Myeloid-derived suppressor cells: more mechanisms fo

Cancer Immunology, Immunotherapy 59, 1593-1600 DOI: 10.1007/s00262-010-0855-8

Citation Report

#	Article	IF	CITATIONS
1	Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunology, Immunotherapy, 2010, 59, 1593-1600.	2.0	470
2	Therapeutic Cancer Vaccines in Combination with Conventional Therapy. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-10.	3.0	26
3	Intrinsic modulation of lymphocyte function by stromal cell network: advance in therapeutic targeting of cancer. Immunotherapy, 2011, 3, 1253-1264.	1.0	12
4	Myeloid derived suppressor cells in transplantation. Current Opinion in Immunology, 2011, 23, 692-697.	2.4	55
5	Mononuclear phagocyte heterogeneity in cancer: Different subsets and activation states reaching out at the tumor site. Immunobiology, 2011, 216, 1192-1202.	0.8	88
6	Immunotherapeutic modulation of the suppressive liver and tumor microenvironments. International Immunopharmacology, 2011, 11, 879-889.	1.7	41
7	Myeloid derived suppressor cells in human diseases. International Immunopharmacology, 2011, 11, 802-807.	1.7	374
8	MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. International Immunopharmacology, 2011, 11, 856-861.	1.7	257
9	Hematopoietic cytokine-induced transcriptional regulation and Notch signaling as modulators of MDSC expansion. International Immunopharmacology, 2011, 11, 808-815.	1.7	29
10	Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends in Immunology, 2011, 32, 19-25.	2.9	709
11	How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer and Metastasis Reviews, 2011, 30, 71-82.	2.7	72
12	Myeloid-Derived Suppressor Cells: General Characteristics and Relevance to Clinical Management of Pancreatic Cancer. Current Cancer Drug Targets, 2011, 11, 734-751.	0.8	97
13	Myeloidâ€derived suppressor cells – their role in haematoâ€oncological malignancies and other cancers and possible implications for therapy. British Journal of Haematology, 2011, 153, 557-567.	1.2	49
14	Chemokines in health and disease. Experimental Cell Research, 2011, 317, 575-589.	1.2	312
15	Innate Immune Cells in Breast Cancer – From Villains to Heroes?. Journal of Mammary Gland Biology and Neoplasia, 2011, 16, 189-203.	1.0	26
16	Eicosanoid signalling pathways in the development and progression of colorectal cancer: novel approaches for prevention/intervention. Cancer and Metastasis Reviews, 2011, 30, 363-385.	2.7	66
17	Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. Journal of Neuro-Oncology, 2011, 104, 83-92.	1.4	152
18	2011: the immune hallmarks of cancer. Cancer Immunology, Immunotherapy, 2011, 60, 319-326.	2.0	316

#	Article	IF	CITATIONS
19	Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunology, Immunotherapy, 2011, 60, 1419-1430.	2.0	506
20	Distinct myeloid suppressor cell subsets correlate with plasma IL-6 and IL-10 and reduced interferon-alpha signaling in CD4+ T cells from patients with GI malignancy. Cancer Immunology, Immunotherapy, 2011, 60, 1269-1279.	2.0	134
21	Cancer Vaccines. Any Future?. Archivum Immunologiae Et Therapiae Experimentalis, 2011, 59, 249-259.	1.0	16
22	Polyclonal immune responses to antigens associated with cancer signaling pathways and new strategies to enhance cancer vaccines. Immunologic Research, 2011, 49, 235-247.	1.3	11
23	Vaccines targeting the neovasculature of tumors. Vascular Cell, 2011, 3, 7.	0.2	26
24	Immunity and immune suppression in human ovarian cancer. Immunotherapy, 2011, 3, 539-556.	1.0	102
25	Chronic inflammation and immunologic-based constraints in malignant disease. Immunotherapy, 2011, 3, 1265-1274.	1.0	53
26	Cross-talk between tumor and myeloid cells: how to tip the balance in favor of antitumor immunity. Immunotherapy, 2011, 3, 77-96.	1.0	25
27	Broad-spectrum immunosuppression by classless monocytes in non-Hodgkin's lymphoma. Immunotherapy, 2011, 3, 723-726.	1.0	1
28	Proteomic Pathway Analysis Reveals Inflammation Increases Myeloid-Derived Suppressor Cell Resistance to Apoptosis. Molecular and Cellular Proteomics, 2011, 10, M110.002980.	2.5	60
29	Constitutive Aberrant Endogenous Interleukin-1 Facilitates Inflammation and Growth in Human Melanoma. Molecular Cancer Research, 2011, 9, 1537-1550.	1.5	77
30	Immune Modulation by Chemotherapy or Immunotherapy to Enhance Cancer Vaccines. Cancers, 2011, 3, 3114-3142.	1.7	64
31	Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro-Oncology, 2011, 13, 591-599.	0.6	295
32	Hypothesis: Are Neoplastic Macrophages/Microglia Present in Glioblastoma Multiforme?. ASN Neuro, 2011, 3, AN20110011.	1.5	54
33	Oncolytic Herpes Simplex Virus 1 Encoding 15-Prostaglandin Dehydrogenase Mitigates Immune Suppression and Reduces Ectopic Primary and Metastatic Breast Cancer in Mice. Journal of Virology, 2011, 85, 7363-7371.	1.5	28
34	Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17111-17116.	3.3	303
35	The Consequence of Immune Suppressive Cells in the Use of Therapeutic Cancer Vaccines and Their Importance in Immune Monitoring. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-8.	3.0	8
36	Mesenchymal Transition and Dissemination of Cancer Cells Is Driven by Myeloid-Derived Suppressor Cells Infiltrating the Primary Tumor. PLoS Biology, 2011, 9, e1001162.	2.6	302

#	Article	IF	CITATIONS
37	Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancers, 2012, 4, 1333-1348.	1.7	4
38	Myeloid-Derived Suppressor Cells Participate in Preventing Graft Rejection. Clinical and Developmental Immunology, 2012, 2012, 1-6.	3.3	10
39	The chemoattractant chemerin suppresses melanoma by recruiting natural killer cell antitumor defenses. Journal of Experimental Medicine, 2012, 209, 1427-1435.	4.2	140
40	Oncogenic BRAF(V600E) Promotes Stromal Cell-Mediated Immunosuppression Via Induction of Interleukin-1 in Melanoma. Clinical Cancer Research, 2012, 18, 5329-5340.	3.2	266
41	Functional Changes in Myeloid-Derived Suppressor Cells (MDSCs) during Tumor Growth: FKBP51 Contributes to the Regulation of the Immunosuppressive Function of MDSCs. Journal of Immunology, 2012, 188, 4226-4234.	0.4	44
42	Opposing Roles for Complement Component C5a in Tumor Progression and the Tumor Microenvironment. Journal of Immunology, 2012, 189, 2985-2994.	0.4	77
43	S100A8 and S100A9: New Insights into Their Roles in Malignancy. Journal of Innate Immunity, 2012, 4, 31-40.	1.8	210
44	Monotherapeutically Nonactive CTLA-4 Blockade Results in Greatly Enhanced Antitumor Effects When Combined With Tumor-targeted Superantigens in a B16 Melanoma Model. Journal of Immunotherapy, 2012, 35, 344-353.	1.2	12
45	Pancreatic Ductal Adenocarcinoma. Journal of Investigative Medicine, 2012, 60, 643-663.	0.7	65
46	CD4+T cells suppress immune response to cancer: novel targets for antitumor efforts. Expert Review of Clinical Immunology, 2012, 8, 401-403.	1.3	3
47	Cutting Edge: Mast Cells Critically Augment Myeloid-Derived Suppressor Cell Activity. Journal of Immunology, 2012, 189, 511-515.	0.4	81
48	Paclitaxel promotes differentiation of myeloid-derived suppressor cells into dendritic cells <i>in vitro</i> in a TLR4-independent manner. Journal of Immunotoxicology, 2012, 9, 292-300.	0.9	124
49	Myeloid-derived suppressor cells from tumor-bearing mice impair TGF-Î ² -induced differentiation of CD4+CD25+FoxP3+ Tregs from CD4+CD25â^'FoxP3â^' T cells. Journal of Leukocyte Biology, 2012, 92, 987-997.	1.5	84
50	Natural suppressor cells; past, present and future. Frontiers in Bioscience - Elite, 2012, E4, 1237.	0.9	6
51	Preconditioning Chemotherapy with Cisplatin Enhances the Antitumor Activity of Cytokine-Induced Killer Cells in a Murine Melanoma Model. Cancer Biotherapy and Radiopharmaceuticals, 2012, 27, 210-220.	0.7	41
52	Synthetic Oleanane Triterpenoids: Multifunctional Drugs with a Broad Range of Applications for Prevention and Treatment of Chronic Disease. Pharmacological Reviews, 2012, 64, 972-1003.	7.1	344
53	Proangiogenic immature myeloid cells populate the human placenta and their presence correlates with placental and birthweight. American Journal of Obstetrics and Gynecology, 2012, 207, 141.e1-141.e5.	0.7	11
54	Role of resveratrol-induced CD11b+ Gr-1+ myeloid derived suppressor cells (MDSCs) in the reduction of CXCR3+ T cells and amelioration of chronic colitis in IL-10â ^{°,} /â ^{°,} mice. Brain, Behavior, and Immunity, 2012, 26, 72-82.	2.0	81

