Adult stem cells in the endometrium

Molecular Human Reproduction 16, 818-834

DOI: 10.1093/molehr/gaq061

Citation Report

#	Article	IF	CITATIONS
1	Invisible Waves of Technology: Ultrasound and the Making of Fetal Images. Medicine Studies: an International Journal for History, Philosophy, and Ethics of Medicine and Allied Sciences, 2010, 2, 197-209.	0.1	1
3	Menstrual Blood as a Potential Source of Endometrial Derived CD3+ T Cells. PLoS ONE, 2011, 6, e28894.	1.1	26
4	Cellular Exchange in an Endometriosis-Adhesion Model Using GFP Transgenic Mice. Gynecologic and Obstetric Investigation, 2011, 72, 90-97.	0.7	8
5	Vasculogenesis: a new piece of the endometriosis puzzle. Human Reproduction Update, 2011, 17, 628-636.	5.2	108
6	Interleukin- $1\hat{l}^2$ induces cyclooxygenase-2 expression and promotes the invasive ability of human mesenchymal stem cells derived from ovarian endometrioma. Fertility and Sterility, 2011, 96, 678-684.e1.	0.5	46
7	Genistein promotes DNA demethylation of the steroidogenic factor 1 (SF-1) promoter in endometrial stromal cells. Biochemical and Biophysical Research Communications, 2011, 412, 366-372.	1.0	19
8	Stem cells in endometrium and their role in the pathogenesis of endometriosis. Annals of the New York Academy of Sciences, 2011, 1221, 10-17.	1.8	141
9	Molecular and Cellular Causes of Abnormal Uterine Bleeding of Endometrial Origin. Seminars in Reproductive Medicine, 2011, 29, 400-409.	0.5	33
10	Human Endometrial Cells Express Elevated Levels of Pluripotent Factors and Are More Amenable to Reprogramming into Induced Pluripotent Stem Cells. Endocrinology, 2011, 152, 1080-1089.	1.4	37
11	MiR-199a attenuates endometrial stromal cell invasiveness through suppression of the IKKÂ/NF-ÂB pathway and reduced interleukin-8 expression. Molecular Human Reproduction, 2012, 18, 136-145.	1.3	97
12	Epigenetic Changes Through DNA Methylation Contribute to Uterine Stromal Cell Decidualization. Endocrinology, 2012, 153, 6078-6090.	1.4	43
13	Identification of Label-Retaining Perivascular Cells in a Mouse Model of Endometrial Decidualization, Breakdown, and Repair1. Biology of Reproduction, 2012, 86, 184.	1.2	36
14	Porcine uterus contains a population of mesenchymal stem cells. Reproduction, 2012, 143, 203-209.	1.1	45
15	Endometrial Stem Cells and Reproduction. Obstetrics and Gynecology International, 2012, 2012, 1-5.	0.5	35
16	Endometrial inflammation and effect on implantation improvement and pregnancy outcome. Reproduction, 2012, 144, 661-668.	1.1	162
17	Stromal-to-Epithelial Transition during Postpartum Endometrial Regeneration. PLoS ONE, 2012, 7, e44285.	1.1	94
18	Targeting CSCs within the tumor microenvironment for cancer therapy: a potential role of mesenchymal stem cells. Expert Opinion on Therapeutic Targets, 2012, 16, 1041-1054.	1.5	40
19	Endometrial regeneration and endometrial stem/progenitor cells. Reviews in Endocrine and Metabolic Disorders, 2012, 13, 235-251.	2.6	183

#	ARTICLE	IF	CITATIONS
21	Adenosine triphosphate-binding cassette transporter G2 expression inÂendometriosis and in endometrium from patients with and without endometriosis. Fertility and Sterility, 2012, 98, 1512-1520.e3.	0.5	9
22	Endometrial aspiration biopsy: a non-invasive method of obtaining functional lymphoid progenitor cells and mature natural killer cells. Reproductive BioMedicine Online, 2012, 25, 322-328.	1.1	7
23	Perspective of bioartificial uterus as gynecological regenerative medicine. Tissue Engineering and Regenerative Medicine, 2012, 9, 233-239.	1.6	8
24	Role of Label-Retaining Cells in Estrogen-Induced Endometrial Regeneration. Reproductive Sciences, 2012, 19, 102-114.	1.1	48
25	Endometrial reconstruction from stem cells. Fertility and Sterility, 2012, 98, 11-20.	0.5	157
26	Osteogenic Differentiation of Stem Cells Derived from Menstrual Blood Versus Bone Marrow in the Presence of Human Platelet Releasate. Tissue Engineering - Part A, 2012, 18, 1720-1728.	1.6	60
27	Perivascular Human Endometrial Mesenchymal Stem Cells Express Pathways Relevant to Self-Renewal, Lineage Specification, and Functional Phenotype1. Biology of Reproduction, 2012, 86, 58.	1.2	181
28	A Novel Marker of Human Endometrial Mesenchymal Stem-Like Cells. Cell Transplantation, 2012, 21, 2201-2214.	1.2	237
29	Common chromosomal imbalances and stemness-related protein expression markers in endometriotic lesions from different anatomical sites: the potential role of stem cells. Human Reproduction, 2012, 27, 3187-3197.	0.4	31
30	Stem Cell-Like Differentiation Potentials of Endometrial Side Population Cells as Revealed by a Newly Developed In Vivo Endometrial Stem Cell Assay. PLoS ONE, 2012, 7, e50749.	1.1	63
31	Stem cell theory for the pathogenesis of endometriosis. Frontiers in Bioscience - Elite, 2012, E4, 2754-2763.	0.9	61
32	Multipotent mesenchymal stem cells of desquamated endometrium: Isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells. Cell and Tissue Biology, 2012, 6, 1-11.	0.2	52
33	Proliferation and chondrogenic differentiation potential of menstrual blood- and bone marrow-derived stem cells in two-dimensional culture. International Journal of Hematology, 2012, 95, 484-493.	0.7	46
34	Protein kinase CK2 is a regulator of angiogenesis in endometriotic lesions. Angiogenesis, 2012, 15, 243-252.	3.7	38
35	Stem Cells in the Reproductive System. American Journal of Reproductive Immunology, 2012, 67, 445-462.	1.2	5
36	Human adult stem cells from menstrual blood and endometrial tissue. Journal of Zhejiang University: Science B, 2012, 13, 419-420.	1.3	20
37	In vitro evaluation of biomimetic nanocomposite scaffold using endometrial stem cell derived osteoblast-like cells. Tissue and Cell, 2013, 45, 328-337.	1.0	39
38	Differentiation of Human Endometrial Stromal Cells into Oligodendrocyte Progenitor Cells (OPCs). Journal of Molecular Neuroscience, 2013, 51, 265-273.	1.1	60

