmental micropollutants. , 2022, , 339-363.		0
1113	An Alliance of Trifolium repens—Rhizobium leguminosarum bv. trifolii—Mycorrhizal Fungi From an Old Zn-Pb-Cd Rich Waste Heap as a Promising Tripartite System for Phytostabilization of Metal Polluted Soils. Frontiers in Microbiology, 2022, 13, 853407.	1.5	7
1114	Evaluation of Rhizosphere Bacterial Antagonists against Ralstonia solanacearum Causing Tomato (Lycopersicon esculentum) Wilt in Central Ethiopia. International Journal of Agronomy, 2022, 2022, 1-9.	0.5	6
1115	The negative effects of soil microorganisms on plant growth only extend to the first weeks. Journal of Plant Ecology, 2022, 15, 854-863.	1.2	3
1116	Grape Cultivar Features Differentiate the Grape Rhizosphere Microbiota. Plants, 2022, 11, 1111.	1.6	10
1117	Root exudate sesquiterpenoids from the invasive weed Ambrosia trifida regulate rhizospheric Proteobacteria. Science of the Total Environment, 2022, 834, 155263.	3.9	8
1184	An Overview of Microbial-Mediated Alleviation of Abiotic Stress Response in Plant. , 2022, , 581-596.		1
1186	Seed application with microbial inoculants for enhanced plant growth. , 2022, , 333-368.		1
1187	Nanobiotechnology of endophytes. , 2022, , 105-128.		0
1190	Microbe-mediated alleviation of heat stress in plant: Current trends and applications. , 2022, , 129-147.		0
1191	Role of Plant Growth-Promoting Rhizobacteria in Combating Abiotic and Biotic Stresses in Plants. Microorganisms for Sustainability, 2022, , 43-104.	0.4	1
1192	Evaluation of the Plant Growth Promotion Effect of Bacillus Species on Different Varieties of Tomato (Solanum lycopersicum L.) Seedlings. Advances in Agriculture, 2022, 2022, 1-6.	0.3	5
1193	The Role of Beneficial Microorganisms in Soil Quality and Plant Health. Sustainability, 2022, 14, 5358.	1.6	41

#	Article	IF	CITATIONS
1194	FE-SEM/EDX Based Zinc Mobilization Analysis of Burkholderia cepacia and Pantoea rodasii and Their Functional Annotation in Crop Productivity, Soil Quality, and Zinc Biofortification of Paddy. Frontiers in Microbiology, 2022, 13, .	1.5	12
1195	The Effects of Hydro-Priming and Colonization with Piriformospora indica and Azotobacter chroococcum on Physio-Biochemical Traits, Flavonolignans and Fatty Acids Composition of Milk Thistle (Silybum marianum) under Saline Conditions. Plants, 2022, 11, 1281.	1.6	11
1196	Consortia-based microbial inoculants for sustaining agricultural activities. Applied Soil Ecology, 2022, 176, 104503.	2.1	23
1197	Environmental risk of multi-year polythene film mulching and its green solution in arid irrigation region. Journal of Hazardous Materials, 2022, 435, 128981.	6.5	64
1198	Legume-based intercropping systems promote beneficial rhizobacterial community and crop yield under stressing conditions. Industrial Crops and Products, 2022, 183, 114958.	2.5	53
1200	Microbiological properties of Beejamrit, an ancient Indian traditional knowledge, uncover a dynamic plant beneficial microbial network. World Journal of Microbiology and Biotechnology, 2022, 38, 111.	1.7	8
1201	Using Bacteria and Fungi as Plant Biostimulants for Sustainable Agricultural Production Systems. Recent Patents on Biotechnology, 2023, 17, 206-244.	0.4	3
1202	Differences between the effects of plant species and compartments on microbiome composition in two halophyte <i>Suaeda</i> species. Bioengineered, 2022, 13, 12475-12488.	1.4	6
1203	Plant Hormonomics: A Key Tool for Deep Physiological Phenotyping to Improve Crop Productivity. Plant and Cell Physiology, 2023, 63, 1826-1839.	1.5	16
1204	Role of microorganisms in climate-smart agriculture. , 2022, , 29-43.		1
1205	Agricultural applications of engineered microbes. , 2022, , 363-375.		0
1206	Microbes as biocontrol agent: From crop protection till food security. , 2022, , 215-237.		1
1208	<i>In vitro</i> functional characterization predicts the impact of bacterial root endophytes on plant growth. Journal of Experimental Botany, 2022, 73, 5758-5772.	2.4	3