#	Article	IF	CITATIONS
55	On the armament and appearances of human myeloid-derived suppressor cells. Clinical Immunology, 2012, 144, 250-268.	1.4	168
56	Immune Suppression: The Hallmark of Myeloid Derived Suppressor Cells. Immunological Investigations, 2012, 41, 581-594.	1.0	60
57	Patient-tailored modulation of the immune system may revolutionize future lung cancer treatment. BMC Cancer, 2012, 12, 580.	1.1	24
58	Identification of myeloid derived suppressor cells in the peripheral blood of tumor bearing dogs. BMC Veterinary Research, 2012, 8, 209.	0.7	35
59	PGE ₂ -Driven Induction and Maintenance of Cancer-Associated Myeloid-Derived Suppressor Cells. Immunological Investigations, 2012, 41, 635-657.	1.0	131
60	Myeloid-derived Suppressor Cells (MDSCs) in Gliomas and Glioma-Development. Immunological Investigations, 2012, 41, 658-679.	1.0	56
61	Grâ€1+CD11b+ cells are responsible for tumor promoting effect of TGFâ€Î² in breast cancer progression. International Journal of Cancer, 2012, 131, 2584-2595.	2.3	62
62	Role of myeloid-derived suppressor cells in tumor immunotherapy. Immunotherapy, 2012, 4, 43-57.	1.0	31
63	Serum inhibits the immunosuppressive function of myeloid-derived suppressor cells isolated from 4T1 tumor-bearing mice. Cancer Immunology, Immunotherapy, 2012, 61, 643-654.	2.0	13
64	Melanoma-induced immunosuppression and its neutralization. Seminars in Cancer Biology, 2012, 22, 319-326.	4.3	106
65	Myeloid-derived suppressor cell measurements in fresh and cryopreserved blood samples. Journal of Immunological Methods, 2012, 381, 14-22.	0.6	185
66	Influence of chemotherapy on nitric oxide synthase, indoleâ€amineâ€2,3â€dioxygenase and CD124 expression in granulocytes and monocytes of nonâ€small cell lung cancer. Cancer Science, 2012, 103, 155-160.	1.7	20
67	lmmunosuppressive activity of <scp>CD</scp> 14 ⁺ <scp> HLA</scp> â€ <scp>DR</scp> ^{â^'} cells in squamous cell carcinoma of the head and neck. Cancer Science, 2012, 103, 976-983.	1.7	96
68	Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunology, Immunotherapy, 2012, 61, 255-263.	2.0	230
69	Overcoming immunosuppression in the melanoma microenvironment induced by chronic inflammation. Cancer Immunology, Immunotherapy, 2012, 61, 275-282.	2.0	57
70	Phase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage Il–IIIc breast cancer. Breast Cancer Research and Treatment, 2012, 132, 215-223.	1.1	94
71	Tumor microenvironment: a main actor in the metastasis process. Clinical and Experimental Metastasis, 2012, 29, 381-395.	1.7	155
72	Tumorâ€induced myeloidâ€derived suppressor cell subsets exert either inhibitory or stimulatory effects on distinct <scp>CD</scp> 8 ⁺ <scp>T</scp> â€cell activation events. European Journal of Immunology, 2013, 43, 2930-2942.	1.6	73

#	Article	IF	CITATIONS
73	Radiation as an Immune Modulator. Seminars in Radiation Oncology, 2013, 23, 273-280.	1.0	140
74	JAK/STAT Signaling inÂMyeloid Cells. , 2013, , 435-449.		0
75	Tumor-induced Myeloid-derived Suppressor Cells. , 2013, , 473-496.		2
76	GM-CSF Promotes the Immunosuppressive Activity of Glioma-Infiltrating Myeloid Cells through Interleukin-4 Receptor-α. Cancer Research, 2013, 73, 6413-6423.	0.4	169
77	Cyclophosphamide Promotes Chronic Inflammation–Dependent Immunosuppression and Prevents Antitumor Response in Melanoma. Journal of Investigative Dermatology, 2013, 133, 1610-1619.	0.3	91
78	Myeloid-derived suppressor cell function is reduced by Withaferin A, a potent and abundant component of Withania somnifera root extract. Cancer Immunology, Immunotherapy, 2013, 62, 1663-1673.	2.0	53
79	Myeloid-derived suppressor cells are associated with disease progression and decreased overall survival in advanced-stage melanoma patients. Cancer Immunology, Immunotherapy, 2013, 62, 1711-1722.	2.0	113
80	Peripheral blood mononuclear cells of patients with breast cancer can be reprogrammed to enhance anti-HER-2/neu reactivity and overcome myeloid-derived suppressor cells. Breast Cancer Research and Treatment, 2013, 142, 45-57.	1.1	20
81	Comprehensive Immunomonitoring to Guide the Development of Immunotherapeutic Products for Cancer. , 2013, , 241-258.		1
82	Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood, 2013, 121, 2975-2987.	0.6	335
83	Myeloid-Derived Suppressor Cells Function as Novel Osteoclast Progenitors Enhancing Bone Loss in Breast Cancer. Cancer Research, 2013, 73, 672-682.	0.4	153
84	Microenvironmental Regulation of Metastasis by Exosomes. , 2013, , 181-201.		1
85	The Receptor for Advanced Glycation End Products Promotes Pancreatic Carcinogenesis and Accumulation of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2013, 190, 1372-1379.	0.4	47
86	Microenvironment and tumor progression of melanoma: New therapeutic prospectives. Journal of Immunotoxicology, 2013, 10, 235-252.	0.9	37
87	Premetastatic soil and prevention of breast cancer brain metastasis. Neuro-Oncology, 2013, 15, 891-903.	0.6	76
88	Prognostic Impact of Expression of Bcl-2 and Bax Genes in Circulating Immune Cells Derived from Patients with Head and Neck Carcinoma. Neoplasia, 2013, 15, 305-IN35.	2.3	16
89	The metastasis-promoting roles of tumor-associated immune cells. Journal of Molecular Medicine, 2013, 91, 411-429.	1.7	305
90	Tumor Microenvironment and Myeloid-Derived Suppressor Cells. Cancer Microenvironment, 2013, 6, 169-177.	3.1	112

ARTICLE IF CITATIONS The Tumor Immunoenvironment., 2013, , . 4 91 Intratumoral injection of attenuated Salmonella vaccine can induce tumor microenvironmental shift 1.7 from immune suppressive to immunogenic. Vaccine, 2013, 31, 1377-1384. Immune microenvironment profiles of tumor immune equilibrium and immune escape states of mouse 93 3.2 52 sarcoma. Cancer Letters, 2013, 340, 124-133. Low-dose aspirin delays an inflammatory tumor progression in vivo in a transgenic mouse model of neuroblastoma. Carcinogenesis, 2013, 34, 1081-1088. 94 Enhancement of Antitumor Immunity in Lung Cancer by Targeting Myeloid-Derived Suppressor Cell 95 0.4 75 Pathways. Cancer Research, 2013, 73, 6609-6620. Deregulation of Apoptotic Factors Bcl-xL and Bax Confers Apoptotic Resistance to Myeloid-derived Suppressor Cells and Contributes to Their Persistence in Cancer. Journal of Biological Chemistry, 2013, 288, 19103-19115. 1.6 Pleiotropic and Differential Functions of IL- $1\hat{l}$ and IL- $1\hat{l}^2$ Shape the Tumor Microenvironment and Affect 97 0 the Outcome of Malignancies., 2013, , 197-222. Emerging Concepts of Tumor Exosome–Mediated Cell-Cell Communication., 2013, , . 98 Myeloid-Derived Suppressor Cells in Murine Retrovirus-Induced AIDS Inhibit T- and B-Cell Responses 99 1.5 46 <i>In Vitro</i> That Are Used To Define the Immunodeficiency. Journal of Virology, 2013, 87, 2058-2071. Clinical Perspectives on Targeting of Myeloid Derived Suppressor Cells in the Treatment of Cancer. 1.3 Frontiers in Oncology, 2013, 3, 49. Upâ€regulation of proliferative and migratory genes in regulatory T cells from patients with metastatic 101 2.3 31 castrationâ€resistant prostate cancer. International Journal of Cancer, 2013, 133, 373-382. Tumor-Specific Cytotoxic T Cells Are Crucial for Efficacy of Immunomodulatory Antibodies in Patients 0.4 136 with Lung Cancer. Cancer Research, 2013, 73, 2381-2388. Peripheral T-cell tolerance in hosts with acute myeloid leukemia. Oncolmmunology, 2013, 2, e25445. 103 2.1 4 MIF: metastasis/MDSC-inducing factor?. Oncolmmunology, 2013, 2, e23337. 104 2.1 Myeloid-derived Suppressor Cells in the Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 105 0.9 44 2013, 19, 2468-2477. Myeloid-Derived Suppressor Cells Interact with Tumors in Terms of Myelopoiesis, Tumorigenesis and Immunosuppression: Thick as Thieves. Journal of Cancer, 2013, 4, 3-11. Circulating and Tumor-Infiltrating Myeloid-Derived Suppressor Cells in Patients with Colorectal 107 1.1 232 Carcinoma. PLoS ONE, 2013, 8, e57114. IL-6-stimulated CD11b+CD14+HLA-DRâ[^] myeloid-derived suppressor cells, are associated with progression 140 and poor prognosis in squamous cell carcinoma of the esophagus. Oncotarget, 2014, 5, 8716-8728.

	CITATION	REFORT	
#	Article	IF	CITATIONS
109	Chemotherapeutic targeting of myeloid-derived suppressor cells. OncoImmunology, 2014, 3, e27359.	2.1	11
110	Immunoregulatory activity of adenosine and its role in human cancer progression. Expert Review of Clinical Immunology, 2014, 10, 897-914.	1.3	74
111	Pancreatic cancer: Role of the immune system in cancer progression and vaccine-based immunotherapy. Human Vaccines and Immunotherapeutics, 2014, 10, 3354-3368.	1.4	85
112	Natural history of tumor growth and immune modulation in common spontaneous murine mammary tumor models. Breast Cancer Research and Treatment, 2014, 148, 501-510.	1.1	9
113	Role of OGR1 in myeloid-derived cells in prostate cancer. Oncogene, 2014, 33, 157-164.	2.6	58
114	Baccatin III, a precursor for the semisynthesis of paclitaxel, inhibits the accumulation and suppressive activity of myeloid-derived suppressor cells in tumor-bearing mice. International Immunopharmacology, 2014, 21, 487-493.	1.7	17
115	Immunological Dysregulation in Multiple Myeloma Microenvironment. BioMed Research International, 2014, 2014, 1-10.	0.9	106
116	The growing link between multiple myeloma and myeloid derived suppressor cells. Leukemia and Lymphoma, 2014, 55, 2681-2682.	0.6	6
117	Targeting CD8 ⁺ T-cell tolerance for cancer immunotherapy. Immunotherapy, 2014, 6, 833-852.	1.0	41
118	Adoptive cellular therapy of cancer: exploring innate and adaptive cellular crosstalk to improve anti-tumor efficacy. Future Oncology, 2014, 10, 1779-1794.	1.1	12
119	α-Galactosylceramide but Not Phenyl-Glycolipids Induced NKT Cell Anergy and IL-33–Mediated Myeloid-Derived Suppressor Cell Accumulation via Upregulation of <i>egr2/3</i> . Journal of Immunology, 2014, 192, 1972-1981.	0.4	47
120	Immunotherapy for recurrent ovarian cancer: a further piece of the puzzle or a striking strategy?. Expert Opinion on Biological Therapy, 2014, 14, 103-114.	1.4	6
121	Myeloidâ€derived suppressor cells are key players in the resolution of inflammation during a model of acute infection. European Journal of Immunology, 2014, 44, 184-194.	1.6	67
122	Passive Transfer of Tumourâ€Derived <scp>MDSC</scp> s Inhibits Asthmaâ€Related Airway Inflammation. Scandinavian Journal of Immunology, 2014, 79, 98-104.	1.3	29
123	Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Advanced Drug Delivery Reviews, 2014, 79-80, 222-237.	6.6	146
124	Enhanced suppressive capacity of tumorâ€infiltrating myeloidâ€derived suppressor cells compared with their peripheral counterparts. International Journal of Cancer, 2014, 134, 1077-1090.	2.3	62
125	Location, location, location: functional and phenotypic heterogeneity between tumor-infiltrating and non-infiltrating myeloid-derived suppressor cells. OncoImmunology, 2014, 3, e956579.	2.1	60
126	Poxvirus-Based Strategies for Combined Vaccine and Tumor Microenvironment Manipulation. , 2014, , 241-257.		0

