Microglial Activation in Stroke: Therapeutic Targets

Neurotherapeutics 7, 378-391 DOI: 10.1016/j.nurt.2010.07.005

Citation Report

#	Article	IF	CITATIONS
1	The Yin and Yang of Microglia. Developmental Neuroscience, 2011, 33, 199-209.	1.0	272
2	C-Phycocyanin is neuroprotective against global cerebral ischemia/reperfusion injury in gerbils. Brain Research Bulletin, 2011, 86, 42-52.	1.4	72
3	Cysteinyl leukotriene receptor 2 is spatiotemporally involved in neuron injury, astrocytosis and microgliosis after focal cerebral ischemia in rats. Neuroscience, 2011, 189, 1-11.	1.1	38
4	The KCa3.1 Blocker TRAM-34 Reduces Infarction and Neurological Deficit in a Rat Model of Ischemia/Reperfusion Stroke. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2363-2374.	2.4	92
5	Role of sodium/hydrogen exchanger isoform 1 in microglial activation and proinflammatory responses in ischemic brains. Journal of Neurochemistry, 2011, 119, 124-135.	2.1	59
6	Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA2-IIA expression in astrocytes and microglia. Journal of Neuroinflammation, 2011, 8, 121.	3.1	136
7	Poly(ADP-ribose)polymerase-1 modulates microglial responses to amyloid \hat{I}^2 . Journal of Neuroinflammation, 2011, 8, 152.	3.1	87
8	Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. Journal of Neuroinflammation, 2011, 8, 174.	3.1	412
9	The Contribution of Mannose Binding Lectin to Reperfusion Injury after Ischemic Stroke. Current Neurovascular Research, 2011, 8, 52-63.	0.4	28
10	Heart Rate Variability Predicts Cell Death and Inflammatory Responses to Global Cerebral Ischemia. Frontiers in Physiology, 2012, 3, 131.	1.3	19
11	Molecular and Cellular Pathways as a Target of Therapeutic Hypothermia: Pharmacological Aspect. Current Neuropharmacology, 2012, 10, 80-87.	1.4	31
12	The voltage-gated proton channel Hv1 enhances brain damage from ischemic stroke. Nature Neuroscience, 2012, 15, 565-573.	7.1	207
13	Pleiotrophin promotes microglia proliferation and secretion of neurotrophic factors by activating extracellular signal-regulated kinase 1/2 pathway. Neuroscience Research, 2012, 74, 269-276.	1.0	42
14	The outdoor air pollution and brain health workshop. NeuroToxicology, 2012, 33, 972-984.	1.4	422
15	The new P2Y-like receptor G protein-coupled receptor 17 mediates acute neuronal injury and late microgliosis after focal cerebral ischemia in rats. Neuroscience, 2012, 202, 42-57.	1.1	53
16	Vimentin participates in microglia activation and neurotoxicity in cerebral ischemia. Journal of Neurochemistry, 2012, 122, 764-774.	2.1	54
17	Glial proteome changes in response to moderate hypothermia. Proteomics, 2012, 12, 2571-2583.	1.3	5
18	Intracellular Zinc Liberation: A Trigger for Oxidative Stress-Induced Toxicity to Neurons and Neuroglia. , 2012, , 191-208.		0

ITATION REDO

#	Article	IF	CITATIONS
19	Zinc homeostasis and signaling in glia. Glia, 2012, 60, 843-850.	2.5	26
20	Effects of oxygenâ€glucose deprivation on microglial mobility and viability in developing mouse hippocampal tissues. Glia, 2012, 60, 1747-1760.	2.5	38
21	Superior Neuroprotective Efficacy of LAU-0901, a Novel Platelet-Activating Factor Antagonist, in Experimental Stroke. Translational Stroke Research, 2012, 3, 154-163.	2.3	16
22	NADPH oxidases as therapeutic targets in ischemic stroke. Cellular and Molecular Life Sciences, 2012, 69, 2345-2363.	2.4	125
23	P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiology of Disease, 2012, 45, 954-961.	2.1	165
24	Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor. Journal of Neuroinflammation, 2012, 9, 31.	3.1	118
25	New Strategies in Neuroprotection and Neurorepair. Neurotoxicity Research, 2012, 21, 49-56.	1.3	14
26	Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, 2013, , .	0.8	7
27	Sex steroid hormone-mediated functional regulation of microglia-like BV-2 cells during hypoxia. Journal of Steroid Biochemistry and Molecular Biology, 2013, 138, 195-205.	1.2	57
28	Neuroprotection by gonadal steroid hormones in acute brain damage requires cooperation with astroglia and microglia. Journal of Steroid Biochemistry and Molecular Biology, 2013, 137, 71-81.	1.2	104
29	Sex, stroke, and inflammation: The potential for estrogen-mediated immunoprotection in stroke. Hormones and Behavior, 2013, 63, 238-253.	1.0	83
30	Anti-inflammatory effects of angiotensin-(1-7) in ischemic stroke. Neuropharmacology, 2013, 71, 154-163.	2.0	105
31	Effects of Ischemia and Reperfusion on Subpopulations of Rat Enteric Neurons Expressing the P2X7 Receptor. Digestive Diseases and Sciences, 2013, 58, 3429-3439.	1.1	28
32	The Role of Na+/H+ Exchanger Isoform 1 in Inflammatory Responses: Maintaining H+ Homeostasis of Immune Cells. Advances in Experimental Medicine and Biology, 2013, 961, 411-418.	0.8	28
33	Adjudin attenuates lipopolysaccharide (LPS)- and ischemia-induced microglial activation. Journal of Neuroimmunology, 2013, 254, 83-90.	1.1	50
34	Pretreatment with rosuvastatin protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress and inflammation. Brain Research, 2013, 1519, 87-94.	1.1	41
35	Chemokines and the hippocampus: A new perspective on hippocampal plasticity and vulnerability. Brain, Behavior, and Immunity, 2013, 30, 186-194.	2.0	94
36	Microglia: Key Elements in Neural Development, Plasticity, and Pathology. Journal of NeuroImmune Pharmacology, 2013, 8, 494-509.	2.1	120

