Marine Indole Alkaloids: Potential New Drug Leads for Anxiety

Chemical Reviews 110, 4489-4497 DOI: 10.1021/cr900211p

Citation Report

#	Article	IF	CITATIONS
2	Lewis Acid Catalyzed Intramolecular Direct Ene Reaction of Indoles. Angewandte Chemie - International Edition, 2010, 49, 10189-10191.	7.2	119
3	Morita–Baylis–Hillman reaction of indole-2-carboxaldehyde: new vistas for indole-annulated systems. Tetrahedron, 2010, 66, 7781-7786.	1.0	13
4	A ligand-free, copper-catalyzed cascade sequence to indole-2-carboxylic esters. Tetrahedron Letters, 2010, 51, 6549-6551.	0.7	29
5	Synthesis of 2- and 3-Indolylpyrroles via 1,3-Dipolar Cycloadditions of Münchnones and Nitroalkenes. Heterocycles, 2010, 82, 1617.	0.4	3
6	Copper-Catalyzed Cross Dehydrogenative Coupling Reactions of Tertiary Amines with Ketones or Indoles. Organic Letters, 2010, 12, 5214-5217.	2.4	133
7	Branch-Selective Synthesis of Oxindole and Indene Scaffolds: Transition Metal-Controlled Intramolecular Aryl Amidation Leading to C3 Reverse-Prenylated Oxindoles. Organic Letters, 2010, 12, 3594-3597.	2.4	33
8	Highly Enantioselective Pd-Catalyzed Allylic Alkylation of Indoles Using Sulfur-MOP Ligand. Organic Letters, 2011, 13, 932-935.	2.4	71
9	Copper-Catalyzed Oxidative Cross-Coupling of <i>N</i> , <i>N</i> -Dimethylanilines with Heteroarenes under Molecular Oxygen. Journal of Organic Chemistry, 2011, 76, 1759-1766.	1.7	107
10	Redox Isomerization via Azomethine Ylide Intermediates:N-Alkyl Indoles from Indolines and Aldehydes. Organic Letters, 2011, 13, 812-815.	2.4	89
11	Five-Membered Ring Systems. Progress in Heterocyclic Chemistry, 2011, 23, 155-194.	0.5	9
12	Structure and Cytotoxicity of Phidianidines A and B: First Finding of 1,2,4-Oxadiazole System in a Marine Natural Product. Organic Letters, 2011, 13, 2516-2519.	2.4	122
13	A supported palladium nanocatalyst for copper free acyl Sonogashira reactions: One-pot multicomponent synthesis of N-containing heterocycles. Green Chemistry, 2011, 13, 3238.	4.6	64
14	Redox-Neutral Indole Annulation Cascades. Journal of the American Chemical Society, 2011, 133, 2100-2103.	6.6	182
15	Direct Functionalization of (Un)protected Tetrahydroisoquinoline and Isochroman under Iron and Copper Catalysis: Two Metals, Two Mechanisms. Journal of Organic Chemistry, 2011, 76, 8781-8793.	1.7	136
16	Regioselective dibromination of methyl indole-3-carboxylate and application in the synthesis of 5,6-dibromoindoles. Organic and Biomolecular Chemistry, 2011, 9, 5021.	1.5	22
17	Gold-Catalyzed Synthesis of 3-Arylindoles via Annulation of Nitrosoarenes and Alkynes. ACS Catalysis, 2011, 1, 29-31.	5.5	52
18	Rapid preparation of triazolyl substituted NH-heterocyclic kinase inhibitors via one-pot Sonogashira coupling–TMS-deprotection–CuAAC sequence. Organic and Biomolecular Chemistry, 2011, 9, 5129.	1.5	35
19	Rapid synthesis of bis(hetero)aryls by one-pot Masuda borylation–Suzuki coupling sequence and its application to concise total syntheses of meridianins A and G. Organic and Biomolecular Chemistry,	1.5	51

#	Article	IF	CITATIONS
20	Rhodium(II)-Catalyzed Enantioselective Câ^'H Functionalization of Indoles. Journal of the American Chemical Society, 2011, 133, 1650-1653.	6.6	179
21	Enantioselective Conjugate Addition of Alkenylboronic Acids to Indole-Appended Enones. Organic Letters, 2011, 13, 4958-4961.	2.4	72
22	Divergent reactions of indoles with aminobenzaldehydes: indole ring-opening vs. annulation and facile synthesis of neocryptolepine. Chemical Science, 2011, 2, 2178.	3.7	71
23	Organocatalytic Asymmetric Michael Addition of 1-Acetylindolin-3-ones to α,β-Unsaturated Aldehydes: Synthesis of 2-Substituted Indolin-3-ones. Journal of Organic Chemistry, 2011, 76, 7551-7555.	1.7	37
24	N-Heterocyclic carbene-catalyzed hydroacylation of isatins with aldehydes: access to 3-acyloxy-1,3-dihydro-2H-indol-2-ones. Tetrahedron, 2011, 67, 7557-7562.	1.0	25
25	Organocatalytic synthesis of α-quaternary amino acid derivatives via aza-Friedel–Crafts alkylation of indoles with simple α-amidoacrylates. Tetrahedron, 2011, 67, 7923-7928.	1.0	32
26	Synthesis and in-vitro anticancer activity of 3,5-bis(indolyl)-1,2,4-thiadiazoles. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5897-5900.	1.0	69
27	Marine natural products. Annual Reports on the Progress of Chemistry Section B, 2011, 107, 138.	0.8	12
28	Highly Enantioselective Intermolecular Alkylation of Aldehydes with Alcohols by Cooperative Catalysis of Diarylprolinol Silyl Ether with BrÃ,nsted Acid. Chemistry - an Asian Journal, 2011, 6, 2890-2894.	1.7	62
29	Divergent Synthesis of Unsymmetrical Annulated Biheterocyclic Compound Libraries: Benzimidazole Linked Indolo-benzodiazepines/quinoxaline. ACS Combinatorial Science, 2011, 13, 391-398.	3.8	34
30	Oneâ€₽ot Synthesis of Diazineâ€Bridged Bisindoles and Concise Synthesis of the Marine Alkaloid Hyrtinadine A. European Journal of Organic Chemistry, 2011, 2011, 4532-4535.	1.2	32
32	Rhodiumâ€Catalyzed Synthesis of 2,3â€Disubstituted Indoles from β,βâ€Disubstituted Stryryl Azides. Angewandte Chemie - International Edition, 2011, 50, 1702-1706.	7.2	145
33	Wellâ€defined NHCPd complexâ€mediated intermolecular direct annulations for synthesis of functionalized indoles (NHC = <i>N</i> â€heteroâ€cyclic carbene). Applied Organometallic Chemistry, 2011, 25, 502-507.	1.7	31
34	Palladium atalyzed Cascade Cyclization of Ynamides to Azabicycles. Chemistry - A European Journal, 2011, 17, 14366-14370.	1.7	52
35	Allylic alcohols: Valuable synthetic equivalents of non-activated alkenes in gold-catalyzed enantioselective alkylation of indoles. Journal of Organometallic Chemistry, 2011, 696, 338-347.	0.8	58
36	General synthesis of mono-, di-, and tri-acetylated indoles from indolin-2-ones. Tetrahedron, 2011, 67, 982-989.	1.0	16
37	Catalytic enantioselective C–H functionalization of indoles with α-diazopropionates using chiral dirhodium(II) carboxylates: asymmetric synthesis of the (+)-α-methyl-3-indolylacetic acid fragment of acremoauxin A. Tetrahedron: Asymmetry, 2011, 22, 907-915.	1.8	62
38	Copper-catalyzed chalcogenoamination of 2-alkynylanilines with dichalcogenides for one-step synthesis of 3-sulfenylindoles and 3-selenylindoles. Tetrahedron Letters, 2011, 52, 1343-1347.	0.7	69

#	Article	IF	CITATIONS
39	Concise, efficient and practical assembly of bromo-5,6-dimethoxyindole building blocks. Tetrahedron Letters, 2011, 52, 1339-1342.	0.7	22
40	Synthesis of 3-aminoindole derivatives: combination of Thorpe–Ziegler cyclization and unexpected allylindium-mediated decyanation. Tetrahedron Letters, 2011, 52, 1378-1382.	0.7	14
41	Synthesis of 6-bromo-2-arylindoles using 2-iodobenzoic acid as precursor. Tetrahedron Letters, 2011, 52, 3726-3728.	0.7	9
42	Task-specific ionic liquid-catalyzed efficient couplings of indoles with 1,3-dicarbonyl compounds: an efficient synthesis of 3-alkenylated indoles. Tetrahedron Letters, 2011, 52, 3825-3827.	0.7	26
43	Biomolecules Produced by Mangrove-Associated Microbes. Current Medicinal Chemistry, 2011, 18, 5224-5266.	1.2	40
44	(S)-(â~')-2-(1H-Indol-3-yl)-N-(1-phenylethyl)acetamide. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2252-o2252.	0.2	0
45	Silver Acetate Catalyzed Hydroamination of 1-(2-(Sulfonylamino)phenyl)prop-2-yn-1-ols to (Z)-2-Methylene-1-sulfonylindolin-3-ols. Journal of Organic Chemistry, 2012, 77, 7166-7175.	1.7	54
46	Iodine-Mediated α-Acetoxylation of 2,3-Disubstituted Indoles. Organic Letters, 2012, 14, 6088-6091.	2.4	37
47	Palladium-Catalyzed Intermolecular C3 Alkenylation of Indoles Using Oxygen as the Oxidant. Organic Letters, 2012, 14, 5920-5923.	2.4	115
48	Efficient synthesis of 3-selanyl- and 3-sulfanylindoles employing trichloroisocyanuric acid and dichalcogenides. Tetrahedron, 2012, 68, 10464-10469.	1.0	57
49	Palladium-Catalyzed Annulation of Allenes with Indole-2-carboxylic Acid Derivatives: Synthesis of Indolo[2,3-c]pyrane-1-ones via Ar–I Reactivity or C–H Functionalization. Journal of Organic Chemistry, 2012, 77, 6959-6969.	1.7	64
50	Synthesis of 2-arylindole derivatives and evaluation as nitric oxide synthase and NFήB inhibitors. Organic and Biomolecular Chemistry, 2012, 10, 8835.	1.5	23
51	Electronic Effect Directed Au(I)-Catalyzed Cyclic C2–H Bond Functionalization of 3-Allenylindoles. Organic Letters, 2012, 14, 3616-3619.	2.4	63
52	Addition of Indoles to Oxyallyl Cations for Facile Access to α-Indole Carbonyl Compounds. Organic Letters, 2012, 14, 1922-1925.	2.4	68
53	Mechanistic Insights into Enantioselective Gold-Catalyzed Allylation of Indoles with Alcohols: The Counterion Effect. Journal of the American Chemical Society, 2012, 134, 20690-20700.	6.6	134
54	Total Synthesis of (+)â€ <i>trans</i> â€Trikentrinâ€A. Chemistry - A European Journal, 2012, 18, 16890-16901.	1.7	15
55	Ketosulfonyl indoles in the regiodefined synthesis of tryptophols and related indole derivatives. Organic and Biomolecular Chemistry, 2012, 10, 3486.	1.5	18
56	The acid free asymmetric intermolecular α-alkylation of aldehydes in fluorinated alcohols. Chemical Communications, 2012, 48, 3548.	2.2	77

#	Article	IF	CITATIONS
57	Palladium-Catalyzed Approach for the General Synthesis of (E)-2-Arylmethylidene-N-tosylindolines and (E)-2-Arylmethylidene-N-tosyl/nosyltetrahydroquinolines: Access to 2-Substituted Indoles and Quinolines. Journal of Organic Chemistry, 2012, 77, 5108-5119.	1.7	37
58	Nucleophilic Addition of Grignard Reagents to 3–Acylindoles: Stereoselective Synthesis of Highly Substituted Indoline Scaffolds. Organic Letters, 2012, 14, 3978-3981.	2.4	29
59	Synthesis of Tryptamine Derivatives via a Direct, One-Pot Reductive Alkylation of Indoles. Journal of Organic Chemistry, 2012, 77, 6351-6357.	1.7	57
60	Synthesis and evaluation of N1-alkylindole-3-ylalkylammonium compounds as nicotinic acetylcholine receptor ligands. Bioorganic and Medicinal Chemistry, 2012, 20, 3719-3727.	1.4	14
61	Titanocene-Catalyzed Multicomponent Coupling Approach to Diarylethynyl Methanes. Journal of the American Chemical Society, 2012, 134, 18217-18220.	6.6	34
62	The Synthesis of Aromatic Heterocycles from Propargylic Compounds. Asian Journal of Organic Chemistry, 2012, 1, 108-129.	1.3	47
65	Development of an Alkaloid–Pyrone Annulation: Synthesis of Pleiomaltinine. Angewandte Chemie - International Edition, 2012, 51, 9348-9351.	7.2	29
66	A Visibleâ€Lightâ€Mediated Oxidative CN Bond Formation/Aromatization Cascade: Photocatalytic Preparation of <i>N</i> â€Arylindoles. Angewandte Chemie - International Edition, 2012, 51, 9562-9566.	7.2	240
67	Ruthenium-catalyzed annulation of alkynes with amides via formyl translocation. Chemical Communications, 2012, 48, 3197.	2.2	41
68	Gold-catalyzed tandem reaction in water: an efficient and convenient synthesis of fused polycyclic indoles. Green Chemistry, 2012, 14, 1888.	4.6	53
69	From Alcohols to Indoles: A Tandem Ru Catalyzed Hydrogen-Transfer Fischer Indole Synthesis. Organic Letters, 2012, 14, 6112-6115.	2.4	75
70	Rhenium-Catalyzed Regiodivergent Addition of Indoles to Terminal Alkynes. Organic Letters, 2012, 14, 588-591.	2.4	83
71	Three-Component Organocascade Kinetic Resolution of Racemic Nitroallylic Acetates via Sequential Iminium/Enamine Asymmetric Catalysis. Organic Letters, 2012, 14, 2496-2499.	2.4	32
72	Cytotoxic indole diketopiperazines from the deep sea-derived fungus Acrostalagmus luteoalbus SCSIO F457. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7265-7267.	1.0	78
73	A General Synthesis of Bis-indolylpiperazine-2,5-diones. Molecules, 2012, 17, 14841-14845.	1.7	5
74	Solventâ€Free Non ovalent Organocatalysis: Enantioselective Addition of Nitroalkanes to Alkylideneindolenines as a Flexible Gateway to Optically Active Tryptamine Derivatives. Advanced Synthesis and Catalysis, 2012, 354, 1373-1380.	2.1	43
75	Synthesis of New 4,5-Dihydrofuranoindoles and Their Evaluation as HCV NS5B Polymerase Inhibitors. Organic Letters, 2012, 14, 556-559.	2.4	24
76	New strategies for the synthesis of N-alkylated indoles (Review). Chemistry of Heterocyclic Compounds, 2012, 48, 391-407.	0.6	46

