Flow-Units in Basalt

Journal of Geology 44, 617-630

DOI: 10.1086/624458

Citation Report

#	Article	IF	CITATIONS
1	Structure, Sedimentary Inclusions, and Hydrothermal Alteration of a Latite Intrusion. Journal of Geology, 1962, 70, 328-341.	1.4	8
2	The origin of columnar jointing, particularly in basalt flows. Journal of the Geological Society of Australia, 1962, 8, 191-216.	0.6	141
3	Lava caves of Victoria. Bulletin of Volcanology, 1965, 28, 215-229.	3.0	18
4	Internal structure of the Buckboard Mesa basalt. Bulletin of Volcanology, 1969, 33, 579-593.	3.0	5
5	Volcanicity and Forms of Extrusive Bodies. , 1971, , 1-18.		2
6	Palaeomagnetism of the Deccan Trap flows of Jalna, India. Earth and Planetary Science Letters, 1971, 11, 109-112.	4.4	7
7	Compound and simple lava flows and flood basalts. Bulletin of Volcanology, 1971, 35, 579-590.	3.0	284
8	The British Tertiary Igneous Province: K-Ar Ages of Some Dykes and Lavas, from Mull, Scotland. Geophysical Journal International, 1972, 30, 405-414.	2.4	24
9	Effusion rate and the shape of aa lava flow-fields on Mount Etna. Geology, 1978, 6, 503.	4.4	73
10	The Galapagos Rift at $86 \hat{A}^o$ W: 3. Sheet flows, collapse pits, and lava lakes of the Rift Valley. Journal of Geophysical Research, 1979, 84, 5407-5422.	3.3	206
11	Lexicon and Bibliography of Cenozoic Deposits of New Mexico, 1869–1980. Bulletin of the Geological Society of America, 1981, 92, 1807-1981.	3.3	0
12	Thicknesses of lunar mare flow fronts. The Moon and the Planets, 1981, 24, 391-398.	0.5	33
13	Eruption rates and compositional trends at Los Humeros Volcanic Center, Puebla, Mexico. Journal of Geophysical Research, 1984, 89, 8511-8524.	3.3	122
14	Vesicle zonation and vertical structure of basalt flows. Journal of Volcanology and Geothermal Research, 1988, 35, 349-374.	2.1	115
15	The growth of AA lava flow fields on Mount Etna, Sicily. Journal of Geophysical Research, 1988, 93, 14759-14772.	3.3	71
16	Physical volcanology of mid-Proterozoic plateau lavas: The Keweenawan North Shore Volcanic Group, Minnesota. Bulletin of the Geological Society of America, 1989, 101, 486-500.	3.3	33
17	Pahoehoe and aa in Hawaii: volumetric flow rate controls the lava structure. Bulletin of Volcanology, 1990, 52, 615-628.	3.0	296
18	Emplacement of lava flow fields: Application of terrestrial studies to Alba Patera, Mars. Journal of Geophysical Research, 1990, 95, 14383-14397.	3.3	31

#	Article	IF	CITATIONS
19	General patterns of flow field growth: Aa and blocky lavas. Journal of Geophysical Research, 1991, 96, 19721-19732.	3.3	76
20	P-type and S-type pahoehoe: a study of vesicle distribution patterns in Hawaiian lava flows. Journal of Volcanology and Geothermal Research, 1993, 55, 129-142.	2.1	104
21	Channel overflows of the PÅhue Bay flow, Mauna Loa, Hawai'i: examples of the contrast between surface and interior lava. Bulletin of Volcanology, 1995, 57, 117-126.	3.0	25
22	Tumuli and associated features from the western Deccan Volcanic Province, India. Bulletin of Volcanology, 2001, 63, 435-442.	3.0	57
23	Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. Journal of Volcanology and Geothermal Research, 2003, 119, 107-123.	2.1	119
24	Pahoehoe transport as a correlated random walk. Journal of Geophysical Research, 2003, 108, .	3.3	11
25	Morphology and emplacement of flows from the Deccan Volcanic Province, India. Bulletin of Volcanology, 2004, 66, 29-45.	3.0	136
26	THE GEOLOGY OF THE LUNAR BASE. Annals of the New York Academy of Sciences, 2006, 105, 491-625.	3.8	7
27	Lava effusion rate definition and measurement: a review. Bulletin of Volcanology, 2007, 70, 1-22.	3.0	248
28	A selfâ€replication model for long channelized lava flows on the Mars plains. Journal of Geophysical Research, 2008, 113, .	3.3	22
29	TERTIARY VOLCANICS OF CHIHSHAN CHUâ€JUNG KIANGSU [*] . Bulletin of the Geological Society of China, 1951, 31, 31-62.	0.0	1
30	Layered MegaBlocks in the central uplifts of impact craters. Icarus, 2012, 221, 710-720.	2.5	22
31	Emplacement of Continental Flood Basalt Lava Flows. Geophysical Monograph Series, 0, , 381-410.	0.1	132
32	Control of early-formed vesicle cylinders on upper crustal prismatic jointing in compound pÄhoehoe lavas of Elephanta Island, western Deccan Traps, India. Bulletin of Volcanology, 2017, 79, 1.	3.0	7
33	A review of mass and energy flow through a lava flow system: insights provided from a non-equilibrium perspective. Bulletin of Volcanology, 2017, 79, 1.	3.0	9
34	"Pipe vesicles―in basalt: Trails left by dense immiscible melt droplets sinking through a viscous basal thermal boundary layer. Earth-Science Reviews, 2020, 201, 103031.	9.1	5
35	Late Cenozoic columnar-jointed basaltic lavas in eastern and southeastern China: morphologies, structures, and formation mechanisms. Bulletin of Volcanology, 2020, 82, 1.	3.0	9
36	Morphological types in the Deccan Volcanic Province, India: implications for emplacement dynamics of continental flood basalts. Geological Society Special Publication, 2022, 518, 341-396.	1.3	8

#	Article	IF	CITATIONS
37	Patterns and Predictability in the Emplacement of Subaerial Lava Flows and Flow Fields., 1996,, 491-537.		31
38	Channel overflows of the P?hue Bay flow, Mauna Loa, Hawai'i: examples of the contrast between surface and interior lava. Bulletin of Volcanology, 1995, 57, 117-126.	3.0	8
39	Effusion rate controls on lava flow length and the role of heat loss: a review., 0,, 33-51.		51
40	INTERNAL STRUCTURE OF KUTSUGATA LAVA FLOW, RISHIRI VOLCANO. Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, 1981, 76, 181-194.	0.2	6
45	The Role of Geology in Lunar Exploration. Advances in Space Science and Technology, 1961, 3, 1-112.	0.2	1
47	Flood basalt structures and textures as guides to cooling histories and palaeoclimates: the Deccan Traps of Saurashtra, western India. Geological Magazine, 2022, 159, 1415-1436.	1.5	6
48	The Volcanic Geoheritage of the Ajanta and Ellora Caves, Central Deccan Traps, India. Geoheritage, 2023, 15, .	2.8	2
49	Emplacement of lava flows on eroded terrain, part I: The case of the Tiretaine valley (Chaîne des Puys,) Tj ETQq1	1.0.7843 2.1.7843	14 rgBT /Ov
50	A Field Based Perspective of the Volcanism in Tadpatri Formation of Proterozoic Cuddapah Basin, India: An Analog of the Deccan Traps?. Journal of the Geological Society of India, 2023, 99, 1341-1348.	1.1	О
51	Morphological transitions between lobate resurfacing and distal breakout lava flows in flood basalts: insights from analog experiments. Bulletin of Volcanology, 2024, 86, .	3.0	O