#	Article	IF	CITATIONS
37	Sesamin suppresses activation of microglia and p44/42 MAPK pathway, which confers neuroprotection in rat intracerebral hemorrhage. Neuroscience, 2013, 232, 45-52.	1.1	49
38	Comparison of the therapeutic effects of bone marrow mononuclear cells and microglia for permanent cerebral ischemia. Behavioural Brain Research, 2013, 250, 222-229.	1.2	30
39	Gap Junction-Mediated Neuroprotection. , 2013, , 231-246.		2
40	Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. Journal of Nutritional Biochemistry, 2013, 24, 298-310.	1.9	163
41	Stroke Neuroprotection: Oestrogen and <scp>Insulinâ€Like Growth Factor</scp> â€1 Interactions and the Role of Microglia. Journal of Neuroendocrinology, 2013, 25, 1173-1181.	1.2	43
42	Melanocortins As Innovative Drugs for Ischemic Diseases and Neurodegenerative Disorders: Established Data and Perspectives. Current Medicinal Chemistry, 2013, 20, 735-750.	1.2	7
43	Neuroprotection for Ischemic Stroke: Moving Past Shortcomings and Identifying Promising Directions. International Journal of Molecular Sciences, 2013, 14, 1890-1917.	1.8	33
44	HAMI 3379, a CysLT2 Receptor Antagonist, Attenuates Ischemia-Like Neuronal Injury by Inhibiting Microglial Activation. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 328-341.	1.3	43
45	Non-Coding RNAs as Potential Neuroprotectants against Ischemic Brain Injury. Brain Sciences, 2013, 3, 360-395.	1.1	37
46	Stroke: Pathophysiology and Therapy. Colloquium Series on Integrated Systems Physiology From Molecule To Function, 2013, 5, 1-91.	0.3	0
47	Inflammatory responses in hypoxic ischemic encephalopathy. Acta Pharmacologica Sinica, 2013, 34, 1121-1130.	2.8	196
48	Gua Lou Gui Zhi decoction suppresses LPS-induced activation of the TLR4/NF-κB pathway in BV-2 murine microglial cells. International Journal of Molecular Medicine, 2013, 31, 1327-1332.	1.8	24
49	Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury. Journal of Clinical Investigation, 2013, 123, 782-6.	3.9	140
50	Three-dimensional Confocal Analysis of Microglia/macrophage Markers of Polarization in Experimental Brain Injury. Journal of Visualized Experiments, 2013, , .	0.2	43
51	Hypoxia Antagonizes Glucose Deprivation on Interleukin 6 Expression in an Akt Dependent, but HIF-1/2α Independent Manner. PLoS ONE, 2013, 8, e58662.	1.1	14
52	Microglial P2Y12 Deficiency/Inhibition Protects against Brain Ischemia. PLoS ONE, 2013, 8, e70927.	1.1	90
53	Deficiency in Serine Protease Inhibitor Neuroserpin Exacerbates Ischemic Brain Injury by Increased Postischemic Inflammation. PLoS ONE, 2013, 8, e63118.	1.1	37
54	Statin treatment affects cytokine release and phagocytic activity in primary cultured microglia through two separable mechanisms. Molecular Brain, 2014, 7, 85.	1.3	45

#	Article	IF	CITATIONS
55	MiR-9 promotes microglial activation by targeting MCPIP1. Nature Communications, 2014, 5, 4386.	5.8	133
56	Overexpression of Heat Shock Protein 72 Attenuates NF-κB Activation Using a Combination of Regulatory Mechanisms in Microglia. PLoS Computational Biology, 2014, 10, e1003471.	1.5	36
57	The Yin and Yang of Innate Immunity in Stroke. BioMed Research International, 2014, 2014, 1-8.	0.9	31
58	Basal CD38/cyclic ADPâ€riboseâ€dependent signaling mediates ATP release and survival of microglia by modulating connexin 43 hemichannels. Glia, 2014, 62, 943-955.	2.5	42
59	Dietary Sutherlandia and Elderberry Mitigate Cerebral Ischemia-Induced Neuronal Damage and Attenuate p47phox and Phospho-ERK1/2 Expression in Microglial Cells. ASN Neuro, 2014, 6, 175909141455494.	1.5	24
60	Inhibition of interleukinâ€1β production by extracellular acidification through the TDAG8/ <scp>cAMP</scp> pathway in mouse microglia. Journal of Neurochemistry, 2014, 129, 683-695.	2.1	44
61	Neuronal Production of Lipocalin-2 as a Help-Me Signal for Glial Activation. Stroke, 2014, 45, 2085-2092.	1.0	117
62	Phagocytosis of Microglia in the Central Nervous System Diseases. Molecular Neurobiology, 2014, 49, 1422-1434.	1.9	486
63	15-Deoxy-â^†12,14-PGJ2, by Activating Peroxisome Proliferator-Activated Receptor-Gamma, Suppresses p22phox Transcription to Protect Brain Endothelial Cells Against Hypoxia-Induced Apoptosis. Molecular Neurobiology, 2014, 50, 221-238.	1.9	13
64	Microglial Voltage-Gated Proton Channel Hv1 in Ischemic Stroke. Translational Stroke Research, 2014, 5, 99-108.	2.3	35
65	Proton-sensitive cation channels and ion exchangers in ischemic brain injury: New therapeutic targets for stroke?. Progress in Neurobiology, 2014, 115, 189-209.	2.8	98
66	Molecular dialogs between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair. Progress in Neurobiology, 2014, 115, 6-24.	2.8	168
67	Linolenic Acid Provides Multi-cellular Protective Effects After Photothrombotic Cerebral Ischemia in Rats. Neurochemical Research, 2014, 39, 1797-1808.	1.6	20
68	Microglia in Health and Disease. , 2014, , .		19
69	Delivery of iPSâ€NPCs to the Stroke Cavity within a Hyaluronic Acid Matrix Promotes the Differentiation of Transplanted Cells. Advanced Functional Materials, 2014, 24, 7053-7062.	7.8	147
70	Proteomic Quantification and Site-Mapping of <i>S</i> -Nitrosylated Proteins Using Isobaric iodoTMT Reagents. Journal of Proteome Research, 2014, 13, 3200-3211.	1.8	104
71	Gomisin A inhibits lipopolysaccharide-induced inflammatory responses in N9 microglia via blocking the NF-κB/MAPKs pathway. Food and Chemical Toxicology, 2014, 63, 119-127.	1.8	65
72	Asiaticoside attenuates memory impairment induced by transient cerebral ischemia–reperfusion in mice through anti-inflammatory mechanism. Pharmacology Biochemistry and Behavior, 2014, 122, 7-15.	1.3	72