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
77	Marine natural products. Natural Product Reports, 2012, 29, 144-222.	5.2	448
78	Silica gelâ€Mediated Friedelâ€Crafts Reaction of Indoles with Functionalized Nitroallylic Acetates via an S _N 1 Process. Journal of the Chinese Chemical Society, 2012, 59, 940-946.	0.8	2
79	Oneâ€Step Synthesis of 2â€Aminoâ€5 <i>H</i> â€pyrimido[5,4â€ <i>b</i>]indoles, Substituted 2â€(1,3,5â€triazinâ€2â€yl)â€1 <i>H</i> â€indoles, and 1,3,5â€Triazines from Aldehydes. European Journal of Org Chemistry, 2012, 2012, 3492-3499.	anicz	53
80	Palladiumâ€Catalyzed Reaction of Arylamine and Diarylacetylene: Solventâ€Controlled Construction of 2,3â€Diarylindoles and Pentaarylpyrroles. European Journal of Organic Chemistry, 2012, 2012, 4380-4386.	1.2	42
81	Rh ₂ (<i>S</i> -biTISP) ₂ -Catalyzed Asymmetric Functionalization of Indoles and Pyrroles with Vinylcarbenoids. Organic Letters, 2012, 14, 1934-1937.	2.4	107
82	Synthesis of Indolines, Indoles, and Benzopyrrolizidinones from Simple Aryl Azides. Organic Letters, 2012, 14, 3048-3051.	2.4	32
83	A Metalâ€Free Sulfenylation and Bromosulfenylation of Indoles: Controllable Synthesis of 3â€Arylthioindoles and 2â€Bromoâ€3â€arylthioindoles. Advanced Synthesis and Catalysis, 2012, 354, 2123-212	8. ^{2.1}	117
86	Asymmetric <i>N</i> â€Allylation of Indoles Through the Iridiumâ€Catalyzed Allylic Alkylation/Oxidation of Indolines. Angewandte Chemie - International Edition, 2012, 51, 5183-5187.	7.2	109
87	Quadruple Domino Organocatalysis: An Asymmetric Azaâ€Michael/Michael/Michael/Aldol Reaction Sequence Leading to Tetracyclic Indole Structures with Six Stereocenters. Chemistry - A European Journal, 2012, 18, 10226-10229.	1.7	87
88	Merging Organocatalysis with Transition Metal Catalysis: Highly Stereoselective α-Alkylation of Aldehydes. Organic Letters, 2012, 14, 1716-1719.	2.4	108
89	Synthesis and cytotoxicity of novel 2,2′-bis- and 2,2′,2″-tris-indolylmethanes-based bengacarboline analogs. Archives of Pharmacal Research, 2012, 35, 949-954.	2.7	15
90	Catalytic conjugate addition of indole to α,β-unsaturated ketones by Co(ClO4)2·6H2O/bis-Schiff base complexes. Chinese Chemical Letters, 2012, 23, 525-528.	4.8	4
91	An original route to newly-functionalized indoles and carbazoles starting from the ring-opening of nitrothiophenes. Tetrahedron Letters, 2012, 53, 752-757.	0.7	19
92	First synthesis of 1-(indol-2-yl)azulenes by the Vilsmeier–Haack type arylation with triflic anhydride as an activating reagent. Tetrahedron Letters, 2012, 53, 1493-1496.	0.7	30
93	Regioselectivity of Diels–Alder reactions between 6,7-dehydrobenzofuran and 2-substituted furans. Tetrahedron Letters, 2012, 53, 4022-4025.	0.7	19
94	Multistep Oneâ€Pot Synthesis of Enantioenriched Polysubstituted Cyclopenta[<i>b</i>]indoles. Angewandte Chemie - International Edition, 2012, 51, 1059-1062.	7.2	122
95	Synthesis and structure–activity relationship of mono-indole-, bis-indole-, and tris-indole-based sulfonamides as potential anticancer agents. Molecular Diversity, 2013, 17, 595-604.	2.1	16
96	Organocatalytic aldol reaction of indole-3-carbaldehydes with ketones: synthesis of chiral 3-substituted indoles. Tetrahedron Letters, 2013, 54, 4653-4655.	0.7	5

#	Article	IF	CITATIONS
97	Indirect N-vinylation of indoles via isomerisation of N-allyl derivatives: synthesis of (±)-debromoarborescidine B. Tetrahedron Letters, 2013, 54, 4536-4539.	0.7	10
98	Oneâ€Pot Synthesis of Camalexins and 3,3′â€Biindoles by the Masuda Borylation–Suzuki Arylation (MBSA) Sequence. European Journal of Organic Chemistry, 2013, 2013, 4564-4569.	1.2	33
99	Rh(III)-Catalyzed Tandem C–H Allylation and Oxidative Cyclization of Anilides: A New Entry to Indoles. Organic Letters, 2013, 15, 4576-4579.	2.4	79
100	A green synthesis of symmetrical bis(indol-3-yl)methanes using phosphate-impregnated titania catalyst under solvent free grinding conditions. Green Chemistry Letters and Reviews, 2013, 6, 55-61.	2.1	16
101	Cytotoxic 5-Hydroxyindole Alkaloids from the Marine Sponge <i>Scalarispongia</i> sp Journal of Heterocyclic Chemistry, 2013, 50, 1400-1404.	1.4	23
102	Copper-Mediated Direct C2-Cyanation of Indoles Using Acetonitrile as the Cyanide Source. Journal of Organic Chemistry, 2013, 78, 9494-9498.	1.7	116
104	Traceless Directing Strategy: Efficient Synthesis of N-Alkyl Indoles via Redox-Neutral C–H Activation. Organic Letters, 2013, 15, 5294-5297.	2.4	200
105	Gold(I)-Catalyzed Cascade Approach for the Synthesis of Tryptamine-Based Polycyclic Privileged Scaffolds as l± ₁ -Adrenergic Receptor Antagonists. Journal of Organic Chemistry, 2013, 78, 10802-10811.	1.7	34
106	Regioselective Synthesis of 4-Substituted Indoles via C–H Activation: A Ruthenium Catalyzed Novel Directing Group Strategy. Organic Letters, 2013, 15, 6262-6265.	2.4	162
107	Rhodium(III)-Catalyzed Direct Regioselective Synthesis of 7-Substituted Indoles. Organic Letters, 2013, 15, 5662-5665.	2.4	108
108	Indole Synthesis by Rhodium(III)â€Catalyzed Hydrazineâ€Directed CH Activation: Redoxâ€Neutral and Traceless by NN Bond Cleavage. Angewandte Chemie - International Edition, 2013, 52, 12426-12429.	7.2	341
110	Pd-Catalyzed Cyclization and Carbene Migratory Insertion: New Approach to 3-Vinylindoles and 3-Vinylbenzofurans. Organic Letters, 2013, 15, 5032-5035.	2.4	57
111	Copper catalyzed synthesis of fused benzimidazolopyrazine derivatives via tandem benzimidazole formation/annulation of δ-alkynyl aldehyde. Organic and Biomolecular Chemistry, 2013, 11, 7712.	1.5	15
112	Enantioselective Friedel–Crafts alkylation for synthesis of 2-substituted indole derivatives. Chemical Communications, 2013, 49, 11311.	2.2	73
113	Improved indole syntheses from anilines and vicinal diols by cooperative catalysis of ruthenium complex and acid. RSC Advances, 2013, 3, 6022.	1.7	27
114	Micelle promoted multicomponent synthesis of 3-amino alkylated indoles via a Mannich-type reaction in water. RSC Advances, 2013, 3, 1673-1678.	1.7	44
115	TFA-catalyzed Câ \in "N bond activation of enamides with indoles: efficient synthesis of 3,3-bisindolylpropanoates and other bisindolylalkanes. Tetrahedron, 2013, 69, 1600-1605.	1.0	34
116	3-Substituted 2-phenyl-indoles: privileged structures for medicinal chemistry. RSC Advances, 2013, 3, 945-960.	1.7	59

#	Article	IF	CITATIONS
117	Organocatalytic Asymmetric Michael Addition of Aliphatic Aldehydes to Indolylnitroalkenes: Access to Contiguous Stereogenic Tryptamine Precursors. Journal of Organic Chemistry, 2013, 78, 2362-2372.	1.7	31
118	<i>N</i> â€Heterocyclicâ€Carbeneâ€Catalyzed Reaction of αâ€Bromoâ€Î±,βâ€Unsaturated Aldehyde or α,βâ€D with Isatins: An Efficient Synthesis of Spirocyclic Oxindole–Dihydropyranones. Chemistry - A European Journal, 2013, 19, 456-459.	ibromoald 1.7	lehyde 59
119	Synthesis and antifungal activity of 3-(1,3,4-oxadiazol-5-yl)-indoles and 3-(1,3,4-oxadiazol-5-yl)methyl-indoles. European Journal of Medicinal Chemistry, 2013, 63, 22-32.	2.6	123
120	Palladium-catalyzed decarboxylative C2-acylation of indoles with \hat{I}_{\pm} -oxocarboxylic acids. Chemical Communications, 2013, 49, 2933.	2.2	107
121	Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Natural Product Reports, 2013, 30, 694.	5.2	300
122	General and efficient synthesis of 2,3-unsubstituted indoles catalyzed by acidic mesoporous molecular sieves. Tetrahedron, 2013, 69, 3927-3933.	1.0	8
123	General and Efficient Synthesis of Indoles through Triazeneâ€Directed C–H Annulation. Angewandte Chemie - International Edition, 2013, 52, 5795-5798.	7.2	223
124	Palladium-catalyzed asymmetric allylic alkylation of indoles by C–N bond axially chiral phosphine ligands. Tetrahedron: Asymmetry, 2013, 24, 499-504.	1.8	45
125	Synthesis of Pyrroles, Indoles, and Carbazoles through Transitionâ€Metalâ€Catalyzed CH Functionalization. Asian Journal of Organic Chemistry, 2013, 2, 466-478.	1.3	193
126	One-pot synthesis of substituted indoles via titanium(iv) alkoxide mediated imine formation – copper-catalyzed N-arylation. RSC Advances, 2013, 3, 8388.	1.7	23
127	Sulfur(IV)-Mediated Transformations: From Ylide Transfer to Metal-Free Arylation of Carbonyl Compounds. Journal of the American Chemical Society, 2013, 135, 7312-7323.	6.6	137
128	Cu(OTf) ₂ -Catalyzed Asymmetric Friedel–Crafts Alkylation Reaction of Indoles with Arylidene Malonates Using Bis(sulfonamide)-Diamine Ligands. Journal of Organic Chemistry, 2013, 78, 5611-5617.	1.7	36
129	CuO/SiO2 as a simple, effective and recoverable catalyst for alkylation of indole derivatives with diazo compounds. Organic and Biomolecular Chemistry, 2013, 11, 4327.	1.5	41
130	Structural and Kinetic Study of an Internal Substrate Binding Site in Dehaloperoxidase-Hemoglobin A from <i>Amphitrite ornata</i> . Biochemistry, 2013, 52, 2427-2439.	1.2	32
131	Bifunctional cinchona alkaloid-squaramide-catalyzed highly enantioselective aza-Michael addition of indolines to α,β-unsaturated ketones. Tetrahedron Letters, 2013, 54, 3500-3502.	0.7	19
132	Highly Regioselective C2-Alkenylation of Indoles Using the <i>N</i> Benzoyl Directing Group: An Efficient Ru-Catalyzed Coupling Reaction. Organic Letters, 2013, 15, 2818-2821.	2.4	124
133	Carbocyclization versus Oxycyclization on the Metal-Catalyzed Reactions of Oxyallenyl C3-Linked Indoles. Journal of Organic Chemistry, 2013, 78, 6688-6701.	1.7	39
134	Lewis Acid Catalyzed S _N 2-Type Ring Opening of <i>N</i> -Activated Aziridines with Electron-Rich Arenes/Heteroarenes. Journal of Organic Chemistry, 2013, 78, 7121-7130.	1.7	50

#	Article	IF	CITATIONS
135	Enantioselective Total Synthesis of Desbromoarborescidines A–C and the Formal Synthesis of (S)-Deplancheine. Journal of Organic Chemistry, 2013, 78, 6802-6808.	1.7	34
136	Cascade Oxidative Dearomatization/Semipinacol Rearrangement: An Approach to 2â€Spirocycloâ€3â€oxindole Derivatives. Chemistry - an Asian Journal, 2013, 8, 883-887.	1.7	39
137	Nâ€Heterocyclic Carbeneâ€Catalyzed Annulations of Enals and Ynals with Indolinâ€3â€ones: Synthesis of 3,4â€Dihydropyrano[3,2â€ <i>b</i>]indolâ€2â€ones. Advanced Synthesis and Catalysis, 2013, 355, 321-326.	2.1	20
138	Transition Metalâ€Free Regioselective Câ€3 Amidation of Indoles with <i>N</i> â€Fluorobenzenesulfonimide. Advanced Synthesis and Catalysis, 2013, 355, 3369-3374.	2.1	37
139	Chiral Primaryâ€Amineâ€Catalyzed Conjugate Addition to αâ€Substituted Vinyl Ketones/Aldehydes: Divergent Stereocontrol Modes on Enamine Protonation. Chemistry - A European Journal, 2013, 19, 15669-15681.	1.7	28
140	Selective Synthesis of 5,6â€Dihydroindolo[1,2â€ <i>a</i>]quinoxalines and 6,7â€Dihydroindolo[2,3â€ <i>c</i>]quinolines by Orthogonal Copper and Palladium Catalysis. European Journal of Organic Chemistry, 2013, 2013, 5710-5715.	1.2	14
141	Microwave-assisted synthesis of 5,6-dihydroindolo[1,2- <i>a</i>]quinoxaline derivatives through copper-catalyzed intramolecular <i>N</i> -arylation. Beilstein Journal of Organic Chemistry, 2013, 9, 2463-2469.	1.3	8
142	Gold-catalyzed oxycyclization of allenic carbamates: expeditious synthesis of 1,3-oxazin-2-ones. Beilstein Journal of Organic Chemistry, 2013, 9, 818-826.	1.3	28
143	A Mini Library of Novel Triazolothiadiazepinylindole Analogues: Synthesis, Antioxidant and Antimicrobial Evaluations. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	3
144	A new approach for the synthesis of bisindoles through AgOTf as catalyst. Beilstein Journal of Organic Chemistry, 2014, 10, 2206-2214.	1.3	42
145	In(OTf)3-catalyzed chemoselective alkylation of tryptamines with 2-oxo-1-pyrrolidine derivatives. RSC Advances, 2014, 4, 4609-4618.	1.7	1
146	Stereocontrolled construction of the dihydrothiopyrano[2,3-b]indole skeleton via an organocatalyzed asymmetric cascade sulfa-Michael-aldol reaction. Tetrahedron: Asymmetry, 2014, 25, 1389-1395.	1.8	16
148	Rhodium(III)―and Iridium(III) atalyzed C7 Alkylation of Indolines with Diazo Compounds. Chemistry - A European Journal, 2014, 20, 17653-17657.	1.7	162
149	Amideâ€Functionalized Naphthyridines on a Rh ^{II} –Rh ^{II} Platform: Effect of Steric Crowding, Hemilability, and Hydrogenâ€Bonding Interactions on the Structural Diversity and Catalytic Activity of Dirhodium(II) Complexes. Chemistry - A European Journal, 2014, 20, 16537-16549.	1.7	34
150	Rhodium atalyzed Decarbonylative Direct C2â€Arylation of Indoles with Aryl Carboxylic Acids. ChemCatChem, 2014, 6, 3069-3074.	1.8	47
151	Four omponent Synthesis of βâ€Enaminone and Pyrazole through Phosphineâ€Free Palladiumâ€Catalyzed Cascade Carbonylation. ChemCatChem, 2014, 6, 2560-2566.	1.8	27
152	Pd(<scp>ii</scp>)-catalyzed ligand controlled synthesis of methyl 1-benzyl-1H-indole-3-carboxylates and bis(1-benzyl-1H-indol-3-yl)methanones. Organic and Biomolecular Chemistry, 2014, 12, 4602-4609.	1.5	26
153	Novel formation of [2M-H] ⁺ species in positive electrospray mass spectra of indoles. Rapid Communications in Mass Spectrometry, 2014, 28, 1948-1952.	0.7	9