#	Article	IF	CITATIONS
127	Characterization of endocannabinoid-mediated induction of myeloid-derived suppressor cells involving mast cells and MCP-1. Journal of Leukocyte Biology, 2013, 95, 609-619.	1.5	22
128	A Circulating Subpopulation of Monocytic Myeloid-Derived Suppressor Cells as an Independent Prognostic/Predictive Factor in Untreated Non-Small Lung Cancer Patients. Journal of Immunology Research, 2014, 2014, 1-12.	0.9	106
129	Myeloid-derived suppressor cells enhance IgE-mediated mast cell responses. Journal of Leukocyte Biology, 2013, 95, 643-650.	1.5	23
130	Combination of cancer immunotherapy with clinically available drugs that can block immunosuppressive cells. Immunological Investigations, 2014, 43, 517-534.	1.0	10
131	HIF-α/MIF and NF-κB/IL-6 Axes Contribute to the Recruitment of CD11b+Gr-1+ Myeloid Cells in Hypoxic Microenvironment of HNSCC. Neoplasia, 2014, 16, 168-W21.	2.3	54
132	Changes in the immune cell population and cell proliferation in peripheral blood after gemcitabine-based chemotherapy for pancreatic cancer. Clinical and Translational Oncology, 2014, 16, 330-335.	1.2	74
133	Immunological Impact of Neoadjuvant Chemoradiotherapy in Patients with Borderline Resectable Pancreatic Ductal Adenocarcinoma. Annals of Surgical Oncology, 2014, 21, 670-676.	0.7	57
134	Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Translational Research, 2014, 163, 399-408.	2.2	219
135	Doxorubicin Eliminates Myeloid-Derived Suppressor Cells and Enhances the Efficacy of Adoptive T-Cell Transfer in Breast Cancer. Cancer Research, 2014, 74, 104-118.	0.4	319
136	Extracellular adenosine metabolism in immune cells in melanoma. Cancer Immunology, Immunotherapy, 2014, 63, 1073-1080.	2.0	53
137	Interaction of Immune and Cancer Cells. , 2014, , .		0
138	Clinical evaluation of systemic and local immune responses in cancer: time for integration. Cancer Immunology, Immunotherapy, 2014, 63, 45-57.	2.0	56
139	Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene, 2014, 33, 4623-4631.	2.6	128
140	Exosomes from Myeloid-Derived Suppressor Cells Carry Biologically Active Proteins. Journal of Proteome Research, 2014, 13, 836-843.	1.8	137
141	The chemokine system, and its CCR5 and CXCR4 receptors, as potential targets for personalized therapy in cancer. Cancer Letters, 2014, 352, 36-53.	3.2	124
142	Primary 4T1 tumor resection provides critical "window of opportunity―for immunotherapy. Clinical and Experimental Metastasis, 2014, 31, 185-198.	1.7	22
143	Myeloid-Derived Suppressor Cells Confer Tumor-Suppressive Functions on Natural Killer Cells via Polyinosinic:Polycytidylic Acid Treatment in Mouse Tumor Models. Journal of Innate Immunity, 2014, 6, 293-305.	1.8	35
144	Macrophages: Biology and Role in the Pathology of Diseases. , 2014, , .		13

#	Article	IF	CITATIONS
145	CpG-mediated modulation of MDSC contributes to the efficacy of Ad5-TRAIL therapy against renal cell carcinoma. Cancer Immunology, Immunotherapy, 2014, 63, 1213-1227.	2.0	32
146	Tumor-Derived Osteopontin Suppresses Antitumor Immunity by Promoting Extramedullary Myelopoiesis. Cancer Research, 2014, 74, 6705-6716.	0.4	40
147	Myeloidâ€derived suppressor cells in malignant melanoma. JDDG - Journal of the German Society of Dermatology, 2014, 12, 1021-1027.	0.4	44
148	Stromal-dependent tumor promotion by MIF family members. Cellular Signalling, 2014, 26, 2969-2978.	1.7	18
149	Anti-tumor innate immunity activated by intermittent metronomic cyclophosphamide treatment of 9L brain tumor xenografts is preserved by anti-angiogenic drugs that spare VEGF receptor 2. Molecular Cancer, 2014, 13, 158.	7.9	24
150	Myeloid-Derived Suppressor Cells in Cancer: Therapeutic, Predictive, and Prognostic Implications. Seminars in Oncology, 2014, 41, 174-184.	0.8	147
151	Continuous retinoic acid induces the differentiation of mature regulatory monocytes but fails to induce regulatory dendritic cells. BMC Immunology, 2014, 15, 8.	0.9	11
152	Preclinical evidences toward the use of triterpenoid CDDO-Me for solid cancer prevention and treatment. Molecular Cancer, 2014, 13, 30.	7.9	64
153	Immunosuppressive Myeloid Cells Induced by Chemotherapy Attenuate Antitumor CD4+ T-Cell Responses through the PD-1–PD-L1 Axis. Cancer Research, 2014, 74, 3441-3453.	0.4	115
154	Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies. Cancer Treatment Reviews, 2014, 40, 513-522.	3.4	141
155	Cancer Vaccines in the World of Immune Suppressive Monocytes (CD14+HLA-DRlo/neg Cells): The Gateway to Improved Responses. Frontiers in Immunology, 2014, 5, 147.	2.2	55
156	Myeloide Suppressorzellen (MDSC) beim malignen Melanom. JDDG - Journal of the German Society of Dermatology, 2014, 12, 1021-1027.	0.4	14
157	Changes in the plasma levels of cytokines/chemokines for predicting the response to chemoradiation therapy in rectal cancer patients. Oncology Reports, 2014, 31, 463-471.	1.2	18
158	Elevated chronic inflammatory factors and myeloidâ€derived suppressor cells indicate poor prognosis in advanced melanoma patients. International Journal of Cancer, 2015, 136, 2352-2360.	2.3	142
160	Cetuximab ameliorates suppressive phenotypes of myeloid antigen presenting cells in head and neck cancer patients. , 2015, 3, 54.		40
161	Targeting Epigenetic Processes in Photodynamic Therapy-Induced Anticancer Immunity. Frontiers in Oncology, 2015, 5, 176.	1.3	25
162	Stem cell technology for bone regeneration: current status and potential applications. Stem Cells and Cloning: Advances and Applications, 2015, 8, 39.	2.3	53
163	Myeloid-Derived Suppressor Cells and Therapeutic Strategies in Cancer. Mediators of Inflammation, 2015, 2015, 1-12.	1.4	80

#	Article	IF	CITATIONS
164	Insights into Myeloid-Derived Suppressor Cells in Inflammatory Diseases. Archivum Immunologiae Et Therapiae Experimentalis, 2015, 63, 269-285.	1.0	29
165	The combination of dendritic cells-cytotoxic T lymphocytes/cytokine-induced killer (DC-CTL/CIK) therapy exerts immune and clinical responses in patients with malignant tumors. Experimental Hematology and Oncology, 2015, 4, 32.	2.0	27
166	Sorafenib enhances the antitumor effects of anti-CTLA-4 antibody in a murine cancer model by inhibiting myeloid-derived suppressor cells. Oncology Reports, 2015, 33, 2947-2953.	1.2	21
167	Tumor-induced CD14+HLA-DRâ`'/low myeloid-derived suppressor cells correlate with tumor progression and outcome of therapy in multiple myeloma patients. Cancer Immunology, Immunotherapy, 2015, 64, 389-399.	2.0	79
168	General anesthesia combined with epidural anesthesia ameliorates the effect of fast-track surgery by mitigating immunosuppression and facilitating intestinal functional recovery in colon cancer patients. International Journal of Colorectal Disease, 2015, 30, 475-481.	1.0	61
169	Exosomal Hsp70 mediates immunosuppressive activity of the myeloid-derived suppressor cells via phosphorylation of Stat3. Medical Oncology, 2015, 32, 453.	1.2	87
170	The addition of recombinant vaccinia HER2/neu to oncolytic vaccinia-GMCSF given into the tumor microenvironment overcomes MDSC-mediated immune escape and systemic anergy. Cancer Gene Therapy, 2015, 22, 154-162.	2.2	21
171	TLR2 Limits Development of Hepatocellular Carcinoma by Reducing IL18-Mediated Immunosuppression. Cancer Research, 2015, 75, 986-995.	0.4	49
173	Differential Response of Myeloid-Derived Suppressor Cells to the Nonsteroidal Anti-Inflammatory Agent Indomethacin in Tumor-Associated and Tumor-Free Microenvironments. Journal of Immunology, 2015, 194, 3452-3462.	0.4	26
174	Selective Involvement of the Checkpoint Regulator VISTA in Suppression of B-Cell, but Not T-Cell, Responsiveness by Monocytic Myeloid-Derived Suppressor Cells from Mice Infected with an Immunodeficiency-Causing Retrovirus. Journal of Virology, 2015, 89, 9693-9698.	1.5	44
176	Subsets of myeloid-derived suppressor cells in hepatocellular carcinoma express chemokines and chemokine receptors differentially. International Immunopharmacology, 2015, 26, 314-321.	1.7	33
177	Presence of circulating Her2-reactive CD8 + T-cells is associated with lower frequencies of myeloid-derived suppressor cells and regulatory T cells, and better survival in older breast cancer patients. Breast Cancer Research, 2015, 17, 34.	2.2	63
178	Circulating CD14+HLA-DRâ°'/low myeloid-derived suppressor cell is an indicator of poor prognosis in patients with ESCC. Tumor Biology, 2015, 36, 7987-7996.	0.8	30
179	Evaluation of Tumor-infiltrating Leukocyte Subsets in a Subcutaneous Tumor Model. Journal of Visualized Experiments, 2015, , .	0.2	14
180	Critical Role of Mast Cells and Peroxisome Proliferator–Activated Receptor γ in the Induction of Myeloid-Derived Suppressor Cells by Marijuana Cannabidiol In Vivo. Journal of Immunology, 2015, 194, 5211-5222.	0.4	66
181	1α,25-Dihydroxyvitamin D3 Inhibits Esophageal Squamous Cell Carcinoma Progression by Reducing IL6 Signaling. Molecular Cancer Therapeutics, 2015, 14, 1365-1375.	1.9	57
182	Mesenchymal Stem/Stromal Cells Protect against Autoimmunity via CCL2-Dependent Recruitment of Myeloid-Derived Suppressor Cells. Journal of Immunology, 2015, 194, 3634-3645.	0.4	54
183	Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Seminars in Cancer Biology, 2015, 35, S185-S198.	4.3	1,122

