Patient-Specific Modeling of Blood Flow and Pressure in

Annals of Biomedical Engineering 38, 3195-3209 DOI: 10.1007/s10439-010-0083-6

Citation Report

#	Article	IF	CITATIONS
1	Incorporating Autoregulatory Mechanisms of the Cardiovascular System in Three-Dimensional Finite Element Models of Arterial Blood Flow. Annals of Biomedical Engineering, 2010, 38, 2314-2330.	2.5	55
2	Coronary Computed Tomography Angiography. Journal of the American College of Cardiology, 2011, 58, 861-862.	2.8	2
3	Diagnosis of Ischemia-Causing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms. Journal of the American College of Cardiology, 2011, 58, 1989-1997.	2.8	1,058
4	Rationale and design of the DeFACTO (Determination of Fractional Flow Reserve by Anatomic) Tj ETQq1 1 0.7843 301-309.	14 rgBT /C 1.3	Overlock 10 118
5	Computational biomechanics of the aortic root. Aswan Heart Centre Science & Practice Series, 2011, 2011, .	0.3	6
6	Virtual surgeries in patients with congenital heart disease: a multi-scale modelling test case. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 4316-4330.	3.4	76
7	A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Computational Mechanics, 2011, 48, 277-291.	4.0	220
8	A framework for personalization of coronary flow computations during rest and hyperemia. , 2012, 2012, 6665-8.		28
9	A patient-specific reduced-order model for coronary circulation. , 2012, , .		39
10	Cardiac hybrid imaging. European Heart Journal Cardiovascular Imaging, 2012, 13, 51-60.	1.2	46
11	Value of Coronary Computed Tomography as a Prognostic Tool. Clinical Cardiology, 2012, 35, 467-473.	1.8	2
12	Patient-Specific Multiscale Modeling of Blood Flow for Coronary Artery Bypass Graft Surgery. Annals of Biomedical Engineering, 2012, 40, 2228-2242.	2.5	170
13	The Multi-Scale Modelling of Coronary Blood Flow. Annals of Biomedical Engineering, 2012, 40, 2399-2413.	2.5	73
14	GPU accelerated simulation of the human arterial circulation. , 2012, , .		3
15	Diagnostic Accuracy of Fractional Flow Reserve From Anatomic CT Angiography. JAMA - Journal of the American Medical Association, 2012, 308, 1237.	7.4	956
16	Effect of image quality on diagnostic accuracy of noninvasive fractional flow reserve: Results from the prospective multicenter international DISCOVER-FLOW study. Journal of Cardiovascular Computed Tomography, 2012, 6, 191-199.	1.3	87
17	Noninvasive Diagnosis of Ischemia-Causing Coronary Stenosis Using CT Angiography. JACC: Cardiovascular Imaging, 2012, 5, 1088-1096.	5.3	108
18	Usefulness of Noninvasive Fractional Flow Reserve Computed from Coronary Computed Tomographic Angiograms for Intermediate Stenoses Confirmed by Quantitative Coronary Angiography. American Journal of Cardiology, 2012, 110, 971-976.	1.6	85

#	Article	IF	Citations
19	Integrating Physiologic and Anatomic Assessment of Coronary Artery Disease by Coronary Computed Tomographic Angiography. Current Cardiovascular Imaging Reports, 2012, 5, 301-309.	0.6	0
20	CT fractional flow reserve: the next level in non-invasive cardiac imaging. Netherlands Heart Journal, 2012, 20, 410-418.	0.8	15
21	Identifying and Redefining Stenosis by CT Angiography. Cardiology Clinics, 2012, 30, 57-67.	2.2	1
22	Fractional Flow Reserve: The Past, Present and Future. Korean Circulation Journal, 2012, 42, 441.	1.9	11
23	An introduction to computational fluid dynamics based on numerical simulation of pulsatile flow in the left coronary artery. Kardiochirurgia I Torakochirurgia Polska, 2012, 3, 366-374.	0.1	4
24	Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease. Biomechanics and Modeling in Mechanobiology, 2012, 11, 915-932.	2.8	83
25	The effect of aortic wall and aortic leaflet stiffening on coronary hemodynamic: a fluid–structure interaction study. Medical and Biological Engineering and Computing, 2013, 51, 923-936.	2.8	20
26	Modeling of Fractional Flow Reserve Based on Coronary CT Angiography. Current Cardiology Reports, 2013, 15, 336.	2.9	23
27	Myocardial perfusion distribution and coronary arterial pressure and flow signals: clinical relevance in relation to multiscale modeling, a review. Medical and Biological Engineering and Computing, 2013, 51, 1271-1286.	2.8	9
28	A practical approach to parameter estimation applied to model predicting heart rate regulation. Journal of Mathematical Biology, 2013, 67, 39-68.	1.9	79
29	Modeling Hemodynamics in Vascular Networks Using a Geometrical Multiscale Approach: Numerical Aspects. Annals of Biomedical Engineering, 2013, 41, 1445-1458.	2.5	17
30	Coronary Computed Tomography Angiography for Stable Angina: Past, Present, and Future. Canadian Journal of Cardiology, 2013, 29, 266-274.	1.7	8
31	Rationale and design of the HeartFlowNXT (HeartFlow analysis of coronary blood flow using CT) Tj ETQq0 0 0 rgE	BT /Overloo 1.3	k 10 Tf 50 2
32	Computational Fluid Dynamics Applied to Cardiac Computed Tomography for Noninvasive Quantification of Fractional Flow Reserve. Journal of the American College of Cardiology, 2013, 61, 2233-2241.	2.8	958
33	A New Physiological Boundary Condition for Hemodynamics. SIAM Journal on Applied Mathematics, 2013, 73, 1203-1223.	1.8	17
34	Computed Fractional Flow Reserve (FFTCT) Derived from Coronary CT Angiography. Journal of Cardiovascular Translational Research, 2013, 6, 708-714.	2.4	98
35	Coronary Anatomy to Predict Physiology. Circulation: Cardiovascular Imaging, 2013, 6, 817-832.	2.6	79
36	Coronary pressure-derived fractional flow reserve in the assessment of coronary artery stenoses. European Radiology, 2013, 23, 958-967.	4.5	24

#	Article	IF	CITATIONS
37	Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation. Biomechanics and Modeling in Mechanobiology, 2013, 12, 79-93.	2.8	65
38	Five-Year Clinical and Functional Multislice Computed Tomography Angiographic Results After Coronary Implantation of the Fully Resorbable Polymeric Everolimus-Eluting Scaffold in Patients With De Novo Coronary Artery Disease. JACC: Cardiovascular Interventions, 2013, 6, 999-1009.	2.9	195
39	Risk assessment of atherosclerotic plaques based on global biomechanics. Medical Engineering and Physics, 2013, 35, 1290-1297.	1.7	7
40	3D Imaging of vascular networks for biophysical modeling of perfusion distribution within the heart. Journal of Biomechanics, 2013, 46, 229-239.	2.1	40
41	Imaging Heart Failure: Current and Future Applications. Canadian Journal of Cardiology, 2013, 29, 317-328.	1.7	26
42	<i>In silico</i> vascular modeling for personalized nanoparticle delivery. Nanomedicine, 2013, 8, 343-357.	3.3	66
43	Area stenosis associated with non-invasive fractional flow reserve obtained from coronary CT images. , 2013, 2013, 3865-8.		2
44	New frontiers in CT angiography: physiologic assessment of coronary artery disease by multidetector CT. Heart, 2013, 99, 661-668.	2.9	9
45	Patient specific modeling of the cardiovascular system. , 2013, , .		2
46	A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. Journal of Computational Physics, 2013, 244, 63-79.	3.8	139
47	Noninvasive Fractional Flow Reserve Derived From Computed Tomography Angiography for Coronary Lesions of Intermediate Stenosis Severity. Circulation: Cardiovascular Imaging, 2013, 6, 881-889.	2.6	218
48	Computational Fluid Dynamics Simulations of Contrast Agent Bolus Dispersion in a Coronary Bifurcation: Impact on MRI-Based Quantification of Myocardial Perfusion. Computational and Mathematical Methods in Medicine, 2013, 2013, 1-13.	1.3	12
49	Direct Observation of von Willebrand Factor Elongation and Fiber Formation on Collagen During Acute Whole Blood Exposure to Pathological Flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 105-113.	2.4	93
50	Noninvasive Approach to Assess Coronary Artery Stenoses and Ischemia. JAMA - Journal of the American Medical Association, 2013, 309, 233.	7.4	1
51	Noninvasive Approach to Assess Coronary Artery Stenoses and Ischemia—Reply. JAMA - Journal of the American Medical Association, 2013, 309, 233.	7.4	2
52	Simulation based planning of surgical interventions in pediatric cardiology. Physics of Fluids, 2013, 25, 101303.	4.0	48
53	A non-discrete method for computation of residence time in fluid mechanics simulations. Physics of Fluids, 2013, 25, 110802.	4.0	48
54	Graphics processing unit accelerated oneâ€dimensional blood flow computation in the human arterial tree. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29, 1428-1455.	2.1	9