#	Article	IF	CITATIONS
154	Catalytic Functionalization of Indoles by Copperâ€Mediated Carbene Transfer. ChemCatChem, 2014, 6, 2047-2052.	1.8	74
155	NH4PF6-promoted cyclodehydration of α-amino carbonyl compounds: efficient synthesis of pyrrolo[3,2,1-ij]quinoline and indole derivatives. RSC Advances, 2014, 4, 53837-53841.	1.7	7
156	Three-component domino reaction synthesis of highly functionalized bicyclic pyrrole derivatives. Tetrahedron, 2014, 70, 1047-1054.	1.0	26
157	Regioselective <i>C</i> 2 Sulfonylation of Indoles Mediated by Molecular Iodine. Journal of Organic Chemistry, 2014, 79, 1778-1785.	1.7	104
158	4-Dimethylaminopyridine-catalyzed multi-component one-pot reactions for the convenient synthesis of spiro[indoline-3,4′-pyrano[2,3-c]pyrazole] derivatives. Tetrahedron, 2014, 70, 484-489.	1.0	59
159	Three-component synthesis of disubstituted 2H-pyrrol-2-ones: preparation of the violacein scaffold. Tetrahedron Letters, 2014, 55, 2609-2611.	0.7	9
160	Synthesis of indoles through Rh(III)-catalyzed C–H cross-coupling with allyl carbonates. Tetrahedron Letters, 2014, 55, 1859-1862.	0.7	29
161	Rhodium(III) atalyzed CH Activation and Indole Synthesis With Hydrazone as an Autoâ€Formed and Auto leavable Directing Group. Chemistry - A European Journal, 2014, 20, 2352-2356.	1.7	160
162	Cuâ€Catalyzed Carbenoid Functionalization of Indoles by Methyl 3,3,3â€Trifluoroâ€2â€diazopropionate. European Journal of Organic Chemistry, 2014, 2014, 2480-2486.	1.2	35
163	Palladium on Carbonâ€Catalyzed Oneâ€Pot <i>N</i> â€Arylindole Synthesis: Intramolecular Aromatic Amination, Aromatization, and Intermolecular Aromatic Amination. Advanced Synthesis and Catalysis, 2014, 356, 1866-1872.	2.1	29
164	Facile Synthesis of 2â€(Perfluoroalkyl)indoles through a Michael Addition/Cu ^I â€Catalyzed Annulation Process. European Journal of Organic Chemistry, 2014, 2014, 2460-2467.	1.2	21
165	Ruthenium atalyzed Synthesis of Indoles from Anilines and Epoxides. Chemistry - A European Journal, 2014, 20, 1818-1824.	1.7	59
166	Ligandâ€Free Copperâ€Catalyzed Oneâ€Pot Synthesis of Indoleâ€2â€carboxylic Esters. European Journal of Organic Chemistry, 2014, 2014, 511-514.	1.2	16
167	Regioselective Hydrodebromination of Polybrominated Indoles. European Journal of Organic Chemistry, 2014, 2014, 3802-3807.	1.2	10
168	Synthesis and Characterization of Symmetric Cyclooctatetraindoles: Exploring the Potential as Electron-Rich Skeletons with Extended π-Systems. Organic Letters, 2014, 16, 2942-2945.	2.4	43
169	Mild Rh(III)-Catalyzed Direct C–H Bond Arylation of (Hetero)Arenes with Arylsilanes in Aqueous Media. Organic Letters, 2014, 16, 2614-2617.	2.4	118
170	Rhodium Enalcarbenoids: Direct Synthesis of Indoles by Rhodium(II) atalyzed [4+2] Benzannulation of Pyrroles. Angewandte Chemie - International Edition, 2014, 53, 4076-4080.	7.2	89
171	Regio―and Enantioselective Synthesis of <i>N</i> â€Allylindoles by Iridium atalyzed Allylic Amination/Transitionâ€Metal atalyzed Cyclization Reactions. Chemistry - A European Journal, 2014, 20, 3040-3044.	1.7	38

#	Article	IF	CITATIONS
172	Copper-Catalyzed Synthesis of Indoles and Related Heterocycles in Renewable Solvents. ACS Sustainable Chemistry and Engineering, 2014, 2, 1359-1363.	3.2	11
173	Palladium-Catalyzed Tandem Intramolecular Oxy/Amino-Palladation/Isocyanide Insertion: Synthesis of α-Benzofuranyl/Indolylacetamides. Organic Letters, 2014, 16, 2908-2911.	2.4	82
174	Rapid Generation of Privileged Substructure-Based Compound Libraries with Structural Diversity and Drug-Likeness. ACS Combinatorial Science, 2014, 16, 184-191.	3.8	30
175	Gold Catalysis Coupled with Visible Light Stimulation: Syntheses of Functionalized Indoles. Organic Letters, 2014, 16, 2606-2609.	2.4	73
176	Bioinspired Aerobic Oxidation of Secondary Amines and Nitrogen Heterocycles with a Bifunctional Quinone Catalyst. Journal of the American Chemical Society, 2014, 136, 506-512.	6.6	195
177	Syntheses of 4-, 5-, 6-, and 7-substituted tryptamine derivatives and the use of a bromine atom as a protecting group. Tetrahedron Letters, 2014, 55, 830-833.	0.7	11
178	Recent progress in neuroactive marine natural products. Natural Product Reports, 2014, 31, 273.	5.2	47
179	Facile synthesis of 2-arylmethylindoles and 2-vinylic indoles through palladium-catalyzed heteroannulations of 2-(2-propynyl)aniline and 2-(2-propynyl)tosylanilide. Organic and Biomolecular Chemistry, 2014, 12, 741-748.	1.5	24
180	Multi-component Synthesis of 3-{3-[2-(1 <i>H</i> -Indol-3-yl)ethyl]}-2,3-dihydro-2- (aryliminothiazol-4-yl)-2 <i>H</i> -chromen-2-ones. Organic Preparations and Procedures International, 2014, 46, 66-75.	0.6	5
181	The Literature of Heterocyclic Chemistry, Part XII, 2010–2011. Advances in Heterocyclic Chemistry, 2014, , 147-274.	0.9	18
182	FeCl3 Catalyzed Regioselective C-Alkylation of Indolylnitroalkenes with Amino Group Substituted Arenes. Journal of Organic Chemistry, 2014, 79, 1842-1849.	1.7	9
183	ZnCl2 promoted efficient, one-pot synthesis of 3-arylmethyl and diarylmethyl indoles. Tetrahedron Letters, 2014, 55, 694-698.	0.7	36
184	Base-Mediated Chemo- and Stereoselective Addition of 5-Aminoindole/Tryptamine and Histamines onto Alkynes. Journal of Organic Chemistry, 2014, 79, 172-186.	1.7	28
185	One-pot tandem synthesis of 2,3-unsubstituted indoles, an improved Leimgruber–Batchoindole synthesis. RSC Advances, 2014, 4, 4672-4675.	1.7	10
186	Organocatalytic Arylation of 3-Indolylmethanols via Chemo- and Regiospecific C6-Functionalization of Indoles. Journal of Organic Chemistry, 2014, 79, 10390-10398.	1.7	66
187	Synthesis of 2â€Substituted Indoles through Visible Lightâ€Induced Photocatalytic Cyclizations of Styryl Azides. Advanced Synthesis and Catalysis, 2014, 356, 2807-2812.	2.1	62
188	BrÃ,nsted Acid Mediated Alkenylation and Copper-Catalyzed Aerobic Oxidative Ring Expansion/Intramolecular Electrophilic Substitution of Indoles with Propargyl Alcohols: A Novel One-Pot Approach to Cyclopenta[<i>c</i>]quinolines. Organic Letters, 2014, 16, 6060-6063.	2.4	36
189	Stereocontrolled Construction of the 3,4â€Dihydrothiacarbazolâ€2(9 <i>H</i>)â€one Skeleton by Using Bifunctional Squaramideâ€Catalyzed Cascade Reactions. European Journal of Organic Chemistry, 2014, 2014, 7940-7947.	1.2	28

	CITATION	Report	
#	Article	IF	CITATIONS
190	A density functional theory study of the mechanism of isomerization of 2-aryl-2H-azirines to 2,3-disubstituted indoles by FeCl2 and Rh2(O2CCF3)4. Dalton Transactions, 2014, 43, 5364.	1.6	9
192	Organocatalytic Asymmetric Arylative Dearomatization of 2,3â€Disubstituted Indoles Enabled by Tandem Reactions. Angewandte Chemie - International Edition, 2014, 53, 13912-13915.	7.2	190
193	Enantioselective N-alkylation of isatins and synthesis of chiral N-alkylated indoles. Chemical Communications, 2014, 50, 11354-11357.	2.2	19
194	Enantioselective synthesis of N-allylindoles via palladium-catalyzed allylic amination/oxidation of indolines. RSC Advances, 2014, 4, 10875.	1.7	15
195	Transitionâ€Metalâ€Catalyzed Selective Cyclization Strategy to 2â€Substituted Benzofurans and Indoles en Route to the Oxa Analogues of Isocryptolepine. European Journal of Organic Chemistry, 2014, 2014, 7193-7202.	1.2	16
196	Facile regiospecific synthesis of 2,3-disubstituted indoles from isatins. Chemical Communications, 2014, 50, 9469-9472.	2.2	15
197	Rh(i)-catalyzed decarbonylative direct C2-olefination of indoles with vinyl carboxylic acids. Chemical Communications, 2014, 50, 12385-12388.	2.2	56
198	Mild gold-catalyzed three-component dehydrogenative coupling of terminal alkynes to amines and indole-2-carboxaldehyde. Organic and Biomolecular Chemistry, 2014, 12, 2523-2527.	1.5	35
199	Selective sulfonylation and diazotization of indoles. Chemical Communications, 2014, 50, 14782-14785.	2.2	74
200	Synthesis of 3,3-disubstituted indoline-2-thiones catalysed by an N-heterocyclic carbene. Chemical Communications, 2014, 50, 8871-8874.	2.2	12
201	Cascade Multicomponent Synthesis of Indoles, Pyrazoles, and Pyridazinones by Functionalization of Alkenes. Angewandte Chemie - International Edition, 2014, 53, 11960-11964.	7.2	85
202	A Highly Concise and Convergent Synthesis of HCV Polymerase Inhibitor Deleobuvir (BI 207127): Application of a One-Pot Borylation–Suzuki Coupling Reaction. Organic Letters, 2014, 16, 4558-4561.	2.4	9
203	Regiospecific Synthesis of 7â€Hydroxyindoles from Pyrroles by Anionic Benzannulation. European Journal of Organic Chemistry, 2014, 2014, 5521-5531.	1.2	16
204	Gold/Acid oâ€catalyzed Direct Microwaveâ€Assisted Synthesis of Fused Azaheterocycles from Propargylic Hydroperoxides. Chemistry - A European Journal, 2014, 20, 3384-3393.	1.7	22
205	Copperâ€mediated 1,4â€Conjugate Addition of Boronic Acids and Indoles to Vinylidenebisphosphonate leading to <i>gem</i> â€Bisphosphonates as Potential Antiresorption Bone Drugs. ChemCatChem, 2014, 6, 2712-2718.	1.8	15
206	Ruthenium porphyrin catalyzed diimination of indoles with aryl azides as the nitrene source. Chemical Communications, 2014, 50, 3373.	2.2	27
207	Organocatalytic enantioselective and (Z)-selective allylation of 3-indolylmethanol via hydrogen-bond activation. Chemical Communications, 2014, 50, 12054-12057.	2.2	82
208	Facile synthesis of 5H-benzo[b]carbazol-6-yl ketones via sequential reaction of Cu-catalyzed Friedel–Crafts alkylation, iodine-promoted cyclization, nucleophilic substitution and aromatization. Organic and Biomolecular Chemistry, 2014, 12, 6806-6811.	1.5	12

#	Article	IF	CITATIONS
209	Synthesis of Functionalized Indoles via Palladium-Catalyzed Aerobic Oxidative Cycloisomerization of <i>o</i> -Allylanilines. Organic Letters, 2014, 16, 4786-4789.	2.4	37
210	Fe(OTf) ₃ Catalyzed Annulation of 2,3â€Disubstituted Indoles with Aziridines. Chinese Journal of Chemistry, 2014, 32, 709-714.	2.6	18
211	Rhodium(III)â€Catalyzed Intramolecular Redoxâ€Neutral Annulation of Tethered Alkynes: Formal Total Synthesis of (±)â€Goniomitine. Chemistry - A European Journal, 2014, 20, 12768-12772.	1.7	70
212	Substituent Enabled Divergent Synthesis of Nâ€Heterocycles: a Metal Carbene Approach Involving Intramolecular Carbene Interception. Asian Journal of Organic Chemistry, 2014, 3, 1154-1158.	1.3	17
213	Palladium-catalyzed C2-acylation of indoles with aryl and alkyl aldehydes. Tetrahedron, 2014, 70, 7490-7495.	1.0	34
214	Alkylideneindoleninium Ions and Alkylideneindolenines: Key Intermediates for the Asymmetric Synthesis of 3â€Indolyl Derivatives. Asian Journal of Organic Chemistry, 2014, 3, 1036-1052.	1.3	109
216	Ring-Opening Cyclization of Cyclohexane-1,3-dione-2-spirocyclopropanes with Amines: Rapid Access to 2-Substituted 4-Hydroxyindole. Organic Letters, 2014, 16, 4012-4015.	2.4	57
217	Copper-catalyzed annulation of α-substituted diazoacetates with 2-ethynylanilines: the direct synthesis of C2-functionalized indoles. Organic and Biomolecular Chemistry, 2014, 12, 1387-1390.	1.5	31
218	One-Pot Approach to 1,2-Disubstituted Indoles via Cu(II)-Catalyzed Coupling/Cyclization under Aerobic Conditions and Its Application for the Synthesis of Polycyclic Indoles. Journal of Organic Chemistry, 2014, 79, 9000-9008.	1.7	66
219	Rh(III)-Catalyzed C–H Activation/Cyclization of Indoles and Pyrroles: Divergent Synthesis of Heterocycles. Journal of Organic Chemistry, 2014, 79, 6490-6500.	1.7	155
220	Palladium atalyzed Annulation of Diarylamines with Olefins through CH Activation: Direct Access to Nâ€Arylindoles. Angewandte Chemie - International Edition, 2014, 53, 11895-11899.	7.2	115
221	Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. Journal of Medicinal Chemistry, 2014, 57, 10257-10274.	2.9	3,996
222	Palladium atalyzed Intermolecular Câ€2 Alkenylation of Indoles Using Oxygen as the Oxidant. Advanced Synthesis and Catalysis, 2014, 356, 1085-1092.	2.1	45
223	Novel [4 + 2]-Benzannulation To Access Substituted Benzenes and Polycyclic Aromatic and Benzene-Fused Heteroaromatic Compounds. Organic Letters, 2014, 16, 3792-3795.	2.4	52
224	Nitroalkenes in the synthesis of carbocyclic compounds. RSC Advances, 2014, 4, 31261.	1.7	78
225	Synthesis of 3-substituted indole by AlCl3-promoted reaction of β,γ-unsaturated ketone with indole. Research on Chemical Intermediates, 2014, 40, 2277-2285.	1.3	2
226	Synthesis and antitumor activity of a new 7-azaindole derivative. Chemical Research in Chinese Universities, 2014, 30, 420-424.	1.3	4
227	Metal-Free C–H Amination for Indole Synthesis. Organic Letters, 2014, 16, 3720-3723.	2.4	98