#	Article	IF	CITATIONS
184	Newly Recruited CD11b+, GR-1+, Ly6Chigh Myeloid Cells Augment Tumor-Associated Immunosuppression Immediately following the Therapeutic Administration of Oncolytic Reovirus. Journal of Immunology, 2015, 194, 4397-4412.	0.4	31
185	The Journey from Discoveries in Fundamental Immunology to Cancer Immunotherapy. Cancer Cell, 2015, 27, 439-449.	7.7	194
186	Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator. Cancer Immunology, Immunotherapy, 2015, 64, 1587-1599.	2.0	71
187	Expression of Cationic Amino Acid Transporter 2 Is Required for Myeloid-Derived Suppressor Cell–Mediated Control of T Cell Immunity. Journal of Immunology, 2015, 195, 5237-5250.	0.4	74
188	Mast Cells Boost Myeloid-Derived Suppressor Cell Activity and Contribute to the Development of Tumor-Favoring Microenvironment. Cancer Immunology Research, 2015, 3, 85-95.	1.6	59
189	Propranolol induces a favourable shift of anti-tumor immunity in a murine spontaneous model of melanoma. Oncotarget, 2016, 7, 77825-77837.	0.8	64
190	Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the accumulation and functional activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer. Oncotarget, 2016, 7, 51840-51853.	0.8	33
191	Definitive activation of endogenous antitumor immunity by repetitive cycles of cyclophosphamide with interspersed Toll-like receptor agonists. Oncotarget, 2016, 7, 42919-42942.	0.8	21
192	The prognostic effects of tumor infiltrating regulatory T cells and myeloid derived suppressor cells assessed by multicolor flow cytometry in gastric cancer patients. Oncotarget, 2016, 7, 7940-7951.	0.8	54
193	Homologous Prime-Boost Vaccination with OVA Entrapped in Self-Adjuvanting Archaeosomes Induces High Numbers of OVA-Specific CD8+ T Cells that Protect Against Subcutaneous B16-OVA Melanoma. Vaccines, 2016, 4, 44.	2.1	9
194	Increased Levels of Circulating and Tumor-Infiltrating Granulocytic Myeloid Cells in Colorectal Cancer Patients. Frontiers in Immunology, 2016, 7, 560.	2.2	58
195	Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence. PLoS ONE, 2016, 11, e0155947.	1.1	68
196	The Role of Myeloid-Derived Suppressor Cells (MDSC) in Cancer Progression. Vaccines, 2016, 4, 36.	2.1	296
197	Relevance of Interferon Regulatory Factor-8 Expression in Myeloid–Tumor Interactions. Journal of Interferon and Cytokine Research, 2016, 36, 442-453.	0.5	19
198	Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion. Stem Cells, 2016, 34, 2026-2039.	1.4	189
199	Effects of Different Anesthetic Methods on Cellular Immune and Neuroendocrine Functions in Patients With Hepatocellular Carcinoma Before and After Surgery. Journal of Clinical Laboratory Analysis, 2016, 30, 1175-1182.	0.9	43
200	Impact of myeloid-derived suppressor cell on Kupffer cells from mouse livers with hepatocellular carcinoma. Oncolmmunology, 2016, 5, e1234565.	2.1	25
201	Role of immune cells in pancreatic cancer from bench to clinical application. Medicine (United States), 2016, 95, e5541.	0.4	118

#	Article	IF	CITATIONS
202	Monocytic myeloid-derived suppressor cells as a potent suppressor of tumor immunity in non-small cell lung cancer. Oncology Letters, 2016, 12, 4785-4794.	0.8	16
203	Down-regulation of S100A9 inhibits osteosarcoma cell growth through inactivating MAPK and NF-κB signaling pathways. BMC Cancer, 2016, 16, 253.	1.1	32
204	l -arginine and docetaxel synergistically enhance anti-tumor immunity by modifying the immune status of tumor-bearing mice. International Immunopharmacology, 2016, 35, 7-14.	1.7	20
205	Myeloid-derived suppressor cells: The green light for myeloma immune escape. Blood Reviews, 2016, 30, 341-348.	2.8	105
206	Suppressive effects of low-dose 5-fluorouracil, busulfan or treosulfan on the expansion of circulatory neutrophils and myeloid derived immunosuppressor cells in tumor-bearing mice. International Immunopharmacology, 2016, 40, 41-49.	1.7	13
207	Reduction of MDSCs with All-trans Retinoic Acid Improves CAR Therapy Efficacy for Sarcomas. Cancer Immunology Research, 2016, 4, 869-880.	1.6	258
208	L-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo. BMC Cancer, 2016, 16, 343.	1.1	78
209	Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β. Virology, 2016, 499, 9-22.	1.1	26
210	Immune Suppressive Myeloid-Derived Suppressor Cells in Cancer. , 2016, , 512-525.		3
211	Doxorubicin resistant cancer cells activate myeloid-derived suppressor cells by releasing PGE2. Scientific Reports, 2016, 6, 23824.	1.6	58
212	Cryo-thermal therapy elicits potent anti-tumor immunity by inducing extracellular Hsp70-dependent MDSC differentiation. Scientific Reports, 2016, 6, 27136.	1.6	46
213	Ceramide mediates FasL-induced caspase 8 activation in colon carcinoma cells to enhance FasL-induced cytotoxicity by tumor-specific cytotoxic T lymphocytes. Scientific Reports, 2016, 6, 30816.	1.6	18
214	Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Scientific Reports, 2016, 6, 36107.	1.6	216
215	New Strategies in Multiple Myeloma: Immunotherapy as a Novel Approach to Treat Patients with Multiple Myeloma. Clinical Cancer Research, 2016, 22, 5959-5965.	3.2	39
216	Current Status of Immunotherapy Treatments for Pancreatic Cancer. Journal of Clinical Gastroenterology, 2016, 50, 836-848.	1.1	11
217	Challenges in vaccine therapy in hematological malignancies and strategies to overcome them. Expert Opinion on Biological Therapy, 2016, 16, 1093-1104.	1.4	3
218	Myeloidâ€derived suppressor cells in gastrointestinal cancers: A systematic review. Journal of Gastroenterology and Hepatology (Australia), 2016, 31, 1246-1256.	1.4	14
219	Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis. Annals of the Rheumatic Diseases, 2016, 75, 278-285.	0.5	128

#	Article	IF	CITATIONS
220	Immune Therapy. Advances in Experimental Medicine and Biology, 2016, 893, 59-90.	0.8	1
222	Invariant NKT cells are resistant to circulating CD15 + myeloidâ€derived suppressor cells in patients with head and neck cancer. Cancer Science, 2016, 107, 207-216.	1.7	23
223	Myeloid-Derived Suppressor Cells Express Bruton's Tyrosine Kinase and Can Be Depleted in Tumor-Bearing Hosts by Ibrutinib Treatment. Cancer Research, 2016, 76, 2125-2136.	0.4	150
224	Genetics and biology of pancreatic ductal adenocarcinoma. Genes and Development, 2016, 30, 355-385.	2.7	416
225	The clinical and prognostic significance of CD14+HLA-DRâ^'/low myeloid-derived suppressor cells in hepatocellular carcinoma patients receiving radiotherapy. Tumor Biology, 2016, 37, 10427-10433.	0.8	66
226	Expansion of myeloid derived suppressor cells correlates with number of T regulatory cells and disease progression in myelodysplastic syndrome. Oncolmmunology, 2016, 5, e1062208.	2.1	97
227	Targeting Ornithine Decarboxylase by α-Difluoromethylornithine Inhibits Tumor Growth by Impairing Myeloid-Derived Suppressor Cells. Journal of Immunology, 2016, 196, 915-923.	0.4	55
228	The immunobiology of myeloid-derived suppressor cells in cancer. Tumor Biology, 2016, 37, 1387-1406.	0.8	83
229	NFI-A disrupts myeloid cell differentiation and maturation in septic mice. Journal of Leukocyte Biology, 2016, 99, 201-211.	1.5	27
230	Cancer immunotherapy in veterinary medicine: Current options and new developments. Veterinary Journal, 2016, 207, 20-28.	0.6	44
231	Inhibition of vacuolar ATPase subunit in tumor cells delays tumor growth by decreasing the essential macrophage population in the tumor microenvironment. Oncogene, 2016, 35, 1058-1065.	2.6	31
232	Interactions between interleukin-6 and myeloid-derived suppressor cells drive the chemoresistant phenotype of hepatocellular cancer. Experimental Cell Research, 2017, 351, 142-149.	1.2	59
233	Experimental animal modeling for immuno-oncology. , 2017, 173, 34-46.		44
234	Identification of inhibitors of myeloid-derived suppressor cells activity through phenotypic chemical screening. Oncolmmunology, 2017, 6, e1258503.	2.1	12
235	IL4-induced gene 1 promotes tumor growth by shaping the immune microenvironment in melanoma. Oncolmmunology, 2017, 6, e1278331.	2.1	32
236	The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy. Endocrine-Related Cancer, 2017, 24, R123-R144.	1.6	64
237	Neutrophils as active regulators of the immune system in the tumor microenvironment. Journal of Leukocyte Biology, 2017, 102, 343-349.	1.5	153
238	Myeloid cells in circulation and tumor microenvironment of breast cancer patients. Cancer Immunology, Immunotherapy, 2017, 66, 753-764.	2.0	63