#	Article	IF	CITATIONS
55	Effects of Stenosis on the Porcine Left Anterior Descending Arterial Tree. , 2013, 2013, 3869-72.		1
56	Image-based fractional flow reserve using coronary angiography. , 2013, , .		1
57	Noninvasive fractional flow reserve derived from coronary computed tomography angiography: integrated anatomical and functional assessment. Future Cardiology, 2013, 9, 243-251.	1.2	7
58	Evaluation of myocardial infarction patients after coronary revasculation by dual-phase multi-detector computed tomography: Now and in future. World Journal of Cardiology, 2013, 5, 115.	1.5	3
59	Physiologic Assessment of Coronary Artery Disease by Cardiac Computed Tomography. Korean Circulation Journal, 2013, 43, 435.	1.9	8
60	Numerical Simulation and Clinical Implications of Stenosis in Coronary Blood Flow. BioMed Research International, 2014, 2014, 1-10.	1.9	19
61	Effects of Elastic Modulus Change in Helical Tubes Under the Influence of Dynamic Changes in Curvature and Torsion. Journal of Biomechanical Engineering, 2014, 136, .	1.3	3
62	A Computational Model to Assess Poststenting Wall Stresses Dependence on Plaque Structure and Stenosis Severity in Coronary Artery. Mathematical Problems in Engineering, 2014, 2014, 1-12.	1.1	1
63	Important Advances in Technology and Unique Applications to Cardiovascular Computed Tomography. Methodist DeBakey Cardiovascular Journal, 2014, 10, 152-158.	1.0	12
64	Almanac 2014: cardiovascular imaging. Heart, 2014, 100, 1661-1666.	2.9	0
65	Perspective on CFD studies of coronary artery disease lesions and hemodynamics: A review. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30, 659-680.	2.1	69
66	Comparisons between reduced order models and full 3D models for fluid–structure interaction problems in haemodynamics. Journal of Computational and Applied Mathematics, 2014, 265, 120-138.	2.0	46
67	A Novel Noninvasive Technology for Treatment Planning Using Virtual Coronary Stenting and Computed Tomography-Derived Computed Fractional Flow Reserve. JACC: Cardiovascular Interventions, 2014, 7, 72-78.	2.9	144
68	Geometry-based pressure drop prediction in mildly diseased human coronary arteries. Journal of Biomechanics, 2014, 47, 1810-1815.	2.1	20
69	Comprehensive plaque assessment by coronary CT angiography. Nature Reviews Cardiology, 2014, 11, 390-402.	13.7	301
70	In Vitro Validation of Patient-Specific Hemodynamic Simulations in Coronary Aneurysms Caused by Kawasaki Disease. Cardiovascular Engineering and Technology, 2014, 5, 189-201.	1.6	28
71	Fluid Mechanics, Arterial Disease, and Gene Expression. Annual Review of Fluid Mechanics, 2014, 46, 591-614.	25.0	134
72	Numerical blood flow simulation in surgical corrections: what do we need for an accurate analysis?. Journal of Surgical Research, 2014, 186, 44-55.	1.6	27

		CITATION REPORT	
#	Article	IF	CITATIONS
73	An external tissue support model for the arterial wall based on in vivo data. , 2014, , .		0
74	A novel patient-specific model to compute coronary fractional flow reserve. Progress in Biophysic and Molecular Biology, 2014, 116, 48-55.	'S 2.9	29
75	Assessing Bioresorbable Coronary Devices. JACC: Cardiovascular Imaging, 2014, 7, 1130-1148.	5.3	60
76	Fractional flow reserve derived from coronary CT angiography: Variation of repeated analyses. Journal of Cardiovascular Computed Tomography, 2014, 8, 307-314.	1.3	45
77	Thrombotic risk stratification using computational modeling in patients with coronary artery aneurysms following Kawasaki disease. Biomechanics and Modeling in Mechanobiology, 2014, 13 1261-1276.	3, 2.8	53
78	CFR and FFR Assessment with PET and CTA: Strengths and Limitations. Current Cardiology Repor 2014, 16, 484.	ts, 2.9	19
79	Advanced computed tomographic anatomical and morphometric plaque analysis for prediction o fractional flow reserve in intermediate coronary lesions. European Journal of Radiology, 2014, 83, 135-141.		11
80	Coronary three-vessel disease with occlusion of the right coronary artery: What are the most important factors that determine the right territory perfusion?. Irbm, 2014, 35, 149-157.	5.6	8
81	Numerical investigation of blood flow in three-dimensional porcine left anterior descending artery with various stenoses. Computers in Biology and Medicine, 2014, 47, 130-138.	7.0	22
82	Effects of vessel dynamics and compliance on human right coronary artery hemodynamics with / without stenosis. Journal of Biomechanical Science and Engineering, 2015, 10, 15-00015-15-000	15. 0.3	2
83	Assessment of stenosis introduced flow resistance in CCTA-reconstructed coronary arteries. , 20	15,,.	5
84	Computational modeling and engineering in pediatric and congenital heart disease. Current Opir Pediatrics, 2015, 27, 587-596.	ion in 2.0	43
85	Hemodynamic analysis in left coronary artery using lumped parameter model. , 2015, , .		0
86	Pathological von Willebrand factor fibers resist tissue plasminogen activator and ADAMTS13 whi promoting the contact pathway and shearâ€induced platelet activation. Journal of Thrombosis ar Haemostasis, 2015, 13, 1699-1708.	le nd 3.8	36
87	Measurement and modeling ofÂcoronary blood flow. Wiley Interdisciplinary Reviews: Systems Bio and Medicine, 2015, 7, 335-356.	blogy 6.6	14
88	Computed Tomography-Derived Fractional Flow Reserve in the Detection of Lesion-Specific Ische Medicine (United States), 2015, 94, e1963.	mia. 1.0	11
89	Advances in three-dimensional coronary imaging and computational fluid dynamics. Coronary Art Disease, 2015, 26, e43-e54.	ery 0.7	10
90	Noninvasive Physiologic Assessment of Coronary Stenoses Using Cardiac CT. BioMed Research International, 2015, 2015, 1-12.	1.9	13

#	Article	IF	CITATIONS
91	Magnetic resonance imaging-based computational modelling of blood flow and nanomedicine deposition in patients with peripheral arterial disease. Journal of the Royal Society Interface, 2015, 12, 20150001.	3.4	27
92	A computational fluid dynamics comparison between different outflow graft anastomosis locations of Left Ventricular Assist Device (LVAD) in a patientâ€specific aortic model. International Journal for Numerical Methods in Biomedical Engineering, 2015, 31, e02700.	2.1	40
93	Functional Evaluation of Coronary Disease by CT Angiography. JACC: Cardiovascular Imaging, 2015, 8, 1322-1335.	5.3	22
94	Noninvasive hemodynamic assessment using coronary computed tomography angiography: the present and future. Interventional Cardiology, 2015, 7, 77-88.	0.0	1
95	Multiscale Modeling of Cardiovascular Flows for Clinical Decision Support. Applied Mechanics Reviews, 2015, 67, .	10.1	70
96	Numerical Study of Cerebroarterial Hemodynamic Changes Following Carotid Artery Operation: A Comparison Between Multiscale Modeling and Stand-Alone Three-Dimensional Modeling. Journal of Biomechanical Engineering, 2015, 137, 101011.	1.3	31
97	Diagnostic accuracy and discrimination of ischemia by fractional flow reserve CT using a clinical use rule: Results from the Determination of Fractional Flow Reserve by Anatomic Computed Tomographic Angiography study. Journal of Cardiovascular Computed Tomography, 2015, 9, 120-128.	1.3	21
98	Well-Posedness, Regularity, and Convergence Analysis of the Finite Element Approximation of a Generalized Robin Boundary Value Problem. SIAM Journal on Numerical Analysis, 2015, 53, 105-126.	2.3	24
99	Hemodynamic analysis of patientâ€specific coronary artery tree. International Journal for Numerical Methods in Biomedical Engineering, 2015, 31, e02708.	2.1	38
100	Fractional Flow Reserve Computed from Noninvasive CT Angiography Data: Diagnostic Performance of an On-Site Clinician-operated Computational Fluid Dynamics Algorithm. Radiology, 2015, 274, 674-683.	7.3	218
101	Fast Computation of Hemodynamic Sensitivity to Lumen Segmentation Uncertainty. IEEE Transactions on Medical Imaging, 2015, 34, 2562-2571.	8.9	29
102	Cardiac CT vs. Stress Testing in Patients with Suspected Coronary Artery Disease: Review and Expert Recommendations. Current Cardiovascular Imaging Reports, 2015, 8, 1.	0.6	18
103	Fractional Flow Reserve. , 2015, , 107-120.		1
104	SHEAR-INDUCED PLATELET ACTIVATION IN TORTUOUS CORONARY ARTERY: A NUMERICAL STUDY. Journal of Mechanics in Medicine and Biology, 2015, 15, 1550031.	0.7	1
105	Fractional flow reserve derived from conventional coronary angiograms and computational fluid dynamics. International Journal of Cardiology, 2015, 190, 187-189.	1.7	2
106	Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in coronary artery disease: A systematic review and meta-analysis. International Journal of Cardiology, 2015, 184, 703-709.	1.7	24
107	CT Assessment of Myocardial Perfusion and Fractional Flow Reserve. Progress in Cardiovascular Diseases, 2015, 57, 623-631.	3.1	17
108	A numerical investigation of the functionality of coronary bifurcation lesions with respect to lesion configuration and stenosis severity. Journal of Biomechanics, 2015, 48, 3103-3111.	2.1	11

