Macrophages, innate immunity and cancer: balance, tol

Current Opinion in Immunology 22, 231-237 DOI: 10.1016/j.coi.2010.01.009

Citation Report

#	Article	IF	CITATIONS
1	The Tumor-Immune Microenvironment and Response to Radiation Therapy. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 411-421.	1.0	114
2	Inflammation-mediated promotion of invasion and metastasis. Cancer and Metastasis Reviews, 2010, 29, 243-248.	2.7	177
3	Perspectives on the mesenchymal origin of metastatic cancer. Cancer and Metastasis Reviews, 2010, 29, 695-707.	2.7	50
4	The †chemoinvasion' assay, 25 years and still going strong: the use of reconstituted basement membranes to study cell invasion and angiogenesis. Current Opinion in Cell Biology, 2010, 22, 677-689.	2.6	65
5	Curating the innate immunity interactome. BMC Systems Biology, 2010, 4, 117.	3.0	68
6	The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nature Immunology, 2010, 11, 936-944.	7.0	996
7	A double agent in cancer: Deciphering macrophage roles in human tumors. Nature Medicine, 2010, 16, 861-862.	15.2	28
8	The polarization of immune cells in the tumour environment by TGFβ. Nature Reviews Immunology, 2010, 10, 554-567.	10.6	795
9	Redox remodeling: a candidate regulator of HMGB1 function in injured skeletal muscle. Annals of the New York Academy of Sciences, 2010, 1209, 83-90.	1.8	29
10	Leukocyte infiltration as a surrogate marker for diagnosis of invasion. International Journal of Biological Sciences, 2010, 6, 225-227.	2.6	0
11	Harnessing Innate Immunity to Suppress Lymphoma. Journal of Clinical Oncology, 2010, 28, 4295-4296.	0.8	4
12	Updates on osteonecrosis of the jaw. Current Opinion in Supportive and Palliative Care, 2010, 4, 200-206.	0.5	23
13	Heme Oxygenase-1 expression in M-CSF-polarized M2 macrophages contributes to LPS-induced IL-10 release. Immunobiology, 2010, 215, 788-795.	0.8	181
14	GLIS, a bioactive proteoglycan fraction from Ganoderma lucidum, displays anti-tumour activity by increasing both humoral and cellular immune response. Life Sciences, 2010, 87, 628-637.	2.0	71
15	Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell, 2010, 141, 39-51.	13.5	4,106
16	Potential molecular targets in chemopreventative action of celecoxib: a proteomics analysis of J774.A1 macrophage-like cell line. Molecular BioSystems, 2011, 7, 1306.	2.9	6
17	Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12425-12430.	3.3	409
18	Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature, 2011, 479, 122-126.	13.7	265

#	Article	IF	CITATIONS
19	Monocytes to functional dendritic cells is often a bridge too far for cancer therapy. Translational Research, 2011, 158, 197-199.	2.2	1
20	Macrophages in cancer and infectious diseases: the â€~good' and the â€~bad'. Immunotherapy, 2011, 3, 1185-1202.	1.0	27
21	IL-6 and leukemia-inhibitory factor are involved in the generation of tumor-associated macrophage: regulation by IFN-γ. Immunotherapy, 2011, 3, 23-26.	1.0	60
22	Prognostic Immune Markers in Non–Small Cell Lung Cancer. Clinical Cancer Research, 2011, 17, 5247-5256.	3.2	162
23	CD40 Agonists Alter Tumor Stroma and Show Efficacy Against Pancreatic Carcinoma in Mice and Humans. Science, 2011, 331, 1612-1616.	6.0	1,407
24	Proangiogenic Tie2+ Macrophages Infiltrate Human and Murine Endometriotic Lesions and Dictate Their Growth in a Mouse Model of the Disease. American Journal of Pathology, 2011, 179, 2651-2659.	1.9	96
25	Alternatively activated myeloid (M2) cells enhance cognitive function in immune compromised mice. Brain, Behavior, and Immunity, 2011, 25, 379-385.	2.0	82
26	Mononuclear phagocyte heterogeneity in cancer: Different subsets and activation states reaching out at the tumor site. Immunobiology, 2011, 216, 1192-1202.	0.8	88
27	Inflammation meets cancer, with NF- $\hat{I}^{0}B$ as the matchmaker. Nature Immunology, 2011, 12, 715-723.	7.0	1,256
28	Myeloid Angiogenic Cells Act as Alternative M2 Macrophages and Modulate Angiogenesis through Interleukin-8. Molecular Medicine, 2011, 17, 1045-1055.	1.9	179
29	Tumor Induced Inactivation of Natural Killer Cell Cytotoxic Function; Implication in Growth, Expansion and Differentiation of Cancer Stem Cells. Journal of Cancer, 2011, 2, 443-457.	1.2	56
30	The impact of hypoxia on oncolytic virotherapy. Virus Adaptation and Treatment, 0, , 71.	1.5	6
31	Epithelial Tumor, Invasion and Stroma. Annals of Dermatology, 2011, 23, 125.	0.3	20
32	Macrophages in Injured Skeletal Muscle: A Perpetuum Mobile Causing and Limiting Fibrosis, Prompting or Restricting Resolution and Regeneration. Frontiers in Immunology, 2011, 2, 62.	2.2	65
33	Enhanced Platelet Activation Mediates the Accelerated Angiogenic Switch in Mice Lacking Histidine-Rich Glycoprotein. PLoS ONE, 2011, 6, e14526.	1.1	16
34	Macrophage polarization in metabolic disorders. Current Opinion in Lipidology, 2011, 22, 365-372.	1.2	157
35	Bone marrow-derived cells serve as proangiogenic macrophages but not endothelial cells in wound healing. Blood, 2011, 117, 5264-5272.	0.6	99
36	Immune regulation of the tumor/bone vicious cycle. Annals of the New York Academy of Sciences, 2011, 1237, 71-78.	1.8	26

#	Article	IF	CITATIONS
37	Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutation Research - Reviews in Mutation Research, 2011, 728, 23-34.	2.4	642
38	Vascular stem cells and ischaemic retinopathies. Progress in Retinal and Eye Research, 2011, 30, 149-166.	7.3	83
39	Identification and manipulation of tumor associated macrophages in human cancers. Journal of Translational Medicine, 2011, 9, 216.	1.8	370
40	HRG Inhibits Tumor Growth and Metastasis by Inducing Macrophage Polarization and Vessel Normalization through Downregulation of PIGF. Cancer Cell, 2011, 19, 31-44.	7.7	628
41	Polarization of Tumor-Associated Macrophages: A Novel Strategy for Vascular Normalization and Antitumor Immunity. Cancer Cell, 2011, 19, 1-2.	7.7	91
42	Targeting the ANG2/TIE2 Axis Inhibits Tumor Growth and Metastasis by Impairing Angiogenesis and Disabling Rebounds of Proangiogenic Myeloid Cells. Cancer Cell, 2011, 19, 512-526.	7.7	543
43	CCL18 from Tumor-Associated Macrophages Promotes Breast Cancer Metastasis via PITPNM3. Cancer Cell, 2011, 19, 541-555.	7.7	530
44	A Lipid Kinase Cousin Cooperates to Promote Cancer. Cancer Cell, 2011, 19, 693-695.	7.7	14
45	Association of Intra-tumoral Infiltrating Macrophages and Regulatory T Cells Is an Independent Prognostic Factor in Gastric Cancer after Radical Resection. Annals of Surgical Oncology, 2011, 18, 2585-2593.	0.7	89
46	Signaling Pathways Governing Tumor Angiogenesis. Oncology, 2011, 81, 24-29.	0.9	159
47	Innate Immune Cells in Breast Cancer – From Villains to Heroes?. Journal of Mammary Gland Biology and Neoplasia, 2011, 16, 189-203.	1.0	26
48	Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer and Metastasis Reviews, 2011, 30, 27-43.	2.7	36
49	The heparanase system and tumor metastasis: is heparanase the seed and soil?. Cancer and Metastasis Reviews, 2011, 30, 253-268.	2.7	86
50	CCL2 â^'2518 A/G single nucleotide polymorphism as a risk factor for breast cancer. Molecular Biology Reports, 2011, 38, 1263-1267.	1.0	18
51	Lung cancer and Toll-like receptors. Cancer Immunology, Immunotherapy, 2011, 60, 1211-1220.	2.0	69
52	The role of chemokines and their receptors in angiogenesis. Cellular and Molecular Life Sciences, 2011, 68, 2811-2830.	2.4	102
53	Cell-Based Therapies for Diabetic Retinopathy. Current Diabetes Reports, 2011, 11, 265-274.	1.7	30
54	An immunologic portrait of cancer. Journal of Translational Medicine, 2011, 9, 146.	1.8	83

#	Article	IF	CITATIONS
55	Inflammatory signaling in macrophages: Transitions from acute to tolerant and alternative activation states. European Journal of Immunology, 2011, 41, 2477-2481.	1.6	139
56	Epigenetic control of macrophage polarization. European Journal of Immunology, 2011, 41, 2490-2493.	1.6	100
57	Cancerâ€promoting tumorâ€associated macrophages: New vistas and open questions. European Journal of Immunology, 2011, 41, 2522-2525.	1.6	179
58	Paired Immunoglobin-like Receptor-B Regulates the Suppressive Function and Fate of Myeloid-Derived Suppressor Cells. Immunity, 2011, 34, 385-395.	6.6	144
59	Role of macrophages in uveal melanoma. Expert Review of Ophthalmology, 2011, 6, 405-407.	0.3	16
60	Obstacles and opportunities for understanding macrophage polarization. Journal of Leukocyte Biology, 2011, 89, 557-563.	1.5	429
61	E-3810 Is a Potent Dual Inhibitor of VEGFR and FGFR that Exerts Antitumor Activity in Multiple Preclinical Models. Cancer Research, 2011, 71, 1396-1405.	0.4	131
62	Evaluation of the Role of Tumor-Associated Macrophages in an Experimental Model of Peritoneal Carcinomatosis Using 18F-FDG PET. Journal of Nuclear Medicine, 2011, 52, 1770-1777.	2.8	11
63	Targeted Therapeutic Remodeling of the Tumor Microenvironment Improves an HER-2 DNA Vaccine and Prevents Recurrence in a Murine Breast Cancer Model. Cancer Research, 2011, 71, 5688-5696.	0.4	61
64	Macrophage motility requires distinct α5β1/FAK and α4β1/paxillin signaling events. Journal of Leukocyte Biology, 2010, 89, 251-257.	1.5	39
65	Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation. Journal of Experimental Medicine, 2011, 208, 479-490.	4.2	233
66	The Process of Macrophage Migration Promotes Matrix Metalloproteinase-Independent Invasion by Tumor Cells. Journal of Immunology, 2011, 187, 3806-3814.	0.4	93
67	Tumor Cells and Tumor-Associated Macrophages: Secreted Proteins as Potential Targets for Therapy. Clinical and Developmental Immunology, 2011, 2011, 1-12.	3.3	108
68	Hypothesis: Are Neoplastic Macrophages/Microglia Present in Glioblastoma Multiforme?. ASN Neuro, 2011, 3, AN20110011.	1.5	54
69	A Critical Role for Macrophages in Promotion of Urethane-Induced Lung Carcinogenesis. Journal of Immunology, 2011, 187, 5703-5711.	0.4	126
70	DNA Alkylating Therapy Induces Tumor Regression through an HMGB1-Mediated Activation of Innate Immunity. Journal of Immunology, 2011, 186, 3517-3526.	0.4	79
71	Orientia tsutsugamushi Stimulates an Original Gene Expression Program in Monocytes: Relationship with Gene Expression in Patients with Scrub Typhus. PLoS Neglected Tropical Diseases, 2011, 5, e1028.	1.3	67
72	Characteristics of Suppressor Macrophages Induced by Mycobacterial and Protozoal Infections in relation to Alternatively Activated M2 Macrophages. Clinical and Developmental Immunology, 2012, 2012, 1-19.	3.3	49

		CITATION REPORT		
#	Article		IF	Citations
73	Radiation-induced effects and the immune system in cancer. Frontiers in Oncology, 20	12, 2, 191.	1.3	177
74	Potential Biomarkers in the Sera of Breast Cancer Patients from Bahawalpur, Pakistan. Cancer, 2012, 4, BIC.S10502.	Biomarkers in	3.6	12
75	Macrophages in Tumor Microenvironments and the Progression of Tumors. Clinical an Developmental Immunology, 2012, 2012, 1-11.	d	3.3	705
76	Combating angiogenesis early: potential of targeting tumor-recruited neutrophils in ca Future Oncology, 2012, 8, 5-8.	ncer therapy.	1.1	14
77	Time-course network analysis reveals TNF-Î \pm can promote G1/S transition of cell cycle i endothelial cells. Bioinformatics, 2012, 28, 1-4.	n vascular	1.8	39
78	Tumor Microenvironment in the Brain. Cancers, 2012, 4, 218-243.		1.7	92
79	Tumor Heterogeneity: Mechanisms and Bases for a Reliable Application of Molecular M International Journal of Molecular Sciences, 2012, 13, 1951-2011.	1arker Design.	1.8	132
80	Tumor Microenvironment Varies under Different TCMZHENGModels and Correlates wi Response to Herbal Medicine. Evidence-based Complementary and Alternative Medicir	th Treatment ne, 2012, 2012, 1-10.	0.5	25
81	Mouse forestomach carcinoma cells immunosuppress macrophages through transform factor-β1. Molecular Medicine Reports, 2012, 5, 988-992.	ning growth	1.1	11
82	Basal-like Breast Cancer Cells Induce Phenotypic and Genomic Changes in Macrophage Cancer Research, 2012, 10, 727-738.	es. Molecular	1.5	86
83	Anesthesia in patients with cancer disorders. Current Opinion in Anaesthesiology, 201	2, 25, 376-384.	0.9	73
84	Class A Scavenger Receptor Deficiency Exacerbates Lung Tumorigenesis by Cultivating Procarcinogenic Microenvironment in Humans and Mice. American Journal of Respirato Care Medicine, 2012, 186, 763-772.	; a bry and Critical	2.5	23
85	Carcinoma origin dictates differential skewing of monocyte function. Oncolmmunolog 798-809.	;y, 2012, 1,	2.1	61
86	Chemoimmunomodulation of MDSCs as a novel strategy for cancer therapy. Oncolmn 121-122.	nunology, 2012, 1,	2.1	10
87	Innate immune recognition of breast tumor cells mediates CCL22 secretion favoring T within tumor environment. Oncolmmunology, 2012, 1, 759-761.	reg recruitment	2.1	25
88	Higher TNF-Alpha Production Detected in Colorectal Cancer Patients Monocytes. Biote Biotechnological Equipment, 2012, 26, 107-110.	echnology and	0.5	5
89	Human Adipose Tissue Macrophages Display Activation of Cancer-related Pathways. Jo Biological Chemistry, 2012, 287, 21904-21913.	urnal of	1.6	60
90	Decoy Receptor 3 Enhances Tumor Progression via Induction of Tumor-Associated Ma Journal of Immunology, 2012, 188, 2464-2471.	crophages.	0.4	38

#	Article	IF	CITATIONS
91	HIV-1 Proteins Preferentially Activate Anti-Inflammatory M2-Type Macrophages. Journal of Immunology, 2012, 188, 3620-3627.	0.4	40
92	Instruction of myeloid cells by the tumor microenvironment: Open questions on the dynamics and plasticity of different tumor-associated myeloid cell populations. Oncolmmunology, 2012, 1, 1135-1145.	2.1	66
93	Identification of Functionally Distinct TRAF Proinflammatory and Phosphatidylinositol 3-Kinase/Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase (PI3K/MEK) Transforming Activities Emanating from RET/PTC Fusion Oncoprotein. Journal of Biological Chemistry, 2012, 287, 3691-3703.	1.6	13
94	Tumour-infiltrating macrophages and clinical outcome in breast cancer. Journal of Clinical Pathology, 2012, 65, 159-163.	1.0	225
95	Pranic Meditation Affects Phagocyte Functions and Hormonal Levels of Recent Practitioners. Journal of Alternative and Complementary Medicine, 2012, 18, 761-768.	2.1	9
96	Multiple Roles for VECF in Non-Melanoma Skin Cancer: Angiogenesis and Beyond. Journal of Skin Cancer, 2012, 2012, 1-6.	0.5	51
97	New Roads Open Up for Implementing Immunotherapy in Mesothelioma. Clinical and Developmental Immunology, 2012, 2012, 1-13.	3.3	21
98	Nanobody-Based Targeting of the Macrophage Mannose Receptor for Effective <i>In Vivo</i> Imaging of Tumor-Associated Macrophages. Cancer Research, 2012, 72, 4165-4177.	0.4	263
99	Midkine acts as proangiogenic cytokine in hypoxia-induced angiogenesis. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H429-H438.	1.5	72
100	Mechanisms of AIDS-related lymphoma pathogenesis. Future Virology, 2012, 7, 229-238.	0.9	3
101	Natural Killer Cells Preferentially Target Cancer Stem Cells; Role of Monocytes in Protection Against NK Cell Mediated Lysis of Cancer Stem Cells. Current Drug Delivery, 2012, 9, 5-16.	0.8	70
102	Targeting Chemokines in Cancer. Current Immunology Reviews, 2012, 8, 161-169.	1.2	1
104	Interplay of macrophages and T cells in the lung vasculature. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1014-L1022.	1.3	25
105	PI3K keeps the balance between metabolism and cancer. Advances in Biological Regulation, 2012, 52, 389-405.	1.4	37
106	NADPH Oxidases as Regulators of Tumor Angiogenesis: Current and Emerging Concepts. Antioxidants and Redox Signaling, 2012, 16, 1229-1247.	2.5	86
107	Regulation of Cancer Progression by \hat{l}^2 -Endorphin Neuron. Cancer Research, 2012, 72, 836-840.	0.4	49
108	Wnt5a Induces a Tolerogenic Phenotype of Macrophages in Sepsis and Breast Cancer Patients. Journal of Immunology, 2012, 188, 5448-5458.	0.4	100
109	Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 2012, 12, 253-268.	10.6	3,002

		EPORT	
#	Article	IF	CITATIONS
110	IL-4 in the Brain: A Cytokine To Remember. Journal of Immunology, 2012, 189, 4213-4219.	0.4	446
111	Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells <i>in vitro</i> in a TLR4-independent manner. Journal of Immunotoxicology, 2012, 9, 292-300.	0.9	124
112	T-cell-independent Antitumor Effects of CD40 Ligation. International Reviews of Immunology, 2012, 31, 267-278.	1.5	47
113	Genetic Deficiency in Plasma Protein HRG Enhances Tumor Growth and Metastasis by Exacerbating Immune Escape and Vessel Abnormalization. Cancer Research, 2012, 72, 1953-1963.	0.4	32
114	Estrogen Represses Hepatocellular Carcinoma (HCC) Growth via Inhibiting Alternative Activation of Tumor-associated Macrophages (TAMs). Journal of Biological Chemistry, 2012, 287, 40140-40149.	1.6	106
115	The cytotoxic activity of Aplidin in chronic lymphocytic leukemia (CLL) is mediated by a direct effect on leukemic cells and an indirect effect on monocyte-derived cells. Investigational New Drugs, 2012, 30, 1830-1840.	1.2	26
116	Cancer prevention by targeting angiogenesis. Nature Reviews Clinical Oncology, 2012, 9, 498-509.	12.5	264
117	Interactions of monocyte subpopulations generated from cord blood CD34+ hematopoietic progenitors with tumor cells: Assessment of antitumor potential. Experimental Hematology, 2012, 40, 914-921.	0.2	2
118	The discovery of placenta growth factor and its biological activity. Experimental and Molecular Medicine, 2012, 44, 1.	3.2	319
119	Linking tumor-associated macrophages, inflammation, and intestinal tumorigenesis: role of MCP-1. American Journal of Physiology - Renal Physiology, 2012, 303, G1087-G1095.	1.6	97
120	Impaired antigen presentation and potent phagocytic activity identifying tumor-tolerant human monocytes. Biochemical and Biophysical Research Communications, 2012, 423, 331-337.	1.0	18
121	Optimal MHC-II-restricted tumor antigen presentation to CD4+ T helper cells: the key issue for development of anti-tumor vaccines. Journal of Translational Medicine, 2012, 10, 154.	1.8	28
122	Macrophages and angiogenesis: a role for Wnt signaling. Vascular Cell, 2012, 4, 13.	0.2	73
123	Myeloid cells in tumor inflammation. Vascular Cell, 2012, 4, 14.	0.2	56
124	The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1826, 434-442.	3.3	64
125	Tumor-Associated Macrophages in Pediatric Classical Hodgkin Lymphoma: Association with Epstein-Barr Virus, Lymphocyte Subsets, and Prognostic Impact. Clinical Cancer Research, 2012, 18, 3762-3771.	3.2	83
127	Innate immunity in cystic fibrosis lung disease. Journal of Cystic Fibrosis, 2012, 11, 363-382.	0.3	191
128	Oral cancer treatment and immune targets – A role for dendritic cells?. Journal of Cranio-Maxillo-Facial Surgery, 2012, 40, 103-104.	0.7	13

#	Article	IF	CITATIONS
129	History of tuberculosis as an independent prognostic factor for lung cancer survival. Lung Cancer, 2012, 76, 452-456.	0.9	30
130	Regulation of collateral blood vessel development by the innate and adaptive immune system. Trends in Molecular Medicine, 2012, 18, 494-501.	3.5	56
131	Semaphorin Signals Tweaking the Tumor Microenvironment. Advances in Cancer Research, 2012, 114, 59-85.	1.9	25
132	Association of inflammatory chemokine gene CCL2I/D with bladder cancer risk in North Indian population. Molecular Biology Reports, 2012, 39, 9827-9834.	1.0	13
133	BTN3A2 Expression in Epithelial Ovarian Cancer Is Associated with Higher Tumor Infiltrating T Cells and a Better Prognosis. PLoS ONE, 2012, 7, e38541.	1.1	84
134	High-Resolution Transcriptome of Human Macrophages. PLoS ONE, 2012, 7, e45466.	1.1	238
135	The Amazing Power of Cancer Cells to Recapitulate Extraembryonic Functions: The Cuckoo's Tricks. Journal of Oncology, 2012, 2012, 1-20.	0.6	7
136	Tumor Angiogenesis and Anti-angiogenic Therapy. Keio Journal of Medicine, 2012, 61, 47-56.	0.5	117
137	Prostate Cancer and Parasitism of the Bone Hematopoietic Stem Cell Niche. Critical Reviews in Eukaryotic Gene Expression, 2012, 22, 131-148.	0.4	25
138	Endotoxin Tolerance as a Key Mechanism for Immunosuppression. , 2012, , .		1
139	Macrophage plasticity and polarization: in vivo veritas. Journal of Clinical Investigation, 2012, 122, 787-795.	3.9	4,755
140	Modulation of Tumor Angiogenesis by a Host Anti-Tumor Response in Colorectal Cancer. , 0, , .		0
141	8.8 Heparanase, a multifaceted protein involved in cancer, chronic inflammation, and kidney dysfunction. , 0, , .		1
142	The Role of tumor-associated macrophage in tumor progression. Frontiers in Bioscience - Scholar, 2012, S4, 787-798.	0.8	51
143	Functions of thymic stromal lymphopoietin in immunity and disease. Immunologic Research, 2012, 52, 211-223.	1.3	85
144	Vascular endothelial growth factorâ€induced skin carcinogenesis depends on recruitment and alternative activation of macrophages. Journal of Pathology, 2012, 227, 17-28.	2.1	155
145	Type and location of tumorâ€infiltrating macrophages and lymphatic vessels predict survival of colorectal cancer patients. International Journal of Cancer, 2012, 131, 864-873.	2.3	130
146	Tumorâ€associated macrophages correlate with response to epidermal growth factor receptorâ€tyrosine kinase inhibitors in advanced nonâ€small cell lung cancer. International Journal of Cancer, 2012, 131, E227-35.	2.3	81

