Myocardial remodeling after infarction: the role of myo

Nature Reviews Cardiology 7, 30-37 DOI: 10.1038/nrcardio.2009.199

Citation Report

#	Article	IF	CITATIONS
1	Characterization of the Inflammatory Phenotype in Atherosclerosis May Contribute to the Development of New Therapeutic and Preventative Interventions. Trends in Cardiovascular Medicine, 2010, 20, 176-181.	2.3	8
2	'Turning the right screw': targeting the interleukin-6 receptor to reduce unfavourable tissue remodelling after myocardial infarction. Cardiovascular Research, 2010, 87, 395-396.	1.8	8
3	Origins of Cardiac Fibroblasts. Circulation Research, 2010, 107, 1304-1312.	2.0	202
4	Therapeutic Implications of PPARÎ ³ in Cardiovascular Diseases. PPAR Research, 2010, 2010, 1-12.	1.1	12
5	Wnt/frizzled signalling modulates the migration and differentiation of immortalized cardiac fibroblasts. Cardiovascular Research, 2010, 87, 514-523.	1.8	54
6	Genetically manipulated progenitor cell sheet with diprotin A improves myocardial function and repair of infarcted hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 299, H1339-H1347.	1.5	47
7	Modulatory effect of interleukin-1α on expression of structural matrix proteins, MMPs and TIMPs in human cardiac myofibroblasts: Role of p38 MAP kinase. Matrix Biology, 2010, 29, 613-620.	1.5	55
8	Uridine triphosphate (UTP) induces profibrotic responses in cardiac fibroblasts by activation of P2Y2 receptors. Journal of Molecular and Cellular Cardiology, 2010, 49, 362-369.	0.9	40
9	Cardiac remodeling at the population level—risk factors, screening, and outcomes. Nature Reviews Cardiology, 2011, 8, 673-685.	6.1	146
10	New Targets to Treat the Structural Remodeling of the Myocardium. Journal of the American College of Cardiology, 2011, 58, 1833-1843.	1.2	147
11	Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine. Annual Review of Biomedical Engineering, 2011, 13, 245-267.	5.7	172
12	Therapeutic regulation of cardiac fibroblast function: targeting stress-activated protein kinase pathways. Future Cardiology, 2011, 7, 673-691.	0.5	22
13	Type I Collagen Cleavage Is Essential for Effective Fibrotic Repair after Myocardial Infarction. American Journal of Pathology, 2011, 179, 2189-2198.	1.9	20
14	p38 MAPK regulates G1-S transition in hypoxic cardiac fibroblasts. International Journal of Biochemistry and Cell Biology, 2011, 43, 919-927.	1.2	20
15	Cardiac overexpression of 8-oxoguanine DNA glycosylase 1 protects mitochondrial DNA and reduces cardiac fibrosis following transaortic constriction. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H2073-H2080.	1.5	43
16	A-Kinase Anchoring Proteins That Regulate Cardiac Remodeling. Journal of Cardiovascular Pharmacology, 2011, 58, 451-458.	0.8	19
17	p21WAF1/Cip1/Sdi1 knockout mice respond to doxorubicin with reduced cardiotoxicity. Toxicology and Applied Pharmacology, 2011, 257, 102-110.	1.3	13
18	Cyclic nucleotide phosphodiesterase 1A: a key regulator of cardiac fibroblast activation and extracellular matrix remodeling in the heart. Basic Research in Cardiology, 2011, 106, 1023-1039.	2.5	91

#	Article	IF	CITATIONS
19	Sensing the Cardiac Environment: Exploiting Cues for Regeneration. Journal of Cardiovascular Translational Research, 2011, 4, 616-630.	1.1	12
20	The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Developmental Biology, 2011, 11, 21.	2.1	314
21	Nanoparticles as magnetic resonance imaging contrast agents for vascular and cardiac diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 146-161.	3.3	51
22	Heat Shock Protein 47 (HSP47) Antisense Oligonucleotides Reduce Cardiac Remodeling and Improve Cardiac Function in a Rat Model of Myocardial Infarction. Thoracic and Cardiovascular Surgeon, 2011, 59, 386-392.	0.4	15
23	Nitric Oxide/Reactive Oxygen Species Generation and Nitroso/Redox Imbalance in Heart Failure: From Molecular Mechanisms to Therapeutic Implications. Antioxidants and Redox Signaling, 2011, 14, 289-331.	2.5	74
24	Development of Myocardial Constructs Using Modulus-Matched Acrylated Polypropylene Glycol Triol Substrate and Different Nonmyocyte Cell Populations. Tissue Engineering - Part A, 2011, 17, 2279-2289.	1.6	9
25	Antifibrotic properties of c-Ski and its regulation of cardiac myofibroblast phenotype and contractility. American Journal of Physiology - Cell Physiology, 2011, 300, C176-C186.	2.1	53
26	The Development of Myocardial Fibrosis in Transgenic Mice With Targeted Overexpression of Tumor Necrosis Factor Requires Mast Cell–Fibroblast Interactions. Circulation, 2011, 124, 2106-2116.	1.6	79
27	Targeted Regional Injection of Biocomposite Microspheres Alters Post–Myocardial Infarction Remodeling and Matrix Proteolytic Pathways. Circulation, 2011, 124, S35-45.	1.6	20
28	Mechanical Coupling Between Myofibroblasts and Cardiomyocytes Slows Electric Conduction in Fibrotic Cell Monolayers. Circulation, 2011, 123, 2083-2093.	1.6	142
29	CC chemokine receptor 5 deletion impairs macrophage activation and induces adverse remodeling following myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1418-H1426.	1.5	52
30	Blocking of Frizzled Signaling With a Homologous Peptide Fragment of Wnt3a/Wnt5a Reduces Infarct Expansion and Prevents the Development of Heart Failure After Myocardial Infarction. Circulation, 2011, 124, 1626-1635.	1.6	122
31	G Protein-coupled Receptor Kinase-2 Is a Novel Regulator of Collagen Synthesis in Adult Human Cardiac Fibroblasts. Journal of Biological Chemistry, 2011, 286, 15507-15516.	1.6	30
32	Somatic Cell Plasticity and Niemann-Pick Type C2 Protein. Journal of Biological Chemistry, 2011, 286, 2078-2087.	1.6	12
33	Prostaglandin E2 in Remote Control of Myocardial Remodeling. Circulation, 2012, 125, 2818-2820.	1.6	3
34	In Vivo Cardiac Cellular Reprogramming Efficacy Is Enhanced by Angiogenic Preconditioning of the Infarcted Myocardium With Vascular Endothelial Growth Factor. Journal of the American Heart Association, 2012, 1, e005652.	1.6	112
35	Contrasting Inflammation Resolution during Atherosclerosis and Post Myocardial Infarction at the Level of Monocyte/Macrophage Phagocytic Clearance. Frontiers in Immunology, 2012, 3, 39.	2.2	26
36	Extracellular Matrix Proteomics in Cardiac Ischemia/Reperfusion. Circulation, 2012, 125, 746-748.	1.6	8

#	Article	IF	CITATIONS
37	Proteomics Analysis of Cardiac Extracellular Matrix Remodeling in a Porcine Model of Ischemia/Reperfusion Injury. Circulation, 2012, 125, 789-802.	1.6	191
38	Myofibroblasts in the Infarct Area: Concepts and Challenges. Microscopy and Microanalysis, 2012, 18, 35-49.	0.2	76
39	Granulocyte colony-stimulating factor treatment plus dipeptidylpeptidase-IV inhibition augments myocardial regeneration in mice expressing cyclin D2 in adult cardiomyocytes. European Heart Journal, 2012, 33, 129-137.	1.0	29
40	Hypoxic Stress Induces Transient Receptor Potential Melastatin 2 (TRPM2) Channel Expression in Adult Rat Cardiac Fibroblasts. Journal of Pharmacological Sciences, 2012, 118, 186-197.	1.1	36
41	Structural Remodeling and Mechanical Function in Heart Failure. Microscopy and Microanalysis, 2012, 18, 50-67.	0.2	38
42	Collagen XIV is important for growth and structural integrity of the myocardium. Journal of Molecular and Cellular Cardiology, 2012, 53, 626-638.	0.9	60
43	Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. European Heart Journal, 2012, 33, 2360-2369.	1.0	130
44	<i>DHRS7c</i> , a novel cardiomyocyteâ€expressed gene that is downâ€regulated by adrenergic stimulation and in heart failure. European Journal of Heart Failure, 2012, 14, 5-13.	2.9	24
45	ATP released from cardiac fibroblasts <i>via</i> connexin hemichannels activates profibrotic P2Y ₂ receptors. FASEB Journal, 2012, 26, 2580-2591.	0.2	73
46	Engraftment of human embryonic stem cell derived cardiomyocytes improves conduction in an arrhythmogenic in vitro model. Journal of Molecular and Cellular Cardiology, 2012, 53, 15-23.	0.9	37
47	Instructive Nanofiber Scaffolds with VEGF Create a Microenvironment for Arteriogenesis and Cardiac Repair. Science Translational Medicine, 2012, 4, 146ra109.	5.8	136
48	Stem Cell Factor Gene Transfer Promotes Cardiac Repair After Myocardial Infarction via In Situ Recruitment and Expansion of c-kit ⁺ Cells. Circulation Research, 2012, 111, 1434-1445.	2.0	63
49	The role of the myofibroblast in tumor stroma remodeling. Cell Adhesion and Migration, 2012, 6, 203-219.	1.1	202
50	Recent Developments in Myofibroblast Biology. American Journal of Pathology, 2012, 180, 1340-1355.	1.9	1,043
51	Interventions in Wnt signaling as a novel therapeutic approach to improve myocardial infarct healing. Fibrogenesis and Tissue Repair, 2012, 5, 16.	3.4	29
52	Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-β mediated fibrosis. Fibrogenesis and Tissue Repair, 2012, 5, 9.	3.4	48
53	Micro <scp>RNA</scp> â€24 regulates cardiac fibrosis after myocardial infarction. Journal of Cellular and Molecular Medicine, 2012, 16, 2150-2160.	1.6	241
54	Diabetes influences cardiac extracellular matrix remodelling after myocardial infarction and subsequent development of cardiac dysfunction. Journal of Cellular and Molecular Medicine, 2012, 16, 2925-2934	1.6	16

ARTICLE IF CITATIONS # Acute Left Ventricular Remodeling Following Myocardial Infarction. JACC: Cardiovascular Imaging, 2.3 97 55 2012, 5, 884-893. A potential role for integrin signaling in mechanoelectrical feedback. Progress in Biophysics and Molecular Biology, 2012, 110, 196-203. 1.4 Increased blood mRNA expression of inflammatory and anti-fibrotic markers in dogs with congestive 57 0.9 11 heart failure. Research in Veterinary Science, 2012, 93, 879-885. Extracellular Matrix and Fibroblast Communication Following Myocardial Infarction. Journal of Cardiovascular Translational Research, 2012, 5, 848-857. Cardiac Fibrosis., 2012, , 389-404. 59 4 Resident Cardiac Immune Cells and Expression of the Ectonucleotidase Enzymes CD39 and CD73 after Ischemic Injury. PLoS ONE, 2012, 7, e34730. 1.1 Angiotensin Converting Enzyme (ACE) and ACE2 Bind Integrins and ACE2 Regulates Integrin Signalling. 61 1.1 79 PLoS ONE, 2012, 7, e34747. Intracellular Signaling Pathways in Cardiac Remodeling., 2012, , 299-308. Regenerating functional heart tissue for myocardial repair. Cellular and Molecular Life Sciences, 63 2.4 48 2012, 69, 2635-2656. Novel therapeutic approaches to post-infarction remodelling. Cardiovascular Research, 2012, 94, 64 1.8 101 293-303. Anti-inflammatory mechanisms and therapeutic opportunities in myocardial infarct healing. Journal of 65 1.7 57 Molecular Medicine, 2012, 90, 361-369. Usefulness of Cardiac Magnetic Resonance in Early Assessment of Cardiomyopathies: Myocardial 0.4 Fibrosis Is a Common Denominator. Current Cardiovascular Imaging Reports, 2012, 5, 77-82. The Wnt/Frizzled pathway as a therapeutic target for cardiac hypertrophy: where do we stand?. Acta 67 1.8 39 Physiologica, 2012, 204, 110-117. Evolving role of molecular imaging for new understanding: targeting myofibroblasts to predict remodeling. Annals of the New York Academy of Sciences, 2012, 1254, 33-41. 1.8 14 Cardiac shock wave therapy: assessment of safety and new insights into mechanisms of tissue 69 1.6 38 regeneration. Journal of Cellular and Molecular Medicine, 2012, 16, 936-942. Differential regulation of collagen secretion by kinin receptors in cardiac fibroblast and myofibroblast. Toxicology and Applied Pharmacology, 2012, 261, 300-308. Transient expression of cellular retinolâ€binding proteinâ€1 during cardiac repair after myocardial 71 0.6 7 infarction. Pathology International, 2012, 62, 246-253. Regulation of myocardial matrix metalloproteinase expression and activity by cardiac fibroblasts. 1.5 54 IUBMB Life, 2012, 64, 143-150.

