Optical excitations in electron microscopy

Reviews of Modern Physics 82, 209-275 DOI: 10.1103/revmodphys.82.209

Citation Report

#	Article	IF	CITATIONS
11	Nonlocal Effects in the Optical Response of Metal Nanoparticles. , 2010, , .		4
12	Electromagnetic forces on plasmonic nanoparticles induced by fast electron beams. Physical Review B, 2010, 82, .	1.1	36
13	Production and application of electron vortex beams. Nature, 2010, 467, 301-304.	13.7	713
14	Plasmonic nanostructures: local versus nonlocal response. Proceedings of SPIE, 2010, , .	0.8	12
15	Controllable excitation of gap plasmons by electron beams in metallic nanowire pairs. Physical Review B, 2010, 82, .	1.1	16
16	Screening in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>YBa</mml:mtext></mml:mrow><mml:mn> large wave vectors. Physical Review B, 2010, 82, .</mml:mn></mml:msub></mml:mrow></mml:math>	∙2∎/∎mml:m	ın ± ø/mml:ms
17	Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New Journal of Physics, 2010, 12, 123028.	1.2	240
18	Spectral Imaging of Individual Split-Ring Resonators. Physical Review Letters, 2010, 105, 255501.	2.9	79
19	Undamped collective surface plasmon oscillations along metallic nanosphere chains. Journal of Applied Physics, 2010, 108, 084304.	1.1	27
20	Transmitting Hertzian Optical Nanoantenna with Free-Electron Feed. Nano Letters, 2010, 10, 3250-3252.	4.5	38
21	Hexagonal Array of Gold Nanotriangles: Modeling the Electric Field Distribution. Journal of Physical Chemistry C, 2010, 114, 19952-19957.	1.5	14
22	Growth and Valence Excitations of ZnO:M(Al, In, Sn) Hierarchical Nanostructures. Journal of Physical Chemistry C, 2010, 114, 18031-18036.	1.5	11
23	Excitation and imaging of resonant optical modes of Au triangular nanoantennas using cathodoluminescence spectroscopy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6C21-C6C25.	0.6	12
24	Suppression of Octahedral Tilts and Associated Changes in Electronic Properties at Epitaxial Oxide Heterostructure Interfaces. Physical Review Letters, 2010, 105, 087204.	2.9	308
25	Electron beam excitation assisted optical microscope with ultra-high resolution. Optics Express, 2010, 18, 12897.	1.7	59
26	Thermal and vacuum friction acting on rotating particles. Physical Review A, 2010, 82, .	1.0	48
27	Radius dependent shift in surface plasmon frequency in large metallic nanospheres: Theory and experiment. Journal of Applied Physics, 2010, 107, 124317.	1.1	44
28	Multiphoton Absorption and Emission by Interaction of Swift Electrons with Evanescent Light Fields. Nano Letters, 2010, 10, 1859-1863.	4.5	184

ATION REDO

#	Article	IF	CITATIONS
29	Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. Journal of the Royal Society Interface, 2010, 7, S435-50.	1.5	180
30	High resolution optical microscopy with electron-beam excitation. , 2011, , .		0
31	Correlated Optical Measurements and Plasmon Mapping of Silver Nanorods. Nano Letters, 2011, 11, 3482-3488.	4.5	125
32	Gap and Mie Plasmons in Individual Silver Nanospheres near a Silver Surface. Nano Letters, 2011, 11, 91-95.	4.5	126
33	Locally enhanced cathodoluminescence of electrochemically fabricated gold nanostructures. Journal of Electroanalytical Chemistry, 2011, 662, 12-16.	1.9	11
34	Photocurrent mapping of near-field optical antenna resonances. Nature Nanotechnology, 2011, 6, 588-593.	15.6	72
35	Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters. Chemical Reviews, 2011, 111, 3888-3912.	23.0	1,224
36	Mechanism of plasmon-mediated enhancement of photovoltaic efficiency. Journal Physics D: Applied Physics, 2011, 44, 055301.	1.3	24
37	Numerical analysis of electron-induced surface plasmon excitation using the FDTD method. Journal of Optics (United Kingdom), 2011, 13, 035003.	1.0	11
38	Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews, 2011, 111, 3913-3961.	23.0	2,663
39	From electron energy-loss spectroscopy to multi-dimensional and multi-signal electron microscopy. Microscopy (Oxford, England), 2011, 60, S161-S171.	0.7	10
40	Nonperturbative Visualization of Nanoscale Plasmonic Field Distributions via Photon Localization Microscopy. Physical Review Letters, 2011, 106, 037402.	2.9	37
41	Plasmonic Whispering Gallery Cavities As Optical Nanoantennas. Nano Letters, 2011, 11, 5524-5530.	4.5	35
42	Cathodoluminescence study of silver and gold lamellar gratings. Proceedings of SPIE, 2011, , .	0.8	1
43	Imaging the Hidden Modes of Ultrathin Plasmonic Strip Antennas by Cathodoluminescence. Nano Letters, 2011, 11, 4265-4269.	4.5	49
44	Plasmonic Nanobilliards: Controlling Nanoparticle Movement Using Forces Induced by Swift Electrons. Nano Letters, 2011, 11, 3388-3393.	4.5	85
45	Electrical Excitation of Surface Plasmons. Physical Review Letters, 2011, 106, 226802.	2.9	200
46	An Introduction to EELS. , 2011, , 1-28.		13

IF ARTICLE CITATIONS # Physics of Electron Scattering., 2011, , 111-229. 47 12 Influence of surface roughness on the optical properties of plasmonic nanoparticles. Physical Review 1.1 B, 2011, 83, . High-Resolution Mapping of Electron-Beam-Excited Plasmon Modes in Lithographically Defined Gold 49 4.5 253 Nanostructures. Nano Letters, 2011, 11, 1323-1330. Multipolar Plasmonic Resonances in Silver Nanowire Antennas Imaged with a Subnanometer Electron 240 Probe. Nano Letters, 2011, 11, 1499-1504. Surface plasmon modes of a single silver nanorod: an electron energy loss study. Optics Express, 2011, 51 1.7 126 19, 15371. Reduced radiation losses in electron beam excited propagating plasmons. Optics Express, 2011, 19, 18713. 1.7 53 Nanoplasmonics: past, present, and glimpse into future. Optics Express, 2011, 19, 22029. 978 1.7 Negative electron energy loss and second-harmonic emission of nonlinear nanoparticles. Optics Express, 2011, 19, 22999. 1.7 54 Mapping Localized Surface Plasmons within Silver Nanocubes Using Cathodoluminescence 55 1.5 27 Hyperspectral Imaging. Journal of Physical Chemistry C, 2011, 115, 14031-14035. Dynamical response function in sodium studied by inelastic x-ray scattering spectroscopy. Physical 1.1 Review B, 2011, 84, . Capturing EELS in the reciprocal space. EPJ Applied Physics, 2011, 54, 33510. 57 0.3 3 Are electron tweezers possible?. Ultramicroscopy, 2011, 111, 1599-1606. 58 Enhanced ultraviolet–visible cathodoluminescence from Ar+ beam-induced nano-patterned silicon. 59 1.5 2 Journal of Luminescence, 2011, 131, 2769-2774. Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method. Photonics and Nanostructures - Fundamentals and Applications, 2011, 9, 367-373. 1.0 Single-Photon Generation by Electron Beams. Nano Letters, 2011, 11, 5099-5103. 61 4.5 36 Terahertz radiation due to random grating coupled surface plasmon polaritons. Physical Review B, 2011, 83, . 63 Vertical Plasmonic Resonant Nanocavities. Nano Letters, 2011, 11, 1117-1121. 4.5 18 64 Dispersion Control in Plasmonic Open Nanocavities. ACS Nano, 2011, 5, 6546-6552.

#	Article	IF	CITATIONS
65	Spatial Nonlocality in the Optical Response of Metal Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 19470-19475.	1.5	264
66	Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale, 2011, 3, 1304.	2.8	253
67	From individual to collective chirality in metal nanoparticles. Nano Today, 2011, 6, 381-400.	6.2	284
68	Synthesis and photo physical properties of star shaped gold nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375, 30-34.	2.3	25
69	Controlling the yellow luminescence intensity from n-GaN during cathodoluminescence. Optical Materials, 2011, 33, 332-335.	1.7	3
70	Plasmon single- and multi-quantum excitation in free metal clusters as seen by photoelectron spectroscopy. Journal of Chemical Physics, 2011, 134, 094511.	1.2	11
71	Stimulated Light Emission and Inelastic Scattering by a Classical Linear System of Rotating Particles. Physical Review Letters, 2011, 106, 213601.	2.9	6
72	Photoconduction and the electronic structure of silica nanowires embedded with gold nanoparticles. Physical Review B, 2011, 84, .	1.1	13
73	Angular dependence of electron induced surface plasmon excitation. Applied Physics Letters, 2011, 98, 193111.	1.5	5
74	Angle-resolved cathodoluminescence spectroscopy. Applied Physics Letters, 2011, 99, .	1.5	67
75	Investigations on Plasmonic Modes of Noble Metal Nano-Disks Using High-Resolution Cathodoluminescence Imaging Spectroscopy. Materials Research Society Symposia Proceedings, 2011, 1294, 48701.	0.1	0
76	Optical characterization of nanopillar black silicon for plasmonic and Solar cell application. Proceedings of SPIE, 2011, , .	0.8	1
77	Mapping of surface plasmon polaritons on nanostructured thin film disks using cathodoluminescence imaging. , 2011, , .		1
78	Local investigation of the optical properties of subwavelength rectangular holes with a focused beam of electrons. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 3456-3471.	1.6	5
79	Probing And Imaging Of Optical Antennas With PEEM. , 2011, , .		0
80	Negative refraction and localized states of a classical wave in high-symmetry quasicrystals. Philosophical Magazine, 2011, 91, 2811-2819.	0.7	2
81	Attostreaking with metallic nano-objects. New Journal of Physics, 2012, 14, 023036.	1.2	19
82	Visualizing highly localized luminescence in GaN/AlN heterostructures in nanowires. Nanotechnology, 2012, 23, 455205.	1.3	31

		CITATION R	EPORT	
#	Article		IF	CITATIONS
83	Plasmonic excitation and manipulation with an electron beam. MRS Bulletin, 2012, 37,	752-760.	1.7	42
84	Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons. Express, 2012, 20, 15024.	Optics	1.7	27
85	Polarization-sensitive cathodoluminescence Fourier microscopy. Optics Express, 2012,	20, 18679.	1.7	19
86	Single nanohole and photoluminescence: nanolocalized and wavelength tunable light s Express, 2012, 20, 19474.	ource. Optics	1.7	16
87	Fabry–Perot plasmonic structures for nanophotonics. Journal of the Optical Society c Optical Physics, 2012, 29, 294.	f America B:	0.9	39
88	Dynamic and high-resolution live cell imaging by direct electron beam excitation. Optics 20, 5629.	s Express, 2012,	1.7	41
89	A tunable optical response of a hybrid semiconductor quantum dot-metal nanoparticle presence of optical excitations. Journal of the Optical Society of America B: Optical Phy 997.	complex in the sics, 2012, 29,	0.9	10
90	Radiation of a uniformly moving line charge in a zero-index metamaterial and other peri Optics Express, 2012, 20, 18515.	odic media.	1.7	5
91	Far- and near-field electron beam detection of hybrid cavity-plasmonic modes in gold m Physical Review B, 2012, 85, .	croholes.	1.1	9
92	Spatially resolved quantum plasmon modes in metallic nano-films from first-principles. Review B, 2012, 86, .	Physical	1.1	36
93	Nanoscale mapping of plasmons, photons, and excitons. MRS Bulletin, 2012, 37, 39-46		1.7	17
94	Are there novel resonances in nanoplasmonic structures due to nonlocal response?. Pro SPIE, 2012, , .	ceedings of	0.8	0
95	Fast computations of the dielectric response of systems with spherical or axial symmetr Review B, 2012, 85, .	ry. Physical	1.1	8
96	Probing local electromagnetic field enhancements on the surface of plasmonic nanopar Progress in Surface Science, 2012, 87, 209-220.	ticles.	3.8	14
97	Direct Visualization of Near-Fields in Nanoplasmonics and Nanophotonics. Nano Letters 3334-3338.	, 2012, 12,	4.5	69
98	Deep-subwavelength imaging of the modal dispersion of light. Nature Materials, 2012,	11, 781-787.	13.3	121
99	Attosecond tracking of light absorption and refraction in fullerenes. Physical Review A,	2012, 86, .	1.0	18
100	Spectroscopy and Imaging of Plasmonic Modes Over a Single Decahedron Gold Nanopa Combined Experimental and Numerical Study. Journal of Physical Chemistry C, 2012, 12	rticle: A .6, 25969-25976.	1.5	32

~	_	
		ЭΤ
CILAD	NLFU	<u> </u>

#	Article	IF	CITATIONS
101	Probing Higher Order Surface Plasmon Modes on Individual Truncated Tetrahedral Gold Nanoparticle Using Cathodoluminescence Imaging and Spectroscopy Combined with FDTD Simulations. Journal of Physical Chemistry C, 2012, 116, 15610-15619.	1.5	65
102	Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids. Advances in Physics, 2012, 61, 745-842.	35.9	196
103	Application of EELS in Materials Science. Materials Characterization, 2012, 73, 1-7.	1.9	20
104	Semi-classical approximation for second-harmonic generation in nanoparticles. New Journal of Physics, 2012, 14, 093044.	1.2	4
106	Organized Plasmonic Clusters with High Coordination Number and Extraordinary Enhancement in Surfaceâ€Enhanced Raman Scattering (SERS). Angewandte Chemie - International Edition, 2012, 51, 12688-12693.	7.2	154
107	Photonic Free-Electron Lasers. IEEE Photonics Journal, 2012, 4, 570-573.	1.0	4
108	Signature of a Fano Resonance in a Plasmonic Metamolecule's Local Density of Optical States. Physical Review Letters, 2012, 108, 077404.	2.9	97
109	STEM-EELS imaging of complex oxides and interfaces. MRS Bulletin, 2012, 37, 29-35.	1.7	43
110	Modeling the Effect of Small Gaps in Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 1627-1637.	1.5	179
111	Entangled Nanoparticles: Discovery by Visualization in 4D Electron Microscopy. Nano Letters, 2012, 12, 5027-5032.	4.5	59
112	Single-Molecule Surface-Enhanced Raman Scattering: Can STEM/EELS Image Electromagnetic Hot Spots?. Journal of Physical Chemistry Letters, 2012, 3, 2303-2309.	2.1	62
113	The T-Matrix method in electron energy loss and cathodoluminescence spectroscopy calculations for metallic nano-particles. Ultramicroscopy, 2012, 117, 46-52.	0.8	13
114	Characterization of the Electron- and Photon-Driven Plasmonic Excitations of Metal Nanorods. ACS Nano, 2012, 6, 7497-7504.	7.3	114
115	Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study. Nano Letters, 2012, 12, 4172-4180.	4.5	139
116	Surface Polariton Cherenkov Light Radiation Source. Physical Review Letters, 2012, 109, 153902.	2.9	169
117	Designing and Deconstructing the Fano Lineshape in Plasmonic Nanoclusters. Nano Letters, 2012, 12, 1058-1062.	4.5	205
118	Light Splitting in Nanoporous Gold and Silver. ACS Nano, 2012, 6, 319-326.	7.3	44
119	Recent developments in transmission electron microscopy and their application for nanoparticle characterisation. SPR Nanoscience, 2012, , 89-101.	0.3	1

#	Article	IF	CITATIONS
120	Deep Subwavelength Spatial Characterization of Angular Emission from Single-Crystal Au Plasmonic Ridge Nanoantennas. ACS Nano, 2012, 6, 1742-1750.	7.3	45
121	Aluminum Plasmonic Nanoantennas. Nano Letters, 2012, 12, 6000-6004.	4.5	497
122	Second-Harmonic Generation Imaging of Metal Nano-Objects with Cylindrical Vector Beams. Nano Letters, 2012, 12, 3207-3212.	4.5	147
123	Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy. Nanoscale, 2012, 4, 3359.	2.8	13
124	Propagating anti-symmetrically coupled plasmons generation by electron beams. Optics Communications, 2012, 285, 4608-4611.	1.0	0
125	Cathodoluminescence of conducting gratings and implications for electron-beam investigations of nano-photonic devices. , 2012, , .		0
127	Plasmonics: Metal-worthy methods and materials in nanophotonics. MRS Bulletin, 2012, 37, 717-724.	1.7	67
128	Fundamentals of Time-Dependent Density Functional Theory. Lecture Notes in Physics, 2012, , .	0.3	370
129	Bottom-up optimization of SERS hot-spots. Chemical Communications, 2012, 48, 9346.	2.2	17
131	Reflection electron energy loss spectroscopy: role of the Bethe–Born factor. Surface and Interface Analysis, 2012, 44, 1104-1109.	0.8	10
132	Cherenkov emission in a nanowire material. Physical Review B, 2012, 85, .	1.1	69
133	Modification of two-level-atom resonance fluorescence near a plasmonic nanostructure. Physical Review A, 2012, 85, .	1.0	47
134	Quantum plasmon resonances of individual metallic nanoparticles. Nature, 2012, 483, 421-427.	13.7	991
135	Nanoplasmonics: Engineering and observation of localized plasmon modes. Laser and Photonics Reviews, 2012, 6, 277-295.	4.4	65
136	Traps and cages for universal SERS detection. Chemical Society Reviews, 2012, 41, 43-51.	18.7	290
137	Imaging Surface Plasmons. Springer Series in Optical Sciences, 2012, , 225-268.	0.5	1
138	Surface Plasmon Mapping of Dumbbell-Shaped Gold Nanorods: The Effect of Silver Coating. Langmuir, 2012, 28, 9063-9070.	1.6	32
139	MNPBEM – A Matlab toolbox for the simulation of plasmonic nanoparticles. Computer Physics Communications, 2012, 183, 370-381.	3.0	644

#	Article	IF	Citations
140	Breakthroughs in Photonics 2011. IEEE Photonics Journal, 2012, 4, 561-656.	1.0	1
141	Strong coupling among semiconductor quantum dots induced by a metal nanoparticle. Nanoscale Research Letters, 2012, 7, 95.	3.1	28
142	Electron Tweezers as a Tool forÂHigh-Precision Manipulation of Nanoobjects. Advances in Imaging and Electron Physics, 2013, , 203-262.	0.1	10
143	Synthesis of Spiky Ag–Au Octahedral Nanoparticles and Their Tunable Optical Properties. Journal of Physical Chemistry C, 2013, 117, 16640-16649.	1.5	44
144	Simulation of Electron Spectra for Surface Analysis (SESSA)for quantitative interpretation of (hard) X-ray photoelectron spectra(HAXPES). Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 137-143.	0.8	22
145	Resonant Modes of Single Silicon Nanocavities Excited by Electron Irradiation. ACS Nano, 2013, 7, 1689-1698.	7.3	80
146	Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps. Applied Physics Letters, 2013, 103, 083103.	1.5	36
147	An Electrically Excited Nanoscale Light Source with Active Angular Control of the Emitted Light. Nano Letters, 2013, 13, 4198-4205.	4.5	62
148	On Plasmon Polariton Propagation Along Metallic Nano-Chain. Plasmonics, 2013, 8, 1317-1333.	1.8	30
149	Intuitions in physics. SynthÃ^se, 2013, 190, 2959-2980.	0.6	13
150	New Tools for Investigating Electromagnetic Hot Spots in Singleâ€Molecule Surfaceâ€Enhanced Raman Scattering. ChemPhysChem, 2013, 14, 3186-3195.	1.0	15
151	Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature, 2013, 502, 80-84.	13.7	450
152	Fano-resonant metamaterials and their applications. Nanophotonics, 2013, 2, 247-264.	2.9	139
153	Perfect imaging, epsilon-near zero phenomena and waveguiding in the scope of nonlocal effects. Scientific Reports, 2013, 3, 2526.	1.6	38
154	Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale, 2013, 5, 12043.	2.8	125
155	Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations. Journal of Physical Chemistry Letters, 2013, 4, 1070-1078.	2.1	23
156	Spatial modulation of above-the-gap cathodoluminescence in InP nanowires. Journal of Physics Condensed Matter, 2013, 25, 505303.	0.7	2
157	Exciton dispersion from first principles. Physical Review B, 2013, 88, .	1.1	46