#	Article	IF	CITATIONS
147	Tumor-Associated Microglia/Macrophages Enhance the Invasion of Glioma Stem-like Cells via TGF-β1 Signaling Pathway. Journal of Immunology, 2012, 189, 444-453.	0.4	390
148	Multifaceted link between cancer and inflammation. Bioscience Reports, 2012, 32, 1-15.	1.1	287
149	Cellular Constituents of Immune Escape within the Tumor Microenvironment. Cancer Research, 2012, 72, 3125-3130.	0.4	308
150	Macrophage–tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands. Cellular and Molecular Life Sciences, 2012, 69, 1391-1414.	2.4	39
151	Induction of metallothionein expression during monocyte to melanoma-associated macrophage differentiation. Frontiers in Biology, 2012, 7, 359-367.	0.7	4
152	Significance of Heparanase in Cancer and Inflammation. Cancer Microenvironment, 2012, 5, 115-132.	3.1	203
153	Origin and Functions of Tumor-Associated Myeloid Cells (TAMCs). Cancer Microenvironment, 2012, 5, 133-149.	3.1	81
154	The Tumor-Promoting Flow of Cells Into, Within and Out of the Tumor Site: Regulation by the Inflammatory Axis of TNFα and Chemokines. Cancer Microenvironment, 2012, 5, 151-164.	3.1	55
155	Endothelial CCR2 Signaling Induced by Colon Carcinoma Cells Enables Extravasation via the JAK2-Stat5 and p38MAPK Pathway. Cancer Cell, 2012, 22, 91-105.	7.7	256
156	The immunological contribution of NF-l [®] B within the tumor microenvironment: A potential protective role of zinc as an anti-tumor agent. Biochimica Et Biophysica Acta: Reviews on Cancer, 2012, 1825, 160-172.	3.3	23
157	Macrophage polarization: An opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials, 2012, 33, 3792-3802.	5.7	728
158	Melanomaâ€derived conditioned media efficiently induce the differentiation of monocytes to macrophages that display a highly invasive gene signature. Pigment Cell and Melanoma Research, 2012, 25, 493-505.	1.5	57
159	lκB kinase regulation of the TPLâ€⊋/ERK MAPK pathway. Immunological Reviews, 2012, 246, 168-182.	2.8	115
160	Cancer-related inflammation: Common themes and therapeutic opportunities. Seminars in Cancer Biology, 2012, 22, 33-40.	4.3	567
161	New insights into chronic inflammation-induced immunosuppression. Seminars in Cancer Biology, 2012, 22, 307-318.	4.3	169
162	Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. Journal of Controlled Release, 2012, 158, 286-292.	4.8	145
163	Preniche as missing link of the metastatic niche concept explaining organ-preferential metastasis of malignant tumors and the type of metastatic disease. Biochemistry (Moscow), 2012, 77, 111-118.	0.7	14
164	Upregulation of B7-H1 expression is associated with macrophage infiltration in hepatocellular carcinomas. Cancer Immunology, Immunotherapy, 2012, 61, 101-108.	2.0	75

#	Article	IF	CITATIONS
165	Regulatory dendritic cells in the tumor immunoenvironment. Cancer Immunology, Immunotherapy, 2012, 61, 223-230.	2.0	50
166	Potential rescue, survival and differentiation of cancer stem cells and primary non-transformed stem cells by monocyte-induced split anergy in natural killer cells. Cancer Immunology, Immunotherapy, 2012, 61, 265-274.	2.0	23
167	Phenethyl isothiocyanate promotes immune responses in normal BALB/c mice, inhibits murine leukemia WEHIâ€3 cells, and stimulates immunomodulations <i>in vivo</i> . Environmental Toxicology, 2013, 28, 127-136.	2.1	19
168	Abnormal Tregulatory cells (Tregs: FOXP3+, CTLA-4+), myeloid-derived suppressor cells (MDSCs:) IJ ETQq1 1 0 locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC) and surgery: failure of abolition of abnormal treg profile with treatment and correlation of treg levels with pathological	1.8	58
169	Therapeutic Cancer Vaccines. Advances in Cancer Research, 2013, 119, 421-475.	1.9	450
170	Monocytes and Macrophages in Cancer: Development and Functions. Cancer Microenvironment, 2013, 6, 179-191.	3.1	154
171	Common mechanisms of dysfunctional adipose tissue and obesityâ€related cancers. Diabetes/Metabolism Research and Reviews, 2013, 29, 285-295.	1.7	34
172	Hypoxiaâ€inducible factors as key regulators of tumor inflammation. International Journal of Cancer, 2013, 132, 2721-2729.	2.3	60
173	Macrophages Are Essential for the Early Wound Healing Response and the Formation of a Fibrovascular Scar. American Journal of Pathology, 2013, 182, 2407-2417.	1.9	102
174	Innate immune reactions in locally limited tonsillar cancer. European Archives of Oto-Rhino-Laryngology, 2013, 270, 2751-2758.	0.8	1
175	Impact of CCL2 and Its Receptor CCR2 Gene Polymorphism in North Indian Population: A Comparative Study in Different Ethnic Groups Worldwide. Indian Journal of Clinical Biochemistry, 2013, 28, 259-264.	0.9	3
176	Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host and Microbe, 2013, 14, 207-215.	5.1	1,913
177	Adequate Antigen Availability: A Key Issue for Novel Approaches to Tumor Vaccination and Tumor Immunotherapy. Journal of NeuroImmune Pharmacology, 2013, 8, 28-36.	2.1	10
178	CD40 immunotherapy for pancreatic cancer. Cancer Immunology, Immunotherapy, 2013, 62, 949-954.	2.0	95
179	Properties of monocytes generated from haematopoietic CD34+ stem cells from bone marrow of colon cancer patients. Cancer Immunology, Immunotherapy, 2013, 62, 705-713.	2.0	3
180	Distinct roles of <scp>CSF</scp> family cytokines in macrophage infiltration and activation in glioma progression and injury response. Journal of Pathology, 2013, 230, 310-321.	2.1	137
181	Understanding clinical strategies that may impact tumour growth and metastatic spread atÂthe time of cancer surgery. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2013, 27, 427-439.	1.7	28
182	Suppressors of Cytokine Signaling 2 and 3 Diametrically Control Macrophage Polarization. Immunity, 2013, 39, 196-197.	6.6	27

ARTICLE IF CITATIONS # Influence of tumour micro-environment heterogeneity on therapeutic response. Nature, 2013, 501, 183 13.7 2,093 346-354. Tumor-associated Macrophages in Cancer Growth and Progression., 2013, , 451-471. 184 185 Tumor-induced Myeloid-derived Suppressor Cells., 2013, , 473-496. 2 Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 186 complexed with their secreted proMMP-9. Blood, 2013, 122, 4054-4067. Macrophages in multiple myeloma: emerging concepts and therapeutic implications. Leukemia and 187 0.6 47 Lymphoma, 2013, 54, 2112-2121. Oncogenes in non-small-cell lung cancer: emerging connections and novel therapeutic dynamics. Lancet Respiratory Medicine,the, 2013, 1, 251-261. 188 5.2 Linking inflammation to tumorigenesis in a mouse model of high-fat-diet-enhanced colon cancer. 189 1.4 77 Cytokine, 2013, 64, 454-462. Macrophages control innate inflammation. Diabetes, Obesity and Metabolism, 2013, 15, 10-18. 190 57 Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. 191 2.0 281 Cancer Immunology, Immunotherapy, 2013, 62, 1745-1756. HLA-dependent tumour development: a role for tumour associate macrophages?. Journal of 1.8 Translational Medicine, 2013, 11, 247 Proangiogenic TIE2+/CD31+ Macrophages Are the Predominant Population of Tumor-Associated 193 1.0 30 Macrophages Infiltrating Metastatic Lymph Nodes. Molecules and Cells, 2013, 36, 432-438. Attenuated expression of interferon- \hat{I}^2 and interferon- \hat{I} »1 by human alternatively activated macrophages. 194 1.2 Human Immunology, 2013, 74, 1524-1530. History of myeloid-derived suppressor cells. Nature Reviews Cancer, 2013, 13, 739-752. 195 12.8 974 Cancer Immunoediting., 2013, , 85-99. Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival. 197 3.3 251 Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15919-15924. Pathophysiology of endotoxin tolerance: mechanisms and clinical consequences. Critical Care, 2013, 17, 242. Role of Macrophage Polarization in Tumor Angiogenesis and Vessel Normalization. International 199 1.6 89 Review of Cell and Molecular Biology, 2013, 301, 1-35. Growth of HepG2 Cells was Suppressed Through Modulation of STAT6/IL-4 and IL-10 in RAW 264.7 Cells Treated by Phytoglycoprotein (38ÂkDa). Inflammation, 2013, 36, 549-560.

щ		IF	CITATIONS
#	Inhibition of TGF-Î ² signaling in combination with TLR7 ligation re-programs a tumoricidal phenotype in	IF	CHATIONS
202	tumor-associated macrophages. Cancer Letters, 2013, 331, 239-249.	3.2	55
203	Expanded applications, shifting paradigms and an improved understanding of host–biomaterial interactions. Acta Biomaterialia, 2013, 9, 4948-4955.	4.1	217
204	Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers. Biomaterials, 2013, 34, 746-755.	5.7	108
205	SJSZ glycoprotein (38ÂkDa) modulates macrophage type 1/2-related factors at hepatocarcinogenic stage in N-nitrosodiethylamine-treated Balb/c. Molecular and Cellular Biochemistry, 2013, 372, 17-26.	1.4	2
206	Tumor-associated macrophages in thoracic malignancies. Lung Cancer, 2013, 80, 256-262.	0.9	53
207	S100B Promotes Glioma Growth through Chemoattraction of Myeloid-Derived Macrophages. Clinical Cancer Research, 2013, 19, 3764-3775.	3.2	86
208	Targeting tumor-infiltrating macrophages to combat cancer. Immunotherapy, 2013, 5, 1075-1087.	1.0	135
209	Noncanonical roles of the immune system in eliciting oncogene addiction. Current Opinion in Immunology, 2013, 25, 246-258.	2.4	11
211	The Proangiogenic Phenotype of Natural Killer Cells in Patients with Non-Small Cell Lung Cancer. Neoplasia, 2013, 15, 133-IN7.	2.3	196
212	Detectability and reproducibility of plasma levels of chemokines and soluble receptors. Results in Immunology, 2013, 3, 79-84.	2.2	21
213	Combining Radiotherapy and Cancer Immunotherapy: A Paradigm Shift. Journal of the National Cancer Institute, 2013, 105, 256-265.	3.0	846
214	Antiâ€ŧumour strategies aiming to target tumourâ€associated macrophages. Immunology, 2013, 138, 93-104.	2.0	222
215	Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature, 2013, 495, 524-528.	13.7	285
216	Class 3 semaphorins: physiological vascular normalizing agents for antiâ€cancer therapy. Journal of Internal Medicine, 2013, 273, 138-155.	2.7	37
217	VEGF Blockade Enables Oncolytic Cancer Virotherapy in Part by Modulating Intratumoral Myeloid Cells. Molecular Therapy, 2013, 21, 1014-1023.	3.7	34
218	The cancer stem cell niche(s): The crosstalk between glioma stem cells and their microenvironment. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2496-2508.	1.1	140
219	TLR2-dependent selective autophagy regulates NF-κB lysosomal degradation in hepatoma-derived M2 macrophage differentiation. Cell Death and Differentiation, 2013, 20, 515-523.	5.0	141
220	Control of Tumor-Associated Macrophage Alternative Activation by Macrophage Migration Inhibitory Factor. Journal of Immunology, 2013, 190, 2984-2993.	0.4	124

#	Article	IF	CITATIONS
221	M2/M1 ratio of tumor associated macrophages and PPAR-gamma expression in uveal melanomas with class 1 and class 2 molecular profiles. Experimental Eye Research, 2013, 107, 52-58.	1.2	58
222	High level of mature tumor-infiltrating dendritic cells predicts progression to muscle invasion in bladder cancer. Human Pathology, 2013, 44, 1630-1637.	1.1	30
223	Applying Pressure on Macrophages. Immunity, 2013, 38, 205-206.	6.6	2
224	On the cytokines produced by human neutrophils in tumors. Seminars in Cancer Biology, 2013, 23, 159-170.	4.3	151
225	Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow. FASEB Journal, 2013, 27, 3017-3029.	0.2	86
226	The Inflammatory Microenvironment in Hepatocellular Carcinoma: A Pivotal Role for Tumor-Associated Macrophages. BioMed Research International, 2013, 2013, 1-15.	0.9	332
227	Beta-Endorphin Neuron Regulates Stress Response and Innate Immunity to Prevent Breast Cancer Growth and Progression. Vitamins and Hormones, 2013, 93, 263-276.	0.7	28
228	Tumor associated macrophages and neutrophils in cancer. Immunobiology, 2013, 218, 1402-1410.	0.8	500
229	Tumor microenvironment profoundly modifies functional status of macrophages: Peritoneal and tumor-associated macrophages are two very different subpopulations. Cellular Immunology, 2013, 283, 51-60.	1.4	28
230	The Tumor Immunoenvironment. , 2013, , .		4
231	Tumor-associated macrophages as a prognostic parameter in multiple myeloma. Annals of Hematology, 2013, 92, 669-677.	0.8	76
232	Antineoplastic drug NSC631570 modulates functions of hypoxic macrophages. Cytology and Genetics, 2013, 47, 318-328.	0.2	10
233	The oxysterol–CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. Journal of Experimental Medicine, 2013, 210, 1711-1728.	4.2	167
234	ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Research, 2013, 23, 898-914.	5.7	408
235	Naturally Occurring Hydroxytyrosol: Synthesis and Anticancer Potential. Current Medicinal Chemistry, 2013, 20, 655-670.	1.2	83
236	The Role of IL-1β in the Early Tumor Cell–Induced Angiogenic Response. Journal of Immunology, 2013, 190, 3500-3509.	0.4	171
237	Protein Domain Histochemistry (PDH). Journal of Histochemistry and Cytochemistry, 2013, 61, 199-205.	1.3	22
238	Myeloid Cell Receptor LRP1/CD91 Regulates Monocyte Recruitment and Angiogenesis in Tumors. Cancer Research, 2013, 73, 3902-3912.	0.4	71

#	Article	IF	Citations
239	Tumor Microenvironment may Shape the Function and Phenotype of NK Cells Through the Induction of Regulatory NK Cells. , 2013, , 361-381.		8
240	A New Herbal Formula, KSG-002, Suppresses Breast Cancer Growth and Metastasis by Targeting NF-κB-Dependent TNFαProduction in Macrophages. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-10.	0.5	14
241	Macrophages and chemokines as mediators of angiogenesis. Frontiers in Physiology, 2013, 4, 159.	1.3	142
242	Butylated Hydroxyanisole Blocks the Occurrence of Tumor Associated Macrophages in Tobacco Smoke Carcinogen-Induced Lung Tumorigenesis. Cancers, 2013, 5, 1643-1654.	1.7	7
243	Can combination metronomic therapy overcome chemoresistance in cholangiocarcinoma? A literature review. Indian Journal of Cancer, 2013, 50, 149.	0.2	3
244	Tumor-associated Neu5Ac-Tn and Neu5Gc-Tn antigens bind to C-type lectin CLEC10A (CD301, MGL). Glycobiology, 2013, 23, 844-852.	1.3	56
245	Inflammation Induced by MMP-9 Enhances Tumor Regression of Experimental Breast Cancer. Journal of Immunology, 2013, 190, 4420-4430.	0.4	78
246	Effective Cooperation of Monoclonal Antibody and Peptide Vaccine for the Treatment of Mouse Melanoma. Journal of Immunology, 2013, 190, 489-496.	0.4	24
247	Rationale for targeting the immune system through checkpoint molecule blockade in the treatment of non-small-cell lung cancer. Annals of Oncology, 2013, 24, 1170-1179.	0.6	80
248	Circulating DBP level and prognosis in operated lung cancer: an exploration of pathophysiology. European Respiratory Journal, 2013, 41, 410-416.	3.1	28
249	Nonneuronal Cholinergic System in Breast Tumors and Dendritic Cells: Does It Improve or Worsen the Response to Tumor?. , 2013, 2013, 1-12.		2
250	Betting on improved cancer immunotherapy by doubling down on CD134 and CD137 co-stimulation. Oncolmmunology, 2013, 2, e22837.	2.1	24
251	CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8 ⁺ T cells. Oncolmmunology, 2013, 2, e26968.	2.1	311
252	The role of macrophages polarization in predicting prognosis of radically resected gastric cancer patients. Journal of Cellular and Molecular Medicine, 2013, 17, 1415-1421.	1.6	76
253	TGF-β Signaling in Myeloid Cells Is Required for Tumor Metastasis. Cancer Discovery, 2013, 3, 936-951.	7.7	134
254	Angiogenic and Antiangiogenic Chemokines. Chemical Immunology and Allergy, 2014, 99, 89-104.	1.7	43
255	Biological Microniches Characterizing Pathological Lesions. Frontiers of Nanoscience, 2013, 5, 139-173.	0.3	1
256	Neutrophil chemokines secreted by tumor cells mount a lung antimetastatic response during renal cell carcinoma progression. Oncogene, 2013, 32, 1752-1760.	2.6	128

#	Article	IF	CITATIONS
257	Hypoxia-mediated regulation of macrophage functions in pathophysiology. International Immunology, 2013, 25, 67-75.	1.8	69
258	Polarization of tumorâ€associated macrophage is associated with tumor vascular normalization by endostatin. Thoracic Cancer, 2013, 4, 295-305.	0.8	9
259	Macrophage Phenotype in the Mammary Gland Fluctuates over the Course of the Estrous Cycle and Is Regulated by Ovarian Steroid Hormones1. Biology of Reproduction, 2013, 89, 65.	1.2	28
260	Reciprocal Interactions between Tumor-Associated Macrophages and CD44-Positive Cancer Cells via Osteopontin/CD44 Promote Tumorigenicity in Colorectal Cancer. Clinical Cancer Research, 2013, 19, 785-797.	3.2	105
261	Interactions between Immune Cells and Tumor Cells. Journal of Korean Thyroid Association, 2013, 6, 96.	0.2	2
262	P2X7 Receptor Activation Impairs Exogenous MHC Class I Oligopeptides Presentation in Antigen Presenting Cells. PLoS ONE, 2013, 8, e70577.	1.1	9
263	High-Infiltration of Tumor-Associated Macrophages Predicts Unfavorable Clinical Outcome for Node-Negative Breast Cancer. PLoS ONE, 2013, 8, e76147.	1.1	108
264	The Prognostic Implications of Macrophages Expressing Proliferating Cell Nuclear Antigen in Breast Cancer Depend on Immune Context. PLoS ONE, 2013, 8, e79114.	1.1	24
265	Association between MCP-1 -2518A/G Polymorphism and Cancer Risk: Evidence from 19 Case-Control Studies. PLoS ONE, 2013, 8, e82855.	1.1	10
266	Cyclooxygenase-2 Inhibition Blocks M2 Macrophage Differentiation and Suppresses Metastasis in Murine Breast Cancer Model. PLoS ONE, 2013, 8, e63451.	1.1	142
267	Tumor-Infiltrating Macrophage and Microvessel Density in Oral Squamous Cell Carcinoma. Brazilian Dental Journal, 2013, 24, 194-199.	0.5	15
268	Dendritic Cell-Targeted Approaches to Modulate Immune Dysfunction in the Tumor Microenvironment. Frontiers in Immunology, 2013, 4, 436.	2.2	21
269	Protumor Activities of the Immune Response: Insights in the Mechanisms of Immunological Shift, Oncotraining, and Oncopromotion. Journal of Oncology, 2013, 2013, 1-16.	0.6	49
270	Dual Functions of Natural Killer Cells in Selection and Differentiation of Stem Cells; Role in Regulation of Inflammation and Regeneration of Tissues. Journal of Cancer, 2013, 4, 12-24.	1.2	74
271	On the Origin of Cancer Metastasis. Critical Reviews in Oncogenesis, 2013, 18, 43-73.	0.2	797
272	Inhibition of CSF-1R Supports T-Cell Mediated Melanoma Therapy. PLoS ONE, 2014, 9, e104230.	1.1	52
273	Mitochondrial DAMPs Induce Endotoxin Tolerance in Human Monocytes: An Observation in Patients with Myocardial Infarction. PLoS ONE, 2014, 9, e95073.	1.1	45
274	Ratio of Intratumoral Macrophage Phenotypes Is a Prognostic Factor in Epithelioid Malignant Pleural Mesothelioma. PLoS ONE, 2014, 9, e106742.	1.1	79

#	Article	IF	CITATIONS
275	Transforming Growth Factor-Beta and Matrix Metalloproteinases: Functional Interactions in Tumor Stroma-Infiltrating Myeloid Cells. Scientific World Journal, The, 2014, 2014, 1-14.	0.8	136
276	Macrophages, Neutrophils, and Cancer: A Double Edged Sword. New Journal of Science, 2014, 2014, 1-14.	1.0	36
277	Cancer: A Tale of Aberrant PRR Response. Frontiers in Immunology, 2014, 5, 161.	2.2	11
278	The Role of Tumor-Associated Macrophages on Serum Soluble IL-2R Levels in B-Cell Lymphomas. Journal of Clinical and Experimental Hematopathology: JCEH, 2014, 54, 49-57.	0.3	20
279	Macrophages $\hat{a} \in \mathbb{C}^{n}$ Masters of Immune Activation, Suppression and Deviation. , 0, , .		18
280	Regulatory Macrophages and the Maintenance of Homeostasis. , 2014, , 77-87.		1
281	Cellular and molecular immunology of lung cancer: therapeutic implications. Expert Review of Clinical Immunology, 2014, 10, 1711-1730.	1.3	10
282	Tissue-Infiltrating Neutrophils Constitute the Major In Vivo Source of Angiogenesis-Inducing MMP-9 in the Tumor Microenvironment. Neoplasia, 2014, 16, 771-788.	2.3	220
283	Molecular regulation of macrophages in unleashing cancer-related inflammation. Oncolmmunology, 2014, 3, e27659.	2.1	9
284	Ethanol Supports Macrophage Recruitment and Reinforces Invasion and Migration of <scp>L</scp> ewis Lung Carcinoma. Alcoholism: Clinical and Experimental Research, 2014, 38, 2597-2606.	1.4	6
285	ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death and Disease, 2014, 5, e1135-e1135.	2.7	102
286	A Macrophage-Dominant PI3K Isoform Controls Hypoxia-Induced HIF1α and HIF2α Stability and Tumor Growth, Angiogenesis, and Metastasis. Molecular Cancer Research, 2014, 12, 1520-1531.	1.5	107
287	Chronic Inflammation: Synergistic Interactions of Recruiting Macrophages (TAMs) and Eosinophils (Eos) with Host Mast Cells (MCs) and Tumorigenesis in CALTs. M-CSF, Suitable Biomarker for Cancer Diagnosis!. Cancers, 2014, 6, 297-322.	1.7	32
288	Doxorubicin treatment induces tumor cell death followed by immunomodulation in a murine neuroblastoma model. Experimental and Therapeutic Medicine, 2014, 7, 703-708.	0.8	24
289	Clinical Impact of Tumor-Infiltrating Inflammatory Cells in Primary Small Cell Esophageal Carcinoma. International Journal of Molecular Sciences, 2014, 15, 9718-9734.	1.8	25
290	Orchestration of Angiogenesis by Immune Cells. Frontiers in Oncology, 2014, 4, 131.	1.3	99
291	Cancer Invasion and Metastasis. , 2014, , 423-433.		1
292	The role IL-1 in tumor-mediated angiogenesis. Frontiers in Physiology, 2014, 5, 114.	1.3	173