#	Article	IF	Citations
73	MRI studies of cryoinjury infarction in pig hearts: ii. Effects of intrapericardial delivery of adiposeâ€derived stem cells (ADSC) embedded in agarose gel. NMR in Biomedicine, 2012, 25, 227-235.	1.6	12
74	Function and fate of myofibroblasts after myocardial infarction. Fibrogenesis and Tissue Repair, 2013, 6, 5.	3.4	143
75	Inhibition of NADPH oxidase 4-related signaling by sodium hydrosulfide attenuates myocardial fibrotic response. International Journal of Cardiology, 2013, 168, 3770-3778.	0.8	72
76	Epithelial-to-mesenchymal transition in fibrosis: Collagen type I expression is highly upregulated after EMT, but does not contribute to collagen deposition. Experimental Cell Research, 2013, 319, 3000-3009.	1.2	57
77	Inflammatory Response in Cardiovascular Surgery. , 2013, , .		2
78	Lipomatous metaplasia identified in rabbits with reperfused myocardial infarction by 3.0ÂT magnetic resonance imaging and histopathology. BMC Medical Imaging, 2013, 13, 18.	1.4	12
79	Native T1 Mapping in Differentiation of Normal Myocardium From Diffuse Disease in Hypertrophic and Dilated Cardiomyopathy. JACC: Cardiovascular Imaging, 2013, 6, 475-484.	2.3	386
80	Quantitative Analysis of Cardiac Tissue Including Fibroblasts Using Three-Dimensional Confocal Microscopy and Image Reconstruction: Towards a Basis for Electrophysiological Modeling. IEEE Transactions on Medical Imaging, 2013, 32, 862-872.	5.4	31
81	The effects and mechanism of ginsenoside Rg1 on myocardial remodeling in an animal model of chronic thromboembolic pulmonary hypertension. European Journal of Medical Research, 2013, 18, 16.	0.9	33
82	Myosin Structure, Allostery, and Mechano-Chemistry. Structure, 2013, 21, 1911-1922.	1.6	56
83	Targeting Wnt Signaling to Improve Wound Healing After Myocardial Infarction. Methods in Molecular Biology, 2013, 1037, 355-380.	0.4	10
84	Combined effects of interleukin-1α and transforming growth factor-β1 on modulation of human cardiac fibroblast function. Matrix Biology, 2013, 32, 399-406.	1.5	38
85	Wound Regeneration and Repair. Methods in Molecular Biology, 2013, , .	0.4	2
86	p38 MAPK alpha mediates cytokine-induced IL-6 and MMP-3 expression in human cardiac fibroblasts. Biochemical and Biophysical Research Communications, 2013, 430, 419-424.	1.0	49
87	Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nature Reviews Cardiology, 2013, 10, 15-26.	6.1	533
88	The myofibroblast matrix: implications for tissue repair andÂfibrosis. Journal of Pathology, 2013, 229, 298-309.	2.1	560
89	Differential patterns of replacement and reactive fibrosis in pressure and volume overload are related to the propensity for ischaemia and involve resistin. Journal of Physiology, 2013, 591, 5337-5355.	1.3	31
90	Molecular basis of disturbed extracellular matrix homeostasis in stress cardiomyopathy. International Journal of Cardiology, 2013, 168, 1685-1688.	0.8	17

#	Article	IF	CITATIONS
91	cIAP-2 protects cardiac fibroblasts from oxidative damage: An obligate regulatory role for ERK1/2 MAPK and NF-κB. Journal of Molecular and Cellular Cardiology, 2013, 62, 217-226.	0.9	22
92	Genetic variants in TNFα and the one-year cardiovascular outcome in patients with coronary heart disease. International Journal of Cardiology, 2013, 168, 1688-1690.	0.8	1
93	The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vascular Pharmacology, 2013, 58, 182-188.	1.0	121
94	Matrix mechanics and regulation of the fibroblast phenotype. Periodontology 2000, 2013, 63, 14-28.	6.3	67
95	Head-to-head comparison of 1 week versus 6 months CMR-derived infarct size for prediction of late events after STEMI. International Journal of Cardiovascular Imaging, 2013, 29, 1499-1509.	0.7	7
96	Cathepsin S-mediated fibroblast trans-differentiation contributes to left ventricular remodelling after myocardial infarction. Cardiovascular Research, 2013, 100, 84-94.	1.8	50
97	Image-guided therapies for myocardial repair: concepts and practical implementation. European Heart Journal Cardiovascular Imaging, 2013, 14, 741-751.	0.5	16
98	The Role of Antioxidation and Immunomodulation in Postnatal Multipotent Stem Cell-Mediated Cardiac Repair. International Journal of Molecular Sciences, 2013, 14, 16258-16279.	1.8	24
99	Increase in Cellular Cyclic AMP Concentrations Reverses the Profibrogenic Phenotype of Cardiac Myofibroblasts: A Novel Therapeutic Approach for Cardiac Fibrosis. Molecular Pharmacology, 2013, 84, 787-793.	1.0	40
100	Increase in parasympathetic tone by pyridostigmine prevents ventricular dysfunction during the onset of heart failure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R908-R916.	0.9	62
101	Hydrolysis of Extracellular ATP by Ectonucleoside Triphosphate Diphosphohydrolase (ENTPD) Establishes the Set Point for Fibrotic Activity of Cardiac Fibroblasts. Journal of Biological Chemistry, 2013, 288, 19040-19049.	1.6	31
102	The constant beat: cardiomyocytes adapt their forces by equal contraction upon environmental stiffening. Biology Open, 2013, 2, 351-361.	0.6	121
103	Structural Composition of Myocardial Infarction Scar in Middle-aged Male and Female Rats. Journal of Histochemistry and Cytochemistry, 2013, 61, 833-848.	1.3	16
104	Protease-Activated Receptor 1 Inhibition by SCH79797 Attenuates Left Ventricular Remodeling and Profibrotic Activities of Cardiac Fibroblasts. Journal of Cardiovascular Pharmacology and Therapeutics, 2013, 18, 460-475.	1.0	60
105	Matrix Metalloproteinase-9: Many Shades of Function in Cardiovascular Disease. Physiology, 2013, 28, 391-403.	1.6	385
106	Imaging the healing murine myocardial infarct <i>in vivo</i> : ultrasound, magnetic resonance imaging and fluorescence molecular tomography. Experimental Physiology, 2013, 98, 606-613.	0.9	11
107	Restored perfusion and reduced inflammation in the infarcted heart after grafting stem cells with a hyaluronanâ€based scaffold. Journal of Cellular and Molecular Medicine, 2013, 17, 518-530.	1.6	27
108	Mechanoregulation of the Myofibroblast in Wound Contraction, Scarring, and Fibrosis: Opportunities for New Therapeutic Intervention. Advances in Wound Care, 2013, 2, 122-141.	2.6	186

#	Article	IF	CITATIONS
109	Chronic Akt1 Deficiency Attenuates Adverse Remodeling and Enhances Angiogenesis After Myocardial Infarction. Circulation: Cardiovascular Imaging, 2013, 6, 992-1000.	1.3	13
110	Matrix Metalloproteinases: Drug Targets for Myocardial Infarction. Current Drug Targets, 2013, 14, 276-286.	1.0	4
111	Therapeutic Transdifferentiation: Can we Generate Cardiac Tissue Rather Than Scar after Myocardial Injury?. Methodist DeBakey Cardiovascular Journal, 2013, 9, 210-212.	0.5	5
112	Left and Right Ventricle Late Remodeling Following Myocardial Infarction in Rats. PLoS ONE, 2013, 8, e64986.	1.1	54
113	An Anthelmintic Drug, Pyrvinium Pamoate, Thwarts Fibrosis and Ameliorates Myocardial Contractile Dysfunction in a Mouse Model of Myocardial Infarction. PLoS ONE, 2013, 8, e79374.	1.1	29
114	Treatment of Glucocorticoids Inhibited Early Immune Responses and Impaired Cardiac Repair in Adult Zebrafish. PLoS ONE, 2013, 8, e66613.	1.1	74
115	Histomorphometric evaluation of the coronary artery vessels in rats submitted to industrial noise. Acta Cardiologica, 2013, 68, 285-289.	0.3	13
116	Myocardial fi brosis in rats exposed to low frequency noise. Acta Cardiologica, 2013, 68, 241-245.	0.3	15
117	Cardiac Fibroblasts and Arrhythmogenesis. , 2014, , 297-308.		0
118	Hypoxia Preconditioned Mesenchymal Stem Cells Prevent Cardiac Fibroblast Activation and Collagen Production via Leptin. PLoS ONE, 2014, 9, e103587.	1.1	39
119	Hypothyroidism and Its Rapid Correction Alter Cardiac Remodeling. PLoS ONE, 2014, 9, e109753.	1.1	33
121	Targeting mitochondria for cardioprotection: examining the benefit for patients. Future Cardiology, 2014, 10, 255-272.	0.5	34
122	Mitochondrial NLRP3 Protein Induces Reactive Oxygen Species to Promote Smad Protein Signaling and Fibrosis Independent from the Inflammasome. Journal of Biological Chemistry, 2014, 289, 19571-19584.	1.6	120
123	Melusin protects from cardiac rupture and improves functional remodelling after myocardial infarction. Cardiovascular Research, 2014, 101, 97-107.	1.8	46
124	Reoxygenationâ€Derived Toxic Reactive Oxygen/Nitrogen Species Modulate the Contribution of Bone Marrow Progenitor Cells to Remodeling After Myocardial Infarction. Journal of the American Heart Association, 2014, 3, e000471.	1.6	6
125	A novel β-adrenergic response element regulates both basal and agonist-induced expression of cyclin-dependent kinase 1 gene in cardiac fibroblasts. American Journal of Physiology - Cell Physiology, 2014, 306, C540-C550.	2.1	19
126	Disruption of type 5 adenylyl cyclase prevents β-adrenergic receptor cardiomyopathy: A novel approach to β-adrenergic receptor blockade. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1521-H1528.	1.5	14
127	Induction of the calcineurin variant CnAβ1 after myocardial infarction reduces post-infarction ventricular remodelling by promoting infarct vascularization. Cardiovascular Research, 2014, 102, 396-406.	1.8	24

#	Article	IF	CITATIONS
128	Somatic Cell Reprogramming into Cardiovascular Lineages. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 340-349.	1.0	8
129	Modifying matrix remodeling to prevent heart failure. , 2014, , 41-60.		2
130	Practical experience using galectin-3 in heart failure. Clinical Chemistry and Laboratory Medicine, 2014, 52, 1425-31.	1.4	23
131	Investigating inherent functional differences between human cardiac fibroblasts cultured from nondiabetic and Type 2 diabetic donors. Cardiovascular Pathology, 2014, 23, 204-210.	0.7	43
132	Jagat Narula, MD, PhD: A conversation with the editor. American Journal of Cardiology, 2014, 113, 2070-2085.	0.7	1
133	Acute slowing of cardiac conduction in response to myofibroblast coupling to cardiomyocytes through N-cadherin. Journal of Molecular and Cellular Cardiology, 2014, 68, 29-37.	0.9	35
134	Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction. International Journal of Cardiology, 2014, 173, 453-466.	0.8	75
135	Role of adenosine A2B receptor signaling in contribution of cardiac mesenchymal stem-like cells to myocardial scar formation. Purinergic Signalling, 2014, 10, 477-486.	1.1	19
136	Targeting cardiac fibroblasts to treat fibrosis of the heart: Focus on HDACs. Journal of Molecular and Cellular Cardiology, 2014, 70, 100-107.	0.9	72
137	Molecular Imaging of the Cardiac Extracellular Matrix. Circulation Research, 2014, 114, 903-915.	2.0	73
138	Cardiac fibrosis and arrhythmogenesis: The road to repair is paved with perils. Journal of Molecular and Cellular Cardiology, 2014, 70, 83-91.	0.9	247
139	Cardiac matrix remodeling and heart failure. , 2014, , 3-26.		1
140	Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Human Molecular Genetics, 2014, 23, 2176-2188.	1.4	235
141	The cardioprotective effects of mineralocorticoid receptor antagonists. , 2014, 142, 72-87.		25
142	Biomarker and imaging responses to spironolactone in subclinical diabetic cardiomyopathy. European Heart Journal Cardiovascular Imaging, 2014, 15, 776-786.	0.5	20
143	MMI-0100 inhibits cardiac fibrosis in myocardial infarction by direct actions on cardiomyocytes and fibroblasts via MK2 inhibition. Journal of Molecular and Cellular Cardiology, 2014, 77, 86-101.	0.9	41
144	Integrins αvβ5 and αvβ3 promote latent TGF-β1 activation by human cardiac fibroblast contraction. Cardiovascular Research, 2014, 102, 407-417.	1.8	184
145	Dimeric [68Ga]DOTA-RGD Peptide Targeting αvβ3 Integrin Reveals Extracellular Matrix Alterations after Myocardial Infarction. Molecular Imaging and Biology, 2014, 16, 793-801.	1.3	26