#	Article	IF	CITATIONS
228	Nâ€Heterocyclicâ€Carbeneâ€Catalyzed Synthesis of 2â€Aryl Indoles. Angewandte Chemie - International Edition, 2014, 53, 9603-9607.	7.2	83
229	Rhodium(iii)-catalyzed regioselective C2-amidation of indoles with N-(2,4,6-trichlorobenzoyloxy)amides and its synthetic application to the development of a novel potential PPARÎ ³ modulator. Organic and Biomolecular Chemistry, 2014, 12, 6831-6836.	1.5	38
230	An intramolecular cascade cyclization of 2-aryl indoles: efficient methods for the construction of 2,3-functionalized indolines and 3-indolinones. Organic and Biomolecular Chemistry, 2014, 12, 3567-3571.	1.5	12
231	Rh(III)-Catalyzed Selective Coupling of <i>N</i> -Methoxy-1 <i>H</i> -indole-1-carboxamides and Aryl Boronic Acids. Organic Letters, 2014, 16, 3560-3563.	2.4	104
232	AcOH-mediated dichloroimination of indoles using chloramine-B: a facile access to 2,3-functionalized indolines. Organic and Biomolecular Chemistry, 2014, 12, 7494-7497.	1.5	7
233	One-Pot Synthesis of 2,4-Disubstituted Indoles from N-Tosyl-2,3-dichloroaniline Using Palladium–Dihydroxyterphenylphosphine Catalyst. Organic Letters, 2014, 16, 2386-2389.	2.4	33
234	An Efficient Rhodium/Oxygen Catalytic System for Oxidative Heck Reaction of Indoles and Alkenes <i>via</i> CH Functionalization. Advanced Synthesis and Catalysis, 2014, 356, 1509-1515.	2.1	90
235	BrÃ,nsted Acid Catalyzed Cascade Reactions of 2-[(2-Aminophenyl)ethynyl]phenylamine Derivatives with Aldehydes: A New Approach to the Synthesis of 2,2′-Disubstituted 1H,1′H-3,3′-Biindoles. Organic Letters, 2014, 16, 1736-1739.	2.4	25
236	Molecular Structure and Density Functional Theory Calculations of 3-(3-Nitrothien-2-yl)indole: Structural and Vibrational Analysis. Journal of Chemical Crystallography, 2014, 44, 330-336.	0.5	1
237	BrÃ,nsted Acid Catalyzed Bisindolization of αâ€Amido Acetals: Synthesis and Anticancer Activity of Bis(indolyl)ethanamino Derivatives. European Journal of Organic Chemistry, 2014, 2014, 3822-3830.	1.2	29
238	Pd(0)-Catalyzed Tandem Deprotection/Cyclization of Tetrahydro-β-carbolines on Allenes: Application to the Synthesis of Indolo[2,3-a]quinolizidines. Organic Letters, 2014, 16, 1924-1927.	2.4	30
239	Catalytic C6 Functionalization of 2,3-Disubstituted Indoles by Scandium Triflate. Journal of Organic Chemistry, 2014, 79, 1047-1054.	1.7	71
240	Synthetic Approaches to 3-(2-Nitroalkyl) Indoles and Their Use to Access Tryptamines and Related Bioactive Compounds. Chemical Reviews, 2014, 114, 7108-7149.	23.0	284
241	Allenylphosphine oxides as simple scaffolds for phosphinoylindoles and phosphinoylisocoumarins. Beilstein Journal of Organic Chemistry, 2014, 10, 996-1005.	1.3	24
242	Bioactive Marine Drugs and Marine Biomaterials for Brain Diseases. Marine Drugs, 2014, 12, 2539-2589.	2.2	29
243	Synthetic Approaches to Spiro-oxindoles and Iminoindolines Based on Formation of C2–C3 Bond. Heterocycles, 2014, 89, 2271.	0.4	30
244	<i>N</i> -Aminomethylation vs. <i>C</i> -Aminomethylation of Indole and Pyrrole with an <i>N</i> , <i>O</i> -Acetal Controlled by the Hardness of a Counter Ion of an Iminium Compound. Chemistry Letters, 2014, 43, 501-503.	0.7	3
247	Fischer Reaction with 2â€Perfluoroalkylated Cyclic Imines ― An Efficient Route to 2â€Perfluoroalkylâ€Substituted Tryptamines and Their Derivatives and Homologues. European Journal of Organic Chemistry, 2015, 2015, 6479-6488.	1.2	22

#	Article	IF	CITATIONS
248	Visibleâ€Light, Metalâ€Free αâ€Amino C(sp ³)–H Activation through 1,5â€Hydrogen Migration: A Concise Method for the Preparation of Bis(indolyl)alkanes. European Journal of Organic Chemistry, 2015, 2015, 7643-7647.	1.2	12
249	A [4+1] Cyclative Capture Approach to 3 <i>H</i> â€Indoleâ€ <i>N</i> â€oxides at Room Temperature by Rhodium(III)â€Catalyzed CH Activation. Angewandte Chemie - International Edition, 2015, 54, 15400-15404.	7.2	120
250	Fluorinated Alcoholâ€Mediated S _N 1â€Type Reaction of Indolyl Alcohols with Diverse Nucleophiles. Advanced Synthesis and Catalysis, 2015, 357, 4023-4030.	2.1	77
253	Visibleâ€Lightâ€Induced Direct Photocatalytic Carboxylation of Indoles with CBr ₄ /MeOH. Chemistry - A European Journal, 2015, 21, 18052-18056.	1.7	39
255	Rhodiumâ€Catalyzed CH Annulation of Nitrones with Alkynes: A Regiospecific Route to Unsymmetrical 2,3â€Diarylâ€Substituted Indoles. Angewandte Chemie - International Edition, 2015, 54, 10613-10617.	7.2	116
256	Catalytic Asymmetric 1,6â€Conjugate Addition of <i>para</i> â€Quinone Methides: Formation of Allâ€Carbon Quaternary Stereocenters. Angewandte Chemie - International Edition, 2015, 54, 13711-13714.	7.2	212
257	Oneâ€Pot Aminoethylation of Indoles/Pyrroles with Alkynes and Sulfonyl Azides. Chemistry - A European Journal, 2015, 21, 17079-17084.	1.7	34
258	Cationic Rhodium(III)â€Catalyzed Direct Câ€2 Carboxamidation of Indoles with Isocyanates <i>via</i> CH Bond Functionalization. Advanced Synthesis and Catalysis, 2015, 357, 2615-2621.	2.1	18
259	Rhodium(III) atalyzed Redoxâ€Neutral CH Annulation of Arylnitrones and Alkynes for the Synthesis of Indole Derivatives. Advanced Synthesis and Catalysis, 2015, 357, 2944-2950.	2.1	52
260	Catalytic Enantioselective Arylative Dearomatization of 3â€Methylâ€2â€vinylindoles Enabled by Reactivity Switch. Advanced Synthesis and Catalysis, 2015, 357, 4031-4040.	2.1	34
261	Selective Synthesis of Acenaphtho[1,2â€ <i>b</i>]indole Derivatives via Tandem Regioselective Azaâ€Ene Addition/Nâ€Cyclization/S _N 1 Type Reaction. Asian Journal of Organic Chemistry, 2015, 4, 921-928.	1.3	18
263	Fe(OTf) ₃ â€Catalyzed Aromatization of Substituted 3â€Methyleneindoline and BenzoÂfuran Derivatives: A Selective Route to Câ€3â€Alkylated Indoles and Benzofurans. European Journal of Organic Chemistry, 2015, 2015, 5513-5517.	1.2	25
264	CF ₃ â€Carbenoid C–H Functionalization of (Hetero)arenes under Chelationâ€Controlled Rh ^{III} Catalysis. European Journal of Organic Chemistry, 2015, 2015, 4950-4955.	1.2	27
265	3â€Naphthylindole Construction by Rhodium(II)â€Catalyzed Regioselective Direct Arylation of Indoles with 1â€Diazonaphthalenâ€2â€(1 <i>H</i>)â€ones. Advanced Synthesis and Catalysis, 2015, 357, 2883-2892.	2.1	42
266	Synthesis of quinoline-3-carboxylates by a Rh(II)-catalyzed cyclopropanation-ring expansion reaction of indoles with halodiazoacetates. Beilstein Journal of Organic Chemistry, 2015, 11, 1944-1949.	1.3	33
267	A simple approach to bis-spirocycles and spiroindole derivatives via green methods such as Fischer indolization, ring-closing metathesis, and SuzukiMiyaura cross-coupling. Turkish Journal of Chemistry, 2015, 39, 1190-1198.	0.5	23
268	Selective Access to 3-Cyano-1 <i>H</i> -indoles, 9 <i>H</i> -Pyrimido[4,5- <i>b</i>]indoles, or 9 <i>H</i> -Pyrido[2,3- <i>b</i>]indoles through Copper-Catalyzed One-Pot Multicomponent Cascade Reactions. Journal of Organic Chemistry, 2015, 80, 5444-5456.	1.7	44
269	Preparation of 3-aryl-2-aminoindoles, 3-allyl-3-amino-2-iminoindolines, and tetrahydro-[1,4]diazepino[2,3-b]indoles from 3-diazoindolin-2-imines. Chemical Communications, 2015, 51, 11056-11059.	2.2	51

#	Article	IF	CITATIONS
270	Theoretical insight into the effect of fluorine substituents on the rearrangement step in Fischer indolisations. Tetrahedron, 2015, 71, 7199-7203.	1.0	2
271	Organocatalytic asymmetric reaction of indol-2-yl carbinols with enamides: synthesis of chiral 2-indole-substituted 1,1-diarylalkanes. Chemical Communications, 2015, 51, 11844-11847.	2.2	52
272	Access to Six- and Seven-Membered 1,7-Fused Indolines via Rh(III)-Catalyzed Redox-Neutral C7-Selective C–H Functionalization of Indolines with Alkynes and Alkenes. Journal of Organic Chemistry, 2015, 80, 6238-6249.	1.7	65
273	Synthesis of N-vinylindoles through copper catalyzed cyclization reaction of N-(2-alkynylphenyl)imine. Organic and Biomolecular Chemistry, 2015, 13, 6931-6934.	1.5	9
274	Rhodium-catalyzed regioselective direct C–H arylation of indoles with aryl boronic acids. Tetrahedron Letters, 2015, 56, 3754-3757.	0.7	37
275	Enantioselective Direct Functionalization of Indoles by Pd/Sulfoxide-Phosphine-Catalyzed <i>N</i> -Allylic Alkylation. Organic Letters, 2015, 17, 1381-1384.	2.4	62
276	Enantioselective Friedel–Crafts reaction of 4,7-dihydroindoles with β-CF ₃ -β-disubstituted nitroalkenes. Organic Chemistry Frontiers, 2015, 2, 124-126.	2.3	38
277	Regioselective One-Pot Synthesis of Functionalised 6,7-Dihydro-1H-Indol-4(5H)-Ones. Journal of Chemical Research, 2015, 39, 166-169.	0.6	1
278	Rhodium(<scp>iii</scp>)-catalyzed C–H activation and intermolecular annulation with terminal alkynes: from indoles to carbazoles. Chemical Communications, 2015, 51, 2925-2928.	2.2	83
279	Recent Advances on Ester Synthesis via Transition-Metal Catalyzed C–H Functionalization. ACS Catalysis, 2015, 5, 1863-1881.	5.5	210
280	Electrophilic carbonyl activation: competing condensative cyclizations of tryptamine derivatives. Tetrahedron Letters, 2015, 56, 2995-3000.	0.7	8
281	Chiral BrÃ,nsted acid catalyzed intermolecular Friedel–Crafts alkylation of styrenes with indoles: construction of all-carbon quaternary stereocenters. Tetrahedron: Asymmetry, 2015, 26, 219-224.	1.8	28
282	Rhodium(III)-Catalyzed Hydrazine-Directed C–H Activation for Indole Synthesis: Mechanism and Role of Internal Oxidant Probed by DFT Studies. Organometallics, 2015, 34, 309-318.	1.1	105
283	Alkylidene malonates and α,β-unsaturated α′-hydroxyketones as practical substrates for vinylogous Friedel–Crafts alkylations in water catalysed by scandium(<scp>iii</scp>) triflate/SDS. Organic and Biomolecular Chemistry, 2015, 13, 2793-2799.	1.5	11
284	Synthesis of Triazole, Indole, and Five or Six-Membered Saturated Heterocyclic Compounds. Heterocycles, 2015, 91, 239.	0.4	19
285	Catalyst-Controlled Chemoselective Reaction of 3-Indolylmethanols with Cyclic Enaminones Leading to C2-Functionalized Indoles. Journal of Organic Chemistry, 2015, 80, 1841-1848.	1.7	24
286	Organocatalytic enantioselective Friedel–Crafts reaction: an efficient access to chiral isoindolo-β-carboline derivatives. Organic and Biomolecular Chemistry, 2015, 13, 4395-4398.	1.5	41
287	Iridium(III)-Catalyzed C-7 Selective C–H Alkynylation of Indolines at Room Temperature. Journal of Organic Chemistry, 2015, 80, 1946-1951.	1.7	90

#	Article	IF	CITATIONS
288	Ir ^{III} atalyzed Direct Câ€7 Amidation of Indolines with Sulfonyl, Acyl, and Aryl Azides at Room Temperature. European Journal of Organic Chemistry, 2015, 2015, 395-400.	1.2	61
289	Organocatalytic Asymmetric Cascade Reactions of 7â€Vinylindoles: Diastereo―and Enantioselective Synthesis of C7â€Functionalized Indoles. Chemistry - A European Journal, 2015, 21, 3465-3471.	1.7	90
290	Methoxyindoles: stability and π-electron delocalization. Structural Chemistry, 2015, 26, 655-666.	1.0	6
291	Elaboration of Furopyridine Scaffolds. European Journal of Organic Chemistry, 2015, 2015, 2321-2331.	1.2	23
292	Iridium-Catalyzed Direct Synthesis of Tryptamine Derivatives from Indoles: Exploiting N-Protected β-Amino Alcohols as Alkylating Agents. Journal of Organic Chemistry, 2015, 80, 3217-3222.	1.7	55
293	Late Transition Metal-Catalyzed Hydroamination and Hydroamidation. Chemical Reviews, 2015, 115, 2596-2697.	23.0	881
294	Synthesis of indole and its derivatives in water. Chemistry of Heterocyclic Compounds, 2015, 51, 4-16.	0.6	26
295	Palladium-Catalyzed α-Arylation of Enones in the Synthesis of 2-Alkenylindoles and Carbazoles. Organic Letters, 2015, 17, 1324-1327.	2.4	31
296	Manganese catalyzed C–H functionalization of indoles with alkynes to synthesize bis/trisubstituted indolylalkenes and carbazoles: the acid is the key to control selectivity. Chemical Communications, 2015, 51, 7136-7139.	2.2	179
297	Cĩ£¿N Coupling of Indoles and Carbazoles with Aromatic Chlorides Catalyzed by a Single omponent NHCâ€Nickel(0) Precursor. Advanced Synthesis and Catalysis, 2015, 357, 907-911.	2.1	37
298	Enantioselective construction of a 2,2′-bisindolylmethane scaffold via catalytic asymmetric reactions of 2-indolylmethanols with 3-alkylindoles. Organic and Biomolecular Chemistry, 2015, 13, 7993-8000.	1.5	37
299	Mild and Efficient One-Pot Synthesis of 2-(Perfluoroalkyl)indoles by Means of Sequential Michael-Type Addition and Pd(II)-Catalyzed Cross-Dehydrogenative Coupling (CDC) Reaction. Organic Letters, 2015, 17, 3283-3285.	2.4	52
300	N-(2-Aminobenzylidene)-4-methylanilines—stable and cheap alternate for 2-aminobenzaldehydes: concise synthesis of 3-unsubstituted-2-aroylindoles. Tetrahedron Letters, 2015, 56, 5291-5294.	0.7	7
301	Organoselenium-catalyzed synthesis of indoles through intramolecular C–H amination. Organic Chemistry Frontiers, 2015, 2, 1334-1337.	2.3	66
302	The combined use of cationic palladium(II) with a surfactant for the C–H functionalization of indoles and pyrroles in water. Tetrahedron, 2015, 71, 7739-7744.	1.0	20
303	Site-Selective Introduction of an Enamido Group at the C(3)-Position of Indoles. Heterocycles, 2015, 91, 1579.	0.4	21
304	Production of indoles via thermo-catalytic conversion and ammonization of bio-derived furfural. Chemical Engineering Journal, 2015, 280, 74-81.	6.6	41
305	Aerobic oxidative C–H/C–H coupling of azaaromatics with indoles and pyrroles in the presence of TiO ₂ as a photocatalyst. Green Chemistry, 2015, 17, 4401-4410.	4.6	65