#	Article	IF	CITATIONS
293	Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment. Cancers, 2014, 6, 1670-1690.	1.7	1,223
294	Induction of thymic stromal lymphopoietin in mesenchymal stem cells by interaction with myeloma cells. Leukemia and Lymphoma, 2014, 55, 2605-2613.	0.6	30
295	Fatty Acid-Binding Protein E-FABP Restricts Tumor Growth by Promoting IFN-β Responses in Tumor-Associated Macrophages. Cancer Research, 2014, 74, 2986-2998.	0.4	97
296	Understanding the biology of reactive oxygen species and their link to cancer: <scp>NADPH</scp> oxidases as novel pharmacological targets. Clinical and Experimental Pharmacology and Physiology, 2014, 41, 533-542.	0.9	35
297	Tumor-induced senescent T cells promote the secretion of pro-inflammatory cytokines and angiogenic factors by human monocytes/macrophages through a mechanism that involves Tim-3 and CD40L. Cell Death and Disease, 2014, 5, e1507-e1507.	2.7	33
298	New targets for antibody therapy of pediatric B cell lymphomas. Pediatric Blood and Cancer, 2014, 61, 2158-2163.	0.8	1
299	Immune regulation of bone metastasis. BoneKEy Reports, 2014, 3, 600.	2.7	28
300	Expression of <scp>CD</scp> 163, interleukinâ€10, and interferonâ€gamma in oral squamous cell carcinoma: mutual relationships and prognostic implications. European Journal of Oral Sciences, 2014, 122, 202-209.	0.7	58
301	<i>Dunaliella salina</i> Exhibits an Antileukemic Immunity in a Mouse Model of WEHI-3 Leukemia Cells. Journal of Agricultural and Food Chemistry, 2014, 62, 11479-11487.	2.4	23
302	The Prodrug Platinâ€ <i>A</i> : Simultaneous Release of Cisplatin and Aspirin. Angewandte Chemie - International Edition, 2014, 53, 1963-1967.	7.2	230
303	Nodal promotes the generation of <scp>M2</scp> â€like macrophages and downregulates the expression of <scp>IL</scp> â€l 2. European Journal of Immunology, 2014, 44, 173-183.	1.6	25
304	Loss of prolyl hydroxylaseâ€2 in myeloid cells and Tâ€lymphocytes impairs tumor development. International Journal of Cancer, 2014, 134, 849-858.	2.3	30
306	Origin and pharmacological modulation of tumorâ€associated regulatory dendritic cells. International Journal of Cancer, 2014, 134, 2633-2645.	2.3	47
307	The Role of the Host Immune Response in Tissue Engineering and Regenerative Medicine. , 2014, , 497-509.		7
308	Epidermal overexpression of transgenic ΔNp63 promotes type 2 immune and myeloid inflammatory responses and hyperplasia via NF-ήB activation. Journal of Pathology, 2014, 232, 356-368.	2.1	20
309	Twoâ€dimensional motility of a macrophage cell line on microcontactâ€printed fibronectin. Cytoskeleton, 2014, 71, 542-554.	1.0	11
310	The significance of macrophage phenotype in cancer and biomaterials. Clinical and Translational Medicine, 2014, 3, 62.	1.7	23
311	Epigenetic Mechanisms of Colon Cancer Prevention: What Can Nutrition Do?. , 2014, , 401-426.		Ο

ARTICLE IF CITATIONS Senescent Remodeling of the Innate and Adaptive Immune System in the Elderly Men with Prostate 312 18 1.6 Cancer. Current Gerontology and Geriatrics Research, 2014, 2014, 1-11. The Emerging Immunological Role of Post-Translational Modifications by Reactive Nitrogen Species in 313 2.2 58 Cancer Microenvironment. Frontiers in Immunology, 2014, 5, 69. Mechanisms Driving Macrophage Diversity and Specialization in Distinct Tumor Microenvironments 314 2.2 162 and Parallelisms with Other Tissues. Frontiers in Immunology, 2014, 5, 127. The Impact of the Immune System on Tumor: Angiogenesis and Vascular Remodeling. Frontiers in 129 Oncology, 2014, 4, 69. Targeting aPKC disables oncogenic signaling by both the ECFR and the proinflammatory cytokine TNFα in 316 1.6 47 glioblastoma. Science Signaling, 2014, 7, ra75. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization. Molecular Cancer, 2014, 13, 43. 318 Ephs and Ephrins in malignant gliomas. Growth Factors, 2014, 32, 190-201. 0.5 26 Natural killer cells as effectors of selection and differentiation of stem cells: Role in resolution of 319 inflammation. Journal of Immunotoxicology, 2014, 11, 297-307. The role of a Schiff base scaffold, N-(2-hydroxy acetophenone) glycinate-in overcoming multidrug 320 1.9 49 resistance in cancer. European Journal of Pharmaceutical Sciences, 2014, 51, 96-109. Inflammatory chemokines and metastasisâ€"tracing the accessory. Oncogene, 2014, 33, 3217-3224. Nuclear Factors Linking Cancer and Inflammation. Cancer Drug Discovery and Development, 2014, , 322 0.2 0 121-154. Human CD14⁺CTLA-4⁺regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in 3.6 178 hépatocellular carcinoma. Hépatology, 2014, 59, 567-579. New insights into cancer immunoediting and its three component phasesâ€"elimination, equilibrium and 324 2.4 1,163 escape. Current Opinion in Immunology, 2014, 27, 16-25. Cytokines secreted by macrophages isolated from tumor microenvironment of inflammatory breast cancer patients possess chemotactic properties. International Journal of Biochemistry and Cell 1.2 76 Biology, 2014, 46, 138-147. Tumor-associated macrophages are involved in tumor progression in papillary renal cell carcinoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2014, 464, 326 42 1.4 191-196. Adipose tissue, diet and aging. Mechanisms of Ageing and Development, 2014, 136-137, 129-137. 327 Mechanisms of tumor escape from immune system: Role of mesenchymal stromal cells. Immunology 328 1.1 120 Letters, 2014, 159, 55-72. Extracellular adenosine metabolism in immune cells in melanoma. Cancer Immunology, 329 Immunotherapy, 2014, 63, 1073-1080.

#	Article	IF	CITATIONS
330	Inhibitors of Tumor Angiogenesis. , 2014, , 275-317.		1
331	Identifying the infiltrators. Science, 2014, 344, 801-802.	6.0	15
332	Interaction of Immune and Cancer Cells. , 2014, , .		0
333	Biocompatibility and Immune Response to Biomaterials. , 2014, , 151-162.		6
334	Macrophages Are More Potent Immune Suppressors Ex Vivo Than Immature Myeloid-Derived Suppressor Cells Induced by Metastatic Murine Mammary Carcinomas. Journal of Immunology, 2014, 192, 512-522.	0.4	35
335	Imaging macrophages with nanoparticles. Nature Materials, 2014, 13, 125-138.	13.3	698
336	The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumor Biology, 2014, 35, 3945-3951.	0.8	181
337	Metastatic Growth Progression Caused by PSGL-1–Mediated Recruitment of Monocytes to Metastatic Sites. Cancer Research, 2014, 74, 695-704.	0.4	28
338	Glioma Cell Biology. , 2014, , .		3
339	Macrophages: Biology and Role in the Pathology of Diseases. , 2014, , .		13
340	Origin, development, and homeostasis of tissueâ€resident macrophages. Immunological Reviews, 2014, 262, 25-35.	2.8	98
341	Strategies Targeting cAMP Signaling in the Treatment of Polycystic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2014, 25, 18-32.	3.0	226
342	Granulomas are a source of interleukin-33 expression in pulmonary and extrapulmonary sarcoidosis. Human Pathology, 2014, 45, 2202-2210.	1.1	16
343	Monocyte Subpopulations in Angiogenesis. Cancer Research, 2014, 74, 1287-1293.	0.4	56
344	Platelet-derived Growth Factor-C (PDGF-C) Induces Anti-apoptotic Effects on Macrophages through Akt and Bad Phosphorylation. Journal of Biological Chemistry, 2014, 289, 6225-6235.	1.6	35
346	Innate immune regulation by <scp>STAT</scp> â€mediated transcriptional mechanisms. Immunological Reviews, 2014, 261, 84-101.	2.8	53
347	CSF1/CSF1R Blockade Reprograms Tumor-Infiltrating Macrophages and Improves Response to T-cell Checkpoint Immunotherapy in Pancreatic Cancer Models. Cancer Research, 2014, 74, 5057-5069.	0.4	1,030
348	Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A. Biochemical and Biophysical Research Communications, 2014, 451, 592-598.	1.0	82

		CITATION REP	ORT	
#	ARTICLE		IF	CITATIONS
349	Progression and Angiogenesis. Journal of the National Cancer Institute, 2014, 106, 1-13.		3.0	649
350	Diaporine, a novel endophyte-derived regulator of macrophage differentiation. Organic and Biomolecular Chemistry, 2014, 12, 6545-6548.		1.5	18
351	Molecular Pathways: Myeloid Complicity in Cancer. Clinical Cancer Research, 2014, 20, 5157-	5170.	3.2	44
352	Macrophage colony-stimulating factor and cancer: a review. Tumor Biology, 2014, 35, 10635-	10644.	0.8	49
353	CSF-1R Signaling in Health and Disease: A Focus on the Mammary Gland. Journal of Mammary Biology and Neoplasia, 2014, 19, 149-159.	Gland	1.0	32
354	Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating deaminase. Oncogene, 2014, 33, 3812-3819.	cytidine	2.6	226
355	Hypothesis: Tim-3/Galectin-9, A New Pathway for Leukemia Stem Cells Survival by Promoting I of Myeloid-Derived Suppressor Cells and Differentiating into Tumor-Associated Macrophages. Biochemistry and Biophysics, 2014, 70, 273-277.	Expansion Cell	0.9	49
356	Activated macrophages down-regulate expression of E-cadherin in hepatocellular carcinoma c NF–κB/Slug pathway. Tumor Biology, 2014, 35, 8893-8901.	ells via	0.8	17
357	IL-10, IL-4, and STAT6 Promote an M2 Milieu Required for Termination of P0106-125-Induced Experimental Autoimmune Neuritis. American Journal of Pathology, 2014, 184, 2627-2640.	Vlurine	1.9	20
358	Tumor-Induced Immune Suppression. , 2014, , .			3
359	Relationship between macrophages in mouse uteri and angiogenesis in endometrium during t peri-implantation period. Theriogenology, 2014, 82, 1021-1027.	he	0.9	13
360	Emerging drugs targeting PD-1 and PD-L1: reality or hope?. Expert Opinion on Emerging Drug: 557-569.	s, 2014, 19,	1.0	10
361	miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer r via downâ \in regulation of the inflammatory cytokines CXCL1 and â \in 2. Molecular Oncology, 20	netastasis 14, 8, 581-595.	2.1	148
362	Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by dep F4/80+VCAM1+CD169+ER-HR3+Ly6G+ erythroid island macrophages in the mouse. Experime Hematology, 2014, 42, 547-561.e4.	leting ntal	0.2	82
363	Molecular Mechanisms of Angiogenesis. , 2014, , .			5
364	Molecular mechanisms and physiology of disease. , 2014, , .			1
365	Tumor-associated macrophages promote cancer stem cell-like properties via transforming gro factor-beta1-induced epithelial–mesenchymal transition in hepatocellular carcinoma. Cance 2014, 352, 160-168.	wth r Letters,	3.2	346
366	Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcir progression. Oncogene, 2014, 33, 2423-2431.	ioma	2.6	392

#	Article	IF	CITATIONS
367	Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Frontiers in Chemistry, 2014, 2, 105.	1.8	147
368	Novel Oncomarkers Used for Earlier Detection of Bladder Carcinoma Bilecová-Rabajdová, PhD; Peter Urban, PhD; Mária Mareková, PhD;. , 2014, , 515-540.		Ο
369	Phagocytosis of Bafilomycin A1-treated Apoptotic Neuroblastoma Cells by Bone Marrow–derived Dendritic Cells Initiates a CD8α+ Lymphocyte Response to Neuroblastoma. Journal of Pediatric Hematology/Oncology, 2014, 36, e290-e295.	0.3	3
370	Exercise effects on polyp burden and immune markers in the ApcMin/+ mouse model of intestinal tumorigenesis. International Journal of Oncology, 2014, 45, 861-868.	1.4	44
371	The nuclear bile acid receptor <scp>FXR</scp> controls the liver derived tumor suppressor histidineâ€rich glycoprotein. International Journal of Cancer, 2015, 136, 2693-2704.	2.3	14
372	Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression. Scientific Reports, 2015, 5, 14273.	1.6	278
373	Synergistic Anti-Tumor Effects of Zoledronic Acid and Radiotherapy against Metastatic Hepatocellular Carcinoma. Internal Medicine, 2015, 54, 2609-2613.	0.3	5
374	The wound inflammatory response exacerbates growth of preâ€neoplastic cells and progression toÂcancer. EMBO Journal, 2015, 34, 2219-2236.	3.5	210
375	A Perspective of Immunotherapy for Breast Cancer: Lessons Learned and Forward Directions for All Cancers. Breast Cancer: Basic and Clinical Research, 2015, 9s2, BCBCR.S29425.	0.6	4
376	Cetuximab ameliorates suppressive phenotypes of myeloid antigen presenting cells in head and neck cancer patients. , 2015, 3, 54.		40
377	microRNA-26a suppresses recruitment of macrophages by down-regulating macrophage colony-stimulating factor expression through the PI3K/Akt pathway in hepatocellular carcinoma. Journal of Hematology and Oncology, 2015, 8, 56.	6.9	75
378	Metformin affects the features of a human hepatocellular cell line (HepG2) by regulating macrophage polarization in a coâ€culture microenviroment. Diabetes/Metabolism Research and Reviews, 2015, 31, 781-789.	1.7	35
379	Fcl ³ R requirements leading to successful immunotherapy. Immunological Reviews, 2015, 268, 104-122.	2.8	41
380	<scp>CSF</scp> â€lâ€activated macrophages are targetâ€directed and essential mediators of schwann cell dedifferentiation and dysfunction in <scp>C</scp> x32â€deficient mice. Glia, 2015, 63, 977-986.	2.5	46
381	Benzyl isothiocyanate suppresses highâ€fat dietâ€stimulated mammary tumor progression via the alteration of tumor microenvironments in obesityâ€resistant BALB/c mice. Molecular Carcinogenesis, 2015, 54, 72-82.	1.3	22
382	Melanocytic tumors with intraepidermal melanophages: a report of five cases with review of 231 archived cutaneous melanocytic tumors. Journal of Cutaneous Pathology, 2015, 42, 394-399.	0.7	2
383	Sex-determining Region of Y Chromosome-related High-mobility-group Box 2 in Malignant Tumors. Chinese Medical Journal, 2015, 128, 384-389.	0.9	7
384	Tumour-associated macrophage polarisation and re-education with immunotherapy. Frontiers in Bioscience - Elite, 2015, 7, 334-351.	0.9	0

#	Article	IF	CITATIONS
385	Maslinic Acid Enhances Signals for the Recruitment of Macrophages and Their Differentiation to M1 State. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-9.	0.5	17
386	Monocytes and macrophages, implications for breast cancer migration and stem cell-like activity and treatment. Oncotarget, 2015, 6, 14687-14699.	0.8	35
387	Paving the Road to Tumor Development and Spreading: Myeloid-Derived Suppressor Cells are Ruling the Fate. Frontiers in Immunology, 2015, 6, 523.	2.2	74
388	Prognostic Value of Tumor-Associated Macrophages According to Histologic Locations and Hormone Receptor Status in Breast Cancer. PLoS ONE, 2015, 10, e0125728.	1.1	98
389	Identification of Reprogrammed Myeloid Cell Transcriptomes in NSCLC. PLoS ONE, 2015, 10, e0129123.	1.1	17
390	Tumor-Associated Macrophages Provide Significant Prognostic Information in Urothelial Bladder Cancer. PLoS ONE, 2015, 10, e0133552.	1.1	55
391	The Frequency of Cytidine Editing of Viral DNA Is Differentially Influenced by Vpx and Nucleosides during HIV-1 or SIVMAC Infection of Dendritic Cells. PLoS ONE, 2015, 10, e0140561.	1.1	1
392	The Macrophage Inhibitor CNI-1493 Blocks Metastasis in a Mouse Model of Ewing Sarcoma through Inhibition of Extravasation. PLoS ONE, 2015, 10, e0145197.	1.1	15
393	Mushroom <i>β</i> -Glucan May Immunomodulate the Tumor-Associated Macrophages in the Lewis Lung Carcinoma. BioMed Research International, 2015, 2015, 1-15.	0.9	15
394	Current Concept and Update of the Macrophage Plasticity Concept: Intracellular Mechanisms of Reprogramming and M3 Macrophage "Switch―Phenotype. BioMed Research International, 2015, 2015, 1-22.	0.9	214
395	Chemotherapy and Chemoprevention by Thiazolidinediones. BioMed Research International, 2015, 2015, 1-14.	0.9	74
396	The Regulation of Endotoxin Tolerance and its Impact on Macrophage Activation. Critical Reviews in Immunology, 2015, 35, 293-323.	1.0	32
397	A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget, 2015, 6, 37695-37705.	0.8	55
398	Physiological, Tumor, and Metastatic Niches: Opportunities and Challenges for Targeting the Tumor Microenvironment. Critical Reviews in Oncogenesis, 2015, 20, 301-314.	0.2	17
399	Analysis of the intricate relationship between chronic inflammation and cancer. Biochemical Journal, 2015, 468, 1-15.	1.7	172
400	Inflammatory and Innate Immune Cells in Cancer Microenvironment and Progression. , 2015, , 9-28.		6
401	Conditioning solid tumor microenvironment through inflammatory chemokines and S100 family proteins. Cancer Letters, 2015, 365, 11-22.	3.2	32
402	DcR3 suppresses influenza virus-induced macrophage activation and attenuates pulmonary inflammation and lethality. Journal of Molecular Medicine, 2015, 93, 1131-1143.	1.7	12

ARTICLE IF CITATIONS Characterization of macrophage - cancer cell crosstalk in estrogen receptor positive and 403 119 1.6 triple-negative breast cancer. Scientific Reports, 2015, 5, 9188. Targeting the Immune System for Cancer Therapy: Lessons for Perioperative Management?. Current 404 Anesthesiology Reports, 2015, 5, 257-267. Tasquinimod triggers an early change in the polarization of tumor associated macrophages in the 405 50 tumor microenvironment., 2015, 3, 53. Ovarian cancer stem cells induce the M2 polarization of macrophages through the PPARÎ³ and NF-Î²B 406 1.8 pathways. International Journal of Molecular Medicine, 2015, 36, 449-454. Versican silencing improves the antitumor efficacy of endostatin by alleviating its induced 407 inflammatory and immunosuppressive changes in the tumor microenvironment. Oncology Reports, 1.2 32 2015, 33, 2981-2991. Nano-Gold Corking and Enzymatic Uncorking of Carbon Nanotube Cups. Journal of the American Chemical Society, 2015, 137, 675-684. 408 6.6 36 Fas and TRAIL â€⁻death receptors' as initiators of inflammation: Implications for cancer. Seminars in Cell 409 2.3 67 and Developmental Biology, 2015, 39, 26-34. Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: Novel antiâ€ŧumor 410 2.1 mechanisms of Cannabidiol in breast cancer. Molecular Oncology, 2015, 9, 906-919. Transforming growth factorâ€beta differently regulates urokinase type plasminogen activator and 411 matrix metalloproteinaseâ€9 expression in mouse macrophages; analysis of intracellular signal 1.4 4 transduction. Cell Biology International, 2015, 39, 619-628. Chronic Lymphocytic Leukemia: A Paradigm of Innate Immune Cross-Tolerance. Journal of Immunology, 0.4 2015, 194, 719-727. RAGE Mediates S100A7-Induced Breast Cancer Growth and Metastasis by Modulating the Tumor 413 112 0.4 Microenvironment. Cancer Research, 2015, 75, 974-985. Building immunity to cancer with radiation therapy. Cancer Letters, 2015, 368, 198-208. 3.2 414 69 Impact of microenvironment and stem-like plasticity in cholangiocarcinoma: Molecular networks and 415 1.8 66 biological concepts. Journal of Hepatology, 2015, 62, 198-207. Inflammation and prostate cancer: friends or foe?. Inflammation Research, 2015, 64, 275-286. 1.6 Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma. Current Biology, 2015, 417 1.8 96 25, 577-588. Chemical sympathectomy increases neutrophil-to-lymphocyte ratio in tumor-bearing rats but does not 1.1 influence cancer progression. Journal of Neuroimmunology, 2015, 278, 255-261. Macrophage polarization in pathology. Cellular and Molecular Life Sciences, 2015, 72, 4111-4126. 419 2.4 487 Phagocytes as Corrupted Policemen in Cancer-Related Inflammation. Advances in Cancer Research, 2015, 128, 141-171.

#	Article	IF	CITATIONS
421	Perspectives on Epidermal Growth Factor Receptor Regulation in Triple-Negative Breast Cancer. Advances in Cancer Research, 2015, 127, 253-281.	1.9	24
422	Larynx carcinoma regulates tumor-associated macrophages through PLGF signaling. Scientific Reports, 2015, 5, 10071.	1.6	28
423	Spatial and Functional Heterogeneities Shape Collective Behavior of Tumor-Immune Networks. PLoS Computational Biology, 2015, 11, e1004181.	1.5	35
424	Are Macrophages in Tumors Good Targets for Novel Therapeutic Approaches?. Molecules and Cells, 2015, 38, 95-104.	1.0	9
425	CCL2 and CCL5 Are Novel Therapeutic Targets for Estrogen-Dependent Breast Cancer. Clinical Cancer Research, 2015, 21, 3794-3805.	3.2	190
426	Functions of thymic stromal lymphopoietin in non-allergic diseases. Cellular Immunology, 2015, 295, 144-149.	1.4	10
427	Cancer prevention and therapy through the modulation of the tumor microenvironment. Seminars in Cancer Biology, 2015, 35, S199-S223.	4.3	285
428	Liposome encapsulated zoledronate favours M1-like behaviour in murine macrophages cultured with soluble factors from breast cancer cells. BMC Cancer, 2015, 15, 4.	1.1	31
429	Microarray analysis identifies IL-1 receptor type 2 as a novel candidate biomarker in patients with acute respiratory distress syndrome. Respiratory Research, 2015, 16, 29.	1.4	35
430	Immunotherapy and Immunosurveillance of Oral Cancers: Perspectives of Plasma Medicine and Mistletoe. , 2015, , 313-318.		2
431	Intratumoral macrophage phenotype and CD8 + T lymphocytes as potential tools to predict local tumor outgrowth at the intervention site in malignant pleural mesothelioma. Lung Cancer, 2015, 88, 332-337.	0.9	22
432	Immunostimulatory early phenotype of tumor-associated macrophages does not predict tumor growth outcome in an HLA-DR mouse model of prostate cancer. Cancer Immunology, Immunotherapy, 2015, 64, 873-883.	2.0	8
433	The Immunophysiology of Male Reproduction. , 2015, , 805-892.		31
434	Therapeutic Peptide Vaccine-Induced CD8 T Cells Strongly Modulate Intratumoral Macrophages Required for Tumor Regression. Cancer Immunology Research, 2015, 3, 1042-1051.	1.6	68
435	Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment. Gut, 2015, 64, 1921-1935.	6.1	112
436	From 2000years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry, 2015, 114, 56-65.	1.4	257
437	Cellular immunotherapy in ovarian cancer: Targeting the stem of recurrence. Gynecologic Oncology, 2015, 137, 335-342.	0.6	32
438	Reactive oxygen species in the tumor niche triggers altered activation of macrophages and immunosuppression: Role of fluoxetine. Cellular Signalling, 2015, 27, 1398-1412.	1.7	54

#	Article	IF	CITATIONS
439	Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Seminars in Cancer Biology, 2015, 35, S185-S198.	4.3	1,122
440	Ormeloxifene Suppresses Desmoplasia and Enhances Sensitivity of Gemcitabine in Pancreatic Cancer. Cancer Research, 2015, 75, 2292-2304.	0.4	67
441	Multifunctional receptor-targeting antibodies for cancer therapy. Lancet Oncology, The, 2015, 16, e543-e554.	5.1	36
442	The chemokine receptor CCR6 facilitates the onset of mammary neoplasia in the MMTV-PyMT mouse model via recruitment of tumor-promoting macrophages. Molecular Cancer, 2015, 14, 115.	7.9	50
443	Macrophage subtype predicts lymph node metastasis in oesophageal adenocarcinoma and promotes cancer cell invasion in vitro. British Journal of Cancer, 2015, 113, 738-746.	2.9	54
444	FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. Journal of Experimental Medicine, 2015, 212, 1433-1448.	4.2	186
445	RORC1 Regulates Tumor-Promoting "Emergency―Granulo-Monocytopoiesis. Cancer Cell, 2015, 28, 253-269.	7.7	154
446	<scp>DNA</scp> methylome profiling beyond promoters – taking an epigenetic snapshot of the breast tumor microenvironment. FEBS Journal, 2015, 282, 1801-1814.	2.2	27
447	The tumor vessel targeting agent NGR-TNF controls the different stages of the tumorigenic process in transgenic mice by distinct mechanisms. Oncolmmunology, 2015, 4, e1041700.	2.1	10
448	The synergistic interaction between the calcineurin B subunit and IFN-Î ³ enhances macrophage antitumor activity. Cell Death and Disease, 2015, 6, e1740-e1740.	2.7	22
449	Genetic instability in the tumor microenvironment: a new look at an old neighbor. Molecular Cancer, 2015, 14, 145.	7.9	48
450	Hypoxia induces calpain activity and degrades SMAD2 to attenuate TGFβ signaling in macrophages. Cell and Bioscience, 2015, 5, 36.	2.1	15
451	Dectin-1 Activation by a Natural Product β-Glucan Converts Immunosuppressive Macrophages into an M1-like Phenotype. Journal of Immunology, 2015, 195, 5055-5065.	0.4	129
452	The Dynamics of Interactions Among Immune and Glioblastoma Cells. NeuroMolecular Medicine, 2015, 17, 335-352.	1.8	30
453	Checkpoint modulation - A new way to direct the immune system against renal cell carcinoma. Human Vaccines and Immunotherapeutics, 2015, 11, 1201-1208.	1.4	11
454	An immature B cell population from peripheral blood serves as surrogate marker for monitoring tumor angiogenesis and anti-angiogenic therapy in mouse models. Angiogenesis, 2015, 18, 327-345.	3.7	10
455	The Role of Perioperative Pharmacological Adjuncts in Cancer Outcomes: Beta-Adrenergic Receptor Antagonists, NSAIDs and Anti-fibrinolytics. Current Anesthesiology Reports, 2015, 5, 291-304.	0.9	3
456	TLR9 and STING agonists synergistically induce innate and adaptive typeâ€II IFN. European Journal of Immunology, 2015, 45, 1159-1169.	1.6	111