#	Article	IF	CITATIONS
109	Learning Patient-Specific Lumped Models for Interactive Coronary Blood Flow Simulations. Lecture Notes in Computer Science, 2015, , 433-441.	1.3	12
110	A novel CT-FFR method for the coronary artery based on 4D-CT image analysis and structural and fluid analysis. Proceedings of SPIE, 2015, , .	0.8	8
111	Noninvasive Fractional Flow Reserve Derived From Coronary CT Angiography. JACC: Cardiovascular Imaging, 2015, 8, 1209-1222.	5.3	206
112	Non-invasive pressure difference estimation from PC-MRI using the work-energy equation. Medical Image Analysis, 2015, 26, 159-172.	11.6	53
113	Impact of geometric uncertainty on hemodynamic simulations using machine learning. Computer Methods in Applied Mechanics and Engineering, 2015, 297, 167-190.	6.6	40
114	A computational extensional rheology study of two biofluid systems. Rheologica Acta, 2015, 54, 287-305.	2.4	3
115	Diagnostic performance of non-invasive fractional flow reserve derived from coronary computed tomography angiography: current perspectives. Journal of Vascular Diagnostics and Interventions, 0, , 1.	0.0	0
116	Noninvasive imaging modalities to visualize atherosclerotic plaques. Cardiovascular Diagnosis and Therapy, 2016, 6, 340-353.	1.7	9
117	<i>In situ</i> coronary stent paving by <scp>P</scp> luronic <scp>F</scp> 127–alginate gel blends: Formulation and erosion tests. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 1013-1022.	3.4	9
118	Transport physics and biorheology in the setting of hemostasis and thrombosis. Journal of Thrombosis and Haemostasis, 2016, 14, 906-917.	3.8	71
119	Development of an In Vitro Model to Characterize the Effects of Transcatheter Aortic Valve on Coronary Artery Flow. Artificial Organs, 2016, 40, 612-619.	1.9	10
120	Hemodynamic analysis of sequential graft from right coronary system to left coronary system. BioMedical Engineering OnLine, 2016, 15, 132.	2.7	8
121	Rationale and Design of the CREDENCE Trial: computed TomogRaphic evaluation of atherosclerotic DEtermiNants of myocardial IsChEmia. BMC Cardiovascular Disorders, 2016, 16, 190.	1.7	24
122	Technical Innovations and Concepts in Coronary CT. Medical Radiology, 2016, , 713-727.	0.1	0
123	Computational fluid dynamics with application of different theoretical flow models for the evaluation of coronary artery stenosis on CT angiography: comparison with invasive fractional flow reserve. Biomedical Physics and Engineering Express, 2016, 2, 065011.	1.2	9
124	On the relationship between competitive flow and FFT analysis of the flow waves in the left internal mammary artery graft in the process of CABG. BioMedical Engineering OnLine, 2016, 15, 129.	2.7	7
125	Review of numerical methods for simulation of the aortic root: Present and future directions. International Journal for Computational Methods in Engineering Science and Mechanics, 2016, 17, 182-195.	2.1	12
126	Coronary Collaterals and Graft Failure. , 2016, , 403-413.		0

#	Article	IF	CITATIONS
127	Fractional flow reserve derived from conventional coronary angiograms and computational fluid dynamics. Physica Medica, 2016, 32, 243.	0.7	0
128	Towards the virtual artery: a multiscale model for vascular physiology at the physics–chemistry–biology interface. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20160146.	3.4	18
129	A patient-specific virtual stenotic model of the coronary artery to analyze the relationship between fractional flow reserve and wall shear stress. International Journal of Cardiology, 2016, 222, 799-805.	1.7	18
130	Watertight modeling and segmentation of bifurcated Coronary arteries for blood flow simulation using CT imaging. Computerized Medical Imaging and Graphics, 2016, 53, 43-53.	5.8	5
131	Patient-Specific Simulations Reveal Significant Differences in Mechanical Stimuli in Venous and Arterial Coronary Grafts. Journal of Cardiovascular Translational Research, 2016, 9, 279-290.	2.4	35
133	Fractional flow reserve using computed tomography for assessing coronary artery disease. Journal of Cardiovascular Medicine, 2016, 17, 694-700.	1.5	5
134	Inâ€Series Versus Inâ€Parallel Mechanical Circulatory Support for the Right Heart: A Simulation Study. Artificial Organs, 2016, 40, 561-567.	1.9	5
135	Anatomy and Physiology in a Single Non-invasive Test: CTA-derived FFR. Current Radiology Reports, 2016, 4, 1.	1.4	0
136	A mathematical model of coronary blood flow control: simulation of patient-specific three-dimensional hemodynamics during exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1242-H1258.	3.2	41
137	Estimation of the flow resistances exerted in coronary arteries using a vessel length-based method. Pflugers Archiv European Journal of Physiology, 2016, 468, 1449-1458.	2.8	11
138	Heterogeneous mechanics of the mouse pulmonary arterial network. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1245-1261.	2.8	11
139	Uncertainty quantification in coronary blood flow simulations: Impact of geometry, boundary conditions and blood viscosity. Journal of Biomechanics, 2016, 49, 2540-2547.	2.1	118
140	CT-based myocardial ischemia evaluation: quantitative angiography, transluminal attenuation gradient, myocardial perfusion, and CT-derived fractional flow reserve. International Journal of Cardiovascular Imaging, 2016, 32, 1-19.	1.5	24
141	SURGICAL DECISION OF CORONARY ARTERY BYPASS GRAFTING FOR NORMAL LEFT ANTERIOR DESCENDING ARTERY (LAD) AND LAD WITH STENOSIS: SEQUENTIAL GRAFT OR NOT. Journal of Mechanics in Medicine and Biology, 2016, 16, 1650090.	0.7	1
142	Numerical prediction of the effect of aortic Left Ventricular Assist Device outflow-graft anastomosis location. Biocybernetics and Biomedical Engineering, 2016, 36, 327-343.	5.9	24
143	Drug-Eluting Stent Design is a Determinant of Drug Concentration at the Endothelial Cell Surface. Annals of Biomedical Engineering, 2016, 44, 302-314.	2.5	7
144	Three-dimensional hemodynamics analysis of the circle of Willis in the patient-specific nonintegral arterial structures. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1439-1456.	2.8	43
145	Coronary CT angiography derived fractional flow reserve: Methodology and evaluation of a point of care algorithm. Journal of Cardiovascular Computed Tomography, 2016, 10, 105-113.	1.3	50

#	Article	IF	CITATIONS
146	Coronary Computed Tomography Angiography Derived Fractional Flow Reserve and Plaque Stress. Current Cardiovascular Imaging Reports, 2016, 9, 2.	0.6	28
147	Hemodynamics of the string phenomenon in the internal thoracic artery grafted to the left anterior descending artery with moderate stenosis. Journal of Biomechanics, 2016, 49, 983-991.	2.1	42
148	Biomechanical rationale of coronary artery bypass grafting of multivessel disease. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 297-305.	1.6	2
150	Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Computers and Fluids, 2017, 142, 128-138.	2.5	74
151	Comprehensive Modeling and Visualization of Cardiac Anatomy and Physiology from CT Imaging and Computer Simulations. IEEE Transactions on Visualization and Computer Graphics, 2017, 23, 1014-1028.	4.4	14
152	Patient Specific Modelling. , 2017, , 207-230.		1
153	DIRECT CORONARY COUPLING APPROACH FOR COMPUTING FFR _{CT} . Journal of Mechanics in Medicine and Biology, 2017, 17, 1750043.	0.7	2
154	A NEW METHOD TO STUDY ATHEROSCLEROSIS AND ASSESS THE EFFECTIVENESS OF PERCUTANEOUS CORONARY INTERVENTION BY COMPUTATIONAL FLUID DYNAMICS SIMULATION. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750035.	0.7	0
155	Effect of stenosis eccentricity on the functionality of coronary bifurcation lesions—a numerical study. Medical and Biological Engineering and Computing, 2017, 55, 2079-2095.	2.8	7
156	Functional Cardiac CT Angiography. Medical Radiology, 2017, , 777-803.	0.1	0
157	Diagnostic Performance of a Novel Method for Fractional Flow Reserve Computed from Noninvasive Computed Tomography Angiography (NOVEL-FLOW Study). American Journal of Cardiology, 2017, 120, 362-368.	1.6	21
158	On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics. Journal of Biomechanics, 2017, 60, 15-21.	2.1	116
159	Diagnostic Accuracy of Computed Tomography–Derived Fractional Flow Reserve. JAMA Cardiology, 2017, 2, 803.	6.1	166
160	The impact of the aortic valve impairment on the distant coronary arteries hemodynamics: a fluid–structure interaction study. Medical and Biological Engineering and Computing, 2017, 55, 1859-1872.	2.8	10
161	Patient-specific 3D hemodynamics modelling of left coronary artery under hyperemic conditions. Medical and Biological Engineering and Computing, 2017, 55, 1451-1461.	2.8	22
162	SimVascular: An Open Source Pipeline for Cardiovascular Simulation. Annals of Biomedical Engineering, 2017, 45, 525-541.	2.5	351
163	Functional assessment of lesion severity without using the pressure wire: coronary imaging and blood flow simulation. Expert Review of Cardiovascular Therapy, 2017, 15, 863-877.	1.5	2
164	A 2D nonlinear multiring model for blood flow in large elastic arteries. Journal of Computational Physics, 2017, 350, 136-165.	3.8	19

	CITATION R	EPORT	
#	Article	IF	CITATIONS
165	Coronary CT Angiography–derived Fractional Flow Reserve. Radiology, 2017, 285, 17-33.	7.3	152
166	Computational Analysis of Multislice CT Angiography. , 2017, , 295-305.		0
167	Impact of spatial characteristics in the left stenotic coronary artery on the hemodynamics and visualization of 3D replica models. Scientific Reports, 2017, 7, 15452.	3.3	30
168	A vessel length-based method to compute coronary fractional flow reserve from optical coherence tomography images. BioMedical Engineering OnLine, 2017, 16, 83.	2.7	21
169	A study of noninvasive fractional flow reserve derived from a simplified method based on coronary computed tomography angiography in suspected coronary artery disease. BioMedical Engineering OnLine, 2017, 16, 43.	2.7	26
170	IMPACT OF COMPETITIVE FLOW ON HEMODYNAMICS OF LIMA-LAD GRAFTING WITH DIFFERENT STENOSIS: A NUMERICAL STUDY. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750040.	0.7	5
171	Accurate quantification of vessel cross-sectional area using CT angiography: a simulation study. International Journal of Cardiovascular Imaging, 2017, 33, 411-419.	1.5	6
172	The conical stent in coronary artery improves hemodynamics compared with the traditional cylindrical stent. International Journal of Cardiology, 2017, 227, 166-171.	1.7	16
173	HEMODYNAMICS-BASED LONG-TERM PATENCY OF DIFFERENT SEQUENTIAL GRAFTING: A PATIENT-SPECIFIC MULTI-SCALE STUDY. Journal of Mechanics in Medicine and Biology, 2017, 17, 1750017.	0.7	2
174	Is FFR CT Ready to Assume the Crown Jewels of Invasive FFR? â^—. JACC: Cardiovascular Imaging, 2017, 10, 434-436.	5.3	3
175	The effect of blood pressure on non-invasive fractional flow reserve derived from coronary computed tomography angiography. European Radiology, 2017, 27, 1416-1423.	4.5	12
176	Behaviour of two typical stents towards a new stent evolution. Medical and Biological Engineering and Computing, 2017, 55, 1019-1037.	2.8	6
177	Hemodynamics analysis of the serial stenotic coronary arteries. BioMedical Engineering OnLine, 2017, 16, 127.	2.7	20
178	Patient-Specific, Multi-Scale Modeling of Neointimal Hyperplasia in Vein Grafts. Frontiers in Physiology, 2017, 8, 226.	2.8	26
180	Noninvasive Fractional Flow Reserve Derived From Coronary Computed Tomography Angiography ― Is This Just Another New Diagnostic Test or the Long-Awaited Game Changer? ―. Circulation Journal, 2017, 81, 1085-1093.	1.6	7
181	Coronary CT Angiography–derived Fractional Flow Reserve: Machine Learning Algorithm versus Computational Fluid Dynamics Modeling. Radiology, 2018, 288, 64-72.	7.3	165
182	Estimating current and long-term risks of coronary artery in silico by fractional flow reserve, wall shear stress and low-density lipoprotein filtration rate. Biomedical Physics and Engineering Express, 2018, 4, 025006.	1.2	18
183	A patient-specific lumped-parameter model of coronary circulation. Scientific Reports, 2018, 8, 874.	3.3	54