#	Article	IF	CITATIONS
158	Numerical simulation of Electron Energy Loss Spectroscopy using a Generalized Multipole Technique. Ultramicroscopy, 2013, 133, 101-108.	0.8	10
159	Detection of nanoparticles by means of reflection electron energy loss spectroscopy depth profiling. Journal Physics D: Applied Physics, 2013, 46, 415304.	1.3	3
160	Surface plasmon excitations in metal spheres: Direct comparison of light scattering and electron energy-loss spectroscopy by modal decomposition. Physical Review B, 2013, 87, .	1.1	13
161	Two-Dimensional Chalcogenide Nanoplates as Tunable Metamaterials via Chemical Intercalation. Nano Letters, 2013, 13, 5913-5918.	4.5	64
162	Frenkel versus charge-transfer exciton dispersion in molecular crystals. Physical Review B, 2013, 88, .	1.1	49
163	Strong anisotropic influence of local-field effects on the dielectric response of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>1± </mml:mi> -MoO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub> <mml:mrow< td=""><td>1.1</td><td>88</td></mml:mrow<></mml:msub></mml:math </mml:math 	1.1	88
164	Probing of Optical Near-Fields by Electron Rescattering on the 1 nm Scale. Nano Letters, 2013, 13, 4790-4794.	4.5	61
165	Local electron beam excitation and substrate effect on the plasmonic response of single gold nanostars. Nanotechnology, 2013, 24, 405704.	1.3	30
166	Nanophotonics for live cell observation with high resolution. , 2013, , .		0
167	1 nm resolution imaging of localized plasmons via field rectification. Applied Physics Letters, 2013, 103, 213105.	1.5	2
168	Observation of Quantum Tunneling between Two Plasmonic Nanoparticles. Nano Letters, 2013, 13, 564-569.	4.5	472
169	The Planar Parabolic Optical Antenna. Nano Letters, 2013, 13, 188-193.	4.5	33
170	Geometrically Tunable Optical Properties of Metal Nanoparticles. , 2013, , 1-74.		3
171	Dark Plasmons in Hot Spot Generation and Polarization in Interelectrode Nanoscale Junctions. Nano Letters, 2013, 13, 1359-1364.	4.5	93
172	Single nanoparticle plasmonics. Physical Chemistry Chemical Physics, 2013, 15, 4110.	1.3	172
173	Experimental Verification of < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:mi> n < /mml:mi> < mml:mo> = < /mml:mo> < mml:mn> 0 < /mml:mn> < /mml:math>Structures Electrobic stylectBreyoftKCasymml:mathxxr10s3min19;"http://www.w3.org/1998/Math/MathML"	2.9	208
174	display="inline"> <mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub> Nb <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>O<mml:math< td=""><td>1.1</td><td>18</td></mml:math<></mml:math 	1.1	18
175	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml: Self-assembled plasmonic metamaterials. Nanophotonics, 2013, 2, 211-240.</mml: </mml:mrow </mml:msub>	2.9	43

#	Article	IF	CITATIONS
176	Kinetic theory of surface plasmon polariton in semiconductor nanowires. Physical Review B, 2013, 87, .	. 1.1	1
177	Imaging of high- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>Q</mml:mi></mml:math> cavity optical modes by electron energy-loss microscopy. Physical Review B, 2013, 87, .	1.1	11
178	Photoemission electron microscopy of a plasmonic silver nanoparticle trimer. Applied Physics A: Materials Science and Processing, 2013, 112, 35-39.	1.1	9
179	Asymmetric Silver "Nanocarrot―Structures: Solution Synthesis and Their Asymmetric Plasmonic Resonances. Journal of the American Chemical Society, 2013, 135, 9616-9619.	6.6	43
180	Numerical simulations of interference effects in photon-assisted electron energy-loss spectroscopy. New Journal of Physics, 2013, 15, 053013.	1.2	34
181	Signatures of Fano Interferences in the Electron Energy Loss Spectroscopy and Cathodoluminescence of Symmetry-Broken Nanorod Dimers. ACS Nano, 2013, 7, 4511-4519.	7.3	60
182	Computer generated holograms for carbon nanotube arrays. Nanoscale, 2013, 5, 4217.	2.8	15
183	Probing the electrodynamic local density of states with magnetoelectric point scatterers. Physical Review B, 2013, 87, .	1.1	17
184	An introduction to the calculation of valence EELS: Quantum mechanical methods for bulk solids. Micron, 2013, 44, 93-100.	1.1	22
185	Competition between surface screening and size quantization for surface plasmons in nanoparticles. New Journal of Physics, 2013, 15, 083044.	1.2	85
186	Multiple Excitation of Confined Graphene Plasmons by Single Free Electrons. ACS Nano, 2013, 7, 11409-11419.	7.3	91
187	Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope. Physical Review Letters, 2013, 110, 153604.	2.9	88
188	Tomography of Particle Plasmon Fields from Electron Energy Loss Spectroscopy. Physical Review Letters, 2013, 111, 076801.	2.9	56
189	Plasmonic Response of Bent Silver Nanowires for Nanophotonic Subwavelength Waveguiding. Physical Review Letters, 2013, 110, 066801.	2.9	127
190	Visualizing hybridized quantum plasmons in coupled nanowires: From classical to tunneling regime. Physical Review B, 2013, 87, .	1.1	41
191	Photon-induced near field electron microscopy. , 2013, , .		4
192	Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects. Optics Express, 2013, 21, 27344.	1.7	70
193	Designing dielectric resonators on substrates: Combining magnetic and electric resonances. Optics Express, 2013, 21, 26285.	1.7	313

ARTICLE IF CITATIONS # Plasmonic angular momentum on metal-dielectric nano-wedges in a sectorial indefinite metamaterial. 194 1.7 1 Optics Express, 2013, 21, 28344. Cathodoluminescence Microscopy of nanostructures on glass substrates. Optics Express, 2013, 21, 1.7 29968. Fano correlation effect of optical response due to plasmon–exciton–plasmon interaction in an 196 artificial hybrid molecule system. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 0.9 6 868. Plasmon electron energy-gain spectroscopy. New Journal of Physics, 2013, 15, 103021. 1.2 Orbital resonance mode in superconducting iron pnictides. Europhysics Letters, 2013, 103, 57003. 198 0.7 7 199 Electron Supersurface Scattering On Polycrystalline Au. Physical Review Letters, 2013, 110, 086110. High-resolution photocurrent microscopy using near-field cathodoluminescence of quantum dots. 200 0.6 11 AIP Advances, 2013, 3, . Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film. 1.1 Journal of Applied Physics, 2013, 113, 044116. 202 Surface Plasmon Damping Quantified with an Electron Nanoprobe. Scientific Reports, 2013, 3, 1312. 133 1.6 Luminescence Phenomena: An Introduction. Defect and Diffusion Forum, 0, 347, 1-34. 0.4 44 Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics, 204 2.9 178 2013, 2, 131-138. Motion-induced radiation from electrons moving in Maxwell's fish-eye. Scientific Reports, 2013, 3, 1.6 3065. Probing the plasmonic response of an isolated Au nanorod using cathodoluminescence., 2013,,. 206 0 Electron energy losses and cathodoluminescence from complex plasmonic nanostructures: spectra, maps and radiation patterns from a generalized field propagator. New Journal of Physics, 2014, 16, 1.2 23 113012. Enhanced spectral response of an AlGaN-based solar-blind ultraviolet photodetector with Al 208 1.7 68 nanoparticles. Optics Express, 2014, 22, 24286. Plasmon excitation in metal slab by fast point charge: The role of additional boundary conditions in 209 quantum hydrodynamic model. Physics of Plasmas, 2014, 21, 102114. Role of recombination pathway competition in spatially resolved cathodoluminescence spectroscopy. 210 1.53 Applied Physics Letters, 2014, 105, . Relativistic force between fast electrons and planar targets. New Journal of Physics, 2014, 16, 073048. 1.2

#	ARTICLE	IF	CITATIONS
212	Transfer and reconstruction of the density matrix in off-axis electron holography. Ultramicroscopy, 2014, 146, 103-116.	0.8	21
213	Imaging of rectified plasmonic fields on nanoantennas with single nanometer precision. Proceedings of SPIE, 2014, , .	0.8	0
214	Electrical Excitation Pathways for Graphene Plasmons. , 2014, , .		0
215	Electron beam excitation of surface plasmon polaritons. Optics Express, 2014, 22, 19252.	1.7	26
216	Photon-induced near-field electron microscopy: Mathematical formulation of the relation between the experimental observables and the optically driven charge density of nanoparticles. Physical Review A, 2014, 89, .	1.0	17
217	Plasmons on the edge of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">MoS</mml:mi </mml:mrow><mml:mn>2</mml:mn></mml:msub>nanostruc Physical Review B. 2014. 90</mml:math 	1.1 ctures.	36
218	Quantifying coherent and incoherent cathodoluminescence in semiconductors and metals. Journal of Applied Physics, 2014, 115, .	1.1	52
219	Confocal filtering in cathodoluminescence microscopy of nanostructures. Applied Physics Letters, 2014, 104, .	1.5	11
220	Nanoscale Excitation Mapping of Plasmonic Patch Antennas. ACS Photonics, 2014, 1, 1134-1143.	3.2	27
221	Excitation dependent Fano-like interference effects in plasmonic silver nanorods. Physical Review B, 2014, 90, .	1.1	33
222	Angular-resolved electron energy loss spectroscopy on a split-ring resonator. Physical Review B, 2014, 89, .	1.1	11
223	Fiber optic probe of free electron evanescent fields in the optical frequency range. Applied Physics Letters, 2014, 104, 201101.	1.5	14
224	Plasmonic meta-atoms and metasurfaces. Nature Photonics, 2014, 8, 889-898.	15.6	802
225	Exploring Single Semiconductor Nanowires with a Multimodal Hard Xâ€ray Nanoprobe. Advanced Materials, 2014, 26, 7873-7879.	11.1	28
226	Effect of Intertip Coupling on the Plasmonic Behavior of Individual Multitipped Gold Nanoflower. ACS Photonics, 2014, 1, 1290-1297.	3.2	21
227	Structural characteristics of iridium dual-emitter organometallic compound. Journal of Materials Research, 2014, 29, 2898-2904.	1.2	2
228	Imaging the Optical near Field in Plasmonic Nanostructures. Applied Spectroscopy, 2014, 68, 1307-1326.	1.2	35
229	"Seeing―the Resonant SPP Modes Confined in Metal Nanocavity via Cathodoluminescne Spectroscopy. Materials Research Society Symposia Proceedings, 2014, 1659, 83-94.	0.1	0

#	Article	IF	CITATIONS
230	Plasmon and compositional mapping of plasmonic nanostructures. , 2014, , .		2
231	Nanocrystalline materials: recent advances in crystallographic characterization techniques. IUCrJ, 2014, 1, 530-539.	1.0	21
232	Elucidating heterogeneity in nanoplasmonic structures using nonlinear photon localization microscopy. Journal of Optics (United Kingdom), 2014, 16, 114014.	1.0	3
233	Integrating electron and near-field optics: dual vision for the nanoworld. Nanophotonics, 2014, 3, 75-89.	2.9	19
234	Effect of multipole excitations in electron energy-loss spectroscopy of surface plasmon modes in silver nanowires. Journal of Applied Physics, 2014, 116, 223101.	1.1	12
235	Seeing and measuring in colours: Electron microscopy and spectroscopies applied to nano-optics. Comptes Rendus Physique, 2014, 15, 158-175.	0.3	43
236	Simulating electron energy loss spectroscopy with the MNPBEM toolbox. Computer Physics Communications, 2014, 185, 1177-1187.	3.0	183
237	Toward 10 meV Electron Energy-Loss Spectroscopy Resolution for Plasmonics. Microscopy and Microanalysis, 2014, 20, 767-778.	0.2	36
238	Quantum Plasmon Resonances Controlled by Molecular Tunnel Junctions. Science, 2014, 343, 1496-1499.	6.0	388
239	Nanoscale characterisation of semiconductors by cathodoluminescence. IOP Conference Series: Materials Science and Engineering, 2014, 55, 012018.	0.3	8
240	Two-dimensional relativistic space charge limited current flow in the drift space. Physics of Plasmas, 2014, 21, 043101.	0.7	7
241	Directional emission from a single plasmonic scatterer. Nature Communications, 2014, 5, 3250.	5.8	154
242	Electron Microscopy of Pharmaceutical Systems. Advances in Imaging and Electron Physics, 2014, , 125-208.	0.1	5
243	Electron-photon scattering mediated by localized plasmons: A quantitative analysis by eigen-response theory. Physical Review B, 2014, 89, .	1.1	20
244	Spectroscopic Techniques forÂCharacterization of GoldÂNanoparticles. Comprehensive Analytical Chemistry, 2014, 66, 301-328.	0.7	1
245	Substrate Induced Symmetry Breaking in Penta-twinned Gold Nanorod Probed by Free Electron Impact. Journal of Physical Chemistry C, 2014, 118, 26284-26291.	1.5	16
246	Retrieving the electronic properties of silicon nanocrystals embedded in a dielectric matrix by low-loss EELS. Nanoscale, 2014, 6, 14971-14983.	2.8	18
247	Angular Dependence of Cathodoluminescence of Linear and Circular Au Gratings: Imaging the Coupling Angles between Surface Plasmon Polaritons and Light. Journal of Physical Chemistry C, 2014, 118, 23247-23255.	1.5	8

#	Article	IF	CITATIONS
248	Surface-enhanced Raman scattering on aluminum using near infrared and visible excitation. Chemical Communications, 2014, 50, 3744-3746.	2.2	38
249	Mapping plasmons at the nanometer scale in an electron microscope. Chemical Society Reviews, 2014, 43, 3865.	18.7	189
250	Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms. ACS Nano, 2014, 8, 1745-1758.	7.3	145
251	Tunable terahertz radiation from graphene induced by moving electrons. Physical Review B, 2014, 89, .	1.1	57
252	Dichroism in the Interaction between Vortex Electron Beams, Plasmons, and Molecules. Physical Review Letters, 2014, 113, 066102.	2.9	79
253	Optical and electrical mappings of surface plasmon cavity modes. Nanophotonics, 2014, 3, 33-49.	2.9	13
254	Interslit Coupling via Ultrafast Dynamics across Gold-Film Hole Arrays. Journal of Physical Chemistry C, 2014, 118, 11043-11049.	1.5	4
255	A directional, ultrafast and integrated few-photon source utilizing the interaction of electron beams and plasmonic nanoantennas. New Journal of Physics, 2014, 16, 053021.	1.2	28
256	Precision Synthesis: Designing Hot Spots over Hot Spots via Selective Gold Deposition on Silver Octahedra Edges. Small, 2014, 10, 4940-4950.	5.2	36
257	Plasmon Mapping in Au@Ag Nanocube Assemblies. Journal of Physical Chemistry C, 2014, 118, 15356-15362.	1.5	45
258	Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS. Journal of Physical Chemistry C, 2014, 118, 5478-5485.	1.5	62
259	Resonance-Rayleigh Scattering and Electron Energy-Loss Spectroscopy of Silver Nanocubes. Journal of Physical Chemistry C, 2014, 118, 10254-10262.	1.5	15
260	Speed-of-light limitations in passive linear media. Physical Review A, 2014, 90, .	1.0	26
261	Mapping near-field localization in plasmonic optical nanoantennas with 10 nm spatial resolution. Applied Physics Letters, 2014, 105, .	1.5	13
262	Efficiency and Angular Distribution of Graphene-Plasmon Excitation by Electron Beam. Journal of the Physical Society of Japan, 2014, 83, 054705.	0.7	5
263	In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nature Materials, 2014, 13, 1143-1148.	13.3	261
264	Vibrational spectroscopy in the electron microscope. Nature, 2014, 514, 209-212.	13.7	568
265	Combined Tight-Binding and Numerical Electrodynamics Understanding of the STEM/EELS Magneto-optical Responses of Aromatic Plasmon-Supporting Metal Oligomers. ACS Photonics, 2014, 1, 1013-1024.	3.2	20

#	Article	IF	CITATIONS
266	Light-Induced Field Enhancement in Nanoscale Systems from First-Principles: The Case of Polyacenes. ACS Photonics, 2014, 1, 1049-1058.	3.2	47
267	High-Resolution Imaging and Spectroscopy of Multipolar Plasmonic Resonances in Aluminum Nanoantennas. Nano Letters, 2014, 14, 5517-5523.	4.5	101
268	Surface Plasmon Dependence on the Electron Density Profile at Metal Surfaces. ACS Nano, 2014, 8, 9558-9566.	7.3	90
269	Extremely confined gap surface-plasmon modes excited by electrons. Nature Communications, 2014, 5, 4125.	5.8	72
270	Morphing a Plasmonic Nanodisk into a Nanotriangle. Nano Letters, 2014, 14, 4810-4815.	4.5	112
271	Reconfigurable nanoantennas using electron-beam manipulation. Nature Communications, 2014, 5, 4427.	5.8	32
272	<i>In situ</i> Determination and Imaging of Physical Properties of Soft Organic Materials by Analytical Transmission Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 916-923.	0.2	4
273	Toward Ultimate Nanoplasmonics Modeling. ACS Nano, 2014, 8, 7559-7570.	7.3	132
274	Catalysts under Controlled Atmospheres in the Transmission Electron Microscope. ACS Catalysis, 2014, 4, 1673-1685.	5.5	69
275	Direct Near-Field Observation of Orientation-Dependent Optical Response of Gold Nanorods. Journal of Physical Chemistry C, 2014, 118, 9119-9127.	1.5	31
276	Plasmonic nanoparticles: fabrication, simulation and experiments. Journal Physics D: Applied Physics, 2014, 47, 213001.	1.3	81
277	Electron energy-loss spectroscopy: A versatile tool for the investigations of plasmonic excitations. Journal of Electron Spectroscopy and Related Phenomena, 2014, 195, 85-95.	0.8	65
278	On the development of Finite-Difference Time-Domain for modeling the spectroscopic ellipsometry response of 1D periodic structures. Thin Solid Films, 2014, 571, 356-363.	0.8	8
279	Dual emitter IrQ(ppy)2 for OLED applications: Synthesis and spectroscopic analysis. Journal of Luminescence, 2014, 145, 259-262.	1.5	14
280	Influence of CVD process duration on morphology, structure and sensing properties of carbonaceous-palladium films. Journal of Physics: Conference Series, 2014, 564, 012003.	0.3	0
281	High resolution characterization of plasmon resonances in silver nanostructures. Proceedings of SPIE, 2014, , .	0.8	0
282	Visualizing the Optically Induced Near-fields of Nanoplasmonics with Ultrafast Transmission Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 1586-1587.	0.2	0
283	Disentangling multipole contributions to collective excitations in fullerenes. Physical Review A, 2015, 92, .	1.0	10

#	Article	IF	CITATIONS
284	Caustic graphene plasmons with Kelvin angle. Physical Review B, 2015, 92, .	1.1	26
285	Real-space imaging of nanotip plasmons using electron energy loss spectroscopy. Physical Review B, 2015, 92, .	1.1	40
286	Phonon excitation by electron beams in nanographenes. Physical Review B, 2015, 92, .	1.1	10
287	Interference of surface plasmons and Smith-Purcell emission probed by angle-resolved cathodoluminescence spectroscopy. Physical Review B, 2015, 91, .	1.1	29
288	Three-dimensional Surface Charge Reconstructions of Surface Plasmon Modes of Silver Right Bipyramids. Microscopy and Microanalysis, 2015, 21, 2225-2226.	0.2	0
289	Resonances of nanoparticles with poor plasmonic metal tips. Scientific Reports, 2015, 5, 17431.	1.6	42
290	Enhancement of a whispering gallery mode microtoroid resonator by plasmonic triangular gold nanoprism for label-free biosensor applications. Journal of Applied Physics, 2015, 118, .	1.1	16
291	Cyclotron electron beam excited surface plasmon polaritons coherent radiation. Europhysics Letters, 2015, 111, 24004.	0.7	3
292	Theory of Localized Plasmons for Multiple Metal Nanostructures in the Random Phase Approximation. E-Journal of Surface Science and Nanotechnology, 2015, 13, 391-403.	0.1	8
293	Revealing Optical Properties of Reducedâ€Dimensionality Materials at Relevant Length Scales. Advanced Materials, 2015, 27, 5693-5719.	11.1	29
294	Plasmon-Polariton Properties in Metallic Nanosphere Chains. Materials, 2015, 8, 3910-3937.	1.3	22
295	Plasmonic behavior of gold nanorod heterodimers with free-electron feed. AIP Conference Proceedings, 2015, , .	0.3	1
296	Quest for an Optical Circuit Probe. Microscopy and Microanalysis, 2015, 21, 1251-1252.	0.2	0
297	Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials. Physical Review Letters, 2015, 114, 107601.	2.9	79
298	Laser-assisted photothermal heating of a plasmonic nanoparticle-suspended droplet in a microchannel. Analyst, The, 2015, 140, 1535-1542.	1.7	14
299	Lorentz Friction for Surface Plasmons in Metallic Nanospheres. Journal of Physical Chemistry C, 2015, 119, 6749-6759.	1.5	29
300	Insight into the eigenmodes of plasmonic nanoclusters based on the Green's tensor method. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 194.	0.9	8
302	Elucidating the real-time Ag nanoparticle growth on α-Ag ₂ WO ₄ during electron beam irradiation: experimental evidence and theoretical insights. Physical Chemistry Chemical Physics, 2015, 17, 5352-5359.	1.3	54