		KLPOKI	
#	Article	IF	Citations
457	Myeloid-Derived Cells in Tumors: Effects of Radiation. Seminars in Radiation Oncology, 2015, 25, 18-27.	1.0	116
458	Prognostic influence of macrophages in patients with diffuse large B-cell lymphoma: a correlative study from a Nordic phase II trial. Haematologica, 2015, 100, 238-245.	1.7	87
459	Tectorigenin ablates the inflammation-induced epithelial–mesenchymal transition in a co-culture model of human lung carcinoma. Pharmacological Reports, 2015, 67, 382-387.	1.5	21
460	Macrophage iron homeostasis and polarization in the context of cancer. Immunobiology, 2015, 220, 295-304.	0.8	73
461	Intratumoral Injection of Ad-ISF35 (Chimeric CD154) Breaks Tolerance and Induces Lymphoma Tumor Regression. Human Gene Therapy, 2015, 26, 14-25.	1.4	5
462	Phospholipid makeup of the breast adipose tissue is impacted by obesity and mammary cancer in the mouse: Results of a pilot study. Biochimie, 2015, 108, 133-139.	1.3	8
463	The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenvironment, 2015, 8, 125-158.	3.1	315
464	Distribution and Presumed Proliferation of Macrophages in Inflammatory Diseases of the Ocular Adnexae. Current Eye Research, 2015, 40, 604-610.	0.7	12
465	Tumor infiltrating lymphocytes (TIL) and prognosis in oral cavity squamous carcinoma: A preliminary study. Oral Oncology, 2015, 51, 90-95.	0.8	135
466	Interleukin-19 increases angiogenesis in ischemic hind limbs by direct effects on both endothelial cells and macrophage polarization. Journal of Molecular and Cellular Cardiology, 2015, 79, 21-31.	0.9	43
467	5â€Fluorouracil causes leukocytes attraction in the peritoneal cavity by activating autophagy and HMCB1 release in colon carcinoma cells. International Journal of Cancer, 2015, 136, 1381-1389.	2.3	44
468	Infiltration of diametrically polarized macrophages predicts overall survival of patients with gastric cancer after surgical resection. Gastric Cancer, 2015, 18, 740-750.	2.7	118
469	Polarisation of Macrophage and Immunotherapy in the Wound Healing. , 2016, , .		1
470	Relationship Between Chronic Inflammation and the Stage and Histopathological Size of Colorectal Carcinoma. Medicinski Arhiv = Medical Archives = Archives De Médecine, 2016, 70, 104.	0.4	10
471	Tumor-associated macrophages (TAMs): clinical-pathological parameters in squamous cell carcinomas of the lower lip. Brazilian Oral Research, 2016, 30, e95.	0.6	7
472	The Fate of the Tumor in the Hands of Microenvironment: Role of TAMs and mTOR Pathway. Mediators of Inflammation, 2016, 2016, 1-7.	1.4	12
473	Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget, 2016, 7, 43076-43087.	0.8	281
474	Immunohistochemical Study of CD68, CD3 and Bcl-2 and their Role in Progression and Prognosis of Head and Neck Squamous Cell Carcinoma. Archives in Cancer Research, 2016, 4, .	0.3	3

#	Article	IF	CITATIONS
475	Modulation of Innate Immunity by Hypoxia. , 2016, , 81-106.		0
476	TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget, 2016, 7, 52294-52306.	0.8	353
477	The TGF-β pathway is activated by 5-fluorouracil treatment in drug resistant colorectal carcinoma cells. Oncotarget, 2016, 7, 22077-22091.	0.8	49
478	Jacalin-Activated Macrophages Exhibit an Antitumor Phenotype. BioMed Research International, 2016, 2016, 1-12.	0.9	10
479	Manipulating the NF-κB pathway in macrophages using mannosylated, siRNA-delivering nanoparticles can induce immunostimulatory and tumor cytotoxic functions. International Journal of Nanomedicine, 2016, 11, 2163.	3.3	55
480	Advances in targeted and immunobased therapies for colorectal cancer in the genomic era. OncoTargets and Therapy, 2016, 9, 1899.	1.0	44
481	Inflammation and Cancer. , 2016, , 406-415.		10
482	Role of the tumor microenvironment in pancreatic adenocarcinoma. Frontiers in Bioscience - Landmark, 2016, 21, 31-41.	3.0	6
483	Monitoring of the Immune Dysfunction in Cancer Patients. Vaccines, 2016, 4, 29.	2.1	15
484	Cancer-Associated Myeloid Regulatory Cells. Frontiers in Immunology, 2016, 7, 113.	2.2	63
485	Context-Specific and Immune Cell-Dependent Antitumor Activities of $\hat{I}\pm 1$ -Antitrypsin. Frontiers in Immunology, 2016, 7, 559.	2.2	16
486	Cancer Immunosurveillance: Immunoediting. , 2016, , 396-405.		3
487	Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?. Biomedicines, 2016, 4, 13.	1.4	35
488	Golgi-Related Proteins GOLPH2 (GP73/GOLM1) and GOLPH3 (GOPP1/MIDAS) in Cutaneous Melanoma: Patterns of Expression and Prognostic Significance. International Journal of Molecular Sciences, 2016, 17, 1619.	1.8	28
489	Investigating the Synergistic Effects of Combined Modified Alginates on Macrophage Phenotype. Polymers, 2016, 8, 422.	2.0	11
490	Potential Anticancer Drugs Targeting Immune Pathways. , 0, , .		0
491	Macrophage targeting contributes to the inhibitory effects of embelin on colitis-associated cancer. Oncotarget, 2016, 7, 19548-19558.	0.8	25
492	Increased Expression of CSF-1 Associates With Poor Prognosis of Patients With Gastric Cancer Undergoing Gastrectomy. Medicine (United States), 2016, 95, e2675.	0.4	18

#	Article	IF	CITATIONS
493	Oxidative stress, polarization of macrophages and tumour angiogenesis: Efficacy of caffeic acid. Chemico-Biological Interactions, 2016, 256, 111-124.	1.7	42
494	Tumorâ€Associated Macrophages Associate with Cerebrospinal Fluid Interleukinâ€10 and Survival in Primary Central Nervous System Lymphoma (<scp>PCNSL</scp>). Brain Pathology, 2016, 26, 479-487.	2.1	31
495	Synergistic antitumor responses by combined <scp>GITR</scp> activation and sunitinib in metastatic renal cell carcinoma. International Journal of Cancer, 2016, 138, 451-462.	2.3	19
496	Interaction between Treg cells and tumor-associated macrophages in the tumor microenvironment of epithelial ovarian cancer. Oncology Reports, 2016, 36, 3472-3478.	1.2	55
497	Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice. Journal of Experimental and Clinical Cancer Research, 2016, 35, 131.	3.5	116
498	Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer and Metastasis Reviews, 2016, 35, 547-573.	2.7	189
499	Macrophages Enhance Migration in Inflammatory Breast Cancer Cells via RhoC GTPase Signaling. Scientific Reports, 2016, 6, 39190.	1.6	41
500	Tumour-processed osteopontin and lactadherin drive the protumorigenic reprogramming of microglia and glioma progression. Oncogene, 2016, 35, 6366-6377.	2.6	83
501	Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4470-4475.	3.3	251
502	The role of tumour-associated macrophages in bone metastasis. Journal of Bone Oncology, 2016, 5, 135-138.	1.0	133
503	The Biology of Melanoma. , 2016, , 3-29.		0
504	Reversing T-cell Dysfunction and Exhaustion in Cancer. Clinical Cancer Research, 2016, 22, 1856-1864.	3.2	317
505	Predominance of M2-polarized macrophages in bladder cancer affects angiogenesis, tumor grade and invasiveness. Oncology Letters, 2016, 11, 3403-3408.	0.8	70
506	Leukocytes recruited by tumor-derived HMGB1 sustain peritoneal carcinomatosis. Oncolmmunology, 2016, 5, e1122860.	2.1	20
507	<scp>R</scp> ole of pulmonary macrophages in initiation of lung metastasis in anaplastic thyroid cancer. International Journal of Cancer, 2016, 139, 2583-2592.	2.3	23
508	MicroRNA-720 suppresses M2 macrophage polarization by targeting GATA3. Bioscience Reports, 2016, 36, .	1.1	47
509	CXCL1-Mediated Interaction of Cancer Cells with Tumor-Associated Macrophages and Cancer-Associated Fibroblasts Promotes Tumor Progression in Human Bladder Cancer. Neoplasia, 2016, 18, 636-646.	2.3	161
510	Accumulation of CD11c+CD163+ Adipose Tissue Macrophages through Upregulation of Intracellular 11β-HSD1 in Human Obesity. Journal of Immunology, 2016, 197, 3735-3745.	0.4	46

ARTICLE IF CITATIONS # Immune-checkpoint expression in Epstein-Barr virus positive and negative plasmablastic lymphoma: a 511 1.7 70 clinical and pathological study in 82 patients. Haematologica, 2016, 101, 976-984. Lactate induced HIF-1α-PRMT1 cross talk affects MHC I expression in monocytes. Experimental Cell 1.2 Research, 2016, 347, 293-300. Impact of macrophages on tumor growth characteristics in a murine ocular tumor model. 513 1.2 4 Experimental Eye Research, 2016, 151, 9-18. VEGF Neutralization Plus CTLA-4 Blockade Alters Soluble and Cellular Factors Associated with Enhancing Lymphocyte Infiltration and Humoral Recognition in Melanoma. Cancer Immunology 514 Research, 2016, 4, 858-868. Pleural Effusion of Patients with Malignant Mesothelioma Induces Macrophage-Mediated T Cell 515 0.5 59 Suppression. Journal of Thoracic Oncology, 2016, 11, 1755-1764. Microenvironmental Effects of Cell Death in Malignant Disease. Advances in Experimental Medicine 0.8 and Biology, 2016, 930, 51-88. Inflammation Caused by Nanosized Delivery Systems: Is There a Benefit?. Molecular Pharmaceutics, 517 2.37 2016, 13, 3270-3278. The semaphorins and their receptors as modulators of tumor progression. Drug Resistance Updates, 518 6.5 56 2016, 29, 1-12. MIRAgel: the immunohistochemical expression of CD3, CD34, and CD68 in the surrounding capsule. Eye, 519 1.1 6 2016, 30, 1381-1388. One microenvironment does not fit all: heterogeneity beyond cancer cells. Cancer and Metastasis 2.7 58 Reviews, 2016, 35, 601-629. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. Npj Breast 521 2.3 356 Cancer, 2016, 2, . Heparanase is required for activation and function of macrophages. Proceedings of the National 3.3 Academy of Sciences of the United States of America, 2016, 113, E7808-E7817. Pancreatic Cancer Cell Exosome-Mediated Macrophage Reprogramming and the Role of MicroRNAs 155 523 1.6 136 and 125b2 Transfection using Nanoparticle Delivery Systems. Scientific Reports, 2016, 6, 30110. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Scientific Reports, 2016, 6, 36107. 524 1.6 Fucoidan inhibits CCL22 production through NF-Î^oB pathway in M2 macrophages: a potential therapeutic 525 1.6 55 strategy for cancer. Scientific Reports, 2016, 6, 35855. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. 5.8 2,076 Nature Communications, 2016, 7, 12150 miRNA let-7b modulates macrophage polarization and enhances tumor-associated macrophages to 527 1.6 75 promote angiogenesis and mobility in prostate cancer. Scientific Reports, 2016, 6, 25602. Tumour hypoxia promotes melanoma growth and metastasis via High Mobility Group Box-1 and M2-like 528 99 macrophages. Scientific Reports, 2016, 6, 29914.

#	Article	IF	CITATIONS
529	Histidineâ€rich glycoprotein promotes macrophage activation and inflammation in chronic liver disease. Hepatology, 2016, 63, 1310-1324.	3.6	77
531	FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). International Journal of Molecular Medicine, 2016, 38, 3-15.	1.8	306
532	Follicular thyroid carcinoma but not adenoma recruits tumor-associated macrophages by releasing CCL15. BMC Cancer, 2016, 16, 98.	1.1	16
533	Mmu-miR-125b overexpression suppresses NO production in activated macrophages by targeting eEF2K and CCNA2. BMC Cancer, 2016, 16, 252.	1.1	19
534	CpG-oligodeoxynucleotides exert remarkable antitumor activity against diffuse malignant peritoneal mesothelioma orthotopic xenografts. Journal of Translational Medicine, 2016, 14, 25.	1.8	17
535	Effect of M1–M2 Polarization on the Motility and Traction Stresses of Primary Human Macrophages. Cellular and Molecular Bioengineering, 2016, 9, 455-465.	1.0	48
536	High expression of chemokine CCL2 is associated with recurrence after surgery in clear-cell renal cell carcinoma. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 238.e19-238.e26.	0.8	12
537	Current status of immunotherapy. Japanese Journal of Clinical Oncology, 2016, 46, 191-203.	0.6	52
538	Targeted scVEGF/177Lu radiopharmaceutical inhibits growth of metastases and can be effectively combined with chemotherapy. EJNMMI Research, 2016, 6, 4.	1.1	10
539	Delivery strategies to control inflammatory response: Modulating M1–M2 polarization in tissue engineering applications. Journal of Controlled Release, 2016, 240, 349-363.	4.8	164
540	Tumor-associated macrophages of the M2 phenotype contribute to progression in gastric cancer with peritoneal dissemination. Gastric Cancer, 2016, 19, 1052-1065.	2.7	197
541	Chemopreventive agents targeting tumor microenvironment. Life Sciences, 2016, 145, 74-84.	2.0	17
542	HepG2 cells acquire stem cell-like characteristics after immune cell stimulation. Cellular Oncology (Dordrecht), 2016, 39, 35-45.	2.1	15
543	TIPE2 regulates tumor-associated macrophages in skin squamous cell carcinoma. Tumor Biology, 2016, 37, 5585-5590.	0.8	21
545	Genetics and biology of pancreatic ductal adenocarcinoma. Genes and Development, 2016, 30, 355-385.	2.7	416
546	G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. Oncolmmunology, 2016, 5, e1115177.	2.1	123
547	Targeting Suppressive Myeloid Cells Potentiates Checkpoint Inhibitors to Control Spontaneous Neuroblastoma. Clinical Cancer Research, 2016, 22, 3849-3859.	3.2	109
548	Methionine enkephalin, its role in immunoregulation and cancer therapy. International Immunopharmacology, 2016, 37, 59-64.	1.7	33

#	Article	IF	CITATIONS
549	Influence of Immune Myeloid Cells on the Extracellular Matrix During Cancer Metastasis. Cancer Microenvironment, 2016, 9, 45-61.	3.1	26
550	The Microenvironment of Lung Cancer and Therapeutic Implications. Advances in Experimental Medicine and Biology, 2016, 890, 75-110.	0.8	96
551	Bone marrow transplantation modulates tissue macrophage phenotype and enhances cardiac recovery after subsequent acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 2016, 90, 120-128.	0.9	12
553	MIF Is Necessary for Late-Stage Melanoma Patient MDSC Immune Suppression and Differentiation. Cancer Immunology Research, 2016, 4, 101-112.	1.6	73
554	SKAP2 Promotes Podosome Formation to Facilitate Tumor-Associated Macrophage Infiltration and Metastatic Progression. Cancer Research, 2016, 76, 358-369.	0.4	41
555	Macrophages, Inflammation, and Lung Cancer. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 116-130.	2.5	206
556	Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nature Reviews Drug Discovery, 2016, 15, 125-142.	21.5	115
557	Neuroinflammation in the peripheral nerve: Cause, modulator, or bystander in peripheral neuropathies?. Clia, 2016, 64, 475-486.	2.5	73
558	Tumor-associated macrophages in cancers. Clinical and Translational Oncology, 2016, 18, 251-258.	1.2	95
559	Tumor associated macrophages provide the survival resistance of tumor cells to hypoxic microenvironmental condition through IL-6 receptor-mediated signals. Immunobiology, 2017, 222, 55-65.	0.8	45
560	Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut, 2017, 66, 157-167.	6.1	495
561	Tumor-Derived CCL2 Mediates Resistance to Radiotherapy in Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2017, 23, 137-148.	3.2	234
562	Icariside II inhibits the EMT of NSCLC cells in inflammatory microenvironment via down-regulation of Akt/NF-κB signaling pathway. Molecular Carcinogenesis, 2017, 56, 36-48.	1.3	49
563	Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization. Journal of Immunology, 2017, 198, 1006-1014.	0.4	682
564	Energy metabolism drives myeloid-derived suppressor cell differentiation and functions in pathology. Journal of Leukocyte Biology, 2017, 102, 325-334.	1.5	38
565	The TRAIL-Induced Cancer Secretome Promotes a Tumor-Supportive Immune Microenvironment via CCR2. Molecular Cell, 2017, 65, 730-742.e5.	4.5	189
566	Modulation of macrophage antitumor potential by apoptotic lymphoma cells. Cell Death and Differentiation, 2017, 24, 971-983.	5.0	51
567	Quantifying tumor associated macrophages in breast cancer: a comparison of iron and fluorine-based MRI cell tracking. Scientific Reports, 2017, 7, 42109.	1.6	57

#	Article	IF	CITATIONS
568	Tumor-associated myeloid cells as guiding forces of cancer cell stemness. Cancer Immunology, Immunotherapy, 2017, 66, 1025-1036.	2.0	42
569	Autocrine expression of the epidermal growth factor receptor ligand heparin-binding EGF-like growth factor in cervical cancer. International Journal of Oncology, 2017, 50, 1947-1954.	1.4	16
570	Metabolic regulation of suppressive myeloid cells in cancer. Cytokine and Growth Factor Reviews, 2017, 35, 27-35.	3.2	27
571	Monocyte/Macrophage: NK Cell Cooperation—Old Tools for New Functions. Results and Problems in Cell Differentiation, 2017, 62, 73-145.	0.2	8
572	Macrophages. Results and Problems in Cell Differentiation, 2017, , .	0.2	8
573	Myeloid-derived suppressor cells and their role in pancreatic cancer. Cancer Gene Therapy, 2017, 24, 100-105.	2.2	71
574	Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncology Reports, 2017, 38, 522-528.	1.2	189
575	All-Trans Retinoic Acid Prevents Osteosarcoma Metastasis by Inhibiting M2 Polarization of Tumor-Associated Macrophages. Cancer Immunology Research, 2017, 5, 547-559.	1.6	112
576	Long noncoding RNA lnc-sox5 modulates CRC tumorigenesis by unbalancing tumor microenvironment. Cell Cycle, 2017, 16, 1295-1301.	1.3	51
577	Reversing the polarization of tumor-associated macrophages inhibits tumor metastasis. International Immunopharmacology, 2017, 49, 30-37.	1.7	59
578	Multidrug Analyses in Patients Distinguish Efficacious Cancer Agents Based on Both Tumor Cell Killing and Immunomodulation. Cancer Research, 2017, 77, 2869-2880.	0.4	17
579	Hypoxia in the glioblastoma microenvironment: shaping the phenotype of cancer stem-like cells. Neuro-Oncology, 2017, 19, 887-896.	0.6	196
580	Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncogene, 2017, 36, 4457-4468.	2.6	204
581	Immunomodulatory Nanomedicine. Macromolecular Bioscience, 2017, 17, 1700021.	2.1	11
582	Anti-Angiogenics in Gastroesophageal Cancer. , 2017, , 1-19.		0
583	Mimicking the tumor microenvironment to regulate macrophage phenotype and assessing chemotherapeutic efficacy in embedded cancer cell/macrophage spheroid models. Acta Biomaterialia, 2017, 50, 271-279.	4.1	59
584	The TLR4–NOS1–AP1 signaling axis regulates macrophage polarization. Inflammation Research, 2017, 66, 323-334.	1.6	33
585	Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Scientific Reports, 2017, 7, 39011.	1.6	108

#	Article	IF	CITATIONS
586	Angiopoietin-2 as a Biomarker and Target for Immune Checkpoint Therapy. Cancer Immunology Research, 2017, 5, 17-28.	1.6	130
587	Cytokines and metabolic factors regulate tumoricidal T-cell function during cancer immunotherapy. Immunotherapy, 2017, 9, 71-82.	1.0	5
588	Tumor-promoting effect of IL-23 in mammary cancer mediated by infiltration of M2 macrophages and neutrophils in tumor microenvironment. Biochemical and Biophysical Research Communications, 2017, 482, 1400-1406.	1.0	49
589	The increased number of tumor-associated macrophage is associated with overexpression of VEGF-C, plays an important role in Kazakh ESCC invasion and metastasis. Experimental and Molecular Pathology, 2017, 102, 15-21.	0.9	30
590	Protein Acyltransferase DHHC3 Regulates Breast Tumor Growth, Oxidative Stress, and Senescence. Cancer Research, 2017, 77, 6880-6890.	0.4	50
591	Clinical Effects of CpC-Based Treatment on the Efficacy of Hepatocellular Carcinoma by Skewing Polarization Toward M1 Macrophage from M2. Cancer Biotherapy and Radiopharmaceuticals, 2017, 32, 215-219.	0.7	2
592	HPMA–Copolymer Nanocarrier Targets Tumor-Associated Macrophages in Primary and Metastatic Breast Cancer. Molecular Cancer Therapeutics, 2017, 16, 2701-2710.	1.9	19
593	CSF-1R Inhibitor Development: Current Clinical Status. Current Oncology Reports, 2017, 19, 70.	1.8	78
594	Myeloid suppressor cells in cancer and autoimmunity. Journal of Autoimmunity, 2017, 85, 117-125.	3.0	154
595	α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nature Immunology, 2017, 18, 985-994.	7.0	715
596	Jagged1 modulated tumor-associated macrophage differentiation predicts poor prognosis in patients with invasive micropapillary carcinoma of the breast. Medicine (United States), 2017, 96, e6663.	0.4	14
597	Downregulation of Macrophage-Derived T-UCR uc.306 Associates with Poor Prognosis in Hepatocellular Carcinoma. Cellular Physiology and Biochemistry, 2017, 42, 1526-1539.	1.1	36
598	<scp>VEGF</scp> blockade enhances the antitumor effect of <scp> BRAF ^V </scp> ^{600E} inhibition. EMBO Molecular Medicine, 2017, 9, 219-237.	3.3	36
599	Perioperative Inflammation as Triggering Origin of Metastasis Development. , 2017, , .		2
600	Dendritic cell-based immunotherapy: a basic review and recent advances. Immunologic Research, 2017, 65, 798-810.	1.3	158
601	Adipocytokines, Energy Balance, and Cancer. Energy Balance and Cancer, 2017, , .	0.2	4
602	Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 2017, 17, 20-37.	12.8	4,153
603	Combination of metformin and VSL#3 additively suppresses western-style diet induced colon cancer in mice. European Journal of Pharmacology, 2017, 794, 1-7.	1.7	24