#	Article	IF	CITATIONS
73	2,3,7,8-Tetrachlorodibenzo-p-dioxin stimulates proliferation of HAPI microglia by affecting the Akt/GSK-31²/cyclin D1 signaling pathway. Toxicology Letters, 2014, 224, 362-370.	0.4	27
74	A novel technique for morphometric quantification of subarachnoid hemorrhage-induced microglia activation. Journal of Neuroscience Methods, 2014, 229, 44-52.	1.3	18
75	Poly (I:C) therapy decreases cerebral ischaemia/reperfusion injury <i>via </i> <scp>TLR</scp> 3â€mediated prevention of Fas/ <scp>FADD</scp> interaction. Journal of Cellular and Molecular Medicine, 2015, 19, 555-565.	1.6	25
76	4â€hydroxyâ€3â€methoxyâ€acetophenoneâ€mediated longâ€lasting memory recovery, hippocampal neuroprotection, and reduction of glial cell activation after transient global cerebral ischemia in rats. Journal of Neuroscience Research, 2015, 93, 1240-1249.	1.3	7
77	Early treatment with atorvastatin exerts parenchymal and vascular protective effects in experimental cerebral ischaemia. British Journal of Pharmacology, 2015, 172, 5188-5198.	2.7	31
78	Mechanisms and Functional Significance of Stroke-Induced Neurogenesis. Frontiers in Neuroscience, 2015, 9, 458.	1.4	59
79	Oxidative and nitrative stress in neurodegeneration. Neurobiology of Disease, 2015, 84, 4-21.	2.1	204
80	Blockade of P2X7 Receptors or Pannexin-1 Channels Similarly Attenuates Postischemic Damage. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 843-850.	2.4	55
81	Mechanisms and Potential Therapeutic Applications of Microglial Activation after Brain Injury. CNS Neuroscience and Therapeutics, 2015, 21, 309-319.	1.9	95
82	Selective modulation of microglia polarization to M2 phenotype for stroke treatment. International Immunopharmacology, 2015, 25, 377-382.	1.7	145
83	TPA Immobilization on Iron Oxide Nanocubes and Localized Magnetic Hyperthermia Accelerate Blood Clot Lysis. Advanced Functional Materials, 2015, 25, 1709-1718.	7.8	61
84	Inhibition of adenosine monophosphate-activated protein kinase reduces glial cell-mediated inflammation and induces the expression of Cx43 in astroglias after cerebral ischemia. Brain Research, 2015, 1605, 1-11.	1.1	18
85	Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Deficiency Attenuates Phagocytic Activities of Microglia and Exacerbates Ischemic Damage in Experimental Stroke. Journal of Neuroscience, 2015, 35, 3384-3396.	1.7	277
86	Downregulation of Microglial Activation by Achillolide A. Planta Medica, 2015, 81, 215-221.	0.7	9
87	The Ischemic Penumbra and Cell Survival. , 2015, , 1-25.		0
88	Targeting formyl peptide receptor 2 reduces leukocyteâ€endothelial interactions in a murine model of stroke. FASEB Journal, 2015, 29, 2161-2171.	0.2	59
89	Minocycline attenuates microglial response and reduces neuronal death after cardiac arrest and cardiopulmonary resuscitation in mice. Journal of Huazhong University of Science and Technology [Medical Sciences], 2015, 35, 225-229.	1.0	12
90	Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARÎ ³ -dependent manner. Journal of Neuroinflammation, 2015, 12, 51.	3.1	159

#	Article	IF	CITATIONS
91	Cannabinoid receptor 2 attenuates microglial accumulation and brain injury following germinal matrix hemorrhage via ERK dephosphorylation inÂvivo and inÂvitro. Neuropharmacology, 2015, 95, 424-433.	2.0	25
92	Multiple therapeutic effects of progranulin on experimental acute ischaemic stroke. Brain, 2015, 138, 1932-1948.	3.7	94
93	Intranasal Delivery of Apelin-13 Is Neuroprotective and Promotes Angiogenesis After Ischemic Stroke in Mice. ASN Neuro, 2015, 7, 175909141560511.	1.5	104
94	Regulation of brain microglia by female gonadal steroids. Journal of Steroid Biochemistry and Molecular Biology, 2015, 146, 3-14.	1.2	90
95	Neuroprotective effects of apelin-13 on experimental ischemic stroke through suppression of inflammation. Peptides, 2015, 63, 55-62.	1.2	107
96	Influence of microglial activation on neuronal function in Alzheimer's and Parkinson's disease dementia. Alzheimer's and Dementia, 2015, 11, 608.	0.4	161
97	Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2. Antioxidants and Redox Signaling, 2015, 23, 460-489.	2.5	56
98	ATP Signaling in Brain: Release, Excitotoxicity and Potential Therapeutic Targets. Cellular and Molecular Neurobiology, 2015, 35, 1-6.	1.7	72
99	Targeting Glial Mitochondrial Function for Protection from Cerebral Ischemia: Relevance, Mechanisms, and the Role of MicroRNAs. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	1.9	23
100	LXW7 ameliorates focal cerebral ischemia injury and attenuates inflammatory responses in activated microglia in rats. Brazilian Journal of Medical and Biological Research, 2016, 49, e5287.	0.7	11
101	Thromboxane A2 Receptor Stimulation Enhances Microglial Interleukin-1β and NO Biosynthesis Mediated by the Activation of ERK Pathway. Frontiers in Aging Neuroscience, 2016, 8, 8.	1.7	28
102	Inflammatory mechanisms involved in brain injury following cardiac arrest and cardiopulmonary resuscitation. Biomedical Reports, 2016, 5, 11-17.	0.9	33
103	Cytokine changes in newborns with therapeutic hypothermia after hypoxic ischemic encephalopathy. Journal of Perinatology, 2016, 36, 1092-1096.	0.9	11
104	Forced treadmill exercise can induce stress and increase neuronal damage in a mouse model of global cerebral ischemia. Neurobiology of Stress, 2016, 5, 8-18.	1.9	98
105	Regulation of therapeutic hypothermia on inflammatory cytokines, microglia polarization, migration and functional recovery after ischemic stroke in mice. Neurobiology of Disease, 2016, 96, 248-260.	2.1	109
106	Regulation and role of ERK phosphorylation in glial cells following a nigrostriatal pathway injury. Brain Research, 2016, 1648, 90-100.	1.1	17
107	Autophagic flux regulates microglial phenotype according to the time of oxygen-glucose deprivation/reperfusion. International Immunopharmacology, 2016, 39, 140-148.	1.7	39
108	A sirtuin activator and an anti-inflammatory molecule—multifaceted roles of adjudin and its potential applications for aging-related diseases. Seminars in Cell and Developmental Biology, 2016, 59, 71-78.	2.3	15