#	Article	IF	CITATIONS
184	The numerical study on specialized treatment strategies of enhanced external counterpulsation for cardiovascular and cerebrovascular disease. Medical and Biological Engineering and Computing, 2018, 56, 1959-1971.	2.8	11
185	Development of an adaptive pulmonary simulator for in vitro analysis of patient populations and patient-specific data. Computer Methods and Programs in Biomedicine, 2018, 161, 93-102.	4.7	4
186	Estimating the accuracy of a reducedâ€order model for the calculation of fractional flow reserve (FFR). International Journal for Numerical Methods in Biomedical Engineering, 2018, 34, e2908.	2.1	54
187	Diagnostic efficacy of fractional flow reserve with coronary angiography in dual-source computed tomography scanner. Acta Cardiologica, 2018, 73, 76-83.	0.9	2
188	An Outflow Boundary Condition Model for Noninvasive Prediction of Fractional Flow Reserve in Diseased Coronary Arteries. Journal of Biomechanical Engineering, 2018, 140, .	1.3	3
189	A numerical study of the hemodynamic effect of the aortic valve on coronary flow. Biomechanics and Modeling in Mechanobiology, 2018, 17, 319-338.	2.8	15
190	Margination and adhesion of micro- and nanoparticles in the coronary circulation: a step towards optimised drug carrier design. Biomechanics and Modeling in Mechanobiology, 2018, 17, 205-221.	2.8	26
191	A Re-Engineered Software Interface and Workflow for the Open-Source SimVascular Cardiovascular Modeling Package. Journal of Biomechanical Engineering, 2018, 140, .	1.3	75
192	Virtual medicine: Utilization of the advanced cardiac imaging patient avatar for procedural planning and facilitation. Journal of Cardiovascular Computed Tomography, 2018, 12, 16-27.	1.3	16
193	Computational Fluid Modeling to Understand the Role of Anatomy in Bifurcation Lesion Disease. , 2018, , .		1
194	The Study of the Graft Hemodynamics with Different Instant Patency in Coronary Artery Bypassing Grafting. CMES - Computer Modeling in Engineering and Sciences, 2018, 116, 229-245.	1.1	3
195	Studying The Sensitivity Of Coronary Blood Flow Using Nondimensional Analysis. , 2018, 2018, 2349-2353.		0
196	Uncertainty Quantification and Sensitivity Analysis for Computational FFR Estimation in Stable Coronary Artery Disease. Cardiovascular Engineering and Technology, 2018, 9, 597-622.	1.6	39
197	Impact of annular and supra-annular CoreValve deployment locations on aortic and coronary artery hemodynamics. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 86, 131-142.	3.1	37
198	Application of Patient-Specific Computational Fluid Dynamics in Coronary and Intra-Cardiac Flow Simulations: Challenges and Opportunities. Frontiers in Physiology, 2018, 9, 742.	2.8	77
199	Comparison of Computed Tomography derived Fractional Flow Reserve to invasive Fractional Flow Reserve in Diagnosis of Functional Coronary Stenosis: A Meta-Analysis. Scientific Reports, 2018, 8, 11535.	3.3	15
200	A new CFD based non-invasive method for functional diagnosis of coronary stenosis. BioMedical Engineering OnLine, 2018, 17, 36.	2.7	22
201	Modeling of cardiovascular circulation for the early detection of coronary arterial blockage. Mathematical Biosciences, 2018, 304, 79-88.	1.9	7

#	Article	IF	CITATIONS
202	Non-invasive instantaneous wave-free ratio using coronary CT angiography: diagnostic performance for evaluation of ischaemia-causing coronary stenosis confirmed by invasive fractional flow reserve. Clinical Radiology, 2018, 73, 983.e15-983.e22.	1.1	1
203	Effect of aortic spiral blood flow on wall shear stress in stenosed left main coronary arteries with varying take-off angle, stenosis severity and eccentricity. Journal of Mechanical Science and Technology, 2018, 32, 4003-4011.	1.5	9
204	Numerical analysis of the pressure drop across highly-eccentric coronary stenoses: application to the calculation of the fractional flow reserve. BioMedical Engineering OnLine, 2018, 17, 67.	2.7	12
205	Aortic Expansion Induces Lumen Narrowing in Anomalous Coronary Arteries: A Parametric Structural Finite Element Analysis. Journal of Biomechanical Engineering, 2018, 140, .	1.3	13
206	Comparison of Computational Fluid Dynamics and Machine Learning–Based Fractional Flow Reserve in Coronary Artery Disease. Circulation: Cardiovascular Imaging, 2018, 11, e007950.	2.6	8
207	Domain decomposition based parallel computing for multi-scale coronary blood flow simulations. Computers and Fluids, 2019, 191, 104254.	2.5	8
208	Influence of coronary bifurcation angle on atherosclerosis. Acta Mechanica Sinica/Lixue Xuebao, 2019, 35, 1269-1278.	3.4	7
209	Nonâ€invasive coronary CT angiographyâ€derived fractional flow reserve: A benchmark study comparing the diagnostic performance of four different computational methodologies. International Journal for Numerical Methods in Biomedical Engineering, 2019, 35, e3235.	2.1	35
210	HEMODYNAMIC MECHANISM OF "BLOOD STOLEN―PHENOMENON IN CORONARY ARTERY ANEURYSM. Journal of Mechanics in Medicine and Biology, 2019, 19, 1950033.	0.7	1
211	Parameter estimation to study the immediate impact of aortic crossâ€clamping using reduced order models. International Journal for Numerical Methods in Biomedical Engineering, 2019, 37, e3261.	2.1	1
212	Fractional flow reserve-based 4D hemodynamic simulation of time-resolved blood flow in left anterior descending coronary artery. Clinical Biomechanics, 2019, 70, 164-169.	1.2	10
213	Long-term hemodynamic mechanism of enhanced external counterpulsation in the treatment of coronary heart disease: a geometric multiscale simulation. Medical and Biological Engineering and Computing, 2019, 57, 2417-2433.	2.8	10
214	Hemodynamic variables in aneurysms are associated with thrombotic risk in children with Kawasaki disease. International Journal of Cardiology, 2019, 281, 15-21.	1.7	40
215	Advances in cardiovascular imaging. Current Opinion in Biomedical Engineering, 2019, 9, A3.	3.4	0
216	Coronary CT Angiography as the Gatekeeper to the Cath Lab: Where Are We?. Contemporary Medical Imaging, 2019, , 849-857.	0.4	0
217	Development of a Computational Fluid Dynamics (CFD)-Model of the Arterial Epicardial Vasculature. Lecture Notes in Computer Science, 2019, , 219-229.	1.3	1
218	Myocardial Blood Flow Quantification With Dynamic Contrast-Enhanced Computed Tomography. Circulation: Cardiovascular Imaging, 2019, 12, e009431.	2.6	1
219	Model-based management of cardiovascular failure: Where medicine and control systems converge. Annual Reviews in Control, 2019, 48, 383-391.	7.9	16

