From field geology to earthquake simulation: a new stat rock friction during the seismic cycle (SHIVA)

Rendiconti Lincei 21, 95-114 DOI: 10.1007/s12210-010-0097-x

Citation Report

#	Article	IF	CITATIONS
1	Frictional melting of gabbro under extreme experimental conditions of normal stress, acceleration, and sliding velocity. Journal of Geophysical Research, 2011, 116, .	3.3	92
2	Principal Slip Zones in Limestone: Microstructural Characterization and Implications for the Seismic Cycle (Tre Monti Fault, Central Apennines, Italy). Pure and Applied Geophysics, 2011, 168, 2365-2393.	0.8	113
3	Fault Roughness at Seismogenic Depths from LIDAR and Photogrammetric Analysis. Pure and Applied Geophysics, 2011, 168, 2345-2363.	0.8	92
4	Pore fluid in experimental calcite-bearing faults: Abrupt weakening and geochemical signature of co-seismic processes. Earth and Planetary Science Letters, 2013, 361, 74-84.	1.8	58
5	Coseismic recrystallization during shallow earthquake slip. Geology, 2013, 41, 63-66.	2.0	123
6	Mirror-like faults and power dissipation during earthquakes. Geology, 2013, 41, 1175-1178.	2.0	124
7	Effect of glass on the frictional behavior of basalts at seismic slip rates. Geophysical Research Letters, 2014, 41, 348-355.	1.5	20
8	Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake. Geology, 2014, 42, 47-50.	2.0	89
9	A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates. Earthquake Science, 2014, 27, 469-497.	0.4	51
10	Effect of water on the frictional behavior of cohesive rocks during earthquakes. Geology, 2014, 42, 27-30.	2.0	72
11	Clast-cortex aggregates in experimental and natural calcite-bearing fault zones. Journal of Structural Geology, 2014, 68, 142-157.	1.0	26
12	Evidence for paleoseismic slip on a continental low-angle normal fault: Tectonic pseudotachylyte from the West Salton detachment fault, CA, USA. Earth and Planetary Science Letters, 2014, 387, 170-183.	1.8	14
13	Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates. Journal of Geophysical Research: Solid Earth, 2014, 119, 8107-8131.	1.4	70
14	Fast-moving dislocations trigger flash weakening in carbonate-bearing faults during earthquakes. Scientific Reports, 2015, 5, 16112.	1.6	61
15	Thermo-mechanical pressurization of experimental faults in cohesive rocks during seismic slip. Earth and Planetary Science Letters, 2015, 429, 1-10.	1.8	54
16	Catastrophic emplacement of giant landslides aided by thermal decomposition: Heart Mountain, Wyoming. Earth and Planetary Science Letters, 2015, 411, 199-207.	1.8	68
17	Strain localization and the onset of dynamic weakening in calcite fault gouge. Earth and Planetary Science Letters, 2015, 413, 25-36.	1.8	75
18	Pseudotachylyte and Fluid Alteration at Seismogenic Depths (Glacier Lakes and Granite Pass Faults,) Tj ETQq1 1	0.784314	rggT /Overlo

ARTICLE

IF CITATIONS

Frictional properties of fault zone gouges from the J $\hat{a} \in FAST$ drilling project (<i>M_w</i> 9.0) Tj ETQq0 Q.0 rgBT /Qyerlock 10 rgBT /Qyerloc

20	Dislocation Motion and the Microphysics of Flash Heating and Weakening of Faults during Earthquakes. Crystals, 2016, 6, 83.	1.0	6
21	Earthquake friction. Physics of the Earth and Planetary Interiors, 2016, 261, 118-123.	0.7	3
22	G: Fracture energy, friction and dissipation in earthquakes. Journal of Seismology, 2016, 20, 1187-1205.	0.6	42
23	Frictional evolution, acoustic emissions activity, and offâ€fault damage in simulated faults sheared at seismic slip rates. Journal of Geophysical Research: Solid Earth, 2016, 121, 7490-7513.	1.4	56
24	An empirically based steady state friction law and implications for fault stability. Geophysical Research Letters, 2016, 43, 3263-3271.	1.5	35
25	Production of nanoparticles during experimental deformation of smectite and implications for seismic slip. Earth and Planetary Science Letters, 2017, 463, 221-231.	1.8	31
26	The effect of water on strain localization in calcite fault gouge sheared at seismic slip rates. Journal of Structural Geology, 2017, 97, 104-117.	1.0	26
27	Microstructural evidence for seismic and aseismic slips along clayâ€bearing, carbonate faults. Journal of Geophysical Research: Solid Earth, 2017, 122, 3895-3915.	1.4	32
29	Carbonate hosted fault rocks: A review of structural and microstructural characteristic with implications for seismicity in the upper crust. Journal of Structural Geology, 2017, 103, 17-36.	1.0	39
30	Ultra-thin clay layers facilitate seismic slip in carbonate faults. Scientific Reports, 2017, 7, 664.	1.6	18
31	Earthquakes in the Mantle? Insights From Rock Magnetism of Pseudotachylytes. Journal of Geophysical Research: Solid Earth, 2017, 122, 8769-8785.	1.4	10
32	Fault gouge graphitization as evidence of past seismic slip. Geology, 2017, 45, 979-982.	2.0	40
33	Biomarker thermal maturity experiments at earthquake slip rates. Earth and Planetary Science Letters, 2018, 502, 253-261.	1.8	15
34	Frictional Instabilities and Carbonation of Basalts Triggered by Injection of Pressurized H ₂ O―and CO ₂ ―Rich Fluids. Geophysical Research Letters, 2018, 45, 6032-6041.	1.5	12
35	Subseismic to Seismic Slip in Smectite Clay Nanofoliation. Journal of Geophysical Research: Solid Earth, 2019, 124, 6589-6601.	1.4	10
36	Effect of water and rock composition on re-strengthening of cohesive faults during the deceleration phase of seismic slip pulses. Earth and Planetary Science Letters, 2019, 522, 55-64.	1.8	20
37	Water Availability and Deformation Processes in Smectiteâ€Rich Gouges During Seismic Slip. Journal of Geophysical Research: Solid Earth, 2019, 124, 10855-10876.	1.4	7