#	Article	IF	CITATIONS
109	Serum- and glucocorticoid-inducible kinases in microglia. Biochemical and Biophysical Research Communications, 2016, 478, 53-59.	1.0	16
110	Inflammation: the Common Link in Brain Pathologies. , 2016, , .		1
111	Class I PI3K inhibitor ZSTK474 mediates a shift in microglial/macrophage phenotype and inhibits inflammatory response in mice with cerebral ischemia/reperfusion injury. Journal of Neuroinflammation, 2016, 13, 192.	3.1	30
112	Dynamic secondary degeneration in the spinal cord and ventral root after a focal cerebral infarction among hypertensive rats. Scientific Reports, 2016, 6, 22655.	1.6	29
113	Pharmacological Modulation of Heat Shock Protein 70 (HSP70)—Dependent Mechanisms of Endogenous Neuroprotection in Conditions of Prenatal Chronic Alcoholism by Cerebrocurin and Tiocetam. Journal of Microbiology and Biotechnology, 2016, 26, 103-108.	0.9	2
114	The potassium channel KCa3.1 constitutes a pharmacological target for neuroinflammation associated with ischemia/reperfusion stroke. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 2146-2161.	2.4	84
115	Epoxyeicosanoid Signaling Provides Multi-target Protective Effects on Neurovascular Unit in Rats After Focal Ischemia. Journal of Molecular Neuroscience, 2016, 58, 254-265.	1,1	38
116	Ginsenoside Rd Is Efficacious Against Acute Ischemic Stroke by Suppressing Microglial Proteasome-Mediated Inflammation. Molecular Neurobiology, 2016, 53, 2529-2540.	1.9	60
117	Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 93-112.	1.1	130
118	The biphasic function of microglia in ischemic stroke. Progress in Neurobiology, 2017, 157, 247-272.	2.8	529
119	Reactive astrogliosis in stroke: Contributions of astrocytes to recovery of neurological function. Neurochemistry International, 2017, 107, 88-103.	1.9	107
120	Homology analysis detects topological changes of Iba1 localization accompanied by microglial activation. Neuroscience, 2017, 346, 43-51.	1.1	6
121	Salvianolic Acids for Injection (SAFI) suppresses inflammatory responses in activated microglia to attenuate brain damage in focal cerebral ischemia. Journal of Ethnopharmacology, 2017, 198, 194-204.	2.0	47
122	Neuroprotective erythropoietin attenuates microglial activation, including morphological changes, phagocytosis, and cytokine production. Brain Research, 2017, 1662, 65-74.	1.1	25
123	Exposure to gestational diabetes mellitus induces neuroinflammation, derangement of hippocampal neurons, and cognitive changes in rat offspring. Journal of Neuroinflammation, 2017, 14, 80.	3.1	105
124	Complement Components Are Expressed by Infiltrating Macrophages/Activated Microglia Early Following Viral Infection. Viral Immunology, 2017, 30, 304-314.	0.6	7
125	Neuroprotective effect of minocycline on cognitive impairments induced by transient cerebral ischemia/reperfusion through its anti-inflammatory and anti-oxidant properties in male rat. Brain Research Bulletin, 2017, 131, 207-213.	1.4	49
126	Targeting resolution of neuroinflammation after ischemic stroke with a lipoxin A ₄ analog: Protective mechanisms and longâ€ŧerm effects on neurological recovery. Brain and Behavior, 2017, 7, e00688.	1.0	47

		15	<u></u>
#	ARTICLE	IF	CITATIONS
127	Increased expression of M1 and M2 phenotypic markers in isolated microglia after four-day binge alcohol exposure in male rats. Alcohol, 2017, 62, 29-40.	0.8	83
128	Pivotal neuroinflammatory and therapeutic role of high mobility group box 1 in ischemic stroke. Bioscience Reports, 2017, 37, .	1.1	40
129	Crosstalk between TLR2 and Sphk1 in microglia in the cerebral ischemia/reperfusion-induced inflammatory response. International Journal of Molecular Medicine, 2017, 40, 1750-1758.	1.8	22
130	Social interaction modulates the neuroinflammatory response to global cerebral ischemia in male mice. Brain Research, 2017, 1673, 86-94.	1.1	12
131	Antineuroinflammation of Minocycline in Stroke. Neurologist, 2017, 22, 120-126.	0.4	16
132	FK506 Attenuates the Inflammation in Rat Spinal Cord Injury by Inhibiting the Activation of NF-κB in Microglia Cells. Cellular and Molecular Neurobiology, 2017, 37, 843-855.	1.7	61
133	Proinflammatory Cytokines, Enolase and S-100 as Early Biochemical Indicators of Hypoxic-Ischemic Encephalopathy Following Perinatal Asphyxia in Newborns. Pediatrics and Neonatology, 2017, 58, 70-76.	0.3	38
134	CoQ10 Augments Rosuvastatin Neuroprotective Effect in a Model of Global Ischemia via Inhibition of NF-I®B/JNK3/Bax and Activation of Akt/FOXO3A/Bim Cues. Frontiers in Pharmacology, 2017, 8, 735.	1.6	27
135	Microglia and Monocytes/Macrophages Polarization Reveal Novel Therapeutic Mechanism against Stroke. International Journal of Molecular Sciences, 2017, 18, 2135.	1.8	297
136	Pathophysiology and the Monitoring Methods for Cardiac Arrest Associated Brain Injury. International Journal of Molecular Sciences, 2017, 18, 129.	1.8	42
138	Hypoxia-inducible factor-1α regulates microglial functions affecting neuronal survival in the acute phase of ischemic stroke in mice. Oncotarget, 2017, 8, 111508-111521.	0.8	43
139	Salubrinal and robenacoxib treatment after global cerebral ischemia. Exploring the interactions between ER stress and inflammation. Biochemical Pharmacology, 2018, 151, 26-37.	2.0	37
140	Role of microglia under cardiac and cerebral ischemia/reperfusion (I/R) injury. Metabolic Brain Disease, 2018, 33, 1019-1030.	1.4	53
141	Polarization of Microglia to the M2 Phenotype in a Peroxisome Proliferator-Activated Receptor Gamma–Dependent Manner Attenuates Axonal Injury Induced by Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2018, 35, 2330-2340.	1.7	68
142	FasL incapacitation alleviates CD4+ T cells-induced brain injury through remodeling of microglia polarization in mouse ischemic stroke. Journal of Neuroimmunology, 2018, 318, 36-44.	1.1	19
143	Soluble epoxide hydrolase inhibition decreases reperfusion injury after focal cerebral ischemia. Scientific Reports, 2018, 8, 5279.	1.6	38
144	Cofilin Mediates LPS-Induced Microglial Cell Activation and Associated Neurotoxicity Through Activation of NF-κB and JAK–STAT Pathway. Molecular Neurobiology, 2018, 55, 1676-1691.	1.9	63
145	Blockade and knock-out of CALHM1 channels attenuate ischemic brain damage. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1060-1069.	2.4	9