#	Article	IF	CITATIONS
303	Highly Efficient Midinfrared On-Chip Electrical Generation of Graphene Plasmons by Inelastic Electron Tunneling Excitation. Physical Review Applied, 2015, 3, .	1.5	17
304	Enhanced radiation in a modified metallic metamaterial driven by pre-bunched electrons. , 2015, , .		0
305	Transformation of the Surface Plasmons on Nanometallic Rod Array to Tunable Light Radiation. IEEE Photonics Journal, 2015, 7, 1-8.	1.0	5
306	Electromagnetic field enhancement in metallic metamaterials : A potential for compact terahertz free-electron lasers. , 2015, , .		0
307	Quantum-Spillover-Enhanced Surface-Plasmonic Absorption at the Interface of Silver and High-Index Dielectrics. Physical Review Letters, 2015, 115, 193901.	2.9	49
308	Contributed Review: Review of integrated correlative light and electron microscopy. Review of Scientific Instruments, 2015, 86, 011501.	0.6	48
309	Gallium Plasmonics: Deep Subwavelength Spectroscopic Imaging of Single and Interacting Gallium Nanoparticles. ACS Nano, 2015, 9, 2049-2060.	7.3	133
310	Gold Photoluminescence Wavelength and Polarization Engineering. ACS Photonics, 2015, 2, 432-438.	3.2	38
311	Electron Energy-Loss Spectroscopy Calculation in Finite-Difference Time-Domain Package. ACS Photonics, 2015, 2, 369-375.	3.2	64
312	Electromagnetic density of states in complex plasmonic systems. Surface Science Reports, 2015, 70, 1-41.	3.8	151
313	Unveiling Nanometer Scale Extinction and Scattering Phenomena through Combined Electron Energy Loss Spectroscopy and Cathodoluminescence Measurements. Nano Letters, 2015, 15, 1229-1237.	4.5	143
314			
	Standing Wave Plasmon Modes Interact in an Antenna-Coupled Nanowire. Nano Letters, 2015, 15, 1324-1330.	4.5	21
315	Standing Wave Plasmon Modes Interact in an Antenna-Coupled Nanowire. Nano Letters, 2015, 15, 1324-1330. Interaction of low energy electrons with platinum surface. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 112-115.	4.5 0.6	21
315 316	Standing Wave Plasmon Modes Interact in an Antenna-Coupled Nanowire. Nano Letters, 2015, 15, 1324-1330. Interaction of low energy electrons with platinum surface. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 112-115. Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers. Journal of Applied Physics, 2015, 117, 023118.	4.5 0.6 1.1	21 4 31
315 316 317	Standing Wave Plasmon Modes Interact in an Antenna-Coupled Nanowire. Nano Letters, 2015, 15, 1324-1330.Interaction of low energy electrons with platinum surface. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 112-115.Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers. Journal of Applied Physics, 2015, 117, 023118.Probing plasmonic nanostructures by photons and electrons. Chemical Science, 2015, 6, 2721-2726.	4.50.61.13.7	21 4 31 37
315 316 317 318	Standing Wave Plasmon Modes Interact in an Antenna-Coupled Nanowire. Nano Letters, 2015, 15, 1324-1330. Interaction of low energy electrons with platinum surface. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 112-115. Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers. Journal of Applied Physics, 2015, 117, 023118. Probing plasmonic nanostructures by photons and electrons. Chemical Science, 2015, 6, 2721-2726. Exciton dispersion in molecular solids. Journal of Physics Condensed Matter, 2015, 27, 113204.	4.5 0.6 1.1 3.7 0.7	21 4 31 37 74
 315 316 317 318 319 	Standing Wave Plasmon Modes Interact in an Antenna-Coupled Nanowire. Nano Letters, 2015, 15, 1324-1330. Interaction of low energy electrons with platinum surface. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 112-115. Multiple Fano interferences in a plasmonic metamolecule consisting of asymmetric metallic nanodimers. Journal of Applied Physics, 2015, 117, 023118. Probing plasmonic nanostructures by photons and electrons. Chemical Science, 2015, 6, 2721-2726. Exciton dispersion in molecular solids. Journal of Physics Condensed Matter, 2015, 27, 113204. Terahertz generation from surface plasmon polaritons in graphene induced by a moving electron beam. Optics Communications, 2015, 346, 149-153.	 4.5 0.6 1.1 3.7 0.7 1.0 	21 4 31 37 74 4

#	ARTICLE	IF	Citations
321	Mechanism of Saltatory Conduction in Axons. Journal of Physical Chemistry C, 2015, 119, 10015-10030.	1.5	28
322	Stabilization of 4H hexagonal phase in gold nanoribbons. Nature Communications, 2015, 6, 7684.	5.8	215
323	Excitation of Mesoscopic Plasmonic Tapers by Relativistic Electrons: Phase Matching <i>versus</i> Eigenmode Resonances. ACS Nano, 2015, 9, 7641-7648.	7.3	61
324	Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial. Nature Nanotechnology, 2015, 10, 804-809.	15.6	119
325	Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires. Nano Letters, 2015, 15, 5427-5437.	4.5	122
326	Absorption enhancement in thin-film photoluminescence layers with metal nanoparticles inter-coupling engineering. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2015, 118, 930-935.	0.2	2
327	High-Density 2D Homo- and Hetero- Plasmonic Dimers with Universal Sub-10-nm Gaps. ACS Nano, 2015, 9, 9331-9339.	7.3	51
328	Mode Mixing and Substrate Induced Effect on the Plasmonic Properties of an Isolated Decahedral Gold Nanoparticle. Journal of Physical Chemistry C, 2015, 119, 18537-18545.	1.5	13
329	Plasmonic nanospheres with a handle—Local electrochemical deposition of Au or Ag at the apex of optically inactive W- or C-tips. Applied Physics Letters, 2015, 106, .	1.5	8
330	Computation of electron energy loss spectra by an iterative method. Nuclear Instruments & Methods in Physics Research B, 2015, 354, 216-219.	0.6	5
331	Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics. Nano Letters, 2015, 15, 3410-3419.	4.5	257
332	Nonlocal optical response in metallic nanostructures. Journal of Physics Condensed Matter, 2015, 27, 183204.	0.7	295
333	Efficiencies of Aloof-Scattered Electron Beam Excitation of Metal and Graphene Plasmons. IEEE Transactions on Plasma Science, 2015, 43, 951-956.	0.6	12
334	Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature, 2015, 521, 200-203.	13.7	426
335	Gap and channeled plasmons in tapered grooves: a review. Nanoscale, 2015, 7, 9355-9386.	2.8	125
336	Introductory lecture: nanoplasmonics. Faraday Discussions, 2015, 178, 9-36.	1.6	56
337	Tomography for plasmonics. Nature Nanotechnology, 2015, 10, 386-387.	15.6	0
338	Quantum control of free electrons. Nature, 2015, 521, 166-167.	13.7	6

ARTICLE IF CITATIONS Aluminum Nanocrystals. Nano Letters, 2015, 15, 2751-2755. 339 4.5 169 Optical Resonances of Colloidal Gold Nanorods: From Seeds to Chemically Thiolated Long Nanorods. 340 1.5 9 Journal of Physical Chemistry C, 2015, 119, 7856-7864. Plasmonics simulations with the MNPBEM toolbox: Consideration of substrates and layer structures. 341 3.0 165 Computer Physics Communications, 2015, 193, 138-150. Nanoscale optical tomography with cathodoluminescence spectroscopy. Nature Nanotechnology, 342 2015, 10, 429-436. Cathodoluminescence microscopy: Optical imaging and spectroscopy with deep-subwavelength 343 1.7 44 resolution. MRS Bulletin, 2015, 40, 359-365. Size-dependence of the Lorentz friction for surface plasmons in metallic nanospheres. Optics Express, 2015, 23, 4472. 344 1.7 Investigating hybridization schemes of coupled split-ring resonators by electron impacts. Optics 345 1.7 7 Express, 2015, 23, 20721. Nonlocal study of ultimate plasmon hybridization. Optics Letters, 2015, 40, 839. 1.7 346 Correlated 3D Nanoscale Mapping and Simulation of Coupled Plasmonic Nanoparticles. Nano Letters, 347 4.5 35 2015, 15, 7726-7730. 348 Amplification of the Evanescent Field of Free Electrons. ACS Photonics, 2015, 2, 1236-1240. 3.2 Coherent and tunable light radiation from nanoscale surface plasmons array via an exotic 349 1.7 14 Smithâ€"Purcell effect. Optics Letters, 2015, 40, 4579. Link between Cathodoluminescence and Electron Energy Loss Spectroscopy and the Radiative and Full 3.2 119 Electromagnetic Local Density of States. ACS Photonics, 2015, 2, 1619-1627. Nanoscale Spatial Coherent Control over the Modal Excitation of a Coupled Plasmonic Resonator 351 4.5 37 System. Nano Letters, 2015, 15, 7666-7670. Electrically driven surface plasmon nanosources. Proceedings of SPIE, 2015, , . 0.8 Coupled dipole plasmonics of nanoantennas in discontinuous, complex dielectric environments. 353 19 1.1 Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 166, 93-101. Full Three-Dimensonal Reconstruction of the Dyadic Green Tensor from Electron Energy Loss 354 3.2 Spectroscopy of Plasmonic Nanoparticles. ACS Photonics, 2015, 2, 1429-1435. Coherent and tunable radiation with power enhancement from surface plasmon polaritons. Chinese 355 0.7 6 Physics B, 2015, 24, 077302. Multipole plasmons and their disappearance in few-nanometre silver nanoparticles. Nature 5.8 139 Communications, 2015, 6, 8788.

#	Article	IF	CITATIONS
357	Visible Surface Plasmon Modes in Single Bi ₂ Te ₃ Nanoplate. Nano Letters, 2015, 15, 8331-8335.	4.5	71
358	Probing Complex Reflection Coefficients in One-Dimensional Surface Plasmon Polariton Waveguides and Cavities Using STEM EELS. Nano Letters, 2015, 15, 120-126.	4.5	30
359	Nanoplasmonics: Fundamentals and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics, 2015, , 3-102.	0.2	8
363	Aloof Beam Plasmons in Silver Nanoparticles. Microscopy and Microanalysis, 2016, 22, 1642-1643.	0.2	1
364	Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states. Optics Express, 2016, 24, 24760.	1.7	37
365	Surface plasmon polariton modes in coaxial metal-dielectric-metal waveguides. New Journal of Physics, 2016, 18, 043016.	1.2	4
366	Laser control of electron matter waves. Laser and Photonics Reviews, 2016, 10, 214-229.	4.4	22
367	Transformation Optics: A Time- and Frequency-Domain Analysis of Electron-Energy Loss Spectroscopy. Nano Letters, 2016, 16, 5156-5162.	4.5	12
368	Hot-Electron Dynamics and Thermalization in Small Metallic Nanoparticles. ACS Photonics, 2016, 3, 1637-1646.	3.2	129
369	Holographic free-electron light source. Nature Communications, 2016, 7, 13705.	5.8	66
370	Trisoctahedral gold nanocrystal: A promising candidate for the study of plasmonics using cathodoluminescence. AIP Conference Proceedings, 2016, , .	0.3	0
371	Electron energy loss spectroscopy of plasmon resonances in titanium nitride thin films. Applied Physics Letters, 2016, 108, .	1.5	15
372	Electron energy-loss spectroscopy of branched gap plasmon resonators. Nature Communications, 2016, 7, 13790.	5.8	23
373	Transformation optics and EELS, a frequency- and time-domain analysis. , 2016, , .		0
374	Theory of intraband plasmons in doped carbon nanotubes: Rolled surface-plasmons of graphene. Applied Physics Letters, 2016, 108, .	1.5	18
375	Energy-loss spectroscopy of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi mathvariant="normal">C <mml:mn>60</mml:mn> </mml:mi </mml:msub> fullerenes with twisted electrons: Influence of orbital-angular-momentum transfer on plasmon generation. Physical</mml:math 	1.0	9
376	Review A, 2016, 94, . SchrĶdinger electrons interacting with optical gratings: quantum mechanical study of the inverse Smith–Purcell effect. New Journal of Physics, 2016, 18, 123006.	1.2	38
	Electron energy loss enertroscopy of evoltance in two dimensional comiconductors as a function of		

#	Article	IF	CITATIONS
378	A Complete Overhaul of the Electron Energy-Loss Spectroscopy and X-Ray Absorption Spectroscopy Database: eelsdb.eu. Microscopy and Microanalysis, 2016, 22, 717-724.	0.2	83
379	Excitation of surface and volume plasmons in a metal nanosphere by fast electrons. Physics of Plasmas, 2016, 23, 032120.	0.7	12
380	The World of Plasmons. Springer Series in Materials Science, 2016, , 11-57.	0.4	0
381	Nonlocal Response. Springer Series in Materials Science, 2016, , 163-169.	0.4	0
382	Modeling the Optical Response of Metallic Nanoparticles. Springer Series in Materials Science, 2016, , 101-127.	0.4	1
383	Imaging of Surface Plasmons. Springer Series in Materials Science, 2016, , 131-147.	0.4	0
384	Controlling magnetic and electric dipole modes in hollow silicon nanocylinders. Optics Express, 2016, 24, 2047.	1.7	68
385	Deterministic radiative coupling between plasmonic nanoantennas and semiconducting nanowire quantum dots. Nanotechnology, 2016, 27, 185201.	1.3	3
386	Band Gap Extraction from Individual Two-Dimensional Perovskite Nanosheets Using Valence Electron Energy Loss Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 11170-11179.	1.5	36
387	A New Cathodoluminescence System for Nanoscale Optics, Materials Science, and Geology. Microscopy Today, 2016, 24, 12-19.	0.2	19
388	Visualizing surface plasmons with photons, photoelectrons, and electrons. Analyst, The, 2016, 141, 3562-3572.	1.7	19
389	Nonclassical effects in plasmonics: An energy perspective to quantify nonclassical effects. Physical Review B, 2016, 93, .	1.1	10
390	Gold Nanorod Arrays: Excitation of Transverse Plasmon Modes and Surface-Enhanced Raman Applications. Journal of Physical Chemistry C, 2016, 120, 16246-16253.	1.5	10
391	Structural and Optical Properties of Discrete Dendritic Pt Nanoparticles on Colloidal Au Nanoprisms. Journal of Physical Chemistry C, 2016, 120, 20843-20851.	1.5	27
392	Coupling of Surface-Plasmon-Polariton-Hybridized Cavity Modes between Submicron Slits in a Thin Gold Film. ACS Photonics, 2016, 3, 836-843.	3.2	14
393	Electron Spectroscopy of Single Quantum Objects To Directly Correlate the Local Structure to Their Electronic Transport and Optical Properties. Nano Letters, 2016, 16, 3661-3667.	4.5	14
394	Energy losses and transition radiation produced by the interaction of charged particles with a graphene sheet. Physical Review B, 2016, 94, .	1.1	28
395	Electron Energy Loss Spectroscopy of Surface Plasmon Resonances on Aberrant Gold Nanostructures. Journal of Physical Chemistry C, 2016, 120, 24950-24956.	1.5	22

#	Article	IF	CITATIONS
396	Manipulating Smith-Purcell Emission with Babinet Metasurfaces. Physical Review Letters, 2016, 117, 157401.	2.9	108
397	Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures. Microscopy (Oxford, England), 2016, 65, 282-295.	0.7	41
398	Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS. Physical Chemistry Chemical Physics, 2016, 18, 23264-23276.	1.3	4
399	Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators. Nano Letters, 2016, 16, 5183-5190.	4.5	92
400	Hybridization between nanocavities for a polarimetric color sorter at the sub-micron scale. Nanoscale, 2016, 8, 15296-15302.	2.8	22
401	Calculating EELS. , 2016, , 405-423.		1
402	Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Advances, 2016, 6, 86174-86211.	1.7	201
403	Plasmons in doped finite carbon nanotubes and their interactions with fast electrons and quantum emitters. Physical Review B, 2016, 94, .	1.1	8
404	Real and Imaginary Properties of Epsilon-Near-Zero Materials. Physical Review Letters, 2016, 117, 107404.	2.9	129
405	Quantum Plasmonics. Proceedings of the IEEE, 2016, 104, 2307-2322.	16.4	66
406	Nanowire-nanoantenna coupled system fabricated by nanomanipulation. Optics Express, 2016, 24, 8647.	1.7	12
407	Coupling of plasmonic nanopore pairs: facing dipoles attract each other. Light: Science and Applications, 2016, 5, e16146-e16146.	7.7	30
408			
	Electron energy-loss spectroscopy of coupled plasmonic systems: beyond the standard electron perspective. , 2016, , .		1
409	Electron energy-loss spectroscopy of coupled plasmonic systems: beyond the standard electron perspective. , 2016, , . Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling. Nanoscale, 2016, 8, 14573-14579.	2.8	1 40
409 410	Electron energy-loss spectroscopy of coupled plasmonic systems: beyond the standard electron perspective., 2016,,. Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling. Nanoscale, 2016, 8, 14573-14579. Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle. Physical Review B, 2016, 93, .	2.8	1 40 26
409 410 411	Electron energy-loss spectroscopy of coupled plasmonic systems: beyond the standard electron perspective. , 2016, , . Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling. Nanoscale, 2016, 8, 14573-14579. Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle. Physical Review B, 2016, 93, . Theory of electron energy loss near plasmonic wires, nanorods, and cones. Physical Review B, 2016, 93, .	2.8 1.1 1.1	1 40 26 20
409 410 411 412	Electron energy-loss spectroscopy of coupled plasmonic systems: beyond the standard electron perspective. , 2016, , . Excitation of plasmonic nanoantennas by nonresonant and resonant electron tunnelling. Nanoscale, 2016, 8, 14573-14579. Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle. Physical Review B, 2016, 93, . Theory of electron energy loss near plasmonic wires, nanorods, and cones. Physical Review B, 2016, 93, . Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory. Physical Review B, 2016, 93, .	2.8 1.1 1.1	1 40 26 20 12

CITATION REPORT ARTICLE IF CITATIONS Controlling multipolar surface plasmon excitation through the azimuthal phase structure of 1.1 16 electron vortex beams. Physical Review B, 2016, 93, . Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films. 1.1 Physical Review B, 2016, 93, . Surface plasmon polaritons in topological Weyl semimetals. Physical Review B, 2016, 93, . 1.1 106 Surface-plasmon-polariton hybridized cavity modes in submicrometer slits in a thin Au film. Physical 1.1 Review B, 2016, 93, . Multiphoton Photoemission Microscopy of High-Order Plasmonic Resonances at the Ag/Vacuum and 3.2 27 Ag/Si Interfaces of Epitaxial Silver Nanowires. ACS Photonics, 2016, 3, 1704-1713. Smith-Purcell radiation emission in aperiodic arrays. Physical Review B, 2016, 94, . 1.1 Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning 1.3 5 transmission electron microscope. Nanotechnology, 2016, 27, 155202. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for 18.7 159 plasmonics. Chemical Society Reviews, 2016, 45, 5672-5716. Electron diffraction by plasmon waves. Physical Review B, 2016, 94, . 1.1 45 Polaritons in van der Waals materials. Science, 2016, 354, . 6.0 799 Femtosecond plasmon and photon wave packets excited by a high-energy electron on a metal or 1.1 14 dielectric surface. Physical Review B, 2016, 94, . Free-Electron Exciting and Steering of the Radiation From Surface Plasmons on Nanowire Array. IEEE 1.3 Photonics Technology Letters, 2016, 28, 2657-2660. In situ Transmission Electron Microscopy observation of Ag nanocrystal evolution by surfactant free 1.6 41 electron-driven synthesis. Scientific Reports, 2016, 6, 21498. Probing Localized Surface Plasmons of Trisoctahedral Gold Nanocrystals for Surface Enhanced 1.5 Raman Scattering. Journal of Physical Chemistry C, 2016, 120, 27003-27012. Spectral Interferometry with Electron Microscopes. Scientific Reports, 2016, 6, 33874. 1.6 14

429Application of Generalized Mie Theory to EELS Calculations as a Tool for Optimization of Plasmonic
Structures. Plasmonics, 2016, 11, 865-874.1.87430Near-Infrared Spectroscopic Cathodoluminescence Imaging Polarimetry on Silicon Photonic Crystal
Waveguides. ACS Photonics, 2016, 3, 2112-2121.3.218431Damage-free vibrational spectroscopy of biological materials in the electron microscope. Nature
Communications, 2016, 7, 10945.5.8124