#	Article	IF	CITATIONS
146	PDE2-mediated cAMP hydrolysis accelerates cardiac fibroblast to myofibroblast conversion and is antagonized by exogenous activation of cGMP signaling pathways. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1246-H1252.	1.5	48
147	Allogeneic adipose stem cell therapy in acute myocardial infarction. European Journal of Clinical Investigation, 2014, 44, 83-92.	1.7	47
148	Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering. Biomaterials, 2014, 35, 8540-8552.	5.7	85
149	Interleukin-23 Deficiency Leads to Impaired Wound Healing and Adverse Prognosis After Myocardial Infarction. Circulation: Heart Failure, 2014, 7, 161-171.	1.6	48
150	Interleukin-6-dependent phenotypic modulation of cardiac fibroblasts after acute myocardial infarction. Basic Research in Cardiology, 2014, 109, 440.	2.5	56
151	HDAC class I inhibitor, Mocetinostat, reverses cardiac fibrosis in heart failure and diminishes CD90+ cardiac myofibroblast activation. Fibrogenesis and Tissue Repair, 2014, 7, 10.	3.4	106
152	Cardiac fibroblasts support cardiac inflammation in heart failure. Basic Research in Cardiology, 2014, 109, 428.	2.5	128
153	Progression of diffuse myocardial fibrosis assessed by cardiac magnetic resonance T1 mapping. International Journal of Cardiovascular Imaging, 2014, 30, 1339-1346.	0.7	4
154	Galectin-3: A Modifiable Risk Factor in Heart Failure. Cardiovascular Drugs and Therapy, 2014, 28, 237-246.	1.3	63
155	Cardiac fibroblast in development and wound healing. Journal of Molecular and Cellular Cardiology, 2014, 70, 47-55.	0.9	128
156	β-Arrestins regulate human cardiac fibroblast transformation and collagen synthesis in adverse ventricular remodeling. Journal of Molecular and Cellular Cardiology, 2014, 76, 73-83.	0.9	29
157	Dynamic Changes in Myocardial Matrix and Relevance to Disease. Circulation Research, 2014, 114, 916-927.	2.0	109
158	Cardiac Fibroblast Glycogen Synthase Kinase-3β Regulates Ventricular Remodeling and Dysfunction in Ischemic Heart. Circulation, 2014, 130, 419-430.	1.6	148
159	Human mesenchymal stem cells express a myofibroblastic phenotype in vitro: comparison to human cardiac myofibroblasts. Molecular and Cellular Biochemistry, 2014, 392, 187-204.	1.4	23
160	Exploring the elasticity and adhesion behavior of cardiac fibroblasts by atomic force microscopy indentation. Materials Science and Engineering C, 2014, 40, 427-434.	3.8	23
161	Effects of interleukin-1 on cardiac fibroblast function: Relevance to post-myocardial infarction remodelling. Vascular Pharmacology, 2014, 60, 1-7.	1.0	50
162	Extracorporeal Low-Energy Shock-Wave Therapy Exerts Anti-Inflammatory Effects in a Rat Model of Acute Myocardial Infarction. Circulation Journal, 2014, 78, 2915-2925.	0.7	64
163	Improving vagal activity ameliorates cardiac fibrosis induced by angiotensin II: in vivo and in vitro. Scientific Reports, 2015, 5, 17108.	1.6	26

#	Article	IF	CITATIONS
164	Inhibitory effects of C-type natriuretic peptide on the differentiation of cardiac fibroblasts, and secretion of monocyte chemoattractant protein-1 and plasminogen activator inhibitor-1. Molecular Medicine Reports, 2015, 11, 159-165.	1.1	11
166	The Meaning of Different Forms of Structural Myocardial Injury, Immune Response and Timing of Infarct Necrosis and Cardiac Repair. Current Vascular Pharmacology, 2015, 13, 6-19.	0.8	21
167	TGF-β1-Mediated Differentiation of Fibroblasts Is Associated with Increased Mitochondrial Content and Cellular Respiration. PLoS ONE, 2015, 10, e0123046.	1.1	69
168	Atrial Fibrillation and Fibrosis: Beyond the Cardiomyocyte Centric View. BioMed Research International, 2015, 2015, 1-16.	0.9	29
169	Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-12.	1.9	36
170	MBNL1-mediated regulation of differentiation RNAs promotes myofibroblast transformation and the fibrotic response. Nature Communications, 2015, 6, 10084.	5.8	72
171	Pharmacological Elevation of Circulating Bioactive Phosphosphingolipids Enhances Myocardial Recovery After Acute Infarction. Stem Cells Translational Medicine, 2015, 4, 1333-1343.	1.6	26
172	Statins Impair Survival of Primary Human Mesenchymal Progenitor Cells via Mevalonate Depletion, NF-κB Signaling, and Bnip3. Journal of Cardiovascular Translational Research, 2015, 8, 96-105.	1.1	9
173	MicroRNA-101a Inhibits Cardiac Fibrosis Induced by Hypoxia via Targeting TGFβRI on Cardiac Fibroblasts. Cellular Physiology and Biochemistry, 2015, 35, 213-226.	1.1	97
174	The Stressful Life of Cardiac Myofibroblasts. , 2015, , 71-92.		1
174 175	The Stressful Life of Cardiac Myofibroblasts. , 2015, , 71-92. Cardiac Fibrosis and Heart Failure: Cause or Effect?. , 2015, , .		1
174 175 176	The Stressful Life of Cardiac Myofibroblasts. , 2015, , 71-92. Cardiac Fibrosis and Heart Failure: Cause or Effect?. , 2015, , . Anti-Fibrotic Effects of Class I HDAC Inhibitor, Mocetinostat Is Associated with IL-6/Stat3 Signaling in Ischemic Heart Failure. International Journal of Molecular Sciences, 2015, 16, 11482-11499.	1.8	1 4 62
174 175 176 177	The Stressful Life of Cardiac Myofibroblasts. , 2015, , 71-92. Cardiac Fibrosis and Heart Failure: Cause or Effect?. , 2015, , . Anti-Fibrotic Effects of Class I HDAC Inhibitor, Mocetinostat Is Associated with IL-6/Stat3 Signaling in Ischemic Heart Failure. International Journal of Molecular Sciences, 2015, 16, 11482-11499. Injection of Peptide Nanogels Preserves Postinfarct Diastolic Function and Prolongs Efficacy of Cell Therapy in Pigs. Tissue Engineering - Part A, 2015, 21, 1662-1671.	1.8	1 4 62 10
174 175 176 177 178	The Stressful Life of Cardiac Myofibroblasts. , 2015, , 71-92. Cardiac Fibrosis and Heart Failure: Cause or Effect?. , 2015, , . Anti-Fibrotic Effects of Class I HDAC Inhibitor, Mocetinostat Is Associated with IL-6/Stat3 Signaling in Ischemic Heart Failure. International Journal of Molecular Sciences, 2015, 16, 11482-11499. Injection of Peptide Nanogels Preserves Postinfarct Diastolic Function and Prolongs Efficacy of Cell Therapy in Pigs. Tissue Engineering - Part A, 2015, 21, 1662-1671. Cardioprotective role of growth/differentiation factor 1 in postâ€infarction left ventricular remodelling and dysfunction. Journal of Pathology, 2015, 236, 360-372.	1.8 1.6 2.1	1 4 62 10
174 175 176 177 178	The Stressful Life of Cardiac Myofibroblasts. , 2015, , 71-92. Cardiac Fibrosis and Heart Failure: Cause or Effect?. , 2015, , . Anti-Fibrotic Effects of Class I HDAC Inhibitor, Mocetinostat Is Associated with IL-6/Stat3 Signaling in Ischemic Heart Failure. International Journal of Molecular Sciences, 2015, 16, 11482-11499. Injection of Peptide Nanogels Preserves Postinfarct Diastolic Function and Prolongs Efficacy of Cell Therapy in Pigs. Tissue Engineering - Part A, 2015, 21, 1662-1671. Cardioprotective role of growth/differentiation factor 1 in postâ&infarction left ventricular remodelling and dysfunction. Journal of Pathology, 2015, 236, 360-372. Differential β ₃ Integrin Expression Regulates the Response of Human Lung and Cardiac Fibroblasts to Extracellular Matrix and Its Components. Tissue Engineering - Part A, 2015, 21, 2195-2205.	1.8 1.6 2.1 1.6	1 4 62 10 14
174 175 176 177 178 179	The Stressful Life of Cardiac Myofibroblasts., 2015, , 71-92. Cardiac Fibrosis and Heart Failure: Cause or Effect?., 2015, , . Anti-Fibrotic Effects of Class I HDAC Inhibitor, Mocetinostat Is Associated with IL-6/Stat3 Signaling in Ischemic Heart Failure. International Journal of Molecular Sciences, 2015, 16, 11482-11499. Injection of Peptide Nanogels Preserves Postinfarct Diastolic Function and Prolongs Efficacy of Cell Therapy in Pigs. Tissue Engineering - Part A, 2015, 21, 1662-1671. Cardioprotective role of growth/differentiation factor 1 in postâ€hfarction left ventricular remodelling and dysfunction. Journal of Pathology, 2015, 236, 360-372. Differential l² ₃ Integrin Expression Regulates the Response of Human Lung and Cardiac Fibroblasts to Extracellular Matrix and Its Components. Tissue Engineering - Part A, 2015, 21, 2195-2205. Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction. Basic Research in Cardiology, 2015, 110, 25.	1.8 1.6 2.1 1.6 2.5	1 4 62 10 14 54
174 175 176 177 178 179 180	The Stressful Life of Cardiac Myofibroblasts. , 2015, , 71-92. Cardiac Fibrosis and Heart Failure: Cause or Effect?. , 2015, , . Anti-Fibrotic Effects of Class I HDAC Inhibitor, Mocetinostat Is Associated with IL-6/Stat3 Signaling in Ischemic Heart Failure. International Journal of Molecular Sciences, 2015, 16, 11482-11499. Injection of Peptide Nanogels Preserves Postinfarct Diastolic Function and Prolongs Efficacy of Cell Therapy in Pigs. Tissue Engineering - Part A, 2015, 21, 1662-1671. Cardioprotective role of growth/differentiation factor 1 in postâ€infarction left ventricular remodelling and dysfunction. Journal of Pathology, 2015, 236, 360-372. Differential l² ₃ integrin Expression Regulates the Response of Human Lung and Cardiac Fibroblasts to Extracellular Matrix and Its Components. Tissue Engineering - Part A, 2015, 21, 2195-2205. Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction. Basic Research in Cardiology, 2015, 110, 25. Regulatory role of CARD3 in left ventricular remodelling and dysfunction after myocardial infarction. Basic Research in Cardiology, 2015, 110, 56.	1.8 1.6 2.1 1.6 2.5 2.5	1 4 62 10 14 54 23

#	Article	IF	CITATIONS
183	Direct intercellular communications dominate the interaction between adipose-derived MSCs and myofibroblasts against cardiac fibrosis. Protein and Cell, 2015, 6, 735-745.	4.8	22
184	Local Gradients in Electrotonic Loading Modulate the Local Effective Refractory Period: Implications for Arrhythmogenesis in the Infarct Border Zone. IEEE Transactions on Biomedical Engineering, 2015, 62, 2251-2259.	2.5	23
185	Tetrandrine reverses human cardiac myofibroblast activation and myocardial fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1564-H1574.	1.5	28
186	Fibroblast activation protein alpha expression identifies activated fibroblasts after myocardial infarction. Journal of Molecular and Cellular Cardiology, 2015, 87, 194-203.	0.9	160
187	Wnt signaling in atherosclerosis. European Journal of Pharmacology, 2015, 763, 122-130.	1.7	42
188	Has the search for a marker of activated fibroblasts finally come to an end?. Journal of Molecular and Cellular Cardiology, 2015, 88, 120-123.	0.9	29
189	Hierarchical Regulation of Wound Healing by NOD-Like Receptors in Cardiovascular Disease. Antioxidants and Redox Signaling, 2015, 22, 1176-1187.	2.5	21
190	The Effects of Macrophage-Stimulating Protein on the Migration, Proliferation, and Collagen Synthesis of Skin Fibroblasts <i>In Vitro</i> and <i>In Vivo</i> . Tissue Engineering - Part A, 2015, 21, 982-991.	1.6	23
191	Cardiologia molecular – da bancada ao leito. , 2016, 95, 45.	0.0	0
192	How Biomaterials Can Influence Various Cell Types in the Repair and Regeneration of the Heart after Myocardial Infarction. Frontiers in Bioengineering and Biotechnology, 2016, 4, 62.	2.0	20
193	Action of SNAIL1 in Cardiac Myofibroblasts Is Important for Cardiac Fibrosis following Hypoxic Injury. PLoS ONE, 2016, 11, e0162636.	1.1	19
194	Direct cellular reprogramming for cardiac repair and regeneration. European Journal of Heart Failure, 2016, 18, 145-156.	2.9	21
195	Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1485-H1497.	1.5	38
196	Antifibrotic therapies to control cardiac fibrosis. Biomaterials Research, 2016, 20, 13.	3.2	102
197	Can heart function lost to disease be regenerated by therapeutic targeting of cardiac scar tissue?. Seminars in Cell and Developmental Biology, 2016, 58, 41-54.	2.3	21
198	Essential Role for Premature Senescence of Myofibroblasts in Myocardial Fibrosis. Journal of the American College of Cardiology, 2016, 67, 2018-2028.	1.2	186
199	Activation of Cannabinoid Receptor Type II by AM1241 Ameliorates Myocardial Fibrosis via Nrf2-Mediated Inhibition of TGF-β1/Smad3 Pathway in Myocardial Infarction Mice. Cellular Physiology and Biochemistry, 2016, 39, 1521-1536.	1.1	72
200	Regeneration versus scarring in vertebrate appendages and heart. Journal of Pathology, 2016, 238, 233-246.	2.1	57