#	Article	IF	CITATIONS
146	Hyperforin protects against acute cerebral ischemic injury through inhibition of interleukin-17A-mediated microglial activation. Brain Research, 2018, 1678, 254-261.	1.1	29
147	An adenosineÃ ⁻ Âį¼2A1R-A2aR imbalance regulates low glucose/hypoxia-induced microglial activation, thereby contributing to oligodendrocyte damage through NF-κB and CREB phosphorylation. International Journal of Molecular Medicine, 2018, 41, 3559-3569.	1.8	3
148	Gender Differences in Frontotemporal Lobar Degeneration (FTLD) Support an Estrogenic Model of Delayed Onset. , 2018, , .		1
149	Particulate Matter and Cognitive Function. Journal of Korean Neuropsychiatric Association, 2018, 57, 81.	0.2	1
150	Celecoxib Treatment Improves Neurologic Deficit and Reduces Selective Neuronal Loss and Glial Response in Rats after Transient Middle Cerebral Artery Occlusion. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 528-542.	1.3	17
151	The peripheral immune response after stroke—A double edge sword for bloodâ€brain barrier integrity. CNS Neuroscience and Therapeutics, 2018, 24, 1115-1128.	1.9	59
152	Endothelial Protrusions in Junctional Integrity and Barrier Function. Current Topics in Membranes, 2018, 82, 93-140.	0.5	14
153	Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of vanillic acid. Life Sciences, 2018, 211, 126-132.	2.0	71
154	Corticosteroids and perinatal hypoxic-ischemic brain injury. Drug Discovery Today, 2018, 23, 1718-1732.	3.2	16
155	Social influences on microglial reactivity and neuronal damage after cardiac arrest/cardiopulmonary resuscitation. Physiology and Behavior, 2018, 194, 437-449.	1.0	11
156	Ac2-26 Induces IKKβ Degradation Through Chaperone-Mediated Autophagy Via HSPB1 in NCM-Treated Microglia. Frontiers in Molecular Neuroscience, 2018, 11, 76.	1.4	26
157	Targeting glycogen synthase kinase-3 for oxidative stress and neuroinflammation: Opportunities, challenges and future directions for cerebral stroke management. Neuropharmacology, 2018, 139, 124-136.	2.0	66
158	Loss of neuronal CD200 contributed to microglial activation after acute cerebral ischemia in mice. Neuroscience Letters, 2018, 678, 48-54.	1.0	24
159	RIPK3/MLKL-Mediated Neuronal Necroptosis Modulates the M1/M2 Polarization of Microglia/Macrophages in the Ischemic Cortex. Cerebral Cortex, 2018, 28, 2622-2635.	1.6	104
160	Mito-Tempo prevents nicotine-induced exacerbation of ischemic brain damage. Journal of Applied Physiology, 2018, 125, 49-57.	1.2	14
161	RAS modulation prevents progressive cognitive impairment after experimental stroke: a randomized, blinded preclinical trial. Journal of Neuroinflammation, 2018, 15, 229.	3.1	47
162	A potential gliovascular mechanism for microglial activation: differential phenotypic switching of microglia by endothelium versus astrocytes. Journal of Neuroinflammation, 2018, 15, 143.	3.1	33
163	Lysophosphatidic acid receptor 1 (LPA1) plays critical roles in microglial activation and brain damage after transient focal cerebral ischemia. Journal of Neuroinflammation, 2019, 16, 170.	3.1	31

#	Article	IF	CITATIONS
164	<p>What are the links between hypoxia and Alzheimer's disease?</p> . Neuropsychiatric Disease and Treatment, 2019, Volume 15, 1343-1354.	1.0	52
165	<p>Soluble epoxide hydrolase inhibition enhances anti-inflammatory and antioxidative processes, modulates microglia polarization, and promotes recovery after ischemic stroke</p> . Neuropsychiatric Disease and Treatment, 2019, Volume 15, 2927-2941.	1.0	14
166	Early treatment with minocycline following stroke in rats improves functional recovery and differentially modifies responses of peri-infarct microglia and astrocytes. Journal of Neuroinflammation, 2019, 16, 6.	3.1	63
167	S1P2 contributes to microglial activation and M1 polarization following cerebral ischemia through ERK1/2 and JNK. Scientific Reports, 2019, 9, 12106.	1.6	50
168	BRD4 suppression alleviates cerebral ischemia-induced brain injury by blocking glial activation via the inhibition of inflammatory response and pyroptosis. Biochemical and Biophysical Research Communications, 2019, 519, 481-488.	1.0	60
169	PRDX1 enhances cerebral ischemia-reperfusion injury through activation of TLR4-regulated inflammation and apoptosis. Biochemical and Biophysical Research Communications, 2019, 519, 453-461.	1.0	30
170	STAT1 drives M1 microglia activation and neuroinflammation under hypoxia. Archives of Biochemistry and Biophysics, 2019, 669, 22-30.	1.4	98
171	JLX001 Modulated the Inflammatory Reaction and Oxidative Stress in pMCAO Rats via Inhibiting the TLR2/4-NF-ήB Signaling Pathway. Neurochemical Research, 2019, 44, 1924-1938.	1.6	18
172	Individual in vivo Profiles of Microglia Polarization After Stroke, Represented by the Genes iNOS and Ym1. Frontiers in Immunology, 2019, 10, 1236.	2.2	37
173	Baicalein administered in the subacute phase ameliorates ischemia-reperfusion-induced brain injury by reducing neuroinflammation and neuronal damage. Biomedicine and Pharmacotherapy, 2019, 117, 109102.	2.5	110
174	Role of GluN2A NMDA receptor in homocysteineâ€ i nduced prostaglandin E2 release from neurons. Journal of Neurochemistry, 2019, 150, 44-55.	2.1	8
175	Dual Functions of Microglia in Ischemic Stroke. Neuroscience Bulletin, 2019, 35, 921-933.	1.5	302
176	Pleiotropic Protective Effects of Progranulin in the Treatment of Ischemic Stroke. , 2019, , 157-167.		1
177	Neuroprotective effects of minocycline and progesterone on white matter injury after focal cerebral ischemia. Journal of Clinical Neuroscience, 2019, 64, 206-213.	0.8	23
179	Chrysin prevents cognitive and hippocampal long-term potentiation deficits and inflammation in rat with cerebral hypoperfusion and reperfusion injury. Life Sciences, 2019, 226, 202-209.	2.0	38
180	Sustained Release of Dexamethasone from Sulfobutyl Ether βâ€cyclodextrin Modified Selfâ€Assembling Peptide Nanoscaffolds in a Perinatal Rat Model of Hypoxia–Ischemia. Advanced Healthcare Materials, 2019, 8, e1900083.	3.9	11
181	Current Approaches and Future Perspectives for Nanobodies in Stroke Diagnostic and Therapy. Antibodies, 2019, 8, 5.	1.2	20
182	Propagermanium, a CCR2 inhibitor, attenuates cerebral ischemia/reperfusion injury through inhibiting inflammatory response induced by microglia. Neurochemistry International, 2019, 125, 99-110.	1.9	24