#	Article	IF	CITATIONS
604	Relevance of Tumor-Infiltrating Immune Cell Composition and Functionality for Disease Outcome in Breast Cancer. Journal of the National Cancer Institute, 2017, 109, djw192.	3.0	296
605	Novel Adipocytokines: Monocyte Chemotactic Protein-1, Plasminogen Activator Inhibitor-1, Chemerin. Energy Balance and Cancer, 2017, , 161-186.	0.2	0
606	THE EYES HAVE IT ALL!. , 2017, , 175-212.		1
607	Immune Cells Enhance Selectivity of Nanosecond-Pulsed DBD Plasma Against Tumor Cells. Plasma Medicine, 2017, 7, 85-96.	0.2	20
608	Endorphins on Cancer: A Novel Therapeutic Approach. Journal of Carcinogenesis & Mutagenesis, 2017, 08, .	0.3	7
609	Mycobacterium bovis Bacillus Calmette–Guérin Alters Melanoma Microenvironment Favoring Antitumor T Cell Responses and Improving M2 Macrophage Function. Frontiers in Immunology, 2017, 8, 965.	2.2	32
610	Toll-Like Receptor Ligands and Interferon-Î ³ Synergize for Induction of Antitumor M1 Macrophages. Frontiers in Immunology, 2017, 8, 1383.	2.2	166
611	Inflammation in Prostatic Hyperplasia and Carcinoma—Basic Scientific Approach. Frontiers in Oncology, 2017, 7, 77.	1.3	48
612	Autophagy-dependent regulation of tumor metastasis by myeloid cells. PLoS ONE, 2017, 12, e0179357.	1.1	7
613	Dusp3 deletion in mice promotes experimental lung tumour metastasis in a macrophage dependent manner. PLoS ONE, 2017, 12, e0185786.	1.1	14
614	Immunomodulatory activity of microRNAs: potential implications for multiple myeloma treatment. Current Cancer Drug Targets, 2017, 17, 1-1.	0.8	12
615	Dual role of inflammatory mediators in cancer. Ecancermedicalscience, 2017, 11, 721.	0.6	119
616	Bistability of the cytokine-immune cell network in a cancer microenvironment. Convergent Science Physical Oncology, 2017, 3, 024002.	2.6	12
617	Targeting complement-mediated immunoregulation for cancer immunotherapy. Seminars in Immunology, 2018, 37, 85-97.	2.7	44
618	Tumorâ€associated myeloid cells: new understandings on their metabolic regulation and their influence in cancer immunotherapy. FEBS Journal, 2018, 285, 717-733.	2.2	45
619	Structural characterization of polysaccharides from Saposhnikovia divaricata and their antagonistic effects against the immunosuppression by the culture supernatants of melanoma cells on RAW264.7 macrophages. International Journal of Biological Macromolecules, 2018, 113, 748-756.	3.6	32
620	Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma. Cell Death and Disease, 2018, 9, 453.	2.7	160
621	Activation of the sympathetic nervous system modulates neutrophil function. Journal of Leukocyte Biology, 2018, 103, 295-309.	1.5	51

#	Article	IF	CITATIONS
622	Lewis-antigen-containing ICAM-2/3 on Jurkat leukemia cells interact with DC-SIGN to regulate DC functions. Glycoconjugate Journal, 2018, 35, 287-297.	1.4	1
623	Targeted inhibition of tumor survival, metastasis and angiogenesis by Acacia ferruginea mediated regulation of VEGF, inflammatory mediators, cytokine profile and inhibition of transcription factor activation. Regulatory Toxicology and Pharmacology, 2018, 95, 400-411.	1.3	10
624	MK2 contributes to tumor progression by promoting M2 macrophage polarization and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4236-E4244.	3.3	78
625	Systematic Study in Mammalian Cells Showing No Adverse Response to Tetrahedral DNA Nanostructure. ACS Applied Materials & Interfaces, 2018, 10, 15442-15448.	4.0	43
626	Tumorâ€derived extracellular vesicles activate primary monocytes. Cancer Medicine, 2018, 7, 2013-2020.	1.3	18
627	Targeted delivery of tungsten oxide nanoparticles for multifunctional anti-tumor therapy <i>via</i> macrophages. Biomaterials Science, 2018, 6, 1379-1389.	2.6	27
628	T cell–induced CSF1 promotes melanoma resistance to PD1 blockade. Science Translational Medicine, 2018, 10, .	5.8	229
629	Trophoblast-derived CXCL16 induces M2 macrophage polarization that in turn inactivates NK cells at the maternal–fetal interface. Cellular and Molecular Immunology, 2018, 15, 1038-1046.	4.8	60
630	In vitro -induced M2 type macrophages induces the resistance of prostate cancer cells to cytotoxic action of NK cells. Experimental Cell Research, 2018, 364, 113-123.	1.2	20
631	Metformin as an anti-cancer agent: actions and mechanisms targeting cancer stem cells. Acta Biochimica Et Biophysica Sinica, 2018, 50, 133-143.	0.9	106
632	Expression of Adipocyte/Macrophage Fatty Acid–Binding Protein in Tumor-Associated Macrophages Promotes Breast Cancer Progression. Cancer Research, 2018, 78, 2343-2355.	0.4	92
633	Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression. Tumor Biology, 2018, 40, 101042831875620.	0.8	21
634	Tumour-associated macrophages and oncolytic virotherapies: a mathematical investigation into a complex dynamics. Letters in Biomathematics, 2018, 5, S6-S35.	0.3	18
635	Challenges and Perspectives for Immunotherapy in Adenocarcinoma of the Pancreas. Pancreas, 2018, 47, 142-157.	0.5	19
636	M2-macrophage infiltration and macrophage traits of tumor cells in urinary bladder cancer. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 159.e19-159.e26.	0.8	32
637	Plasmacytoid DC/Regulatory T Cell Interactions at the Center of an Immunosuppressive Network in Breast and Ovarian Tumors. , 2018, , 143-161.		0
638	Evolving notions on immune response in colorectal cancer and their implications for biomarker development. Inflammation Research, 2018, 67, 375-389.	1.6	32
639	Phagocyte—extracellular matrix crosstalk empowers tumor development and dissemination. FEBS Journal, 2018, 285, 734-751.	2.2	32

#	Article	IF	CITATIONS
640	Targeting tumor microenvironment to curb chemoresistance via novel drug delivery strategies. Expert Opinion on Drug Delivery, 2018, 15, 641-663.	2.4	6
641	Amphotericin B suppresses M2 phenotypes and B7-H1 expression in macrophages to prevent Raji cell proliferation. BMC Cancer, 2018, 18, 467.	1.1	12
642	Perioperative cytokine levels portend early death after pancreatectomy for ductal adenocarcinoma. Journal of Surgical Oncology, 2018, 117, 1260-1266.	0.8	11
643	MiR-98 suppresses the effects of tumor-associated macrophages on promoting migration and invasion of hepatocellular carcinoma cells by regulating IL-10. Biochimie, 2018, 150, 23-30.	1.3	35
644	Protumor Steering of Cancer Inflammation by p50 NF-κB Enhances Colorectal Cancer Progression. Cancer Immunology Research, 2018, 6, 578-593.	1.6	38
645	Metastasis in context: modeling the tumor microenvironment with cancer-on-a-chip approaches. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	98
646	Tumor-Associated Macrophages as Target for Antitumor Therapy. Archivum Immunologiae Et Therapiae Experimentalis, 2018, 66, 97-111.	1.0	154
647	Depletion of tumor-associated macrophages switches the epigenetic profile of pancreatic cancer infiltrating T cells and restores their anti-tumor phenotype. Oncolmmunology, 2018, 7, e1393596.	2.1	58
648	The role of C1QBP in CSF-1-dependent PKCζ activation and macrophage migration. Experimental Cell Research, 2018, 362, 11-16.	1.2	9
649	Macrophage depletion using clodronate liposomes decreases tumorigenesis and alters gut microbiota in the AOM/DSS mouse model of colon cancer. American Journal of Physiology - Renal Physiology, 2018, 314, G22-G31.	1.6	113
650	Clinical significance of programmed cell deathâ€ligand 1 expression and the immune microenvironment at the invasive front of colorectal cancers with high microsatellite instability. International Journal of Cancer, 2018, 142, 822-832.	2.3	55
651	A Practical Approach to Tumor Heterogeneity in Clinical Research and Diagnostics. Pathobiology, 2018, 85, 7-17.	1.9	13
652	Organotypic three-dimensional assays based on human leiomyoma–derived matrices. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160482.	1.8	26
653	Loss of BMlâ€1 dampens migration and EMT of colorectal cancer in inflammatory microenvironment through TLR4/MDâ€2/MyD88â€mediated NFâ€ÊB signaling. Journal of Cellular Biochemistry, 2018, 119, 1922-193	30: ²	27
654	<i>Fusobacterium nucleatum</i> and colorectal cancer: A review. World Journal of Gastrointestinal Oncology, 2018, 10, 71-81.	0.8	198
655	Increased infiltration of macrophages to radioresistant lung cancer cells contributes to the development of the additional resistance of tumor cells to the cytotoxic effects of NK cells. International Journal of Oncology, 2018, 53, 317-328.	1.4	4
656	Novel 'Stereoscopic Response' Strategy Can Be Used in Combination Therapy. Critical Reviews in Therapeutic Drug Carrier Systems, 2018, 35, 369-390.	1.2	2
657	Utility of Nanomedicine for Cancer Treatment. Journal of Nanomedicine & Nanotechnology, 2018, 09, .	1.1	4

		15	0
#	ARTICLE	IF	CITATIONS
658	Pancreatic Tumorigenesis. International Journal of Molecular Sciences, 2018, 19, 3584.	1.8	10
659	NFAT1 enhances the effects of tumor-associated macrophages on promoting malignant melanoma growth and metastasis. Bioscience Reports, 2018, 38, .	1.1	7
660	Streptococcus gallolyticus conspires myeloid cells to promote tumorigenesis of inflammatory bowel disease. Biochemical and Biophysical Research Communications, 2018, 506, 907-911.	1.0	41
661	Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages. Theranostics, 2018, 8, 5842-5854.	4.6	203
662	Identification of alterations in macrophage activation associated with disease activity in systemic lupus erythematosus. PLoS ONE, 2018, 13, e0208132.	1.1	80
663	Reprogramming Tumor Associated Macrophage Phenotype by a Polysaccharide from Ilex asprella for Sarcoma Immunotherapy. International Journal of Molecular Sciences, 2018, 19, 3816.	1.8	19
664	Macrophages and Fibroblasts, Key Players in Cancer Chemoresistance. Frontiers in Cell and Developmental Biology, 2018, 6, 131.	1.8	91
665	Macrophages in skin melanoma-the key element in melanomagenesis (Review). Oncology Letters, 2018, 15, 5399-5404.	0.8	26
666	Estramustine Phosphate Inhibits TGF- <i>β</i> -Induced Mouse Macrophage Migration and Urokinase-Type Plasminogen Activator Production. Analytical Cellular Pathology, 2018, 2018, 1-10.	0.7	2
667	Hyperprogressive disease: recognizing a novel pattern to improve patient management. Nature Reviews Clinical Oncology, 2018, 15, 748-762.	12.5	304
668	IL-17 induces macrophages to M2-like phenotype via NF-κB. Cancer Management and Research, 2018, Volume 10, 4217-4228.	0.9	51
669	Precision medicine and bladder cancer heterogeneity. Bulletin Du Cancer, 2018, 105, 925-931.	0.6	19
670	Particles and Nanoparticles in Pharmaceutical Products. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , .	0.2	3
671	Colon cancer–derived conditioned medium induces differentiation of THP-1 monocytes into a mixed population of M1/M2 cells. Tumor Biology, 2018, 40, 101042831879788.	0.8	39
672	Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck. Cancer Cell International, 2018, 18, 120.	1.8	42
673	Bio-nano: Theranostic at Cellular Level. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 85-170.	0.2	1
674	Effects of CSF1R-targeted chimeric antigen receptor-modified NK92MI & T cells on tumor-associated macrophages. Immunotherapy, 2018, 10, 935-949.	1.0	30
675	Repeated exposure of epithelial cells to apoptotic cells induces the specific selection of an adaptive phenotype: Implications for tumorigenesis. Journal of Biological Chemistry, 2018, 293, 10245-10263.	1.6	2

#	Article	IF	CITATIONS
676	Polarization and Distribution of Tumor-Associated Macrophages and COX-2 Expression in Basal Cell Carcinoma of the Ocular Adnexae. Current Eye Research, 2018, 43, 1126-1135.	0.7	11
677	Conditioned medium from stimulated macrophages inhibits growth but induces an inflammatory phenotype in breast cancer cells. Biomedicine and Pharmacotherapy, 2018, 106, 247-254.	2.5	12
678	Angiogenin and the MMP9â€TIMP2 axis are upâ€regulated in proangiogenic, decidual NKâ€like cells from patients with colorectal cancer. FASEB Journal, 2018, 32, 5365-5377.	0.2	91
679	S100B suppression alters polarization of infiltrating myeloid-derived cells in gliomas and inhibits tumor growth. Cancer Letters, 2018, 439, 91-100.	3.2	37
680	Tumorâ€associated macrophages and epithelial–mesenchymal transition in cancer: Nanotechnology comes into view. Journal of Cellular Physiology, 2018, 233, 9223-9236.	2.0	33
681	Upregulation of FOXP1 is a new independent unfavorable prognosticator and a specific predictor of lymphatic dissemination in cutaneous melanoma patients. OncoTargets and Therapy, 2018, Volume 11, 1413-1422.	1.0	8
682	Ganoderma sp.: The Royal Mushroom for High-Altitude Ailments. , 2018, , 115-152.		0
683	Coagulation Factor X Regulated by CASC2c Recruited Macrophages and Induced M2 Polarization in Glioblastoma Multiforme. Frontiers in Immunology, 2018, 9, 1557.	2.2	45
684	Sinomenine Hydrochloride Inhibits the Metastasis of Human Glioblastoma Cells by Suppressing the Expression of Matrix Metalloproteinase-2/-9 and Reversing the Endogenous and Exogenous Epithelial-Mesenchymal Transition. International Journal of Molecular Sciences, 2018, 19, 844.	1.8	36
685	Exploitation of Apoptotic Regulation in Cancer. Frontiers in Immunology, 2018, 9, 241.	2.2	43
686	Discovering Macrophage Functions Using In Vivo Optical Imaging Techniques. Frontiers in Immunology, 2018, 9, 502.	2.2	22
687	Attenuated Bacteria as Immunotherapeutic Tools for Cancer Treatment. Frontiers in Oncology, 2018, 8, 136.	1.3	50
688	Activities of stromal and immune cells in HPV-related cancers. Journal of Experimental and Clinical Cancer Research, 2018, 37, 137.	3.5	46
689	Next Generation Immunotherapy for Pancreatic Cancer: DNA Vaccination is Seeking New Combo Partners. Cancers, 2018, 10, 51.	1.7	21
690	Genetic Susceptibility for Cervical Cancer in African Populations: What Are the Host Genetic Drivers?. OMICS A Journal of Integrative Biology, 2018, 22, 468-483.	1.0	17
691	Coming of Age for Autotaxin and Lysophosphatidate Signaling: Clinical Applications for Preventing, Detecting and Targeting Tumor-Promoting Inflammation. Cancers, 2018, 10, 73.	1.7	57
692	Experimental Model of Human Malignant Mesothelioma in Athymic Mice. International Journal of Molecular Sciences, 2018, 19, 1881.	1.8	15
693	MiR-98 modulates macrophage polarization and suppresses the effects of tumor-associated macrophages on promoting invasion and epithelial–mesenchymal transition of hepatocellular carcinoma. Cancer Cell International, 2018, 18, 95.	1.8	31

	CITATION REI	PORT	
#	Article	IF	CITATIONS
694	Myeloid-Derived Suppressor Cells (MDSCs) in Aged Mice: Focus on Inflammation. , 2018, , 1-21.		0
695	Placental Growth Factor Mediates Crosstalk Between Lung Cancer Cells and Tumor-Associated Macrophages in Controlling Cancer Vascularization and Growth. Cellular Physiology and Biochemistry, 2018, 47, 2534-2543.	1.1	14
696	SNAIL1 action in tumor cells influences macrophage polarization and metastasis in breast cancer through altered GM-CSF secretion. Oncogenesis, 2018, 7, 32.	2.1	46
697	Innate Immunity in Inflammation. , 2018, , 179-190.		1
698	Inhibitor of apoptosis proteins, NAIP, cIAP1 and cIAP2 expression during macrophage differentiation and M1/M2 polarization. PLoS ONE, 2018, 13, e0193643.	1.1	27
699	Exosome-Mediated Communication in the Tumor Microenvironment. , 2018, , 187-218.		3
700	Tumor‑associated macrophages recruited by periostin in intrahepatic cholangiocarcinoma stem cells. Oncology Letters, 2018, 15, 8681-8686.	0.8	20
701	Mycobacterium bovis BCG in metastatic melanoma therapy. Applied Microbiology and Biotechnology, 2019, 103, 7903-7916.	1.7	15
702	Investigating Macrophages Plasticity Following Tumour–Immune Interactions During Oncolytic Therapies. Acta Biotheoretica, 2019, 67, 321-359.	0.7	11
703	Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System. Frontiers in Oncology, 2019, 9, 682.	1.3	128
704	TLRs in pulmonary diseases. Life Sciences, 2019, 233, 116671.	2.0	63
705	Interaction of transforming growth factorâ€Î²â€Smads/microRNAâ€362â€3p/CD82 mediated by M2 macrophage promotes the process of epithelialâ€mesenchymal transition in hepatocellular carcinoma cells. Cancer Science, 2019, 110, 2507-2519.	s 1.7	42
706	Nutraceuticals and "Repurposed" Drugs of Phytochemical Origin in Prevention and Interception of Chronic Degenerative Diseases and Cancer. Current Medicinal Chemistry, 2019, 26, 973-987.	1.2	19
707	Lipid Metabolic Pathways Confer the Immunosuppressive Function of Myeloid-Derived Suppressor Cells in Tumor. Frontiers in Immunology, 2019, 10, 1399.	2.2	96
708	Differential expression of p52 and RelB proteins in the metastatic and non-metastatic groups of uveal melanoma with patient outcome. Journal of Cancer Research and Clinical Oncology, 2019, 145, 2969-2982.	1.2	4
709	M860, a Monoclonal Antibody against Human Lactoferrin, Enhances Tumoricidal Activity of Low Dosage Lactoferrin via Granzyme B Induction. Molecules, 2019, 24, 3640.	1.7	2
710	The role of the innate and adaptive immune response in HPVâ€associated oropharyngeal squamous cell carcinoma. Laryngoscope Investigative Otolaryngology, 2019, 4, 508-512.	0.6	10
711	Oncolytic Bacteria and their potential role in bacterium-mediated tumour therapy: a conceptual analysis. Journal of Cancer, 2019, 10, 4442-4454.	1.2	21

щ		IE	CITATIONS
#	ARTICLE	IF	CHATIONS
712	2019, 10, 2103.	2.2	87
713	Pro-inflammatory macrophage polarization enhances the anti-cancer efficacy of self-assembled galactomannan nanoparticles entrapped with hydrazinocurcumin. Drug Delivery and Translational Research, 2019, 9, 1159-1188.	3.0	10
714	Direct and Indirect Roles of Macrophages in Hypertrophic Scar Formation. Frontiers in Physiology, 2019, 10, 1101.	1.3	46
715	Immunotherapeutic Challenges for Pediatric Cancers. Molecular Therapy - Oncolytics, 2019, 15, 38-48.	2.0	26
716	Cooperation of Oligodeoxynucleotides and Synthetic Molecules as Enhanced Immune Modulators. Frontiers in Nutrition, 2019, 6, 140.	1.6	18
717	<p>Functional aspects, phenotypic heterogeneity, and tissue immune response of macrophages in infectious diseases</p> . Infection and Drug Resistance, 2019, Volume 12, 2589-2611.	1.1	28
718	Discovery of potent ureido tetrahydrocarbazole derivatives for cancer treatments through targeting tumor-associated macrophages. European Journal of Medicinal Chemistry, 2019, 183, 111741.	2.6	10
720	Tumors vs. Chronic Wounds: An Immune Cell's Perspective. Frontiers in Immunology, 2019, 10, 2178.	2.2	52
721	Conceptual Development of Immunotherapeutic Approaches to Gastrointestinal Cancer. International Journal of Molecular Sciences, 2019, 20, 4624.	1.8	5
722	Membrane metalloâ€endopeptidase mediates cellular senescence induced by oncogenic <i>PIK3CA</i> ^{H1047R} accompanied with proâ€tumorigenic secretome. International Journal of Cancer, 2019, 145, 817-829.	2.3	8
723	Hypoxia and the Metastatic Niche. Advances in Experimental Medicine and Biology, 2019, 1136, 97-112.	0.8	18
724	Tumorâ€associated macrophages promote bladder tumor growth through PI3K/AKT signal induced by collagen. Cancer Science, 2019, 110, 2110-2118.	1.7	58
725	1,2-Dihydroxyxanthone: Effect on A375-C5 Melanoma Cell Growth Associated with Interference with THP-1 Human Macrophage Activity. Pharmaceuticals, 2019, 12, 85.	1.7	9
726	Versican and Tumor-Associated Macrophages Promotes Tumor Progression and Metastasis in Canine and Murine Models of Breast Carcinoma. Frontiers in Oncology, 2019, 9, 577.	1.3	31
727	Crosstalk between cancer and immune cells: Role of tumorâ€associated macrophages in the tumor microenvironment. Cancer Medicine, 2019, 8, 4709-4721.	1.3	211
728	BioTarget: A Computational Framework Identifying Cancer Type Specific Transcriptional Targets of Immune Response Pathways. Scientific Reports, 2019, 9, 9029.	1.6	7
729	<p>β-elemene inhibits radiation and hypoxia-induced macrophages infiltration via Prx-1/NF-κB/HIF-1α signaling pathway</p> . OncoTargets and Therapy, 2019, Volume 12, 4203-4211.	1.0	17
730	Role of PFKFB3 and CD163 in Oral Squamous Cell Carcinoma Angiogenesis. Current Medical Science, 2019, 39, 410-414.	0.7	22

# 731	ARTICLE Associations of lymphocyte percentage and red blood cell distribution width with risk of lung cancer, Journal of International Medical Research, 2019, 47, 3099-3108	IF 0.4	Citations
732	Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide. , 2019, 7, 147.		142
733	Tumor-associated macrophages: role in cancer development and therapeutic implications. Cellular Oncology (Dordrecht), 2019, 42, 591-608.	2.1	161
734	Hypoxia and Cancer Metastasis. Advances in Experimental Medicine and Biology, 2019, , .	0.8	5
735	Individualized precision treatment: Targeting TAM in HCC. Cancer Letters, 2019, 458, 86-91.	3.2	53
736	Limitations of Anti-Angiogenic Treatment of Tumors. Translational Oncology, 2019, 12, 981-986.	1.7	89
737	A toll-like receptor agonist mimicking microbial signal to generate tumor-suppressive macrophages. Nature Communications, 2019, 10, 2272.	5.8	117
738	Identification of three subtypes of triple-negative breast cancer with potential therapeutic implications. Breast Cancer Research, 2019, 21, 65.	2.2	78
739	Discovery of CCL18 antagonist blocking breast cancer metastasis. Clinical and Experimental Metastasis, 2019, 36, 243-255.	1.7	23
740	Toll-Like Receptors (TLRs) Expression in Contracted Capsules Compared to Uncontracted Capsules. Aesthetic Plastic Surgery, 2019, 43, 910-917.	0.5	9
741	SALL4-mediated upregulation of exosomal miR-146a-5p drives T-cell exhaustion by M2 tumor-associated macrophages in HCC. Oncolmmunology, 2019, 8, e1601479.	2.1	108
742	Recent progress in nanomaterials for nucleic acid delivery in cancer immunotherapy. Biomaterials Science, 2019, 7, 2640-2651.	2.6	34
743	Reprogramming of cancer invasiveness and macrophage education <i>via</i> a nanostructured antagonist of the TCFÎ ² receptor. Materials Horizons, 2019, 6, 1675-1681.	6.4	15
744	Non-canonical HIF-1 stabilization contributes to intestinal tumorigenesis. Oncogene, 2019, 38, 5670-5685.	2.6	26
745	Innate Lymphoid Cells: Expression of PD-1 and Other Checkpoints in Normal and Pathological Conditions. Frontiers in Immunology, 2019, 10, 910.	2.2	54
746	Double Positive CD4+CD8+ T Cells Are Enriched in Urological Cancers and Favor T Helper-2 Polarization. Frontiers in Immunology, 2019, 10, 622.	2.2	55
747	Role of Macrophage Migration Inhibitory Factor (MIF) in Melanoma. Cancers, 2019, 11, 529.	1.7	48
748	Osteopontin as a multifaceted driver of bone metastasis and drug resistance. Pharmacological Research, 2019, 144, 235-244.	3.1	124