1209	Fertilization practices affect biological nitrogen fixation by modulating diazotrophic communities in an acidic soil in southern China. Pedosphere, 2023, 33, 301-311.	2.1	5
1210	Role of Biostimulants in Agriculture. , 2022, , 239-262.		1
1212	Volatile Organic Compounds of Streptomyces sp. TOR3209 Stimulated Tobacco Growth by Up-Regulating the Expression of Genes Related to Plant Growth and Development. Frontiers in Microbiology, 2022, 13, .	1.5	3
1213	Plant-Bacterial Symbiosis: An Ecologically Sustainable Agriculture Production Alternative to Chemical Fertilizers. , 0, , .		1
1214	Microbe-mediated biotic and abiotic stress tolerance in crop plants. , 2022, , 93-116.		1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1215	Plant growth-promoting rhizobacteria: an alternative for NPK fertilizers. , 2022, , 149-1	67.		2
1216	Role of methylotrophic bacteria in managing abiotic stresses for enhancing agricultural Pedosphere, 2023, 33, 49-60.	production.	2.1	6
1217	Evaluating combined effect of different coated urea with PGPR on yield and nitrogen us lowland rice by regression model and principal component analysis approach. Journal o Nutrition, 0, , 1-15.	se efficiency in f Plant	0.9	0
1218	Biologicals and their plant stress tolerance ability. Symbiosis, 0, , .		1.2	3
1219	Harnessing belowground processes for sustainable intensification of agricultural syster Soil, 2022, 478, 177-209.	ns. Plant and	1.8	8
1220	Genome analysis uncovers the prolific antagonistic and plant growth-promoting poten endophyte Bacillus velezensis K1. Gene, 2022, 836, 146671.	tial of	1.0	15
1221	Microbes enhancing assimilation and utilization of minerals promoting plant health and 2022, , 407-418.	l production. ,		0
1222	Phyllosphere of submerged plants: A reservoir of mycobiota. , 2022, , 73-89.			0
1223	The efficacy of rhizobia inoculation under climate change. , 2022, , 171-205.			0
1224	Importance of diverse soil microbial community in crop rotation for sustainable agricult 113-145.	cure. , 2022, ,		0
1225	Growth-Promoting and Protective Effect of Trichoderma atrobrunneum and T. simmons against Soil-Borne Fungal Pathogens. Crops, 2022, 2, 202-217.	sii on Tomato	0.6	11
1226	Mitigation of CaCO3 Influence on Ipomoea batatas Plants Using Bacillus megaterium D Agronomy, 2022, 12, 1571.	DSM 2894.	1.3	2
1227	Changes in soil free-living diazotrophic community and co-occurrence patterns along d degradation gradient in the Mu Us Desert, northern China. Pedosphere, 2023, 33, 638-		2.1	3
1228	Nutrient biofortification in wheat: opportunities and challenges. Cereal Research Comm	nunications, 0,	0.8	1
1229	Response of soil bacterial community to biochar application in a boreal pine forest. Jour Forestry Research, 2023, 34, 749-759.	rnal of	1.7	6
1230	Bacterial Mitigation of Drought Stress in Plants: Current Perspectives and Future Challe Current Microbiology, 2022, 79, .	enges.	1.0	30
1231	Plant growth promoting rhizobacteria (PGPR) and their role in plant-parasitic nematode fresh look at an old issue. Journal of Plant Diseases and Protection, 2022, 129, 1305-13		1.6	24
1232	Natural variation in adventitious root formation. , 2023, , 47-64.			0

#	Article	IF	CITATIONS
1233	Soil propagule banks of ectomycorrhizal fungi associated with <i>Larix cajanderi</i> above the treeline in the Siberian Arctic. Mycoscience, 2022, 63, 142-148.	0.3	2
1234	Allelochemicals from the Rhizosphere Soil of Potato (Solanum tuberosum L.) and Their Interactions with the Soilborne Pathogens. Plants, 2022, 11, 1934.	1.6	5
1235	Microbial Metabolites Beneficial to Plant Hosts Across Ecosystems. Microbial Ecology, 2023, 86, 25-48.	1.4	5
1236	Microbial Diversity and Adaptation under Salt-Affected Soils: A Review. Sustainability, 2022, 14, 9280.	1.6	14