#	ARTICLE Ginsenoside Rg1 attenuates protein aggregation and inflammatory response following cerebral	IF	CITATIONS
183	ischemia and reperfusion injury. European Journal of Pharmacology, 2019, 853, 65-73.	1.7	39
184	ischemic stroke. Journal of Neuroinflammation, 2019, 16, 222.	3.1	39
185	Immunoreactive Cells After Cerebral Ischemia. Frontiers in Immunology, 2019, 10, 2781.	2.2	31
186	Brain mitochondria as potential therapeutic targets for managing hepatic encephalopathy. Life Sciences, 2019, 218, 65-80.	2.0	45
187	4-Sodium phenyl butyric acid has both efficacy and counter-indicative effects in the treatment of Col4a1 disease. Human Molecular Genetics, 2019, 28, 628-638.	1.4	22
188	Triggering receptor expressed on myeloid cells-2 expression in the brain is required for maximal phagocytic activity and improved neurological outcomes following experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1906-1918.	2.4	49
189	Current advances in ischemic stroke research and therapies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165260.	1.8	315
190	Necroptosis in the Pathophysiology of Disease. American Journal of Pathology, 2020, 190, 272-285.	1.9	174
191	Beyond the Hippocampus and the SVZ: Adult Neurogenesis Throughout the Brain. Frontiers in Cellular Neuroscience, 2020, 14, 576444.	1.8	114
192	Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Experimental Neurology, 2020, 334, 113456.	2.0	49
193	Longitudinal monitoring of microglial/macrophage activation in ischemic rat brain using Iba-1-specific nanoparticle-enhanced magnetic resonance imaging. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S117-S133.	2.4	17
194	<scp>LncRNA SNHG20</scp> promoted proliferation, invasion and inhibited cell apoptosis of lung adenocarcinoma via sponging <scp>miR</scp> â€342 and upregulating <scp>DDX49</scp> . Thoracic Cancer, 2020, 11, 3510-3520.	0.8	9
195	CD200 D200R1 signaling pathway regulates neuroinflammation after stroke. Brain and Behavior, 2020, 10, e01882.	1.0	7
196	Targeting pyroptosis to regulate ischemic stroke injury: Molecular mechanisms and preclinical evidences. Brain Research Bulletin, 2020, 165, 146-160.	1.4	24
197	Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Frontiers in Physiology, 2020, 11, 948.	1.3	40
198	Rh-CSF1 Attenuates Oxidative Stress and Neuronal Apoptosis via the CSF1R/PLCG2/PKA/UCP2 Signaling Pathway in a Rat Model of Neonatal HIE. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-20.	1.9	13
199	Inhibited CSF1R Alleviates Ischemia Injury via Inhibition of Microglia M1 Polarization and NLRP3 Pathway. Neural Plasticity, 2020, 2020, 1-11.	1.0	43
200	Rh-CSF1 attenuates neuroinflammation via the CSF1R/PLCG2/PKCε pathway in a rat model of neonatal HIE. Journal of Neuroinflammation, 2020, 17, 182.	3.1	18

#	Article	IF	CITATIONS
201	Lysophosphatidic Acid Receptor 5 Plays a Pathogenic Role in Brain Damage after Focal Cerebral Ischemia by Modulating Neuroinflammatory Responses. Cells, 2020, 9, 1446.	1.8	17
202	P2X7 Receptors as a Therapeutic Target in Cerebrovascular Diseases. Frontiers in Molecular Neuroscience, 2020, 13, 92.	1.4	9
203	Soluble vascular endothelial-cadherin in CSF after subarachnoid hemorrhage. Neurology, 2020, 94, e1281-e1293.	1.5	14
204	An Inhibitor of the Sodium–Hydrogen Exchanger-1 (NHE-1), Amiloride, Reduced Zinc Accumulation and Hippocampal Neuronal Death after Ischemia. International Journal of Molecular Sciences, 2020, 21, 4232.	1.8	11
205	Glucosamine-mediated immunomodulation after stroke is sexually dimorphic. Brain, Behavior, & Immunity - Health, 2020, 3, 100041.	1.3	6
206	Multinucleated Giant Cells in Experimental Intracerebral Hemorrhage. Translational Stroke Research, 2020, 11, 1095-1102.	2.3	26
207	Clial Cells: Role of the Immune Response in Ischemic Stroke. Frontiers in Immunology, 2020, 11, 294.	2.2	301
208	NLRP10 ablation protects against ischemia/reperfusion-associated brain injury by suppression of neuroinflammation. Experimental Cell Research, 2020, 389, 111912.	1.2	14
209	Neuropsychological Deficits Chronically Developed after Focal Ischemic Stroke and Beneficial Effects of Pharmacological Hypothermia in the Mouse. , 2020, 11, 1.		23
210	NLRP3 Depletion Fails to Mitigate Inflammation but Restores Diminished Phagocytosis in BV-2 Cells After In Vitro Hypoxia. Molecular Neurobiology, 2020, 57, 2588-2599.	1.9	13
211	Knockdown of Arginyl-tRNA Synthetase Attenuates Ischemia-Induced Cerebral Cortex Injury in Rats After Middle Cerebral Artery Occlusion. Translational Stroke Research, 2021, 12, 147-163.	2.3	17
212	FTY720 Modulates Microglia Toward Anti-inflammatory Phenotype by Suppressing Autophagy via STAT1 Pathway. Cellular and Molecular Neurobiology, 2021, 41, 353-364.	1.7	21
213	Hypothermia Attenuates Neuronal Damage via Inhibition of Microglial Activation, Including Suppression of Microglial Cytokine Production and Phagocytosis. Cellular and Molecular Neurobiology, 2021, 41, 459-468.	1.7	8
214	Neuroinflammation in hemorrhagic transformation after tissue plasminogen activator thrombolysis: Potential mechanisms, targets, therapeutic drugs and biomarkers. International Immunopharmacology, 2021, 90, 107216.	1.7	22
215	Sphingosine 1-Phosphate Receptors in Cerebral Ischemia. NeuroMolecular Medicine, 2021, 23, 211-223.	1.8	14
216	Potential new therapeutic intervention for ischemic stroke. Journal of Translational Internal Medicine, 2021, 9, 1-3.	1.0	4
217	Neuronal Death in the CNS Autonomic Control Center Comes Very Early after Cardiac Arrest and Is Not Significantly Attenuated by Prompt Hypothermic Treatment in Rats. Cells, 2021, 10, 60.	1.8	4
218	Neuroinflammation in Ischemic Stroke: Focus on MicroRNA-mediated Polarization of Microglia. Frontiers in Molecular Neuroscience, 2020, 13, 612439.	1.4	38