#	ARTICLE	IF	Citations
39	Toward the use of endometrial and menstrual blood mesenchymal stem cells for cell-based therapies. Expert Opinion on Biological Therapy, 2013, 13, 1387-1400.	1.4	111
40	Endometriosis of the lung: report of a case and literature review. European Journal of Medical Research, 2013, 18, 13.	0.9	67
41	Menstrual blood stem cells as a potential source for cell therapy. Cell and Tissue Biology, 2013, 7, 201-206.	0.2	3
42	Neurogenic potential of human mesenchymal stem cells isolated from bone marrow, adipose tissue and endometrium: a Comparative study. Cell and Tissue Biology, 2013, 7, 235-244.	0.2	24
43	Management of intrauterine adhesions: A novel intrauterine device. Medical Hypotheses, 2013, 81, 394-396.	0.8	14
44	Derivation of Pre-oligodendrocytes from Human Endometrial Stromal Cells by Using Overexpression of MicroRNA 338. Journal of Molecular Neuroscience, 2013, 51, 337-343.	1.1	33
45	Stimulation of decidua development by transplantation of endometrial stem cells. Journal of Biomedical Science and Engineering, 2013, 06, 59-65.	0.2	6
46	Presacral extramedullary hematopoiesis: An alternative hypothesis. Journal of Clinical Neuroscience, 2013, 20, 1664-1668.	0.8	11
47	Review: Human uterine stem/progenitor cells: Implications for uterine physiology and pathology. Placenta, 2013, 34, S68-S72.	0.7	25
48	Effect of stem cell application on Asherman Syndrome, an experimental rat model. Fertility and Sterility, 2013, 100, S32.	0.5	0
49	Expression of the pluripotent transcription factor OCT4 promotes cell migration in endometriosis. Fertility and Sterility, 2013, 99, 1332-1339.e5.	0.5	55
50	Prospective biomarkers of stem cells of human endometrium and fallopian tube compared with bone marrow. Cell and Tissue Research, 2013, 352, 537-549.	1.5	20
51	Optimization and Scale-up Culture of Human Endometrial Multipotent Mesenchymal Stromal Cells: Potential for Clinical Application. Tissue Engineering - Part C: Methods, 2013, 19, 80-92.	1.1	62
52	Programming of human endometrial-derived stromal cells (EnSCs) into pre-oligodendrocyte cells by overexpression of miR-219. Neuroscience Letters, 2013, 537, 65-70.	1.0	36
53	Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp. Biomaterials, 2013, 34, 1888-1897.	5.7	124
54	Endometrial stem cell differentiation into smooth muscle cell: a novel approach for bladder tissue engineering in women. BJU International, 2013, 112, 854-863.	1.3	49
55	Interplay between Misplaced M \tilde{A}^{1} 4llerian-Derived Stem Cells and Peritoneal Immune Dysregulation in the Pathogenesis of Endometriosis. Obstetrics and Gynecology International, 2013, 2013, 1-20.	0.5	49
56	Angiogenesis and Endometriosis. Obstetrics and Gynecology International, 2013, 2013, 1-8.	0.5	105

#	Article	IF	Citations
57	Isolation, Characterization, and Transduction of Endometrial Decidual Tissue Multipotent Mesenchymal Stromal/Stem Cells from Menstrual Blood. BioMed Research International, 2013, 2013, 1-14.	0.9	80
58	Regenerating endometrium from stem/progenitor cells. Current Opinion in Obstetrics and Gynecology, 2013, 25, 193-200.	0.9	52
59	Neonatal uterine bleeding as antecedent of pelvic endometriosis. Human Reproduction, 2013, 28, 2893-2897.	0.4	60
61	Adult stem cells in the human endometrium. , 0, , 115-132.		1
62	Use of Granulocyte Colony-Stimulating Factor for the Treatment of Thin Endometrium in Experimental Rats. PLoS ONE, 2013, 8, e82375.	1.1	22
63	Targeting the Wnt/ \hat{l}^2 -catenin pathway in endometriosis: a potentially effective approach for treatment and prevention. Molecular and Cellular Therapies, 2014, 2, 36.	0.2	31
64	Differentiation of Menstrual Blood–Derived Stem Cells Toward Nucleus Pulposus-Like Cells in a Coculture System With Nucleus Pulposus Cells. Spine, 2014, 39, 754-760.	1.0	19
65	Endometriosis: Survey of Current Diagnostic and Therapeutic Options and Latest Research Work. Geburtshilfe Und Frauenheilkunde, 2014, 74, 733-742.	0.8	3
66	Human endometrial stem cells differentiation into functional hepatocyteâ€ike cells. Cell Biology International, 2014, 38, 825-834.	1.4	19
67	Endometrial Receptivity and Intrauterine Adhesive Disease. Seminars in Reproductive Medicine, 2014, 32, 392-401.	0.5	83
68	Osseous metaplasia of the endometrium. South African Journal of Obstetrics and Gynaecology, 2014, 20, 37.	0.1	0
69	Implantation: Mutual Activity of Sex Steroid Hormones and the Immune System Guarantee the Maternal–Embryo Interaction. Seminars in Reproductive Medicine, 2014, 32, 337-345.	0.5	17
70	Comparative characteristics of amniotic membrane, endometrium and ovarian derived mesenchymal stem cells: A role for amniotic membrane in stem cell therapy. Middle East Fertility Society Journal, 2014, 19, 156-170.	0.5	3
71	Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 43-77.	1.1	147
73	The Endometrium of Cycling Cows Contains Populations of Putative Mesenchymal Progenitor Cells. Reproduction in Domestic Animals, 2014, 49, 550-559.	0.6	39
74	Modified protocol for improvement of differentiation potential of menstrual bloodâ€derived stem cells into adipogenic lineage. Cell Proliferation, 2014, 47, 615-623.	2.4	41
75	Genetic, epigenetic and stem cell alterations in endometriosis: new insights and potential therapeutic perspectives. Clinical Science, 2014, 126, 123-138.	1.8	64
76	Gap junction blockade induces apoptosis in human endometrial stromal cells. Molecular Reproduction and Development, 2014, 81, 666-675.	1.0	32