#

414

416

418

420

422

424

426

427

#	Article	IF	CITATIONS
432	Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles. Scientific Reports, 2016, 6, 19168.	1.6	27
433	Signatures of distinct impurity configurations in atomic-resolution valence electron-energy-loss spectroscopy: Application to graphene. Physical Review B, 2016, 94, .	1.1	8
434	Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy. Ultramicroscopy, 2016, 169, 30-36.	0.8	38
435	Wedge Dyakonov Waves and Dyakonov Plasmons in Topological Insulator Bi ₂ Se ₃ Probed by Electron Beams. ACS Nano, 2016, 10, 6988-6994.	7.3	43
436	Characterizing Localized Surface Plasmons Using Electron Energy-Loss Spectroscopy. Annual Review of Physical Chemistry, 2016, 67, 331-357.	4.8	55
437	Imaging Plasmon Hybridization in Metal Nanoparticle Aggregates with Electron Energy-Loss Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 20852-20859.	1.5	25
438	Direct imaging of hybridized eigenmodes in coupled silicon nanoparticles. Optica, 2016, 3, 93.	4.8	70
439	Angle-Resolved Cathodoluminescence Imaging Polarimetry. ACS Photonics, 2016, 3, 147-154.	3.2	76
440	Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy, 2016, 162, A1-A24.	0.8	102
441	Fano-induced spontaneous emission enhancement of molecule placed in a cluster of asymmetrically-arranged metallic nanoparticles. Journal of Luminescence, 2016, 173, 199-202.	1.5	5
442	Tuning the Plasmonic Response up: Hollow Cuboid Metal Nanostructures. ACS Photonics, 2016, 3, 770-779.	3.2	49
443	Quasinormal mode theory and modelling of electron energy loss spectroscopy for plasmonic nanostructures. Journal of Optics (United Kingdom), 2016, 18, 054002.	1.0	10
444	Directional Emission from Leaky and Guided Modes in GaAs Nanowires Measured by Cathodoluminescence. ACS Photonics, 2016, 3, 677-684.	3.2	18
445	Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer. Chinese Physics Letters, 2016, 33, 026802.	1.3	1
446	Electron Energy-Loss Spectroscopy of Multipolar Edge and Cavity Modes in Silver Nanosquares. ACS Photonics, 2016, 3, 428-433.	3.2	51
447	Surface plasmons induced in Al spherical nanoparticles by Auger effect. Nuclear Instruments & Methods in Physics Research B, 2016, 369, 66-67.	0.6	0
448	Experimental and numerical optical characterization of plasmonic copper nanoparticles embedded in ZnO fabricated by ion implantation and annealing. Journal of Alloys and Compounds, 2016, 669, 246-253.	2.8	9
449	Fano Resonance in an Electrically Driven Plasmonic Device. Nano Letters, 2016, 16, 748-752.	4.5	49

ARTICLE IF CITATIONS # Imaging nanophotonic modes of microresonators using a focused ion beam. Nature Photonics, 2016, 450 15.6 16 10, 35-39. On the size dependence and spatial range for the plasmon effect in photovoltaic efficiency enhancement. Solar Energy Materials and Solar Cells, 2016, 147, 1-16. Plasmons in Finite Spherical Electrolyte Systems: RPA Effective Jellium Model for Ionic Plasma 452 1.8 30 Excitations. Plasmonics, 2016, 11, 637-651. Fundamentals of Plasmonics. Springer Theses, 2017, , 13-35. Nonclassical Plasmonics. Springer Theses, 2017, , 37-80. 455 0.0 1 The Substrate Effect in Electron Energy-Loss Spectroscopy of Localized Surface Plasmons in Gold and Silver Nanoparticles. ACS Photonics, 2017, 4, 251-261. 3.2 Analysis of induced stress on materials exposed to laser-plasma radiation during high-intensity laser 457 3.1 7 experiments. Applied Surface Science, 2017, 421, 200-204. Correlations between structure, composition and electrical properties of tungsten/tungsten oxide periodic multilayers sputter deposited by gas pulsing. Superlattices and Microstructures, 2017, 101, 1.4 127-137. 459 Splashing transients of 2D plasmons launched by swift electrons. Science Advances, 2017, 3, e1601192. 4.7 69 Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles. Nature 5.8 99 Communications, 2017, 8, 14020. Nonlocal effects in metallic nanoparticles: The kinetic approach outlook. International Journal of 461 2 1.0 Modern Physics B, 2017, 31, 1750029. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles. Nanophotonics, 2017, 6, 289-297. Secondary Electron Imaging of Light at the Nanoscale. ACS Nano, 2017, 11, 3274-3281. 463 7.3 5 Spectrally and Spatially Resolved Smith-Purcell Radiation in Plasmonic Crystals with Short-Range 464 2.8 Disorder. Physical Review X, 2017, 7, . Plasmonic Nanolenses: Electrostatic Self-Assembly of Hierarchical Nanoparticle Trimers and Their 465 7.3 37 Response to Optical and Electron Beam Stimuli. ACS Nano, 2017, 11, 1604-1612. Nanoscale mapping of optical band gaps using monochromated electron energy loss spectroscopy. Nanotechnology, 2017, 28, 105703. Nanoparticle-on-mirror cavity modes for huge and/or tunable plasmonic field enhancement. 467 1.340 Nanotechnology, 2017, 28, 105203. New instrumentation and cutting edge research. Ultramicroscopy, 2017, 180, 52-58.

#	Article	IF	CITATIONS
469	Laser stimulated plasma-induced luminescence for on-air material analysis. Applied Physics Letters, 2017, 110, .	1.5	5
470	Near-Field Localization of Single Au Cubes: A Group Theory Description. Journal of Physical Chemistry C, 2017, 121, 4517-4523.	1.5	13
471	Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nature Photonics, 2017, 11, 289-292.	15.6	137
472	Microscopic theory of Smith-Purcell radiation from 2D photonic crystal. Nuclear Instruments & Methods in Physics Research B, 2017, 402, 206-211.	0.6	9
473	Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nature Communications, 2017, 8, 14999.	5.8	95
474	Efficiency of Cathodoluminescence Emission by Nitrogenâ€Vacancy Color Centers in Nanodiamonds. Small, 2017, 13, 1700543.	5.2	8
475	Waveguide Bandgap in Crystalline Bandgap Slows Down Surface Plasmon Polariton. ACS Photonics, 2017, 4, 1361-1370.	3.2	10
476	In Situ Electron Microscopy of Plasmon-Mediated Nanocrystal Synthesis. Journal of the American Chemical Society, 2017, 139, 6771-6776.	6.6	35
477	Monocrystalline Nanopatterns Made by Nanocube Assembly and Epitaxy. Advanced Materials, 2017, 29, 1701064.	11.1	16
478	Scattering delocalization and radiation damage in STEM-EELS. Ultramicroscopy, 2017, 180, 115-124.	0.8	50
479	Active coherent control of nanoscale light confinement: Modulation of plasmonic modes and position of hotspots for surface-enhanced Raman scattering detection. Nano Research, 2017, 10, 2934-2943.	5.8	1
480	Self-Organized Freestanding One-Dimensional Au Nanoparticle Arrays. ACS Nano, 2017, 11, 5844-5852.	7.3	12
481	Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers. ACS Nano, 2017, 11, 5836-5843.	7.3	35
482	Spectroscopic Methods in Catalysis and Their Application in Well-Defined Nanocatalysts. Studies in Surface Science and Catalysis, 2017, , 221-284.	1.5	3
483	Analytical plasmon dispersion in subwavelength closely spaced Au nanorod arrays from planar metal–insulator–metal waveguides. Journal of Materials Chemistry C, 2017, 5, 6079-6085.	2.7	15
484	Plasmon field enhancement oscillations induced by strain-mediated coupling between a quantum dot and mechanical oscillator. Nanotechnology, 2017, 28, 255203.	1.3	1
485	Electrical Generation of Light from Plasmonic Gold Nanoparticles. , 2017, , 365-391.		0
486	Cathodoluminescence in the scanning transmission electron microscope. Ultramicroscopy, 2017, 176, 112-131.	0.8	97

		Citation R	EPORT	
#	Article		IF	Citations
487	Multidimensional Hybridization of Dark Surface Plasmons. ACS Nano, 2017, 11, 4265-4	1274.	7.3	21
488	Spatial Confinement of Light onto a Flat Metallic Surface Using Hybridization between Advanced Optical Materials, 2017, 5, 1700097.	Two Cavities.	3.6	23
489	Optical properties of (Pb 1- x Mn x S) 1- y Fe y materials from first-principles calculatior Journal of Physics, 2017, 55, 1032-1043.	is. Chinese	2.0	36
490	Momentum-Resolved Electron Energy Loss Spectroscopy for Mapping the Photonic De ACS Photonics, 2017, 4, 1009-1014.	nsity of States.	3.2	23
491	Charge-transfer states and optical transitions at the pentacene-TiO ₂ interf Journal of Physics, 2017, 19, 033019.	ace. New	1.2	13
492	Vibrational and valence aloof beam EELS: A potential tool for nondestructive characteri nanoparticle surfaces. Ultramicroscopy, 2017, 180, 104-114.	zation of	0.8	64
493	Mode Coupling in Plasmonic Heterodimers Probed with Electron Energy Loss Spectroso 2017, 11, 3485-3495.	copy. ACS Nano,	7.3	42
494	Mapping vibrational surface and bulk modes in a single nanocube. Nature, 2017, 543, 5	529-532.	13.7	215
495	Publisher's Note. Ultramicroscopy, 2017, 174, 50.		0.8	21
496	Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosec resolution with a high coherence electron beam. Ultramicroscopy, 2017, 176, 63-73.	ond	0.8	292
497	Efficient Excitation of Higher Order Modes in the Plasmonic Response of Individual Cor Nanocubes. Journal of Physical Chemistry C, 2017, 121, 731-740.	icave Gold	1.5	20
498	Where Does Energy Go in Electron Energy Loss Spectroscopy of Nanostructures?. ACS 4, 156-164.	Photonics, 2017,	3.2	21
499	Direct Fabrication of 3D Metallic Networks and Their Performance. Advanced Materials 1604018.	, 2017, 29,	11.1	30
500	Strain-Dependent Edge Structures in MoS ₂ Layers. Nano Letters, 2017, 1	7, 7021-7026.	4.5	40
501	3D Imaging of Gap Plasmons in Vertically Coupled Nanoparticles by EELS Tomography. 2017, 17, 6773-6777.	Nano Letters,	4.5	31
502	Strong Plasmon-Phonon Splitting and Hybridization in 2D Materials Revealed through a Approach. ACS Photonics, 2017, 4, 2908-2915.	Self-Energy	3.2	9
503	Inside out—Visualizing dynamic chemical transformations in situ with nanometer-sca MRS Bulletin, 2017, 42, 743-751.	e resolution.	1.7	0
504	Plasmon-assisted resonant tunneling in graphene-based heterostructures. Physical Rev	ew B, 2017, 96, .	1.1	8

#	Article	IF	CITATIONS
505	Plasmonic Nonlocal Response Effects on Dipole Decay Dynamics in the Weak- and Strong-Coupling Regimes. Journal of Physical Chemistry C, 2017, 121, 22361-22368.	1.5	24
506	Cathodoluminescence for the 21st century: Learning more from light. Applied Physics Reviews, 2017, 4,	5.5	71
507	Revealing the spectral response of a plasmonic lens using low-energy electrons. Physical Review B, 2017, 96, .	1.1	6
508	Interaction of electron beams with optical nanostructures and metamaterials: from coherent photon sources towards shaping the wave function. Journal of Optics (United Kingdom), 2017, 19, 103001.	1.0	60
509	Plasmonics simulations including nonlocal effects using a boundary element method approach. International Journal of Modern Physics B, 2017, 31, 1740007.	1.0	12
510	Generation of convergent light beams by using surface plasmon locked Smith-Purcell radiation. Scientific Reports, 2017, 7, 11096.	1.6	17
511	Energy Losses and Transition Radiation in Multilayer Graphene Traversed by a Fast Charged Particle. ACS Photonics, 2017, 4, 1980-1992.	3.2	22
512	Photon bunching reveals single-electron cathodoluminescence excitation efficiency in InGaN quantum wells. Physical Review B, 2017, 96, .	1.1	33
513	Secondary Electron Cloaking with Broadband Plasmonic Resonant Absorbers. Journal of Physical Chemistry Letters, 2017, 8, 3912-3916.	2.1	10
514	Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nature Communications, 2017, 8, 95.	5.8	111
515	Unveiling quasi-dark surface plasmon modes in Au nanoring cavities by cathodoluminescence. Scientific Reports, 2017, 7, 1402.	1.6	8
516	Optical reconfiguration and polarization control in semi-continuous gold films close to the percolation threshold. Nanoscale, 2017, 9, 12014-12024.	2.8	11
517	Plasmon Generation through Electron Tunneling in Graphene. ACS Photonics, 2017, 4, 2367-2375.	3.2	41
518	Temperature tunability of surface plasmon enhanced Smith-Purcell terahertz radiation for semiconductor-based grating. Scientific Reports, 2017, 7, 6443.	1.6	9
519	Hydrodynamic model approach to the formation of plasmonic wakes in graphene. Physical Review B, 2017, 96, .	1.1	24
520	Vibrational Surface Electron-Energy-Loss Spectroscopy Probes Confined Surface-Phonon Modes. Physical Review X, 2017, 7, .	2.8	36
521	Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nature Photonics, 2017, 11, 793-797.	15.6	238
522	Terahertz and infrared Smith-Purcell radiation from Babinet metasurfaces: Loss and efficiency. Physical Review B, 2017, 96, .	1.1	19

#	Article	IF	CITATIONS
523	Cathodoluminescence of Self-Organized Heterogeneous Phases in Multidimensional Perovskite Thin Films. Chemistry of Materials, 2017, 29, 10088-10094.	3.2	30
524	Tomographic imaging of the photonic environment of plasmonic nanoparticles. Nature Communications, 2017, 8, 37. Plasmons at the <mmi:math< td=""><td>5.8</td><td>51</td></mmi:math<>	5.8	51
525	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi>LaAlO</mml:mi><mr interface and in the graphene- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LaAlO</mml:mi><mml:mn>3/ <mml:math< td=""><td>nl:mn>3<!--<br-->nl:mn><td>mml:mn>mlunsub></td></td></mml:math<></mml:mn></mml:msub></mml:math </mr </mml:msub></mml:mrow>	nl:mn>3 <br nl:mn> <td>mml:mn>mlunsub></td>	mml:mn>mlunsub>
526	xmlns:mml="http://www.w3.org/1998/Math/Math/L"> <mml:msub><mml:mi>Sr1iO</mml:mi><mml:mi Phy Correlation between deposition parameters of periodic titanium metal/oxide nanometric multilayers and their chemical and structural properties investigated by STEM-EELS. Micron, 2017, 101, 62-68.</mml:mi </mml:msub>	1.1	3
527	Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy. Ultramicroscopy, 2017, 178, 2-11.	0.8	9
528	Active magnetoplasmonic split-ring/ring nanoantennas. Nanoscale, 2017, 9, 37-44.	2.8	25
529	Electron microscopy methods for space-, energy-, and time-resolved plasmonics. Frontiers of Physics, 2017, 12, 1.	2.4	42
530	Electronic Scattering of Graphene Plasmons in the Terahertz Nonlinear Regime. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 1-6.	1.9	15
531	Extending the Frequency Range of Surface Plasmon Polariton Mode with Meta-Material. Nano-Micro Letters, 2017, 9, 9.	14.4	8
532	Transition radiation in EELS and cathodoluminescence. Ultramicroscopy, 2017, 173, 31-35.	0.8	11
533	Hollow metal nanostructures for enhanced plasmonics: synthesis, local plasmonic properties and applications. Nanophotonics, 2017, 6, 193-213.	2.9	107
534	Differential Equations for Localized Plasmons in the Random Phase Approximation. E-Journal of Surface Science and Nanotechnology, 2017, 15, 103-107.	0.1	5
535	The interaction of nanostructures with optical fields. , 2017, , .		0
536	Two-dimensional imaging and modification of nanophotonic resonator modes using a focused ion beam. Optica, 2017, 4, 1444.	4.8	10
537	Near-field study on the transition from localized to propagating plasmons on 2D nano-triangles. Optics Express, 2017, 25, 16947.	1.7	7
538	Cathodoluminescence spectroscopy of plasmonic patch antennas: towards lower order and higher energies. Optics Express, 2017, 25, 5488.	1.7	9
539	Mediated coupling of surface plasmon polaritons by a moving electron beam. Optics Express, 2017, 25, 25919.	1.7	7
540	Smith-Purcell radiation in the presence of short-range disorder. , 2017, , .		0

ARTICLE IF CITATIONS # Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle 541 2.1 9 System. Sensors, 2017, 17, 1445. Splashing transients of 2D plasmons launched by swift electrons., 2017,,. 542 543 Numerical simulations of nanostructured gold films., 2017,,. 0 Many-Body Theory of Proton-Generated Point Defects for Losses of Electron Energy and Photons in 544 Quantum Wells. Physical Review Applied, 2018, 9, . Excitation of hybridized Dirac plasmon polaritons and transition radiation in multi-layer graphene 545 1.3 11 traversed by a fast charged particle. Nanotechnology, 2018, 29, 225201. Roadmap on plasmonics. Journal of Optics (United Kingdom), 2018, 20, 043001. 1.0 240 Symmetry Reduction and Shape Effects in Concave Chiral Plasmonic Structures. Journal of Physical 547 1.5 3 Chemistry C, 2018, 122, 5049-5056. The study of the plasmon modes of square atomic clusters based on the eigen-oscillation equation of 548 1.0 charge under the free-electron gas model. International Journal of Modern Physics B, 2018, 32, 1850139. Inelastic vibrational bulk and surface losses of swift electrons in ionic nanostructures. Physical 549 1.1 18 Review B, 2018, 97, . Visualizing the bidirectional optical transfer function for near-field enhancement in waveguide 1.6 coupled plasmonic transducers. Scientific Reports, 2018, 8, 5761. Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures. ACS 551 7.357 Nano, 2018, 12, 3908-3916. Highâ€Q Metallic Fano Metamaterial for Highly Efficient Cerenkov Lasing. Advanced Optical Materials, 3.6 2018, 6, 1800041. Exploring the capabilities of monochromated electron energy loss spectroscopy in the infrared 553 1.6 67 regime. Šcientific Reports, 2018, 8, 5637. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy. ACS Nano, 2018, 12, 4775-4786. 554 555 Plasmon Waveguiding in Nanowires. Chemical Reviews, 2018, 118, 2882-2926. 23.0 179 Production of plasmons in two layers of graphene with different doping densities traversed by swift 3.1 electrons. Applied Surface Science, 2018, 446, 191-195. Design of a cathodoluminescence image generator using a Raspberry Pi coupled to a scanning 557 0.6 2 electron microscope. Review of Scientific Instruments, 2018, 89, 013702. 558 Long-Range Coupling of Toroidal Moments for the Visible. ACS Photonics, 2018, 5, 1326-1333. 3.2

#	Article	IF	CITATIONS
559	The Nanoscale Optical Properties of Complex Nanostructures. Springer Theses, 2018, , .	0.0	0
560	Thermoresponsive plasmonic core–satellite nanostructures with reversible, temperature sensitive optical properties. Nanoscale, 2018, 10, 4284-4290.	2.8	29
561	Detailed correlations between SERS enhancement and plasmon resonances in subwavelength closely spaced Au nanorod arrays. Nanoscale, 2018, 10, 4267-4275.	2.8	40
562	Energy–Momentum Cathodoluminescence Spectroscopy of Dielectric Nanostructures. ACS Photonics, 2018, 5, 1381-1387.	3.2	22
564	Three-Dimensional Multipole Rotation in Spherical Silver Nanoparticles Observed by Cathodoluminescence. ACS Photonics, 2018, 5, 2555-2560.	3.2	15
565	Reveal and Control of Chiral Cathodoluminescence at Subnanoscale. Nano Letters, 2018, 18, 567-572.	4.5	49
566	Evanescent spherical field of charged particle at rest. Optik, 2018, 156, 738-742.	1.4	0
567	meV Resolution in Laser-Assisted Energy-Filtered Transmission Electron Microscopy. ACS Photonics, 2018, 5, 759-764.	3.2	70
568	Direction-division multiplexed holographic free-electron-driven light sources. Applied Physics Letters, 2018, 112, .	1.5	6
569	Multipolar Nanocube Plasmon Mode-Mixing in Finite Substrates. Journal of Physical Chemistry Letters, 2018, 9, 504-512.	2.1	19
571	Nanoscale Imaging of Light-Matter Coupling Inside Metal-Coated Cavities with a Pulsed Electron Beam. Nano Letters, 2018, 18, 6107-6112.	4.5	7
572	The Generalized Multipole Technique for the Simulation of Low-Loss Electron Energy Loss Spectroscopy. Springer Series on Atomic, Optical, and Plasma Physics, 2018, , 147-167.	0.1	1
573	Nanoscale Relative Emission Efficiency Mapping Using Cathodoluminescence g ⁽²⁾ Imaging. Nano Letters, 2018, 18, 2288-2293.	4.5	32
574	The Generalized Multipole Technique for Light Scattering. Springer Series on Atomic, Optical, and Plasma Physics, 2018, , .	0.1	9
575	MMP Simulation of Plasmonic Particles on Substrate Under E-Beam Illumination. Springer Series on Atomic, Optical, and Plasma Physics, 2018, , 121-145.	0.1	2
576	Controllable Steering and Tuning of Surface Plasmons on the Metallic Nano-film with Nanoslits Array. Plasmonics, 2018, 13, 915-919.	1.8	2
577	Plasmon Responses in the Sodium Tungsten Bronzes. Plasmonics, 2018, 13, 437-444.	1.8	28
578	Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film. Plasmonics, 2018, 13, 997-1014.	1.8	13