1238	Application of microbial inoculants significantly  enhances crop productivity: A metaâ€analysis of studies from 2010 to 2020. , 2022, 1, 216-225.		40
1239	Host genotype controls ecological change in the leaf fungal microbiome. PLoS Biology, 2022, 20, e3001681.	2.6	14
1240	Efficient bioremediation of PAHs-contaminated soils by a methylotrophic enrichment culture. Biodegradation, 2022, 33, 575-591.	1.5	7
1241	Dynamic Interplay of Soil and Microbes for Sustainable Ecological Balance. , 2022, , 113-120.		0
1242	Growth and Photosynthetic Characteristics of Sesame Seedlings with Gibberellin-Producing Rhodobacter sphaeroides SIRO3 and Biochar. International Journal of Plant Biology, 2022, 13, 257-269.	1.1	2
1243	Role of Microorganisms in Alleviating the Abiotic Stress Conditions Affecting Plant Growth. , O, , .		2
1244	Combination of humic biostimulants with a microbial inoculum improves lettuce productivity, nutrient uptake, and primary and secondary metabolism. Plant and Soil, 2022, 481, 285-314.	1.8	18
1245	Tool and techniques study to plant microbiome current understanding and future needs: an overview. Communicative and Integrative Biology, 2022, 15, 209-225.	0.6	6
1246	A Mix of Agrobacterium Strains Reduces Nitrogen Fertilization While Enhancing Economic Returns in Field Trials with Durum Wheat in Contrasting Agroclimatic Regions. Journal of Soil Science and Plant Nutrition, 2022, 22, 4816-4833.	1.7	4
1248	Biogeographical survey of soil microbiomes across sub-Saharan Africa: structure, drivers, and predicted climate-driven changes. Microbiome, 2022, 10, .	4.9	14
1249	Toward sustainable agriculture using extracts of natural materials for transferring organic wastes to environmental-friendly ameliorants in Egypt. International Journal of Environmental Science and Technology, 2023, 20, 7417-7432.	1.8	8
1250	Plant growth promoting microbes: Diverse roles for sustainable and ecofriendly agriculture. Energy Nexus, 2022, 7, 100133.	3.3	15
1251	Response of Sugarcane to Varying Nitrogen Rate and Application Timings Under Semi-Arid Climate. Journal of Applied Research in Plant Sciences, 2022, 3, 248-259.	0.4	0
1252	Inoculating plant growth-promoting bacteria and arbuscular mycorrhiza fungi modulates rhizosphere acid phosphatase and nodulation activities and enhance the productivity of soybean (Glycine max). Frontiers in Plant Science, 0, 13, .	1.7	7

#	Article	IF	CITATIONS
1253	Plant–microbe symbiosis widens the habitability range of the Daisyworld. Journal of Theoretical Biology, 2022, 554, 111275.	0.8	1
1254	Engineered Biochar as Adsorbent for Removal of Heavy Metals from Soil Medium. , 2022, , 151-170.		1
1255	Plant growth-promoting rhizobacteria as bioremediators of polluted agricultural soils: challenges and prospects. , 2022, , 265-275.		3
1256	New-Age Genomic Measures for Uncovering Plant-Microbiome Interactions: Tools, Pipelines and Guidance Map for Genomic Data Mining. , 2022, , 207-232.		0
1257	Metal oxide nanocomposites: design and use in antimicrobial coatings. , 2022, , 549-599.		0
1258	Interaction of Mycorrhizal Fungi with Rhizospheric Microbes and Their Mode of Action. Fungal Biology, 2022, , 269-293.	0.3	0
1259	Role of microbes and microbial dynamics during composting. , 2023, , 169-220.		3
1260	Translational challenges and opportunities in biofilm science: a BRIEF for the future. Npj Biofilms and Microbiomes, 2022, 8, .	2.9	17
1261	Different rhizosphere soil microbes are recruited by tomatoes with different fruit color phenotypes. BMC Microbiology, 2022, 22, .	1.3	6
1262	Mechanisms and Strategies of Plant Microbiome Interactions to Mitigate Abiotic Stresses. Agronomy, 2022, 12, 2069.	1.3	42
1263	Synthetic microbial consortia derived from rhizosphere soil protect wheat against a soilborne fungal pathogen. Frontiers in Microbiology, 0, 13, .	1.5	11