#	Article	IF	CITATIONS
749	Silver-Nanoparticle-Mediated Therapies in the Treatment of Pancreatic Cancer. ACS Applied Nano Materials, 2019, 2, 1758-1772.	2.4	16
750	<p>Nonspecific immunoglobulin G is effective in preventing and treating cancer in mice</p> . Cancer Management and Research, 2019, Volume 11, 2073-2085.	0.9	12
751	Macrophage Origin, Metabolic Reprogramming and IL-1 Signaling: Promises and Pitfalls in Lung Cancer. Cancers, 2019, 11, 298.	1.7	10
752	Colony‑stimulating factor 1 receptor inhibition blocks macrophage infiltration and endometrial cancer cell proliferation. Molecular Medicine Reports, 2019, 19, 3139-3147.	1.1	9
753	The Contribution of the Immune System in Bone Metastasis Pathogenesis. International Journal of Molecular Sciences, 2019, 20, 999.	1.8	67
754	Epithelial Expression of an Interstitial Lung Disease–Associated Mutation in Surfactant Protein-C Modulates Recruitment and Activation of Key Myeloid Cell Populations in Mice. Journal of Immunology, 2019, 202, 2760-2771.	0.4	40
755	Take Immune Cells Back on Track: Glycopolymer-Engineered Tumor Cells for Triggering Immune Response. ACS Macro Letters, 2019, 8, 337-344.	2.3	32
756	Tumorigenic Interplay Between Macrophages and Collagenous Matrix in the Tumor Microenvironment. Methods in Molecular Biology, 2019, 1944, 203-220.	0.4	14
757	TAMing pancreatic cancer: combat with a double edged sword. Molecular Cancer, 2019, 18, 48.	7.9	61
758	Targeting CD47 in Anaplastic Thyroid Carcinoma Enhances Tumor Phagocytosis by Macrophages and Is a Promising Therapeutic Strategy. Thyroid, 2019, 29, 979-992.	2.4	71
759	TIPE2 suppresses atherosclerosis by exerting a protective effect on macrophages via the inhibition of the Akt signaling pathway. Experimental and Therapeutic Medicine, 2019, 17, 2937-2944.	0.8	7
760	The emerging roles of macrophages in cancer metastasis and response to chemotherapy. Journal of Leukocyte Biology, 2019, 106, 259-274.	1.5	80
761	Class-3 Semaphorins and Their Receptors: Potent Multifunctional Modulators of Tumor Progression. International Journal of Molecular Sciences, 2019, 20, 556.	1.8	62
762	CCL18 promotes the metastasis of squamous cell carcinoma of the head and neck through MTDHâ€NFâ€₽B signalling pathway. Journal of Cellular and Molecular Medicine, 2019, 23, 2689-2701.	1.6	32
763	A replication-incompetent CD154/40L recombinant vaccinia virus induces direct and macrophage-mediated antitumor effects <i>in vitro</i> and <i>in vivo</i> . Oncolmmunology, 2019, 8, e1568162.	2.1	5
764	The roles and signaling pathways of prolyl-4-hydroxylase 2 in the tumor microenvironment. Chemico-Biological Interactions, 2019, 303, 40-49.	1.7	13
765	Colorectal cancer exosomes induce lymphatic network remodeling in lymph nodes. International Journal of Cancer, 2019, 145, 1648-1659.	2.3	71
766	Different role of circulating myeloid-derived suppressor cells in patients with multiple myeloma undergoing autologous stem cell transplantation. , 2019, 7, 35.		20

#	Article	IF	CITATIONS
767	CD163 and CCR7 as markers for macrophage polarisation in lung cancer microenvironment. Central-European Journal of Immunology, 2019, 44, 395-402.	0.4	42
768	Importance of semaphorins in cancer immunity. Translational Lung Cancer Research, 2019, 8, S468-S470.	1.3	7
769	A Systematic Inflammation-based Model in Advanced Pancreatic Ductal Adenocarcinoma. Journal of Cancer, 2019, 10, 6673-6680.	1.2	8
770	Racial Differences in Immunological Landscape Modifiers Contributing to Disparity in Prostate Cancer. Cancers, 2019, 11, 1857.	1.7	26
771	Caveolin-2 deficiency induces a rapid anti-tumor immune response prior to regression of implanted murine lung carcinoma tumors. Scientific Reports, 2019, 9, 18970.	1.6	9
772	The number and localization of CD68+ and CD163+ macrophages in different stages of cutaneous melanoma. Melanoma Research, 2019, 29, 237-247.	0.6	54
773	The Current Status of Immunotherapy in Thoracic Malignancies. , 2019, , 45-75.		0
774	Molecular Repolarisation of Tumour-Associated Macrophages. Molecules, 2019, 24, 9.	1.7	191
775	Lung Macrophages: Multifunctional Regulator Cells for Metastatic Cells. International Journal of Molecular Sciences, 2019, 20, 116.	1.8	22
776	Progress in Tumorâ€Associated Macrophages: From Bench to Bedside. Advanced Biology, 2019, 3, e1800232.	3.0	12
777	Targeting the polarization of tumor-associated macrophages and modulating mir-155 expression might be a new approach to treat diffuse large B-cell lymphoma of the elderly. Cancer Immunology, Immunotherapy, 2019, 68, 269-282.	2.0	19
778	Macrophages in the microenvironment of head and neck cancer: potential targets for cancer therapy. Oral Oncology, 2019, 88, 29-38.	0.8	70
779	Metaâ€Analysis for Correlating Structure of Bioactive Peptides in Foods of Animal Origin with Regard to Effect and Stability. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 3-30.	5.9	48
780	AMPKα2 knockout enhances tumour inflammation through exacerbated liver injury and energy deprivationâ€associated AMPKα1 activation. Journal of Cellular and Molecular Medicine, 2019, 23, 1687-1697.	1.6	11
781	Safety and efficacy of Tet-regulated IL-12 expression in cancer-specific T cells. Oncolmmunology, 2019, 8, 1542917.	2.1	23
782	Getting TANned: How the tumor microenvironment drives neutrophil recruitment. Journal of Leukocyte Biology, 2019, 105, 449-462.	1.5	30
783	Metal Drugs and the Anticancer Immune Response. Chemical Reviews, 2019, 119, 1519-1624.	23.0	237
784	Cancer Immunosurveillance by T Cells. International Review of Cell and Molecular Biology, 2019, 342, 149-173.	1.6	45

#	Article	IF	CITATIONS
785	Mushrooms reishi (Ganoderma lucidum), shiitake (Lentinela edodes), maitake (Grifola frondosa). , 2019, , 517-526.		3
786	The role of paraoxonase in cancer. Seminars in Cancer Biology, 2019, 56, 72-86.	4.3	64
787	Dual inhibition of CSF1R and MAPK pathways using supramolecular nanoparticles enhances macrophage immunotherapy. Biomaterials, 2020, 227, 119559.	5.7	62
788	Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Seminars in Cancer Biology, 2020, 60, 202-213.	4.3	83
789	Modulating the tumor microenvironment with new therapeutic nanoparticles: A promising paradigm for tumor treatment. Medicinal Research Reviews, 2020, 40, 1084-1102.	5.0	26
790	Tumor angiogenesis: causes, consequences, challenges and opportunities. Cellular and Molecular Life Sciences, 2020, 77, 1745-1770.	2.4	927
791	Transcriptome-based molecular subtyping of non–small cell lung cancer may predict response to immune checkpoint inhibitors. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1598-1610.e3.	0.4	23
792	miR-149 Suppresses Breast Cancer Metastasis by Blocking Paracrine Interactions with Macrophages. Cancer Research, 2020, 80, 1330-1341.	0.4	41
793	Legumain-deficient macrophages promote senescence of tumor cells by sustaining JAK1/STAT1 activation. Cancer Letters, 2020, 472, 40-49.	3.2	18
794	Parallels between wound healing, epimorphic regeneration and solid tumors. Development (Cambridge), 2020, 147, .	1.2	22
795	Systemic Inflammation After Radiation Predicts Locoregional Recurrence, Progression, and Mortality in Stage II-III Triple-Negative Breast Cancer. International Journal of Radiation Oncology Biology Physics, 2020, 108, 268-276.	0.4	16
796	Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacological Research, 2020, 152, 104595.	3.1	101
797	High CD206 levels in Hodgkin lymphomaâ€educated macrophages are linked to matrixâ€remodeling and lymphoma dissemination. Molecular Oncology, 2020, 14, 571-589.	2.1	25
798	Characterization of tumor-infiltrating immune cells in relation to microbiota in colorectal cancers. Cancer Immunology, Immunotherapy, 2020, 69, 23-32.	2.0	20
799	Fibronectin in Cancer: Friend or Foe. Cells, 2020, 9, 27.	1.8	108
800	Breast cancer–associated macrophages promote tumorigenesis by suppressing succinate dehydrogenase in tumor cells. Science Signaling, 2020, 13, .	1.6	34
801	E-cigarette promotes breast carcinoma progression and lung metastasis: Macrophage-tumor cells crosstalk and the role of CCL5 and VCAM-1. Cancer Letters, 2020, 491, 132-145.	3.2	23
802	Bidirectional Tumor-Promoting Activities of Macrophage Ezrin. International Journal of Molecular Sciences, 2020, 21, 7716.	1.8	7

#	Article	IF	CITATIONS
803	Histidine-rich glycoprotein (HRGP): Pleiotropic and paradoxical effects on macrophage, tumor microenvironment, angiogenesis, and other physiological and pathological processes. Genes and Diseases, 2022, 9, 381-392.	1.5	8
804	The Evolving Landscape of PD-1/PD-L1 Pathway in Head and Neck Cancer. Frontiers in Immunology, 2020, 11, 1721.	2.2	61
806	Radiotherapy-Mediated Immunomodulation and Anti-Tumor Abscopal Effect Combining Immune Checkpoint Blockade. Cancers, 2020, 12, 2762.	1.7	41
807	<i>TYROBP</i> is a potential prognostic biomarker of clear cell renal cell carcinoma. FEBS Open Bio, 2020, 10, 2588-2604.	1.0	16
808	Tumor microenvironment and future targets of immunotherapy in breast cancer. Translational Breast Cancer Research, 0, 1, 6-6.	0.4	2
809	Inhibitory Effects of Peroxidase from Foxtail Millet Bran on Colitis-Associated Colorectal Carcinogenesis by the Blockage of Glycerophospholipid Metabolism. Journal of Agricultural and Food Chemistry, 2020, 68, 8295-8307.	2.4	21
810	Targeting Neuropilin-1 with Nanobodies Reduces Colorectal Carcinoma Development. Cancers, 2020, 12, 3582.	1.7	23
811	A novel chrysin thiazole derivative polarizes macrophages to an M1 phenotype via targeting TLR4. International Immunopharmacology, 2020, 88, 106986.	1.7	7
812	Hematogenous Dissemination of Breast Cancer Cells From Lymph Nodes Is Mediated by Tumor MicroEnvironment of Metastasis Doorways. Frontiers in Oncology, 2020, 10, 571100.	1.3	19
813	The non-linearity of RAF-MEK signaling in dendritic cells. Cell Cycle, 2020, 19, 2249-2259.	1.3	5
814	Injectable Anti-inflammatory Nanofiber Hydrogel to Achieve Systemic Immunotherapy Post Local Administration. Nano Letters, 2020, 20, 6763-6773.	4.5	63
815	Epigenetics in modulating immune functions of stromal and immune cells in the tumor microenvironment. Cellular and Molecular Immunology, 2020, 17, 940-953.	4.8	41
816	Targeting the Tumor Microenvironment in Neuroblastoma: Recent Advances and Future Directions. Cancers, 2020, 12, 2057.	1.7	48
817	Redefining Tumor-Associated Macrophage Subpopulations and Functions in the Tumor Microenvironment. Frontiers in Immunology, 2020, 11, 1731.	2.2	328
818	Characterization of the Tumor Immune Microenvironment Identifies M0 Macrophage-Enriched Cluster as a Poor Prognostic Factor in Hepatocellular Carcinoma. JCO Clinical Cancer Informatics, 2020, 4, 1002-1013.	1.0	29
819	Genomic landscape of the immune microenvironments of brain metastases in breast cancer. Journal of Translational Medicine, 2020, 18, 327.	1.8	14
820	Myeloid Cell Modulation by Tumor-Derived Extracellular Vesicles. International Journal of Molecular Sciences, 2020, 21, 6319.	1.8	26
821	The Macrophages-Microbiota Interplay in Colorectal Cancer (CRC)-Related Inflammation: Prognostic and Therapeutic Significance. International Journal of Molecular Sciences, 2020, 21, 6866.	1.8	20

#	Article	IF	Citations
822	Pseudoprogression and hyperprogression in lung cancer: a comprehensive review of literature. Journal of Cancer Research and Clinical Oncology, 2020, 146, 3269-3279.	1.2	30
823	Typically inhibiting USP14 promotes autophagy in M1-like macrophages and alleviates CLP-induced sepsis. Cell Death and Disease, 2020, 11, 666.	2.7	20
824	Prognostic value of intratumoral lymphocyte-to-monocyte ratio and M0 macrophage enrichment in tumor immune microenvironment of melanoma. Melanoma Management, 2020, 7, MMT51.	0.1	14
825	Microbiome Related Cytotoxically Active CD8+ TIL Are Inversely Associated With Lung Cancer Development. Frontiers in Oncology, 2020, 10, 531131.	1.3	7
826	Co-localization of CD169 ⁺ macrophages and cancer cells in lymph node metastases of breast cancer patients is linked to improved prognosis and PDL1 expression. Oncolmmunology, 2020, 9, 1848067.	2.1	9
827	Folate and macrophage folate receptor- $\hat{1}^2$ in idiopathic pulmonary fibrosis disease: the potential therapeutic target?. Biomedicine and Pharmacotherapy, 2020, 131, 110711.	2.5	16
828	gga-miR-200b-3p Promotes Macrophage Activation and Differentiation via Targeting Monocyte to Macrophage Differentiation-Associated in HD11 Cells. Frontiers in Immunology, 2020, 11, 563143.	2.2	7
829	CCL2/CCR2 signaling in cancer pathogenesis. Cell Communication and Signaling, 2020, 18, 82.	2.7	166
830	Delicate Balances in Cancer Chemotherapy: Modeling Immune Recruitment and Emergence of Systemic Drug Resistance. Frontiers in Immunology, 2020, 11, 1376.	2.2	23
831	Extracellular vesicles produced by NFAT3-expressing cells hinder tumor growth and metastatic dissemination. Scientific Reports, 2020, 10, 8964.	1.6	9
832	Influence of Innate Immunity on Cancer Cell Stemness. International Journal of Molecular Sciences, 2020, 21, 3352.	1.8	20
833	Factors Influencing the Delivery Efficiency of Cancer Nanomedicines. AAPS PharmSciTech, 2020, 21, 132.	1.5	7
834	SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models. PLoS ONE, 2020, 15, e0230354.	1.1	16
835	The hypoxic tumour microenvironment: A safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Letters, 2020, 487, 34-44.	3.2	32
836	Targeting Mononuclear Phagocyte Receptors in Cancer Immunotherapy: New Perspectives of the Triggering Receptor Expressed on Myeloid Cells (TREM-1). Cancers, 2020, 12, 1337.	1.7	14
837	Exosomal MicroRNAs as Mediators of Cellular Interactions Between Cancer Cells and Macrophages. Frontiers in Immunology, 2020, 11, 1167.	2.2	38
838	Role of Kupffer Cells in Driving Hepatic Inflammation and Fibrosis in HIV Infection. Frontiers in Immunology, 2020, 11, 1086.	2.2	31
839	Prognostic Value of Neutrophil–Lymphocyte Ratio, Platelet–Lymphocyte Ratio, and Combined Neutrophil–Lymphocyte Ratio and Platelet–Lymphocyte Ratio in Stage IV Advanced Gastric Cancer. Frontiers in Oncology, 2020, 10, 841.	1.3	35

#	Article	IF	Citations
840	Immunomodulatory features of radiotherapy in lung carcinoma. Translational Cancer Research, 2020, 9, 42-48.	0.4	2
841	Mechanistic insights of adipocyte metabolism in regulating breast cancer progression. Pharmacological Research, 2020, 155, 104741.	3.1	19
842	Gemcitabine Recruits M2-Type Tumor-Associated Macrophages into the Stroma of Pancreatic Cancer. Translational Oncology, 2020, 13, 100743.	1.7	34
843	Inflammatory macrophage derived TNFα downregulates estrogen receptor α via FOXO3a inactivation in human breast cancer cells. Experimental Cell Research, 2020, 390, 111932.	1.2	7
844	How hypoxia regulate exosomes in ischemic diseases and cancer microenvironment?. IUBMB Life, 2020, 72, 1286-1305.	1.5	31
845	Increased tumor-associated macrophages in the prostate cancer microenvironment predicted patients' survival and responses to androgen deprivation therapies in Indonesian patients cohort. Prostate International, 2020, 8, 62-69.	1.2	26
846	Tumor-derived exosomes in the regulation of macrophage polarization. Inflammation Research, 2020, 69, 435-451.	1.6	153
847	Tumor-associated macrophages in classical Hodgkin lymphoma: hormetic relationship to outcome. Scientific Reports, 2020, 10, 9410.	1.6	34
848	Arginine-Based Poly(I:C)-Loaded Nanocomplexes for the Polarization of Macrophages Toward M1-Antitumoral Effectors. Frontiers in Immunology, 2020, 11, 1412.	2.2	23
849	Mathematical modeling and bifurcation analysis of pro- and anti-tumor macrophages. Applied Mathematical Modelling, 2020, 88, 758-773.	2.2	26
850	Polarization of Tumor-Associated Macrophages by Chinese Medicine Intervention: Mechanisms and Applications. , 2020, , .		0
851	Immunopathogenesis and therapeutic potential of macrophage influx in diffuse parenchymal lung diseases. Expert Review of Respiratory Medicine, 2020, 14, 917-928.	1.0	6
852	Lactate in Sarcoma Microenvironment: Much More than just a Waste Product. Cells, 2020, 9, 510.	1.8	24
853	Development of a near infrared protein nanoprobe targeting Thomsen-Friedenreich antigen for intraoperative detection of submillimeter nodules in an ovarian peritoneal carcinomatosis mouse model. Biomaterials, 2020, 241, 119908.	5.7	7
854	Lactic acid bacteria secrete toll like receptor 2 stimulating and macrophage immunomodulating bioactive factors. Journal of Functional Foods, 2020, 66, 103783.	1.6	17
855	Highâ€fat dietâ€induced dysbiosis mediates MCPâ€1/CCR2 axisâ€dependent M2 macrophage polarization and promotes intestinal adenomaâ€adenocarcinoma sequence. Journal of Cellular and Molecular Medicine, 2020, 24, 2648-2662.	1.6	43
856	Macrophage Polarization Mediated by Chitooligosaccharide (COS) and Associated Osteogenic and Angiogenic Activities. ACS Biomaterials Science and Engineering, 2020, 6, 1614-1629.	2.6	31
857	Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Letters, 2020, 474, 138-150.	3.2	77

#	Article	IF	CITATIONS
858	Prognostic value of the expression of chemokines and their receptors in regional lymph nodes of melanoma patients. Journal of Cellular and Molecular Medicine, 2020, 24, 3407-3418.	1.6	12
859	Macrophage Syk–PI3Kγ Inhibits Antitumor Immunity: SRX3207, a Novel Dual Syk–PI3K Inhibitory Chemotype Relieves Tumor Immunosuppression. Molecular Cancer Therapeutics, 2020, 19, 755-764.	1.9	24
860	Generation of mouse bone marrow-derived macrophages using tumor coculture assays to mimic the tumor microenvironment. Methods in Enzymology, 2020, 632, 91-111.	0.4	4
861	HPV Involvement in the Tumor Microenvironment and Immune Treatment in Head and Neck Squamous Cell Carcinomas. Cancers, 2020, 12, 1060.	1.7	40
862	Nutritional Exchanges Within Tumor Microenvironment: Impact for Cancer Aggressiveness. Frontiers in Oncology, 2020, 10, 396.	1.3	35
863	The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target. Cancer Treatment Reviews, 2020, 86, 102015.	3.4	173
864	Contribution of Macrophages and T Cells in Skeletal Metastasis. Cancers, 2020, 12, 1014.	1.7	19
865	Microbiome, bile acids, and obesity: How microbially modified metabolites shape antiâ€ŧumor immunity. Immunological Reviews, 2020, 295, 220-239.	2.8	43
866	Tumor-Derived Prostaglandin E2 Promotes p50 NF-κB-Dependent Differentiation of Monocytic MDSCs. Cancer Research, 2020, 80, 2874-2888.	0.4	81
867	Extracellular Vesicles and Tumor-Immune Escape: Biological Functions and Clinical Perspectives. International Journal of Molecular Sciences, 2020, 21, 2286.	1.8	61
868	The M1/M2 spectrum and plasticity of malignant pleural effusion-macrophage in advanced lung cancer. Cancer Immunology, Immunotherapy, 2021, 70, 1435-1450.	2.0	26
869	Therapeutic potential of anti-VEGF receptor 2 therapy targeting for M2-tumor-associated macrophages in colorectal cancer. Cancer Immunology, Immunotherapy, 2021, 70, 289-298.	2.0	29
870	The lung cancer stem cell niche. Advances in Stem Cells and Their Niches, 2021, , 85-136.	0.1	0
871	Immune evasion mechanisms in acute myeloid leukemia: A focus on immune checkpoint pathways. Critical Reviews in Oncology/Hematology, 2021, 157, 103164.	2.0	40
872	Distribution and prognostic impact of M1 macrophage on esophageal squamous cell carcinoma. Carcinogenesis, 2021, 42, 537-545.	1.3	11
873	Regulation and characterization of tumor-infiltrating immune cells in breast cancer. International Immunopharmacology, 2021, 90, 107167.	1.7	13
874	Peripheral cytotoxic T lymphocyte predicts first-line progression free survival in HER2-positive advanced breast cancer. Breast, 2021, 55, 7-15.	0.9	5
875	The relationship between histologic chorioamnionitis and decidual macrophage polarization and their influence on outcomes of neonates born before the 32nd gestational week. Journal of Maternal-Fetal and Neonatal Medicine, 2021, 34, 1535-1544.	0.7	5

		CITATION REPORT		
#	Article		IF	CITATIONS
876	Signaling in the tumor microenvironment of therapy-resistant glioblastoma. , 2021, , 153-1	.84.		1
877	Immune Cell-Associated Protein Expression Helps to Predict Survival in Muscle-Invasive Urc Bladder Cancer Patients after Radical Cystectomy and Optional Adjuvant Chemotherapy. C 159.	thelial Cells, 2021, 10,	1.8	6
878	A novel polysaccharide from plant fermentation extracts and its immunomodulatory activit macrophage RAW264.7 cells. Food and Agricultural Immunology, 2021, 32, 54-77.	:y in	0.7	4
879	CCL25 Signaling in the Tumor Microenvironment. Advances in Experimental Medicine and 1302, 99-111.	Biology, 2021,	0.8	3
880	Current Progress in Delineating the Roles of Pseudokinase TRIB1 in Controlling Human Dis Journal of Cancer, 2021, 12, 6012-6020.	eases.	1.2	4
881	Oxidative Stress in the Tumor Immune Microenvironment. , 2021, , 27-54.			1
882	Response of human macrophages to gamma radiation is mediated via expression of endog retroviruses. PLoS Pathogens, 2021, 17, e1009305.	enous	2.1	18
883	Nonoxidative Strategy for Monitoring Peroxynitrite Fluctuations in Immune Responses of Tumorigenesis. Analytical Chemistry, 2021, 93, 3426-3435.		3.2	27
884	High-throughput phenotypic screen and transcriptional analysis identify new compounds a for macrophage reprogramming. Nature Communications, 2021, 12, 773.	ind targets	5.8	62
885	Human Paraoxonase-2 (PON2): Protein Functions and Modulation. Antioxidants, 2021, 10,	256.	2.2	37
886	Follicular Lymphoma Microenvironment: An Intricate Network Ready for Therapeutic Interv Cancers, 2021, 13, 641.	ention.	1.7	7
887	MyD88 in myofibroblasts enhances colitis-associated tumorigenesis via promoting macrop polarization. Cell Reports, 2021, 34, 108724.	hage M2	2.9	39
888	E-Cigarettes Promote Macrophage-Tumor Cells Crosstalk: Focus on Breast Carcinoma Prog and Lung Metastasis. Exploratory Research and Hypothesis in Medicine, 2021, 000, 000-00	ression)0.	0.1	1
889	Calcium-bisphosphonate Nanoparticle Platform as a Prolonged Nanodrug and Bone-Target System for Bone Diseases and Cancers. ACS Applied Bio Materials, 2021, 4, 2490-2501.	ed Delivery	2.3	7
890	Nanomedicine to modulate immunotherapy in cutaneous melanoma (Review). Experiment Therapeutic Medicine, 2021, 21, 535.	al and	0.8	6
891	Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomedical Materials (Bristol), 2021, 16, 032005.		1.7	14
892	The Role of Macrophages in Oral Squamous Cell Carcinoma. Frontiers in Oncology, 2021, 2	11, 611115.	1.3	18
893	MAJOR BIOACTIVE PROPERTIES OF GANODERMA POLYSACCHARIDES: A REVIEW. Asian Jou Pharmaceutical and Clinical Research, 0, , 11-24.	urnal of	0.3	8