#	Article	IF	CITATIONS
77	Induction of endometrial mesenchymal stem cells into tissue-forming cells suitable for fascial repair. Acta Biomaterialia, 2014, 10, 5012-5020.	4.1	59
78	Human Endometrial DNA Methylome Is Cycle-Dependent and Is Associated With Gene Expression Regulation. Molecular Endocrinology, 2014, 28, 1118-1135.	3.7	68
79	Endometrial stem/progenitor cells. Journal of Obstetrics and Gynaecology Research, 2014, 40, 2015-2022.	0.6	21
80	Endometrial stem cells in regenerative medicine. Journal of Biological Engineering, 2014, 8, 20.	2.0	60
81	Effect of stem cell application on Asherman syndrome, an experimental rat model. Journal of Assisted Reproduction and Genetics, 2014, 31, 975-982.	1.2	94
82	Gene expression profiling of endometrium versus bone marrow-derived mesenchymal stem cells: upregulation of cytokine genes. Molecular and Cellular Biochemistry, 2014, 395, 29-43.	1.4	14
83	A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet betaâ€cell. Cell Biology International, 2014, 38, 1174-1182.	1.4	47
84	Menstrual blood-derived stromal stem cells from women with and without endometriosis reveal different phenotypic and functional characteristics. Molecular Human Reproduction, 2014, 20, 905-918.	1.3	88
85	Isolation and identification of epithelial and stromal stem cells from eutopic endometrium of women with endometriosis. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2014, 178, 89-94.	0.5	19
86	Biological Characteristics of Human-Urine-Derived Stem Cells: Potential for Cell-Based Therapy in Neurology. Tissue Engineering - Part A, 2014, 20, 1794-1806.	1.6	87
87	Estrogen Secreted by Mesenchymal Stem Cells Necessarily Determines Their Feasibility of Therapeutical Application. Scientific Reports, 2015, 5, 15286.	1.6	14
88	The utility of human fallopian tube mucosa as a novel source of multipotent stem cells for the treatment of autologous reproductive tract injury. Stem Cell Research and Therapy, 2015, 6, 98.	2.4	18
89	Effects of icariin on the expression of ER, VEGF, and KDR in the endometrial cells of thin endometrium. Genetics and Molecular Research, 2015, 14, 11250-11258.	0.3	16
90	Different Tissue-Derived Stem Cells: A Comparison of Neural Differentiation Capability. PLoS ONE, 2015, 10, e0140790.	1.1	20
91	Adipose-Derived Stromal Vascular Fraction Cell Effects on a Rodent Model of Thin Endometrium. PLoS ONE, 2015, 10, e0144823.	1.1	15
92	Alkaline Phosphatase in Stem Cells. Stem Cells International, 2015, 2015, 1-11.	1.2	142
94	Cell Therapy in Joint Disorders. Sports Health, 2015, 7, 27-37.	1.3	20
95	Endometriosis: A Role for Stem Cells. Women's Health, 2015, 11, 35-49.	0.7	20

#	Article	IF	CITATIONS
96	Isolation, culture, characterization, and adipogenic differentiation of heifer endometrial mesenchymal stem cells. Comparative Clinical Pathology, 2015, 24, 1159-1164.	0.3	18
97	The Role of Uterine NK Cells in Normal Reproduction and Reproductive Disorders. Advances in Experimental Medicine and Biology, 2015, 868, 95-126.	0.8	30
98	Clinical translation for endometrial cancer stem cells hypothesis. Cancer and Metastasis Reviews, 2015, 34, 401-416.	2.7	31
99	The Male Role in Pregnancy Loss and Embryo Implantation Failure. Advances in Experimental Medicine and Biology, 2015, , .	0.8	3
100	Characterization and Evaluation of Neuronal Trans-Differentiation with Electrophysiological Properties of Mesenchymal Stem Cells Isolated from Porcine Endometrium. International Journal of Molecular Sciences, 2015, 16, 10934-10951.	1.8	22
101	Identifying the Biological Basis of GWAS Hits for Endometriosis 1. Biology of Reproduction, 2015, 92, 87.	1.2	55
102	Somatic Stem Cells and Their Dysfunction in Endometriosis. Frontiers in Surgery, 2014, 1, 51.	0.6	20
103	Stem Cells in Endometrial Physiology. Seminars in Reproductive Medicine, 2015, 33, 326-332.	0.5	40
104	Uterine Leiomyoma Stem Cells: Linking Progesterone to Growth. Seminars in Reproductive Medicine, 2015, 33, 357-365.	0.5	58
105	Stem Cells in Myometrial Physiology. Seminars in Reproductive Medicine, 2015, 33, 350-356.	0.5	11
106	Pathogenesis of Endometriosis: Roles of Retinoids and Inflammatory Pathways. Seminars in Reproductive Medicine, 2015, 33, 246-256.	0.5	34
107	Menstrual physiology: implications for endometrial pathology and beyond. Human Reproduction Update, 2015, 21, 748-761.	5.2	216
108	Stem Cells in Endometrium and Endometriosis. Women's Health, 2015, 11, 587-595.	0.7	11
109	Uterine stem cells—promise and possibilities. Maturitas, 2015, 82, 282-283.	1.0	0
110	Endometrial stem/progenitor cells: the first 10 years. Human Reproduction Update, 2016, 22, dmv051.	5.2	364
111	Endometrial Side Population Cells: Potential Adult Stem/Progenitor Cells in Endometrium1. Biology of Reproduction, 2015, 93, 84.	1.2	37
112	Human Oviduct and Endometrium., 2015, , 1077-1097.		6
113	Systems genetics view of endometriosis: a common complex disorder. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2015, 185, 59-65.	0.5	44