ARTICLE IF CITATIONS Mechanistic insight into conjugated Nâ€"N bond cleavage by Rh(<scp>iii</scp>)-catalyzed redox-neutral 306 1.5 28 Câ€"H activation of pyrazolones. Organic and Biomolecular Chemistry, 2015, 13, 8251-8260. DFT Study on the Rhodium(II)-Catalyzed C–H Functionalization of Indoles: Enol versus Oxocarbenium Ylide. Organometallics, 2015, 34, 3112-3119. 1.1 Metal-free cycloaddition to synthesize naphtho [2,3-d] [1,2,3] triazole-4,9-diones. Organic and 308 1.5 10 Biomolecular Chemistry, 2015, 13, 9261-9266. Copper-Catalyzed Synthesis of N-Aryl and N-Sulfonyl Indoles from 2-VinylÂanilines with O2 as Terminal 309 1.0 Oxidant and TEMPO as Cocatalyst. Synlett, 2015, 26, 335-339. Stereoselective Synthesis of Chiral Polycyclic Indolic Architectures through Pd⁰ấ€€atalyzed Tandem Déprotection/Cyclization of Tetraȟydroâ€î2â€carbolines on Allenes. 310 1.7 38 Chemistry - A European Journal, 2015, 21, 8511-8520. Lewis acid catalyzed C-3 alkylidenecyclopentenylation of indoles: an easy access to functionalized indoles and bisindoles. RSC Advances, 2015, 5, 38075-38084. 1.7 Catalyst-free synthesis of N- \hat{l}^2 -hydroxyethyl pyrroles and indoles via a domino [3+2] cycloaddition and 312 0.7 6 ring-opening aromatization process. Tetrahedron Letters, 2015, 56, 2913-2916. Efficient synthesis of 2-arylindoles, 2-arylimidazo[1,2-a]pyridines and 2-arylquinoxalines, and their bis-derivatives using [Hmim]OTf ionic liquid supported on nano-silica as a reusable catalyst. Journal of 1.2 the Iranian Chemical Society, 2015, 12, 1369-1380. Studies on the Synthesis of Indothiazinone and Its Derivatives via Direct 3-Acylation of Indole. 314 7 1.1 Synthetic Communications, 2015, 45, 1662-1668. Direct use of allylic alcohols for palladium-catalyzed synthesis of 3-allylbenzo[b]thiophenes, 1.7 benzofurans and indoles in aqueous media. RSC Advances, 2015, 5, 42623-42627. Iron atalyzed Cross Dehydrogenative Coupling (CDC) of Indoles and Benzylic CH Bonds. Advanced 316 2.1 35 Synthesis and Catalysis, 2015, 357, 950-954. Organocatalytic Reactions of Indoles with Quinone Imine Ketals: An Alternative Metalâ&Free Approach 2.1 to Bioactive <i>meta</i>â€Indolylanilines. Advanced Synthesis and Catalysis, 2015, 357, 1283-1292. Divergent Reactivity in Palladiumâ€Catalyzed Annulation with Diarylamines and α,βâ€Unsaturated Acids: Direct Access to Substituted 2â€Quinolinones and Indoles. Chemistry - A European Journal, 2015, 21, 318 1.7 37 8723-8726. Synthesis of 3-Iminoindol-2-amines and Cyclic Enaminones via Palladium-Catalyzed Isocyanide Insertion-Cyclization. Journal of Organic Chemistry, 2015, 80, 5764-5770. 1.7 67 Intramolecular Cooperative Cĩ£;C Bond Cleavage Reaction of 1,3â€Dicarbonyl Compounds with 2â€lodoanilines to Cive <i>oâ€(Nâ€Acylamino)aryl Ketones and Multisubstituted Indoles. Chemistry - A 320 22 1.7 European Journal, 2015, 21, 8591-8596. Efficient Synthesis of C–N-Coupled Heterobiaryls by Sequential N–H Functionalization Reactions. 321 Organic Létters, 2015, 17, 1830-1833. Metal-Free Synthesis of Indole via NIS-Mediated Cascade C–N Bond Formation/Aromatization. Journal 322 1.7 62 of Organic Chemistry, 2015, 80, 3841-3851. Facile synthesis of benzoindoles and naphthofurans through carbonaceous material-catalyzed cyclization of naphthylamines/naphthols with nitroolefins in water. Organic and Biomolecular 1.5 38 Ćhemistry, 2015, 13, 5022-5029.

#	Article	IF	CITATIONS
324	Synthesis of Fused Polycyclic Indoles by BrÃ,nsted Acid-Catalyzed Intramolecular Alkylation of Indoles with Alcohols. Journal of Organic Chemistry, 2015, 80, 10421-10430.	1.7	31
325	Design, synthesis, and biological evaluation of oxindole derivatives as antidepressive agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5281-5285.	1.0	16
326	Sequential one-pot Rh(III)-catalyzed direct C2 and C7 alkylation of (hetero)aromatic C–H bonds of indoles. Tetrahedron Letters, 2015, 56, 6214-6218.	0.7	32
327	A short-cut to 2,7-dihydrothiopyrano[2,3- <i>b</i>]pyrrole. Journal of Sulfur Chemistry, 2015, 36, 630-636.	1.0	3
328	A concise approach for the synthesis of 3-iodoindoles and 3-iodobenzo[b]furans via Ph3P-catalyzed iodocyclization. Tetrahedron, 2015, 71, 8271-8277.	1.0	31
329	Cobalt(III)-Catalyzed C2-Selective C–H Alkynylation of Indoles. Organic Letters, 2015, 17, 4094-4097.	2.4	177
330	Asymmetric synthesis of N-allylic indoles via regio- and enantioselective allylation of aryl hydrazines. Nature Communications, 2015, 6, 7616.	5.8	83
331	Boron Trifluorideâ€Promoted Indium(III) Triflateâ€Catalyzed Sequential Oneâ€Pot Synthesis of (1,2â€Diarylâ€2â€oxoethyl)malonates from <i>trans</i> â€2â€Arylâ€3â€nitrocyclopropaneâ€1,1â€dicarboxylates Activated Arenes. Advanced Synthesis and Catalysis, 2015, 357, 2111-2118.	and	12
332	Asymmetric Synthesis of Furo[3,4â€ <i>b</i>]indoles by Catalytic [3+2] Cycloaddition of Indoles with Epoxides. Chemistry - A European Journal, 2015, 21, 15104-15107.	1.7	37
333	Palladium-catalyzed intramolecular addition of C–N bond to alkynes: a novel approach to 3-diketoindoles. RSC Advances, 2015, 5, 90396-90399.	1.7	13
334	Asymmetric Construction of Spiro[thiopyranoindole-benzoisothiazole] Scaffold via a Formal [3 + 3] Spiroannulation. Organic Letters, 2015, 17, 4188-4191.	2.4	49
335	Synthesis of functionalized tryptamines by BrÃ̧nsted acid catalysed cascade reactions. Chemical Communications, 2015, 51, 15272-15275.	2.2	31
336	Site-Selective Addition of Maleimide to Indole at the C-2 Position: Ru(II)-Catalyzed C–H Activation. Organic Letters, 2015, 17, 4662-4665.	2.4	102
337	Rh-Catalyzed Reactions of 3-Diazoindolin-2-imines: Synthesis of Pyridoindoles and Tetrahydrofuropyrroloindoles. Organic Letters, 2015, 17, 4412-4415.	2.4	43
338	Acid-catalyzed efficient Friedel–Crafts reaction of indoles with N-Boc aminals. Tetrahedron, 2015, 71, 7869-7873.	1.0	16
339	Palladium-catalyzed synthesis of 2-alkenyl-3-arylindoles via a dual α-arylation strategy: formal synthesis of the antilipemic drug fluvastatin. Organic and Biomolecular Chemistry, 2015, 13, 10995-11002.	1.5	15
340	Experimental and computational evidence for KOt-Bu-promoted synthesis of oxopyrazino[1,2-a]indoles. RSC Advances, 2015, 5, 101353-101361.	1.7	19
341	Nitroalkenes as surrogates for cyanomethylium species in a one-pot synthesis of non-symmetric diarylacetonitriles. RSC Advances, 2015, 5, 106492-106497.	1.7	13

#	Article	IF	Citations
342	A convenient synthesis of 3-formyl-2-thioacetamide-indole derivatives via the one-pot reaction of indolin-2-thiones, isocyanides and chloroacetylchloride. Tetrahedron Letters, 2015, 56, 7190-7192.	0.7	8
343	Iron-Catalyzed Divergent Tandem Radical Annulation of Aldehydes with Olefins toward Indolines and Dihydropyrans. Journal of Organic Chemistry, 2015, 80, 12562-12571.	1.7	37
344	Organocatalytic Asymmetric Synthesis of 1,1-Diarylethanes by Transfer Hydrogenation. Journal of the American Chemical Society, 2015, 137, 383-389.	6.6	262
345	Rh ^{III} -Catalyzed Redox-Neutral C–H Activation of Pyrazolones: An Economical Approach for the Synthesis of N-Substituted Indoles. Organic Letters, 2015, 17, 310-313.	2.4	54
346	Heteroarylidene-tethered bis(oxazoline) copper complexes catalyzed cascade reaction involving asymmetric Friedel–Crafts alkylation/N-hemiacetalization of indoles with β,γ-unsaturated α-ketoester. Tetrahedron, 2015, 71, 3625-3631.	1.0	23
347	Synthesis and biological evaluation of novel marine-derived indole-based 1,2,4-oxadiazoles derivatives as multifunctional neuroprotective agents. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 216-220.	1.0	68
348	Metal-free nitrative cyclization of N-aryl imines with tert-butyl nitrite: dehydrogenative access to 3-nitroindoles. Chemical Communications, 2015, 51, 1886-1888.	2.2	41
349	Formal [4+2] Reaction between 1,3â€Diynes and Pyrroles: Gold(I)â€Catalyzed Indole Synthesis by Double Hydroarylation. Chemistry - A European Journal, 2015, 21, 1463-1467.	1.7	91
350	Direct production of indoles via thermo-catalytic conversion of bio-derived furans with ammonia over zeolites. Green Chemistry, 2015, 17, 1281-1290.	4.6	48
351	Diversity-oriented approach to spirocycles with indole moiety via Fischer indole cyclization, olefin metathesis and Suzuki–Miyaura cross-coupling reactions. Tetrahedron, 2015, 71, 129-138.	1.0	37
352	Enantioselective Formation of All arbon Quaternary Stereocenters from Indoles and Tertiary Alcohols Bearing A Directing Group. Angewandte Chemie - International Edition, 2015, 54, 1910-1913.	7.2	261
353	CH Bond Activation as a Powerful Tool in the Construction of Biologically Active Nitrogen-Containing Heterocycles. Studies in Natural Products Chemistry, 2016, , 299-340.	0.8	6
354	Rh(III)-Catalyzed, Highly Selectively Direct C–H Alkylation of Indoles with Diazo Compounds. Catalysts, 2016, 6, 89.	1.6	18
355	BrÃ,nsted acid cocatalysis in photocatalytic intramolecular coupling of tertiary amines: efficient synthesis of 2-arylindols. Organic and Biomolecular Chemistry, 2016, 14, 7447-7450.	1.5	21
356	Silverâ€Catalyzed Intramolecular Câ€2 Selective Acylation of Indoles with Aldehydes: An Atomâ€Economical Entry to Indoleâ€Indolone Scaffolds. Advanced Synthesis and Catalysis, 2016, 358, 2059-2065.	2.1	25
357	Cobalt(III)â€katalysierte redoxneutrale Synthese von freien Indolen durch Nâ€Nâ€Bindungsspaltung. Angewandte Chemie, 2016, 128, 3261-3265.	1.6	48
358	Electrochemical Câ^'H/Nâ^'H Functionalization for the Synthesis of Highly Functionalized (Aza)indoles. Angewandte Chemie, 2016, 128, 9314-9318.	1.6	56
359	Electrochemical Câ^'H/Nâ^'H Functionalization for the Synthesis of Highly Functionalized (Aza)indoles. Angewandte Chemie - International Edition, 2016, 55, 9168-9172.	7.2	215

#	Article	IF	CITATIONS
360	Synthesis of Organofluoro Compounds Using Methyl Perfluoroalk-2-ynoates as Building Blocks. Chemical Record, 2016, 16, 907-923.	2.9	11
361	Sulfonyl Azoles in the Synthesis of 3-Functionalized Azole Derivatives. Chemical Record, 2016, 16, 1353-1379.	2.9	27
362	Oneâ€Pot Synthesis of Biheterocycles Based on Indole and Azole Scaffolds Using Tryptamines and 1,2â€Diazaâ€1,3â€dienes as Building Blocks. European Journal of Organic Chemistry, 2016, 2016, 3193-3199.	1.2	25
363	Enantioselective Copper(II)â€Catalyzed Conjugate Addition of Indoles to β <i>â€</i> Substituted Unsaturated Acyl Phosphonates. Advanced Synthesis and Catalysis, 2016, 358, 1011-1016.	2.1	17
364	Synthesis of Furans and Pyrroles from 2â€Alkoxyâ€2,3â€dihydrofurans Through a Nucleophilic Substitutionâ€Triggered Heteroaromatization. Advanced Synthesis and Catalysis, 2016, 358, 900-918.	2.1	20
365	α-Amidino Rhodium Carbenes: Key Intermediates for the Preparation of (<i>E</i>)-2-Aminomethylene-3-oxoindoles and Pyranoindoles. Organic Letters, 2016, 18, 3682-3685.	2.4	34
366	BrÃ,nsted Acidâ€Catalyzed [3+2] Cyclodimerization of 3â€Alkyl―2â€vinylindoles Leading to the Diastereoselective Construction of a Pyrroloindole Framework. Advanced Synthesis and Catalysis, 2016, 358, 1093-1102.	2.1	15
367	lodine-catalyzed Direct Thiolation of Indoles with Thiols Leading to 3-Thioindoles Using Air as the Oxidant. Catalysis Letters, 2016, 146, 1743-1748.	1.4	42
368	Easy Access to a Library of Alkylindoles: Reductive Alkylation of Indoles with Carbonyl Compounds and Hydrosilanes under Indium Catalysis. Advanced Synthesis and Catalysis, 2016, 358, 1136-1149.	2.1	25
369	Expedient Synthesis of Substituted Benzoheterocycles using 2â€Butoxyâ€2,3â€dihydrofurans as [4+2] Benzannulation Reagents. Advanced Synthesis and Catalysis, 2016, 358, 2260-2266.	2.1	36
370	Iron(III)â€Catalyzed 1,3â€Functional Group Transposition Reactions: Synthetic Protocol to Access 3â€Substituted Indoles. Asian Journal of Organic Chemistry, 2016, 5, 423-427.	1.3	5
371	The Grandberg reaction in the synthesis of biologically active compounds. Russian Chemical Bulletin, 2016, 65, 1709-1715.	0.4	4
372	Iron-Catalyzed 1,5-Enyne Cycloisomerization via 5- <i>Endo-Dig</i> Cyclization for the Synthesis of 3-(Inden-1-yl)indole Derivatives. Organic Letters, 2016, 18, 6512-6515.	2.4	23
373	Conformational changes in matrix-isolated 6-methoxyindole: Effects of the thermal and infrared light excitations. Journal of Chemical Physics, 2016, 144, 124306.	1.2	13
374	Metal-free, iodine-catalyzed regioselective sulfenylation of indoles with thiols. Tetrahedron Letters, 2016, 57, 1912-1916.	0.7	69
375	Rh(<scp>iii</scp>)-catalyzed chemoselective C–H functionalizations of tertiary aniline N-oxides with alkynes. Chemical Communications, 2016, 52, 6253-6256.	2.2	20
376	Indole Synthesis via Cobalt(III)-Catalyzed Oxidative Coupling of N-Arylureas and Internal Alkynes. Organic Letters, 2016, 18, 1776-1779.	2.4	124
378	Indoles — A promising scaffold for drug development. European Journal of Pharmaceutical Sciences, 2016, 91, 1-10.	1.9	432