#	Article	IF	CITATIONS
220	One-dimensional modeling of fractional flow reserve in coronary artery disease: Uncertainty quantification and Bayesian optimization. Computer Methods in Applied Mechanics and Engineering, 2019, 353, 66-85.	6.6	28
221	Relevance of anatomical, plaque, and hemodynamic characteristics of non-obstructive coronary lesions in the prediction of risk for acute coronary syndrome. European Radiology, 2019, 29, 6119-6128.	4.5	20
222	Impact of predictive medicine on therapeutic decision making: a randomized controlled trial in congenital heart disease. Npj Digital Medicine, 2019, 2, 17.	10.9	5
223	Evaluation of fractional flow reserve in patients with stable angina: can CT compete with angiography?. European Radiology, 2019, 29, 3669-3677.	4.5	17
224	Suitability of lattice Boltzmann inlet and outlet boundary conditions for simulating flow in imageâ€derived vasculature. International Journal for Numerical Methods in Biomedical Engineering, 2019, 35, e3198.	2.1	19
225	Fluid–structure interaction between pulsatile blood flow and a curved stented coronary artery on a beating heart: A four stent computational study. Computer Methods in Applied Mechanics and Engineering, 2019, 350, 679-700.	6.6	33
226	Impact of Inflow Boundary Conditions on the Calculation of CT-Based FFR. Fluids, 2019, 4, 60.	1.7	14
227	Numerical Study of Incomplete Stent Apposition Caused by Deploying Undersized Stent in Arteries With Elliptical Cross Sections. Journal of Biomechanical Engineering, 2019, 141, .	1.3	3
228	Practical Clinical Application of Cardiac Computed Tomography–Derived Fractional Flow Reserve. Cardiovascular Innovations and Applications, 2019, 4, .	0.3	0
229	Lumped parameter model based surgical planning for CABG. Medicine in Novel Technology and Devices, 2019, 2, 100014.	1.6	6
230	A phantom based evaluation of vessel lumen area quantification for coronary CT angiography. International Journal of Cardiovascular Imaging, 2019, 35, 551-557.	1.5	3
231	Uncertainty quantification of simulated biomechanical stimuli in coronary artery bypass grafts. Computer Methods in Applied Mechanics and Engineering, 2019, 345, 402-428.	6.6	22
232	In silico study of patient-specific magnetic drug targeting for a coronary LAD atherosclerotic plaque. International Journal of Pharmaceutics, 2019, 559, 113-129.	5.2	25
233	Reduced Order Models for Transstenotic Pressure Drop in the Coronary Arteries. Journal of Biomechanical Engineering, 2019, 141, .	1.3	30
234	Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: A mechanical point of view. Biocybernetics and Biomedical Engineering, 2019, 39, 188-198.	5.9	25
235	Review of Patient-Specific Vascular Modeling: Template-Based Isogeometric Framework and the Case for CAD. Archives of Computational Methods in Engineering, 2019, 26, 381-404.	10.2	26
236	Numerical Simulation of Instantaneous Wave-Free Ratio of Stenosed Coronary Artery. International Journal of Computational Methods, 2019, 16, 1842009.	1.3	5
237	Competitive Flow Effects of Internal Mammary Artery Bypass with Different Coronary Stenosis Lengths. International Journal of Computational Methods, 2019, 16, 1842013.	1.3	4

#	Article	IF	CITATIONS
238	Coronary circulation: Pressure/flow parameters for assessment of ischemic heart disease. Journal of Nuclear Cardiology, 2019, 26, 459-470.	2.1	6
239	A Method to Personalize the Lumped Parameter Model of Coronary Artery. International Journal of Computational Methods, 2019, 16, 1842004.	1.3	22
240	Effect of Wall Elasticity on Hemodynamics and Wall Shear Stress in Patient-Specific Simulations in the Coronary Arteries. Journal of Biomechanical Engineering, 2020, 142, .	1.3	41
241	Machine-Learning CT-FFR and ExtensiveÂCoronary Calcium. JACC: Cardiovascular Imaging, 2020, 13, 771-773.	5.3	6
242	Personalized mathematical model of human arm arteries with inflow boundary condition. European Physical Journal Plus, 2020, 135, 1.	2.6	5
243	Integrating Patient-Specific Electrocardiogram Signals and Image-Based Computational Fluid Dynamics Method to Analyze Coronary Blood Flow in Patients during Cardiac Arrhythmias. Journal of Medical and Biological Engineering, 2020, 40, 264-272.	1.8	3
244	Assessment of Dynamic Change of Coronary Artery Geometry and Its Relationship to Coronary Artery Disease, Based on Coronary CT Angiography. Journal of Digital Imaging, 2020, 33, 480-489.	2.9	5
245	On outflow boundary conditions for CT-based computation of FFR: Examination using PET images. Medical Engineering and Physics, 2020, 76, 79-87.	1.7	15
246	Influence of contrast agent dispersion on bolusâ€based MRI myocardial perfusion measurements: A computational fluid dynamics study. Magnetic Resonance in Medicine, 2020, 84, 467-483.	3.0	2
247	Coronary artery plaque growth: A twoâ€way coupled shear stress–driven model. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3293.	2.1	14
248	A computational fluid dynamics study pre- and post-fistula closure in a coronary artery fistula. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 33-42.	1.6	5
249	Computational Modeling and Personalized Surgery. , 2020, , 155-175.		2
250	A review study on blood in human coronary artery: Numerical approach. Computer Methods and Programs in Biomedicine, 2020, 187, 105243.	4.7	49
251	Fluid structure interaction modelling of aortic valve stenosis: Effects of valve calcification on coronary artery flow and aortic root hemodynamics. Computer Methods and Programs in Biomedicine, 2020, 196, 105647.	4.7	16
252	Coronary Embolic Phenomena: High-Impact, Low-Frequency Events. , 2020, , .		1
253	An Introductory Overview of Image-Based Computational Modeling in Personalized Cardiovascular Medicine. Frontiers in Bioengineering and Biotechnology, 2020, 8, 529365.	4.1	9
254	Generating wall shear stress for coronary artery in real-time using neural networks: Feasibility and initial results based on idealized models. Computers in Biology and Medicine, 2020, 126, 104038.	7.0	15
255	Quantification of effects of mean blood pressure and left ventricular mass on noninvasive fast fractional flow reserve. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H360-H369.	3.2	6

#	Article	IF	CITATIONS
256	Emerging 3D technologies and applications within congenital heart disease: teach, predict, plan andÂguide. Future Cardiology, 2020, 16, 695-709.	1.2	8
257	Method to simulate distal flow resistance in coronary arteries in 3D printed patient specific coronary models. 3D Printing in Medicine, 2020, 6, 19.	3.1	12
258	Physiology and coronary artery disease: emerging insights from computed tomography imaging based computational modeling. International Journal of Cardiovascular Imaging, 2020, 36, 2319-2333.	1.5	9
259	Data-Driven Pulsatile Blood Flow Physics with Dynamic Mode Decomposition. Fluids, 2020, 5, 111.	1.7	25
260	Hemodynamics of a stenosed aortic valve: Effects of the geometry of the sinuses and the positions of the coronary ostia. International Journal of Mechanical Sciences, 2020, 188, 106015.	6.7	5
261	Hemodynamic-Based Evaluation on Thrombosis Risk of Fusiform Coronary Artery Aneurysms Using Computational Fluid Dynamic Simulation Method. Complexity, 2020, 2020, 1-11.	1.6	3
262	A zero-dimensional predictive model for the pressure drop in the stenotic coronary artery based on its geometric characteristics. Journal of Biomechanics, 2020, 113, 110076.	2.1	7
263	A patient-specific modelling method of blood circulatory system for the numerical simulation of enhanced external counterpulsation. Journal of Biomechanics, 2020, 111, 110002.	2.1	17
264	Diagnostic performance of virtual fractional flow reserve derived from routine coronary angiography using segmentation free reduced order (1-dimensional) flow modelling. JRSM Cardiovascular Disease, 2020, 9, 204800402096757.	0.7	2
265	Validation and Diagnostic Performance of a CFD-Based Non-invasive Method for the Diagnosis of Aortic Coarctation. Frontiers in Neuroinformatics, 2020, 14, 613666.	2.5	3
266	Identifying personalized parameters for left ventricle model of the heart. European Physical Journal Plus, 2020, 135, 1.	2.6	0
267	Patient-specific 3D-printed coronary models based on coronary computed tomography angiography volumes to investigate flow conditions in coronary artery disease. Biomedical Physics and Engineering Express, 2020, 6, 045007.	1.2	10
268	EFFECT OF HEMODYNAMIC PARAMETERS ON FRACTIONAL FLOW RESERVE. Journal of Mechanics in Medicine and Biology, 2020, 20, 2050017.	0.7	3
269	Role of Occlusion Position in Coronary Artery Fistulas with Terminal Aneurysms: A Hemodynamic Perspective. Cardiovascular Engineering and Technology, 2020, 11, 394-404.	1.6	10
270	Ultrasound Deep Learning for Wall Segmentation and Near-Wall Blood Flow Measurement. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2022-2032.	3.0	9
271	Evaluation of hemodynamic parameters to study the variation of artery wall properties. Materials Today: Proceedings, 2020, 22, 1702-1709.	1.8	0
272	Virtual FFR Quantified with a Generalized Flow Model Using Windkessel Boundary Conditions. Computational and Mathematical Methods in Medicine, 2020, 2020, 1-14.	1.3	4
273	Physics driven real-time blood flow simulations. Computer Methods in Applied Mechanics and Engineering, 2020, 364, 112963.	6.6	12

#	Article	IF	CITATIONS
274	THE COMPARISON OF VENOUS SEQUENTIAL AND NORMAL GRAFT PATENCY BASED ON HEMODYNAMICS. Journal of Mechanics in Medicine and Biology, 2020, 20, 1950080.	0.7	3
275	The effect of hemodynamic parameters in patient-based coronary artery models with serial stenoses: normal and hypertension cases. Computer Methods in Biomechanics and Biomedical Engineering, 2020, 23, 467-475.	1.6	12
276	High precision invasive FFR , lowâ€cost invasive iFR , or nonâ€invasive CFR ?: optimum assessment of coronary artery stenosis based on the patientâ€specific computational models. International Journal for Numerical Methods in Biomedical Engineering, 2020, 36, e3382.	2.1	11
277	An experimental model for pressure drop evaluation in a stenosed coronary artery. Physics of Fluids, 2020, 32, .	4.0	20
278	Hemodynamic Mechanism of Coronary Artery Aneurysm High Occurrence on Right Coronary Artery. Frontiers in Physiology, 2020, 11, 323.	2.8	10
279	Future Directions in Coronary CT Angiography: CT-Fractional Flow Reserve, Plaque Vulnerability, and Quantitative Plaque Assessment. Korean Circulation Journal, 2020, 50, 185.	1.9	11
280	Patient-Specific Numerical Analysis of Coronary Flow in Children With Intramural Anomalous Aortic Origin of Coronary Arteries. Seminars in Thoracic and Cardiovascular Surgery, 2021, 33, 155-167.	0.6	18
281	Validation of Wall Shear Stress Assessment in Non-invasive Coronary CTA versus Invasive Imaging: A Patient-Specific Computational Study. Annals of Biomedical Engineering, 2021, 49, 1151-1168.	2.5	16
282	Computational investigation of left ventricular hemodynamics following bioprosthetic aortic and mitral valve replacement. Mechanics Research Communications, 2021, 112, 103604.	1.8	39
283	Multiscale modeling of blood flow to assess neurological complications in patients supported by venoarterial extracorporeal membrane oxygenation. Computers in Biology and Medicine, 2021, 129, 104155.	7.0	12
284	Myocardial Perfusion Simulation for Coronary Artery Disease: A Coupled Patient-Specific Multiscale Model. Annals of Biomedical Engineering, 2021, 49, 1432-1447.	2.5	25
285	Patient-Specific Bicuspid Aortic Valve Biomechanics: A Magnetic Resonance Imaging Integrated Fluid–Structure Interaction Approach. Annals of Biomedical Engineering, 2021, 49, 627-641.	2.5	28
286	Left Ventricular Assist Device Flow Pattern Analysis Using a Novel Model Incorporating Left Ventricular Pulsatility. ASAIO Journal, 2021, 67, 724-732.	1.6	10
287	Blood Flow Modeling in Coronary Arteries: A Review. Fluids, 2021, 6, 53.	1.7	34
288	A Next-Generation Mathematical Model for Drug-Eluting Stents. SIAM Journal on Applied Mathematics, 2021, 81, 1503-1529.	1.8	5
289	The Role of Extra-Coronary Vascular Conditions that Affect Coronary Fractional Flow Reserve Estimation. Lecture Notes in Computer Science, 2021, , 595-604.	1.3	0
290	A 2-year investigation of the impact of the computed tomography–derived fractional flow reserve calculated using a deep learning algorithm on routine decision-making for coronary artery disease management. European Radiology, 2021, 31, 7039-7046.	4.5	21
291	Objectâ€Oriented Lumpedâ€Parameter Modeling of the Cardiovascular System for Physiological and Pathophysiological Conditions. Advanced Theory and Simulations, 2021, 4, 2000216.	2.8	11