#	ARTICLE	IF	CITATIONS
114	Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 1268-1276.	1.3	34
115	Estrogen receptor \hat{I}^2 : the guardian of the endometrium. Human Reproduction Update, 2015, 21, 174-193.	5.2	108
117	Label-Retaining Stromal Cells in Mouse Endometrium Awaken for Expansion and Repair After Parturition. Stem Cells and Development, 2015, 24, 768-780.	1.1	31
118	Ovarian steroids, stem cells and uterine leiomyoma: therapeutic implications. Human Reproduction Update, 2015, 21, 1-12.	5.2	111
119	Comparison of enzymatic and nonenzymatic isolation methods for endometrial stem cells. Turkish Journal of Biology, 2016, 40, 1081-1089.	2.1	5
120	Endometrial mesenchymal stem cells as a cell based therapy for pelvic organ prolapse. World Journal of Stem Cells, 2016, 8, 202.	1.3	39
121	Lentiviral vector-mediated down-regulation of Notch1 in endometrial stem cells results in proliferation and migration in endometriosis. Molecular and Cellular Endocrinology, 2016, 434, 210-218.	1.6	10
122	<i>In vitro</i> evaluation of human endometrial stem cellâ€derived osteoblastâ€like cells' behavior on gelatin/collagen/bioglass nanofibers' scaffolds. Journal of Biomedical Materials Research - Part A, 2016, 104, 2210-2219.	2.1	18
123	Human Endometrial Fibroblasts Derived from Mesenchymal Progenitors Inherit Progesterone Resistance and Acquire an Inflammatory Phenotype in the Endometrial Niche in Endometriosis1. Biology of Reproduction, 2016, 94, 118.	1.2	116
124	Polycystic ovary syndrome: Endometrial markers. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2016, 37, 66-79.	1.4	98
125	Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal. Endocrinology, 2016, 157, 2432-2446.	1.4	54
126	Endometriosis risk alleles at 1p36.12 act through inverse regulation ofCDC42andLINC00339. Human Molecular Genetics, 2016, 25, ddw320.	1.4	56
127	Mesenchymal stem cells with irreversibly arrested proliferation stimulate decidua development in rats. Experimental and Therapeutic Medicine, 2016, 12, 2447-2454.	0.8	8
128	Cells with "Stemness― Seeds for endometriosis?. Journal of Reproductive Health and Medicine, 2016, 2, S55-S62.	0.3	0
130	Menstrual Blood-Derived Stem Cells: In Vitro and In Vivo Characterization of Functional Effects. Advances in Experimental Medicine and Biology, 2016, 951, 111-121.	0.8	33
131	Polycomb repressive complex 1 controls uterine decidualization. Scientific Reports, 2016, 6, 26061.	1.6	18
132	An improved method for isolation of epithelial and stromal cells from the human endometrium. Journal of Reproduction and Development, 2016, 62, 213-218.	0.5	22
133	Stem Cells and Pregnancy Disorders: From Pathological Mechanisms to Therapeutic Horizons. Seminars in Reproductive Medicine, 2016, 34, 017-026.	0.5	1

#	Article	IF	CITATIONS
134	Characteristics of Multipotent Mesenchymal Stromal Cells Isolated from Human Endometrium. Bulletin of Experimental Biology and Medicine, 2016, 160, 560-564.	0.3	5
135	The Presence of Endometrial Cells in Peritoneal Fluid of Women With and Without Endometriosis. Reproductive Sciences, 2017, 24, 242-251.	1.1	34
136	Role of dilatation and curettage performed for spontaneous or induced abortion in the etiology of endometrial thinning. Journal of Obstetrics and Gynaecology Research, 2017, 43, 523-529.	0.6	20
137	Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure. Stem Cell Research and Therapy, 2017, 8, 9.	2.4	148
138	Characterization of mesenchymal stem cells in bovine endometrium during follicular phase of oestrous cycle. Reproduction in Domestic Animals, 2017, 52, 707-714.	0.6	19
139	Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development (Cambridge), 2017, 144, 1775-1786.	1.2	228
140	Effects of hypoxia on differentiation of menstrual blood stromal stem cells towards tenogenic cells in a co-culture system with Achilles tendon cells. Experimental and Therapeutic Medicine, 2017, 13, 3195-3202.	0.8	9
141	ZEB1 expression is a potential indicator of invasive endometriosis. Acta Obstetricia Et Gynecologica Scandinavica, 2017, 96, 1128-1135.	1.3	42
142	Unus pro omnibus, omnes pro uno: A novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Medical Hypotheses, 2017, 103, 10-20.	0.8	177
143	Advances in improving fertility in women through stem cell-based clinical platforms. Expert Opinion on Biological Therapy, 2017, 17, 585-593.	1.4	7
144	Isolation, proliferation and characterization of endometrial canine stem cells. Reproduction in Domestic Animals, 2017, 52, 235-242.	0.6	22
145	Pathogenesis of deep endometriosis. Fertility and Sterility, 2017, 108, 872-885.e1.	0.5	167
146	Stromal fibroblasts from perimenopausal endometrium exhibit a different transcriptome than those from the premenopausal endometriumâ€. Biology of Reproduction, 2017, 97, 387-399.	1.2	12
147	IL-4–secreting eosinophils promote endometrial stromal cell proliferation and prevent <i>Chlamydia</i> -induced upper genital tract damage. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6892-E6901.	3.3	36
148	Eminent Sources of Adult Mesenchymal Stem Cells and Their Therapeutic Imminence. Stem Cell Reviews and Reports, 2017, 13, 741-756.	5.6	78
150	Célulasâ€tronco oriundas do fluxo menstrual: possÃveis aplicações. Reproducao E Climaterio, 2017, 32, 39-42.	0.1	0
151	Human Menstrual Blood-Derived Stem Cells Ameliorate Liver Fibrosis in Mice by Targeting Hepatic Stellate Cells via Paracrine Mediators. Stem Cells Translational Medicine, 2017, 6, 272-284.	1.6	94
152	The effect of purmorphamine on differentiation of endometrial stem cells into osteoblast-like cells on collagen/hydroxyapatite scaffolds. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1343-1349.	1.9	14