#	Article	IF	CITATIONS
219	CQMUH-011 Inhibits LPS-Induced Microglia Activation and Ameliorates Brain Ischemic Injury in Mice. Inflammation, 2021, 44, 1345-1358.	1.7	5
220	Can quantifying morphology and TMEM119 expression distinguish between microglia and infiltrating macrophages after ischemic stroke and reperfusion in male and female mice?. Journal of Neuroinflammation, 2021, 18, 58.	3.1	29
221	A tandem activity-based sensing and labeling strategy enables imaging of transcellular hydrogen peroxide signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	55
222	Phytochemicals as regulators of microglia/macrophages activation in cerebral ischemia. Pharmacological Research, 2021, 165, 105419.	3.1	33
223	Regulation of post-ischemic inflammatory response: A novel function of the neuronal tyrosine phosphatase STEP. Brain, Behavior, and Immunity, 2021, 93, 141-155.	2.0	2
224	The impact of thromboâ€inflammation on the cerebral microcirculation. Microcirculation, 2021, 28, e12689.	1.0	7
225	PSDâ€93 mediates the crosstalk between neuron and microglia and facilitates acute ischemic stroke injury by binding to CX3CL1. Journal of Neurochemistry, 2021, 157, 2145-2157.	2.1	6
226	Specific depletion of resident microglia in the early stage of stroke reduces cerebral ischemic damage. Journal of Neuroinflammation, 2021, 18, 81.	3.1	48
227	Tanshinone IIA Protects Against Cerebral Ischemia Reperfusion Injury by Regulating Microglial Activation and Polarization via NF-I® Pathway. Frontiers in Pharmacology, 2021, 12, 641848.	1.6	24
228	Modeling Microglia Activation and Inflammation-Based Neuroprotectant Strategies During Ischemic Stroke. Bulletin of Mathematical Biology, 2021, 83, 72.	0.9	3
229	Scalable Bio Marker Combinations for Early Stroke Diagnosis: A Systematic Review. Frontiers in Neurology, 2021, 12, 638693.	1.1	12
230	Transient Global Ischemia-Induced Brain Inflammatory Cascades Attenuated by Targeted Temperature Management. International Journal of Molecular Sciences, 2021, 22, 5114.	1.8	3
231	Disruptions of Circadian Rhythms and Thrombolytic Therapy During Ischemic Stroke Intervention. Frontiers in Neuroscience, 2021, 15, 675732.	1.4	8
232	18β-Clycyrrhetinic acid alleviates demyelination by modulating the microglial M1/M2 phenotype in a mouse model of cuprizone-induced demyelination. Neuroscience Letters, 2021, 755, 135871.	1.0	4
233	How cytosolic compartments play safeguard functions against neuroinflammation and cell death in cerebral ischemia. Metabolic Brain Disease, 2021, 36, 1445-1467.	1.4	1
234	The Slow-Releasing and Mitochondria-Targeted Hydrogen Sulfide (H2S) Delivery Molecule AP39 Induces Brain Tolerance to Ischemia. International Journal of Molecular Sciences, 2021, 22, 7816.	1.8	26
235	Neurovascular Coupling in Development and Disease: Focus on Astrocytes. Frontiers in Cell and Developmental Biology, 2021, 9, 702832.	1.8	48
236	Tanshinone IIA: A phytochemical as a promising drug candidate for neurodegenerative diseases. Pharmacological Research, 2021, 169, 105661.	3.1	51

#	Article	IF	CITATIONS
237	Modulating poststroke inflammatory mechanisms: Novel aspects of mesenchymal stem cells, extracellular vesicles and microglia. World Journal of Stem Cells, 2021, 13, 1030-1048.	1.3	13
239	Neuroinflammation in Ischaemic Stroke: Utilizing the Biphasic Niche of Neuroprotection and Neurotoxicity for Clinic. , 2016, , 231-252.		1
240	Clial Modulators as Potential Treatments of Psychostimulant Abuse. Advances in Pharmacology, 2014, 69, 1-69.	1.2	68
241	Microglial activation underlies cerebellar deficits produced by repeated cannabis exposure. Journal of Clinical Investigation, 2013, 123, 2816-2831.	3.9	101
242	Attenuated Inflammatory Response in Triggering Receptor Expressed on Myeloid Cells 2 (TREM2) Knock-Out Mice following Stroke. PLoS ONE, 2013, 8, e52982.	1.1	112
243	Short-term Preoperative Dietary Restriction Is Neuroprotective in a Rat Focal Stroke Model. PLoS ONE, 2014, 9, e93911.	1.1	29
244	Reduced Inflammatory Phenotype in Microglia Derived from Neonatal Rat Spinal Cord versus Brain. PLoS ONE, 2014, 9, e99443.	1.1	22
245	Frataxin Deficiency Promotes Excess Microglial DNA Damage and Inflammation that Is Rescued by PJ34. PLoS ONE, 2016, 11, e0151026.	1.1	31
246	Targeting Microglial Activation in Stroke Therapy: Pharmacological Tools and Gender Effects. Current Medicinal Chemistry, 2014, 21, 2146-2155.	1.2	69
247	Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations. Current Pharmaceutical Design, 2019, 25, 2375-2393.	0.9	16
248	Acacetin protects against cerebral ischemia-reperfusion injury via the NLRP3 signaling pathway. Neural Regeneration Research, 2019, 14, 605.	1.6	53
249	Therapeutic potential of natural compounds from Chinese medicine in acute and subacute phases of ischemic stroke. Neural Regeneration Research, 2020, 15, 416.	1.6	21
251	Neuroinflammatory Triangle Presenting Novel Pharmacological Targets for Ischemic Brain Injury. Frontiers in Immunology, 2021, 12, 748663.	2.2	21
252	Translocator Protein Regulate Polarization Phenotype Transformation of Microglia after Cerebral Ischemia–reperfusion Injury. Neuroscience, 2022, 480, 203-216.	1.1	4
253	Erythropoietin Abrogates Post-Ischemic Activation of the NLRP3, NLRC4, and AIM2 Inflammasomes in Microglia/Macrophages in a TAK1-Dependent Manner. Translational Stroke Research, 2022, 13, 462-482.	2.3	17
254	The KCa3.1 blocker TRAMâ€34 reduces infarction and neurological deficit in a rat model of reperfusion stroke. FASEB Journal, 2011, 25, 1042.16.	0.2	0
255	Na+/H+ Exchangers as Therapeutic Targets for Cerebral Ischemia. , 2012, , 387-401.		0
256	Glial Cells, Inflammation and Heat Shock Proteins in Cerebral Ischemia. , 0, , .		0