#	Article	IF	CITATIONS
579	Making simulations with the MNPBEM toolbox big: Hierarchical matrices and iterative solvers. Computer Physics Communications, 2018, 222, 209-228.	3.0	19
580	Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance. Nanophotonics, 2018, 7, 93-110.	2.9	96
581	Effect of asymmetric morphology on coupling surface plasmon modes and generalized plasmon ruler. Ultramicroscopy, 2018, 185, 55-64.	0.8	4
582	Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy. Chemical Reviews, 2018, 118, 2994-3031.	23.0	112
583	How Dark Are Radial Breathing Modes in Plasmonic Nanodisks?. ACS Photonics, 2018, 5, 861-866.	3.2	30
584	Free electrons excited SPASER. Optics Express, 2018, 26, 31402.	1.7	7
585	Hydrophobic mediated growth of galvanic-nanobuds from germanium nanowires for a highly tunable SERS substrate. New Journal of Chemistry, 2018, 42, 20061-20068.	1.4	1
586	Cathodoluminescence nanoscopy of open single-crystal aluminum plasmonic nanocavities. Nanoscale, 2018, 10, 22357-22361.	2.8	9
587	Numerical simulation of electron energy loss spectroscopy accounting for nonlocal effect in plasmonic nanoparticles. Journal of Physics: Conference Series, 2018, 1092, 012079.	0.3	1
588	Investigation on the localized surface plasmon resonance (LSPR) of silver nanoparticles using electron energy loss spectroscopy (EELS) simulation. AIP Conference Proceedings, 2018, , .	0.3	0
589	Plasmonic Hot Carriers Imaging: Promise and Outlook. ACS Photonics, 2018, 5, 4711-4723.	3.2	46
590	Selected Mode Mixing and Interference Visualized within a Single Optical Nanoantenna. ACS Photonics, 2018, 5, 4986-4992.	3.2	12
591	Vibrational electron energy loss spectroscopy in truncated dielectric slabs. Physical Review B, 2018, 98, .	1.1	23
592	Generation of light beams by electron beam excited surface plasmons. , 2018, , .		0
593	Tunable Extremely Ultra-Violet Emitter Based on Threshold-Less Cherenkov Radiation. , 2018, , .		0
594	Multi-Color Coherent Smith-Purcell Radiation with Controllable Direction from 2D Rectangular Sub-Wavelength Hole Array. , 2018, , .		1
595	All-dielectric free-electron-driven holographic light sources. Applied Physics Letters, 2018, 113, .	1.5	5
596	Monolayer and thin <i>h</i> –BN as substrates for electron spectro-microscopy analysis of plasmonic nanoparticles. Applied Physics Letters, 2018, 113,	1.5	9

#	Article	IF	CITATIONS
597	Cherenkov Radiation from Photonic Bound States in the Continuum: Towards Compact Free-Electron Lasers. Physical Review Applied, 2018, 10, .	1.5	21
598	Electron-light interactions beyond the adiabatic approximation: recoil engineering and spectral interferometry. Advances in Physics: X, 2018, 3, 1499438.	1.5	26
599	Core–Shell Gold@Silver Nanorods of Varying Length for High Surface-Enhanced Raman Scattering Enhancement. ACS Applied Nano Materials, 2018, 1, 5589-5600.	2.4	42
600	On the reflection and shadow boundaries for a moving line source illumination. Electromagnetics, 2018, 38, 448-457.	0.3	Ο
601	Intrinsic luminescence from metal nanostructures and its applications. Chinese Physics B, 2018, 27, 097302.	0.7	6
602	Coupling of Surface Plasmon Modes and Refractive Index Sensitivity of Hollow Silver Nanoprism. Scientific Reports, 2018, 8, 15993.	1.6	11
603	Cathodoluminescence as a probe of the optical properties of resonant apertures in a metallic film. Beilstein Journal of Nanotechnology, 2018, 9, 1491-1500.	1.5	5
604	Spectral field mapping in plasmonic nanostructures with nanometer resolution. Nature Communications, 2018, 9, 4207.	5.8	21
605	Nonperturbative Quantum Electrodynamics in the Cherenkov Effect. Physical Review X, 2018, 8, .	2.8	9
606	STEM Imaging with Beam-Induced Hole and Secondary Electron Currents. Physical Review Applied, 2018, 10, .	1.5	29
607	DNA-Assembled Plasmonic Waveguides for Nanoscale Light Propagation to a Fluorescent Nanodiamond. Nano Letters, 2018, 18, 7323-7329.	4.5	58
608	Surface enhanced Raman scattering (SERS) in the visible range on scalable aluminum-coated platforms. Chemical Communications, 2018, 54, 10638-10641.	2.2	16
609	Smith–Purcell Radiation from Low-Energy Electrons. ACS Photonics, 2018, 5, 3513-3518.	3.2	46
610	Second harmonic generation hotspot on a centrosymmetric smooth silver surface. Light: Science and Applications, 2018, 7, 49.	7.7	35
611	Plasmonic Modes in Au and AuAg Nanowires and Nanowire Dimers Studied by Electron Energy Loss Spectroscopy. , 2018, , .		0
612	Artificial Plasmonic Molecules and Their Interaction with Real Molecules. Chemical Reviews, 2018, 118, 5539-5580.	23.0	80
613	Electron transmission through a steel capillary. Nuclear Instruments & Methods in Physics Research B, 2018, 423, 87-91.	0.6	1
614	Understanding photoluminescence of metal nanostructures based on an oscillator model. Nanotechnology, 2018, 29, 315201.	1.3	13

	Сітатіс	n Report	
#	Article	IF	CITATIONS
615	Controlling Cherenkov angles with resonance transition radiation. Nature Physics, 2018, 14, 816-821.	6.5	88
616	Ultrafast Transmission Electron Microscopy: Historical Development, Instrumentation, and Applications. Advances in Imaging and Electron Physics, 2018, 207, 1-72.	0.1	27
617	Materials characterization by synchrotron x-ray microprobes and nanoprobes. Reviews of Modern Physics, 2018, 90, .	16.4	93
618	Comparative study of plasmonic antennas fabricated by electron beam and focused ion beam lithography. Scientific Reports, 2018, 8, 9640.	1.6	63
619	Excitation of long-wavelength surface optical vibrational modes in films, cubes and film/cube composite system using an atom-sized electron beam. Microscopy (Oxford, England), 2018, 67, i3-i13.	0.7	20
620	The influence of surfaces and interfaces on high spatial resolution vibrational EELS from SiO2. Microscopy (Oxford, England), 2018, 67, i14-i23.	0.7	24
621	Correlative electron energy loss spectroscopy and cathodoluminescence spectroscopy on three-dimensional plasmonic split ring resonators. Microscopy (Oxford, England), 2018, 67, i40-i51.	0.7	5
622	Localized Plasmonic Resonances of Prolate Nanoparticles in a Symmetric Environment: Experimental Verification of the Accuracy of Numerical and Analytical Models. Physical Review Applied, 2018, 9, .	1.5	14
623	Vibrational Spectroscopy of Water with High Spatial Resolution. Advanced Materials, 2018, 30, e1802702.	11.1	45
624	Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp. Materials, 2018, 11, 1304.	1.3	19
625	Imaging Electric and Magnetic Modes and Their Hybridization in Single and Dimer AlGaAs Nanoantennas. Advanced Optical Materials, 2018, 6, 1800664.	3.6	10
626	Unveiling and Imaging Degenerate States in Plasmonic Nanoparticles with Nanometer Resolution. ACS Nano, 2018, 12, 8436-8446.	7.3	22
627	Theory of Localized Plasmons for Metal Nanostructures in Dielectrics. E-Journal of Surface Science and Nanotechnology, 2018, 16, 329-338.	0.1	5
628	Multi-color and multidirectional-steerable Smith-Purcell radiation from 2D sub-wavelength hole arrays. Applied Physics Letters, 2018, 113, .	1.5	26
629	Electronic response of aluminum-bearing minerals. Journal of Chemical Physics, 2018, 149, 024502.	1.2	11
630	Efficient orbital angular momentum transfer between plasmons and free electrons. Physical Review B, 2018, 98, .	1.1	35
631	Measurement of the Indirect Band Gap of Diamond with EELS in STEM. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800318.	0.8	5
632	Efficient terahertz and infrared Smith–Purcell radiation from metal-slot metasurfaces. Optics Letters, 2018, 43, 3858.	1.7	20

#	Article	IF	CITATIONS
633	Imaging of immunogold labeling in cells and tissues by helium ion microscopy. International Journal of Molecular Medicine, 2018, 42, 309-321.	1.8	5
634	Two-color multiphoton emission for comprehensive reveal of ultrafast plasmonic field distribution. New Journal of Physics, 2018, 20, 073031.	1.2	16
635	Study on the Coupling Mechanism of the Orthogonal Dipoles with Surface Plasmon in Green LED by Cathodoluminescence. Nanomaterials, 2018, 8, 244.	1.9	6
636	Maximal spontaneous photon emission and energy loss from free electrons. Nature Physics, 2018, 14, 894-899.	6.5	100
637	Tunable Low Loss 1D Surface Plasmons in InAs Nanowires. Advanced Materials, 2018, 30, e1802551.	11.1	18
638	Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nature Communications, 2018, 9, 2694.	5.8	136
639	Effect of dipole polarization orientation on surface plasmon coupling with green emitting quantum wells by cathodoluminescence. RSC Advances, 2018, 8, 16370-16377.	1.7	3
640	Electron Energy‣oss Spectroscopy of Spatial Nonlocality and Quantum Tunneling Effects in the Bright and Dark Plasmon Modes of Gold Nanosphere Dimers. Advanced Quantum Technologies, 2018, 1, 1800016.	1.8	13
641	Excitation of direction-tunable surface plasmon polaritons by using a rectangular array of silver nanodisks. Optics Express, 2018, 26, 20102.	1.7	0
642	Electron Energy-Loss Spectroscopy and Imaging â~†. , 2018, , .		0
642 643	Electron Energy-Loss Spectroscopy and Imaging â ⁺ t., 2018, , . Aloof-beam Vibrational Electron Energy-loss Spectroscopy of Adsorbate/Metal Particle Systems. Microscopy and Microanalysis, 2018, 24, 460-461.	0.2	0
642 643 644	Electron Energy-Loss Spectroscopy and Imaging â't., 2018,,. Aloof-beam Vibrational Electron Energy-loss Spectroscopy of Adsorbate/Metal Particle Systems. Microscopy and Microanalysis, 2018, 24, 460-461. Surface-enhanced Raman scattering (SERS) as probe of plasmonic near-field resonances. Vibrational Spectroscopy, 2018, 99, 34-43.	0.2	0 5 10
642 643 644 645	Electron Energy-Loss Spectroscopy and Imaging â't., 2018,,. Aloof-beam Vibrational Electron Energy-loss Spectroscopy of Adsorbate/Metal Particle Systems. Microscopy and Microanalysis, 2018, 24, 460-461. Surface-enhanced Raman scattering (SERS) as probe of plasmonic near-field resonances. Vibrational Spectroscopy, 2018, 99, 34-43. Thermometry with Subnanometer Resolution in the Electron Microscope Using the Principle of Detailed Balancing. Nano Letters, 2018, 18, 4556-4563.	0.2 1.2 4.5	0 5 10 65
 642 643 644 645 646 	Electron Energy-Loss Spectroscopy and Imaging â~t., 2018, , . Aloof-beam Vibrational Electron Energy-loss Spectroscopy of Adsorbate/Metal Particle Systems. Microscopy and Microanalysis, 2018, 24, 460-461. Surface-enhanced Raman scattering (SERS) as probe of plasmonic near-field resonances. Vibrational Spectroscopy, 2018, 99, 34-43. Thermometry with Subnanometer Resolution in the Electron Microscope Using the Principle of Detailed Balancing. Nano Letters, 2018, 18, 4556-4563. Paraxial Quantum Mechanics. Advances in Imaging and Electron Physics, 2018, 206, 15-58.	0.2 1.2 4.5 0.1	0 5 10 65 5
 642 643 644 645 646 647 	Electron Energy-Loss Spectroscopy and Imaging â'f., 2018, , . Aloof-beam Vibrational Electron Energy-loss Spectroscopy of Adsorbate/Metal Particle Systems. Microscopy and Microanalysis, 2018, 24, 460-461. Surface-enhanced Raman scattering (SERS) as probe of plasmonic near-field resonances. Vibrational Spectroscopy, 2018, 99, 34-43. Thermometry with Subnanometer Resolution in the Electron Microscope Using the Principle of Detailed Balancing. Nano Letters, 2018, 18, 4556-4563. Paraxial Quantum Mechanics. Advances in Imaging and Electron Physics, 2018, 206, 15-58. Theory of localized plasmons for multiple metal nanostructures in dielectrics. Japanese Journal of Applied Physics, 2019, 58, SIIA07.	0.2 1.2 4.5 0.1 0.8	0 5 10 65 5
 642 643 644 645 646 647 648 	Electron Energy-Loss Spectroscopy and Imaging â't., 2018,,. Aloof-beam Vibrational Electron Energy-loss Spectroscopy of Adsorbate/Metal Particle Systems. Microscopy and Microanalysis, 2018, 24, 460-461. Surface-enhanced Raman scattering (SERS) as probe of plasmonic near-field resonances. Vibrational Spectroscopy, 2018, 99, 34-43. Thermometry with Subnanometer Resolution in the Electron Microscope Using the Principle of Detailed Balancing. Nano Letters, 2018, 18, 4556-4563. Paraxial Quantum Mechanics. Advances in Imaging and Electron Physics, 2018, 206, 15-58. Theory of localized plasmons for multiple metal nanostructures in dielectrics. Japanese Journal of Applied Physics, 2019, 58, SILAO7. In situ electron microscopy observation of the redox process in plasmonic heterogeneous photo-sensitive nanoparticles. Nanoscale Advances, 2019, 1, 3909-3917.	0.2 1.2 4.5 0.1 0.8 2.2	0 5 10 65 5 2
 642 643 644 645 646 647 648 649 	Electron Energy-Loss Spectroscopy and Imaging â't., 2018, Aloof-beam Vibrational Electron Energy-loss Spectroscopy of Adsorbate/Metal Particle Systems. Microscopy and Microanalysis, 2018, 24, 460-461. Surface-enhanced Raman scattering (SERS) as probe of plasmonic near-field resonances. Vibrational Spectroscopy, 2018, 99, 34-43. Thermometry with Subnanometer Resolution in the Electron Microscope Using the Principle of Detailed Balancing. Nano Letters, 2018, 18, 4556-4563. Paraxial Quantum Mechanics. Advances in Imaging and Electron Physics, 2018, 206, 15-58. Theory of localized plasmons for multiple metal nanostructures in dielectrics. Japanese Journal of Applied Physics, 2019, 58, SIIA07. In situ electron microscopy observation of the redox process in plasmonic heterogeneous-photo-sensitive nanoparticles. Nanoscale Advances, 2019, 1, 3909-3917. Transition Radiation in Photonic Topological Crystals: Quasiresonant Excitation of Robust Edge States by a Moving Charge. Physical Review Letters, 2019, 123, 057402.	0.2 1.2 4.5 0.1 0.8 2.2 2.9	0 5 10 65 2 2 2

ARTICLE IF CITATIONS # Towards integrated tunable all-silicon free-electron light sources. Nature Communications, 2019, 10, 651 5.8 55 3176. Electron-beam spectroscopy for nanophotonics. Nature Materials, 2019, 18, 1158-1171. 13.3 193 653 Light-emitting metasurfaces. Nanophotonics, 2019, 8, 1151-1198. 2.9 166 Complete Control of Smith-Purcell Radiation by Graphene Metasurfaces. ACS Photonics, 2019, 6, 654 1947-1954. Electronic Structure-Dependent Surface Plasmon Resonance in Single Auâ€"Fe Nanoalloys. Nano 655 4.5 37 Letters, 2019, 19, 5754-5761. Interference between quantum paths in coherent Kapitza–Dirac effect. New Journal of Physics, 2019, 1.2 21,093016. 657 Light emission based on nanophotonic vacuum forces. Nature Physics, 2019, 15, 1284-1289. 6.5 21 STEM-EELS Imaging of Resonant Modes in Dielectric Silicon Nanostructures. Microscopy and 0.2 Microanalysis, 2019, 25, 634-635. Theory for High Energy Resolution EELS of Vibrational and Defect States. Microscopy and 659 0.2 0 Microanalysis, 2019, 25, 616-617. Localization of Plasmon Resonance Using Momentum-Resolved EELS. Microscopy and Microanalysis, 0.2 2019, 25, 642-643. Visualizing Spatial Variations of Plasmon–Exciton Polaritons at the Nanoscale Using Electron 661 77 4.5Microscopy. Nano Letters, 2019, 19, 8171-8181. Accelerated-Cherenkov radiation and signatures of radiation reaction. New Journal of Physics, 2019, 1.2 21.083038. Direct Quantification of Cu Vacancies and Spatial Localization of Surface Plasmon Resonances in 663 13 Copper Phosphide Nanocrystals. , 2019, 1, 665-670. Comparative Investigation of Plasmonic Properties between Tunable Nanoobjects and Metallized Nanoprobes for Optical Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 28392-28400. 664 1.5 Size-dependent dielectric function for electron-energy-loss spectra of plasmonic nanoparticles. 665 2 0.6 Journal of Modern Optics, 2019, 66, 2025-2036. Direct Observation of Infrared Plasmonic Fano Antiresonances by a Nanoscale Electron Probe. Physical Review Letters, 2019, 123, 177401. Optical antennas driven by quantum tunneling: a key issues review. Reports on Progress in Physics, 667 8.1 56 2019, 82, 112401. Continuous Wave Resonant Photon Stimulated Electron Energy-Gain and Electron Energy-Loss 3.2 Spectroscopy of Individual Plasmonic Nanoparticles. ACS Photonics, 2019, 6, 2499-2508.