1264	Insight into Recent Progress and Perspectives in Improvement of Antioxidant Machinery upon PGPR Augmentation in Plants under Drought Stress: A Review. Antioxidants, 2022, 11, 1763.	2.2	39
1265	Staphylococcus Sciuri SAT-17 Facilitated in Vitro Regenerated Sugarcane Plantlets Cultivation in Saline Soil by Harmonizing Oxidative Signaling, Photosynthetic Efficiency and Nutrients Uptake Patterns. Journal of Soil Science and Plant Nutrition, 2023, 23, 163-176.	1.7	2
1267	Insights on <code>plantâ</code> \in "microbe interactions in soil in relation to iron dynamics. Vegetos, 0, , .	0.8	2
1268	Earthworm Aporrectodea molleri (oligochaeta)'s coelomic fluid-associated bacteria modify soil biochemical properties and improve maize (Zea mays L.) plant growth under abiotic stress conditions. Environmental Science and Pollution Research, 0, , .	2.7	3
1269	Silicon fertilizer mediated structural variation and niche differentiation in the rhizosphere and endosphere bacterial microbiome and metabolites of sugarcane. Frontiers in Microbiology, 0, 13, .	1.5	7
1270	Diversity and Functions of Biostimulants in Crop Plants. , 2022, , 21-35.		0
1271	The PGPR Mechanisms of Salt Stress Adaptation and Plant Growth Promotion. Agronomy, 2022, 12, 2266.	1.3	29

#	Article	IF	CITATIONS
1272	Source and acquisition of rhizosphere microbes in Antarctic vascular plants. Frontiers in Microbiology, 0, 13, .	1.5	6
1273	Phytomicrobiome communications: Novel implications for stress resistance in plants. Frontiers in Microbiology, 0, 13, .	1.5	9
1274	Rhizospheric Engineering for Sustainable Production of Horticultural Crops. Rhizosphere Biology, 2022, , 511-537.	0.4	0
1275	Rhizospheric Microbial Diversity: Organic Versus Inorganic Farming Systems. Rhizosphere Biology, 2022, , 153-166.	0.4	0
1276	Exploration of Plant Growth-Promoting Rhizobacteria (PGPR) for Improving Productivity and Soil Fertility Under Sustainable Agricultural Practices. Rhizosphere Biology, 2022, , 245-269.	0.4	2
1277	Biological Nitrogen Fixation in Nonlegumes: Introduction. Microorganisms for Sustainability, 2022, , 1-8.	0.4	0
1278	From Rhizosphere to Endosphere: Bacterial-Plant Symbiosis and Its Impact on Sustainable Agriculture. Rhizosphere Biology, 2022, , 89-103.	0.4	1
1279	The Role of PGPR-Secondary Metabolites on Plant Photosynthesis. , 2022, , 45-57.		0
1280	Bioremediation of Heavy Metals by Rhizobacteria. Applied Biochemistry and Biotechnology, 2023, 195, 4689-4711.	1.4	9
1281	An Organic Fertilizer â€~Doped' with a Bacillus Strain Improves Melon and Pepper Yield, Modifying the Rhizosphere Microbiome with Negligible Changes in the Bulk Soil Microbiome. Agronomy, 2022, 12, 2620.	1.3	2
1282	Functional Interpretation of Cross-Talking Pathways with Emphasis on Amino Acid Metabolism in Rhizosphere Microbiome of the Wild Plant Moringa oleifera. Agriculture (Switzerland), 2022, 12, 1814.	1.4	3
1283	Effects of Graphene Oxide on Plant Growth: A Review. Plants, 2022, 11, 2826.	1.6	7
1284	Morphological instability and roughening of growing 3D bacterial colonies. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	24
1285	Salt Tolerant Bacillus Strains Improve Plant Growth Traits and Regulation of Phytohormones in Wheat under Salinity Stress. Plants, 2022, 11, 2769.	1.6	15
1286	Effective Microorganisms Improve Growth, Nutrients Uptake, Normalized Difference Vegetation Index, Photosystem II, and Essential Oil While Reducing Canopy Temperature in Water-Stressed Salvia sclarea Plants. International Journal of Agronomy, 2022, 2022, 1-15.	0.5	3
1288	Optimized Fertilization Practices Improved Rhizosphere Soil Chemical and Bacterial Properties and Fresh Waxy Maize Yield. Metabolites, 2022, 12, 935.	1.3	1
1289	Translating controlled release systems from biomedicine to agriculture. , 0, 1, .		4
1290	Plants select antibiotic resistome in rhizosphere in early stage. Science of the Total Environment, 2023, 858, 159847.	3.9	9

\sim	<u> </u>	
(΄ΙΤΔΙ	Repo	DT .