#	Article	IF	CITATIONS
379	Exploiting the σ-phylic properties of cationic gold(<scp>i</scp>) catalysts in the ring opening reactions of aziridines with indoles. Organic and Biomolecular Chemistry, 2016, 14, 6095-6110.	1.5	28
380	Rhodium-Catalyzed Annulation of Tertiary Aniline N-Oxides to N-Alkylindoles: Regioselective C–H Activation, Oxygen-Atom Transfer, and N-Dealkylative Cyclization. ACS Catalysis, 2016, 6, 3856-3862.	5.5	46
381	I 2 –DMSO promoted metal free oxidative cyclization for the synthesis of substituted Indoles and pyrroles. Tetrahedron Letters, 2016, 57, 2838-2841.	0.7	15
382	Organic synthesis in the Smith Group: a personal selection of a dozen lessons learned at the University of Pennsylvania. Journal of Antibiotics, 2016, 69, 192-202.	1.0	0
383	A concise approach to indoles via oxidative C–H amination of 2-alkenylanilines using dioxygen as the sole oxidant. RSC Advances, 2016, 6, 35764-35770.	1.7	12
384	Rhodium atalyzed Regioselective C7â€Functionalization of <i>N</i> â€Pivaloylindoles. Angewandte Chemie - International Edition, 2016, 55, 321-325.	7.2	156
385	Oxidative Furan-to-Indole Rearrangement. Synthesis of 2-(2-Acylvinyl)indoles and Flinderole C Analogues. Organic Letters, 2016, 18, 2192-2195.	2.4	28
386	Reactivity of alkynylindole-2-carboxamides in [Pd]-catalysed C–H activation and phase transfer catalysis: formation of pyrrolo-diindolones vs. ̲-carbolinones. Organic and Biomolecular Chemistry, 2016, 14, 4519-4533.	1.5	16
387	Direct and site-selective Pd(ii)-catalyzed C-7 arylation of indolines with arylsilanes. RSC Advances, 2016, 6, 39292-39295.	1.7	34
388	Friedel–Crafts Alkylation of Indoles with <i>p</i> -Quinols: The Role of Hydrogen Bonding of Water for the Desymmetrization of the Cyclohexadienone System. Organic Letters, 2016, 18, 2224-2227.	2.4	54
389	Copper-catalyzed [3+2] annulation of propargylic acetates with anilines in the presence of trimethylsilyl chloride leading to 2,3-disubstituted indoles via an aza-Claisen rearrangement. Tetrahedron Letters, 2016, 57, 2175-2178.	0.7	12
390	Iridium(<scp>iii</scp>)-catalyzed regioselective C7-sulfonamidation of indoles. Organic and Biomolecular Chemistry, 2016, 14, 4804-4808.	1.5	88
391	Access to Indole Derivatives from Diaryliodonium Salts and 2-Alkynylanilines. Journal of Organic Chemistry, 2016, 81, 3994-4001.	1.7	28
392	Rhodium(III)-Catalyzed Mild Alkylation of (Hetero)Arenes with Cyclopropanols via C–H Activation and Ring Opening. Journal of Organic Chemistry, 2016, 81, 4869-4875.	1.7	80
393	Fei-Phos ligand-controlled asymmetric palladium-catalyzed allylic substitutions with structurally diverse nucleophiles: scope and limitations. RSC Advances, 2016, 6, 45495-45502.	1.7	31
394	Formation and reductive ring opening reactions of indolyl bicyclic-isoxazolidines-II:7 access to novel natural product analogs. Tetrahedron Letters, 2016, 57, 4688-4692.	0.7	4
395	Surfactant-Aided Chiral Palladium(II) Catalysis Exerted Exclusively in Water for the C–H Functionalization of Indoles. ACS Sustainable Chemistry and Engineering, 2016, 4, 6101-6106.	3.2	29
396	Electronic Nature of Ketone Directing Group as a Key To Control C-2 vs C-4 Alkenylation of Indoles. Organic Letters, 2016, 18, 5496-5499.	2.4	119

#	Article	IF	CITATIONS
397	Stereoselective synthesis of (â^')-desethyleburnamonine, (â^')-vindeburnol and (â^')-3-epitacamonine: observation of a substrate dependent diastereoselectivity reversal of an aldol reaction. Organic and Biomolecular Chemistry, 2016, 14, 10394-10406.	1.5	13
398	A Mild Cu(I)-Catalyzed Oxidative Aromatization of Indolines to Indoles. Journal of Organic Chemistry, 2016, 81, 10009-10015.	1.7	20
399	Ag(I)-Catalyzed Domino Cyclization–Addition Sequence with Simultaneous Carbonyl and Alkyne Activation as a Route to 2,2′-Disubstituted Bisindolylarylmethanes. Organic Letters, 2016, 18, 5200-5203.	2.4	24
400	Development of a Terpenoid Alkaloidâ€like Compound Library Based on the Humulene Skeleton. Chemistry - A European Journal, 2016, 22, 15819-15825.	1.7	21
401	N-Hydroxyphthalimide: a new photoredox catalyst for [4+1] radical cyclization of N-methylanilines with isocyanides. Chemical Communications, 2016, 52, 10621-10624.	2.2	43
402	Rh-Catalyzed [3 + 2] Cycloaddition of 1-Sulfonyl-1,2,3-triazoles: Access to the Framework of Aspidosperma and Kopsia Indole Alkaloids. Organic Letters, 2016, 18, 4076-4079.	2.4	58
403	Intrinsic relative nucleophilicity of indoles. Theoretical Chemistry Accounts, 2016, 135, 1.	0.5	7
404	Palladium-Catalyzed Oxidative Sulfenylation of Indoles and Related Electron-Rich Heteroarenes with Aryl Boronic Acids and Elemental Sulfur. Journal of Organic Chemistry, 2016, 81, 7771-7783.	1.7	92
405	CeCl ₃ â‹7H ₂ Oâ€Nal Promoted Regioselective Sulfenylation of Indoles with Sulfonylhydrazides. ChemistrySelect, 2016, 1, 81-85.	0.7	14
406	Iridium(III)-Catalyzed Regioselective C7-Amination of <i>N</i> -Pivaloylindoles with Sulfonoazides. Journal of Organic Chemistry, 2016, 81, 10476-10483.	1.7	47
407	Gold-Catalyzed β-Regioselective Formal [3 + 2] Cycloaddition of Ynamides with Pyrido[1,2- <i>b</i>]indazoles: Reaction Development and Mechanistic Insights. Journal of Organic Chemistry, 2016, 81, 8142-8154.	1.7	38
408	Investigation and Application of Amphoteric α-Amino Aldehyde: An in Situ Generated Species Based on Heyns Rearrangement. Organic Letters, 2016, 18, 4526-4529.	2.4	31
409	Synthesis of Tetracyclic Tetrahydroâ€Î²â€carbolines by Acidâ€Promoted Oneâ€Pot Sequential Formation of Câ^'C and Câ~'N Bonds. Asian Journal of Organic Chemistry, 2016, 5, 1378-1387.	1.3	10
410	Ruthenium(II)â€Catalyzed Câ^'H Activation of Imidamides and Divergent Couplings with Diazo Compounds: Substrateâ€Controlled Synthesis of Indoles and 3 <i>H</i> â€Indoles. Angewandte Chemie - International Edition, 2016, 55, 11877-11881.	7.2	126
411	From Cyclic CF ₃ -ketimines to a Family of Trifluoromethylated Nazlinine and Trypargine Analogues. Organic Letters, 2016, 18, 4494-4497.	2.4	18
412	Ruthenium(II)â€Catalyzed Câ^'H Activation of Imidamides and Divergent Couplings with Diazo Compounds: Substrateâ€Controlled Synthesis of Indoles and 3 <i>H</i> â€Indoles. Angewandte Chemie, 2016, 128, 12056-12060.	1.6	27
413	Synthesis of 3-Cyano-1 <i>H</i> -indoles and Their 2′-Deoxyribonucleoside Derivatives through One-Pot Cascade Reactions. Journal of Organic Chemistry, 2016, 81, 9530-9538.	1.7	22
414	Selective Synthesis of <i>N</i> -Unsubstituted and <i>N</i> -Arylindoles by the Reaction of Arynes with Azirines. Journal of Organic Chemistry, 2016, 81, 8604-8611.	1.7	54

#	Article	IF	CITATIONS
415	Halogenated Sesquiterpenoids from the Red Alga <i>Laurencia tristicha</i> Collected in Taiwan. Journal of Natural Products, 2016, 79, 2315-2323.	1.5	19
416	Fluorinated alcohol-mediated [4 + 3] cycloaddition reaction of indolyl alcohols with cyclopentadiene. Organic and Biomolecular Chemistry, 2016, 14, 11510-11517.	1.5	33
417	Friedel–Crafts Reaction of Indoles with Isatinâ€Derived β,γâ€Unsaturated αâ€Keto Esters Using a BINOLâ€De Bisoxazoline (BOX)/Copper(II) Complex as Catalyst. Advanced Synthesis and Catalysis, 2016, 358, 3100-3112.	erived 2.1	22
418	Xanthenedione Substituted Metallophthalocyanines as an Efficient and Recyclable Catalyst for One–pot Three Component Synthesis of 3â€Substituted Indoles. ChemistrySelect, 2016, 1, 3635-3639.	0.7	8
419	Cu-catalyzed Î ² -functionalization of saturated ketones with indoles: a one-step synthesis of C3-substituted indoles. RSC Advances, 2016, 6, 89181-89184.	1.7	6
420	Highly selective synthesis of 6-substituted benzothiophenes by Sc(OTf) ₃ -catalyzed intermolecular cyclization and sulfur migration. Organic Chemistry Frontiers, 2016, 3, 1619-1623.	2.3	22
421	Highly enantioselective Pd-catalyzed indole allylic alkylation using binaphthyl-based phosphoramidite-thioether ligands. Organic Chemistry Frontiers, 2016, 3, 1246-1249.	2.3	32
422	Ru-Catalyzed selective C–H oxidative olefination with N-heteroarenes directed by pivaloyl amide. Organic Chemistry Frontiers, 2016, 3, 1271-1275.	2.3	36
423	Palladium(II)â€Catalyzed C3â€Selective Friedel–Crafts Reaction of Indoles with Aziridines. Asian Journal of Organic Chemistry, 2016, 5, 1368-1377.	1.3	12
424	Oneâ€Pot Synthesis of 2â€Acylindoleâ€3â€acetylketones via Domino Azaâ€alkylation/Michael Reaction Using <i>o</i> â€Aminophenyl α,βâ€Unsaturated Ketones Followed by Desulfonative Dehydrogenation. Bulletin of the Korean Chemical Society, 2016, 37, 1529-1532.	1.0	4
425	Iodine/Copper Iodide-Mediated C–H Functionalization: Synthesis of Imidazo[1,2- <i>a</i>]pyridines and Indoles from <i>N</i> -Aryl Enamines. Journal of Organic Chemistry, 2016, 81, 9326-9336.	1.7	70
426	Collective Synthesis of 3-Acylindoles, Indole-3-carboxylic Esters, Indole-3-sulfinic Acids, and 3-(Methylsulfonyl)indoles from Free (N–H) Indoles via Common <i>N</i> -Indolyl Triethylborate. Organic Letters, 2016, 18, 3918-3921.	2.4	24
427	Unified Strategy for Nickel-Catalyzed C-2 Alkylation of Indoles through Chelation Assistance. ACS Catalysis, 2016, 6, 5666-5672.	5.5	72
428	Chiral N-1-adamantyl-N-trans-cinnamylaniline type ligands: synthesis and application to palladium-catalyzed asymmetric allylic alkylation of indoles. Organic and Biomolecular Chemistry, 2016, 14, 7509-7519.	1.5	33
429	Divergent synthesis of indoles, oxindoles, isocoumarins and isoquinolinones by general Pd-catalyzed retro-aldol/l±-arylation. Organic and Biomolecular Chemistry, 2016, 14, 10511-10515.	1.5	18
430	<i>N,N</i> â€Dimethylformamide as a Methylenating Reagent: Synthesis of Heterodiarylmethanes <i>via</i> Copperâ€Catalyzed Coupling between Imidazo[1,2â€ <i>a</i>]pyridines and Indoles/ <i>N,N</i> â€Dimethylaniline. Advanced Synthesis and Catalysis, 2016, 358, 3633-3641.	2.1	46
431	Catalytic Asymmetric [3+2] Cycloadditions of Câ€3 Unsubstituted 2â€Indolylmethanols: Regioâ€, Diastereo― and Enantioselective Construction of the Cyclopenta[<i>b</i>]indole Framework. Advanced Synthesis and Catalysis, 2016, 358, 3797-3808.	2.1	74
432	Rhodium-Catalyzed NH-Indole-Directed C–H Carbonylation with Carbon Monoxide: Synthesis of 6 <i>H</i> -Isoindolo[2,1- <i>a</i>]indol-6-ones. Journal of Organic Chemistry, 2016, 81, 12135-12142.	1.7	47

#	Article	IF	CITATIONS
433	Cp*Co ^{III} -Catalyzed Synthesis of Pyrido[2′,1′:2,3]pyrimido[1,6- <i>a</i>]indol-5-iums via Tanderr C–H Activation and Subsequent Annulation from 1-(Pyridin-2-yl)-1 <i>H</i> -indoles and Internal Alkynes. Journal of Organic Chemistry, 2016, 81, 11335-11345.	ו 1.7	34
434	BrÄnsted Acid Catalyzed [3 + 2]-Cycloaddition of Cyclic Enamides with <i>in Situ</i> Generated 2-Methide-2 <i>H</i> -indoles: Enantioselective Synthesis of Indolo[1,2- <i>a</i>]indoles. Organic Letters, 2016, 18, 5660-5663.	2.4	81
435	Gallium Bromide-Promoted Dearomative Indole Insertion in 3-Indolylmethanols: Chemoselective and (<i>Z</i> / <i>E</i>)-Selective Synthesis of 3,3′-Bisindole Derivatives. Journal of Organic Chemistry, 2016, 81, 11734-11742.	1.7	8
436	Reactivity of indole-3-alkoxides in the absence of acids: Rapid synthesis of homo-bisindolylmethanes. Tetrahedron, 2016, 72, 8106-8116.	1.0	14
437	Synthesis of α-functionalized α-indol-3-yl carbonyls through direct S _N reactions of indol-3-yl α-acyloins. Organic and Biomolecular Chemistry, 2016, 14, 11212-11219.	1.5	20
438	Organocatalytic enantioselective synthesis of C3 functionalized indole derivatives. Tetrahedron, 2016, 72, 8042-8049.	1.0	10
439	Indoxyl-based umpolung strategy for the synthesis of unsymmetrical 3,3′-biindoles. Tetrahedron Letters, 2016, 57, 5493-5496.	0.7	7
440	Cobalt(III)â€Catalyzed Redoxâ€Neutral Synthesis of Unprotected Indoles Featuring an Nâ^'N Bond Cleavage. Angewandte Chemie - International Edition, 2016, 55, 3208-3211.	7.2	169
441	BrÃ,nsted Acid atalyzed Synthesis of <i>N</i> â€Arylindoles from 2â€Vinylanilines and Quinones. Chemistry - an Asian Journal, 2016, 11, 2671-2674.	1.7	3
442	Sequential one-pot synthesis of bis(indolyl)glyoxylamides: Evaluation of antibacterial and anticancer activities. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3167-3171.	1.0	8
443	Synthesis of 3-trifluoromethylindoles via Rh-catalyzed regioselective oxidative coupling of acetanilides with trifluoromethylated alkynes. Tetrahedron Letters, 2016, 57, 3222-3225.	0.7	11
444	<i>tert</i> -Butyl Hydroperoxide (TBHP)-Initiated Vicinal Sulfonamination of Alkynes: A Radical Annulation toward 3-Sulfonylindoles. Organic Letters, 2016, 18, 3330-3333.	2.4	79
445	BrĂ,nsted acid-catalyzed regioselective reactions of 2-indolylmethanols with cyclic enaminone and anhydride leading to C3-functionalized indole derivatives. Organic and Biomolecular Chemistry, 2016, 14, 6932-6936.	1.5	38
446	One-Pot Synthesis of Substituted Benzo[<i>b</i>]furans and Indoles from Dichlorophenols/Dichloroanilines Using a Palladium–Dihydroxyterphenylphosphine Catalyst. Journal of Organic Chemistry, 2016, 81, 5450-5463.	1.7	35
447	An Oxidant-Free Strategy for Indole Synthesis via Intramolecular C–C Bond Construction under Visible Light Irradiation: Cross-Coupling Hydrogen Evolution Reaction. ACS Catalysis, 2016, 6, 4635-4639.	5.5	102
448	BrÃnsted Acid Catalyzed [3+2]â€Cycloaddition of 2â€Vinylindoles with Inâ€Situ Generated 2â€Methideâ€2 <i>H</i> â€indoles: Highly Enantioselective Synthesis of Pyrrolo[1,2â€ <i>a</i>]indoles. Chemistry - A European Journal, 2016, 22, 7074-7078.	1.7	88
449	A dramatic enhancing effect of InBr ₃ towards the oxidative Sonogashira cross-coupling reaction of 2-ethynylanilines. Organic and Biomolecular Chemistry, 2016, 14, 2127-2133.	1.5	13
450	Rh(III)-Catalyzed Synthesis of <i>N</i> -Unprotected Indoles from Imidamides and Diazo Ketoesters via C–H Activation and C–C/C–N Bond Cleavage. Organic Letters, 2016, 18, 700-703.	2.4	122