#	Article	IF	CITATIONS
201	Inhomogeneity of collagen organization within the fibrotic scar after myocardial infarction: results in a swine model and in human samples. Journal of Anatomy, 2016, 228, 47-58.	0.9	17
202	Protective effects of triptolide on TLR4 mediated autoimmune and inflammatory response induced myocardial fibrosis in diabetic cardiomyopathy. Journal of Ethnopharmacology, 2016, 193, 333-344.	2.0	62
203	Paracrine Effects of Adipose-Derived Stem Cells on Matrix Stiffness-Induced Cardiac Myofibroblast Differentiation via Angiotensin II Type 1 Receptor and Smad7. Scientific Reports, 2016, 6, 33067.	1.6	46
204	Deletion of CD28 Co-stimulatory Signals Exacerbates Left Ventricular Remodeling and Increases Cardiac Rupture After Myocardial Infarction. Circulation Journal, 2016, 80, 1971-1979.	0.7	10
205	Defining the Cardiac Fibroblast. Circulation Journal, 2016, 80, 2269-2276.	0.7	201
206	Opening of the inward rectifier potassium channel alleviates maladaptive tissue repair following myocardial infarction. Acta Biochimica Et Biophysica Sinica, 2016, 48, 687-695.	0.9	9
207	Aberrant SSEA-4 upregulation mediates myofibroblast activity to promote pre-cancerous oral submucous fibrosis. Scientific Reports, 2016, 6, 37004.	1.6	32
208	Wnt Signaling in Cardiac Remodeling and Heart Failure. Handbook of Experimental Pharmacology, 2016, 243, 371-393.	0.9	25
209	Neural Crest Stem Cells Can Differentiate to a Cardiomyogenic Lineage with an Ability to Contract in Response to Pulsed Infrared Stimulation. Tissue Engineering - Part C: Methods, 2016, 22, 982-990.	1.1	3
210	MicroRNA-150 Inhibits the Activation of Cardiac Fibroblasts by Regulating c-Myb. Cellular Physiology and Biochemistry, 2016, 38, 2103-2122.	1.1	37
211	Identification of Angiogenesis Rich-Viable Myocardium using RGD Dimer based SPECT after Myocardial Infarction. Scientific Reports, 2016, 6, 27520.	1.6	8
212	Cardiac fibrosis in myocardial infarction—from repair and remodeling to regeneration. Cell and Tissue Research, 2016, 365, 563-581.	1.5	617
213	Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nature Reviews Drug Discovery, 2016, 15, 620-638.	21.5	251
214	A Multidisciplinary Assessment of Remote Myocardial Fibrosis After Reperfused Myocardial Infarction in Swine and Patients. Journal of Cardiovascular Translational Research, 2016, 9, 321-333.	1.1	9
215	Comparing the effects of MSCs and CD34+ cell therapy in a rat model of myocardial infarction. IUBMB Life, 2016, 68, 343-354.	1.5	9
216	The Janus face of myofibroblasts in the remodeling heart. Journal of Molecular and Cellular Cardiology, 2016, 91, 35-41.	0.9	26
217	Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction. Cardiovascular Research, 2016, 109, 67-78.	1.8	103
218	The role of Wnt regulation in heart development, cardiac repair and disease: A tissue engineering perspective. Biochemical and Biophysical Research Communications, 2016, 473, 698-703.	1.0	48

#	Δρτιςι ε	IF	CITATIONS
т 219	Temporal cardiac remodeling post-myocardial infarction: dynamics and prognostic implications in	1.7	18
220	Fibrous scaffolds for building hearts and heart parts. Advanced Drug Delivery Reviews, 2016, 96, 83-102.	6.6	116
221	Prediction of Reverse Remodeling at Cardiac MR Imaging Soon after First ST-Segment–Elevation Myocardial Infarction: Results of a Large Prospective Registry. Radiology, 2016, 278, 54-63.	3.6	49
222	Cardiac Fibrosis. Circulation Research, 2016, 118, 1021-1040.	2.0	1,136
223	Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems. Journal of Molecular and Cellular Cardiology, 2016, 94, 22-31.	0.9	122
224	Mast cells promote proliferation and migration and inhibit differentiation of mesenchymal stem cells through PDGF. Journal of Molecular and Cellular Cardiology, 2016, 94, 32-42.	0.9	37
225	Myofibroblast secretome and its auto-/paracrine signaling. Expert Review of Cardiovascular Therapy, 2016, 14, 591-598.	0.6	25
226	Macrophage precursor cells from the left atrial appendage of the heart spontaneously reprogram into a C-kit+/CD45â^' stem cell-like phenotype. International Journal of Cardiology, 2016, 209, 296-306.	0.8	10
227	Curcumin suppresses transforming growth factor-β1-induced cardiac fibroblast differentiation via inhibition of Smad-2 and p38 MAPK signaling pathways. Experimental and Therapeutic Medicine, 2016, 11, 998-1004.	0.8	29
228	Cardiomyocyte generation from somatic sources — current status and future directions. Current Opinion in Biotechnology, 2016, 40, 49-55.	3.3	10
229	The crossroads of inflammation, fibrosis, and arrhythmia following myocardial infarction. Journal of Molecular and Cellular Cardiology, 2016, 91, 114-122.	0.9	181
230	Transcriptional control of cardiac fibroblast plasticity. Journal of Molecular and Cellular Cardiology, 2016, 91, 52-60.	0.9	114
231	Towards comprehensive cardiac repair and regeneration after myocardial infarction: Aspects to consider and proteins to deliver. Biomaterials, 2016, 82, 94-112.	5.7	64
232	Mechanical control of cardiac myofibroblasts. Journal of Molecular and Cellular Cardiology, 2016, 93, 133-142.	0.9	192
233	Integrins and integrin-related proteins in cardiac fibrosis. Journal of Molecular and Cellular Cardiology, 2016, 93, 162-174.	0.9	122
234	Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions. Annals of Biomedical Engineering, 2016, 44, 1436-1448.	1.3	40
235	Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). Journal of Molecular and Cellular Cardiology, 2016, 94, 189-200.	0.9	163
236	A single injection of protein-loaded coacervate-gel significantly improves cardiac function post infarction. Biomaterials, 2017, 125, 65-80.	5.7	61

#	Article	IF	CITATIONS
237	Haplodeficiency of activin receptor-like kinase 4 alleviates myocardial infarction-induced cardiac fibrosis and preserves cardiac function. Journal of Molecular and Cellular Cardiology, 2017, 105, 1-11.	0.9	15
238	MicroRNA-98 inhibits TGF-β1-induced differentiation and collagen production of cardiac fibroblasts by targeting TGFBR1. Human Cell, 2017, 30, 192-200.	1.2	38
239	Relationship among LRP1 expression, Pyk2 phosphorylation and MMPâ€9 activation in left ventricular remodelling after myocardial infarction. Journal of Cellular and Molecular Medicine, 2017, 21, 1915-1928.	1.6	12
240	Myeloperoxidase Mediates Postischemic Arrhythmogenic Ventricular Remodeling. Circulation Research, 2017, 121, 56-70.	2.0	59
241	Engineered 3D Cardiac Fibrotic Tissue to Study Fibrotic Remodeling. Advanced Healthcare Materials, 2017, 6, 1601434.	3.9	85
242	Pathophysiological roles of canstatin on myofibroblasts after myocardial infarction in rats. European Journal of Pharmacology, 2017, 807, 32-43.	1.7	19
243	Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models. Advanced Healthcare Materials, 2017, 6, 1600571.	3.9	25
244	Intermittent pacing therapy favorably modulates infarct remodeling. Basic Research in Cardiology, 2017, 112, 28.	2.5	3
245	Cardiac Fibroblast Activation Post-Myocardial Infarction: Current Knowledge Gaps. Trends in Pharmacological Sciences, 2017, 38, 448-458.	4.0	151
246	Effect of paroxetine on left ventricular remodeling in an in vivo rat model of myocardial infarction. Basic Research in Cardiology, 2017, 112, 26.	2.5	16
247	Cardiac α _V β ₃ integrin expression following acute myocardial infarction in humans. Heart, 2017, 103, 607-615.	1.2	81
248	Down-regulation of miR-15a/b accelerates fibrotic remodelling in the TypeÂ2 diabetic human and mouse heart. Clinical Science, 2017, 131, 847-863.	1.8	62
249	NEIL3-Dependent Regulation of Cardiac Fibroblast Proliferation Prevents Myocardial Rupture. Cell Reports, 2017, 18, 82-92.	2.9	45
250	Proteomic footprint of myocardial ischemia/reperfusion injury: Longitudinal study of the at-risk and remote regions in the pig model. Scientific Reports, 2017, 7, 12343.	1.6	37
251	The allosteric glycogen synthase kinase-3 inhibitor NP12 limits myocardial remodeling and promotes angiogenesis in an acute myocardial infarction model. Journal of Biological Chemistry, 2017, 292, 20785-20798.	1.6	22
252	Histological and immunohistochemical study of cardiac telocytes in a rat model of isoproterenol-induced myocardial infarction with a reference to the effect of grape seed extract. Acta Histochemica, 2017, 119, 747-758.	0.9	13
253	Formation of New Cardiomyocytes in Exercise. Advances in Experimental Medicine and Biology, 2017, 999, 91-102.	0.8	4
254	Inhibitory effects of oxymatrine on TCF-β1-induced proliferation and abnormal differentiation in rat cardiac fibroblasts via the p38MAPK and ERK1/2 signaling pathways. Molecular Medicine Reports, 2017,	1.1	25

#	ARTICLE	IF	CITATIONS
255	Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury. Basic Research in Cardiology, 2017, 112, 62.	2.5	50
256	Human stem cells alter the invasive properties of somatic cells via paracrine activation of mTORC1. Nature Communications, 2017, 8, 595.	5.8	25
257	Densification of Type I Collagen Matrices as a Model for Cardiac Fibrosis. Advanced Healthcare Materials, 2017, 6, 1700114.	3.9	17
258	Sesamin prevents apoptosis and inflammation after experimental myocardial infarction by JNK and NF-κB pathways. Food and Function, 2017, 8, 2875-2885.	2.1	58
259	Haplodeficiency of Ataxia Telangiectasia Mutated Accelerates Heart Failure After Myocardial Infarction. Journal of the American Heart Association, 2017, 6, .	1.6	23
260	Attenuation of Maladaptive Responses in Aortic Adventitial Fibroblasts through Stimuliâ€Triggered siRNA Release from Lipid–Polymer Nanocomplexes. Advanced Biology, 2017, 1, 1700099.	3.0	5
261	Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis. Journal of Molecular and Cellular Cardiology, 2017, 110, 109-120.	0.9	118
262	Cellular mechanisms underlying cardiac engraftment of stem cells. Expert Opinion on Biological Therapy, 2017, 17, 1127-1143.	1.4	30
263	Direct reprogramming of fibroblasts into cardiomyocytes. Stem Cell Research and Therapy, 2017, 8, 118.	2.4	45
264	Nestin Expressed by Preâ€Existing Cardiomyocytes Recapitulated in Part an Embryonic Phenotype; Suppressive Role of p38 MAPK. Journal of Cellular Physiology, 2017, 232, 1717-1727.	2.0	18
265	Sphingosine 1-Phosphate Receptors: Do They Have a Therapeutic Potential in Cardiac Fibrosis?. Frontiers in Pharmacology, 2017, 8, 296.	1.6	36
266	The Soft- and Hard-Heartedness of Cardiac Fibroblasts: Mechanotransduction Signaling Pathways in Fibrosis of the Heart. Journal of Clinical Medicine, 2017, 6, 53.	1.0	128
267	Cardiac Preconditioning, Remodeling and Regeneration. Fish Physiology, 2017, , 185-233.	0.2	6
268	Cardioprotection against Heart Failure by Shenfu Injection via TGF- <i>β</i> /Smads Signaling Pathway. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-16.	0.5	18
269	Can Statins Modify the Wound Healing Process After Myocardial Infarction?. International Heart Journal, 2017, 58, 472-474.	0.5	2
270	Reducing Cardiac Fibrosis: Na/K-ATPase Signaling Complex as a Novel Target. Cardiovascular Pharmacology: Open Access, 2017, 06, .	0.1	7
271	Therapeutic inhibition of galectin‑3 improves cardiomyocyte apoptosis and survival during heart failure. Molecular Medicine Reports, 2017, 17, 4106-4112.	1.1	13
272	Featured Article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts. Experimental Biology and Medicine, 2018, 243, 601-612.	1.1	48