	CITATION R	EPORT	
#	ARTICLE	IF	CITATIONS
239	Myeloid Cell-Specific Knockout of NFI-A Improves Sepsis Survival. Infection and Immunity, 2017, 85, .	1.0	19
240	CXCL17 Attenuates Imiquimod-Induced Psoriasis-like Skin Inflammation by Recruiting Myeloid-Derived Suppressor Cells and Regulatory T Cells. Journal of Immunology, 2017, 198, 3897-3908.	0.4	47
241	CCR5 in recruitment and activation of myeloid-derived suppressor cells in melanoma. Cancer Immunology, Immunotherapy, 2017, 66, 1015-1023.	2.0	68
242	Tyrosine kinase inhibitors reprogramming immunity in renal cell carcinoma: rethinking cancer immunotherapy. Clinical and Translational Oncology, 2017, 19, 1175-1182.	1.2	25
243	Impact of the immune cell population in peripheral blood on response and survival in patients receiving neoadjuvant chemotherapy for advanced gastric cancer. Tumor Biology, 2017, 39, 101042831769757.	0.8	16
244	IFN-α-based treatment of patients with chronic HCV show increased levels of cells with myeloid-derived suppressor cell phenotype and of IDO and NOS. Immunopharmacology and Immunotoxicology, 2017, 39, 188-198.	1.1	6
245	Histone deacetylase inhibitors deplete myeloid-derived suppressor cells induced by 4T1 mammary tumors in vivo and in vitro. Cancer Immunology, Immunotherapy, 2017, 66, 355-366.	2.0	58
246	Bruton's tyrosine kinase (BTK) as a promising target in solid tumors. Cancer Treatment Reviews, 2017, 58, 41-50.	3.4	104
247	Phenotype and Function of Myeloid-Derived Suppressor Cells Induced by Porphyromonas gingivalis Infection. Infection and Immunity, 2017, 85, .	1.0	43
248	CAR T Cells Administered in Combination with Lymphodepletion and PD-1 Inhibition to Patients with Neuroblastoma. Molecular Therapy, 2017, 25, 2214-2224.	3.7	378
249	Tumor-associated neutrophils induce apoptosis of non-activated CD8 T-cells in a TNFα and NO-dependent mechanism, promoting a tumor-supportive environment. Oncolmmunology, 2017, 6, e1356965.	2.1	103
250	Functional analysis of CD14+HLA-DRâ^'/low myeloid-derived suppressor cells in patients with lung squamous cell carcinoma. Oncology Letters, 2017, 14, 349-354.	0.8	7
251	Myeloid-derived suppressor cells and tumor escape from immune surveillance. Seminars in Immunopathology, 2017, 39, 295-305.	2.8	63
252	Myeloid-Derived Suppressor Cell Subset Accumulation in Renal Cell Carcinoma Parenchyma Is Associated with Intratumoral Expression of IL1β, IL8, CXCL5, and Mip-1α. Clinical Cancer Research, 2017, 23, 2346-2355.	3.2	148
253	Inflammationâ€induced myeloidâ€derived suppressor cells associated with squamous cell carcinoma of the head and neck. Head and Neck, 2017, 39, 347-355.	0.9	37
254	Inhibition of IL-18-mediated myeloid derived suppressor cell accumulation enhances anti-PD1 efficacy against osteosarcoma cancer. Journal of Bone Oncology, 2017, 9, 59-64.	1.0	32
255	The increase in circulating myeloid-derived suppressor cells correlated with clinical stage of cervical carcinoma. European Journal of Inflammation, 2017, 15, 262-266.	0.2	0
256	Cancer Stem Cells and Their Microenvironment: Biology and Therapeutic Implications. Stem Cells International, 2017, 2017, 1-11.	1.2	132

#	Article	IF	CITATIONS
257	A practical approach to pancreatic cancer immunotherapy using resected tumor lysate vaccines processed to express α-gal epitopes. PLoS ONE, 2017, 12, e0184901.	1.1	10
258	Potential Roles of Peripheral Dopamine in Tumor Immunity. Journal of Cancer, 2017, 8, 2966-2973.	1.2	48
259	Blockade of CCL2 enhances immunotherapeutic effect of anti-PD1 in lung cancer. Journal of Bone Oncology, 2018, 11, 27-32.	1.0	63
260	Cisplatin inhibits the progression of bladder cancer by selectively depleting G-MDSCs: A novel chemoimmunomodulating strategy. Clinical Immunology, 2018, 193, 60-69.	1.4	42
261	Redox control of cancer cell destruction. Redox Biology, 2018, 16, 59-74.	3.9	119
262	Phosphodiesterase-5 inhibition reduces postoperative metastatic disease by targeting surgery-induced myeloid derived suppressor cell-dependent inhibition of Natural Killer cell cytotoxicity. Oncolmmunology, 2018, 7, e1431082.	2.1	71
263	Metformin-Induced Reduction of CD39 and CD73 Blocks Myeloid-Derived Suppressor Cell Activity in Patients with Ovarian Cancer. Cancer Research, 2018, 78, 1779-1791.	0.4	202
264	Mechanisms of Resistance to PD-1 and PD-L1 Blockade. Cancer Journal (Sudbury, Mass), 2018, 24, 47-53.	1.0	287
265	Myeloid-derived suppressor cells accumulate among myeloid cells contributing to tumor growth in matrix metalloproteinase 12 knockout mice. Cellular Immunology, 2018, 327, 1-12.	1.4	6
266	Mathematical modeling of tumor-induced immunosuppression by myeloid-derived suppressor cells: Implications for therapeutic targeting strategies. Journal of Theoretical Biology, 2018, 442, 1-10.	0.8	33
267	Myeloid-Derived Suppressor Cells: Immune-Suppressive Cells That Impair Antitumor Immunity and Are Sculpted by Their Environment. Journal of Immunology, 2018, 200, 422-431.	0.4	404
268	Frontline Science: High fat diet and leptin promote tumor progression by inducing myeloid-derived suppressor cells. Journal of Leukocyte Biology, 2018, 103, 395-407.	1.5	129
269	Selectins in cancer immunity. Glycobiology, 2018, 28, 648-655.	1.3	118
270	Blockade of CCR5-mediated myeloid derived suppressor cell accumulation enhances anti-PD1 efficacy in gastric cancer. Immunopharmacology and Immunotoxicology, 2018, 40, 91-97.	1.1	30
271	The Impact of Radiation on the Tumor Microenvironment: Effect of Dose and Fractionation Schedules. Cancer Growth and Metastasis, 2018, 11, 117906441876163.	3.5	120
272	Phase Ib Study of Immune Biomarker Modulation with Neoadjuvant Cetuximab and TLR8 Stimulation in Head and Neck Cancer to Overcome Suppressive Myeloid Signals. Clinical Cancer Research, 2018, 24, 62-72.	3.2	64
273	Conditioned media from the renal cell carcinoma cell line 786.O drives human blood monocytes to a monocytic myeloid-derived suppressor cell phenotype. Cellular Immunology, 2018, 323, 49-58.	1.4	14
274	Differential Content of Proteins, mRNAs, and miRNAs Suggests that MDSC and Their Exosomes May Mediate Distinct Immune Suppressive Functions. Journal of Proteome Research, 2018, 17, 486-498.	1.8	84

#	Article	IF	CITATIONS
275	Prophylactic DNA vaccine targeting Foxp3+ regulatory T cells depletes myeloid-derived suppressor cells and improves anti-melanoma immune responses in a murine model. Cancer Immunology, Immunotherapy, 2018, 67, 367-379.	2.0	19
276	Tropism of mesenchymal stem cell toward CD133+ stem cell of glioblastoma in vitro and promote tumor proliferation in vivo. Stem Cell Research and Therapy, 2018, 9, 310.	2.4	52
277	The role of hypoxia in shaping the recruitment of proangiogenic and immunosuppressive cells in the tumor microenvironment. Wspolczesna Onkologia, 2018, 2018, 7-13.	0.7	23
278	Cancer Stem Cells and Immunosuppressive Microenvironment in Glioma. Frontiers in Immunology, 2018, 9, 2924.	2.2	171
279	Mechanisms and Functions of Chemerin in Cancer: Potential Roles in Therapeutic Intervention. Frontiers in Immunology, 2018, 9, 2772.	2.2	50
280	Clioblastoma Chemoresistance: The Double Play by Microenvironment and Blood-Brain Barrier. International Journal of Molecular Sciences, 2018, 19, 2879.	1.8	151
281	Local Blockade of Interleukin 10 and C-X-C Motif Chemokine Ligand 12 with Nano-Delivery Promotes Antitumor Response in Murine Cancers. ACS Nano, 2018, 12, 9830-9841.	7.3	101
282	The potential predictive value of circulating immune cell ratio and tumor marker in atezolizumab treated advanced non-small cell lung cancer patients. Cancer Biomarkers, 2018, 22, 467-476.	0.8	33
283	Endogenous Protection from Ischemic Brain Injury by Preconditioned Monocytes. Journal of Neuroscience, 2018, 38, 6722-6736.	1.7	57
284	Prognostic impact of preoperative lymphocyte-to-monocyte ratio in patients with colorectal cancer with special reference to myeloid-derived suppressor cells. Fukushima Journal of Medical Sciences, 2018, 64, 64-72.	0.1	20
285	The Expansion of Myeloid-Derived Suppressor Cells Is Associated with Joint Inflammation in Rheumatic Patients with Arthritis. BioMed Research International, 2018, 2018, 1-12.	0.9	17
286	Interleukin-1 Beta—A Friend or Foe in Malignancies?. International Journal of Molecular Sciences, 2018, 19, 2155.	1.8	268
287	(â^')-4-O-(4-O-β-D-glucopyranosylcaffeoyl) Quinic Acid Inhibits the Function of Myeloid-Derived Suppressor Cells to Enhance the Efficacy of Anti-PD1 against Colon Cancer. Pharmaceutical Research, 2018, 35, 183.	1.7	11
288	Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors. Frontiers in Immunology, 2018, 9, 1310.	2.2	404
289	Gr1 â^'/low CD11b â^'/low MHCII + myeloid cells boost T cell antiâ€ŧumor efficacy. Journal of Leukocyte Biology, 2018, 104, 1215-1228.	1.5	5
290	An Endogenous Vaccine Based on Fluorophores and Multivalent Immunoadjuvants Regulates Tumor Micro-Environment for Synergistic Photothermal and Immunotherapy. Theranostics, 2018, 8, 860-873.	4.6	96
291	Obesity-Induced Defects in Dendritic Cell and T Cell Functions. , 2018, , 171-181.		1
292	Specific inhibition of PI3Kδ/γ enhances the efficacy of anti-PD1 against osteosarcoma cancer. Journal of Bone Oncology, 2019, 16, 100206.	1.0	18