#	Article	IF	CITATIONS
451	Diastereo- and enantioselective construction of an indole-based 2,3-dihydrobenzofuran scaffold via catalytic asymmetric [3+2] cyclizations of quinone monoimides with 3-vinylindoles. Chemical Communications, 2016, 52, 2968-2971.	2.2	61
452	Lewis Acid Mediated Vinylogous Additions of Enol Nucleophiles into an α,β-Unsaturated Platinum Carbene. Organic Letters, 2016, 18, 64-67.	2.4	29
453	Indole-containing new types of dyes and their UV–vis and NMR spectra and electronic structures: Experimental and theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 162, 61-68.	2.0	10
454	Catalyst-free synthesis of 3-(1-arylsulfonylalkyl)indoles via three-component reaction of indoles, carbonyls, and arenesulfinic acids. Phosphorus, Sulfur and Silicon and the Related Elements, 2016, 191, 772-777.	0.8	3
455	A synthetic 2,3-diarylindole induces cell death via apoptosis and autophagy in A549 lung cancer cells. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2119-2123.	1.0	18
456	Br ₂ -Catalyzed regioselective dehydrative coupling of indoles with acyloins: direct synthesis of α-(3-indolyl) ketones. RSC Advances, 2016, 6, 29020-29025.	1.7	23
457	Graphene oxide decorated with Cu(<scp>i</scp>)Br nanoparticles: a reusable catalyst for the synthesis of potent bis(indolyl)methane based anti HIV drugs. RSC Advances, 2016, 6, 23008-23011.	1.7	16
458	Synthesis of indoles and tryptophan derivatives via photoinduced nitrene C–H insertion. Organic and Biomolecular Chemistry, 2016, 14, 2916-2923.	1.5	13
459	Recent developments in synthetic methods for benzo[b]heteroles. Organic and Biomolecular Chemistry, 2016, 14, 5402-5416.	1.5	89
460	Multicomponent syntheses of functional chromophores. Chemical Society Reviews, 2016, 45, 2825-2846.	18.7	242
460 461	Multicomponent syntheses of functional chromophores. Chemical Society Reviews, 2016, 45, 2825-2846. Thermodynamic properties of alkyl 1 H -indole carboxylate derivatives: A combined experimental and computational study. Journal of Chemical Thermodynamics, 2016, 97, 70-82.	18.7 1.0	242 7
	2825-2846. Thermodynamic properties of alkyl 1 H -indole carboxylate derivatives: A combined experimental and		
461	 2825-2846. Thermodynamic properties of alkyl 1 H -indole carboxylate derivatives: A combined experimental and computational study. Journal of Chemical Thermodynamics, 2016, 97, 70-82. Synthesis of Î²-substituted tryptamines by regioselective ring opening of aziridines. Tetrahedron, 2016, 	1.0	7
461 462	 2825-2846. Thermodynamic properties of alkyl 1 H -indole carboxylate derivatives: A combined experimental and computational study. Journal of Chemical Thermodynamics, 2016, 97, 70-82. Synthesis of Î²-substituted tryptamines by regioselective ring opening of aziridines. Tetrahedron, 2016, 72, 3802-3807. One-pot relay catalysis: divergent synthesis of furo[3,4-b]indoles and cyclopenta[b]indoles from 	1.0 1.0	7 8
461 462 463	 2825-2846. Thermodynamic properties of alkyl 1 H -indole carboxylate derivatives: A combined experimental and computational study. Journal of Chemical Thermodynamics, 2016, 97, 70-82. Synthesis of Î²-substituted tryptamines by regioselective ring opening of aziridines. Tetrahedron, 2016, 72, 3802-3807. One-pot relay catalysis: divergent synthesis of furo[3,4-b]indoles and cyclopenta[b]indoles from 3-(2-aminophenyl)-1,4-enynols. Organic and Biomolecular Chemistry, 2016, 14, 5563-5568. 1-/2-/3-Fluoroalkyl-substituted indoles, promising medicinally and biologically beneficial compounds: Synthetic routes, significance and potential applications. Journal of Fluorine Chemistry, 2016, 185, 	1.0 1.0 1.5	7 8 29
461 462 463 464	 2825-2846. Thermodynamic properties of alkyl 1 H -indole carboxylate derivatives: A combined experimental and computational study. Journal of Chemical Thermodynamics, 2016, 97, 70-82. Synthesis of Î²-substituted tryptamines by regioselective ring opening of aziridines. Tetrahedron, 2016, 72, 3802-3807. One-pot relay catalysis: divergent synthesis of furo[3,4-b]indoles and cyclopenta[b]indoles from 3-(2-aminophenyl)-1,4-enynols. Organic and Biomolecular Chemistry, 2016, 14, 5563-5568. 1-/2-/3-Fluoroalkyl-substituted indoles, promising medicinally and biologically beneficial compounds: Synthetic routes, significance and potential applications. Journal of Fluorine Chemistry, 2016, 185, 118-167. N-Phenyl indole derivatives as AT1 antagonists with anti-hypertension activities: Design, synthesis and 	1.0 1.0 1.5 0.9	7 8 29 17
461 462 463 464	 2825-2846. Thermodynamic properties of alkyl 1 H -indole carboxylate derivatives: A combined experimental and computational study. Journal of Chemical Thermodynamics, 2016, 97, 70-82. Synthesis of Î²-substituted tryptamines by regioselective ring opening of aziridines. Tetrahedron, 2016, 72, 3802-3807. One-pot relay catalysis: divergent synthesis of furo[3,4-b]indoles and cyclopenta[b]indoles from 3-(2-aminophenyl)-1,4-enynols. Organic and Biomolecular Chemistry, 2016, 14, 5563-5568. 1-/2-/3-Fluoroalkyl-substituted indoles, promising medicinally and biologically beneficial compounds: Synthetic routes, significance and potential applications. Journal of Fluorine Chemistry, 2016, 185, 118-167. N-Phenyl indole derivatives as AT1 antagonists with anti-hypertension activities: Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 2016, 115, 161-178. Observations concerning the synthesis of tryptamine homologues and branched tryptamine derivatives via the borrowing hydrogen process: synthesis of psilocin, bufotenin, and serotonin. 	1.0 1.0 1.5 0.9 2.6	7 8 29 17 33

#	Article	IF	CITATIONS
469	Rh(III)-Catalyzed C7-Thiolation and Selenation of Indolines. Journal of Organic Chemistry, 2016, 81, 396-403.	1.7	113
470	Schwartz's Reagent-Mediated Regiospecific Synthesis of 2,3-Disubstituted Indoles from Isatins. Organic Letters, 2016, 18, 149-151.	2.4	19
471	Copper-catalyzed synthesis of benzo[b]thiophene-fused imidazopyridines via the cleavage of C–H bond and C–X bond. Tetrahedron Letters, 2016, 57, 574-577.	0.7	30
472	Nazarov cyclization of 1,4-pentadien-3-ols: preparation of cyclopenta[b]indoles and spiro[indene-1,4′-quinoline]s. Chemical Communications, 2016, 52, 2811-2814.	2.2	29
473	Catalyst-free dehydrative S _N 1-type reaction of indolyl alcohols with diverse nucleophiles "on water― Green Chemistry, 2016, 18, 1032-1037.	4.6	103
474	Palladium(II)/Nâ€Heterocyclic Carbeneâ€Catalyzed Regioselective Heteroannulation of Tertiary Propargyl Alcohols and <i>o</i> â€Haloanilines to form 2â€Alkenylindoles. Advanced Synthesis and Catalysis, 2017, 359, 1144-1151.	2.1	26
475	Griseofulvin Derivative and Indole Alkaloids from <i>Penicillium griseofulvum</i> CPCC 400528. Journal of Natural Products, 2017, 80, 371-376.	1.5	34
476	A simple and efficient method for constructing azepino[4,5-b]indole derivatives via acid catalysis. Organic and Biomolecular Chemistry, 2017, 15, 1872-1875.	1.5	16
477	Copper-Catalyzed P–H Insertions of α-Imino Carbenes for the Preparation of 3-Phosphinoylindoles. Organic Letters, 2017, 19, 782-785.	2.4	37
478	Substrate-Controlled Regioselective Arylations of 2-Indolylmethanols with Indoles: Synthesis of Bis(indolyl)methane and 3,3′-Bisindole Derivatives. Journal of Organic Chemistry, 2017, 82, 2462-2471.	1.7	84
479	Facile Synthesis of 2,3â€Disubstituted Indoles by NBS/CuCl Mediated Oxidative Cyclization of <i>N</i> â€Aryl Enamines. ChemistrySelect, 2017, 2, 1409-1412.	0.7	9
480	Access to thiopyrano[2,3-b]indole via tertiary amine-catalyzed formal (3+3) annulations of β′-acetoxy allenoates with indoline-2-thiones. Chemical Communications, 2017, 53, 2567-2570.	2.2	29
481	Recyclable [Ru2Cl3(p-cymene)2][PF6]/Cu(OAc)2/PEG-400/H2O system for oxidative annulation of alkynes by aniline derivatives: Green synthesis of indoles. Tetrahedron, 2017, 73, 1238-1246.	1.0	9
482	Transition-Metal-Free Redox-Neutral One-Pot C3-Alkenylation of Indoles Using Aldehydes. Organic Letters, 2017, 19, 464-467.	2.4	26
483	Atom-Economic Synthesis of Pentaleno[2,1- <i>b</i>]indoles via Tandem Cyclization of Alkynones Initiated by Aminopalladation. Journal of Organic Chemistry, 2017, 82, 1977-1985.	1.7	34
484	A facile and efficient synthesis of 3â€eyanoindoles by a simple palladium(II)â€eatalyzed C─H activation of indoles. Applied Organometallic Chemistry, 2017, 31, e3706.	1.7	1
485	Boron Trifluorideâ€Catalyzed Synthesis of 3â€Alkylideneâ€3 <i>H</i> â€indole <i>N</i> â€Oxides <i>via</i> Tand Reaction of Propargylic Alcohols and Nitrosobenzenes. Advanced Synthesis and Catalysis, 2017, 359, 786-790.	em 2.1	26
486	Br ₂ - or HBr-catalyzed synthesis of asymmetric 3,3-di(indolyl)indolin-2-ones. Heterocyclic Communications, 2017, 23, 29-34.	0.6	5

#	Article	IF	CITATIONS
487	Silica Gel Mediated Friedel–Crafts Alkylation of 3â€Indolylmethanols with Indoles: Synthesis of Unsymmetrical Bis(3â€indolyl)methanes. European Journal of Organic Chemistry, 2017, 2017, 2266-2271.	1.2	16
488	Synthetic Routes to Isomeric Imidazoindoles by Regioselective Ringâ€Opening of Activated Aziridines Followed by Copperâ€Catalysed C–N Cyclization. European Journal of Organic Chemistry, 2017, 2017, 2369-2378.	1.2	11
489	Electrocatalytic intramolecular oxidative annulation of N-aryl enamines into substituted indoles mediated by iodides. Chemical Communications, 2017, 53, 3354-3356.	2.2	103
490	Cs2CO3-catalyzed alkylation of indoles with trifluoromethyl ketones. Tetrahedron, 2017, 73, 2283-2289.	1.0	9
491	Tandem cyclisation of vinyl radicals: a sustainable approach to indolines utilizing visible-light photoredox catalysis. Green Chemistry, 2017, 19, 1721-1725.	4.6	40
492	One-Pot Synthesis of Indoles by a Sequential Ugi-3CR/Wittig Reaction Starting from Odorless Isocyanide-Substituted Phosphonium Salts. Journal of Organic Chemistry, 2017, 82, 2772-2776.	1.7	30
493	Remote C6-Selective Ruthenium-Catalyzed C–H Alkylation of Indole Derivatives via σ-Activation. ACS Catalysis, 2017, 7, 2616-2623.	5.5	141
494	Palladium-catalyzed regioselective C–H fluoroalkylation of indoles at the C4-position. Chemical Communications, 2017, 53, 3945-3948.	2.2	93
495	Transition-metal-free, visible-light induced cyclization of arylsulfonyl chlorides with o-azidoarylalkynes: a regiospecific route to unsymmetrical 2,3-disubstituted indoles. Chemical Communications, 2017, 53, 4203-4206.	2.2	39
496	[4 + 2] Benzannulation of 3-Alkenylpyrroles/Thiophenes with Propargylic Alcohols: Access to Substituted Indoles, Benzothiophenes, and Aza[5]helicenes. Journal of Organic Chemistry, 2017, 82, 2345-2354.	1.7	38
497	Mild Cobalt(III) atalyzed C–H Hydroarylation of Conjugated C=C/C=O Bonds. Advanced Synthesis and Catalysis, 2017, 359, 1717-1724.	2.1	63
498	Chiral Diphosphine–Palladium-Catalyzed Sequential Asymmetric Double-Friedel–Crafts Alkylation and <i>N</i> -Hemiketalization for Spiro-polycyclic Indole Derivatives. Organic Letters, 2017, 19, 1954-1957.	2.4	37
499	Mechanistic insights into the selective cyclization of indolines with alkynes and alkenes to produce six- and seven-membered 1,7-fused indolines via Rh(<scp>iii</scp>) catalysis: a theoretical study. Organic and Biomolecular Chemistry, 2017, 15, 3938-3946.	1.5	16
500	Synthesis of Dihydropyridinone-Fused Indoles and α-Carbolines via N-Heterocyclic Carbene-Catalyzed [3 + 3] Annulation of Indolin-2-imines and Bromoenals. Organic Letters, 2017, 19, 2286-2289.	2.4	61
501	Regio- and stereoselective (3 + 2)-cycloaddition of nitrile oxides and nitrones to N-vinylindole. Russian Journal of Organic Chemistry, 2017, 53, 246-250.	0.3	8
502	Asymmetric synthesis of CF ₃ - and indole-containing tetrahydro-β-carbolines via chiral spirocyclic phosphoric acid-catalyzed aza-Friedel–Crafts reaction. Organic Chemistry Frontiers, 2017, 4, 1407-1410.	2.3	37
503	Palladium Catalyzed Asymmetric Three-Component Coupling of Boronic Esters, Indoles, and Allylic Acetates. Journal of the American Chemical Society, 2017, 139, 6038-6041.	6.6	111
504	Benzenesulfonic Acid: A Versatile Catalyst for the Synthesis of Bis(indolyl)methanes as Antioxidants. Journal of Heterocyclic Chemistry, 2017, 54, 2717-2724.	1.4	8