#	Article	IF	CITATIONS
273	Wound healing related agents: Ongoing research and perspectives. Advanced Drug Delivery Reviews, 2018, 129, 242-253.	6.6	67
274	MicroRNA-223 Regulates Cardiac Fibrosis After Myocardial Infarction by Targeting RASA1. Cellular Physiology and Biochemistry, 2018, 46, 1439-1454.	1.1	98
275	Cardiac (myo)fibroblasts modulate the migration of monocyte subsets. Scientific Reports, 2018, 8, 5575.	1.6	26
276	Deciphering microvascular changes after myocardial infarction through 3D fully automated image analysis. Scientific Reports, 2018, 8, 1854.	1.6	15
277	Cytosolic DNA Sensing Promotes Macrophage Transformation and Governs Myocardial Ischemic Injury. Circulation, 2018, 137, 2613-2634.	1.6	136
278	Molecular imaging of cardiac remodelling after myocardial infarction. Basic Research in Cardiology, 2018, 113, 10.	2.5	88
279	Native T1 and ECV of Noninfarcted Myocardium and Outcome in Patients WithÂCoronary ArteryÂDisease. Journal of the American College of Cardiology, 2018, 71, 766-778.	1.2	100
280	Amphiregulin enhances cardiac fibrosis and aggravates cardiac dysfunction in mice with experimental myocardial infarction partly through activating EGFR-dependent pathway. Basic Research in Cardiology, 2018, 113, 12.	2.5	46
281	Cardiac repair by epicardial EMT: Current targets and a potential role for the primary cilium. , 2018, 186, 114-129.		25
282	Targeting Chondroitin Sulfate Glycosaminoglycans to Treat Cardiac Fibrosis in Pathological Remodeling. Circulation, 2018, 137, 2497-2513.	1.6	44
283	WNT Signaling in Cardiac and Vascular Disease. Pharmacological Reviews, 2018, 70, 68-141.	7.1	260
284	LncRNA GAS5-AS1 inhibits myofibroblasts activities in oral submucous fibrosis. Journal of the Formosan Medical Association, 2018, 117, 727-733.	0.8	40
285	Dermal fibroblast-to-myofibroblast transition sustained by αvß3 integrin-ILK-Snail1/Slug signaling is a common feature for hypermobile Ehlers-Danlos syndrome and hypermobility spectrum disorders. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1010-1023.	1.8	34
286	Tanshinone IIA protects against subclinical lipopolysaccharide induced cardiac fibrosis in mice through inhibition of NADPH oxidase. International Immunopharmacology, 2018, 60, 59-63.	1.7	32
287	Heparin Augmentation Enhances Bioactive Properties of Acellular Extracellular Matrix Scaffold. Tissue Engineering - Part A, 2018, 24, 128-134.	1.6	22
288	Investigation of cardiac fibroblasts using myocardial slices. Cardiovascular Research, 2018, 114, 77-89.	1.8	52
289	Inhibitory effect of GMI, an immunomodulatory protein from <i>Ganoderma microsporum</i> , on myofibroblast activity and proinflammatory cytokines in human fibrotic buccal mucosal fibroblasts. Environmental Toxicology, 2018, 33, 32-40.	2.1	13
290	Biological therapies targeting arrhythmias: are cells and genes the answer?. Expert Opinion on Biological Therapy, 2018, 18, 237-249.	1.4	0

		CITATION REPORT	
#	Article	IF	CITATION
291	Mechanoregulation of Myofibroblast Fate and Cardiac Fibrosis. Advanced Biology, 2018, 2,	1700172. 3.0	15
292	Glabridin inhibits the activation of myofibroblasts in human fibrotic buccal mucosal fibrobla through TGFâ€Ĥ2/smad signaling. Environmental Toxicology, 2018, 33, 248-255.	sts 2.1	21
293	FOXO1/3: Potential suppressors of fibrosis. Ageing Research Reviews, 2018, 41, 42-52.	5.0	89
294	Chrelin suppresses cardiac fibrosis of post-myocardial infarction heart failure rats by adjust activin A-follistatin imbalance. Peptides, 2018, 99, 27-35.	ng the 1.2	29
295	The Biological Role of Klotho Protein in the Development of Cardiovascular Diseases. BioMe Research International, 2018, 2018, 1-17.	2d 0.9	81
296	Cardiac Fibroblast. , 2018, , 420-433.		1
297	Dysregulation of CD69 by overexpression of microRNA‑367‑3p associated with postâ€ infarction cardiac fibrosis. Molecular Medicine Reports, 2018, 18, 3085-3092.	ʻmyocardial 1.1	3
298	OBSOLETE: Vascular Repair at the Interface of the Endothelium: The Roles of Protease-Activ Receptors and Neuregulin-1. , 2018, , .	rated	0
299	OBSOLETE: Cardiac Fibroblast. , 2018, , .		0
300	In vitro Effects of Nerve Growth Factor on Cardiac Fibroblasts Proliferation, Cell Cycle, Migr and Myofibroblast Transformation. Chinese Medical Journal, 2018, 131, 813-817.	ation, 0.9	2
301	Cardiac Fibroblast-Specific Activating Transcription Factor 3 Promotes Myocardial Repair af Myocardial Infarction. Chinese Medical Journal, 2018, 131, 2302-2309.	ter 0.9	13
302	Effect of Substrate Stiffness on Mechanical Coupling and Force Propagation at the Infarct I Biophysical Journal, 2018, 115, 1966-1980.	Boundary. 0.2	21
303	Nanoyttria attenuates isoproterenol-induced cardiac injury. Nanomedicine, 2018, 13, 2961	-2980. 1.7	13
304	Characterization of Electrical Activity in Post-myocardial Infarction Scar Tissue in Rat Hearts Multiphoton Microscopy. Frontiers in Physiology, 2018, 9, 1454.	Using 1.3	6
305	Infrasound induces coronary perivascular fibrosis in rats. Cardiovascular Pathology, 2018, 3	7, 39-44. 0.7	15
306	Toll-like receptor 4 contributes to a myofibroblast phenotype in cardiac fibroblasts and is as with autophagy after myocardial infarction in a mouse model. Atherosclerosis, 2018, 279, 2	sociated 0.4	27
307	Integrative analysis of differentially expressed genes and miRNAs predicts complex T3-medi protective circuits in a rat model of cardiac ischemia reperfusion. Scientific Reports, 2018, 3	ated 1.6	22
308	The effect of anti-inflammatory and antifibrotic agents on fibroblasts obtained from arthrof tissue. Bone and Joint Research, 2018, 7, 213-222.	ibrotic 1.3	10

# 309	ARTICLE Macrophages and Cardiovascular Health. Physiological Reviews, 2018, 98, 2523-2569.	IF 13.1	Citations
310	Vascular Repair at the Interface of the Endothelium: The Roles of Protease-Activated Receptors and Neuregulin-1. , 2018, , 627-639.		0
311	Nogo-C regulates post myocardial infarction fibrosis through the interaction with ER Ca2+ leakage channel Sec61α in mouse hearts. Cell Death and Disease, 2018, 9, 612.	2.7	13
312	Genome Editing Redefines Precision Medicine in the Cardiovascular Field. Stem Cells International, 2018, 2018, 1-11.	1.2	8
313	<i>Klf4</i> has an unexpected protective role in perivascular cells within the microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H402-H414.	1.5	17
314	Oxidative Stress and NLRP3-Inflammasome Activity as Significant Drivers of Diabetic Cardiovascular Complications: Therapeutic Implications. Frontiers in Physiology, 2018, 9, 114.	1.3	150
315	Curcumin suppresses cardiac fibroblasts activities by regulating the proliferation and cell cycle via the inhibition of the p38 MAPK/ERK signaling pathway. Molecular Medicine Reports, 2018, 18, 1433-1438.	1.1	12
316	Textile technologies for 3D scaffold engineering. , 2018, , 175-201.		7
317	Effect of Endoplasmic Reticulum Stress and Autophagy in the Regulation ofÂPost-infarct Cardiac Repair. Archives of Medical Research, 2018, 49, 576-582.	1.5	9
318	Activation of the NFAT–Calcium Signaling Pathway in Human Lamina Cribrosa Cells in Glaucoma. , 2018, 59, 831.		20
319	A novel fibroblast activation inhibitor attenuates left ventricular remodeling and preserves cardiac function in heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H563-H570.	1.5	16
320	Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Failure Reviews, 2019, 24, 1-15.	1.7	121
321	Wnt signaling pathways in myocardial infarction and the therapeutic effects of Wnt pathway inhibitors. Acta Pharmacologica Sinica, 2019, 40, 9-12.	2.8	66
322	Cardiac Fibroblast p38 MAPK: A Critical Regulator of Myocardial Remodeling. Journal of Cardiovascular Development and Disease, 2019, 6, 27.	0.8	61
323	Molecular Imaging of Fibroblast Activity After Myocardial Infarction Using a ⁶⁸ Ga-Labeled Fibroblast Activation Protein Inhibitor, FAPI-04. Journal of Nuclear Medicine, 2019, 60, 1743-1749.	2.8	159
324	Targeting the PI3K/STAT3 axis modulates ageâ€related differences in macrophage phenotype in rats with myocardial infarction. Journal of Cellular and Molecular Medicine, 2019, 23, 6378-6392.	1.6	14
325	Protocatechuic acid attenuates angiotensin IIâ€induced cardiac fibrosis in cardiac fibroblasts through inhibiting the NOX4/ROS/p38 signaling pathway. Phytotherapy Research, 2019, 33, 2440-2447.	2.8	21
326	Gut microbe-derived metabolite trimethylamine N-oxide accelerates fibroblast-myofibroblast differentiation and induces cardiac fibrosis. Journal of Molecular and Cellular Cardiology, 2019, 134, 119-130.	0.9	62

#	Article	IF	CITATIONS
327	Personalized Cardiac Computational Models: From Clinical Data to Simulation of Infarct-Related Ventricular Tachycardia. Frontiers in Physiology, 2019, 10, 580.	1.3	61
328	Controlling the Multiscale Network Structure of Fibers To Stimulate Wound Matrix Rebuilding by Fibroblast Differentiation. ACS Applied Materials & Interfaces, 2019, 11, 28377-28386.	4.0	24
329	Influence of the distribution of fibrosis within an area of myocardial infarction on wave propagation in ventricular tissue. Scientific Reports, 2019, 9, 14151.	1.6	9
330	Spatiotemporal delivery of basic fibroblast growth factor to directly and simultaneously attenuate cardiac fibrosis and promote cardiac tissue vascularization following myocardial infarction. Journal of Controlled Release, 2019, 311-312, 233-244.	4.8	37
331	MicroRNA-21 Mediates the Protective Effect of Cardiomyocyte-Derived Conditioned Medium on Ameliorating Myocardial Infarction in Rats. Cells, 2019, 8, 935.	1.8	32
332	Mitochondrial calcium exchange links metabolism with the epigenome to control cellular differentiation. Nature Communications, 2019, 10, 4509.	5.8	93
333	Myocardial reconstruction in ischaemic cardiomyopathy. European Journal of Cardio-thoracic Surgery, 2019, 55, i49-i56.	0.6	23
334	Irisin vs. Treadmill Exercise in Post Myocardial Infarction Cardiac Rehabilitation in Rats. Archives of Medical Research, 2019, 50, 44-54.	1.5	12
335	Association of Gene Polymorphisms in the Human MicroRNA-126 Gene with Plasma-Circulating MicroRNA-126 Levels and Acute Myocardial Infarction. Genetic Testing and Molecular Biomarkers, 2019, 23, 460-467.	0.3	9
336	Co-treatment with interferon-γ and 1-methyl tryptophan ameliorates cardiac fibrosis through cardiac myofibroblasts apoptosis. Molecular and Cellular Biochemistry, 2019, 458, 197-205.	1.4	19
337	Human peripheral blood‑derived exosomes for microRNA delivery. International Journal of Molecular Medicine, 2019, 43, 2319-2328.	1.8	32
338	The role and mechanism of transforming growth factor beta 3 in human myocardial infarctionâ€induced myocardial fibrosis. Journal of Cellular and Molecular Medicine, 2019, 23, 4229-4243.	1.6	29
339	The Integrated Physiology of theÂLower Urinary Tract. , 2019, , 65-77.		0
340	Vascular peroxidase 1 is a novel regulator of cardiac fibrosis after myocardial infarction. Redox Biology, 2019, 22, 101151.	3.9	30
341	TRIM72 contributes to cardiac fibrosis via regulating STAT3/Notchâ€∃ signaling. Journal of Cellular Physiology, 2019, 234, 17749-17756.	2.0	34
342	Concise Review: Reduction of Adverse Cardiac Scarring Facilitates Pluripotent Stem Cell-Based Therapy for Myocardial Infarction. Stem Cells, 2019, 37, 844-854.	1.4	16
343	Ablation of the calpain-targeted site in cardiac myosin binding protein-C is cardioprotective during ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 129, 236-246.	0.9	20
344	Molecular Imaging to Monitor Left Ventricular Remodeling in Heart Failure. Current Cardiovascular Imaging Reports, 2019, 12, 1	0.4	3