\mathbf{C}		0.11	DEDO	DT
		ON	KFP(ו או
<u> </u>	/			

#	Article	IF	CITATIONS
894	Exosomal miR-222 from adriamycin-resistant MCF-7 breast cancer cells promote macrophages M2 polarization via PTEN/Akt to induce tumor progression. Aging, 2021, 13, 10415-10430.	1.4	33
895	M2 macrophage-derived exosomal microRNAs inhibit cell migration and invasion in gliomas through PI3K/AKT/mTOR signaling pathway. Journal of Translational Medicine, 2021, 19, 99.	1.8	31
896	Recent advances of dual FGFR inhibitors as a novel therapy for cancer. European Journal of Medicinal Chemistry, 2021, 214, 113205.	2.6	17
897	NLRP3 inflammasome-mediated cytokine production and pyroptosis cell death in breast cancer. Journal of Biomedical Science, 2021, 28, 26.	2.6	62
898	PRF1 is a prognostic marker and correlated with immune infiltration in head and neck squamous cell carcinoma. Translational Oncology, 2021, 14, 101042.	1.7	19
899	The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 654877.	2.2	19
900	Platelets, Constant and Cooperative Companions of Sessile and Disseminating Tumor Cells, Crucially Contribute to the Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 674553.	1.8	18
901	The Current Landscape of Immune Checkpoint Blockade in Glioblastoma. Neurosurgery Clinics of North America, 2021, 32, 235-248.	0.8	8
902	Breast adipose tissue macrophages (BATMs) have a stronger correlation with breast cancer survival than breast tumor stroma macrophages (BTSMs). Breast Cancer Research, 2021, 23, 45.	2.2	7
903	Tipping the Scales With Zebrafish to Understand Adaptive Tumor Immunity. Frontiers in Cell and Developmental Biology, 2021, 9, 660969.	1.8	16
904	Construction and Validation of a Macrophage-Associated Risk Model for Predicting the Prognosis of Osteosarcoma. Journal of Oncology, 2021, 2021, 1-18.	0.6	6
905	Pro- and Antiangiogenic Factors in Gliomas: Implications for Novel Therapeutic Possibilities. International Journal of Molecular Sciences, 2021, 22, 6126.	1.8	11
906	Advances in siRNA delivery strategies for the treatment of MDR cancer. Life Sciences, 2021, 274, 119337.	2.0	21
907	HPV16 infection promotes an M2 macrophage phenotype to promote the invasion and metastasis of esophageal squamous cell carcinoma. Clinical and Translational Oncology, 2021, 23, 2382-2393.	1.2	6
908	Preclinical Models for Bladder Cancer Research. Hematology/Oncology Clinics of North America, 2021, 35, 613-632.	0.9	7
909	Abnormal Macrophage Polarization in Patients with Myelodysplastic Syndrome. Mediators of Inflammation, 2021, 2021, 1-8.	1.4	9
910	Adipose Tissue-Derived Extracellular Vesicles and the Tumor Microenvironment: Revisiting the Hallmarks of Cancer. Cancers, 2021, 13, 3328.	1.7	17
911	Reexamining the role of tissue inflammation in radiation carcinogenesis: a hypothesis to explain an earlier onset of cancer. International Journal of Radiation Biology, 2021, 97, 1341-1351.	1.0	5

#	Article	IF	CITATIONS
912	Detachable Liposomes Combined Immunochemotherapy for Enhanced Triple-Negative Breast Cancer Treatment through Reprogramming of Tumor-Associated Macrophages. Nano Letters, 2021, 21, 6031-6041.	4.5	47
913	The Heterogeneity of Infiltrating Macrophages in Metastatic Osteosarcoma and Its Correlation with Immunotherapy. Journal of Oncology, 2021, 2021, 1-13.	0.6	6
914	Stimulation of Innate and Adaptive Immune Cells with Graphene Oxide and Reduced Graphene Oxide Affect Cancer Progression. Archivum Immunologiae Et Therapiae Experimentalis, 2021, 69, 20.	1.0	8
915	The dual role of complement in cancers, from destroying tumors to promoting tumor development. Cytokine, 2021, 143, 155522.	1.4	7
916	Effects of des-acyl ghrelin on insulin sensitivity and macrophage polarization in adipose tissue. Journal of Translational Internal Medicine, 2021, 9, 84-97.	1.0	21
917	Recent Advances in Glioma Therapy: Combining Vascular Normalization and Immune Checkpoint Blockade. Cancers, 2021, 13, 3686.	1.7	16
918	New insights into M1/M2 macrophages: key modulators in cancer progression. Cancer Cell International, 2021, 21, 389.	1.8	193
919	The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioactive Materials, 2021, 6, 1973-1987.	8.6	343
920	Regulation of macrophage functions by FABP-mediated inflammatory and metabolic pathways. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158964.	1.2	10
921	Poor Prognosis and Therapeutic Responses in LILRB1-Expressing M2 Macrophages-Enriched Gastric Cancer Patients. Frontiers in Oncology, 2021, 11, 668707.	1.3	5
922	Tumor-Derived Extracellular Vesicles: Their Role in Immune Cells and Immunotherapy. International Journal of Nanomedicine, 2021, Volume 16, 5395-5409.	3.3	25
923	Heparanase is a novel biomarker for immune infiltration and prognosis in breast cancer. Aging, 2021, 13, 20836-20852.	1.4	9
924	Tumorâ€associated macrophages (<scp>TAMs</scp>)â€derived osteopontin (<scp>OPN</scp>) upregulates <scp>PDâ€L1</scp> expression and predicts poor prognosis in nonâ€small cell lung cancer (<scp>NSCLC</scp>). Thoracic Cancer, 2021, 12, 2698-2709.	0.8	20
925	Activated macrophages promote invasion by early colorectal cancer via an interleukin 1βâ€serum amyloid A1 axis. Cancer Science, 2021, 112, 4151-4165.	1.7	9
926	Modulating tumor-associated macrophages to enhance the efficacy of immune checkpoint inhibitors: A TAM-pting approach. , 2022, 231, 107986.		30
927	Imaging of Tumor Hypoxia With Radionuclide-Labeled Tracers for PET. Frontiers in Oncology, 2021, 11, 731503.	1.3	22
928	Epigenetic regulation of immunosuppressive tumor-associated macrophages through dysregulated microRNAs. Seminars in Cell and Developmental Biology, 2022, 124, 26-33.	2.3	18
929	NF-κB and Pancreatic Cancer; Chapter and Verse. Cancers, 2021, 13, 4510.	1.7	20

#	Article	IF	CITATIONS
930	Protein Kinase D3 Promotes the Reconstruction of OSCC Immune Escape Niche Via Regulating MHC-I and Immune Inhibit Molecules Expression. Journal of Immunotherapy, 2021, Publish Ahead of Print, 339-347.	1.2	3
931	A specific and bioactive polysaccharide marker for Cordyceps. Carbohydrate Polymers, 2021, 269, 118343.	5.1	10
932	FGF9/FGFR1 promotes cell proliferation, epithelial-mesenchymal transition, M2 macrophage infiltration and liver metastasis of lung cancer. Translational Oncology, 2021, 14, 101208.	1.7	19
933	Mathematical modeling approach of cancer immunoediting reveals new insights in targeted-therapy and timing plan of cancer treatment. Chaos, Solitons and Fractals, 2021, 152, 111349.	2.5	3
934	Stromal fibroblasts shape the myeloid phenotype in normal colon and colorectal cancer and induce CD163 and CCL2 expression in macrophages. Cancer Letters, 2021, 520, 184-200.	3.2	40
935	M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Biomaterials, 2021, 278, 121137.	5.7	166
936	Galactofucoidans from Sargassum fusiforme and their antagonistic effects against the proliferation-inhibition of RAW264.7 macrophage induced by culture supernatants of melanoma cells. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100090.	1.6	2
937	Metabolic reprogramming and immunity in cancer. , 2022, , 137-196.		1
938	Dormancy in cancer bone metastasis. , 2022, , 393-410.		0
939	The role of tumor-associated macrophages in primary hepatocellular carcinoma and its related targeting therapy. International Journal of Medical Sciences, 2021, 18, 2109-2116.	1.1	28
940	Hyperthermic intraperitoneal chemotherapy enhances antitumor effects on ovarian cancer through immune-mediated cancer stem cell targeting. International Journal of Hyperthermia, 2021, 38, 1013-1022.	1.1	7
941	Hypoxia and Gene Expression. Cancer Drug Discovery and Development, 2014, , 91-119.	0.2	2
942	Iron and the Immune System. , 2012, , 233-248.		1
943	Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. Advances in Experimental Medicine and Biology, 2020, 1219, 1-34.	0.8	16
944	Melanoma Metabolism: Cell Survival and Resistance to Therapy. Advances in Experimental Medicine and Biology, 2020, 1219, 203-223.	0.8	15
945	Monocytes and Macrophages in Cancer: Unsuspected Roles. Advances in Experimental Medicine and Biology, 2020, 1219, 161-185.	0.8	17
946	Heparanase in Acute Pancreatitis. Advances in Experimental Medicine and Biology, 2020, 1221, 703-719.	0.8	3
947	Tissue Heterogeneity as a Pre-analytical Source of Variability. Recent Results in Cancer Research, 2015, 199, 35-43.	1.8	8

#	Article	IF	CITATIONS
948	Perioperative Biologic Perturbation and Cancer Surgery: Targeting the Adrenergic-Inflammatory Response and Microcirculatory Dysregulation. , 2017, , 83-107.		2
949	Microglia in Gliomas: Friend or Foe?. , 2014, , 241-270.		5
950	Research progress of tumor microenvironment and tumor-associated macrophages. Clinical and Translational Oncology, 2020, 22, 2141-2152.	1.2	18
951	Hedgehog Signaling and Pancreatic Tumor Development. Advances in Cancer Research, 2011, 110, 1-17.	1.9	37
952	The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cellular Immunology, 2020, 353, 104119.	1.4	201
953	Distinct Populations of Immune-Suppressive Macrophages Differentiate from Monocytic Myeloid-Derived Suppressor Cells in Cancer. Cell Reports, 2020, 33, 108571.	2.9	99
954	Gd-metallofullerenol drug delivery system mediated macrophage polarization enhances the efficiency of chemotherapy. Journal of Controlled Release, 2020, 320, 293-303.	4.8	18
959	Pharmacologic Activation of LXR Alters the Expression Profile of Tumor-Associated Macrophages and the Abundance of Regulatory T Cells in the Tumor Microenvironment. Cancer Research, 2021, 81, 968-985.	0.4	27
960	Improved Antitumor Efficacy of Chimeric Antigen Receptor T Cells that Secrete Single-Domain Antibody Fragments. Cancer Immunology Research, 2020, 8, 518-529.	1.6	54
961	Akt and SHP-1 are DC-intrinsic checkpoints for tumor immunity. JCI Insight, 2016, 1, e89020.	2.3	17
962	IL-12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. Journal of Clinical Investigation, 2011, 121, 4746-4757.	3.9	283
963	Transcription factor ATF3 links host adaptive response to breast cancer metastasis. Journal of Clinical Investigation, 2013, 123, 2893-2906.	3.9	109
964	Macrophages eliminate circulating tumor cells after monoclonal antibody therapy. Journal of Clinical Investigation, 2014, 124, 812-823.	3.9	226
965	IL-12p70–producing patient DC vaccine elicits Tc1-polarized immunity. Journal of Clinical Investigation, 2013, 123, 3383-3394.	3.9	137
966	Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. Journal of Clinical Investigation, 2014, 124, 2315-2324.	3.9	261
967	An Antimicrobial Peptide Regulates Tumor-Associated Macrophage Trafficking via the Chemokine Receptor CCR2, a Model for Tumorigenesis. PLoS ONE, 2010, 5, e10993.	1.1	125
968	Characteristics of the Alternative Phenotype of Microglia/Macrophages and its Modulation in Experimental Gliomas. PLoS ONE, 2011, 6, e23902.	1.1	239
969	Serum Level of CC-Chemokine Ligand 18 Is Increased in Patients with Non-Small-Cell Lung Cancer and Correlates with Survival Time in Adenocarcinomas. PLoS ONE, 2012, 7, e41746.	1.1	29

ARTICLE IF CITATIONS # Progressive Increase of Matrix Metalloprotease-9 and Interleukin-8 Serum Levels during Carcinogenic 970 1.1 30 Process in Human Colorectal Tract. PLoS ONE, 2012, 7, e41839. Tumor Associated Macrophage × Cancer Cell Hybrids May Acquire Cancer Stem Cell Properties in 971 1.1 Breast Cancer. PLoS ONE, 2012, 7, e41942. Proprotein Convertase 1/3 (PC1/3) in the Rat Alveolar Macrophage Cell Line NR8383: Localization, 972 1.1 19 Trafficking and Effects on Cytokine Secretion. PLoS ONE, 2013, 8, e61557. Targeting Cancer-Related Inflammation: Chinese Herbal Medicine Inhibits Epithelial-to-Mesenchymal 1.1 Transition in Pancreatic Cancer. PLoS ONE, 2013, 8, e70334. Macrophage Polarisation: an Immunohistochemical Approach for Identifying M1 and M2 Macrophages. 974 1.1 460 PLoS ONE, 2013, 8, e80908. Btk Regulates Macrophage Polarization in Response to Lipopolysaccharide. PLoS ONE, 2014, 9, e85834. 1.1 109 CCR6, the Sole Receptor for the Chemokine CCL20, Promotes Spontaneous Intestinal Tumorigenesis. 976 1.1 43 PLoS ONE, 2014, 9, e97566. Foxp3 Expression in Macrophages Associated with RENCA Tumors in Mice. PLoS ONE, 2014, 9, e108670. 1.1 The Network of Antigen-Antibody Reactions in Adult Women with Breast Cancer or Benign Breast 978 1.1 4 Pathology or without Breast Pathology. PLoS ONE, 2015, 10, e0119014. Macrophage Polarization Reflects T Cell Composition of Tumor Microenvironment in Pediatric 979 1.1 Classical Hodgkin Lymphoma and Has Impact on Survival. PLoS ONE, 2015, 10, e0124531. A Higher Frequency of CD14+CD169+ Monocytes/Macrophages in Patients with Colorectal Cancer. 980 1.1 24 PLoŠ ONE, 2015, 10, e0141817. The Immune Landscapes of Polypoid and Nonpolypoid Precancerous Colorectal Lesions. PLoS ONE, 1.1 2016, 11, e0159373. Interactions between the breast cancer-associated MUC1 mucins and C-type lectin characterized by 982 1.1 12 optical tweezers. PLoS ONE, 2017, 12, e0175323. Interleukin-9 Inhibits Lung Metastasis of Melanoma through Stimulating Anti-Tumor M1 Macrophages. 1.0 Molecules and Cells, 2020, 43, 479-490. Macrophage as a mediator of immune response: Sustenance of immune homeostasis. Macrophage, 0, , . 984 1.0 5 Evaluation of cell damage and modulation of cytokines TNF-α, IL-6 and IL-10 in macrophages exposed to PpIX-mediated photodynamic therapy. Brazilian Journal of Biology, 2020, 80, 497-505. Characterization of the tumor cell microenvironment. Onkologiya Zhurnal Imeni P A Gertsena, 2018, 7, 986 0.0 11 67. Tumor-associated macrophages, multi-tasking cells in the cancer landscape. Cancer Research Frontiers, 2015, 1, 149-161.

#	Article	IF	CITATIONS
988	Macrophage Function in Allergic and Autoimmune Responses. Journal of Physical Therapy and Health Promotion, 2013, 1, 36-45.	0.2	1
989	Polarization of macrophages in the tumor microenvironment is influenced by EGFR signaling within colon cancer cells. Oncotarget, 2016, 7, 75366-75378.	0.8	45
990	Progressive changes in composition of lymphocytes in lung tissues from patients with non-small-cell lung cancer. Oncotarget, 2016, 7, 71608-71619.	0.8	27
991	Genome-wide DNA copy number analysis in clonally expanded human ovarian cancer cells with distinct invasive/migratory capacities. Oncotarget, 2017, 8, 15136-15148.	0.8	6
992	CD163 as a marker of M2 macrophage, contribute to predict aggressiveness and prognosis of Kazakh esophageal squamous cell carcinoma. Oncotarget, 2017, 8, 21526-21538.	0.8	114
993	Tumor-associated macrophages promote Ezrin phosphorylation-mediated epithelial-mesenchymal transition in lung adenocarcinoma through FUT4/LeY up-regulation. Oncotarget, 2017, 8, 28247-28259.	0.8	24
994	Myeloid-derived suppressor cell and macrophage exert distinct angiogenic and immunosuppressive effects in breast cancer. Oncotarget, 2017, 8, 54173-54186.	0.8	34
995	M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget, 2017, 8, 72597-72612.	0.8	78
996	Prognostic value of diametrically polarized tumor-associated macrophages in multiple myeloma. Oncotarget, 2017, 8, 112685-112696.	0.8	38
997	MUC1 induces M2 type macrophage influx during postpartum mammary gland involution and triggers breast cancer. Oncotarget, 2018, 9, 3446-3458.	0.8	6
998	Accumulation of FOXP3+T-cells in the tumor microenvironment is associated with an epithelial-mesenchymal-transition-type tumor budding phenotype and is an independent prognostic factor in surgically resected pancreatic ductal adenocarcinoma. Oncotarget, 2015, 6, 4190-4201.	0.8	52
999	Bone marrow macrophages support prostate cancer growth in bone. Oncotarget, 2015, 6, 35782-35796.	0.8	62
1000	Neuroendocrine-like cells -derived CXCL10 and CXCL11 induce the infiltration of tumor-associated macrophage leading to the poor prognosis of colorectal cancer. Oncotarget, 2016, 7, 27394-27407.	0.8	43
1001	Zoledronic acid impairs stromal reactivity by inhibiting M2-macrophages polarization and prostate cancer-associated fibroblasts. Oncotarget, 2017, 8, 118-132.	0.8	52
1002	TREM-1low is a novel characteristic for tumor-associated macrophages in lung cancer. Oncotarget, 2016, 7, 40508-40517.	0.8	8
1003	Lactate as a Regulator of Cancer Inflammation and Immunity. Immunometabolism, 2019, , .	0.7	14
1004	The dual role of complement in cancer and its implication in anti-tumor therapy. Annals of Translational Medicine, 2016, 4, 265-265.	0.7	44
1005	Nanoparticles: Properties and Applications in Cancer Immunotherapy. Current Pharmaceutical Design, 2019, 25, 1962-1979.	0.9	12

#	Article	IF	CITATIONS
1006	A Review of Preclinical Experiments Toward Targeting M2 Macrophages in Prostate Cancer. Current Drug Targets, 2019, 20, 789-798.	1.0	17
1007	Tumour-associated macrophage polarisation and re-education with immunotherapy. Frontiers in Bioscience - Elite, 2015, 7, 334-351.	0.9	41
1008	Anti-cancer activities of Ganoderma lucidum: active ingredients and pathways. Functional Foods in Health and Disease, 2013, 3, 48.	0.3	68
1009	A comparison of the gene expression profiles and pathway network analyses after treatment of Prostate cancer cell lines with different Ganoderma lucidum based extracts. Functional Foods in Health and Disease, 2014, 4, 182.	0.3	4
1010	Targeting Tumor-Associated Macrophages in the Pediatric Sarcoma Tumor Microenvironment. Frontiers in Oncology, 2020, 10, 581107.	1.3	14
1011	IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules, 2020, 10, 1361.	1.8	12
1012	The Role of Selected Chemokines and Their Receptors in the Development of Gliomas. International Journal of Molecular Sciences, 2020, 21, 3704.	1.8	61
1013	Prognostic value of innate and adaptive immunity in colorectal cancer. World Journal of Gastroenterology, 2013, 19, 174.	1.4	57
1014	Inhibition of host immune response in colorectal cancer: Human leukocyte antigen-G and beyond. World Journal of Gastroenterology, 2014, 20, 3778.	1.4	14
1015	Tumor microenvironment in primary liver tumors: A challenging role of natural killer cells. World Journal of Gastroenterology, 2020, 26, 4900-4918.	1.4	19
1016	The role of granulocyte colony‑stimulating factor in breast cancer development: A review. Molecular Medicine Reports, 2020, 21, 2019-2029.	1.1	19
1017	Innate immune cells and their interaction with TÂcells in hepatocellular carcinoma (Review). Oncology Letters, 2020, 21, 57.	0.8	11
1018	Role of DNA-dependent protein kinase catalytic subunit in cancer development and treatment. Translational Cancer Research, 2012, 1, 22-34.	0.4	82
1019	Obesity and Breast Cancer: The Role of Crown-Like Structures in Breast Adipose Tissue in Tumor Progression, Prognosis, and Therapy. Journal of Breast Cancer, 2020, 23, 233.	0.8	34
1020	Cancer: Tumor Iron Metabolism, Mitochondrial Dysfunction and Tumor Immunosuppression; "A Tight Partnership—Was Warburg Correct?― Journal of Cancer Therapy, 2012, 03, 278-311.	0.1	21
1021	Diagnostic and Prognostic Significance of Histidine-Rich Glycoprotein in Acute Lymphoblastic Leukemia. Open Journal of Blood Diseases, 2017, 07, 16-28.	0.1	3
1022	Mouse forestomach carcinoma cells immunosuppress macrophages through TGF-?1. Turkish Journal of Gastroenterology, 2012, 23, 658-665.	0.4	5
1023	Role of tumor associated macrophages in regulating pancreatic cancer progression. World Journal of Immunology, 2016, 6, 9.	0.5	1

	CITATION	REPORT	
#	Article	IF	CITATIONS
1024	Impact of tumour associated macrophages in pancreatic cancer. BMB Reports, 2013, 46, 131-138.	1.1	82
1025	Clinicopathological correlation of tumor-associated macrophages in Ewing sarcoma. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2018, 162, 54-60.	0.2	10
1026	Macrophage profile in primary versus secondary liver tumors. Folia Histochemica Et Cytobiologica, 2014, 52, 112-123.	0.6	7
1027	Downregulation of Nitric Oxide Collaborated with Radiotherapy to Promote Anti-Tumor Immune Response via Inducing CD8+ T Cell Infiltration. International Journal of Biological Sciences, 2020, 16, 1563-1574.	2.6	16
1028	Complexities of TGF-β Targeted Cancer Therapy. International Journal of Biological Sciences, 2012, 8, 964-978.	2.6	293
1029	IL-12 Regulates B7-H1 Expression in Ovarian Cancer-associated Macrophages by Effects on NF-κB Signalling. Asian Pacific Journal of Cancer Prevention, 2014, 15, 5767-5772.	0.5	28
1030	Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. ELife, 2020, 9, .	2.8	34
1031	Tumour-associated macrophages mediate the invasion and metastasis of bladder cancer cells through CXCL8. PeerJ, 2020, 8, e8721.	0.9	41
1032	Estrogens and the Schrödinger's Cat in the Ovarian Tumor Microenvironment. Cancers, 2021, 13, 5011.	1.7	5
1033	Assessing Macrophage Polarization in Nanoparticle-Guided Wound Repair Using a Lipopolysaccharide Contaminated Intraosseous Model. Journal of Endodontics, 2022, 48, 109-116.	1.4	5
1034	ERK5 modulates IL-6 secretion and contributes to tumor-induced immune suppression. Cell Death and Disease, 2021, 12, 969.	2.7	13
1035	Construction of a ceRNA Network and Analysis of Tumor Immune Infiltration in Pancreatic Adenocarcinoma. Frontiers in Molecular Biosciences, 2021, 8, 745409.	1.6	7
1036	Scavenger receptor MARCO contributes to macrophage phagocytosis and clearance of tumor cells. Experimental Cell Research, 2021, 408, 112862.	1.2	25
1037	The Impact of Inflammation Control and Active Cancer Palliation on Metabolic Pathways Determining Tumor Progression and Patient Survival. , 2010, , 313-340.		0
1038	Immuno-Oncology and Immunotherapy. , 0, , .		0
1039	The Role of the Tumor Microenvironment in the Pathogenesis of Cholangiocarcinoma. , 0, , .		1
1040	Functions of Diverse Myeloid Cells in the Tumor Micro-Environment. , 0, , .		0
1041	Macrophage Differentiation and Activation States in the Tumor Microenvironment. , 2013, , 405-430.		1