#	Article	IF	CITATIONS
669	Ridge reflection of surface plasmon-polaritons in a one-dimensional plasmonic cavity. Physical Review B, 2019, 100, .	1.1	1
670	Entanglements of Electrons and Cavity Photons in the Strong-Coupling Regime. Physical Review Letters, 2019, 123, 103602.	2.9	112
671	Controlling the degrees of freedom in metasurface designs for multi-functional optical devices. Nanoscale Advances, 2019, 1, 3786-3806.	2.2	30
672	Design and application of a relativistic Kramers–Kronig analysis algorithm. Ultramicroscopy, 2019, 206, 112825.	0.8	3
673	Far-Field Radiation of Three-Dimensional Plasmonic Gold Tapers near Apexes. ACS Photonics, 2019, 6, 2509-2516.	3.2	4
674	Ab Initio Simulation of Position-Dependent Electron Energy Loss and Its Application to the Plasmon Excitation of Nanographene. Journal of Physical Chemistry C, 2019, 123, 25341-25348.	1.5	4
675	Imaging Chladni Figure of Plasmonic Charge Density Wave in Real Space. ACS Photonics, 2019, 6, 2685-2693.	3.2	6
676	High brightness ultrafast transmission electron microscope based on a laser-driven cold-field emission source: principle and applications. Advances in Physics: X, 2019, 4, 1660214.	1.5	10
677	Electronic tweezers for magnesium oxide nanoparticles. Materials Today: Proceedings, 2019, 13, 341-348.	0.9	4
678	Conventional vs. model-based measurement of patterned line widths from scanning electron microscopy profiles. Ultramicroscopy, 2019, 206, 112819.	0.8	4
679	Radiation of Dynamic Toroidal Moments. ACS Photonics, 2019, 6, 467-474.	3.2	22
680	Electromagnetic fields produced by a swift electron: A source of white light. Wave Motion, 2019, 86, 137-149.	1.0	6
681	Atomistic electrodynamics simulations of plasmonic nanoparticles. Journal Physics D: Applied Physics, 2019, 52, 363002.	1.3	7
682	Detecting Gunshot Residue from Sellier & Bellot Nontox Heavy Metalâ€free Primer by <i>in situ</i> Cathodoluminescence. Journal of Forensic Sciences, 2019, 64, 1658-1667.	0.9	17
683	Direct measurement and analytical description of the mode alignment in inversely tapered silicon nano-resonators. Scientific Reports, 2019, 9, 9024.	1.6	1
684	Light radiation from surface plasmon polaritons in a structure of nanometal film on a subwavelength dielectric grating. AIP Advances, 2019, 9, .	0.6	3
685	Crystallization processes in europium-doped Bi4Ge3O12 glass materials. Journal of Luminescence, 2019, 213, 235-240.	1.5	5
686	Holographic imaging of electromagnetic fields via electron-light quantum interference. Science Advances, 2019, 5, eaav8358.	4.7	58

#	Article	IF	CITATIONS
687	Quantifying transmission electron microscopy irradiation effects using two-dimensional materials. Nature Reviews Physics, 2019, 1, 397-405.	11.9	79
688	Hot electron science in plasmonics and catalysis: what we argue about. Faraday Discussions, 2019, 214, 501-511.	1.6	24
689	Plasmons and Plasmon–Polaritons in Finite Ionic Systems: Toward Soft-Plasmonics of Confined Electrolyte Structures. Applied Sciences (Switzerland), 2019, 9, 1159.	1.3	6
690	Syntheses of Colloidal F:In ₂ O ₃ Cubes: Fluorine-Induced Faceting and Infrared Plasmonic Response. Chemistry of Materials, 2019, 31, 2661-2676.	3.2	41
691	Spatially and spectrally resolved orbital angular momentum interactions in plasmonic vortex generators. Light: Science and Applications, 2019, 8, 33.	7.7	25
692	Probing the Band Structure of Topological Silicon Photonic Lattices in the Visible Spectrum. Physical Review Letters, 2019, 122, 117401.	2.9	87
693	Phonon Polaritonics in Two-Dimensional Materials. Nano Letters, 2019, 19, 2653-2660.	4.5	53
694	Daylight-Induced Metal–Insulator Transition in Ag-Decorated Vanadium Dioxide Nanorod Arrays. ACS Applied Materials & Interfaces, 2019, 11, 11568-11578.	4.0	20
695	Spatial Resolution of Coherent Cathodoluminescence Super-Resolution Microscopy. ACS Photonics, 2019, 6, 1067-1072.	3.2	22
696	Fundamentals of cathodoluminescence in a STEM: The impact of sample geometry and electron beam energy on light emission of semiconductors. Ultramicroscopy, 2019, 200, 111-124.	0.8	9
697	Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy. Nature Nanotechnology, 2019, 14, 420-425.	15.6	36
698	Spectral Tuning of High Order Plasmonic Resonances in Multimodal Filmâ€Coupled Crystalline Cavities. Advanced Optical Materials, 2019, 7, 1801787.	3.6	4
699	Direct observation of an electrically degenerate interface layer in a GaN/sapphire heterostructure. Nanoscale, 2019, 11, 8281-8292.	2.8	12
700	Plasmon generation through electron tunneling in twisted double-layer graphene and metal-insulator-graphene systems. Physical Review B, 2019, 99, .	1.1	4
701	Limits of Babinet's principle for solid and hollow plasmonic antennas. Scientific Reports, 2019, 9, 4004.	1.6	29
702	Hydrodynamics of Fermi arcs: Bulk flow and surface collective modes. Physical Review B, 2019, 99, .	1.1	19
703	Manipulating Cherenkov Radiation and Smith–Purcell Radiation by Artificial Structures. Advanced Optical Materials, 2019, 7, 1801666.	3.6	40
704	Nanoscale probing of resonant photonic modes in dielectric nanoparticles with focused electron beams. Physical Review B, 2019, 99, .	1.1	12

#	Article	IF	CITATIONS
705	Orbital Angular Momentum and Energy Loss Characterization of Plasmonic Excitations in Metallic Nanostructures in TEM. ACS Photonics, 2019, 6, 620-627.	3.2	16
706	Optical Property–Composition Correlation in Noble Metal Alloy Nanoparticles Studied with EELS. ACS Photonics, 2019, 6, 779-786.	3.2	42
707	Merging transformation optics with electron-driven photon sources. Nature Communications, 2019, 10, 599.	5.8	31
708	Continued skirmishing on the wave-particle frontier. Ultramicroscopy, 2019, 203, 52-59.	0.8	6
709	Electron energy loss spectroscopy simulation by a frequency domain surface integral equation solver. Turkish Journal of Electrical Engineering and Computer Sciences, 2019, 27, 58-66.	0.9	0
710	Prospects and challenges of cathodoluminescence imaging in solid-state devices: A brief review. Journal of Physics: Conference Series, 2019, 1378, 022029.	0.3	1
711	Plasmon excitation by charged particles in solids, surfaces, and nanostructures: Following the trail of R.H. Ritchie. Advances in Quantum Chemistry, 2019, 80, 271-317.	0.4	3
712	Near-Field-Mediated Photon–Electron Interactions. Springer Series in Optical Sciences, 2019, , .	0.5	16
713	Tunable plasmonic HfN nanoparticles and arrays. Nanoscale, 2019, 11, 20252-20260.	2.8	21
714	Si-NCs embedded in dielectric matrices. Advances in Imaging and Electron Physics, 2019, , 175-203.	0.1	0
715	Self-Learning Perfect Optical Chirality via a Deep Neural Network. Physical Review Letters, 2019, 123, 213902.	2.9	72
716	Light-matter interaction of a quantum emitter near a half-space graphene nanostructure. Physical Review B, 2019, 100, .	1.1	9
717	Independent engineering of individual plasmon modes in plasmonic dimers with conductive and capacitive coupling. Nanophotonics, 2020, 9, 623-632.	2.9	17
718	Near-field resonances in photon emission via interaction of electrons with coupled nanoparticles. Physical Review B, 2019, 100, .	1.1	7
719	Plasmonic Lenses for Tunable Ultrafast Electron Emitters at the Nanoscale. Physical Review Applied, 2019, 12, .	1.5	13
720	Energy-Momentum Cathodoluminescence Imaging of Anisotropic Directionality in Elliptical Aluminum Plasmonic Bullseye Antennas. ACS Photonics, 2019, 6, 573-580.	3.2	9
721	Imaging of Plasmonic Chiral Radiative Local Density of States with Cathodoluminescence Nanoscopy. Nano Letters, 2019, 19, 775-780.	4.5	43
722	On Modeling of Plasmon-Induced Enhancement of the Efficiency of Solar Cells Modified by Metallic Nano-Particles. Nanomaterials, 2019, 9, 3.	1.9	32

#	Article	IF	CITATIONS
723	Improving the sensitivity of X-ray microanalysis in the analytical electron microscope. Ultramicroscopy, 2019, 203, 163-169.	0.8	8
724	Introduction to EELS. Advances in Imaging and Electron Physics, 2019, 209, 1-47.	0.1	1
725	Enhanced dielectric waveguide mode from the coupling of surface plasmon polaritons excited by a parallel electron beam. Optics Communications, 2019, 433, 195-199.	1.0	7
726	Nonradiative Energy Losses of Plasmon-Polariton in a Metallic Nano-chain Deposited on a Semiconductor Substrate. Plasmonics, 2019, 14, 465-483.	1.8	8
727	Electron Beam Interrogation and Control of Ultrafast Plexcitonic Dynamics. ACS Photonics, 2020, 7, 401-410.	3.2	6
728	Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons. Nano Letters, 2020, 20, 592-598.	4.5	28
729	Understanding Beam-Induced Electronic Excitations in Materials. Journal of Chemical Theory and Computation, 2020, 16, 1200-1214.	2.3	13
730	Density matrix reconstructions in ultrafast transmission electron microscopy: uniqueness, stability, and convergence rates. Inverse Problems, 2020, 36, 025005.	1.0	3
731	Light–matter interactions with photonic quasiparticles. Nature Reviews Physics, 2020, 2, 538-561.	11.9	178
732	Probing and steering bulk and surface phonon polaritons in uniaxial materials using fast electrons: Hexagonal boron nitride. Physical Review B, 2020, 102, .	1.1	9
733	Cathodoluminescence Nanoscopy of 3D Plasmonic Networks. Nano Letters, 2020, 20, 8205-8211.	4.5	10
734	Chemical identification through two-dimensional electron energy-loss spectroscopy. Science Advances, 2020, 6, eabb4713.	4.7	2
735	Electrons Generate Self-Complementary Broadband Vortex Light Beams Using Chiral Photon Sieves. Nano Letters, 2020, 20, 5975-5981.	4.5	18
736	Ultrafast Topological Engineering in Metamaterials. Physical Review Letters, 2020, 125, 037403.	2.9	16
737	Correlative cathodoluminescence electron microscopy bioimaging: towards single protein labelling with ultrastructural context. Nanoscale, 2020, 12, 15588-15603.	2.8	9
738	Controlling Light, Heat, and Vibrations in Plasmonics and Phononics. Advanced Optical Materials, 2020, 8, 2001225.	3.6	46
739	DNA-Mediated Three-Dimensional Assembly of Hollow Au–Ag Alloy Nanocages as Plasmonic Crystals. ACS Applied Nano Materials, 2020, 3, 8068-8074.	2.4	8
740	Nonlocality Induced Cherenkov Threshold. Laser and Photonics Reviews, 2020, 14, 2000149.	4.4	27

#	Article	IF	CITATIONS
741	Electron- and light-induced stimulated Raman spectroscopy for nanoscale molecular mapping. Physical Review B, 2020, 102, .	1.1	3
742	Interference modulation of photoemission from biased metal cathodes driven by two lasers of the same frequency. AIP Advances, 2020, 10, .	0.6	8
743	Electron cyclotron motion excited surface plasmon and radiation with orbital angular momentum on a semiconductor thin film. Scientific Reports, 2020, 10, 16768.	1.6	2
744	Electron Beam Infrared Nano-Ellipsometry of Individual Indium Tin Oxide Nanocrystals. Nano Letters, 2020, 20, 7987-7994.	4.5	7
745	Near field excited state imaging via stimulated electron energy gain spectroscopy of localized surface plasmon resonances in plasmonic nanorod antennas. Scientific Reports, 2020, 10, 12537.	1.6	7
746	Fluorescence Triggered by Radioactive β Decay in Optimized Hyperbolic Cavities. Physical Review Applied, 2020, 14, .	1.5	1
747	Harnessing Evanescent Waves by Bianisotropic Metasurfaces. Laser and Photonics Reviews, 2020, 14, 1900244.	4.4	33
748	Electrically driven photon emission from individual atomic defects in monolayer WS ₂ . Science Advances, 2020, 6, .	4.7	53
749	Plasmonic modes in cylindrical nanoparticles and dimers. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200530.	1.0	9
750	Magnetic Near Field Imaging with Electron Energy Loss Spectroscopy Based on Babinet's Principle. Microscopy and Microanalysis, 2020, 26, 2628-2630.	0.2	0
751	Super-Resolution without Imaging: Library-Based Approaches Using Near-to-Far-Field Transduction by a Nanophotonic Structure. ACS Photonics, 2020, 7, 3246-3256.	3.2	7
752	Interface-Induced Near-Infrared Response of Gold-Silica Hybrid Nanoparticles Antennas. Nanomaterials, 2020, 10, 1996.	1.9	2
753	Electron Energy Loss Spectroscopy of Bright and Dark Modes in Hyperbolic Metamaterial Nanostructures. Advanced Optical Materials, 2020, 8, 2000277.	3.6	23
754	Constructing a library of metal and metal–oxide nanoparticle heterodimers through colloidal assembly. Nanoscale, 2020, 12, 11297-11305.	2.8	6
755	Phase-Resolved Surface Plasmon Scattering Probed by Cathodoluminescence Holography. ACS Photonics, 2020, 7, 1476-1482.	3.2	15
756	Vapor–Liquid–Solid Growth and Optoelectronics of Gallium Sulfide van der Waals Nanowires. ACS Nano, 2020, 14, 6117-6126.	7.3	28
757	Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy. Ultramicroscopy, 2020, 216, 113044.	0.8	6
758	Controlling free electrons with optical whispering-gallery modes. Nature, 2020, 582, 46-49.	13.7	132

#	Article	IF	CITATIONS
759	Nonlinear Interactions between Free Electrons and Nanographenes. Nano Letters, 2020, 20, 4792-4800.	4.5	11
760	Boundary Element Method Simulations of Tunable Chiral Radiation and Active Chirality Switching from Rectangular Graphene Nanosheets: Implications for Dynamic Control of Light Chirality. ACS Applied Nano Materials, 2020, 3, 6816-6826.	2.4	6
761	Ultrafast Photoemission Electron Microscopy: Imaging Plasmons in Space and Time. Chemical Reviews, 2020, 120, 6247-6287.	23.0	71
762	Shapes, Plasmonic Properties, and Reactivity of Magnesium Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 15665-15679.	1.5	58
763	Electron Energy Loss Spectroscopy of Singular Plasmonic Metasurfaces. Laser and Photonics Reviews, 2020, 14, 2000055.	4.4	2
764	Using <mmi:math sl1.svg="" xmins:mmi="http://www.w3.org/1998/Math/MathML_altimg="><mmi:mover accent="true"><mmi:mi mathvariant="normal">C<mmi:mo>ˇ</mmi:mo></mmi:mi </mmi:mover </mmi:math> erenkov radiation for measuring the refractive index in thick samples by interferometric cathodoluminescence.	0.8	2
765	Electrically Driven Hot-Carrier Generation and Above-Threshold Light Emission in Plasmonic Tunnel Junctions. Nano Letters, 2020, 20, 6067-6075.	4.5	38
766	Investigation of anisotropic ï€ plasmon induced by the intrinsic crystallographic defects in topological crystalline insulator material—tin-substitutional lead selenide (Pb1ⰒxSnxSe). Applied Physics Letters, 2020, 116, .	1.5	4
767	Strong-field nano-optics. Reviews of Modern Physics, 2020, 92, .	16.4	141
768	Tailoring ZnO Spontaneous Emission with Plasmonic Radiative Local Density of States Using Cathodoluminescence Microscopy. Journal of Physical Chemistry C, 2020, 124, 13886-13893.	1.5	4
769	Field localization of hexagonal and short-range ordered plasmonic nanoholes investigated by cathodoluminescence. Journal of Chemical Physics, 2020, 152, 074707.	1.2	6
770	Manipulation of surface phonon polaritons in SiC nanorods. Science Bulletin, 2020, 65, 820-826.	4.3	16
771	Spatio-Spectral Characterization of Multipolar Plasmonic Modes of Au Nanorods via Tip-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2020, 11, 2870-2874.	2.1	18
772	Interaction of atomic systems with quantum vacuum beyond electric dipole approximation. Scientific Reports, 2020, 10, 5879.	1.6	8
773	Generation and regulation of electron vortices in an underdense plasma by Laguerre-Gaussian laser pulses. Results in Physics, 2020, 18, 103216.	2.0	4
774	Plasmonic resonators: fundamental properties and applications. Journal Physics D: Applied Physics, 2020, 53, 443002.	1.3	21
775	Third harmonic working based on the Smith–Purcell radiation in a closed structure. AIP Advances, 2020, 10, 065115.	0.6	0
776	New wave-type mechanism of saltatory conduction in myelinated axons and micro-saltatory conduction in C fibres. European Biophysics Journal, 2020, 49, 343-360.	1.2	5

#	Article	IF	CITATIONS
777	Dynamic Behavior of Surface-Enhanced Raman Spectra for Rhodamine 6G Interacting with Gold Nanorods: Implication for Analyses under Wet versus Dry Conditions. ACS Applied Nano Materials, 2020, 3, 8138-8147.	2.4	27
778	Plasmonic Effects on the Growth of Ag Nanocrystals in Solution. Langmuir, 2020, 36, 2044-2051.	1.6	11
779	Plasmonic nanofocusing spectral interferometry. Nanophotonics, 2020, 9, 491-508.	2.9	12
780	Monitoring strong coupling in nonlocal plasmonics with electron spectroscopies. Physical Review B, 2020, 101, .	1.1	12
781	Free-Electron–Bound-Electron Resonant Interaction. Physical Review Letters, 2020, 124, 064801.	2.9	70
782	Dirac terahertz plasmonics in two and three dimensions. Optics Communications, 2020, 462, 125319.	1.0	10
783	Lowâ€Loss Hybrid Highâ€Index Dielectric Particles on a Mirror for Extreme Light Confinement. Advanced Optical Materials, 2020, 8, 1901820.	3.6	20
784	Nanoscale Nonlinear Spectroscopy with Electron Beams. ACS Photonics, 2020, 7, 1290-1296.	3.2	18
785	Synchrotron radiation from a charge circulating around a cylinder with negative permittivity. International Journal of Modern Physics B, 2020, 34, 2050065.	1.0	4
786	Electronic properties of black phosphorus using monochromated low-loss EELS. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 265, 115002.	1.7	3
787	Fundamental Limit of Plasmonic Cathodoluminescence. Nano Letters, 2021, 21, 590-596.	4.5	15
788	Real-Time Electron Microscopy of Nanocrystal Synthesis, Transformations, and Self-Assembly in Solution. Accounts of Chemical Research, 2021, 54, 11-21.	7.6	10
789	Color tunable cathodoluminescence properties of RE2WO6:Ln3+ (RE, Ln = Er3+ and Tm3+) phosphor and its microscopic imaging. Materials Research Bulletin, 2021, 134, 111114.	2.7	2
790	Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nature Materials, 2021, 20, 43-48.	13.3	84
791	Asymmetric Electron Energy Loss in Drift-Current Biased Graphene. Plasmonics, 2021, 16, 19-26.	1.8	6
792	Chiral Light Emission from a Sphere Revealed by Nanoscale Relative-Phase Mapping. ACS Nano, 2021, 15, 2219-2228.	7.3	29
793	Singleâ€Particle Characterization by Elastic Light Scattering. Laser and Photonics Reviews, 2021, 15, 2000368.	4.4	21
794	Interaction of edge exciton polaritons with engineered defects in the hyperbolic material Bi2Se3. Communications Materials, 2021, 2, .	2.9	13

ARTICLE IF CITATIONS # Electron dynamics in plasmons. Nanoscale, 2021, 13, 2801-2810. 795 2.8 7 Ultrafast Momentum-Resolved Free-Electron Probing of Optically Pumped Plasmon Thermal Dynamics. 796 3.2 ACS Photonics, 2021, 8, 614-624. 797 Spectrometer-free electron probe of ultrafast thermal dynamics in optically excited samples., 2021, , . 0 Addressing molecular optomechanical effects in nanocavity-enhanced Raman scattering beyond the 798 single plasmonic mode. Nanoscale, 2021, 13, 1938-1954. Light Scattering from Rough Silver Surfaces: Modeling of Absorption Loss Measurements. 799 1.9 3 Nanomaterials, 2021, 11, 113. Improving the quality factors of plasmonic silver cavities for strong coupling with quantum emitters. Journal of Chemical Physics, 2021, 154, 014703. 1.2 High spatial and energy resolution electron energy loss spectroscopy of the magnetic and electric 801 1.7 4 excitations in plasmonic nanorod oligomers. Optics Express, 2021, 29, 4661. Quantum correlations in electron microscopy. Optica, 2021, 8, 70. 4.8 Other spectroscopic methods for graphene characterization: X-ray and electron spectroscopies. 803 1 2021, , 413-436. Siteâ€specific angular dependent determination of inelastic mean free path of 300 keV electrons in GaN 804 nanorods. Journal of Microscopy, 2021, 282, 250-257. Bridging nano-optics and condensed matter formalisms in a unified description of inelastic scattering 805 1.5 6 of relativistic electron beams. SciPost Physics, 2021, 10, . Theory of Smith-Purcell radiation from a 2D array of small noninteracting particles. Physical Review 806 1.1 B, 2021, 103, . Photonic and plasmonic transition radiation from graphene. Journal of Optics (United Kingdom), 2021, 807 1.0 11 23,034001. Polarization Shaping of Freeâ€Electron Radiation by Gradient Bianisotropic Metasurfaces. Laser and Photonics Reviews, 2021, 15, 2000426. 808 4.4 36 Generation, characterization, and manipulation of quantum correlations in electron beams. Npj 809 2.8 6 Quantum Information, 2021, 7, . Smith-Purcell radiation based on the transmission enhancement of a subwavelength hole array with inner tunnels. Optics Express, 2021, 29, 7767. Energy-Loss Near-Edge Structures and Low-Loss Structures of Polymers in a Solid Electrolyte 811 Interface Formed from Fluoroethylene Carbonate on a Si Anode Clarified by DFT Calculations. Journal 1.52 of Physical Chemistry C, 2021, 125, 3890-3900. Polarization out of the vortex. Nature Physics, 2021, 17, 549-551. 6.5