CIIA	KLI U	N 1

#	Article	IF	CITATIONS
1291	Plant transcription factors and root development. , 2023, , 63-76.		0
1292	Wheat (<i>Triticum aestivum</i> L.) inoculation through characterization and identification of soil bacteria. Journal of Plant Nutrition, 0, , 1-14.	0.9	Ο
1293	Changes in the Microbial Structure of the Root Soil and the Yield of Chinese Baby Cabbage by Chemical Fertilizer Reduction with Bio-Organic Fertilizer Application. Microbiology Spectrum, 2022, 10, .	1.2	14
1294	Effect of Chinese medicinal herbal residues compost on tomato and Chinese cabbage plants: Assessment on phytopathogenic effect and nutrients uptake. Environmental Research, 2023, 216, 114747.	3.7	8
1296	Rhizobia Contribute to Salinity Tolerance in Common Beans (Phaseolus vulgaris L.). Cells, 2022, 11, 3628.	1.8	9
1297	Impacts of Melatonin on Functionalities of Constructed Wetlands for Wastewater Treatment. Land, 2022, 11, 2022.	1.2	0
1299	Effects of Bacillus subtilis and Pseudomonas fluorescens as the soil amendment. Heliyon, 2022, 8, e11674.	1.4	7
1300	Characterization of indole-3-acetic acid content in inoculant fractions and its effect on plant growth. Pesquisa Agropecuaria Tropical, 0, 52, .	1.0	Ο
1301	Bacterial consortia mediated induction of systemic tolerance to arsenic toxicity via expression of stress responsive antioxidant genes in Oryza sativa L Biocatalysis and Agricultural Biotechnology, 2023, 47, 102565.	1.5	4
1302	Consequences of the Long-Term Fertilization System Use on Physical and Microbiological Soil Status in the Western Polissia of Ukraine. Agriculture (Switzerland), 2022, 12, 1955.	1.4	4
1303	Soil nutritional status in KwaZulu-Natal drives symbiotic interactions and plant performance in. Australian Journal of Botany, 2022, 70, 499-508.	0.3	0
1304	Synergistic relationship of endophyte-nanomaterials to alleviate abiotic stress in plants. Frontiers in Environmental Science, 0, 10, .	1.5	4
1305	Bacillus subtilis and Bacillus licheniformis promote tomato growth. Brazilian Journal of Microbiology, 2023, 54, 397-406.	0.8	3
1306	Microbial Community Investigation of Wild Brambles with Root Nodulation from a Calcareous Nitrogen-Deficient Soil. Soil Systems, 2022, 6, 96.	1.0	2
1307	Lysinibacilli: A Biological Factories Intended for Bio-Insecticidal, Bio-Control, and Bioremediation Activities. Journal of Fungi (Basel, Switzerland), 2022, 8, 1288.	1.5	5
1308	Plant Microbiome Engineering: Hopes or Hypes. Biology, 2022, 11, 1782.	1.3	37
1309	Effect of plant growth-promoting rhizobacteria on alleviating salinity stress in plants: a review. Journal of Plant Nutrition, 2023, 46, 2525-2550.	0.9	10
1310	Microbial Inoculants as Plant Biostimulants: A Review on Risk Status. Life, 2023, 13, 12.	1.1	14

#	Article	IF	CITATIONS
1311	Screening and Identification of p-Hydroxybenzoic Acid-Degrading Strain ZL22 from Wuyi Tea Continuous Cropping Soil. Microbiology, 2022, 91, 727-734.	0.5	1
1312	Biostimulants for Resilient Agriculture—Improving Plant Tolerance to Abiotic Stress: AÂConcise Review. Gesunde Pflanzen, 2023, 75, 709-727.	1.7	12
1313	Valorization as a biofertilizer of an agricultural residue leachate: Metagenomic characterization and growth promotion test by PGPB in the forage plant Medicago sativa (alfalfa). Frontiers in Microbiology, 0, 13, .	1.5	1
1314	Allelotoxicity of Soils: A Review. Eurasian Soil Science, 2022, 55, 1804-1812.	0.5	0
1315	Phylogenetic affiliation of endophytic actinobacteria associated with selected orchid species and their role in growth promotion and suppression of phytopathogens. Frontiers in Plant Science, 0, 13, .	1.7	3
1316	Integrating Native Plant Mixtures and Arbuscular Mycorrhizal Fungi Inoculation Increases the Productivity of Degraded Grassland. Agronomy, 2023, 13, 7.	1.3	2
1317	Strategies and prospects for biostimulants to alleviate abiotic stress in plants. Frontiers in Plant Science, 0, 13, .	1.7	30
1318	Rhizophagus irregularis and Azotobacter chroococcum Uphold Eggplant Production and Quality under Low Fertilization. International Journal of Plant Biology, 2022, 13, 601-612.	1.1	2
1319	The Beneficial Plant Microbial Association for Sustainable Agriculture. Microorganisms for Sustainability, 2023, , 137-210.	0.4	4