#	Article	IF	CITATIONS
293	Activated hepatic stellate cells regulate MDSC migration through the SDF-1/CXCR4 axis in an orthotopic mouse model of hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 2019, 68, 1959-1969.	2.0	36
294	(3R)-5,6,7-trihydroxy-3-isopropyl-3-methylisochroman-1-one enhanced the therapeutic efficacy of anti-PD1 antibody through inhibiting PI3KÎ/Ĵ³. Immunopharmacology and Immunotoxicology, 2019, 41, 599-606.	1.1	1
295	Hypoxia as a barrier to immunotherapy in pancreatic adenocarcinoma. Clinical and Translational Medicine, 2019, 8, 10.	1.7	155
296	Prim-O-glucosylcimifugin enhances the antitumour effect of PD-1 inhibition by targeting myeloid-derived suppressor cells. , 2019, 7, 231.		32
297	Tumor-Infiltrating Immunosuppressive Cells in Cancer-Cell Plasticity, Tumor Progression and Therapy Response. Cancer Microenvironment, 2019, 12, 119-132.	3.1	46
298	Crosstalk Between Prostate Cancer Stem Cells and Immune Cells: Implications for Tumor Progression and Resistance to Immunotherapy. Resistance To Targeted Anti-cancer Therapeutics, 2019, , 173-221.	0.1	3
300	Myeloid-Derived Suppressor Cells: Not Only in Tumor Immunity. Frontiers in Immunology, 2019, 10, 1099.	2.2	96
301	Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. Journal of Experimental and Clinical Cancer Research, 2019, 38, 162.	3.5	116
302	The prognosis of head and neck squamous cell carcinoma related to immunosuppressive tumor microenvironment regulated by IL-6 signaling. Oral Oncology, 2019, 91, 47-55.	0.8	49
303	Interactions between cancer stem cells, immune system and some environmental components: Friends or foes?. Immunology Letters, 2019, 208, 19-29.	1.1	66
304	Identification of a novel biomarker-CCL5 using antibody microarray for colorectal cancer. Pathology Research and Practice, 2019, 215, 1033-1037.	1.0	10
305	Association of Sarcopenia with and Efficacy of Anti-PD-1/PD-L1 Therapy in Non-Small-Cell Lung Cancer. Journal of Clinical Medicine, 2019, 8, 450.	1.0	72
306	The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2019, 20, 1723.	1.8	192
307	Plasmodium infection inhibits the expansion and activation of MDSCs and Tregs in the tumor microenvironment in a murine Lewis lung cancer model. Cell Communication and Signaling, 2019, 17, 32.	2.7	21
308	Potentiating vascular-targeted photodynamic therapy through CSF-1R modulation of myeloid cells in a preclinical model of prostate cancer. Oncolmmunology, 2019, 8, e1581528.	2.1	20
309	MDSCs: Key Criminals of Tumor Pre-metastatic Niche Formation. Frontiers in Immunology, 2019, 10, 172.	2.2	171
310	Combinatorial Approach to Improve Cancer Immunotherapy: Rational Drug Design Strategy to Simultaneously Hit Multiple Targets to Kill Tumor Cells and to Activate the Immune System. Journal of Oncology, 2019, 2019, 1-18.	0.6	76
311	Frequency and Implications of myeloidâ€derived suppressor cells and lymphocyte subsets in Egyptian patients with hepatitis C virusâ€related hepatocellular carcinoma. Journal of Medical Virology, 2019, 91, 1319-1328	2.5	23

#	Article	IF	CITATIONS
312	Cellular crosstalk mediating immune evasion in pancreatic cancer microenvironment. Annals of Pancreatic Cancer, 0, 2, 13-13.	1.2	0
313	AhR Activation Leads to Massive Mobilization of Myeloid-Derived Suppressor Cells with Immunosuppressive Activity through Regulation of CXCR2 and MicroRNA miR-150-5p and miR-543-3p That Target Anti-Inflammatory Genes. Journal of Immunology, 2019, 203, 1830-1844.	0.4	60
314	Targeting L-Lactate Metabolism to Overcome Resistance to Immune Therapy of Melanoma and Other Tumor Entities. Journal of Oncology, 2019, 2019, 1-12.	0.6	47
315	Identification of myeloid-derived suppressor cells that have an immunosuppressive function in NF2 patients. Journal of Cancer Research and Clinical Oncology, 2019, 145, 523-533.	1.2	5
316	Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. British Journal of Cancer, 2019, 120, 16-25.	2.9	504
317	SMAC Mimetic Debio 1143 and Ablative Radiation Therapy Synergize to Enhance Antitumor Immunity against Lung Cancer. Clinical Cancer Research, 2019, 25, 1113-1124.	3.2	25
318	LAIR $\hat{a} \in \mathbf{I}$ overexpression and correlation with advanced pathological grade and immune suppressive status in oral squamous cell carcinoma. Head and Neck, 2019, 41, 1080-1086.	0.9	21
319	Myeloidâ€derived suppressor cells and tumor: Current knowledge and future perspectives. Journal of Cellular Physiology, 2019, 234, 9966-9981.	2.0	40
320	Dysregulation of key microRNAs in pancreatic cancer development. Biomedicine and Pharmacotherapy, 2019, 109, 1008-1015.	2.5	48
321	Blood immune cell biomarkers in lung cancer. Clinical and Experimental Immunology, 2019, 195, 179-189.	1.1	39
322	Phase 1b study of a small molecule antagonist of human chemokine (C-C motif) receptor 2 (PF-04136309) in combination with nab-paclitaxel/gemcitabine in first-line treatment of metastatic pancreatic ductal adenocarcinoma. Investigational New Drugs, 2020, 38, 800-811.	1.2	106
323	TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. Journal of Experimental Medicine, 2020, 217, .	4.2	42
324	Microsomal prostaglandin E synthase-1 promotes lung metastasis via SDF-1/CXCR4-mediated recruitment of CD11b+Gr1+MDSCs from bone marrow. Biomedicine and Pharmacotherapy, 2020, 121, 109581.	2.5	21
325	Synergistic effect of adoptive immunotherapy and docetaxel inhibits tumor growth in a mouse model. Cellular Immunology, 2020, 348, 104036.	1.4	10
326	Rational design of a minimalist nanoplatform to maximize immunotherapeutic efficacy: Four birds with one stone. Journal of Controlled Release, 2020, 328, 617-630.	4.8	112
327	Role of the Cyclooxygenase Pathway in the Association of Obstructive Sleep Apnea and Cancer. Journal of Clinical Medicine, 2020, 9, 3237.	1.0	5
328	Tumor neoantigen heterogeneity impacts bystander immune inhibition of pancreatic cancer growth. Translational Oncology, 2020, 13, 100856.	1.7	9
329	Neuroendocrine Modulation of the Immune Response after Trauma and Sepsis: Does It Influence Outcome?. Journal of Clinical Medicine, 2020, 9, 2287.	1.0	4

#	Article	IF	CITATIONS
330	The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion. Frontiers in Immunology, 2020, 11, 1680.	2.2	194
331	Targeting the Tumor Microenvironment in Neuroblastoma: Recent Advances and Future Directions. Cancers, 2020, 12, 2057.	1.7	48
332	The immunology of renal cell carcinoma. Nature Reviews Nephrology, 2020, 16, 721-735.	4.1	229
333	The role of myeloid-derived suppressor cells in hematologic malignancies. Current Opinion in Oncology, 2020, 32, 518-526.	1.1	12
334	Co-administration of sulforaphane and doxorubicin attenuates breast cancer growth by preventing the accumulation of myeloid-derived suppressor cells. Cancer Letters, 2020, 493, 189-196.	3.2	24
335	The Effect of Intestinal Microbiome on the Effectiveness of Antitumor Immunotherapy. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2020, 14, 241-251.	0.2	0
336	Mechanisms of Immunosuppression in Colorectal Cancer. Cancers, 2020, 12, 3850.	1.7	30
337	AhR Activation Leads to Alterations in the Gut Microbiome with Consequent Effect on Induction of Myeloid Derived Suppressor Cells in a CXCR2-Dependent Manner. International Journal of Molecular Sciences, 2020, 21, 9613.	1.8	27
338	The emerging prospects of circular RNA in tumor immunity. Annals of Translational Medicine, 2020, 8, 1091-1091.	0.7	2
339	MicroRNAs and IncRNAs—A New Layer of Myeloid-Derived Suppressor Cells Regulation. Frontiers in Immunology, 2020, 11, 572323.	2.2	17
340	Apolipoprotein A-I Mimetic Peptide L-4F Suppresses Granulocytic-Myeloid-Derived Suppressor Cells in Mouse Pancreatic Cancer. Frontiers in Pharmacology, 2020, 11, 576.	1.6	15
341	15-hydroxy-6 <i>α</i> ,12-epoxy-7 <i>β</i> ,10 <i>α</i> H,11 <i>β</i> H-spiroax-4-ene-12-one sensitizes rectal tumo cells to anti-PD1 treatment through agonism of CD11b. Immunopharmacology and Immunotoxicology, 2020, 42, 358-365.	r 1.1	3
342	Human T cell glycosylation and implications on immune therapy for cancer. Human Vaccines and Immunotherapeutics, 2020, 16, 2374-2388.	1.4	22
343	T Cell Dysfunction and Exhaustion in Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 17.	1.8	226
344	Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells, 2020, 9, 561.	1.8	281
345	Immunoregulation and Clinical Implications of ANGPT2/TIE2+ M-MDSC Signature in Non–Small Cell Lung Cancer. Cancer Immunology Research, 2020, 8, 268-279.	1.6	31
346	Treatment strategy of adding transcatheter arterial chemoembolization to sorafenib for advanced stage hepatocellular carcinoma. Cancer Reports, 2021, 4, e1294.	0.6	3
348	Unfavorable impact of decreased muscle quality on the efficacy of immunotherapy for advanced nonâ€small cell lung cancer. Cancer Medicine, 2021, 10, 247-256.	1.3	20