#	Article	IF	CITATIONS
345	Functionalization of soft materials for cardiac repair and regeneration. Critical Reviews in Biotechnology, 2019, 39, 451-468.	5.1	3
346	COA-Cl (2-Cl-C.OXT-A) can promote coronary collateral development following acute myocardial infarction in mice. Scientific Reports, 2019, 9, 2533.	1.6	4
347	Sequential Bone-Marrow Cell Delivery of VEGFA/S1P Improves Vascularization and Limits Adverse Cardiac Remodeling After Myocardial Infarction in Mice. Human Gene Therapy, 2019, 30, 893-905.	1.4	8
348	<p>Protective Effect Of Vasicine Against Myocardial Infarction In Rats Via Modulation Of Oxidative Stress, Inflammation, And The PI3K/Akt Pathway</p> . Drug Design, Development and Therapy, 2019, Volume 13, 3773-3784.	2.0	25
349	Three-dimensional myocardial strain correlates with murine left ventricular remodelling severity post-infarction. Journal of the Royal Society Interface, 2019, 16, 20190570.	1.5	19
350	Can we remove scar and fibrosis from adult human myocardium?. European Heart Journal, 2019, 40, 960-966.	1.0	28
351	What's in a name? On fibroblast phenotype and nomenclature. Canadian Journal of Physiology and Pharmacology, 2019, 97, 493-497.	0.7	11
352	WNT Signaling and Cardiac Fibrosis. Molecular and Translational Medicine, 2019, , 319-334.	0.4	2
353	Long Non-coding RNAs: At the Heart of Cardiac Dysfunction?. Frontiers in Physiology, 2019, 10, 30.	1.3	103
354	A dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin, attenuates cardiac dysfunction after myocardial infarction independently of DPP-4. Journal of Pharmacological Sciences, 2019, 139, 112-119.	1.1	14
355	Fibroblast polarization over the myocardial infarction time continuum shifts roles from inflammation to angiogenesis. Basic Research in Cardiology, 2019, 114, 6.	2.5	118
356	BMI1 promotes cardiac fibrosis in ischemia-induced heart failure via the PTEN-PI3K/Akt-mTOR signaling pathway. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H61-H69.	1.5	61
357	Deletion of delta-like 1 homologue accelerates fibroblast–myofibroblast differentiation and induces myocardial fibrosis. European Heart Journal, 2019, 40, 967-978.	1.0	62
358	Understanding cardiac extracellular matrix remodeling to develop biomarkers of myocardial infarction outcomes. Matrix Biology, 2019, 75-76, 43-57.	1.5	106
359	Molecular mechanisms of heart regeneration. Seminars in Cell and Developmental Biology, 2020, 100, 20-28.	2.3	28
360	microRNAâ€132 inhibits cardiomyocyte apoptosis and myocardial remodeling in myocardial infarction by targeting ILâ€1β. Journal of Cellular Physiology, 2020, 235, 2710-2721.	2.0	28
361	MiR-574–5p promotes the differentiation of human cardiac fibroblasts via regulating ARID3A. Biochemical and Biophysical Research Communications, 2020, 521, 427-433.	1.0	12
362	Targeting Rho-associated coiled-coil forming protein kinase (ROCK) in cardiovascular fibrosis and stiffening. Expert Opinion on Therapeutic Targets, 2020, 24, 47-62.	1.5	25

#	Article	IF	CITATIONS
363	GHSR deficiency exacerbates cardiac fibrosis: role in macrophage inflammasome activation and myofibroblast differentiation. Cardiovascular Research, 2020, 116, 2091-2102.	1.8	30
364	Cardiac inflammation in COVID-19: Lessons from heart failure. Life Sciences, 2020, 260, 118482.	2.0	72
365	CXADRâ€like membrane protein protects against heart injury by preventing excessive pyroptosis after myocardial infarction. Journal of Cellular and Molecular Medicine, 2020, 24, 13775-13788.	1.6	15
366	Slow degrading poly(glycerol sebacate) derivatives improve vascular graft remodeling in a rat carotid artery interposition model. Biomaterials, 2020, 257, 120251.	5.7	39
367	Myofibroblasts and Fibrosis. Circulation Research, 2020, 127, 427-447.	2.0	186
368	Dual roles of chromatin remodeling protein BRG1 in angiotensin II-induced endothelial–mesenchymal transition. Cell Death and Disease, 2020, 11, 549.	2.7	30
369	Effects of progranulin on the pathological conditions in experimental myocardial infarction model. Scientific Reports, 2020, 10, 11842.	1.6	10
370	A steroid receptor coactivator stimulator (MCB-613) attenuates adverse remodeling after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31353-31364.	3.3	20
371	Interstitial changes after reperfused myocardial infarction in swine: morphometric and genetic analysis. BMC Veterinary Research, 2020, 16, 262.	0.7	2
372	Non-coding RNAs: emerging players in cardiomyocyte proliferation and cardiac regeneration. Basic Research in Cardiology, 2020, 115, 52.	2.5	48
373	Long-term administration of recombinant canstatin prevents adverse cardiac remodeling after myocardial infarction. Scientific Reports, 2020, 10, 12881.	1.6	6
374	Harnessing Mechanosensation in Next Generation Cardiovascular Tissue Engineering. Biomolecules, 2020, 10, 1419.	1.8	12
375	Fibrin hydrogels promote scar formation and prevent therapeutic angiogenesis in the heart. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1513-1523.	1.3	8
376	Non-ischemic endocardial scar geometric remodeling toward topological machine learning. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 1029-1035.	1.0	9
377	Distinct regulation of cardiac fibroblast proliferation and transdifferentiation by classical and novel protein kinase C isoforms: possible implications for new antifibrotic therapies. Molecular Pharmacology, 2020, 99, MOLPHARM-AR-2020-000094.	1.0	7
378	Post-infarct morphine treatment reduces apoptosis and myofibroblast density in a rat model of cardiac ischemia-reperfusion. European Journal of Pharmacology, 2020, 887, 173590.	1.7	2
379	The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death and Disease, 2020, 11, 349.	2.7	149
380	Loss of Protease-Activated Receptor 4 Prevents Inflammation Resolution and Predisposes the Heart to Cardiac Rupture After Myocardial Infarction. Circulation, 2020, 142, 758-775.	1.6	14

#	Article	IF	CITATIONS
381	Agrin Promotes Coordinated Therapeutic Processes Leading to Improved Cardiac Repair in Pigs. Circulation, 2020, 142, 868-881.	1.6	49
382	Targeting JMJD3 histone demethylase mediates cardiac fibrosis and cardiac function following myocardial infarction. Biochemical and Biophysical Research Communications, 2020, 528, 671-677.	1.0	16
383	Stem cells and heart tissue regeneration. , 2020, , 47-70.		1
384	Use of nanoparticulate systems to salvage the myocardium. , 2020, , 89-111.		0
385	MicroRNA-Mediated Direct Reprogramming of Human Adult Fibroblasts Toward Cardiac Phenotype. Frontiers in Bioengineering and Biotechnology, 2020, 8, 529.	2.0	36
386	The failure of DAC to induce OCT2 expression and its remission by hemoglobin-based nanocarriers under hypoxia in renal cell carcinoma. Theranostics, 2020, 10, 3562-3578.	4.6	22
387	NOX-dependent reactive oxygen species production underlies arrhythmias susceptibility in dexamethasone-treated rats. Free Radical Biology and Medicine, 2020, 152, 1-7.	1.3	12
388	Cortical Bone Derived Stem Cells Modulate Cardiac Fibroblast Response via miR-18a in the Heart After Injury. Frontiers in Cell and Developmental Biology, 2020, 8, 494.	1.8	11
389	Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell, 2020, 182, 545-562.e23.	13.5	113
390	Ubiquitin C-terminal hydrolase L1 (UCHL1) regulates post-myocardial infarction cardiac fibrosis through glucose-regulated protein of 78ÂkDa (GRP78). Scientific Reports, 2020, 10, 10604.	1.6	23
391	Outcome in German and South African peripartum cardiomyopathy cohorts associates with medical therapy and fibrosis markers. ESC Heart Failure, 2020, 7, 512-522.	1.4	18
393	Transient receptor potential channels TRPC1/TRPC6 regulate lamina cribrosa cell extracellular matrix gene transcription and proliferation. Experimental Eye Research, 2020, 193, 107980.	1.2	9
394	Origin and functional heterogeneity of fibroblasts. FASEB Journal, 2020, 34, 3519-3536.	0.2	145
395	High-frequency ultrasound deformation imaging for adult zebrafish during heart regeneration. Quantitative Imaging in Medicine and Surgery, 2020, 10, 66-75.	1.1	16
396	Designing an anti-inflammatory and tissue-adhesive colloidal dressing for wound treatment. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110737.	2.5	19
397	Fabrication, characterization, and in vitro evaluation of electrospun polyurethaneâ€gelatinâ€earbon nanotube scaffolds for cardiovascular tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2276-2293.	1.6	41
398	A Thixotropic, Cell-Infiltrative Nanocellulose Hydrogel That Promotes in Vivo Tissue Remodeling. ACS Biomaterials Science and Engineering, 2020, 6, 946-958.	2.6	20
399	Intra-myocardial Delivery of a Novel Thermosensitive Hydrogel Inhibits Post-infarct Heart Failure After Degradation in Rat. Journal of Cardiovascular Translational Research, 2020, 13, 677-685.	1.1	15

#	Article	IF	CITATIONS
400	Use of DAMPs and SAMPs as Therapeutic Targets or Therapeutics: A Note of Caution. Molecular Diagnosis and Therapy, 2020, 24, 251-262.	1.6	40
401	Inflammation in myocardial injury- Stem cells as potential immunomodulators for myocardial regeneration and restoration. Life Sciences, 2020, 250, 117582.	2.0	10
402	3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix. Acta Biomaterialia, 2021, 119, 75-88.	4.1	110
403	Engineered cell-degradable poly(2-alkyl-2-oxazoline) hydrogel for epicardial placement of mesenchymal stem cells for myocardial repair. Biomaterials, 2021, 269, 120356.	5.7	50
404	Geometrical evaluation of the Scar in Left ventricle using TDA. , 2021, , .		2
405	Biocasting of an elastin-like recombinamer and collagen bi-layered model of the tunica adventitia and external elastic lamina of the vascular wall. Biomaterials Science, 2021, 9, 3860-3874.	2.6	4
406	Myocardial Viability. , 2021, , 403-430.		0
407	MiR-223-3p in Cardiovascular Diseases: A Biomarker and Potential Therapeutic Target. Frontiers in Cardiovascular Medicine, 2020, 7, 610561.	1.1	26
408	Ginsenoside Rg2 alleviates myocardial fibrosis by regulating TGF-β1/Smad signalling pathway. Pharmaceutical Biology, 2021, 59, 104-111.	1.3	14
409	Cardiac Adipose Tissue Contributes to Cardiac Repair: a Review. Stem Cell Reviews and Reports, 2021, 17, 1137-1153.	1.7	4
411	Role of Adenosine and Purinergic Receptors in Myocardial Infarction: Focus on Different Signal Transduction Pathways. Biomedicines, 2021, 9, 204.	1.4	13
412	The role of miRâ $\in 2$ 9 family in disease. Journal of Cellular Biochemistry, 2021, 122, 696-715.	1.2	46
413	Assessing Doxorubicin-Induced Cardiomyopathy by 99mTc-3PRGD2 Scintigraphy Targeting Integrin αvβ3 in a Rat Model. Nuklearmedizin - NuclearMedicine, 2021, 60, 289-298.	0.3	0
414	Dynamic modulation of gut microbiota improves postâ€myocardial infarct tissue repair in rats via butyric acidâ€mediated histone deacetylase inhibition. FASEB Journal, 2021, 35, e21385.	0.2	13
415	Thyroid hormone mediates cardioprotection against postinfarction remodeling and dysfunction through the IGF-1/PI3K/AKT signaling pathway. Life Sciences, 2021, 267, 118977.	2.0	15
416	The Role of non-coding RNA in Cardiac Repair and Regeneration after Myocardial Infarction. Clinical Cardiology and Cardiovascular Interventions, 2021, 04, 01-13.	0.1	0
418	Cell augmentation strategies for cardiac stem cell therapies. Stem Cells Translational Medicine, 2021, 10, 855-866.	1.6	3
419	Genetic ablation of fibroblast activation protein alpha attenuates left ventricular dilation after myocardial infarction. PLoS ONE, 2021, 16, e0248196.	1.1	11