1321	Biofertilizer: An Ultimate Solution for the Sustainable Development of Agriculture. Current Agriculture Research Journal, 2023, 10, 193-206.	0.3	0
1323	Functions of Soil Microbes Under Stress Environment. , 2022, , 373-381.		0
1324	Effects of Sodium Salinity on Rice (Oryza sativa L.) Cultivation: A Review. Sustainability, 2023, 15, 1804.	1.6	13
1326	Plant growth promoting microorganisms mediated abiotic stress tolerance in crop plants: a critical appraisal. Plant Growth Regulation, 2023, 100, 7-24.	1.8	9
1327	Techniques to Study Plant–Microbe Interactions that Lead to Efficient Sustainable Agriculture. Microorganisms for Sustainability, 2023, , 401-421.	0.4	1
1328	Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. Plants, 2023, 12, 400.	1.6	14
1329	Applications of plant growth-promoting rhizobacteria for increasing crop production and resilience. Journal of Plant Nutrition, 2023, 46, 2551-2580.	0.9	8
1330	Microbial Control in Greenhouses by Spraying Slightly Acidic Electrolyzed Water. Horticulturae, 2023, 9, 81.	1.2	0
1331	Biofortification of crops using microbes – a promising sustainable agriculture strategy. Journal of Plant Nutrition, 2023, 46, 2912-2935.	0.9	4

#	Article	IF	CITATIONS
1332	Effect of crevice density on biological soil crust development on rock cut slope in mountainous regions, Sichuan, China. Ecological Processes, 2023, 12, .	1.6	1
1334	Development of rapid and precise approach for quantification of bacterial taxa correlated with soil health. Frontiers in Microbiology, 0, 13, .	1.5	3
1335	Suppression of Meloiodogyne incognita (Tylenchida: Heteroderidae) and Tylenchulus semipenterans (Tylenchida: Tylenchulidae) using Tilapia fish powder and plant growth promoting rhizobacteria in vivo and in vitro. European Journal of Plant Pathology, 2023, 165, 665-676.	0.8	2
1336	The Impacts of Phosphorus-Containing Compounds on Soil Microorganisms of Rice Rhizosphere Contaminated by Lead. Diversity, 2023, 15, 69.	0.7	0
1337	Response of soil microbial communities and rice yield to nitrogen reduction with green manure application in karst paddy areas. Frontiers in Microbiology, 0, 13, .	1.5	3
1338	Optical Sensing Technologies to Elucidate the Interplay between Plant and Microbes. Micromachines, 2023, 14, 195.	1.4	5
1339	Soil microbiota impact on Boletus edulis mycelium in chestnut orchards of different ages. Applied Soil Ecology, 2023, 185, 104790.	2.1	1
1340	Chemotaxis and rhizobacterial biofilm formation in plant-microbe interaction. , 2023, , 71-79.		Ο
1341	Rhizobium induced modulation of growth and photosynthetic efficiency of Lens culinaris Medik. grown on fly ash amended soil by antioxidants regulation. Environmental Science and Pollution Research, 0, , .	2.7	0
1342	The use of microbes as a combative strategy for alleviation of abiotic and biotic stresses. , 2023, , 175-193.		1
1343	Biofilm formation and flocculation potential analysis of halotolerant Bacillus tequilensis and its inoculation in soil to mitigate salinity stress of chickpea. Physiology and Molecular Biology of Plants, 2023, 29, 277-288.	1.4	6
1344	Rhizobacterial biomolecules for sustainable crop production and environmental management: plausible functions and molecular mechanisms. , 2023, , 1-30.		0
1345	Harnessing Novel Soil Bacteria for Beneficial Interactions with Soybean. Microorganisms, 2023, 11, 300.	1.6	2
1346	Bacillus proteolyticus OSUB18 triggers induced systemic resistance against bacterial and fungal pathogens in Arabidopsis. Frontiers in Plant Science, 0, 14, .	1.7	8
1347	Harnessing Beneficial Rhizospheric Microorganisms for Biotic Stress Management in Medicinal and Aromatic Plants. , 2023, , 283-308.		0
1349	Assessing Growth-Promoting Activity of Bacteria Isolated from Municipal Waste Compost on Solanum lycopersicum L Horticulturae, 2023, 9, 214.	1.2	1
1350	Strip intercropping with local crops increased Aconitum carmichaeli yield and soil quality. Frontiers in Plant Science, 0, 14, .	1.7	1
1351	Antibiotic—Lysobacter enzymogenes proteases combination as a novel virulence attenuating therapy. PLoS ONE, 2023, 18, e0282705.	1.1	Ο

#	Article	IF	CITATIONS
1354	Soil biogenicity in the rhizosphere of different wheat genotypes under the impact of fertilization treatment. Journal of Agricultural Sciences (Belgrade), 2022, 67, 367-380.	0.1	1