#	Article	IF	CITATIONS
349	PD-1 blockade combined with IL-33 enhances the antitumor immune response in a type-1 lymphocyte-mediated manner. Cancer Treatment and Research Communications, 2021, 28, 100379.	0.7	2
350	Recent Advancements in the Mechanisms Underlying Resistance to PD-1/PD-L1 Blockade Immunotherapy. Cancers, 2021, 13, 663.	1.7	34
351	Reduced Expression of Autophagy Markers and Expansion of Myeloid-Derived Suppressor Cells Correlate With Poor T Cell Response in Severe COVID-19 Patients. Frontiers in Immunology, 2021, 12, 614599.	2.2	50
352	Interaction Between MDSC and NK Cells in Solid and Hematological Malignancies: Impact on HSCT. Frontiers in Immunology, 2021, 12, 638841.	2.2	34
353	Bacterial-Driven Inflammation and Mutant <i>BRAF</i> Expression Combine to Promote Murine Colon Tumorigenesis That Is Sensitive to Immune Checkpoint Therapy. Cancer Discovery, 2021, 11, 1792-1807.	7.7	43
354	Targeting Intercellular Communication in the Bone Microenvironment to Prevent Disseminated Tumor Cell Escape from Dormancy and Bone Metastatic Tumor Growth. International Journal of Molecular Sciences, 2021, 22, 2911.	1.8	4
355	Gene silencing delivery systems for the treatment of pancreatic cancer: Where and what to target next?. Journal of Controlled Release, 2021, 331, 246-259.	4.8	18
356	HDAC11 regulates expression of C/EBPβ and immunosuppressive molecules in myeloid-derived suppressor cells. Journal of Leukocyte Biology, 2021, 109, 891-900.	1.5	7
357	How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 697-717.	2.0	93
358	A critical review of anticancer properties of Withania somnifera (L.) Dunal with respect to the biochemical mechanisms of its phytochemical constituents. Plant Science Today, 2021, 8, 236-249.	0.4	2
359	Monocytic-Myeloid Derived Suppressor Cells of HIV-Infected Individuals With Viral Suppression Exhibit Suppressed Innate Immunity to Mycobacterium tuberculosis. Frontiers in Immunology, 2021, 12, 647019.	2.2	4
360	Repression of MUC1 Promotes Expansion and Suppressive Function of Myeloid-Derived Suppressor Cells in Pancreatic and Breast Cancer Murine Models. International Journal of Molecular Sciences, 2021, 22, 5587.	1.8	10
361	Mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade and the emerging role of gut microbiome. Clinical and Translational Oncology, 2021, 23, 2237-2252.	1.2	7
362	SLC7A2 deficiency promotes hepatocellular carcinoma progression by enhancing recruitment of myeloid-derived suppressors cells. Cell Death and Disease, 2021, 12, 570.	2.7	20
363	Metabolic reprogramming of myeloid-derived suppressor cells: An innovative approach confronting challenges. Journal of Leukocyte Biology, 2021, 110, 257-270.	1.5	9
364	Cancer Stem Cells: Emerging Key Players in Immune Evasion of Cancers. Frontiers in Cell and Developmental Biology, 2021, 9, 692940.	1.8	55
365	Engineered immune cells with nanomaterials to improve adoptive cell therapy. Biomedical Engineering Letters, 2021, 11, 183-195.	2.1	1
366	Hydrogel/nanoadjuvant-mediated combined cell vaccines for cancer immunotherapy. Acta Biomaterialia, 2021, 133, 257-267.	4.1	20

#	Article	IF	CITATIONS
367	Myeloid-Derived Suppressor Cells in Trypanosoma cruzi Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 737364.	1.8	10
368	Roles of CCL2-CCR2 Axis in the Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 8530.	1.8	50
369	Development of an Interferon Gamma Response-Related Signature for Prediction of Survival in Clear Cell Renal Cell Carcinoma. Journal of Inflammation Research, 2021, Volume 14, 4969-4985.	1.6	7
370	The impact of microRNAs on myeloid-derived suppressor cells in cancer. Human Immunology, 2021, 82, 668-678.	1.2	5
371	ALDH1A1 Activity in Tumor-Initiating Cells Remodels Myeloid-Derived Suppressor Cells to Promote Breast Cancer Progression. Cancer Research, 2021, 81, 5919-5934.	0.4	59
372	Metabolic reprogramming due to hypoxia in pancreatic cancer: Implications for tumor formation, immunity, and more. Biomedicine and Pharmacotherapy, 2021, 141, 111798.	2.5	33
373	Epigenetic programming of the immune responses in cancer. , 2022, , 197-235.		1
374	Intrinsic and acquired cancer immunotherapy resistance. , 2022, , 463-497.		0
375	Targeted delivery and reprogramming of myeloid-derived suppressor cells (MDSCs) in cancer. , 2022, , 409-435.		1
376	MIF-Dependent Regulation of Monocyte/Macrophage Polarization. , 2017, , 59-76.		1
376 377	MIF-Dependent Regulation of Monocyte/Macrophage Polarization. , 2017, , 59-76. Hepatic Stellate Cell–Macrophage Crosstalk in Liver Fibrosis and Carcinogenesis. Seminars in Liver Disease, 2020, 40, 307-320.	1.8	1 76
	Hepatic Stellate Cell–Macrophage Crosstalk in Liver Fibrosis and Carcinogenesis. Seminars in Liver	1.8 3.9	
377	Hepatic Stellate Cell–Macrophage Crosstalk in Liver Fibrosis and Carcinogenesis. Seminars in Liver Disease, 2020, 40, 307-320. CD40 ligation reverses T cell tolerance in acute myeloid leukemia. Journal of Clinical Investigation,		76
377 378	 Hepatic Stellate Cell–Macrophage Crosstalk in Liver Fibrosis and Carcinogenesis. Seminars in Liver Disease, 2020, 40, 307-320. CD40 ligation reverses T cell tolerance in acute myeloid leukemia. Journal of Clinical Investigation, 2013, 123, 1999-2010. 	3.9	76 60
377 378 379	 Hepatic Stellate Cell–Macrophage Crosstalk in Liver Fibrosis and Carcinogenesis. Seminars in Liver Disease, 2020, 40, 307-320. CD40 ligation reverses T cell tolerance in acute myeloid leukemia. Journal of Clinical Investigation, 2013, 123, 1999-2010. Myeloid-Derived Suppressor Cells in Multiple Myeloma Blood, 2009, 114, 2794-2794. Characterization of the MDSC Proteome Associated with Metastatic Murine Mammary Tumors Using 	3.9 0.6	76 60 2
377 378 379 380	Hepatic Stellate Cell–Macrophage Crosstalk in Liver Fibrosis and Carcinogenesis. Seminars in Liver Disease, 2020, 40, 307-320. CD40 ligation reverses T cell tolerance in acute myeloid leukemia. Journal of Clinical Investigation, 2013, 123, 1999-2010. Myeloid-Derived Suppressor Cells in Multiple Myeloma Blood, 2009, 114, 2794-2794. Characterization of the MDSC Proteome Associated with Metastatic Murine Mammary Tumors Using Label-Free Mass Spectrometry and Shotgun Proteomics. PLoS ONE, 2011, 6, e22446. Murine Pancreatic Adenocarcinoma Dampens SHIP-1 Expression and Alters MDSC Homeostasis and	3.9 0.6 1.1	76 60 2 35
377 378 379 380 381	Hepatic Stellate Cell–Macrophage Crosstalk in Liver Fibrosis and Carcinogenesis. Seminars in Liver Disease, 2020, 40, 307-320. CD40 ligation reverses T cell tolerance in acute myeloid leukemia. Journal of Clinical Investigation, 2013, 123, 1999-2010. Myeloid-Derived Suppressor Cells in Multiple Myeloma Blood, 2009, 114, 2794-2794. Characterization of the MDSC Proteome Associated with Metastatic Murine Mammary Tumors Using Label-Free Mass Spectrometry and Shotgun Proteomics. PLoS ONE, 2011, 6, e22446. Murine Pancreatic Adenocarcinoma Dampens SHIP-1 Expression and Alters MDSC Homeostasis and Function. PLoS ONE, 2011, 6, e27729. The Role of Myeloid-Derived Suppressor Cells in Patients with Solid Tumors: A Meta-Analysis. PLoS	3.9 0.6 1.1 1.1	 76 60 2 35 41