#	Article	IF	CITATIONS
813	Charting the low-loss region in electron energy loss spectroscopy with machine learning. Ultramicroscopy, 2021, 222, 113202.	0.8	11
814	Three-dimensional vectorial imaging of surface phonon polaritons. Science, 2021, 371, 1364-1367.	6.0	39
815	Optical Excitations with Electron Beams: ChallengesÂandÂOpportunities. ACS Photonics, 2021, 8, 945-974.	3.2	85
816	Optical polarization analogue in free electron beams. Nature Physics, 2021, 17, 598-603.	6.5	15
817	Exploring the Spatial Features of Electronic Transitions in Molecular and Biomolecular Systems by Swift Electrons. Journal of Chemical Theory and Computation, 2021, 17, 2364-2373.	2.3	1
818	Modulation of Cathodoluminescence Emission by Interference with External Light. ACS Nano, 2021, 15, 7290-7304.	7.3	28
819	Graphene Plasmon Excitation with Ground-State Two-Level Quantum Emitters. Physical Review Letters, 2021, 126, 117401.	2.9	6
820	MATLAB package for discrete dipole approximation by graphics processing unit: Fast Fourier Transform and Biconjugate Gradient. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 262, 107501.	1.1	6
821	Optical Modulation of Electron Beams in Free Space. Physical Review Letters, 2021, 126, 123901.	2.9	32
822	Electron energy loss spectroscopy on freestanding perforated gold films. Physical Review B, 2021, 103,	1.1	1
823	Can Copper Nanostructures Sustain High-Quality Plasmons?. Nano Letters, 2021, 21, 2444-2452.	4.5	43
824	How to solve problems in micro- and nanofabrication caused by the emission of electrons and charged metal atoms during e-beam evaporation. Journal Physics D: Applied Physics, 2021, 54, 225304.	1.3	8
825	Selectively steering photon spin angular momentum via electron-induced optical spin Hall effect. Science Advances, 2021, 7, .	4.7	17
826	Waveguide modes spatially resolved by low-loss STEM-EELS. Physical Review B, 2021, 103, .	1.1	4
827	The coherence of light is fundamentally tied to the quantum coherence of the emitting particle. Science Advances, 2021, 7, .	4.7	42
828	Predictability of Localized Plasmonic Responses in Nanoparticle Assemblies. Small, 2021, 17, e2100181.	5.2	17
829	Optical coherence transfer mediated by free electrons. Science Advances, 2021, 7, .	4.7	51
830	Spontaneous and stimulated electron–photon interactions in nanoscale plasmonic near fields. Light: Science and Applications, 2021, 10, 82.	7.7	40

#	Article	IF	CITATIONS
831	Broadband Coupling of Fast Electrons to High-Q Whispering-Gallery Mode Resonators. ACS Photonics, 2021, 8, 1569-1575.	3.2	8
832	Plasmon Launching and Scattering by Silicon Nanoparticles. ACS Photonics, 2021, 8, 1582-1591.	3.2	15
833	Coherent light emission in cathodoluminescence when using GaAs in a scanning (transmission) electron microscope. Ultramicroscopy, 2021, 224, 113260.	0.8	5
834	Self-consistent dielectric functions of materials: Toward accurate computation of Casimir–van der Waals forces. Science Advances, 2021, 7, .	4.7	18
835	Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces. Nanophotonics, 2021, 10, 2283-2308.	2.9	47
836	Confronting theoretical results of localized and additional surface plasmon resonances in silver nanoparticles with electron energy-loss spectroscopy measurements. Physical Review B, 2021, 103, .	1.1	1
837	Electric Directional Steering of Cathodoluminescence From Graphene-Based Hybrid Nanostructures. Physical Review Applied, 2021, 15, .	1.5	3
838	Theory of Atomic-Scale Vibrational Mapping and Isotope Identification with Electron Beams. ACS Nano, 2021, 15, 9890-9899.	7.3	9
839	Employing Cathodoluminescence for Nanothermometry and Thermal Transport Measurements in Semiconductor Nanowires. ACS Nano, 2021, 15, 11385-11395.	7.3	13
840	Plasmon–Exciton Interactions in Nanometer-Thick Gold-WSe ₂ Multilayer Structures: Implications for Photodetectors, Sensors, and Light-Emitting Devices. ACS Applied Nano Materials, 2021, 4, 6067-6074.	2.4	7
841	Quantum Wave-Particle Duality in Free-Electron–Bound-Electron Interaction. Physical Review Letters, 2021, 126, 244801.	2.9	16
842	Continuous-wave electron-light interaction in high-Q whispering gallery microresonators. , 2021, , .		0
844	Angular dynamics of small nanoparticles induced by non-vortex electron beams. Ultramicroscopy, 2021, 225, 113274.	0.8	2
845	Quantum Entanglement and Modulation Enhancement of Free-Electron–Bound-Electron Interaction. Physical Review Letters, 2021, 126, 233402.	2.9	43
846	Toward Atomic-Resolution Quantum Measurements with Coherently Shaped Free Electrons. Physical Review Letters, 2021, 126, 233403.	2.9	38
847	Mesoscopic electrodynamics at metal surfaces. Nanophotonics, 2021, 10, 2563-2616.	2.9	49
848	Controlling quantum systems with modulated electron beams. Physical Review Research, 2021, 3, .	1.3	13
849	The radiation from ultrafast point dipoles, moving uniformly near chiral media. Russian Technological Journal, 2021, 9, 24-39.	0.6	1

#	Article	IF	CITATIONS
850	The Lightest 2D Nanomaterial: Freestanding Ultrathin Li Nanosheets by In Situ Nanoscale Electrochemistry. Small, 2021, 17, e2101641.	5.2	3
851	Surface plasmon polaritons in a waveguide composed of Weyl and Dirac semimetals. Optical Materials, 2021, 117, 111213.	1.7	5
852	Improved Smith–Purcell radiation owing to field localization and reflection of surface plasmon polaritons in grating substrate. Optics Communications, 2021, 491, 126948.	1.0	2
853	Coupling of Photonic and Plasmonic Modes in Oxide and Supported Metal Nanoparticles: Finite Element Simulation and EELS Study. Microscopy and Microanalysis, 2021, 27, 888-890.	0.2	1
854	Study of sodium metal plasmon using electron energy loss spectroscopy. Microscopy and Microanalysis, 2021, 27, 624-625.	0.2	2
855	Observation of laser-assisted electron scattering in superfluid helium. Nature Communications, 2021, 12, 4204.	5.8	10
856	Solar Thermal Conversion of Plasmonic Nanofluids: Fundamentals and Applications. , 0, , .		4
857	The Advantage of Nanowire Configuration in Band Structure Determination. Advanced Functional Materials, 2021, 31, 2105426.	7.8	4
858	Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region*. Chinese Physics B, 2021, 30, 084102.	0.7	2
859	Probing Transient Localized Electromagnetic Fields Using Low-Energy Point-Projection Electron Microscopy. ACS Photonics, 2021, 8, 2573-2580.	3.2	12
860	Revealing Nanoscale Confinement Effects on Hyperbolic Phonon Polaritons with an Electron Beam. Small, 2021, 17, e2103404.	5.2	14
861	Superradiance and Subradiance due to Quantum Interference of Entangled Free Electrons. Physical Review Letters, 2021, 127, 060403.	2.9	22
862	Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2021, 27, 943-995.	0.2	14
863	Strainâ€Induced Modulation of Localized Surface Plasmon Resonance in Ultrathin Hexagonal Gold Nanoplates. Advanced Materials, 2021, 33, e2100653.	11.1	10
864	Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy. Accounts of Chemical Research, 2021, 54, 3632-3642.	7.6	17
865	Imprinting the quantum statistics of photons on free electrons. Science, 2021, 373, eabj7128.	6.0	75
866	Near-Field Mapping of Photonic Eigenmodes in Patterned Silicon Nanocavities by Electron Energy-Loss Spectroscopy. ACS Nano, 2021, 15, 16501-16514.	7.3	14
867	Interaction of charged particles with a graphene monolayer modeled as a set of electronic oscillators. Journal of Applied Physics, 2021, 130, .	1.1	1

#	Article	IF	CITATIONS
868	A brief review on optical properties of planar metallic interfaces and films: from classical view to quantum description. JPhys Photonics, 2021, 3, 042006.	2.2	4
869	Prospects in x-ray science emerging from quantum optics and nanomaterials. Applied Physics Letters, 2021, 119, .	1.5	18
870	A Brewster route to Cherenkov detectors. Nature Communications, 2021, 12, 5554.	5.8	24
871	Mirror Optical Activity: Nanophotonic Chiral Sensing from Parity Indefiniteness. Physical Review Applied, 2021, 16, .	1.5	3
872	Probing the local density of states near the diffraction limit using nanowaveguide-collected cathode luminescence. Physical Review A, 2021, 104, .	1.0	6
873	Strong inelastic scattering of slow electrons by optical near fields of small nanostructures. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 174001.	0.6	4
874	An alternative technique for verification of terahertz Smith–Purcell radiation. Journal Physics D: Applied Physics, 2021, 54, 475106.	1.3	1
875	Unconventional van der Waals heterostructures beyond stacking. IScience, 2021, 24, 103050.	1.9	4
876	Enhanced photon emission from free electron excitation of a nanowell. APL Photonics, 2021, 6, .	3.0	3
877	Mapping optical Bloch modes of a plasmonic square lattice in real and reciprocal spaces using cathodoluminescence spectroscopy. Optics Express, 2021, 29, 34328-34340.	1.7	3
878	A semi-classical theory of magnetic inelastic scattering in transmission electron energy loss spectroscopy. Ultramicroscopy, 2021, 230, 113390.	0.8	5
879	"pyGDMâ€⊷ new functionalities and major improvements to the python toolkit for nano-optics full-field simulations. Computer Physics Communications, 2022, 270, 108142.	3.0	15
880	Comment on "Free-Electron–Bound-Electron Resonant Interaction― Physical Review Letters, 2021, 126, 019501.	2.9	5
881	Single-defect phonons imaged by electron microscopy. Nature, 2021, 589, 65-69.	13.7	108
882	Analytical Electron Microscopy. Springer Handbooks, 2019, , 345-453.	0.3	4
883	Electron-Light Interactions Beyond Adiabatic Approximation. Springer Series in Optical Sciences, 2019, , 195-243.	0.5	1
884	Nanoplasmonics: From Present into Future. Challenges and Advances in Computational Chemistry and Physics, 2013, , 1-101.	0.6	2
885	Vacuum Rabi splitting of a dark plasmonic cavity mode revealed by fast electrons. Nature Communications, 2020, 11, 487.	5.8	47

#	ARTICLE	IF	CITATIONS
886	Retardation effects on the dispersion and propagation of plasmons in metallic nanoparticle chains. Journal of Physics Condensed Matter, 2018, 30, 025301.	0.7	25
887	Electron diffraction by vacuum fluctuations. New Journal of Physics, 2020, 22, 103057.	1.2	11
888	Cherenkov radiation and emission of surface polaritons from charges moving paraxially outside a dielectric cylindrical waveguide. Physical Review A, 2020, 102, .	1.0	8
889	Theory of electron energy-loss spectroscopy in atomically thin metallic films. Physical Review Research, 2020, 2, .	1.3	6
890	High-purity free-electron momentum states prepared by three-dimensional optical phase modulation. Physical Review Research, 2020, 2, .	1.3	48
891	Conical diffraction effect in optical and x-ray Smith-Purcell radiation. Physical Review Special Topics: Accelerators and Beams, 2015, 18, .	1.8	20
892	Surface effects in simulations of scanning electron microscopy images. , 2019, , .		1
893	Free Electron Qubits. , 2019, , .		3
894	Imaging the collapse of electron wave-functions: the relation to plasmonic losses. , 2019, , .		3
895	Controlling Free Electrons with Optical Whispering-Gallery Modes. , 2020, , .		1
896	Helmholtz decomposition analysis of electron energy loss: differentiating resonances on polarization and radiation eigenmodes. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1472.	0.9	2
897	Quantum theory of near-field optical imaging with rare-earth atomic clusters. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1474.	0.9	6
898	Efficient optimization of SHG hotspot switching in plasmonic nanoantennas using phase-shaped laser pulses controlled by neural networks. Optics Express, 2018, 26, 33678.	1.7	15
899	Intensive vertical orientation Smith–Purcell radiation from the 2D well-array metasurface. Optics Express, 2019, 27, 3952.	1.7	20
900	Fast electrons interacting with a natural hyperbolic medium: bismuth telluride. Optics Express, 2019, 27, 6970.	1.7	13
901	Surface plasmons manipulated Smith-Purcell radiation on Yagi-Uda nanoantenna arrays. Optics Express, 2019, 27, 32567.	1.7	2
902	An electrically induced probe of the modes of a plasmonic multilayer stack. Optics Express, 2019, 27, 33011.	1.7	6
903	Importance of substrates for the visibility of "dark" plasmonic modes. Optics Express, 2020, 28, 13938.	1.7	8

		CITATION REPOR	т
# 904	ARTICLE Electron energy loss of ultraviolet plasmonic modes in aluminum nanodisks. Optics Express, 202 27405	IF 0, 28, 1.7	CITATIONS 6
905	Electron-beam excited photon emission from monopole modes of a plasmonic nano-disc. Optics Letters, 2017, 42, 3387.	1.7	3
906	Extreme ultraviolet plasmonics and Cherenkov radiation in silicon. Optica, 2018, 5, 1590.	4.8	24
907	Deep-ultraviolet Smith–Purcell radiation. Optica, 2019, 6, 592.	4.8	30
908	Quantum effects in the acoustic plasmons of atomically thin heterostructures. Optica, 2019, 6,	630. 4.8	35
909	Probing quantum optical excitations with fast electrons. Optica, 2019, 6, 1524.	4.8	89
910	Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Photonics Research, 2019, 7, 1154.	3.4	14
911	Theory of Light Emission from Dipole Moments Induced by Localized Plasmons in Metal Nanostructures. E-Journal of Surface Science and Nanotechnology, 2014, 12, 431-438.	0.1	6
912	Particle simulation of plasmons. Nanophotonics, 2020, 9, 3303-3313.	2.9	9
913	Electron-driven photon sources for correlative electron-photon spectroscopy with electron microscopes. Nanophotonics, 2020, 9, 4381-4406.	2.9	22
914	Inelastic Scattering of Electron Beams by Nonreciprocal Nanotructures. Physical Review Letters, 127, 157404.	2021, 2.9	2
915	Thermal near-field tuning of silicon Mie nanoparticles. Nanophotonics, 2021, 10, 4161-4169.	2.9	11
917	Electrical Excitation of Surface Plasmons. , 2012, , .		3
919	"Seeing" the resonant modes confined in metal nanocavities via cathodoluminescence spectrosc 2013, , .	юру. ,	0
920	Optical detection of quantum entanglement between two quantum dots mear a metal nanopart Quantum Information and Computation, 2013, 13, 324-333.	icle. 0.1	. 1
921	Chemical bonding state analysis by electron energy-loss spectroscopy. Keikinzoku/Journal of Japa Institute of Light Metals, 2013, 63, 466-473.	an 0.1	0
922	Accessing the optical properties of single nanoobjects at the nanometer scale through fast elect based spectroscopies. , 2014, , .	ron	0
923	High-Resolution Optical Microscopy for Biological Applications. , 2016, , 1-21.		0

# 924	ARTICLE Research progress of plasmonic cathodoluminesecence characterization. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 144201.	IF 0.2	CITATIONS 0
925	High-Resolution Optical Microscopy for Biological Applications. , 2017, , 407-427.		0
926	Numerical Simulation of Electron Energy Loss Spectroscopy of Aluminum Nanodisk Surface Plasmons. , 2017, , .		0
927	Tools and Techniques. Springer Theses, 2018, , 17-36.	0.0	Ο
928	Refractive Index Sensing Using Nano-Plasmonic Structures. The Review of Laser Engineering, 2018, 46, 490.	0.0	0
929	Photon-Induced Far-Field and Near-Field Electron Microscopy. , 2018, , .		0
930	Quantum Plasmon Resonances Controlled by Molecular Tunnel Junction. Springer Theses, 2018, , 51-67.	0.0	1
931	The Eigen-Mode and Eigen-Charge of Plasmons in Cylindrical Atomic Clusters. Optoelectronics, 2018, 08, 106-112.	0.0	0
932	The enhanced terahertz Smith Purcell radiation from two moving dipole oscillations. , 2018, , .		0
934	Photon–Induced and Photon—Assisted Domains. Springer Series in Optical Sciences, 2019, , 153-194.	0.5	1
935	Electron-Light Interactions. Springer Series in Optical Sciences, 2019, , 31-57.	0.5	0
937	Mode characteristic analysis of optical waveguides based on graphene-coated elliptical dielectric nanowire. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 058101.	0.2	4
938	Toroidal Moments Probed by Electron Beams. Springer Series in Optical Sciences, 2019, , 81-118.	0.5	0
939	Electron–Induced Domain. Springer Series in Optical Sciences, 2019, , 59-79.	0.5	0
940	Quantum Electron-Photon Entanglement in the Strong-Coupling Regime. , 2019, , .		0
941	Surface effects in simulations of scanning electron microscopy images. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2019, 18, 1.	1.0	1
942	Effect of Spatial Dispersion on Plasmon Resonance in Silver Nanoparticles. Bulletin of the Lebedev Physics Institute, 2019, 46, 400-404.	0.1	0
943	Photonic Local Density of States. Graduate Texts in Physics, 2020, , 259-295.	0.1	0

#	Article	IF	CITATIONS
944	Excitation and Light Emission of Localized Plasmons for Metal Nanostructures in Dielectrics by Electron Beam. E-Journal of Surface Science and Nanotechnology, 2020, 18, 190-200.	0.1	1
945	Cherenkov radiation generated in hexagonal boron nitride using extremely low-energy electrons. Nanophotonics, 2020, 9, 1491-1499.	2.9	8
946	Ion plasmon collective oscillations underlying saltatory conduction in myelinated axons and topological-homotopy concept of memory. Advances in Quantum Chemistry, 2020, 82, 113-157.	0.4	0
947	Time-dependent approach to inelastic scattering spectroscopies in and away from equilibrium: Beyond perturbation theory. Physical Review B, 2020, 102, .	1.1	5
948	Cherenkov radiation based on metamaterials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 154103.	0.2	1
950	The Eigen-Charge Distribution of Plasmon in Two Dimensional Rectangular Atomic Clusters. Applied Physics, 2020, 10, 276-280.	0.0	0
951	Electronic and Optical Properties ofÂGraphene. Springer Theses, 2020, , 51-70.	0.0	1
952	Controlling Free Electrons with Optical Whispering-Gallery Modes. , 2020, , .		Ο
953	Transforming terahertz plasmonics within subwavelength hole arrays into enhanced terahertz mission via Smith-Purcell effect. Optics Express, 2020, 28, 9501.	1.7	3
954	Polarization Selectivity of Aloof-Beam Electron Energy-Loss Spectroscopy in One-Dimensional ZnO Nanorods. Physical Review Applied, 2021, 16, .	1.5	1
955	Probing molecular vibrations by monochromated electron microscopy. Trends in Chemistry, 2022, 4, 76-90.	4.4	7
956	Discrete Sources Method to Solve Nonlocal Scattering Problems in Plasmonic Applications. Lobachevskii Journal of Mathematics, 2020, 41, 1337-1353.	0.1	Ο
957	Probing plasmonic excitation mechanisms and far-field radiation of single-crystalline gold tapers with electrons. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190599.	1.6	2
958	Multipolar and bulk modes: fundamentals of single-particle plasmonics through the advances in electron and photon techniques. Nanophotonics, 2020, 9, 4433-4446.	2.9	3
959	Breaking plasmonic symmetry through the asymmetric growth of gold nanorods. Optica, 2020, 7, 1666.	4.8	6
960	Study on Localized Surface Plasmon Coupling with Many Radiators. Nanomaterials, 2021, 11, 3105.	1.9	5
961	Electron-energy-loss spectroscopy and cathodoluminescence for particles inside substrate. Journal of Physics: Conference Series, 2021, 2015, 012064.	0.3	1
962	Efficient First-Principles Methodology for the Calculation of the All-Phonon Inelastic Scattering in Solids. Physical Review Letters, 2021, 127, 207401.	2.9	18