#	Article	IF	CITATIONS
153	Oleic acid promotes the expression of neural markers in differentiated human endometrial stem cells. Journal of Chemical Neuroanatomy, 2017, 79, 51-57.	1.0	10
154	Adult Stem Cells in the Pathogenesis and Treatment of Endometriosis. Journal of Endometriosis and Pelvic Pain Disorders, 2017, 9, 223-231.	0.3	6
155	Regenerative medicine: The future?., 0,, 657-673.		0
156	Transplantation of Menstrual Blood-Derived Mesenchymal Stem Cells Promotes the Repair of LPS-Induced Acute Lung Injury. International Journal of Molecular Sciences, 2017, 18, 689.	1.8	103
157	Niche matters: The comparison between bone marrow stem cells and endometrial stem cells and stromal fibroblasts reveal distinct migration and cytokine profiles in response to inflammatory stimulus. PLoS ONE, 2017, 12, e0175986.	1.1	26
158	Genetic Risk Factors for Endometriosis. Journal of Endometriosis and Pelvic Pain Disorders, 2017, 9, 69-76.	0.3	3
159	Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2018, 50, 27-38.	1.4	102
160	The differentiation and transdifferentiation of epithelial cells in vitro – is it a new strategy in regenerative biomedicine?. Medical Journal of Cell Biology (discontinued), 2018, 6, 27-32.	0.2	8
161	Pathogenesis of endometriosis: Interaction between Endocrine and inflammatory pathways. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2018, 50, 50-60.	1.4	112
162	In vitro evidence that platelet-rich plasma stimulates cellular processes involved in endometrial regeneration. Journal of Assisted Reproduction and Genetics, 2018, 35, 757-770.	1.2	72
163	The significance and evolution of menstruation. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2018, 50, 18-26.	1.4	15
164	Stem cell therapy in Asherman syndrome and thin endometrium: Stem cell-based therapy. Biomedicine and Pharmacotherapy, 2018, 102, 333-343.	2.5	119
165	Stem Cell Markers Describe a Transition From Somatic to Pluripotent Cell States in a Rat Model of Endometriosis. Reproductive Sciences, 2018, 25, 873-881.	1.1	10
166	Differentially expressed genes: OCT -4, SOX 2, STAT 3, CDH 1 and CDH 2 , in cultured mesenchymal stem cells challenged with serum of women with endometriosis. Journal of Genetic Engineering and Biotechnology, 2018, 16, 63-69.	1.5	5
167	Regeneration of the Fallopian Tube Mucosa Using Bone Marrow Mesenchymal Stem Cell Transplantation After Induced Chemical Injury in a Rat Model. Reproductive Sciences, 2018, 25, 773-781.	1.1	11
168	Mesenchymal Stem Cell Therapy Prevents Abortion in CBA/J \tilde{A} — DBA/2 Mating. Reproductive Sciences, 2018, 25, 1261-1269.	1.1	19
169	Curcumin and endometriosis: Review on potential roles and molecular mechanisms. Biomedicine and Pharmacotherapy, 2018, 97, 91-97.	2.5	72
170	Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos University Medical Journal, 2018, 18, 264.	0.3	270

#	ARTICLE	IF	CITATIONS
171	Human menstrual blood: a renewable and sustainable source of stem cells for regenerative medicine. Stem Cell Research and Therapy, 2018, 9, 325.	2.4	37
172	Increased Expression Levels of Metalloprotease, Tissue Inhibitor of Metalloprotease, Metallothionein, and p63 in Ectopic Endometrium: An Animal Experimental Study. Revista Brasileira De Ginecologia E Obstetricia, 2018, 40, 705-712.	0.3	4
173	The Clinical Anatomy of Endometriosis: A Review. Cureus, 2018, 10, e3361.	0.2	55
174	Clinical Manifestations, Diagnosis, and Treatment of Endometriosis. Current Women's Health Reviews, 2018, 14, 88-105.	0.1	2
175	Cytogenetic and Transcriptomic Analysis of Human Endometrial MSC Retaining Proliferative Activity after Sublethal Heat Shock. Cells, 2018, 7, 184.	1.8	10
176	Regenerating the Womb: The Good, Bad and Ugly Potential of the Endometrial Stem Cells. Current Regenerative Medicine, 2018, 7, 33-45.	0.0	2
177	Evaluation of Vav3.1 as prognostic marker in endometrial cancer. Journal of Cancer Research and Clinical Oncology, 2018, 144, 2067-2076.	1.2	9
178	Uterine stem cells: from basic research to advanced cell therapies. Human Reproduction Update, 2018, 24, 673-693.	5.2	83
179	Endometrial Stem Cells in Farm Animals: Potential Role in Uterine Physiology and Pathology. Bioengineering, 2018, 5, 75.	1.6	10
180	Human menstrual blood-derived stem cells promote functional recovery in a rat spinal cord hemisection model. Cell Death and Disease, 2018, 9, 882.	2.7	29
181	Inflammatory cytokine profile of coâ€'cultivated primary cells from the endometrium of women with and without endometriosis. Molecular Medicine Reports, 2018, 18, 1287-1296.	1.1	21
182	Endometriosis. Nature Reviews Disease Primers, 2018, 4, 9.	18.1	726
183	A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods. Journal of Orthopaedic Surgery and Research, 2018, 13, 63.	0.9	24
184	Effects of platelet-rich plasma on the activity of human menstrual blood-derived stromal cells in vitro. Stem Cell Research and Therapy, 2018, 9, 48.	2.4	30
185	Synchrotron- and focal plane array-based Fourier-transform infrared spectroscopy differentiates the basalis and functionalis epithelial endometrial regions and identifies putative stem cell regions of human endometrial glands. Analytical and Bioanalytical Chemistry, 2018, 410, 4541-4554.	1.9	22
186	Myometrial Cells Stimulate Self-Renewal of Endometrial Mesenchymal Stem-Like Cells Through WNT5A/β-Catenin Signaling. Stem Cells, 2019, 37, 1455-1466.	1.4	23
187	Current Status of Stem Cell Transplantation for Autoimmune Diseases. Stem Cells in Clinical Applications, 2019, , 3-25.	0.4	0
188	Endometriotic Peritoneal Fluid Promotes Myofibroblast Differentiation of Endometrial Mesenchymal Stem Cells. Stem Cells International, 2019, 2019, 1-13.	1.2	5