#	Article	IF	CITATIONS
292	The Hemodynamic Mechanism of FFR-Guided Coronary Artery Bypass Grafting. Frontiers in Physiology, 2021, 12, 503687.	2.8	9
293	Correlation of Computational Instantaneous Wave-Free Ratio With Fractional Flow Reserve for Intermediate Multivessel Coronary Disease. Journal of Biomechanical Engineering, 2021, 143, .	1.3	6
294	Toward a realistic reconstruction and determination of blood flow pattern in complex vascular network: 3D, non-Newtonian, multi-branch simulation based on CFD and GMDH algorithm. International Communications in Heat and Mass Transfer, 2021, 122, 105185.	5.6	6
295	The impact of hemodynamic factors in a coronary main artery to detect the atherosclerotic severity: Single and multiple sequential stenosis cases. Physics of Fluids, 2021, 33, .	4.0	14
296	JCS 2018 Guideline on Diagnosis of Chronic Coronary Heart Diseases. Circulation Journal, 2021, 85, 402-572.	1.6	52
297	Flow topology and targeted drug delivery in cardiovascular disease. Journal of Biomechanics, 2021, 119, 110307.	2.1	18
298	The implications of two outlet boundary conditions on blood flow simulations in normal aorta of pediatric subjects. Theoretical and Computational Fluid Dynamics, 2021, 35, 419-436.	2.2	1
299	A Numerical Model for Simulating the Hemodynamic Effects of Enhanced External Counterpulsation on Coronary Arteries. Frontiers in Physiology, 2021, 12, 656224.	2.8	4
300	Novel Non-invasive Fractional Flow Reserve from Coronary CT Angiography to Determine Ischemic Coronary Stenosis. US Cardiology Review, 0, 15, .	0.5	1
301	Optical Coherence Tomography-Based Patient-Specific Residual Multi-Thrombus Coronary Plaque Models With Fluid–Structure Interaction for Better Treatment Decisions: A Biomechanical Modeling Case Study. Journal of Biomechanical Engineering, 2021, 143, .	1.3	2
302	Functional assessment of coronary plaques using CT based hemodynamic simulations: Current status, technical principles and clinical value. Imaging, 2021, 13, 37-48.	0.3	1
303	Clinical application of computed tomography angiography and fractional flow reserve computed tomography in patients with coronary artery disease: A meta-analysis based on pre- and post-test probability. European Journal of Radiology, 2021, 139, 109712.	2.6	2
304	On the Periodicity of Cardiovascular Fluid Dynamics Simulations. Annals of Biomedical Engineering, 2021, 49, 3574-3592.	2.5	14
305	Coronary CT angiography-based estimation of myocardial perfusion territories for coronary artery FFR and wall shear stress simulation. Scientific Reports, 2021, 11, 13855.	3.3	4
306	A fast algebraic approach for noninvasive prediction of fractional flow reserve in coronary arteries. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24, 1761-1793.	1.6	0
307	Hemodynamic Characteristics of Patients With Suspected Coronary Heart Disease at Their Initial Visit. Frontiers in Physiology, 2021, 12, 714438.	2.8	4
308	Computational Assessment of Hemodynamic Significance in Patients With Intramural Anomalous Aortic Origin of the Coronary Artery Using Virtually Derived Fractional Flow Reserve and Downstream Microvascular Resistance. Journal of Biomechanical Engineering, 2022, 144, .	1.3	5
310	Segmentary strategy in modeling of cardiovascular system with blood supply to regional skin. Biocybernetics and Biomedical Engineering, 2021, 41, 1505-1517.	5.9	3

#	Article	IF	CITATIONS
311	A 1D–3D Hybrid Model of Patient-Specific Coronary Hemodynamics. Cardiovascular Engineering and Technology, 2022, 13, 331-342.	1.6	6
312	Closed-loop geometric multi-scale heart-coronary artery model for the numerical calculation of fractional flow reserve. Computer Methods and Programs in Biomedicine, 2021, 208, 106266.	4.7	8
313	An improved reduced-order model for pressure drop across arterial stenoses. PLoS ONE, 2021, 16, e0258047.	2.5	8
314	Hemodynamic analysis of hepatic arteries for the early evaluation of hepatic fibrosis in biliary atresia. Computer Methods and Programs in Biomedicine, 2021, 211, 106400.	4.7	3
315	Geometric uncertainty in patient-specific cardiovascular modeling with convolutional dropout networks. Computer Methods in Applied Mechanics and Engineering, 2021, 386, 114038.	6.6	9
316	Effect of Material and Population on the Delivery of Nanoparticles to an Atherosclerotic Plaque: A Patient-specific <i>In Silico</i> Study. Langmuir, 2021, 37, 1551-1562.	3.5	12
317	Multiscale Modelling of Cardiac Perfusion. Modeling, Simulation and Applications, 2015, , 51-96.	1.3	8
318	The Story of Wall Shear Stress in Coronary Artery Atherosclerosis: Biochemical Transport and Mechanotransduction. Journal of Biomechanical Engineering, 2021, 143, .	1.3	31
319	Impact of Coronary Tortuosity on Coronary Blood Supply: A Patient-Specific Study. PLoS ONE, 2013, 8, e64564.	2.5	29
320	Simplified Models of Non-Invasive Fractional Flow Reserve Based on CT Images. PLoS ONE, 2016, 11, e0153070.	2.5	44
321	Fractional Flow Reserve Derived from Coronary Imaging and Computational Fluid Dynamics. Interventional Cardiology Review, 2014, 9, 145.	1.6	8
323	Computational blood flow simulations in Kawasaki disease patients: Insight into coronary artery aneurysm hemodynamics. Clobal Cardiology Science & Practice, 2018, 2017, e201729.	0.4	10
324	Hemodynamics of Enhanced External Counterpulsation with Different Coronary Stenosis. CMES - Computer Modeling in Engineering and Sciences, 2018, 116, 149-162.	1.1	1
325	An evaluation of dynamic outlet boundary conditions in a 1D fluid dynamics model. Mathematical Biosciences and Engineering, 2012, 9, 61-74.	1.9	4
326	Reversal of flow between serial bifurcation lesions: insights from computational fluid dynamic analysis in a population-based phantom model. EuroIntervention, 2015, 11, e1-e3.	3.2	13
327	Non-invasive fractional flow reserve: scientific basis, methods and perspectives. EuroIntervention, 2012, 8, 511-519.	3.2	33
328	Fast virtual functional assessment of intermediate coronary lesions using routine angiographic data and blood flow simulation in humans: comparison with pressure wire – fractional flow reserve. EuroIntervention, 2014, 10, 574-583.	3.2	136
	A Personalized Pulmonary Circulation Model to Non-Invasively Calculate Fractional Flow Reserve for		

	CITATION REP	Citation Report	
Article		IF	CITATIONS
CT-based fractional flow reserve: development and expanded application. Global Cardio Practice, 2021, 2021, e202120.	ology Science &	0.4	2
Systematic Review and Regression Modeling of the Effects of Age, Body Size, and Exer Cardiovascular Parameters in Healthy Adults. Cardiovascular Engineering and Technolo	cise on gy, 2021, , 1.	1.6	0
Clinical and hemodynamic insights into the use of internal iliac artery balloon occlusior prophylactic technique for treating postpartum hemorrhage. Journal of Biomechanics, 110827.	1 as a 2021, 129,	2.1	3
Hemodynamic Alterations Associated with Coronary and Cerebral Arterial Remodeling Surgically-Induced Aortic Coarctation. , 2013, , 203-216.	Following a		0
Patient-Specific Imaging-Based Techniques for Optimization of Pediatric Cardiovascula , 3471-3490.	r Surgery. , 2014,		0
The Hemodynamics of Cerebral Aneurysms : Recent Developments and Future Prospec Patient-specific Modeling and Blood Simulation. Japanese Journal of Neurosurgery, 201	ts in the .4, 23, 710-715.	0.0	0
Integration of an Electrophysiologically Driven Heart Model into Three-Dimensional Had Simulation Using the CRIMSON Control Systems Framework. , 2016, , 155-166.	emodynamics		2
Non-Invasive Fractional Flow Reserve Estimation with Coronary Computed Tomograph MOJ Anatomy & Physiology, 2016, 2, .	y Angiography.	0.2	1
Computational Modeling of the Human Cardiovascular System. , 2017, , 1-11.			0
Method comparison for cardiac image registration of coronary computed tomography and 3-D echocardiography. Journal of Medical Imaging, 2018, 5, 1.	angiography	1.5	2
OBSOLETE: Imaging: CT Scanning of the Heart and Great Vessels. , 2018, , .			0
Imaging: CT Scanning of the Heart and Great Vessels. , 2018, , 12-34.			ο
Computational Human Models in Cardiovascular Imaging: From Design to Generations Bioengineering, 2020, , 65-99.	. Series in	0.6	0
A Hemodynamic-Based Evaluation of Applying Different Types of Coronary Artery Bypa Coronary Artery Aneurysms. Complexity, 2020, 2020, 1-10.	ss Grafts to	1.6	2
The functional limits of the aneurysmal aortic root. A unique pressure testing apparatu Cardiothoracic Surgery, 2020, 15, 259.	s. Journal of	1.1	1
Borderline Lesion Evaluation: CT-FFR. , 2020, , 39-43.			о