#	Article	IF	CITATIONS
963	Relativistic energy-momentum transfer and electromagnetic conservation laws in the interaction of moving charged particles with two-dimensional materials. Physical Review B, 2022, 105, .	1.1	2
964	Geometric effects of plasmonic nanoscale heterostructures on infrared activity. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 651.	0.9	0
965	Observation of grain boundary plasmon and associated deconvolution techniques for low-loss electron energy-loss (EEL) spectra acquired from grain boundaries. Ultramicroscopy, 2022, 234, 113478.	0.8	1
966	Exciton-dielectric mode coupling in MoS ₂ nanoflakes visualized by cathodoluminescence. Nanophotonics, 2022, 11, 2129-2137.	2.9	10
967	Advances in ultrahigh-energy resolution EELS: phonons, infrared plasmons and strongly coupled modes. Microscopy (Oxford, England), 2022, 71, i174-i199.	0.7	15
968	Excitation of Ultraslow Highâ€q Surface Plasmon Polariton Modes in Dense Arrays of Doubleâ€Walled Carbon Nanotubes. Annalen Der Physik, 2022, 534, .	0.9	3
969	Nanoscale mapping of optically inaccessible bound-states-in-the-continuum. Light: Science and Applications, 2022, 11, 20.	7.7	28
970	Investigation on surface plasmon polaritons and localized surface plasmon production mechanism in micro-nano structures. Journal of Electronic Science and Technology, 2022, 20, 100148.	2.0	1
971	Nanotubes from the Misfit Layered Compound (SmS) _{1.19} TaS ₂ : Atomic Structure, Charge Transfer, and Electrical Properties. Chemistry of Materials, 2022, 34, 1838-1853.	3.2	5
972	Smith–Purcell radiation improved by multi-grating structure. Chinese Physics B, 2022, 31, 044103.	0.7	3
973	Integrated photonics enables continuous-beam electron phase modulation. Nature, 2021, 600, 653-658.	13.7	74
974	Directional effects in plasmon excitation and transition radiation from an anisotropic 2D material induced by a fast charged particle. Nanoscale, 2022, 14, 5079-5093.	2.8	2
976	Optimizing cathodoluminescence microscopy of buried interfaces through nanoscale heterostructure design. Nanoscale, 2022, 14, 7569-7578.	2.8	2
977	Surface Plasmon Tunability of Core–Shell Au@Mo ₆ Nanoparticles by Shell Thickness Modification. Journal of Physical Chemistry Letters, 2022, 13, 2150-2157.	2.1	6
978	A framework for scintillation in nanophotonics. Science, 2022, 375, eabm9293.	6.0	59
979	Stopping and image forces on a charged particle moving parallel to an anisotropic two-dimensional material. Physical Review B, 2022, 105, .	1.1	6
980	Flashing light with nanophotonics. Science, 2022, 375, 822-823.	6.0	4
981	Spatially Resolved Band Gap and Dielectric Function in Two-Dimensional Materials from Electron Energy Loss Spectroscopy. Journal of Physical Chemistry A, 2022, 126, 1255-1262.	1.1	6

		CITATION REPORT		
#	Article		IF	CITATIONS
982	From early to present and future achievements of EELS in the TEM. EPJ Applied Physics	, 2022, 97, 38.	0.3	9
983	Disentangling Cathodoluminescence Spectra in Nanophotonics: Particle Eigenmodes v Radiation. Nano Letters, 2022, 22, 2320-2327.	's Transition	4.5	7
984	The free path and generation rate of fast-moving electron interacting with dielectric m Semiconductor Physics, Quantum Electronics and Optoelectronics, 2022, 25, 10-18.	edia.	0.3	0
985	Sub-optical-cycle electron pulse trains from metal nanotips. Journal of Physics B: Atomiand Optical Physics, 2022, 55, 074001.	ic, Molecular	0.6	1
986	Anisotropy and Modal Hybridization in Infrared Nanophotonics Using Low-Symmetry N Photonics, 2022, 9, 1078-1095.	1aterials. ACS	3.2	18
987	Two-dimensional phonon polaritons in multilayers of hexagonal boron nitride from a m phonon model. Journal of Applied Physics, 2022, 131, 094302.	acroscopic	1.1	1
988	Lowâ€Loss Tunable Infrared Plasmons in the Highâ€Mobility Perovskite (Ba,La)SnO <su 2022, 18, e2106897.</su 	ıb>3. Small,	5.2	3
989	Comment on "Nonlinear quantum effects in electromagnetic radiation of a vortex o Review A, 2022, 105, .	electron― Physical	1.0	2
990	Nanoscale Mapping and Defectâ€Assisted Manipulation of Surface Plasmon Resonanc Bi ₂ Te ₃ /Sb ₂ Te ₃ Inâ€Plane Heteros Optical Materials, 2022, 10, .	es in 2D structures. Advanced	3.6	4
991	Finite-size and quantum effects in plasmonics: manifestations and theoretical modellir Optical Materials Express, 2022, 12, 1869.	ıg [Invited].	1.6	19
992	Inelastic Mach-Zehnder Interferometry with Free Electrons. Physical Review Letters, 20	22, 128, 147401.	2.9	8
993	Unveiling the Coupling of Single Metallic Nanoparticles to Whispering-Gallery Microca Letters, 2022, 22, 319-327.	vities. Nano	4.5	15
994	Monopole embedded eigenstates in nonlocal plasmonic nanospheres. Applied Physics 261101.	Letters, 2021, 119,	1.5	2
995	Effects of a noncausal electromagnetic response on the linear momentum transfer from electron to a metallic nanoparticle. Physical Review B, 2021, 104, .	m a swift	1.1	2
996	Purcell effect with extended sources: the role of the cross density of states. Optics Exp 16174.	ıress, 2022, 30,	1.7	4
997	Two regimes of confinement in photonic nanocavities: bulk confinement versus lightni Express, 2022, 30, 15458.	ng rods. Optics	1.7	8
998	Face-to-Face Assembly of Ag Nanoplates on Filter Papers for Pesticide Detection by Su Raman Spectroscopy. Nanomaterials, 2022, 12, 1398.	rface-Enhanced	1.9	9
999	Studying Plasmon Dispersion of MXene for Enhanced Electromagnetic Absorption. Adv Materials, 2022, 34, e2201120.	vanced	11.1	17

#	Article	IF	CITATIONS
1000	Generalized plasma waves in layered superconductors: A unified approach. Physical Review Research, 2022, 4, .	1.3	5
1001	Nanometer-Scale Spatial and Spectral Mapping of Exciton Polaritons in Structured Plasmonic Cavities. Physical Review Letters, 2022, 128, .	2.9	4
1002	Development of phase-shaped electron energy-loss spectroscopy for nano-optics. Advances in Imaging and Electron Physics, 2022, , .	0.1	0
1003	A brief introduction to nano-optics with fast electrons. Advances in Imaging and Electron Physics, 2022, , .	0.1	Ο
1004	A unified description of inelastic scattering of relativistic electron beams and its application to holography. Advances in Imaging and Electron Physics, 2022, , .	0.1	0
1005	Competing oxidation mechanisms in Cu nanoparticles and their plasmonic signatures. Nanoscale, 2022, 14, 8332-8341.	2.8	5
1006	Computational Discovery and Experimental Demonstration of Boron Phosphide Ultraviolet Nanoresonators. Advanced Optical Materials, 2022, 10, .	3.6	4
1007	Tunable optical topological transition of Cherenkov radiation. Photonics Research, 2022, 10, 1650.	3.4	5
1008	Plasmonic Nanoprobes for SERS-Based Theranostics Applications. Lecture Notes in Nanoscale Science and Technology, 2022, , 223-244.	0.4	1
1009	Quantum-Coherent Light-Electron Interaction in a Scanning Electron Microscope. Physical Review Letters, 2022, 128, .	2.9	27
1010	The Transformation from Surface Wave into Radiation Wave Using Composite Subwavelength Holes Array. Advanced Photonics Research, 2022, 3, .	1.7	2
1011	Picocavity-Controlled Subnanometer-Resolved Single-Molecule Fluorescence Imaging and Mollow Triplets. Journal of Physical Chemistry C, 2022, 126, 11129-11137.	1.5	5
1012	Nanoscale light field imaging with graphene. Communications Materials, 2022, 3, .	2.9	1
1013	Asynchronous Inelastic Scattering of Electrons at the Ponderomotive Potential of Optical Waves. Physical Review Letters, 2022, 129, .	2.9	2
1014	Cylindrical Metalens for Generation and Focusing of Free-Electron Radiation. Nano Letters, 2022, 22, 5641-5650.	4.5	12
1015	Quantum friction between metals in the hydrodynamic regime. Physical Review A, 2022, 106, .	1.0	Ο
1016	Sub-nanometer mapping of strain-induced band structure variations in planar nanowire core-shell heterostructures. Nature Communications, 2022, 13, .	5.8	10
1017	Temperature stability of individual plasmonic Au and TiN nanodiscs. Optical Materials Express, 2022, 12, 3471.	1.6	3

#	Article	IF	CITATIONS
1018	Substrate influence on transition metal dichalcogenide monolayer exciton absorption linewidth broadening. Physical Review Materials, 2022, 6, .	0.9	8
1019	Broadband Enhancement of Cherenkov Radiation Using Dispersionless Plasmons. Advanced Science, 2022, 9, .	5.6	14
1020	Coherent Excitation of Bound Electron Quantum State With Quantum Electron Wavepackets. Frontiers in Physics, 0, 10, .	1.0	3
1021	Electron Microscopy Probing Electron-Photon Interactions in SiC Nanowires with Ultrawide Energy and Momentum Match. Nano Letters, 2022, 22, 6207-6214.	4.5	0
1022	Cavity-mediated electron-photon pairs. Science, 2022, 377, 777-780.	6.0	57
1023	Discrimination of coherent and incoherent cathodoluminescence using temporal photon correlations. Ultramicroscopy, 2022, 241, 113594.	0.8	5
1024	Complete Excitation of Discrete Quantum Systems by Single Free Electrons. Physical Review Letters, 2022, 129, .	2.9	12
1025	Momentum-Dependent Oscillator Strength Crossover of Excitons and Plasmons in Two-Dimensional PtSe ₂ . ACS Nano, 2022, 16, 12328-12337.	7.3	3
1026	Electron-photon correlations induced at a photonic integrated microresonator. , 2022, , .		0
1027	Electron beam chiral diffraction radiation in an isosceles right triangle light-well. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
1028	Electron beam chiral diffraction radiation in an isosceles right triangle light-well. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
1029	Polarization-Resolved Electron Energy Gain Nanospectroscopy With Phase-Structured Electron Beams. Nano Letters, 2022, 22, 7158-7165.	4.5	6
1030	Mode Mapping Photonic Crystal Nanocavities with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Q</mml:mi><mml:mo>></mml:mo><mml:mn>5</mml:mn><mml:mo>×Using Free-Carrier Absorption, Physical Review Applied, 2022, 18, .</mml:mo></mml:math 	n0> <mml< td=""><td>:msup><mm< td=""></mm<></td></mml<>	:msup> <mm< td=""></mm<>
1031	Miniature light-driven nanophotonic electron acceleration and control. Advances in Optics and Photonics, 2022, 14, 862.	12.1	12
1032	Optical-cavity mode squeezing by free electrons. Nanophotonics, 2022, 11, 4659-4670.	2.9	2
1033	Cathodoluminescence excitation spectroscopy: Nanoscale imaging of excitation pathways. Science Advances, 2022, 8, .	4.7	23
1034	Large bandgap insulating superior clay nanosheets. MRS Bulletin, 2022, 47, 1198-1203.	1.7	4
1035	Probing Plasmons by EELS in Chiral Array of Hyperbolic Metasurfaces. The Role of Plasmon Canalization. Topics in Applied Physics, 2022, , 393-415.	0.4	0

#	Article	IF	Citations
1036	Machine learning in electron microscopy for advanced nanocharacterization: current developments, available tools and future outlook. Nanoscale Horizons, 2022, 7, 1427-1477.	4.1	21
1037	Polarized grating transition radiation from a 2D photonic crystal. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 3275.	0.9	1
1038	Attosecond electron-beam technology: a review of recent progress. Microscopy (Oxford, England), 2023, 72, 2-17.	0.7	3
1039	Dipole-forbidden transitions induced by the gradient of optical near fields. Physical Review A, 2022, 106, .	1.0	0
1040	Nanometer-scale photon confinement in topology-optimized dielectric cavities. Nature Communications, 2022, 13, .	5.8	36
1041	The Role of Myelin in Malfunctions of Neuron Transmittance. Neuroscience, 2022, 505, 125-156.	1.1	0
1042	Simultaneous Imaging of Dopants and Free Charge Carriers by Monochromated EELS. ACS Nano, 2022, 16, 18795-18805.	7.3	2
1043	Plasmonic properties of aluminium nanowires in amorphous silicon. Journal of Physics Condensed Matter, 0, , .	0.7	0
1044	Emergence of distinct electronic states in epitaxially-fused PbSe quantum dot superlattices. Nature Communications, 2022, 13, .	5.8	1
1045	Angle-resolved polarimetry of hybrid perovskite emission for photonic technologies. Nanoscale, 2022, 14, 17519-17527.	2.8	3
1046	Approaching PetaVolts per Meter Plasmonics Using Structured Semiconductors. IEEE Access, 2023, 11, 476-493.	2.6	0
1047	Simultaneous Nanoscale Excitation and Emission Mapping by Cathodoluminescence. ACS Nano, 2022, 16, 21462-21470.	7.3	4
1048	Entangling free electrons and optical excitations. Science Advances, 2022, 8, .	4.7	11
1049	Nanoscale Engineering of Optical Strong Coupling inside Metals. Advanced Optical Materials, 2023, 11,	3.6	1
1050	Temporal resolution in transmission electron microscopy using a photoemission electron source. Microscopy (Oxford, England), 2023, 72, 97-110.	0.7	2
1051	Tomographic Reconstruction of Quasistatic Surface Polariton Fields. ACS Photonics, 2023, 10, 185-196.	3.2	2
1052	Cathodoluminescence Spectroscopy of Complex Dendritic Au Architectures for Application in Plasmonâ€Mediated Photocatalysis and as SERS Substrates. Advanced Materials Interfaces, 2023, 10, .	1.9	2
1053	Free-electron-driven X-ray caustics from strained van der Waals materials. Optica, 2023, 10, 292.	4.8	4

#	Article	IF	CITATIONS
1054	Self-design of arbitrary polarization-control waveplates via deep neural networks. Photonics Research, 2023, 11, 695.	3.4	1
1055	Photonic flatband resonances for free-electron radiation. Nature, 2023, 613, 42-47.	13.7	34
1056	Secondary electron emission in the scattering of fast probes by metallic interfaces. Physical Review B, 2023, 107, .	1.1	0
1057	Observation of 2D Cherenkov Radiation. Physical Review X, 2023, 13, .	2.8	12
1058	Direct Visualization of Homogeneous Chemical Distribution in Functional Polyradical Microspheres. Advanced Materials, 2023, 35, .	11.1	4
1059	Free-electron–light interactions in nanophotonics. Applied Physics Reviews, 2023, 10, .	5.5	15
1060	Superradiant Electron Energy Loss Spectroscopy. Nano Letters, 2023, 23, 779-787.	4.5	2
1061	Machine learning for nanoplasmonics. Nature Nanotechnology, 2023, 18, 111-123.	15.6	15
1062	Recent advances of transition radiation: Fundamentals and applications. , 2023, 3, 100025.		10
1063	Smith–Purcell Radiation Driven by the Field of a Standing Laser Wave. JETP Letters, 2023, 117, 262-266.	0.4	1
1064	Hyperbolic whispering-gallery phonon polaritons in boron nitride nanotubes. Nature Nanotechnology, 2023, 18, 529-534.	15.6	8
1065	Spin–orbit interactions in plasmonic crystals probed by site-selective cathodoluminescence spectroscopy. Nanophotonics, 2023, 12, 1877-1889.	2.9	1
1066	A brief peek at the cyclotron in our microscope. Ultramicroscopy, 2023, 248, 113717.	0.8	0
1067	Nanoscale Characterization of Individual Three-Dimensional Split Ring Resonator Systems. , 2023, 1, 607-614.		1
1068	Lemon-juice-based microwave synthesis and optical characterization of anisotropic gold nanoparticles. Nano, 0, , .	0.5	0
1069	Quantum Interference between Fundamentally Different Processes Is Enabled by Shaped Input Wavefunctions. Advanced Science, 2023, 10, .	5.6	4
1070	Theory of radial oscillations in metal nanoparticles driven by optically induced electron density gradients. Journal of Chemical Physics, 2023, 158, 064107.	1.2	1
1071	Theory and simulations of angular momentum transfer from swift electrons to spherical nanoparticles in scanning transmission electron microscopy. Physical Review B, 2023, 107, .	1.1	0

N REPORT

#	Article	IF	CITATIONS
1072	Simulating Electron Energy-Loss Spectroscopy and Cathodoluminescence for Particles in Arbitrary Host Medium Using the Discrete Dipole Approximation. Journal of Physical Chemistry C, 2023, 127, 4154-4167.	1.5	3
1073	Strongly Coupled Plasmon and Phonon Polaritons as Seen by Photon and Electron Probes. Physical Review Applied, 2023, 19, .	1.5	0
1074	Optomechanical effects in nanocavity-enhanced resonant Raman scattering of a single molecule. Physical Review B, 2023, 107, .	1.1	2
1075	Optimal Geometry for Plasmonic Hot-Carrier Extraction in Metal–Semiconductor Nanocrystals. ACS Nano, 2023, 17, 4659-4666.	7.3	4
1076	Nanoscopic Imaging of Photonic Modes Excited in Square-Shaped Perylene Microcrystals. Journal of Physical Chemistry C, 2023, 127, 4665-4671.	1.5	0
1077	Quantum interaction of subrelativistic aloof electrons with mesoscopic samples. Physical Review B, 2023, 107, .	1.1	1
1078	Tunable quantum recoil. Nature Photonics, 2023, 17, 213-214.	15.6	1
1079	Asymmetrical Plasmon Distribution in Hybrid AuAg Hollow/Solid Coded Nanotubes. Nanomaterials, 2023, 13, 992.	1.9	0
1080	Cathodoluminescence imaging for nanoscale optical analysis of microLEDs. , 2023, , .		0
1081	Gallium Phosphide Nanoparticles for Lowâ€Loss Nanoantennas in Visible Range. Advanced Optical Materials, 0, , 2203107.	3.6	3
1082	Fundamentals of Nanophotonics. Springer Series in Optical Sciences, 2023, , 1-33.	0.5	1
1083	Fast Electrons Interacting with Chiral Matter: Mirror-Symmetry Breaking of Quantum Decoherence and Lateral Momentum Transfer. Physical Review Applied, 2023, 19, .	1.5	0
1084	Smith–Purcell Radiation from Highly Mobile Carriers in 2D Quantum Materials. Laser and Photonics Reviews, 2023, 17, .	4.4	1
1085	Modulation of Cathodoluminescence by Surface Plasmons in Silver Nanowires. Small, 2023, 19, .	5.2	1
1086	Freeâ \in Electronâ \in Driven Frequency Comb. Laser and Photonics Reviews, 0, , .	4.4	1
1101	Multi-plasmon effects and plasmon satellites in photoemission from nanostructures. Nanoscale, 0, , .	2.8	0
1104	Interrogating Quantum Nonlocal Effects in Nanoplasmonics through Electron-Beam Spectroscopy. Nano Letters, 2023, 23, 4242-4249.	4.5	2
1111	Angle-controlled Simth-Purcell Radiation Excited by Free Electron Beam. , 2023, , .		0

#	Article	IF	CITATIONS
1112	Basic Theory. Lecture Notes in Quantum Chemistry II, 2023, , 15-69.	0.3	0
1115	Electron beam excited non-bridging oxygen hole centers in silica as nanophotonic probes. , 2022, , .		0
1122	Out-Of-Equilibrium Electron Energy Loss Spectroscopy. , 2023, , .		0
1123	Framework of Free-Electron Quantum Optics Using Photonic Integrated Circuits. , 2023, , .		0
1124	Cold field emission electron source: From higher brightness to ultrafast beam. Advances in Imaging and Electron Physics, 2023, , 107-161.	0.1	0
1126	Probing the Optical Near-Field. Springer Series in Optical Sciences, 2023, , 137-196.	0.5	0
1127	Aerogel-Like Metals Produced Through Physical Vapor Deposition. Springer Handbooks, 2023, , 1189-1210.	0.3	0
1131	Fundamental Limits to Near-Field Optical Response. Springer Series in Optical Sciences, 2023, , 25-85.	0.5	1
1160	Electron Beam Excited Non-Bridging Oxygen Hole Centers in Silica as Nanophotonic Probes. , 2022, , .		0