#	Article	IF	CITATIONS
189	The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights. International Journal of Molecular Sciences, 2019, 20, 5615.	1.8	270
190	Activation of the Hippo/TAZ pathway is required for menstrual stem cells to suppress myofibroblast and inhibit transforming growth factor \hat{l}^2 signaling in human endometrial stromal cells. Human Reproduction, 2019, 34, 635-645.	0.4	36
191	The ectonucleoside triphosphate diphosphohydrolase-2 (NTPDase2) in human endometrium: a novel marker of basal stroma and mesenchymal stem cells. Purinergic Signalling, 2019, 15, 225-236.	1.1	16
192	A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility. Acta Biomaterialia, 2019, 92, 160-171.	4.1	112
193	Advancement in the Pathophysiology of Cerebral Stroke. , 2019, , .		5
194	Stem Cell-Based Therapy for Ischemic Stroke. , 2019, , 103-121.		1
195	Repair of Osteochondral Defects in Rabbit Knee Using Menstrual Blood Stem Cells Encapsulated in Fibrin Glue: A Good Stem Cell Candidate for the Treatment of Osteochondral Defects. Tissue Engineering and Regenerative Medicine, 2019, 16, 311-324.	1.6	15
196	Endometriosis and nuclear receptors. Human Reproduction Update, 2019, 25, 473-485.	5.2	127
197	Anti-inflammatory cytokines in endometriosis. Cellular and Molecular Life Sciences, 2019, 76, 2111-2132.	2.4	99
198	Hormonal oral contraceptive influence on isolation, Characterization and cryopreservation of mesenchymal stem cells from menstrual fluid. Gynecological Endocrinology, 2019, 35, 638-644.	0.7	2
199	Genetic regulation of methylation in human endometrium and blood and gene targets for reproductive diseases. Clinical Epigenetics, 2019, 11, 49.	1.8	26
200	Therapeutic potential of menstrual blood-derived endometrial stem cells in cardiac diseases. Cellular and Molecular Life Sciences, 2019, 76, 1681-1695.	2.4	45
201	Menstrual blood-derived stem cells: toward therapeutic mechanisms, novel strategies, and future perspectives in the treatment of diseases. Stem Cell Research and Therapy, 2019, 10, 406.	2.4	80
202	The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine. Stem Cell Research and Therapy, 2019, $10,1.$	2.4	386
203	Pathogenesis of endometriosis: theÂgenetic/epigenetic theory. Fertility and Sterility, 2019, 111, 327-340.	0.5	248
204	Impact of Sustained Transforming Growth Factor-Î ² Receptor Inhibition on Chromatin Accessibility and Gene Expression in Cultured Human Endometrial MSC. Frontiers in Cell and Developmental Biology, 2020, 8, 567610.	1.8	15
205	Adenomyosis: Mechanisms and Pathogenesis. Seminars in Reproductive Medicine, 2020, 38, 129-143.	0.5	89
206	Distinctive Cellular Transcriptomic Signature and MicroRNA Cargo of Extracellular Vesicles of Horse Adipose and Endometrial Mesenchymal Stem Cells from the Same Donors. Cellular Reprogramming, 2020, 22, 311-327.	0.5	3

#	Article	IF	Citations
207	Menstruation: science and society. American Journal of Obstetrics and Gynecology, 2020, 223, 624-664.	0.7	149
208	Cellular Origins of Endometriosis: Towards Novel Diagnostics and Therapeutics. Seminars in Reproductive Medicine, 2020, 38, 201-215.	0.5	18
209	Intrauterine transplantation of autologous menstrual blood stem cells increases endometrial thickness and pregnancy potential in patients with refractory intrauterine adhesion. Journal of Obstetrics and Gynaecology Research, 2020, 46, 2347-2355.	0.6	27
210	Comparison of the regenerative effects of bone marrow/adipose-derived stem cells in the Asherman model following local or systemic administration. Journal of Assisted Reproduction and Genetics, 2020, 37, 1861-1868.	1.2	12
211	Receptivity markers in endometrial mesenchymal stem cells of recurrent implantation failure and ⟨scp⟩nonâ€ <td>0.6</td> <td>6</td>	0.6	6
212	The Higher Inherent Therapeutic Potential of Biomaterial-Based hDPSCs and hEnSCs for Pancreas Diseases. Frontiers in Bioengineering and Biotechnology, 2020, 8, 636.	2.0	4
213	Physiology of the Endometrium and Regulation of Menstruation. Physiological Reviews, 2020, 100, 1149-1179.	13.1	211
214	Endometrial Stem/Progenitor Cells. Current Obstetrics and Gynecology Reports, 2020, 9, 7-14.	0.3	0
215	Bovine peripheral blood MSCs chemotax towards inflammation and embryo implantation stimuli. Journal of Cellular Physiology, 2021, 236, 1054-1067.	2.0	22
216	Phenotype and biological characteristics of endometrial mesenchymal stem/stromal cells: A comparison between intrauterine adhesion patients and healthy women. American Journal of Reproductive Immunology, 2021, 85, e13379.	1.2	18
217	Stem Cell-Based Therapy for Asherman Syndrome: Promises and Challenges. Cell Transplantation, 2021, 30, 096368972110207.	1.2	11
218	An Overview on the Conservative Management of Endometriosis from a Naturopathic Perspective: Phytochemicals and Medicinal Plants. Plants, 2021, 10, 587.	1.6	8
219	Singleâ€cell RNA sequencing redefines the mesenchymal cell landscape of mouse endometrium. FASEB Journal, 2021, 35, e21285.	0.2	48
220	Stem cell in neurodegenerative disorders; an emerging strategy. International Journal of Developmental Neuroscience, 2021, 81, 291-311.	0.7	19
221	Endometrial stem/progenitor cells in menstrual blood and peritoneal fluid of women with and without endometriosis. Reproductive BioMedicine Online, 2021, 43, 3-13.	1.1	18
222	Effects of atorvastatin and resveratrol against the experimental endometriosis; evidence for glucose and monocarboxylate transporters, neoangiogenesis. Life Sciences, 2021, 272, 119230.	2.0	15
223	Mesenchymal Stem Cell Therapies for Paraplegia: Preclinical and Clinical Studies. , 0, , .		0
224	Adult stem cells in endometrial regeneration: Molecular insights and clinical applications. Molecular Reproduction and Development, 2021, 88, 379-394.	1.0	21