#	ARTICLE	IF	CITATIONS
387	The prognostic value of the myeloid-mediated immunosuppression marker Arginase-1 in classic Hodgkin lymphoma. Oncotarget, 2016, 7, 67333-67346.	0.8	27
388	Activation of VIP signaling enhances immunosuppressive effect of MDSCs on CMV-induced adaptive immunity. Oncotarget, 2017, 8, 81873-81879.	0.8	9
389	The dual role of complement in cancer and its implication in anti-tumor therapy. Annals of Translational Medicine, 2016, 4, 265-265.	0.7	44
391	Cancer immunotherapy for pancreatic cancer utilizing α-gal epitope/natural anti-Gal antibody reaction. World Journal of Gastroenterology, 2015, 21, 11396.	1.4	13
392	Vaccines for tumor prevention: a pipe dream?. Journal of Infection in Developing Countries, 2015, 9, 600-608.	0.5	4
393	Myxomaviral Anti-Inflammatory Serpin Reduces Myeloid-Derived Suppressor Cells and Human Pancreatic Cancer Cell Growth in Mice. Journal of Cancer Science & Therapy, 2013, 05, 291-299.	1.7	13
394	Harnessing the Immune System to Fight Cancer: The Promise of Genetic Cancer Vaccines. , 0, , .		4
395	Effect of Cisplatin on the Frequency and Immuno-inhibitory Function of Myeloid-derived Suppressor Cells in A375 Melanoma Model. Asian Pacific Journal of Cancer Prevention, 2015, 16, 4329-4333.	0.5	6
396	A Complex Metabolic Network Confers Immunosuppressive Functions to Myeloid-Derived Suppressor Cells (MDSCs) within the Tumour Microenvironment. Cells, 2021, 10, 2700.	1.8	25
397	Prognostic Role of Monocytic Myeloid-Derived Suppressor Cells in Advanced Non-Small-Cell Lung Cancer: Relation to Different Hematologic Indices. Journal of Immunology Research, 2021, 2021, 1-10.	0.9	8
398	The Involvement of Macrophage Colony Stimulating Factor on Protein Hydrolysate Injection Mediated Hematopoietic Function Improvement. Cells, 2021, 10, 2776.	1.8	1
399	Role of myeloid-derived suppressor cells in viral respiratory infections; Hints for discovering therapeutic targets for COVID-19. Biomedicine and Pharmacotherapy, 2021, 144, 112346.	2.5	27
403	The Role of Immunotherapy in the Treatment of Mesothelioma. , 0, , .		0
404	Macrophage Differentiation and Activation States in the Tumor Microenvironment. , 2013, , 405-430.		1
405	T Cell Mulfunction in the Tumor Environment. , 2013, , 325-338.		0
406	ChemoImmunoModulation: Focus on Myeloid Regulatory Cells. , 2013, , 603-619.		0
407	Analysis of Myeloid-Derived Suppressor Cells in Patients with Cancer. , 2013, , 707-723.		0
408	The Role of Myeloid Derived Suppressor Cells in Cancer. , 2013, , 385-404.		0

#	Article	IF	CITATIONS
409	Immune Cells Within the Tumor Microenvironment. , 2014, , 1-23.		2
410	Myeloid-Derived Suppressor Cells in Cancer. , 2014, , 3-17.		0
411	Myeloid-Derived Suppressor Cells and Tumor Growth. , 2014, , 91-109.		2
412	Myelomonocytic Subsets in Tumor Microenvironment. , 2014, , 405-423.		0
413	Myeloid derived suppressor cells in breast cancer: A novel therapeutic target?. World Journal of Immunology, 2015, 6, 119.	0.5	0
414	Influence of Antigen Receptor Avidity, Affinity, and Specificity on Genetically Engineered T Cells. Cancer Drug Discovery and Development, 2015, , 75-98.	0.2	0
415	Olive Leaf Extract Reduces Myeloid-Derived Suppressor Cells, and Modulates the Function of Residual Cells in Experimental Model of Melanoma. Journal of Clinical & Experimental Oncology, 2016, 5, .	0.1	0
416	Aiming the Immune System to Improve the Antitumor Efficacy of Radiation Therapy. , 2016, , 159-181.		0
419	Targeting myeloid-derived suppressor cells to attenuate vasculogenic mimicry and synergistically enhance the anti-tumor effect of PD-1 inhibitor. IScience, 2021, 24, 103392.	1.9	6
420	The tumor microenvironment of pancreatic adenocarcinoma and immune checkpoint inhibitor resistance: a perplex relationship. , 2020, 3, 699-709.		0
421	Targeting Inhibitory Cells Such as Tregs and MDSCs in the Tuberculous Granuloma. , 2021, , 169-203.		1
425	The emerging prospects of circular RNA in tumor immunity. Annals of Translational Medicine, 2020, 8, 1091.	0.7	3
426	Review: Challenges of In Vitro CAF Modelling in Liver Cancers. Cancers, 2021, 13, 5914.	1.7	3
427	Myeloid-Derived Suppressive Cells in Ageing and Age-Related Diseases. Healthy Ageing and Longevity, 2022, , 53-64.	0.2	0
428	The emerging prospects of circular RNA in tumor immunity. Annals of Translational Medicine, 2020, 8, 1091-1091.	0.7	7
429	Blockade of Myd88 signaling by a novel MyD88 inhibitor prevents colitis-associated colorectal cancer development by impairing myeloid-derived suppressor cells. Investigational New Drugs, 2022, 40, 506-518.	1.2	6
430	Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. , 2022, 235, 108114.		13
431	Intravesical immunotherapy with a GM-CSF armed oncolytic vesicular stomatitis virus improves outcome in bladder cancer. Molecular Therapy - Oncolytics, 2022, 24, 507-521.	2.0	7

#	Article	IF	CITATIONS
432	Different syngeneic tumors show distinctive intrinsic tumor-immunity and mechanisms of actions (MOA) of anti-PD-1 treatment. Scientific Reports, 2022, 12, 3278.	1.6	25
433	Advanced Biomaterials for Cell‧pecific Modulation and Restore of Cancer Immunotherapy. Advanced Science, 2022, 9, e2200027.	5.6	26
434	Assessment of sarcopenia as a predictor of poor overall survival for advanced non-small-cell lung cancer patients receiving salvage anti-PD-1 immunotherapy. Annals of Translational Medicine, 2021, 9, 1801-1801.	0.7	11
435	Arginine and Arginases Modulate Metabolism, Tumor Microenvironment and Prostate Cancer Progression. Nutrients, 2021, 13, 4503.	1.7	37
436	Exosomes Derived From Dendritic Cells Infected With Toxoplasma gondii Show Antitumoral Activity in a Mouse Model of Colorectal Cancer. Frontiers in Oncology, 2022, 12, .	1.3	4
437	Myeloid Derived Suppressor Cells Migrate in Response to Flow and Lymphatic Endothelial Cell Interaction in the Breast Tumor Microenvironment. Cancers, 2022, 14, 3008.	1.7	6
438	The evolution of immune dysfunction in multiple myeloma. European Journal of Haematology, 2022, 109, 415-424.	1.1	4
439	Impact of microbiota-immunity axis in pancreatic cancer management. World Journal of Gastroenterology, 2022, 28, 4527-4539.	1.4	3
440	Exosomes derived from myeloid-derived suppressor cells facilitate castration-resistant prostate cancer progression via \$100A9/circMID1/miR-506-3p/MID1. Journal of Translational Medicine, 2022, 20, .	1.8	16
441	Cloning, expression and characterization of a peptibody to deplete myeloid derived suppressor cells in a murine mammary carcinoma model. Protein Expression and Purification, 2022, 200, 106153.	0.6	1
442	Effect of Angelica polysaccharide on mouse myeloid-derived suppressor cells. Frontiers in Immunology, 0, 13, .	2.2	6
443	Contribution of skeletal muscle to cancer immunotherapy: A focus on muscle function, inflammation, and microbiota. Nutrition, 2023, 105, 111829.	1.1	3
444	Immune Tumor Microenvironment in Ovarian Cancer Ascites. International Journal of Molecular Sciences, 2022, 23, 10692.	1.8	15
445	Ferroptosis and Its Potential Role in Glioma: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants, 2022, 11, 2123.	2.2	8
446	Cancer-cell-intrinsic mechanisms regulate MDSCs through cytokine networks. International Review of Cell and Molecular Biology, 2023, , 1-31.	1.6	0
447	Tumor Microenvironment Immunosuppression: A Roadblock to CAR T-Cell Advancement in Solid Tumors. Cells, 2022, 11, 3626.	1.8	5
448	Metformin as a Potential Antitumor Agent. Serbian Journal of Experimental and Clinical Research, 2022, .	0.2	0
449	Application of individualized multimodal radiotherapy combined with immunotherapy in metastatic tumors. Frontiers in Immunology, 0, 13, .	2.2	4

#	Article	IF	CITATIONS
450	Induction of arginase-1 in MDSC requires exposure to CD3/CD28 activated T cells. Journal of Immunology, 2017, 198, 154.13-154.13.	0.4	4
451	<i>NFE2L2</i> Mutations Enhance Radioresistance in Head and Neck Cancer by Modulating Intratumoral Myeloid Cells. Cancer Research, 2023, 83, 861-874.	0.4	16
452	Radiation-induced circulating myeloid-derived suppressor cells induce systemic lymphopenia after chemoradiotherapy in patients with glioblastoma. Science Translational Medicine, 2023, 15, .	5.8	17
453	POLD1 as a Prognostic Biomarker Correlated with Cell Proliferation and Immune Infiltration in Clear Cell Renal Cell Carcinoma. International Journal of Molecular Sciences, 2023, 24, 6849.	1.8	4
454	Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomedicine and Pharmacotherapy, 2023, 162, 114648.	2.5	1
455	Effect of Cancer-Related Cachexia and Associated Changes in Nutritional Status, Inflammatory Status, and Muscle Mass on Immunotherapy Efficacy and Survival in Patients with Advanced Non-Small Cell Lung Cancer. Cancers, 2023, 15, 1076.	1.7	13
456	5-Fluorouracil Suppresses Colon Tumor through Activating the p53-Fas Pathway to Sensitize Myeloid-Derived Suppressor Cells to FasL+ Cytotoxic T Lymphocyte Cytotoxicity. Cancers, 2023, 15, 1563.	1.7	5
457	S100A8/A9-RAGE pathway and chronic airway inflammation in smoke-induced lung carcinogenesis. Molecular and Cellular Toxicology, 2024, 20, 177-186.	0.8	0
458	Proteomic investigation and biomarker identification of lung and spleen deficiency syndrome in HIV/AIDS immunological nonresponders. Journal of Thoracic Disease, 2023, 15, 1460-1472.	0.6	0
459	Combining Cryo-Thermal Therapy with Anti-IL-6 Treatment Promoted the Maturation of MDSCs to Induce Long-Term Survival in a Mouse Model of Breast Cancer. International Journal of Molecular Sciences, 2023, 24, 7018.	1.8	0
463	Radiobiologic Principles and the Role of Radiotherapy in Hematopoietic Cell Transplant and Chimeric Antigen Receptor T-Cell Therapy. , 2024, , 167-179.		0
464	Local Onco-Sphere: Tumor–Immune Cells Interactions. , 2023, , 51-76.		0
468	Immunotherapy combination approaches: mechanisms, biomarkers and clinical observations. Nature Reviews Immunology, 0, , .	10.6	2