#	Article	IF	CITATIONS
1042	Inflammation, Tumor Progression, and Immune Suppression. , 2013, , 177-196.		0
1043	Principles of tumor immunology. , 2013, , 925-934.		0
1044	Mechanisms of Macrophage Migration in 3-Dimensional Environments. , 2013, , 1-13.		0
1045	Radiation-induced effects and the immune system. Frontiers Research Topics, 0, , .	0.2	0
1046	Differential Activation of Macrophages in Tumors. , 2013, , 113-144.		0
1047	Myeloid-Derived Suppressor Cells and Tumor Growth. , 2014, , 91-109.		2
1048	Role of Endothelial Cells in Tumor Escape from Immunity. , 2014, , 325-337.		0
1049	Vascular Modulatory Functions of Macrophages. , 2014, , 131-168.		0
1050	Myelomonocytic Subsets in Tumor Microenvironment. , 2014, , 405-423.		0
1051	Macrophages in Obesity and Insulin Resistance. , 2014, , 375-385.		0
1052	Macrophages and Tumor Development. , 2014, , 185-212.		0
1053	Tumor-Associated Macrophages. , 2014, , 425-443.		1
1054	Tumour Angiogenesis. , 2015, , 47-62.		0
1055	Immunoregulatory Myeloid Cells in the Tumor Microenvironment. SpringerBriefs in Immunology, 2016, , 61-71.	0.1	0
1056	Mechanisms of Macrophage Migration in 3-Dimensional Environments. , 2016, , 916-926.		0
1057	Aiming the Immune System to Improve the Antitumor Efficacy of Radiation Therapy. , 2016, , 159-181.		0
1058	The Role of Macrophages Within Microenvironment in a Lung Cancer Development and Progression. , 2017, , 271-285.		0
1059	Multi-target analysis of neoplasms for the evaluation of tumor progression: stochastic approach of biologic processes. AIMS Molecular Science, 2018, 5, 14-62.	0.3	0

#	Article	IF	CITATIONS
1060	Küçük hücreli dışı akciğer karsinomlarında tümör ilişkili makrofajların tümör progresy Ege Tıp Dergisi, 2018, 57, 107-112.	vonundaki 0.1	rolü.
1061	ROLE OF THE STROMAL CELLULAR COMPONENT IN COMPENSATORY PROCESSES IN DIFFUSE LIVER DAMAGE. Toxicological Review, 2018, , 32-37.	0.2	1
1062	Tumour Angiogenesis. , 2019, , 55-76.		0
1063	Myeloid-Derived Suppressor Cells (MDSCs) in Aged Mice: Focus on Inflammation. , 2019, , 711-731.		0
1064	Anti-angiogenics in Gastroesophageal Cancer. , 2019, , 395-414.		0
1065	Immunotherapy in Pediatric Solid Tumors. Clinical Pediatric Hematology-Oncology, 2020, 27, 22-31.	0.0	1
1066	High <i>PTX3</i> expression is associated with a poor prognosis in diffuse large B ell lymphoma. Cancer Science, 2022, 113, 334-348.	1.7	23
1067	Sweat Gland Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1296, 259-274.	0.8	0
1068	Inflammatory Mediators: Potential Drug Targets in Cancer. , 2020, , 139-156.		0
1069	Review of Premetastasis Niche Research Progress. Journal of Biosciences and Medicines, 2020, 08, 153-162.	0.1	1
1070	Immunotherapy and Immunosurveillance of Oral Cancers: Perspectives of Plasma Medicine and Mistletoe. , 2020, , 355-362.		1
1072	Exploring the Inflammatory Pathogenesis of Colorectal Cancer. Diseases (Basel, Switzerland), 2021, 9, 79.	1.0	17
1073	Global characterization of macrophage polarization mechanisms and identification of M2-type polarization inhibitors. Cell Reports, 2021, 37, 109955.	2.9	89
1074	Polysaccharides Derived from Saposhnikovia divaricata May Suppress Breast Cancer Through Activating Macrophages. OncoTargets and Therapy, 2020, Volume 13, 10749-10757.	1.0	9
1075	Cholangiocarcinoma pathogenesis: Role of the tumor microenvironment. Translational Gastrointestinal Cancer, 2012, 1, 71-80.	3.0	41
1076	Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. American Journal of Translational Research (discontinued), 2012, 4, 376-89.	0.0	229
1079	Association between tumor-associated macrophage infiltration, high grade prostate cancer, and biochemical recurrence after radical prostatectomy. American Journal of Cancer Research, 2013, 3, 523-9.	1.4	46
1080	Tumor associated macrophage: a review on the phenotypes, traits and functions. Iranian Journal of Cancer Prevention 2014 7 1-8	0.7	37

#	Article	IF	Citations
1081	Tumor-associated macrophages promote tumor cell proliferation in nasopharyngeal NK/T-cell lymphoma. International Journal of Clinical and Experimental Pathology, 2014, 7, 5429-35.	0.5	16
1082	Relationships between tumor microenvironment and clinicopathological parameters in meningioma. International Journal of Clinical and Experimental Pathology, 2014, 7, 6973-9.	0.5	5
1083	Regulation of epithelial-mesenchymal transition by tumor-associated macrophages in cancer. American Journal of Translational Research (discontinued), 2015, 7, 1699-711.	0.0	29
1084	Exercise in Regulation of Inflammation-Immune Axis Function in Cancer Initiation and Progression. Oncology, 2015, 29, 908-20, 922.	0.4	50
1085	Expression of Cytokines Interleukin-2, Interleukin-4, Interleukin-10 and Transforming Growth Factor β in Gastric Adenocarcinoma Biopsies Obtained from Mexican Patients. Asian Pacific Journal of Cancer Prevention, 2017, 18, 577-582.	0.5	9
1088	Recruitment of monocytes and epigenetic silencing of intratumoral CYP7B1 primarily contribute to the accumulation of 27-hydroxycholesterol in breast cancer. American Journal of Cancer Research, 2019, 9, 2194-2208.	1.4	9
1089	Tumor cells induced-M2 macrophage favors accumulation of Treg in nasopharyngeal carcinoma. International Journal of Clinical and Experimental Pathology, 2017, 10, 8389-8401.	0.5	10
1090	BETA ENDORPHINS - HOLISTIC THERAPEUTIC APPROACH TO CANCER. Annals of Ibadan Postgraduate Medicine, 2019, 17, 111-114.	0.1	0
1091	Upregulation of CSF-1 is correlated with elevated TAM infiltration and poor prognosis in oral squamous cell carcinoma. American Journal of Translational Research (discontinued), 2020, 12, 6235-6249.	0.0	3
1092	The Interdependence of Inflammation and ROS in Cancer. , 2021, , 1-17.		1
1093	Exposure of Microglia to Interleukin-4 Represses NF-κB-Dependent Transcription of Toll-Like Receptor-Induced Cytokines. Frontiers in Immunology, 2021, 12, 771453.	2.2	8
1094	Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. , 2022, 234, 108031.		17
1095	The TRPA1 Channel Amplifies the Oxidative Stress Signal in Melanoma. Cells, 2021, 10, 3131.	1.8	10
1096	Research Progress on the Role of Regulatory T Cell in Tumor Microenvironment in the Treatment of Breast Cancer. Frontiers in Oncology, 2021, 11, 766248.	1.3	7
1097	Spatiotemporal dynamics of a glioma immune interaction model. Scientific Reports, 2021, 11, 22385.	1.6	18
1098	Protective effects of rosmarinic acid against azoxymethaneâ€induced colorectal cancer in rats. Journal of Biochemical and Molecular Toxicology, 2021, , e22961.	1.4	6
1100	Targeted delivery of methotrexate by modified yeast Î ² -glucan nanoparticles for rheumatoid arthritis therapy. Carbohydrate Polymers, 2022, 284, 119183.	5.1	13
1101	The Interdependence of Inflammation and ROS in Cancer. , 2022, , 1135-1151.		0

#	Article	IF	CITATIONS
1102	Immune Infiltration Associated MAN2B1 Is a Novel Prognostic Biomarker for Glioma. Frontiers in Oncology, 2022, 12, 842973.	1.3	3
1103	Thrombin cleavage of osteopontin initiates osteopontin's tumorâ€promoting activity. Journal of Thrombosis and Haemostasis, 2022, 20, 1256-1270.	1.9	10
1104	CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression. Science Translational Medicine, 2022, 14, eabf5473.	5.8	51
1105	Self-assembled tetrahedral framework nucleic acid mediates tumor-associated macrophage reprogramming and restores antitumor immunity. Molecular Therapy - Nucleic Acids, 2022, 27, 763-773.	2.3	7
1107	HPV and the Risk of HIV Acquisition in Women. Frontiers in Cellular and Infection Microbiology, 2022, 12, 814948.	1.8	11
1108	ILâ€34 in hepatoblastoma cells potentially promote tumor progression via autocrine and paracrine mechanisms. Cancer Medicine, 2022, 11, 1441-1453.	1.3	9
1109	Tumor-Associated Macrophages: Reasons to Be Cheerful, Reasons to Be Fearful. Experientia Supplementum (2012), 2022, 113, 107-140.	0.5	10
1110	Immunogenetic mechanisms in the treatment of cancer. , 2022, , 321-338.		0
1112	Role of Base Excision Repair in Innate Immune Cells and Its Relevance for Cancer Therapy. Biomedicines, 2022, 10, 557.	1.4	1
1113	Identification of the Immune Signatures for Ovarian Cancer Based on the Tumor Immune Microenvironment Genes. Frontiers in Cell and Developmental Biology, 2022, 10, 772701.	1.8	6
1114	Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Frontiers in Oncology, 2022, 12, 860508.	1.3	76
1115	Pigment epithelium-derived factor, an anti-VEGF factor, delays ovarian cancer progression by alleviating polarization of tumor-associated macrophages. Cancer Gene Therapy, 2022, , .	2.2	6
1116	Coadministration with bendamustine restores the antitumor activity of obinutuzumab in obinutuzumab-resistant tumors. International Journal of Hematology, 2022, , 1.	0.7	1
1117	The Pivotal Immunoregulatory Functions of Microglia and Macrophages in Glioma Pathogenesis and Therapy. Journal of Oncology, 2022, 2022, 1-19.	0.6	4
1118	Delivery of mRNA for regulating functions of immune cells. Journal of Controlled Release, 2022, 345, 494-511.	4.8	28
1119	Exosomal circRNAs: Emerging Players in Tumor Metastasis. Frontiers in Cell and Developmental Biology, 2021, 9, 786224.	1.8	22
1120	SEMA6B Overexpression Predicts Poor Prognosis and Correlates With the Tumor Immunosuppressive Microenvironment in Colorectal Cancer. Frontiers in Molecular Biosciences, 2021, 8, 687319.	1.6	10
1123	Dual-aptamer-engineered M1 macrophage with enhanced specific targeting and checkpoint blocking for solid-tumor immunotherapy. Molecular Therapy, 2022, 30, 2817-2827.	3.7	13

#	Article	IF	CITATIONS
1124	Erythrocyte-derived extracellular vesicles aggravate inflammation by promoting the proinflammatory macrophage phenotype through TLR4–MyD88–NF-κB–MAPK pathway. Journal of Leukocyte Biology, 2022, 112, 693-706.	1.5	9
1125	Matrix metalloproteinase $\widehat{a} {\in} 21$ promotes metastasis via increasing the recruitment and M2 polarization of macrophages in HCC. Cancer Science, 2022, , .	1.7	4
1139	Fusobacterium nucleatum: a new player in regulation of cancer development and therapeutic response. Cancer Drug Resistance (Alhambra, Calif), 0, , 424-438.	0.9	4
1140	Targeting SHP2 phosphatase in hematological malignancies. Expert Opinion on Therapeutic Targets, 2022, 26, 319-332.	1.5	10
1141	Transcriptional profiling of macrophages in situ in metastatic melanoma reveals localization-dependent phenotypes and function. Cell Reports Medicine, 2022, 3, 100621.	3.3	15
1142	Obesity modulates the immune macroenvironment associated with breast cancer development. PLoS ONE, 2022, 17, e0266827.	1.1	7
1143	Identification of TRP-Related Subtypes, Development of a Prognostic Model, and Characterization of Tumor Microenvironment Infiltration in Lung Adenocarcinoma. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	1
1144	Two distinct receptor-binding domains of human glycyl-tRNA synthetase 1 displayed on extracellular vesicles activate M1 polarization and phagocytic bridging of macrophages to cancer cells. Cancer Letters, 2022, 539, 215698.	3.2	6
1145	Combination of Metalâ€Phenolic Networkâ€Based Immunoactive Nanoparticles and Bipolar Irreversible Electroporation for Effective Cancer Immunotherapy. Small, 2022, 18, e2200316.	5.2	20
1146	Modified E2 Glycoprotein of Hepatitis C Virus Enhances Proinflammatory Cytokines and Protective Immune Response. Journal of Virology, 2022, 96, .	1.5	7
1148	Altered mucosal immunity in HIV-positive colon adenoma: decreased CD4+ T cell infiltration is correlated with nadir but not current CD4+ T cell blood counts. International Journal of Clinical Oncology, 0, , .	1.0	0
1149	\hat{l}^2 -Klotho inhibits CSF-1 secretion and delays the development of endometrial cancer. Cell Cycle, 2022, 21, 2132-2144.	1.3	0
1150	Prediction of Prognosis in Patients with Hepatocellular Carcinoma Based on Molecular Subtypes of Immune Genes. Gastroenterology Research and Practice, 2022, 2022, 1-14.	0.7	0
1151	Triggering Receptors Expressed on Myeloid Cells 1Â: Our New Partner in Human Oncology?. Frontiers in Oncology, 0, 12, .	1.3	5
1153	Identification of pyroptosis-related subtypes, development of a prognostic model, and characterization of tumour microenvironment infiltration in gastric cancer. Frontiers in Genetics, 0, 13, .	1.1	2
1154	Renieramycin T Inhibits Melanoma B16F10 Cell Metastasis and Invasion via Regulating Nrf2 and STAT3 Signaling Pathways. Molecules, 2022, 27, 5337.	1.7	5
1155	Exosome-derived Inc-HOXB8-1:2 induces tumor-associated macrophage infiltration to promote neuroendocrine differentiated colorectal cancer progression by sponging hsa-miR-6825-5p. BMC Cancer, 2022, 22, .	1.1	11
1158	FOXP3+/CD68+ ratio within the tumor microenvironment may serve as a potential prognostic factor in classical Hodgkin lymphoma. Human Immunology, 2022, 83, 843-856.	1.2	2

#	Article	IF	Citations
1159	Flavonoids regulate tumor-associated macrophages – From structure-activity relationship to clinical potential (Review). Pharmacological Research, 2022, 184, 106419.	3.1	29
1160	Regorafenib in combination with immune checkpoint inhibitors for mismatch repair proficient (pMMR)/microsatellite stable (MSS) colorectal cancer. Cancer Treatment Reviews, 2022, 110, 102460.	3.4	14
1161	Inducing vascular normalization: A promising strategy for immunotherapy. International Immunopharmacology, 2022, 112, 109167.	1.7	2
1162	Fucoidan, as an immunostimulator promotes M1 macrophage differentiation and enhances the chemotherapeutic sensitivity of capecitabine in colon cancer. International Journal of Biological Macromolecules, 2022, 222, 562-572.	3.6	18
1163	Immunobiology of Testicular Cancer. , 2022, , .		3
1164	The Role of the S100 Protein Family in Glioma. Journal of Cancer, 2022, 13, 3022-3030.	1.2	12
1165	Neem Leaf Glycoprotein in immunoregulation of cancer. Human Immunology, 2022, 83, 768-777.	1.2	1
1166	Integrated analysis of novel macrophage related signature in anaplastic thyroid cancer. Endocrine, 2022, 78, 517-530.	1.1	6
1167	Targeting tumour-reprogrammed myeloid cells: the new battleground in cancer immunotherapy. Seminars in Immunopathology, 2023, 45, 163-186.	2.8	14
1168	Altered intraperitoneal immune microenvironment in patients with peritoneal metastases from gastric cancer. Frontiers in Immunology, 0, 13, .	2.2	5
1169	Correlation of the prognostic value of FNDC4 in glioblastoma with macrophage polarization. Cancer Cell International, 2022, 22, .	1.8	1
1170	Identification of novel lactate metabolism signatures and molecular subtypes for prognosis in hepatocellular carcinoma. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
1172	Understanding the Crosstalk Between Epigenetics and Immunometabolism to Combat Cancer. Sub-Cellular Biochemistry, 2022, , 581-616.	1.0	0
1173	The Prospects of Immunotherapy in Pancreatic Cancer. , 2022, , 269-281.		0
1174	Non-invasive classification of macrophage polarisation by 2P-FLIM and machine learning. ELife, 0, 11, .	2.8	13
1175	Dendritic Cells or Macrophages? The Microenvironment of Human Clear Cell Renal Cell Carcinoma Imprints a Mosaic Myeloid Subtype Associated with Patient Survival. Cells, 2022, 11, 3289.	1.8	2
1176	Evaluation of Paraoxonase-1 and Pentraxin-3 in the Diagnosis and Prognosis of Endometrial Cancer. Antioxidants, 2022, 11, 2024.	2.2	1
1177	TIM3 Expression in Anaplastic-Thyroid-Cancer-Infiltrating Macrophages: An Emerging Immunotherapeutic Target. Biology, 2022, 11, 1609.	1.3	2

	CIA		
#	Article	IF	CITATIONS
1178	Wound Healing versus Metastasis: Role of Oxidative Stress. Biomedicines, 2022, 10, 2784.	1.4	4
1179	Nanomodulators targeting tumor-resident immunosuppressive cells: Mechanisms and recent updates. Nano Today, 2022, 47, 101641.	6.2	7
1180	Dual role of cytokines in tumor microenvironment. Journal of Cancer Prevention & Current Research, 2022, 13, 141-143.	0.1	1
1181	The crosstalk between intestinal bacterial microbiota and immune cells in colorectal cancer progression. Clinical and Translational Oncology, 0, , .	1.2	1
1184	Understanding the Microenvironment of Melanoma Cells for the Development of Target Drug Delivery Systems. European Medical Journal Oncology, 0, , 85-92.	0.0	3
1185	Immunological role and prognostic value of SPARCL1 in pan-cancer analysis. Pathology and Oncology Research, 0, 28, .	0.9	0
1186	The clinicopathological significance and relapse predictive role of tumor microenvironment of intrahepatic cholangiocarcinoma after radical surgery. Cancer, 0, , .	2.0	5
1187	Oncogenic KRAS signaling drives evasion of innate immune surveillance in lung adenocarcinoma by activating CD47. Journal of Clinical Investigation, 2023, 133, .	3.9	16
1188	Exposure of Immunogenic Tumor Antigens in Surrendered Immunity and the Significance of Autologous Tumor Cell-Based Vaccination in Precision Medicine. International Journal of Molecular Sciences, 2023, 24, 147.	1.8	1
1189	Systematic Analysis of Molecular Subtypes Based on the Expression Profile of Immune-Related Genes in Pancreatic Cancer. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-28.	1.9	4
1190	Elevated TAF12 Expression Predicts Poor Prognosis in Glioma Patients: Evidence from Bioinformatic and Immunohistochemical Analyses. Biomolecules, 2022, 12, 1847.	1.8	1
1191	Molecular Crosstalk between Chromatin Remodeling and Tumor Microenvironment in Multiple Myeloma. Current Oncology, 2022, 29, 9535-9549.	0.9	2
1192	Immunocyte Derived Exosomes: Insight into the Potential Chemo-immunotherapeutic Nanocarrier Targeting the Tumor Microenvironment. ACS Biomaterials Science and Engineering, 2023, 9, 20-39.	2.6	2
1193	The mononuclear phagocyte system in hepatocellular carcinoma. World Journal of Gastroenterology, 0, 28, 6345-6355.	1.4	2
1194	Dissecting the role of tollâ \in like receptor 7 in pancreatic cancer. Cancer Medicine, 0, , .	1.3	1
1195	The Triterpenoid CDDO-Methyl Ester Redirects Macrophage Polarization and Reduces Lung Tumor Burden in a Nrf2-Dependent Manner. Antioxidants, 2023, 12, 116.	2.2	2
1196	Higher TYROBP and lower SOX6 as predictive biomarkers for poor prognosis of clear cell renal cell carcinoma: A pilot study. Medicine (United States), 2022, 101, e30658.	0.4	1
1197	Nanotherapy: New Approach for Impeding Hepatic Cancer Microenvironment via Targeting Multiple Molecular Pathways. Asian Pacific Journal of Cancer Prevention, 2022, 23, 4261-4274.	0.5	0

ARTICLE IF CITATIONS Role of <scp>NCF2</scp> as a potential prognostic factor and immune infiltration indicator in 1198 1.3 3 hepatocellular carcinoma. Cancer Medicine, 2023, 12, 8991-9004. Neo-vascularization-based therapeutic perspectives in advanced ovarian cancer. Biochimica Et 1199 3.3 Biophysica Acta: Reviews on Cancer, 2023, 1878, 188888. UTMD inhibits pancreatic cancer growth and metastasis by inducing macrophage polarization and 1200 2.56 vessel normalization. Biomedicine and Pharmacotherapy, 2023, 160, 114322. Characterization of the microenvironment in different immune-metabolism subtypes of cervical 1.1 cancer with prognostic significance. Frontiers in Genetics, 0, 14, . Construction of Ovarian Cancer Prognostic Model Based on the Investigation of Ferroptosis-Related 1202 1.8 5 IncRNA. Biomolecules, 2023, 13, 306. Integration of single sample and population analysis for understanding immune evasion mechanisms of lung cancer. Npj Systems Biology and Applications, 2023, 9, . 1.4 Effective Reversal of Macrophage Polarization by Inhibitory Combinations Predicted by a Boolean 1204 1.3 1 Protein–Protein Interaction Model. Biology, 2023, 12, 376. Mechanisms Underlying Tumor-Associated Macrophages (TAMs)-Facilitated Metastasis., 2023, , 1-54. 1205 Interplay Between Extracellular Matrix Remodeling and Angiogenesis in Tumor Ecosystem. Molecular 1206 1.9 4 Cancer Therapeutics, 2023, 22, 291-305. Training vs. Tolerance: The Yin/Yang of the Innate Immune System. Biomedicines, 2023, 11, 766. 1.4 1208 Antitumor Therapy Targeting the Tumor Microenvironment. Journal of Oncology, 2023, 2023, 1-16. 4 0.6 Cancer-Associated Fibroblasts Exposed to High-Dose Ionizing Radiation Promote M2 Polarization of 1209 1.7 Macrophages, Which Induce Radiosensitivity in Cervical Cancer. Cancers, 2023, 15, 1620. Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR 1210 7.9 18 signaling in tumor microenvironment. Molecular Cancer, 2023, 22, . Aptamer-Based Strategies to Boost Immunotherapy in TNBC. Cancers, 2023, 15, 2010. 1.7 LPS combined with CD47mAb enhances the antiâ€osteosarcoma ability of macrophages. Oncology 1212 0.8 0 Letters, 2023, 25, . VSSP-activated macrophages mediate senescence and tumor inhibition in a preclinical model of advanced prostate cancer. Cell Communication and Signaling, 2023, 21, . A concise review on miRNAs as regulators of colon cancer stem cells and associated signalling 1214 1.2 2 pathways. Clinical and Translational Oncology, 2023, 25, 3345-3356. Exosomes and circular RNAs: promising partners in hepatocellular carcinoma from bench to bedside. 1219 Discover Oncology, 2023, 14, .

#	Article	IF	CITATIONS
1225	Modulation of tumor-associated macrophage activity with radiation therapy: aÂsystematic review. Strahlentherapie Und Onkologie, 2023, 199, 1173-1190.	1.0	5
1238	Physiological Changes in the Local Onco-Sphere: Angiogenesis. , 2023, , 125-149.		0
1246	CCL2–CCR2 Signaling Axis in Cancer. , 2023, , 241-270.		0
1262	Melanoma immunotherapy enabled by M2 macrophage targeted immunomodulatory cowpea mosaic virus. Materials Advances, 2024, 5, 1473-1479.	2.6	0