#	Article	IF	CITATIONS
225	Outcomes of Deferoxamine Action on H2O2-Induced Growth Inhibition and Senescence Progression of Human Endometrial Stem Cells. International Journal of Molecular Sciences, 2021, 22, 6035.	1.8	5
226	Loss of Cxcr4 in Endometriosis Reduces Proliferation and Lesion Number while Increasing Intraepithelial Lymphocyte Infiltration. American Journal of Pathology, 2021, 191, 1292-1302.	1.9	5
227	Accentuating the sources of mesenchymal stem cells as cellular therapy for osteoarthritis kneesâ€"a panoramic review. Stem Cell Investigation, 2021, 8, 13-13.	1.3	14
228	Strategies for managing Asherman's syndrome and endometrial atrophy: Since the classical experimental models to the new bioengineering approach. Molecular Reproduction and Development, 2021, 88, 527-543.	1.0	8
229	Endometrial SUSD2+ Mesenchymal Stem/Stromal Cells in Tissue Engineering: Advances in Novel Cellular Constructs for Pelvic Organ Prolapse. Journal of Personalized Medicine, 2021, 11, 840.	1.1	9
230	The Role of miRNAs 340-5p, 92a-3p, and 381-3p in Patients with Endometriosis: A Plasma and Mesenchymal Stem-Like Cell Study. BioMed Research International, 2021, 2021, 1-15.	0.9	6
231	Endometriosis stem cell sources and potential therapeutic targets: literature review and bioinformatics analysis. Regenerative Medicine, 2021, 16, 949-962.	0.8	2
233	Human Menstrual Blood-Derived Stem Cell Transplantation for Acute Hind Limb Ischemia Treatment in Mouse Models., 2015,, 205-215.		4
234	The Endocrinology of the Menstrual Cycle. Methods in Molecular Biology, 2014, 1154, 145-169.	0.4	102
235	Female Reproductive System. Current Clinical Pathology, 2015, , 67-98.	0.0	1
236	Endometriosis: Are Stem Cells Involved?. International Journal of Clinical and Experimental Medical Sciences, 2015, 1, 65.	0.1	5
237	Quantitative Interpretation of a Genetic Model of Carcinogenesis Using Computer Simulations. PLoS ONE, 2011, 6, e16859.	1.1	2
238	Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells. PLoS ONE, 2016, 11, e0165718.	1.1	29
239	Endometrial and decidual stromal precursors show a different decidualization capacity. Reproduction, 2020, 160, 83-91.	1.1	8
240	The role of stem cells in the pathogenesis of endometriosis (а review). Russian Journal of Human Reproduction, 2016, 22, 20.	0.1	2
241	Does migrative and proliferative capability of epithelial cells reflect cellular developmental competence?. Medical Journal of Cell Biology (discontinued), 2018, 6, 1-7.	0.2	6
242	Application of autologous adipose-derived stem cells for thin endometrium treatment in patients with failed ART programs. Journal of Stem Cell Therapy and Transplantation, 2019, 3, 001-008.	0.2	13
243	Comparison of CD9 & CD146 markers in endometrial stromal cells of fertile & COMPARTIE COMPARTIES (September 2018, 147, 552.	0.4	3

#	Article	IF	CITATIONS
244	Side-population Cells Derived from Non-tumorigenic Rat Endometrial Cells are a Candidate Cell of Origin for Malignant Endometrial Tumors. Journal of Stem Cell Research & Therapy, 2013, 01, .	0.3	1
245	An Update on Pathophysiology and Medical Management of Endometriosis. Advances in Reproductive Sciences, 2016, 04, 53-73.	0.3	4
246	Characteristics of Human Endometrial Stem Cells in Tissue and Isolated Cultured Cells: An Immunohistochemical Aspect. Iranian Biomedical Journal, 2016, 20, 109-16.	0.4	16
247	Autologous platelet-rich plasma treatment for moderate-severe Asherman syndrome: the first experience. Journal of Assisted Reproduction and Genetics, 2021, 38, 2955-2963.	1.2	10
249	Cell technologies in reproductology, obstetrics and gynecology. Cell and Organ Transplantology, 2013, 1, 61-65.	0.2	6
250	Stem Cells of the Reproductive System: At a Glance. , 2014, , 235-257.		0
251	Role of Stem Cells in the Pathogenesis of Endometriosis. , 2014, , 33-48.		1
252	Existence of Mesenchymal-Like Somatic Stem Cells in the Porcine Uterus. , 2015, , 199-203.		0
253	Uterine Synechia: A Preliminary Communication on an Attempted Treatment of the Condition with Intrauterine Instillation of Autologous Bone Marrow Mononuclear Cells., 2015,, 253-255.		0
255	Assessment of the Neural-Like Cells Differentiation from Endometrial Stem Cells following Fluoxetine Treatment. Journal of Advanced Medical Sciences and Applied Technologies, 2015, 1, 105.	0.3	0
256	The effect of stem cell factor on proliferation of human endometrial CD146+ cells. International Journal of Reproductive BioMedicine, 2016, 14, 437-442.	0.5	2
257	Stem Cell Therapy for Autoimmune Disease. Pancreatic Islet Biology, 2017, , 225-248.	0.1	0
258	Clinical Applications of Stem Cells in Women's Reproductive Health. Pancreatic Islet Biology, 2017, , 95-114.	0.1	0
259	Mesenchymal Stem Cell Transplantation for Kidney Diseases. Stem Cells in Clinical Applications, 2017, , 169-191.	0.4	0
260	Stem Cells of the Endometrium: A Leap towards Regenerative Medicine. MOJ Women S Health, 2017, 4, .	0.2	1
261	Endometrial stem cells: the clinical application (a review). Russian Journal of Human Reproduction, 2018, 24, 63.	0.1	0
262	Hysteroscopy and Stem Cell Therapy to Approach Refractory Asherman's Syndrome. , 2018, , 725-741.		0
263	Modern view on the etiology, pathogenesis and possibilities of diagnostics of external genital endometriosis Medicni Perspektivi, 2019, 24, 21-30.	0.1	3