~	_	
	DEDO	DT
CHAD	NEPU	IK I

#	Article	IF	CITATIONS
420	Matrix metalloproteinase-9 as a messenger in the cross talk between obstructive sleep apnea and comorbid systemic hypertension, cardiac remodeling, and ischemic stroke: a literature review. Journal of Clinical Sleep Medicine, 2021, 17, 567-591.	1.4	9
421	A perfusable, multifunctional epicardial device improves cardiac function and tissue repair. Nature Medicine, 2021, 27, 480-490.	15.2	61
422	Limb-bud and Heart (LBH) mediates proliferation, fibroblast-to-myofibroblast transition and EMT-like processes in cardiac fibroblasts. Molecular and Cellular Biochemistry, 2021, 476, 2685-2701.	1.4	9
423	Cardiac Fibrosis: Key Role of Integrins in Cardiac Homeostasis and Remodeling. Cells, 2021, 10, 770.	1.8	34
424	Microphysiological System for High-Throughput Computer Vision Measurement of Microtissue Contraction. ACS Sensors, 2021, 6, 985-994.	4.0	5
425	Myocardial Infarction Induces Cardiac Fibroblast Transformation within Injured and Noninjured Regions of the Mouse Heart. Journal of Proteome Research, 2021, 20, 2867-2881.	1.8	16
426	National and Local Politics of the Heart. Journal of the American College of Cardiology, 2021, 77, 1744-1746.	1.2	0
427	Mimicking cardiac tissue complexity through physical cues: A review on cardiac tissue engineering approaches. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 33, 102367.	1.7	16
428	Resistin induces cardiac fibroblast-myofibroblast differentiation through JAK/STAT3 and JNK/c-Jun signaling. Pharmacological Research, 2021, 167, 105414.	3.1	24
429	miR155 Deficiency Reduces Myofibroblast Density but Fails to Improve Cardiac Function after Myocardial Infarction in Dyslipidemic Mouse Model. International Journal of Molecular Sciences, 2021, 22, 5480.	1.8	5
430	Loss of Camk2n1 aggravates cardiac remodeling and malignant ventricular arrhythmia after myocardial infarction in mice via NLRP3 inflammasome activation. Free Radical Biology and Medicine, 2021, 167, 243-257.	1.3	16
431	Time-Series Transcriptome Analysis Reveals the miR-27a-5p- <i>Ppm1l</i> Axis as a New Pathway Regulating Macrophage Alternative Polarization After Myocardial Infarction. Circulation Journal, 2021, 85, 929-938.	0.7	2
432	Decreased Substrate Stiffness Promotes a Hypofibrotic Phenotype in Cardiac Fibroblasts. International Journal of Molecular Sciences, 2021, 22, 6231.	1.8	8
433	Cardiac Fibroblast-Specific Knockout of PGC-11± Accelerates AngII-Induced Cardiac Remodeling. Frontiers in Cardiovascular Medicine, 2021, 8, 664626.	1.1	2
434	Pathological cardiac remodeling seen by the eyes of proteomics. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140622.	1.1	10
435	Comprehensive Review of Cardiovascular Involvement in COVID-19. AACN Advanced Critical Care, 2021, 32, 169-187.	0.6	7
436	Dapagliflozin: a sodium–glucose cotransporter 2 inhibitor, attenuates angiotensin II-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling. Cardiovascular Diabetology, 2021, 20, 121.	2.7	37
439	Age-related defects in autophagy alter the secretion of paracrine factors from bone marrow mononuclear cells. Aging, 2021, 13, 14687-14708.	1.4	5

#	Article	IF	CITATIONS
440	Non-viral approaches for somatic cell reprogramming into cardiomyocytes. Seminars in Cell and Developmental Biology, 2022, 122, 28-36.	2.3	4
441	The Cell Surface Receptors Ror1/2 Control Cardiac Myofibroblast Differentiation. Journal of the American Heart Association, 2021, 10, e019904.	1.6	4
442	Potential Adverse Effects of Dexamethasone Therapy on COVID-19 Patients: Review and Recommendations. Infectious Diseases and Therapy, 2021, 10, 1907-1931.	1.8	38
443	Piezo1 Mechanosensitive Ion Channel Mediates Stretch-Induced Nppb Expression in Adult Rat Cardiac Fibroblasts. Cells, 2021, 10, 1745.	1.8	10
444	Intra- and intercellular signaling pathways associated with drug-induced cardiac pathophysiology. Trends in Pharmacological Sciences, 2021, 42, 675-687.	4.0	1
445	Metformin Attenuates Postinfarction Myocardial Fibrosis and Inflammation in Mice. International Journal of Molecular Sciences, 2021, 22, 9393.	1.8	15
446	Methyl Ferulic Acid Attenuates Human Cardiac Fibroblasts Differentiation and Myocardial Fibrosis by Suppressing pRB-E2F1/CCNE2 and RhoA/ROCK2 Pathway. Frontiers in Pharmacology, 2021, 12, 714390.	1.6	7
447	Pharmacological inhibition of GLUT1 as a new immunotherapeutic approach after myocardial infarction. Biochemical Pharmacology, 2021, 190, 114597.	2.0	12
448	Proteomic basis of modulation of post ischemic fibrosis by MSC exosomes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R639-R654.	0.9	3
449	Near-Infrared Light-Triggered Unfolding Microneedle Patch for Minimally Invasive Treatment of Myocardial Ischemia. ACS Applied Materials & Interfaces, 2021, 13, 40278-40289.	4.0	30
450	Latent‑transforming growth factor β‑binding proteinÂ2 accelerates cardiac fibroblast apoptosis by regulating the expression and activity of caspase‑3. Experimental and Therapeutic Medicine, 2021, 22, 1146.	0.8	2
451	Speckle Tracking Echocardiography Verified the Efficacy of Qianyangyuyin Granules in Alleviating Left Ventricular Remodeling in a Hypertensive Rat Model. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-14.	0.5	3
452	Key Roles of RGD-Recognizing Integrins During Cardiac Development, on Cardiac Cells, and After Myocardial Infarction. Journal of Cardiovascular Translational Research, 2021, , 1.	1.1	6
453	Assessment of electromechanically stimulated bone marrow stem cells seeded acellular cardiac patch in a rat myocardial infarct model. Biomedical Materials (Bristol), 2021, 16, 055012.	1.7	2
454	A new model of myofibroblast-cardiomyocyte interactions and their differences across species. Biophysical Journal, 2021, 120, 3764-3775.	0.2	1
455	The Roles of IncRNA in Myocardial Infarction: Molecular Mechanisms, Diagnosis Biomarkers, and Therapeutic Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 680713.	1.8	29
456	Lcz696 Alleviates Myocardial Fibrosis After Myocardial Infarction Through the sFRP-1/Wnt/β-Catenin Signaling Pathway. Frontiers in Pharmacology, 2021, 12, 724147.	1.6	19
457	Platelet derived growth factor-A (Pdgf-a) gene transfer modulates scar composition and improves left ventricular function after myocardial infarction. International Journal of Cardiology, 2021, 341, 24-30.	0.8	12

#	Article	IF	CITATIONS
458	Exogenous extracellular matrix proteins decrease cardiac fibroblast activation in stiffening microenvironment through CAPG. Journal of Molecular and Cellular Cardiology, 2021, 159, 105-119.	0.9	16
459	Immediate Renal Denervation After Acute Myocardial Infarction Mitigates the Progression of Heart Failure via the Modulation of IL-33/ST2 Signaling. Frontiers in Cardiovascular Medicine, 2021, 8, 746934.	1.1	1
460	Fabrication of an align-random distinct, heterogeneous nanofiber mat endowed with bifunctional properties for engineered 3D cardiac anisotropy. Composites Part B: Engineering, 2021, 226, 109336.	5.9	11
461	Dual-ligand supramolecular nanofibers inspired by the renin-angiotensin system for the targeting and synergistic therapy of myocardial infarction. Theranostics, 2021, 11, 3725-3741.	4.6	18
462	Effect of Interventions in WNT Signaling on Healing of Cardiac Injury: A Systematic Review. Cells, 2021, 10, 207.	1.8	12
463	Extracellular Matrix Biomarkers of Adverse Remodeling After Myocardial Infarction. , 2013, , 383-412.		2
464	Cardiac fibroblast activation during myocardial infarction wound healing. Matrix Biology, 2020, 91-92, 109-116.	1.5	61
465	The axis of local cardiac endogenous Klotho-TCF-β1-Wnt signaling mediates cardiac fibrosis in human. Journal of Molecular and Cellular Cardiology, 2019, 136, 113-124.	0.9	32
466	Origins of Cardiac Fibroblasts. Circulation Research, 2010, 107, 1304-1312.	2.0	9
468	Emerging roles of fibroblasts in cardiovascular calcification. Journal of Cellular and Molecular Medicine, 2021, 25, 1808-1816.	1.6	13
469	Interventions in WNT Signaling to Induce Cardiomyocyte Proliferation: Crosstalk with Other Pathways. Molecular Pharmacology, 2020, 97, 90-101.	1.0	13
470	Alternatively activated macrophages determine repair of the infarcted adult murine heart. Journal of Clinical Investigation, 2016, 126, 2151-2166.	3.9	258
471	Mesenchymal Stromal Cells but Not Cardiac Fibroblasts Exert Beneficial Systemic Immunomodulatory Effects in Experimental Myocarditis. PLoS ONE, 2012, 7, e41047.	1.1	48
472	DIOL Triterpenes Block Profibrotic Effects of Angiotensin II and Protect from Cardiac Hypertrophy. PLoS ONE, 2012, 7, e41545.	1.1	22
473	Salvianolic Acid A, a Novel Matrix Metalloproteinase-9 Inhibitor, Prevents Cardiac Remodeling in Spontaneously Hypertensive Rats. PLoS ONE, 2013, 8, e59621.	1.1	50
474	Hypoxia Modulates Fibroblastic Architecture, Adhesion and Migration: A Role for HIF-1α in Cofilin Regulation and Cytoplasmic Actin Distribution. PLoS ONE, 2013, 8, e69128.	1.1	46
475	Pharmacological Induction of Transforming Growth Factor-Beta1 in Rat Models Enhances Radiation Injury in the Intestine and the Heart. PLoS ONE, 2013, 8, e70479.	1.1	48
476	Cardiac Myocyte Diversity and a Fibroblast Network in the Junctional Region of the Zebrafish Heart Revealed by Transmission and Serial Block-Face Scanning Electron Microscopy. PLoS ONE, 2013, 8, e72388.	1.1	30

#	Article	IF	CITATIONS
477	Preventive Effect of Yuzu and Hesperidin on Left Ventricular Remodeling and Dysfunction in Rat Permanent Left Anterior Descending Coronary Artery Occlusion Model. PLoS ONE, 2015, 10, e110596.	1.1	12
478	A strategic expression method of miR-29b and its anti-fibrotic effect based on RNA-sequencing analysis. PLoS ONE, 2020, 15, e0244065.	1.1	8
479	Generation of induced cardiac progenitor cells <i>via</i> somatic reprogramming. Oncotarget, 2017, 8, 29442-29457.	0.8	11
480	Matrix Metalloproteinases: Drug Targets for Myocardial Infarction. Current Drug Targets, 2013, 14, 276-286.	1.0	31
481	Regulation of Myocardial Extracellular Matrix Dynamic Changes in Myocardial Infarction and Postinfarct Remodeling. Current Cardiology Reviews, 2020, 16, 11-24.	0.6	9
482	Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells, 2021, 10, 51.	1.8	159
483	Hypoxia induces cardiac fibroblast proliferation and phenotypic switch: a role for caveolae and caveolin-1/PTEN mediated pathway. Journal of Thoracic Disease, 2014, 6, 1458-68.	0.6	42
484	Myocardial T1 mapping: modalities and clinical applications. Cardiovascular Diagnosis and Therapy, 2014, 4, 126-37.	0.7	66
485	Cardiac Progenitor Cells as Target of Cell and Growth Factor-Based Therapies for Myocardial Regeneration. Journal of Stem Cell Research & Therapy, 2013, s, .	0.3	1
486	Diagnostic Value of Combined Detection of Galectin-3 and N-Terminal B-Type Natriuretic Peptide in Patients with Acute Heart Failure. World Journal of Cardiovascular Diseases, 2018, 08, 208-216.	0.0	1
487	Role of Lysosomal Cathepsins in Post-Myocardial Infarction Remodeling. North American Journal of Medicine & Science, 2011, 4, 173.	3.8	2
488	Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TCFβ1 after myocardial infarction. ELife, 2020, 9, .	2.8	44
489	Cardiac Tissue Engineering: Stem Cell Sources, Synthetic Biomaterials, and Scaffold Fabrication Methods. , 2021, , 251-280.		0
490	Stamp2 Protects From Maladaptive Structural Remodeling and Systolic Dysfunction in Post-Ischemic Hearts by Attenuating Neutrophil Activation. Frontiers in Immunology, 2021, 12, 701721.	2.2	0
491	Emerging roles of circRNAs in the pathological process of myocardial infarction. Molecular Therapy - Nucleic Acids, 2021, 26, 828-848.	2.3	36
492	Hidroclorotiazida y espironolactona reducen la hipertrofia de la pared aórtica en la hipertensión arterial experimental. Revista Chilena De CardiologÃa, 2011, 30, 52-58.	0.0	0
493	Hypoxic Preconditioning of Cardiac Progenitor Cells for Ischemic Heart. , 2013, , 427-435.		0
494	Proteases as Potential Targets in Left Ventricular Remodeling After Myocardial Infarction. , 2014, , 383-405.		0