ARTICLE IF CITATIONS # Challenges and Pitfalls Associated with Stem Cell Transplants for Stroke. Journal of Neurology & 257 0.1 0 Neurophysiology, 2013, 04, . Ion Transporters in Microglial Function: New Therapeutic Targets for Neuroinflammation in Ischemic 258 Stroke?. , 2014, , 121-134 259 Ischemia and Stroke., 2014, , 413-435. 1 The Impact of Aging on Ischemic Stroke., 2016, , 161-196. Microglia and ischemic stroke: a double-edged sword. International Journal of Physiology, 265 0.8 243 Pathophysiology and Pharmacology, 2013, 5, 73-90. Fasudil inhibits LPS-induced migration of retinal microglial cells via regulating p38-MAPK signaling 1.1 pathway. Molecular Vision, 2016, 22, 836-46. Potential implication of SGK1-dependent activity change in BV-2 microglial cells. International Journal 268 0.8 3 of Physiology, Pathophysiology and Pharmacology, 2018, 10, 115-123. Novel Insights into the Emerging Role of Neat1 and Its Effects Downstream in the Regulation of 1.6 14 Inflammation. Journal of Inflammation Research, 2022, Volume 15, 557-571. Adhesion of Leukocytes to Cerebral Venules Precedes Neuronal Cell Death and Is Sufficient to Trigger 270 10 1.1 Tissue Damage After Cerebral Ischemia. Frontiers in Neurology, 2021, 12, 807658. Oleanolic Acid Provides Neuroprotection against Ischemic Stroke through the Inhibition of 271 Microglial Activation and NLRP3 Inflammasome Activation. Biomolecules and Therapeutics, 2022, 30, 1.1 14 55-63. Fraxetin alleviates microglia-mediated neuroinflammation after ischemic stroke. Annals of 272 7 0.7 Translational Medicine, 2022, 10, 439-439. Neuroserpin, a crucial regulator for axogenesis, synaptic modelling and cell–cell interactions in the 2.4 pathophysiology of neurological disease. Cellular and Molecular Life Sciences, 2022, 79, 172. Caspase-1: A Promising Target for Preserving Bloodâ€"Brain Barrier Integrity in Acute Stroke. Frontiers 274 1.4 9 in Molecular Neuroscience, 2022, 15, 856372. Chapter 7. Identification of MicroRNAs as Targets for Treatment of Ischemic Stroke. RSC Drug 0.2 Discovery Series, 0, , 105-127. Novel Insights into the Molecular Mechanisms Involved in the Neuroprotective Effects of 281 0.9 7 C-Phycocyanin against Brain Ischemia in Rats. Current Pharmaceutical Design, 2022, 28, 1187-1197. Shared pathophysiology: Understanding stroke and Alzheimer's disease. Clinical Neurology and Neurosurgery, 2022, 218, 107306. 283 Apelin/APJ system in inflammation. International Immunopharmacology, 2022, 109, 108822. 1.7 20 Neuroprotective Effects of Pharmacological Hypothermia on Hyperglycolysis and Gluconeogenesis in 284 1.8 Rats after Ischemic Stroke. Biomolecules, 2022, 12, 851.

#	Article	IF	CITATIONS
285	A Review of Neuroprotective Effects and Mechanisms of Ginsenosides From Panax Ginseng in Treating Ischemic Stroke. Frontiers in Pharmacology, 0, 13, .	1.6	10
286	Dynamics of Microglia Activation in the Ischemic Brain: Implications for Myelin Repair and Functional Recovery. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	10
287	Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	132
289	Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. , 2022, 238, 108282.		5
290	Remodeling of the Neurovascular Unit Following Cerebral Ischemia and Hemorrhage. Cells, 2022, 11, 2823.	1.8	13
291	Diagnostic and Therapeutic Roles of the "Omics―in Hypoxic–Ischemic Encephalopathy in Neonates. Bioengineering, 2022, 9, 498.	1.6	2
292	PLCγ2 impacts microglia-related effectors revealing variants and pathways important in Alzheimer's disease. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	2
293	Loureirin C ameliorates ischemia and reperfusion injury in rats by inhibiting the activation of the <scp>TLR4</scp> / <scp>NFâ€₽B</scp> pathway and promoting <scp>TLR4</scp> degradation. Phytotherapy Research, 2022, 36, 4527-4541.	2.8	4
294	TREM2 improves neurological dysfunction and attenuates neuroinflammation, TLR signaling and neuronal apoptosis in the acute phase of intracerebral hemorrhage. Frontiers in Aging Neuroscience, 0, 14, .	1.7	7
295	New insights in ferroptosis: Potential therapeutic targets for the treatment of ischemic stroke. Frontiers in Pharmacology, 0, 13, .	1.6	6
296	Inflammatory Response and Immune Regulation in Brain-Heart Interaction after Stroke. Cardiovascular Therapeutics, 2022, 2022, 1-7.	1.1	4
297	m6A methylation: Critical roles in aging and neurological diseases. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	5
298	Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Frontiers in Neurology, 0, 14, .	1.1	8
299	Possible Implications of Obesity-Primed Microglia that Could Contribute to Stroke-Associated Damage. Cellular and Molecular Neurobiology, 0, , .	1.7	1
300	Clarifying the mechanism of apigenin against blood–brain barrier disruption in ischemic stroke using systems pharmacology. Molecular Diversity, 0, , .	2.1	1
301	A retrospect and outlook on the neuroprotective effects of anesthetics in the era of endovascular therapy. Frontiers in Neuroscience, 0, 17, .	1.4	0
302	Imaging of microglia in post-stroke inflammation. Nuclear Medicine and Biology, 2023, 118-119, 108336.	0.3	1
317	Small extracellular vesicles administered directly in the brain promote neuroprotection and decreased microglia reactivity in a stroke mouse model. Nanoscale, 2023, 15, 18212-18217.	2.8	0

ARTICLE

IF CITATIONS