#	ARTICLE	IF	CITATIONS
264	Role of Stem Cells in the Future of Asherman Syndrome Treatment. Sarem Journal of Reproductive Medicine, 2019, 4, 87-92.	0.0	0
267	Stem cell-based therapy for ameliorating intrauterine adhesion and endometrium injury. Stem Cell Research and Therapy, 2021, 12, 556.	2.4	39
268	The Genetic-Epigenetic Pathophysiology of Endometriosis: A Surgeon's View. , 2020, , 173-193.		3
269	Molecular profile of eutopic and ectopic endometrium in endometriosis. Ginecologia Ro, 2020, 2, 29.	0.0	O
270	Basic Research and Clinical Transformation of Stem Cells in Endometrial Repair. Advances in Clinical Medicine, 2020, 10, 1598-1604.	0.0	0
271	Generating receptive endometrium in Asherman's syndrome. Journal of Human Reproductive Sciences, 2011, 4, 49-52.	0.4	55
272	Effect of dexamethasone, insulin and EGF on the myogenic potential on human endometrial stem cell. Iranian Journal of Pharmaceutical Research, 2014, 13, 659-64.	0.3	13
273	The expression of marker for endometrial stem cell and fibrosis was increased in intrauterine adhesious. International Journal of Clinical and Experimental Pathology, 2015, 8, 1525-34.	0.5	17
274	Endometrial stem cells: clinical application and pathological roles. International Journal of Clinical and Experimental Medicine, 2015, 8, 22039-44.	1.3	14
275	The effect of stem cell factor on proliferation of human endometrial CD146(+) cells. International Journal of Reproductive BioMedicine, 2016, 14, 437-42.	0.5	0
276	Expression of pluripotent stem cell markers in mouse uterine tissue during estrous cycle. Veterinary Research Forum, 2016, 7, 181-188.	0.3	2
277	Implantation Model Using Human Endometrial SUSD2+ Mesenchymal Stem Cells and Myometrial Smooth Muscle Cells. Cell Journal, 2021, 23, 154-163.	0.2	O
278	Decidualization Potency and Epigenetic Changes in Human Endometrial Origin Stem Cells During Propagation. Frontiers in Cell and Developmental Biology, 2021, 9, 765265.	1.8	9
279	Understanding menstrual blood-derived stromal/stem cells: Definition and properties. Are we rushing into their therapeutic applications?. IScience, 2021, 24, 103501.	1.9	12
281	Non-gynaecological Applications of Menstrual-derived Stem Cells: A Systematic Review. Avicenna Journal of Medical Biotechnology, 2022, 14, 10-29.	0.2	3
282	Mechanisms of Scarless Repair at Time of Menstruation: Insights From Mouse Models. Frontiers in Reproductive Health, 2022, 3, .	0.6	2
283	The fate of human SUSD2+ endometrial mesenchymal stem cells during decidualization. Stem Cell Research, 2022, 60, 102671.	0.3	5
284	Isolation and characterization mesenchymal stem cells from red panda (<i>Ailurus fulgens styani</i>) endometrium., 2022, 10, coac004.		4

#	Article	IF	CITATIONS
285	Stem cells of fallopian tube mucosa lost their stemness characteristics under prolonged conditions. Jornal Brasileiro De Reproducao Assistida, 2021, , .	0.3	0
286	The Pathogenesis of Endometriosis: Are Endometrial Stem/Progenitor Cells Involved?. Pancreatic Islet Biology, 2022, , 193-216.	0.1	5
288	The Role of Mesenchymal Stem Cells in the Induction of Cancer-Stem Cell Phenotype. Frontiers in Oncology, 2022, 12, 817971.	1.3	8
289	Novel microarchitecture of human endometrial glands: implications in endometrial regeneration and pathologies. Human Reproduction Update, 2022, 28, 153-171.	5.2	18
293	Mesenchymal Stem/Stromal Cells and Their Role in Oxidative Stress Associated with Preeclampsia Yale Journal of Biology and Medicine, 2022, 95, 115-127.	0.2	0
294	Mesenchymal Stem Cell-based Therapy and Female Infertility: Limitations and Advances. Current Stem Cell Research and Therapy, 2023, 18, 322-338.	0.6	3
295	Mesenchymal Stem Cells in Embryo-Maternal Communication under Healthy Conditions or Viral Infections: Lessons from a Bovine Model. Cells, 2022, 11, 1858.	1.8	1
296	Altered differentiation of endometrial mesenchymal stromal fibroblasts is associated with endometriosis susceptibility. Communications Biology, 2022, 5, .	2.0	4
297	Endometriosis and inflammatory immune responses: Indian experience. American Journal of Reproductive Immunology, 2023, 89, .	1.2	8
298	Magnetic resonance imaging of endometriosis: aÂcommon but often hidden, missed, and misdiagnosed entity. Polish Journal of Radiology, 2022, 87, 448-461.	0.5	1
299	Synchrotron Infrared Microspectroscopy for Stem Cell Research. International Journal of Molecular Sciences, 2022, 23, 9878.	1.8	2
300	A New Cell Stem Concept for Pelvic Floor Disorders Prevention and Treatment. Endometrial Mesenchymal Stem Cells. Biochemistry, 0, , .	0.8	0
301	Human umbilical cord platelet-rich plasma to treat endometrial pathologies: methodology, composition and pre-clinical models. Human Reproduction Open, 2022, 2023, .	2.3	6
302	The Biological Characteristics of Eutopic and Ectopic Endometrial Progenitor Cells in Endometriosis. Current Stem Cell Research and Therapy, 2023, 18, 1172-1183.	0.6	0
303	The human periconceptional maternal-embryonic space in health and disease. Physiological Reviews, 2023, 103, 1965-2038.	13.1	3
304	The differentiation and generation of glucose-sensitive beta like-cells from menstrual blood-derived stem cells using an optimized differentiation medium with platelet-rich plasma (PRP). Acta Histochemica, 2023, 125, 152025.	0.9	0
305	Research progress of biopolymers combined with stem cells in the repair of intrauterine adhesions. Nanotechnology Reviews, 2023, 12, .	2.6	0
309	Potential role of stem cells in the pathogenesis of endometriosis. , 2024, , 437-449.		0

Article IF Citations