349	Patient-specific computational fluid dynamics analysis of transcatheter aortic root replacement with chimney coronary grafts. Interactive Cardiovascular and Thoracic Surgery, 2021, 32, 408-416.	1.1	2
350	Non-invasive functional assessment using computed tomography: when will they be ready for clinical use?. Cardiovascular Diagnosis and Therapy, 2012, 2, 106-12.	1.7	12

#

330

332

335

337

340

342

344

347

#	ARTICLE Model-based evaluation of local hemodynamic effects of enhanced external counterpulsation.	IF	CITATIONS
351	Computer Methods and Programs in Biomedicine, 2022, 214, 106540.	4.7	3
352	The Critical Role of Lumped Parameter Models in Patient-Specific Cardiovascular Simulations. Archives of Computational Methods in Engineering, 2022, 29, 2977-3000.	10.2	16
353	Hemodynamic Modeling, Medical Imaging, and Machine Learning and Their Applications to Cardiovascular Interventions. IEEE Reviews in Biomedical Engineering, 2023, 16, 403-423.	18.0	21
354	Diastolic versus systolic coronary computed tomography angiography derived fractional flow reserve for the identification of lesion-specific ischemia. European Journal of Radiology, 2022, 147, 110098.	2.6	1
355	Patient-specific fluid–structure interaction simulation of the LAD-ITA bypass graft for moderate and severe stenosis: A doubt on the fractional flow reserve-based decision. Biocybernetics and Biomedical Engineering, 2022, 42, 143-157.	5.9	2
356	Impact of coronary bifurcated vessels flow-diameter scaling laws on fractional flow reserve based on computed tomography images (FFRCT). Mathematical Biosciences and Engineering, 2022, 19, 3127-3146.	1.9	1
357	Characterization of hemodynamics in anomalous aortic origin of coronary arteries using patient-specific modeling. Journal of Biomechanics, 2022, 132, 110919.	2.1	3
358	Patient-specific fluid–structure simulations of anomalous aortic origin of right coronary arteries. JTCVS Techniques, 2022, 13, 144-162.	0.4	10
359	Thrombotic risk stratification of coronary aneurysms in Kawasaki disease patients: the study of morphology and hemodynamics. Chinese Medical Journal, 2022, 135, 2253-2255.	2.3	1
360	Colocalization of Coronary Plaque with Wall Shear Stress in Myocardial Bridge Patients. Cardiovascular Engineering and Technology, 2022, , 1.	1.6	2
361	PERSONALIZED FLOW DIVISION METHOD BASED ON THE LEFT-RIGHT CORONARY CROSS-SECTIONAL AREA. Journal of Mechanics in Medicine and Biology, 2022, 22, .	0.7	2
362	Comparison of fluid dynamics changes due to physical activity in 3D printed patient specific coronary phantoms with the Windkessel equivalent model of coronary flow. 3D Printing in Medicine, 2022, 8, 10.	3.1	0
363	A reduced unified continuum formulation for vascular fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering, 2022, 394, 114852.	6.6	3
364	Accurate Calculation of FFR Based on a Physics-Driven Fluid‣tructure Interaction Model. Frontiers in Physiology, 2022, 13, 861446.	2.8	2
367	Effect of the Coronary Arterial Diameter Derived From Coronary Computed Tomography Angiography on Fractional Flow Reserve. Journal of Computer Assisted Tomography, 2022, 46, 397-405.	0.9	1
368	Effect of microcirculatory dysfunction on coronary hemodynamics: A pilot study based on computational fluid dynamics simulation. Computers in Biology and Medicine, 2022, 146, 105583.	7.0	7
369	On inlet pressure boundary conditions for CT-based computation of fractional flow reserve: clinical measurement of aortic pressure. Computer Methods in Biomechanics and Biomedical Engineering, 2023, 26, 517-526.	1.6	3
370	Reallocation of cutaneous and global blood circulation during sauna bathing through a closed-loop model. Computer Methods and Programs in Biomedicine, 2022, 221, 106917.	4.7	1

#	Article	IF	CITATIONS
371	Numerical simulation of the blood flow through the coronary artery stenosis: Effects of varying eccentricity. Computers in Biology and Medicine, 2022, 146, 105672.	7.0	14
372	Distributed lumped parameter modeling of blood flow in compliant vessels. Journal of Biomechanics, 2022, 140, 111161.	2.1	4
373	The quantitative relationship between coronary microcirculatory resistance and myocardial ischemia in patients with coronary artery disease. Journal of Biomechanics, 2022, 140, 111166.	2.1	6
375	Study of Non-Newtonian blood flow - heat transfer characteristics in the human coronary system with an external magnetic field. Mathematical Biosciences and Engineering, 2022, 19, 9550-9570.	1.9	4
376	A Novel Method to Determine the Cause of Left Internal Mammary Artery Instant Non-Patency Based on Transit Time Flow Measurement. Frontiers in Physiology, 0, 13, .	2.8	1
377	Predicting hemodynamic indices in coronary artery aneurysms using response surface method: An application in Kawasaki disease. Computer Methods and Programs in Biomedicine, 2022, 224, 107007.	4.7	5
378	Non-intrusive PODI-ROM for patient-specific aortic blood flow in presence of a LVAD device. Medical Engineering and Physics, 2022, 107, 103849.	1.7	7
379	Wall Shear Stress Differences Between Arterial and Venous Coronary Artery Bypass Grafts One Month After Surgery. Annals of Biomedical Engineering, 0, , .	2.5	2
380	Automated generation of <scp>0D</scp> and <scp>1D</scp> reducedâ€order models of patientâ€specific blood flow. International Journal for Numerical Methods in Biomedical Engineering, 2022, 38, .	2.1	24
381	A Multiscale Poromechanics Model Integrating Myocardial Perfusion and the Epicardial Coronary Vessels. SIAM Journal on Applied Mathematics, 2022, 82, 1167-1193.	1.8	6
382	Blood flow modeling reveals improved collateral artery performance during the regenerative period in mammalian hearts. , 2022, 1, 775-790.		9
383	Prediction of fractional flow reserve based on reduced-order cardiovascular model. Computer Methods in Applied Mechanics and Engineering, 2022, 400, 115473.	6.6	6
384	Validation of lattice Boltzmann based software for blood flow simulations in complex patient-specific arteries against traditional CFD methods. Mathematics and Computers in Simulation, 2023, 203, 957-976.	4.4	3
386	Simulating Stenotic Conditions of the Coronary Artery in a Lumped Parameter Model of the Cardiovascular System. , 2022, , .		0
387	A Novel Radial Artery P-S Curve Model Based on Radial Vibration of Vascular Wall. Applied Sciences (Switzerland), 2022, 12, 9706.	2.5	2
388	A predictive patient-specific computational model of coronary artery bypass grafts for potential use by cardiac surgeons to guide selection of graft configurations. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	3
389	Numerical simulation of the wall shear stress distribution in a carotid artery bifurcation. Journal of Mechanical Science and Technology, 2022, 36, 5035-5046.	1.5	4
390	Development of a computational fluid dynamic model to investigate the hemodynamic impact of REBOA. Frontiers in Physiology, 0, 13, .	2.8	2

ARTICLE IF CITATIONS Deep learning-based prediction of coronary artery stenosis resistance. American Journal of 391 3.2 6 Physiology - Heart and Circulatory Physiology, 2022, 323, H1194-H1205. svMorph: Interactive Geometry-Editing Tools for Virtual Patient-Specific Vascular Anatomies. Journal 1.3 of Biomechanical Engineering, 2022, ,. Engineering Vascular Bioreactor Systems to Closely Mimic Physiological Forces <i>In Vitro</i>. Tissue 394 4.8 5 Engineering - Part B: Reviews, 2023, 29, 232-243. Data-driven synchronization-avoiding algorithms in the explicit distributed structural analysis of 4.0 soft tissue. Computational Mechanics, 2023, 71, 453-479. Machine Learning Identification Framework of Hemodynamics of Blood Flow in Patient-Specific 396 Coronary Arteries with Abnormality. Journal of Cardiovascular Translational Research, 2023, 16, 2.4 2 722-737. Influence of the position of the distal pressure measurement point on the Fractional Flow Reserve using in-silico simulations. Biocybernetics and Biomedical Engineering, 2023, 43, 69-81. The effect of subbranch for the quantification of local hemodynamic environment in the coronary artery: a computed tomography angiography–based computational fluid dynamic analysis. , 2022, 2, 398 2 181-190. Long-term prognostic impact of paravalvular leakage on coronary artery disease requires 399 3.3 patient-specific quantification of hemodynamics. Scientific Reports, 2022, 12, . A Novel Computational Biomechanics Framework to Model Vascular Mechanopropagation in Deep 401 3 7.6 Bone Marrow. Advanced Healthcare Materials, 2023, 12, . Left and right coronary artery blood flow distribution method based on dominant type. International 404 2.1 Journal for Numerical Methods in Biomedical Engineering, 0, , . A novel computational fluid dynamic method and validation for assessing distal cerebrovascular 405 0 4.7microcirculatory resistance. Computer Methods and Programs in Biomedicine, 2023, 230, 107338. Beyond CFD: Emerging methodologies for predictive simulation in cardiovascular health and disease. 2.7 Biophysics Reviews, 2023, 4, . Subject Specific Modelling of Aortic Flows., 2023, , 69-105. 407 1 Software-based analysis for computed tomography coronary angiography: current status and future 408 aspects., 2023,, 81-100. A high-fidelity geometric multiscale hemodynamic model for predicting myocardial ischemia. 409 4.7 1 Computer Methods and Programs in Biomedicine, 2023, 233, 107476. Influence of morphology and hemodynamics on thrombosis in kawasaki disease patients. Medicine in Novel Technology and Devices, 2023, 18, 100225. Diagnostic performance of computational fluid dynamics (CFD)-based fractional flow reserve (FFR) derived from coronary computed tomographic angiography (CCTA) for assessing functional severity 411 2.0 1 of coronary lesions. Quantitative Imaging in Medicine and Surgery, 2023, 13, 1672-1685. CFD Computation of Flow Fractional Reserve (FFR) in Coronary Artery Trees Using a Novel Physiologically Based Algorithm (PBA) Under 3D Steady and Pulsatile Flow Conditions. Bioengineering, 2023, 10, 309