#	Article	IF	CITATIONS
38	Grain Size Sensitive Creep During Simulated Seismic Slip in Nanogranular Fault Gouges: Constraints From Transmission Kikuchi Diffraction (TKD). Journal of Geophysical Research: Solid Earth, 2019, 124, 10197-10209.	1.4	15
39	Development of crystallographic preferred orientation during cataclasis in low-temperature carbonate fault gouge. Journal of Structural Geology, 2019, 126, 37-50.	1.0	19
40	Grain Fragmentation and Frictional Melting During Initial Experimental Deformation and Implications for Seismic Slip at Shallow Depths. Journal of Geophysical Research: Solid Earth, 2019, 124, 11150-11169.	1.4	11
41	Rheological Controls on Asperity Weakening During Earthquake Slip. Journal of Geophysical Research: Solid Earth, 2019, 124, 12736-12762.	1.4	6
42	Very Localized Temperature Measurements and Applications Using Optical Fiber Pyrometers. , 2019, , .		1
43	Effect of Fluid Viscosity on Fault Reactivation and Coseismic Weakening. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018883.	1.4	16
44	Faulting Processes Unveiled by Magnetic Properties of Fault Rocks. Reviews of Geophysics, 2020, 58, e2019RG000690.	9.0	16
45	Impact of Coseismic Frictional Melting on Particle Size, Shape Distribution and Chemistry of Experimentally-Generated Pseudotachylite. Frontiers in Earth Science, 2020, 8, .	0.8	3
46	Pseudotachylyte Alteration and the Rapid Fade of Earthquake Scars From the Geological Record. Geophysical Research Letters, 2020, 47, e2020GL090020.	1.5	20
47	HighSTEPS: A High Strain Temperature Pressure and Speed Apparatus to Study Earthquake Mechanics. Rock Mechanics and Rock Engineering, 2021, 54, 2039-2052.	2.6	10
48	Frictional properties and microstructural evolution of dry and wet calcite–dolomite gouges. Solid Earth, 2021, 12, 595-612.	1.2	3
49	Fluid pressurisation and earthquake propagation in the Hikurangi subduction zone. Nature Communications, 2021, 12, 2481.	5.8	24
50	Fast and Localized Temperature Measurements During Simulated Earthquakes in Carbonate Rocks. Geophysical Research Letters, 2021, 48, e2020GL091856.	1.5	14
51	Selective clast survival in an experimentally-produced pseudotachylyte. Journal of Structural Geology, 2021, 147, 104328.	1.0	6
52	Frictional properties of basalt experimental faults and implications for volcano-tectonic settings and geo-energy sites. Tectonophysics, 2021, 811, 228883.	0.9	6
53	Frictional Melting in Hydrothermal Fluidâ€Rich Faults: Field and Experimental Evidence From the BolfÃn Fault Zone (Chile). Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009743.	1.0	8
54	A displacement-dependent moment tensor method for simulating fault-slip induced seismicity. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7, 1.	1.3	5
55	Fault Friction During Simulated Seismic Slip Pulses. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022149.	1.4	7

	CITATION	CITATION REPORT		
#	ARTICLE	IF	CITATIONS	
56	Kinematics of frictional melts at the base of the world's largest terrestrial landslide: Markagunt gravity slide, southwest Utah, United States. Journal of Structural Geology, 2021, 153, 104448.	1.0	2	
57	Past seismic slip-to-the-trench recorded in Central America megathrust. Nature Geoscience, 2017, 10, 935-940.	5.4	23	
58	Raman Spectral Shifts in Naturally Faulted Rocks. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009923.	1.0	8	
59	Friction during earthquakes: 25 years of experimental studies. IOP Conference Series: Earth and Environmental Science, 2021, 861, 052032.	0.2	3	
60	Investigations and new insights on earthquake mechanics from fault slip experiments. Earth-Science Reviews, 2022, 228, 104019.	4.0	34	
61	Frictional Properties of the Longmenshan Fault Belt Gouges From WFSDâ€3 and Implications for Earthquake Rupture Propagation. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	1	
67	Large dynamic range, high resolution optical heterodyne readout for high velocity slip events. Review of Scientific Instruments, 2022, 93, 064503.	0.6	0	
68	Determination of Parameters Characteristic of Dynamic Weakening Mechanisms During Seismic Faulting in Cohesive Rocks. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	7	
69	The Influence of Roughness on Experimental Fault Mechanical Behavior and Associated Microseismicity. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	8	
70	Influence of Frictional Melt on the Seismic Cycle: Insights from Experiments on Rock Analog Material. Journal of Geophysical Research: Solid Earth, 0, , .	1.4	1	
71	Frictional power dissipation in a seismic ancient fault. Earth and Planetary Science Letters, 2023, 607, 118057.	1.8	1	
72	Melting of fault gouge at shallow depth during the 2008 MW 7.9 Wenchuan earthquake, China. Geology, 2023, 51, 345-350.	2.0	6	
73	Experimental investigation on frictional properties of stressed basalt fractures. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15, 1457-1475.	3.7	2	
74	Singleâ€Well Pore Pressure Preconditioning for Enhanced Geothermal System Stimulation. Journal of Geophysical Research: Solid Earth, 2023, 128,	1.4	0	