#	Article	IF	CITATIONS
496	Remodelling of the Cardiac Extracellular Matrix: Role of Collagen Degradation and Accumulation in Pathogenesis of Heart Failure. , 2015, , 219-235.		0
497	Traction Microscopy. , 2015, , 93-114.		0
498	Regulation of macrophage migration in ischemic mouse hearts via an AKT2/NBA1/SPK1 pathway. Oncotarget, 2017, 8, 115345-115359.	0.8	2
499	Hypertrophy, heart failure, brain and physical activity - the molecular basis of this connection. Journal of Cardiology & Current Research, 2018, 11, .	0.1	0
501	How does the Extracellular Matrix Change in the Setting of Heart Failure?. International Journal of Medical Students, 2018, 6, 102-109.	0.2	0
502	Cytoskeleton Reorganization in EndMT—The Role in Cancer and Fibrotic Diseases. International Journal of Molecular Sciences, 2021, 22, 11607.	1.8	12
503	Engineering Shape-Controlled Microtissues on Compliant Hydrogels with Tunable Rigidity and Extracellular Matrix Ligands. Methods in Molecular Biology, 2021, 2258, 57-72.	0.4	2
504	Wound Healing-related Functions of the p160 Steroid Receptor Coactivator Family. Endocrinology, 2021, 162, .	1.4	4
505	Cerebro-Cardiovascular Diseases. , 2020, , 535-623.		0
506	Targeting cardiomyocyte proliferation as a key approach of promoting heart repair after injury. Molecular Biomedicine, 2021, 2, 34.	1.7	5
508	Identifying common genes and networks in multi-organ fibrosis. AMIA Summits on Translational Science Proceedings, 2012, 2012, 106-15.	0.4	7
509	Matrix metalloproteinases: drug targets for myocardial infarction. Current Drug Targets, 2013, 14, 276-86.	1.0	34
510	Astragaloside IV enhances cardioprotection of remote ischemic conditioning after acute myocardial infarction in rats. American Journal of Translational Research (discontinued), 2016, 8, 4657-4669.	0.0	10
511	Epigenetic Repression of Chloride Channel Accessory 2 Transcription in Cardiac Fibroblast: Implication in Cardiac Fibrosis. Frontiers in Cell and Developmental Biology, 2021, 9, 771466.	1.8	11
512	Hopes and Hurdles of Employing Mesenchymal Stromal Cells in the Treatment of Cardiac Fibrosis. International Journal of Molecular Sciences, 2021, 22, 13000.	1.8	3
513	Pressure–volume relationship by pharmacological stress cardiovascular magnetic resonance. International Journal of Cardiovascular Imaging, 2022, 38, 853-861.	0.7	0
514	Oncofetal Protein CRIPTO Is Involved in Wound Healing and Fibrogenesis in the Regenerating Liver and Is Associated with the Initial Stages of Cardiac Fibrosis. Cells, 2021, 10, 3325.	1.8	2
515	Control of Tissue Fibrosis by 5-Methoxytryptophan, an Innate Anti-Inflammatory Metabolite. Frontiers in Pharmacology, 2021, 12, 759199.	1.6	8

#	Article	IF	CITATIONS
516	Dexmedetomidine Promotes Lipopolysaccharide-Induced Differentiation of Cardiac Fibroblasts and Collagen I/III Synthesis through α2A Adrenoreceptor-Mediated Activation of the PKC-p38-Smad2/3 Signaling Pathway in Mice. International Journal of Molecular Sciences, 2021, 22, 12749.	1.8	5
517	Cardiac ischemia on-a-chip to investigate cellular and molecular response of myocardial tissue under hypoxia. Biomaterials, 2022, 281, 121336.	5.7	30
518	Nrg1/ErbB signalingâ€mediated regulation of fibrosis after myocardial infarction. FASEB Journal, 2022, 36, e22150.	0.2	17
519	The scar: the wind in the perfect storm—insights into the mysterious living tissue originating ventricular arrhythmias. Journal of Interventional Cardiac Electrophysiology, 2023, 66, 27-38.	0.6	8
520	The Regulation Mechanisms and Clinical Application of MicroRNAs in Myocardial Infarction: A Review of the Recent 5 Years. Frontiers in Cardiovascular Medicine, 2021, 8, 809580.	1.1	10
521	ADAMTS8 Promotes Cardiac Fibrosis Partly Through Activating EGFR Dependent Pathway. Frontiers in Cardiovascular Medicine, 2022, 9, 797137.	1.1	6
522	Mechanosensitive molecular mechanisms of myocardial fibrosis in living myocardial slices. ESC Heart Failure, 2022, 9, 1400-1412.	1.4	15
523	Elevated Wnt2 and Wnt4 activate NF-κB signaling to promote cardiac fibrosis by cooperation of Fzd4/2 and LRP6 following myocardial infarction. EBioMedicine, 2021, 74, 103745.	2.7	25
524	MicroRNA-130a attenuates cardiac fibrosis after myocardial infarction through TGF-β/Smad signaling by directly targeting TGF-β receptor 1. Bioengineered, 2022, 13, 5779-5791.	1.4	19
525	Neonatal Kalp Rejenerasyonu: Hippo Sinyal Yolağı'nın Rolü. Arsiv Kaynak Tarama Dergisi, 2022, 31, 20	3-334.1	0
526	Therapeutic targets for cardiac fibrosis: from old school to next-gen. Journal of Clinical Investigation, 2022, 132, .	3.9	53
527	Metabolites Concentration in Plasma and Heart Tissue in Relation to High Sensitive Cardiac Troponin T Level in Septic Shock Pigs. Metabolites, 2022, 12, 319.	1.3	0
529	Failing Heart Transplants and Rejection—A Cellular Perspective. Journal of Cardiovascular Development and Disease, 2021, 8, 180.	0.8	3
530	Ginsenoside Re inhibits myocardial fibrosis by regulating miR-489/myd88/NF-κB pathway. Journal of Ginseng Research, 2023, 47, 218-227.	3.0	6
531	Research progress of Nedd4L in cardiovascular diseases. Cell Death Discovery, 2022, 8, 206.	2.0	14
541	Modulation of VEGFA Signaling During Heart Regeneration in Zebrafish. Methods in Molecular Biology, 2022, 2475, 297-312.	0.4	1
542	Relation of a novel fibrosis marker and post-myocardial infarction left ventricular ejection fraction in revascularized patients. Biomarkers in Medicine, 2021, 15, 1651-1658.	0.6	3
543	Ultrastructure study of skin fibroblasts in patients with Ehlers-Danlos Syndrome (EDS): preliminary results. Clinica Terapeutica, 2020, 171, e431-e436.	0.2	1

#	Article	IF	CITATIONS
544	Fragmented QRS complex as a marker of myocardial fibrosis in patients with coronary artery disease. Science and Innovations in Medicine, 2022, 7, 95-102.	0.2	2
545	Knockdown of HIPK2 attenuates angiotensin II-induced cardiac fibrosis in cardiac fibroblasts. Journal of Cardiovascular Pharmacology, 2022, Publish Ahead of Print, .	0.8	3
546	OTUD7B (Cezanne) ameliorates fibrosis after myocardial infarction via FAK-ERK/P38 MAPK signaling pathway. Archives of Biochemistry and Biophysics, 2022, 724, 109266.	1.4	5
547	Blockade LAT1 Mediates Methionine Metabolism to Overcome Oxaliplatin Resistance under Hypoxia in Renal Cell Carcinoma. Cancers, 2022, 14, 2551.	1.7	2
549	Pressure Overload Activates DNA-Damage Response in Cardiac Stromal Cells: A Novel Mechanism Behind Heart Failure With Preserved Ejection Fraction?. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
550	Proteomic Investigation of Signature for Progression of Heart Failure Post Myocardial Infarction. SSRN Electronic Journal, 0, , .	0.4	0
551	FMO2 (Flavin Containing Monooxygenase 2) Prevents Cardiac Fibrosis via CYP2J3-SMURF2 Axis. Circulation Research, 2022, 131, 189-206.	2.0	10
552	Injectable selenium-containing polymeric hydrogel formulation for effective treatment of myocardial infarction. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
553	Research Progress of Myocardial Fibrosis and Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	4
554	Emerging epigenetic therapies of cardiac fibrosis and remodelling in heart failure: from basic mechanisms to early clinical development. Cardiovascular Research, 2023, 118, 3482-3498.	1.8	21
555	Inhibition of the cardiac fibroblast-enriched histone methyltransferase Dot1L prevents cardiac fibrosis and cardiac dysfunction. Cell and Bioscience, 2022, 12, .	2.1	3
556	Noninvasive Monitoring of Reparative Fibrosis after Myocardial Infarction in Rats Using ⁶⁸ Ga-FAPI-04 PET/CT. Molecular Pharmaceutics, 2022, 19, 4171-4178.	2.3	11
557	PAR-Induced Harnessing of EZH2 to β-Catenin: Implications for Colorectal Cancer. International Journal of Molecular Sciences, 2022, 23, 8758.	1.8	2
558	Glutamine uptake and catabolism is required for myofibroblast formation and persistence. Journal of Molecular and Cellular Cardiology, 2022, 172, 78-89.	0.9	13
559	<scp>miR</scp> â€486 improves fibrotic activity in myocardial infarction by targeting <scp>SRSF3</scp> / <scp>p21â€Mediated</scp> cardiac myofibroblast senescence. Journal of Cellular and Molecular Medicine, 2022, 26, 5135-5149.	1.6	7
560	ĐšĐ°Ñ€ĐʹÑ–Đ¾ĐįÑ€Đ¾Ñ,ĐμĐºÑ,Đ,Đ2Đ½Đ° ĐÑ–Ñ•Đ¼ĐμÑ,Ñ,,Đ¾Ñ€Đ¼Ñ–Đ½Ñƒ ĐįÑ€Đ, ĐμĐºÑĐįĐμÑ€Đ	ͺϴ ¼ͽ ᡚμϴ¼	٥. Đ°Đ»ÑŒ
561	Limb-Bud and Heart (LBH) Upregulation in Cardiomyocytes under Hypoxia Promotes the Activation of Cardiac Fibroblasts via Exosome Secretion. Mediators of Inflammation, 2022, 2022, 1-16.	1.4	4
562	Alamandine alleviated heart failure and fibrosis in myocardial infarction mice. Biology Direct, 2022, 17,	1.9	6

#	Article	IF	CITATIONS
563	Early detection of radiation-induced myocardial damage by [18F]AlF-NOTA-FAPI-04 PET/CT imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2023, 50, 453-464.	3.3	8
564	Culturing of Cardiac Fibroblasts in Engineered Heart Matrix Reduces Myofibroblast Differentiation but Maintains Their Response to Cyclic Stretch and Transforming Growth Factor β1. Bioengineering, 2022, 9, 551.	1.6	3
565	Direct cardiac reprogramming: basics and future challenges. Molecular Biology Reports, 2023, 50, 865-871.	1.0	1
566	Contractile Adaptation of the Left Ventricle Post-myocardial Infarction: Predictions by Rodent-Specific Computational Modeling. Annals of Biomedical Engineering, 2023, 51, 846-863.	1.3	1
567	Elucidating the role of circNFIB in myocardial fibrosis alleviation by endogenous sulfur dioxide. BMC Cardiovascular Disorders, 2022, 22, .	0.7	1
568	Post-ischemic cardioprotective potential of exogenous ubiquitin in myocardial remodeling late after ischemia/reperfusion injury. Life Sciences, 2023, 312, 121216.	2.0	3
569	The Integrated Physiology of the Lower Urinary Tract. , 2022, , 1-16.		0
570	mRNA therapy for myocardial infarction: A review of targets and delivery vehicles. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
571	Inhibition of Eicosanoid Degradation Mitigates Fibrosis of the Heart. Circulation Research, 2023, 132, 10-29.	2.0	6
572	Carbon Nanomaterials-Based Electrically Conductive Scaffolds to Repair the Ischaemic Heart Tissue. Journal of Carbon Research, 2022, 8, 72.	1.4	2
573	Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction. Journal of Clinical Investigation, 2023, 133, .	3.9	35
574	Calcium-Signalling in Human Glaucoma Lamina Cribrosa Myofibroblasts. International Journal of Molecular Sciences, 2023, 24, 1287.	1.8	2
575	The Carthamus tinctorius L. and Lepidium apetalum Willd. Drug Pair Inhibits EndMT through the TGFβ1/Snail Signaling Pathway in the Treatment of Myocardial Fibrosis. Evidence-based Complementary and Alternative Medicine, 2023, 2023, 1-19.	0.5	1
576	Protective Effects of Therapeutic Neutrophil Depletion and Myeloperoxidase Inhibition on Left Ventricular Function and Remodeling in Myocardial Infarction. Antioxidants, 2023, 12, 33.	2.2	3
577	Tissue repair. , 2024, , 115-121.		1
578	Extracellular vesicles mediate biological information delivery: A double-edged sword in cardiac remodeling after myocardial infarction. Frontiers in Pharmacology, 0, 14, .	1.6	5
580	Evaluation of Epithelial–Mesenchymal Transition Markers in Autoimmune Thyroid Diseases. International Journal of Molecular Sciences, 2023, 24, 3359.	1.8	1
581	Unlocking cardiomyocyte renewal potential for myocardial regeneration therapy. Journal of Molecular and Cellular Cardiology, 2023, 177, 9-20.	0.9	6

#	Article	IF	CITATIONS
582	Cardioprotective Effects of a Selective c-Jun N-terminal Kinase Inhibitor in a Rat Model of Myocardial Infarction. Biomedicines, 2023, 11, 714.	1.4	2
584	Proteomic analysis of transcription factors involved in the alteration of ischemic mouse heart as modulated by MSC exosomes. Biochemistry and Biophysics Reports, 2023, 34, 101463.	0.7	0
585	Mechanobiology of Cardiac Growth in Health and Disease. Cardiac and Vascular Biology, 2023, , 51-60.	0.2	0
589	Promising Therapeutic Treatments for Cardiac Fibrosis: Herbal Plants and Their Extracts. Cardiology and Therapy, 0, , .	1.1	0
600	The Integrated Physiology of the Lower Urinary Tract. , 2023, , 83-98.		0
601	Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	2