#	ARTICLE	IF	CITATIONS
413	Patient-specific computational simulation of coronary artery bypass grafting. PLoS ONE, 2023, 18, e0281423.	2.5	0
414	Abnormal Wall Shear Stress Area is Correlated to Coronary Artery Bypass Graft Remodeling 1 Year After Surgery. Annals of Biomedical Engineering, 2023, 51, 1588-1601.	2.5	0
415	Workflow Comparison for Combined 4D MRI/CFD Patient-Specific Cardiovascular Flow Simulations of the Thoracic Aorta. Journal of Fluids Engineering, Transactions of the ASME, 2023, 145, .	1.5	1
416	Effect of Beta Blockers on the Hemodynamics and Thrombotic Risk of Coronary Artery Aneurysms in Kawasaki Disease. Journal of Cardiovascular Translational Research, 0, , .	2.4	1
417	Predictors of Myocardial Ischemia in Patients with Kawasaki Disease: Insights from Patient-Specific Simulations of Coronary Hemodynamics. Journal of Cardiovascular Translational Research, 2023, 16, 1099-1109.	2.4	4
418	Evaluating the Arteriotomy Size of a New Sutureless Coronary Anastomosis Using a Finite Volume Approach. Journal of Cardiovascular Translational Research, 0, , .	2.4	0
419	Time-resolved simulation of blood flow through left anterior descending coronary artery: effect of varying extent of stenosis on hemodynamics. BMC Cardiovascular Disorders, 2023, 23, .	1.7	2
420	A fast approach to estimating Windkessel model parameters for patient-specific multi-scale CFD simulations of aortic flow. Computers and Fluids, 2023, 259, 105894.	2.5	0
421	Treatment strategy of different enhanced external counterpulsation frequencies for coronary heart disease and cerebral ischemic stroke: A hemodynamic numerical simulation study. Computer Methods and Programs in Biomedicine, 2023, 239, 107640.	4.7	0
422	Impact of TAVR on coronary artery hemodynamics using clinical measurements and imageâ€based patientâ€specific in silico modeling. Scientific Reports, 2023, 13, .	3.3	2
423	Detecting lesion-specific ischemia in patients with coronary artery disease with computed tomography fractional flow reserve measured at different sites. BMC Medical Imaging, 2023, 23, .	2.7	0
424	Intravascular Imaging versus Physiological Assessment versus Biomechanics—Which Is a Better Guide for Coronary Revascularization. Diagnostics, 2023, 13, 2117.	2.6	0
425	Reducing Longâ€Term Mortality Post Transcatheter Aortic Valve Replacement Requires Systemic Differentiation of Patientâ€Specific Coronary Hemodynamics. Journal of the American Heart Association, 2023, 12, .	3.7	4
426	A novel physics-based model for fast computation of blood flow in coronary arteries. BioMedical Engineering OnLine, 2023, 22, .	2.7	2
427	A Mock Circulation Loop to Characterize In Vitro Hemodynamics in Human Systemic Arteries with Stenosis. Fluids, 2023, 8, 198.	1.7	1
428	Research on individualized distribution approach of coronary resting blood flow for noninvasive calculation of fractional flow reserve. Computer Methods and Programs in Biomedicine, 2023, 240, 107704.	4.7	0
430	Advancing Risk Stratification of Coronary Artery Aneurysms Caused by Kawasaki Disease Using Hemodynamics Analysis and Computational Fluid Dynamics. , 2023, 1, .		0
431	A comprehensive mathematical model for cardiac perfusion. Scientific Reports, 2023, 13, .	3.3	4

#	ARTICLE	IF	CITATIONS
432	A novel method for noninvasive quantification of fractional flow reserve based on the custom function. Frontiers in Bioengineering and Biotechnology, 0, 11, .	4.1	0
433	Angiography and optical coherence tomography derived shear stress: are they equivalent in my opinion?. International Journal of Cardiovascular Imaging, 2023, 39, 1953-1961.	1.5	0
434	Modified optical fiber sensors for intravital monitoring. , 2023, , .		0
435	Patient-specific modeling of blood flow in the coronary arteries. Computer Methods in Applied Mechanics and Engineering, 2023, 417, 116414.	6.6	4
436	Effect of TAVR commissural alignment on coronary flow: A fluid-structure interaction analysis. Computer Methods and Programs in Biomedicine, 2023, 242, 107818.	4.7	1
437	A simplified coronary model for diagnosis of ischemia-causing coronary stenosis. Computer Methods and Programs in Biomedicine, 2023, 242, 107862.	4.7	1
438	An open loop 0D-3D modeling of pulsatile hemodynamics for the diagnosis of a suspected coronary arterial disease with patient data. Physics of Fluids, 2023, 35, .	4.0	0
439	Lumped-parameter model as a non-invasive tool to assess coronary blood flow in AAOCA patients. Scientific Reports, 2023, 13, .	3.3	Ο
440	Hemodynamics of vascular shunts: trends, challenges, and prospects. Biophysical Reviews, 2023, 15, 1287-1301.	3.2	1
441	Experimental and numerical investigation of the stenosed coronary artery taken from the clinical setting and modeled in terms of hemodynamics. International Journal for Numerical Methods in Biomedical Engineering, 2024, 40, .	2.1	0
442	A multi-dimensional CFD framework for fast patient-specific fractional flow reserve prediction. Computers in Biology and Medicine, 2024, 168, 107718.	7.0	1
443	The influence of flow distribution strategy for the quantification of pressure- and wall shear stress-derived parameters in the coronary artery: A CTA-based computational fluid dynamics analysis. Journal of Biomechanics, 2023, 161, 111857.	2.1	0
444	A time-consistent stabilized finite element method for fluids with applications to hemodynamics. Scientific Reports, 2023, 13, .	3.3	0
445	Learning reduced-order models for cardiovascular simulations with graph neural networks. Computers in Biology and Medicine, 2024, 168, 107676.	7.0	3
446	How Computational Model May Help in Mechanism Understanding?. , 2023, , 205-215.		0
447	Non-invasive fractional flow reserve derived from reduced-order coronary model and machine learning prediction of stenosis flow resistance. Artificial Intelligence in Medicine, 2024, 147, 102744.	6.5	Ο
448	Modeling and computational fluid dynamics simulation of blood flow behavior based on MRI and CT for Atherosclerosis in Carotid Artery. Multimedia Tools and Applications, 0, , .	3.9	0
449	Using Gaussian process for velocity reconstruction after coronary stenosis applicable in positron emission particle tracking: An in-silico study. PLoS ONE, 2023, 18, e0295789.	2.5	0

#	Article	IF	CITATIONS
450	Numerical simulation of the blood flow through a pre-stenotic aneurysm in coronary artery: effects of varying heart rate. Computer Methods in Biomechanics and Biomedical Engineering, 2024, 27, 459-477.	1.6	0
451	Multi-Dimensional Modeling of Cerebral Hemodynamics: A Systematic Review. Bioengineering, 2024, 11, 72.	3.5	0
452	A comprehensive approach to prediction of fractional flow reserve from deep-learning-augmented model. Computers in Biology and Medicine, 2024, 169, 107967.	7.0	0
453	Effect of guidewire on the accuracy of trans-stenotic pressure measurement—A computational study. Physics of Fluids, 2024, 36, .	4.0	0
454	Investigation into the two-way interaction of coronary flow and heart function in coronary artery disease predicted by a computational model of autoregulation of coronary flow. Journal of Biomechanics, 2024, 164, 111970.	2.1	0
455	Review of cardiac–coronary interaction and insights from mathematical modeling. WIREs Mechanisms of Disease, 0, , .	3.3	0
456	Personalized Pressure Conditions and Calibration for a Predictive Computational Model of Coronary and Myocardial Blood Flow. Annals of Biomedical Engineering, 2024, 52, 1297-1312.	2.5	0
457	A 3D scaling law for supravalvular aortic stenosis suited for stethoscopic auscultations. Heliyon, 2024, 10, e26190.	3.2	0
458	Space-Time Reduced Basis Methods for Parametrized Unsteady Stokes Equations. SIAM Journal of Scientific Computing, 2024, 46, B1-B32.	2.8	0
459	Impact of Pressure Guidewire on Model-Based FFR Prediction. Cardiovascular Engineering and Technology, 0, , .	1.6	0
460	Assessing the impact of tear direction in coronary artery dissection on thrombosis development: A hemodynamic computational study. Computer Methods and Programs in Biomedicine, 2024, 249, 108144.	4.7	0
461	Study on the related factors of TCM constitution and hemodynamics in patients with coronary heart disease. Frontiers in Cardiovascular Medicine, 0, 11, .	2.4	0