1355	Application of Bacillus subtilis for the Alleviation of Salinity Stress in Different Cultivars of Wheat (Tritium aestivum L.). Agronomy, 2023, 13, 437.	1.3	7
1356	Screening for indole-3-acetic acid synthesis and 1-aminocyclopropane-carboxylate deaminase activity in soil yeasts from Chile uncovers Solicoccozyma aeria as an effective plant growth promoter. Plant and Soil, 2024, 496, 83-93.	1.8	5
1357	Antagonistic Activity of Pseudomonas fluorescens Strain X1 Against Different Fusaria and it's In Vivo Analysis Against Fusarium udum Infected Pigeon Pea. Current Microbiology, 2023, 80, .	1.0	2
1358	Genotoxicity of Synthetic Food Colors on Nitrogen-Fixing Bacteria in Agricultural Lands Irrigated with Wastewater of Corresponding Industries. Sustainability, 2023, 15, 2897.	1.6	2
1359	Impact of the endophytic and rhizospheric bacteria on crop development: prospects for advancing climate-smart agriculture. Journal of Crop Science and Biotechnology, 0, , .	0.7	2
1360	Soil Bacterial Assemblage Across a Production Landscape: Agriculture Increases Diversity While Revegetation Recovers Community Composition. Microbial Ecology, 2023, 85, 1098-1112.	1.4	3
1361	Enhancing plant growth promoting rhizobacterial activities through consortium exposure: A review. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	13
1362	Climate change is increasing global salt pollution. Water International, 0, , 1-8.	0.4	3
1364	Plant and Native Microorganisms Amplify the Positive Effects of Microbial Inoculant. Microorganisms, 2023, 11, 570.	1.6	4
1365	Prospects of biotechnology for productive and sustainable agro-environmental growth. , 2023, , 83-96.		0
1366	Interceding Microbial Biofertilizers in Agroforestry System for Enhancing Productivity. , 2023, , 161-183.		2
1367	Biofertilizer Technologies for Better Crop Nutrient—A Sustainable Smart Agriculture. Advanced Technologies and Societal Change, 2023, , 183-202.	0.8	0
1368	Metal-driven bacterial community variation in urban and suburban park soils of Shanghai, China. European Journal of Soil Biology, 2023, 115, 103475.	1.4	4
1370	Effect of <i>Bacillus paralicheniformis</i> on soybean (<i>Clycine max</i>) roots colonization, nutrient uptake and water use efficiency under drought stress. Journal of Agronomy and Crop Science, 2023, 209, 547-565.	1.7	6
1371	Actinobacteria as a source of biofertilizer/biocontrol agents for bio-organic agriculture. Journal of Applied Microbiology, 2023, 134, .	1.4	12
1372	Induced salinity tolerance by salicylic acid through physiological manipulations. , 2023, , 99-109.		1
1373	Silicon fertilization enhances the resistance of tobacco plants to combined Cd and Pb contamination: Physiological and microbial mechanisms. Ecotoxicology and Environmental Safety, 2023, 255, 114816.	2.9	4

#	Article	IF	CITATIONS
1374	Land and deep-sea mining: the challenges of comparing biodiversity impacts. Biodiversity and Conservation, 2023, 32, 1125-1164.	1.2	6
1375	Genetic Enhancement of Biocontrol Agent as Effective Management of Soilborne Disease. , 2023, , 127-158.		0
1376	The Effect of Human Trampling Activity on a Soil Microbial Community at the Urban Forest Park. Forests, 2023, 14, 692.	0.9	1
1377	Rhizosphere Microbiome: Interactions with Plant and Influence in Triggering Plant Disease Resistance. , 2023, , 329-369.		Ο
1378	Activity of Hydrolases and Their Inhibitors in Potato Plants Treated with Bacillus subtilis, Salicylic, and Jasmonic Acids and Affected by the Combined Effect of the Late Blight and the Lack of Moisture. International Journal of Plant Biology, 2023, 14, 329-338.	1.1	0
1379	Biodiversity of microbial populations as the indicator of biogenicity of soil under ashes and agricultural soil. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2023, 51, 13115.	0.5	1
1380	Biological control of Fusarium crown rot of wheat with Chaetomium globosum 12XP1-2-3 and its effects on rhizosphere microorganisms. Frontiers in Microbiology, 0, 14, .	1.5	2
1381	Performance of Plant-Growth-Promoting Rhizobacteria (PGPR) Isolated from Sandy Soil on Growth of Tomato (SolanumÂlycopersicum L.). Plants, 2023, 12, 1588.	1.6	7
1382	Free-living bacteria stimulate sugarcane growth traits and edaphic factors along soil depth gradients under contrasting fertilization. Scientific Reports, 2023, 13, .	1.6	2
1383	PGPR-mediated synthesis and alteration of different secondary metabolites during plant-microbe interactions. , 2023, , 229-255.		1
1384	Plant-microbe interactions: Role in sustainable agriculture and food security in a changing climate. , 2023, , 363-391.		1
1385	Advanced study of plant-microbe interactions in photosynthesis. , 2023, , 205-228.		Ο
1389	Biodiversity and Functional Attributes of Rhizospheric Microbiomes: Potential Tools for Sustainable Agriculture. Current Microbiology, 2023, 80, .	1.0	2
1396	Remediation of heavy metals by rhizospheric bacteria and their mechanism of detoxification. , 2023, , 31-46.		1
1397	Role of psychrophilic and psychrotolerant microorganisms toward the development of hill agriculture. , 2023, , 15-29.		0
1400	Evaluation of a combined treatment of soybean seeds with fungicides and an inoculant. AIP Conference Proceedings, 2023, , .	0.3	0
1406	Beneficial Microbial Consortia and Their Role in Sustainable Agriculture Under Climate Change Conditions. Rhizosphere Biology, 2023, , 41-73.	0.4	1
1423	Exploiting Bacterial Genera as Biocontrol Agents: Mechanisms, Interactions and Applications in Sustainable Agriculture. Journal of Plant Biology, 2023, 66, 485-498.	0.9	4

#	Article	IF	CITATIONS
1425	Microbial Diversity for Agricultural Productivity. , 2023, , 519-547.		0
1432	Interaction Between Metal Oxide Nanoparticles and PGPR on Plant Growth and Development. , 2023, , 221-238.		0
1433	Introduction of Biofertilizers in Agriculture with Emphasis on Nitrogen Fixers and Phosphate Solubilizers. , 2023, , 71-93.		0
1437	Promising Role of Fungal Symbiosis for Eco-friendly Green Technology for Environmental Health. , 2023, , 237-266.		0
1438	Plant growth promoting rhizobacteria (PGPR): an overview for sustainable agriculture and development. , 2023, , 95-125.		0
1454	Chemical-Based Fruit Ripening and the Implications for Ecosystem Health and Safety. Sustainable Development and Biodiversity, 2023, , 335-353.	1.4	0
1457	Deciphering the Role and Diversity of Microbes Present in Millet Rhizosphere. Rhizosphere Biology, 2023, , 171-193.	0.4	0
1467	How do earthworms affect the microbial community during vermicomposting for organic waste recycling?. , 2024, , 15-39.		0
1469	Regulation of PGPR-Related Genes in Medicinal Plants in Adverse Conditions. , 2023, , 243-273.		0
1476	Significance and Exploitation of Rhizosphere Chemical Signaling Metabolites for Enhancing Soil Nutrient Transformation. Journal of Soil Science and Plant Nutrition, 0, , .	1.7	0
1483	Harnessing Rhizospheric Microbes for Eco-friendly and Sustainable Crop Production in Saline Environments. Current Microbiology, 2024, 81, .	1.0	1
1485	Alleviation of Salinity Stress by Microbes. , 2023, , 145-174.		Ο
1498	Role of soil microbes in modulating the physiological attributes of plants under extreme environmental conditions. , 2024, , 15-34.		0
1501	Phyllosphere endophytic bacteria: diversity and biotechnological potential. , 2024, , 269-294.		0
1502	Exploitation of microbial consortia for formulating biofungicides, biopesticides, and biofertilizers for plant growth promotion. , 2024, , 227-257.		0
1504	Endophytic bacteria-mediated resistance to plant diseases: Bioengineering approaches. , 2024, , 31-44.		0
1506	Tailored microbial inoculants in nutrient recycling and soil health maintenance. , 2024, , 201-218.		0
1507	Halotolerance plant growth-promoting rhizobacteria for improving productivity and remediation of saline soils. , 2024, , 453-463.		0

#	Article	IF	CITATIONS
1510	Arbuscular Mycorrhizal Fungi: A Potential Agent for Phytonematodes Management in Diverse Agro-climatic Zones. , 2024, , 147-169.		0
1515	Soil Formation, Soil Health and Soil Biodiversity. Earth and Environmental Sciences Library, 2024, , 95-121.	0.3	0
1520	Beneficial soil microorganisms and their role in sustainable agriculture. , 2024, , 293-333.		0
1523	Bacillus antagonists: from rhizosphere to industry. , 2024, , 443-465.		0
1527	Impact of Anthropogenic Activities on Microbial Diversity and Soil Health. Microorganisms for Sustainability, 2024, , 227-248.	0.4	0
1528	Microbial Biofertilizers for Soil Health. Microorganisms for Sustainability, 2024, , 119-147.	0.4	0