#	Article	IF	CITATIONS
505	Ruthenium(II)-Catalyzed Redox-Neutral [3+2] Annulation of Indoles with Internal Alkynes via C–H Bond Activation: Accessing a Pyrroloindolone Scaffold. Journal of Organic Chemistry, 2017, 82, 5263-5273.	1.7	45
506	Mechanism, Regio-, and Diastereoselectivity of Rh(III)-Catalyzed Cyclization Reactions of <i>N</i> -Arylnitrones with Alkynes: A Density Functional Theory Study. Journal of Physical Chemistry A, 2017, 121, 4496-4504.	1.1	17
507	Nickel-Catalyzed C(sp ²)–H/C(sp ³)–H Oxidative Coupling of Indoles with Toluene Derivatives. ACS Catalysis, 2017, 7, 4202-4208.	5.5	74
508	Palladium-catalyzed benzofuran and indole synthesis by multiple C–H functionalizations. Chemical Communications, 2017, 53, 6544-6556.	2.2	119
509	Selective synthesis of 3‧elanylindoles from Indoles and Diselenides using IK/ <i>m</i> CPBA system. Applied Organometallic Chemistry, 2017, 31, e3864.	1.7	12
510	Regioselective Synthesis of 2-Substituted Indoles from Benzotriazoles and Alkynes by Photoinitiated Denitrogenation. ACS Catalysis, 2017, 7, 4053-4056.	5.5	52
511	Palladium-catalyzed C–S bond activation and functionalization of 3-sulfenylindoles and related electron-rich heteroarenes. Organic Chemistry Frontiers, 2017, 4, 1590-1594.	2.3	18
512	Radical-carbene coupling reaction: Mn-catalyzed synthesis of indoles from aromatic amines and diazo compounds. Chemical Communications, 2017, 53, 5993-5996.	2.2	28
513	Heteroannulation of 3-Nitroindoles and 3-Nitrobenzo[<i>b</i>]thiophenes: A Multicomponent Approach toward Pyrrole-Fused Heterocycles. Organic Letters, 2017, 19, 2458-2461.	2.4	50
514	Merger of Visible-Light Photoredox Catalysis and C–H Activation for the Room-Temperature C-2 Acylation of Indoles in Batch and Flow. ACS Catalysis, 2017, 7, 3818-3823.	5.5	116
515	Synthesis of pyrazolo[5,1-a]isoquinolines through copper-catalyzed regioselective bicyclization of N-propargylic sulfonylhydrazones. Organic Chemistry Frontiers, 2017, 4, 1513-1516.	2.3	7
516	Convenient KI-catalyzed regioselective synthesis of 2-sulfonylindoles using water as solvent. New Journal of Chemistry, 2017, 41, 4277-4280.	1.4	11
517	Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles. Chemistry - A European Journal, 2017, 23, 798-801.	1.7	22
518	Synthesis of Nâ€Heteroaromatic Compounds through Cyclocarbonylative Sonogashira Reactions. European Journal of Organic Chemistry, 2017, 2017, 955-963.	1.2	17
519	Rh(iii)-Catalyzed direct C-7 amination of indolines with anthranils. Organic Chemistry Frontiers, 2017, 4, 250-254.	2.3	54
520	Rhodium-catalyzed redox-neutral coupling of phenidones with alkynes. Organic and Biomolecular Chemistry, 2017, 15, 5701-5708.	1.5	29
521	Direct C2â€Functionalization of Indoles Triggered by the Generation of Iminium Species from Indole and Sulfonium Salt. Chemistry - A European Journal, 2017, 23, 10925-10930.	1.7	25
522	lodine-catalyzed C3-formylation of indoles using hexamethylenetetramine and air. Tetrahedron Letters, 2017, 58, 2877-2880.	0.7	18

#	Article	IF	CITATIONS
523	Rhodium-catalyzed C2 and C4 C–H activation/annulation of 3-(1H-indol-3-yl)-3-oxopropanenitriles with internal alkynes: a facile access to substituted and fused carbazoles. Chemical Communications, 2017, 53, 6343-6346.	2.2	66
524	Novel indolyl-chalcone derivatives inhibit A549 lung cancer cell growth through activating Nrf-2/HO-1 and inducing apoptosis in vitro and in vivo. Scientific Reports, 2017, 7, 3919.	1.6	26
525	Design, synthesis and biological activities of N-(furan-2-ylmethyl)-1H-indole-3-carboxamide derivatives as epidemal growth factor receptor inhibitors and anticancer agents. Chemical Research in Chinese Universities, 2017, 33, 365-372.	1.3	5
526	Ruthenium-Catalyzed Cycloisomerization of 2-Alkynylanilides: Synthesis of 3-Substituted Indoles by 1,2-Carbon Migration. Journal of the American Chemical Society, 2017, 139, 7749-7752.	6.6	71
527	Visible Light Promoted Synthesis of Indoles by Single Photosensitizer under Aerobic Conditions. Organic Letters, 2017, 19, 3251-3254.	2.4	53
528	Highly Regioselective Debus-Radziszewski Reaction of C-3 Indole-Substituted 1,2-Diketones: Facile Synthesis of 3-(1,2,4-Triaryl-1 <i>H</i> -imidazol-5-yl)-indoles. ChemistrySelect, 2017, 2, 4807-4810.	0.7	5
529	Synthesis of N-alkyl-3-sulfonylindoles and N-alkyl-3-sulfanylindoles by cascade annulation of 2-alkynyl-N,N-dialkylanilines. Organic and Biomolecular Chemistry, 2017, 15, 3662-3669.	1.5	36
530	Photochemical C–H Activation: Generation of Indole and Carbazole Libraries, and First Total Synthesis of Clausenawalline D. European Journal of Organic Chemistry, 2017, 2017, 3197-3210.	1.2	18
531	Catalytic Asymmetric Nâ€Alkylation of Indoles and Carbazoles through 1,6 onjugate Addition of Azaâ€ <i>para</i> â€quinone Methides. Angewandte Chemie - International Edition, 2017, 56, 4583-4587.	7.2	118
532	Direct Approach to <i>N</i> -Substituted-2-Fluoroindoles by Sequential Construction of C–N Bonds from <i>gem</i> -Difluorostyrenes. Organic Letters, 2017, 19, 1780-1783.	2.4	33
533	Recent progress in transition-metal-catalyzed enantioselective indole functionalizations. Organic and Biomolecular Chemistry, 2017, 15, 3550-3567.	1.5	225
534	Catalytic Asymmetric Nâ€Alkylation of Indoles and Carbazoles through 1,6â€Conjugate Addition of Azaâ€ <i>para</i> â€quinone Methides. Angewandte Chemie, 2017, 129, 4654-4658.	1.6	30
535	Metal-free chloroamidation of indoles with sulfonamides and NaClO. Organic Chemistry Frontiers, 2017, 4, 1354-1357.	2.3	20
536	Rhodium-Catalyzed Cycloadditions between 3-Diazoindolin-2-imines and 1,3-Dienes. Organic Letters, 2017, 19, 1630-1633.	2.4	59
537	Regiospecific synthesis of 1,5,6,7-tetrahydro-4H-indol-4-ones via dehydroxylated [3+2] cyclization of β-hydroxy ketones with cyclic enaminones. Tetrahedron Letters, 2017, 58, 1519-1522.	0.7	4
538	Synthesis of Diastereoenriched Oxazolo[5,4- <i>b</i>]indoles via Catalyst-Free Multicomponent Bicyclizations. Journal of Organic Chemistry, 2017, 82, 3605-3611.	1.7	52
539	Mild Baseâ€Promoted Indole Annulation–Oxidative Cross―Coupling of 2â€Nitrocinnamaldehydes with βâ€Tetralones for 3â€Naphthylindole and 3â€Naphthylbenzo[<i>g</i>]indole Fluorophores. Advanced Synthesis and Catalysis, 2017, 359, 1552-1562.	2.1	8
540	The Role of Plant-derived Products in Pancreatitis: Experimental and Clinical Evidence. Phytotherapy Research, 2017, 31, 591-623.	2.8	32

#	Article	IF	Citations
541	Synthesis of Indoles and Pyrroles Utilizing Iridium Carbenes Generated from Sulfoxonium Ylides. Angewandte Chemie - International Edition, 2017, 56, 4277-4281.	7.2	190
542	Synthesis of Indoles and Pyrroles Utilizing Iridium Carbenes Generated from Sulfoxonium Ylides. Angewandte Chemie, 2017, 129, 4341-4345.	1.6	41
543	Synthesis of 1,2-Bis(2-aryl-1 <i>H</i> -indol-3-yl)ethynes via 5- <i>exo</i> -Digonal Double Cyclization Reactions of 1,4-Bis(2-isocyanophenyl)buta-1,3-diyne with Aryl Grignard Reagents. Journal of Organic Chemistry, 2017, 82, 652-663.	1.7	14
544	Copper-mediated intramolecular aza-Wacker-type cyclization of 2-alkenylanilines toward 3-aryl indoles. Tetrahedron Letters, 2017, 58, 445-448.	0.7	25
545	A General Nickel atalyzed Method for Câ^'H Bond Alkynylation of Heteroarenes Through Chelation Assistance. Chemistry - A European Journal, 2017, 23, 2907-2914.	1.7	45
546	Expedient C–H Chalcogenation of Indolines and Indoles by Positional-Selective Copper Catalysis. ACS Catalysis, 2017, 7, 1030-1034.	5.5	158
547	One-pot synthesis of fluorescent 2,4-dialkenylindoles by rhodium-catalyzed dual C–H functionalization. Organic Chemistry Frontiers, 2017, 4, 455-459.	2.3	36
548	Nâ€Heterocyclic Carbene atalyzed [3+3] Annulation of Indolineâ€2â€thiones with Bromoenals: Synthesis of Indolo[2,3â€ <i>b</i>]dihydrothiopyranones. Advanced Synthesis and Catalysis, 2017, 359, 44-48.	2.1	31
549	S _N 1-Type Alkylation of <i>N</i> -Heteroaromatics with Alcohols. Organic Letters, 2017, 19, 5724-5727.	2.4	39
550	An efficient, room temperature, oxygen radical anion (O ₂ ^{•â^²}) mediated, one-pot, and multicomponent synthesis of spirooxindoles. Canadian Journal of Chemistry, 2017, 95, 1296-1302.	0.6	7
551	Lipaseâ€Catalyzed Kinetic Resolution of <i>N</i> â€Substituted 1â€(βâ€Hydroxypropyl)indoles by Enantioselecti Acetylation. European Journal of Organic Chemistry, 2017, 2017, 5378-5390.	ve 1.2	4
552	Copper-Catalyzed Tandem Imine Formation, Sonogashira Coupling and Intramolecular Hydroamination: A Facile Synthesis of 3-Aryl-Î ³ â^'carbolines. ChemistrySelect, 2017, 2, 8922-8926.	0.7	7
553	Mechanistic Investigation into Rh ^{III} atalyzed Intramolecular Redoxâ€Neutral Annulation of Aryl Hydrazines with a Tethered Alkyne. Asian Journal of Organic Chemistry, 2017, 6, 1885-1892.	1.3	2
554	Regiocontrolled direct C4 and C2-methyl thiolation of indoles under rhodium-catalyzed mild conditions. Chemical Communications, 2017, 53, 12197-12200.	2.2	61
555	Catalytic asymmetric chemodivergent arylative dearomatization of tryptophols. Chemical Communications, 2017, 53, 12124-12127.	2.2	47
556	Synthesis and reactivity of new amide-substituted oxindole derivatives. Tetrahedron, 2017, 73, 6887-6893.	1.0	6
557	A regioselective one-pot aza-Friedel–Crafts reaction for primary, secondary and tertiary anilines using a heterogeneous catalyst. Green Chemistry, 2017, 19, 5683-5690.	4.6	19
558	Transition-metal-free, visible-light-mediated cyclization of <i>o</i> -azidoarylalkynes with aryl diazonium salts. New Journal of Chemistry, 2017, 41, 14053-14056.	1.4	13

		15	CITATIONS
#	ARTICLE Sequential [1 + 4]- and [2 + 3]-Annulation of Prop-2-ynylsulfonium Salts: Access to	IF	CITATIONS
559	Hexahydropyrrolo[3,2- <i>b</i>)indoles. Organic Letters, 2017, 19, 4664-4667.	2.4	31
560	Visible-Light-Mediated Anti-Regioselective Nitrone 1,3-Dipolar Cycloaddition Reaction and Synthesis of Bisindolylmethanes. Organic Letters, 2017, 19, 5086-5089.	2.4	33
561	Synthesis of 2,3-Disubstituted <i>NH</i> Indoles via Rhodium(III)-Catalyzed C–H Activation of Arylnitrones and Coupling with Diazo Compounds. Journal of Organic Chemistry, 2017, 82, 11505-11511.	1.7	43
562	Ruthenium-catalysed one-pot regio- and diastereoselective synthesis of pyrrolo[1,2-a]indoles via cascade C–H functionalization/annulation. Chemical Communications, 2017, 53, 10812-10815.	2.2	14
563	Rhodium(<scp>ii</scp>)-catalyzed intermolecular [3 + 2] annulation of N-vinyl indoles with N-tosyl-1,2,3-triazoles via an aza-vinyl Rh carbene. Organic Chemistry Frontiers, 2017, 4, 2459-2464.	2.3	15
564	Chemoselective Double Annulation of Two Different Isocyanides: Rapid Access to Trifluoromethylated Indole-Fused Heterocycles. Organic Letters, 2017, 19, 5292-5295.	2.4	46
565	Palladium-catalyzed oxidative arylacetoxylation of alkenes: synthesis of indole and indoline derivatives. Chemical Communications, 2017, 53, 11205-11208.	2.2	14
566	One-pot synthesis of 2,3-difunctionalized indoles via Rh(<scp>iii</scp>)-catalyzed carbenoid insertion C–H activation/cyclization. Organic and Biomolecular Chemistry, 2017, 15, 8054-8058.	1.5	18
567	Synthesis of indole-5,6- and carbazole-2,3-dicarboxylic acid functional derivatives. Russian Chemical Bulletin, 2017, 66, 379-394.	0.4	8
568	Copper-Catalyzed Dehydrogenative C(sp ²)–N Bond Formation via Direct Oxidative Activation of an Anilidic N–H Bond: Synthesis of Benzoimidazo[1,2- <i>a</i>]indoles. Journal of Organic Chemistry, 2017, 82, 10158-10166.	1.7	12
569	Enantiospecific Synthesis of \hat{I}^2 -Substituted Tryptamines. Organic Letters, 2017, 19, 4976-4979.	2.4	14
570	Benzannulation of Pyrroles to 4,5â€Disubstituted Indoles through BrÃ,nstedâ€Acidâ€Promoted Rearrangement of <i>tert</i> â€Butyl Peroxides. Asian Journal of Organic Chemistry, 2017, 6, 1604-1611.	1.3	8
571	Three-step synthesis of 2,5,7-trisubstituted indoles from N-acetyl-2,4,6-trichloroaniline using Pd-catalyzed site-selective cross-coupling. Organic and Biomolecular Chemistry, 2017, 15, 6645-6655.	1.5	13
572	Isocyanideâ€Based Multicomponent Reaction To Furnish Nâ€Functionalized Indoles by using <i>N</i> â€Acyliminium Ions as Key Intermediates. European Journal of Organic Chemistry, 2017, 2017, 4507-4510.	1.2	3
573	Ammonium chiral borate salt catalyzed asymmetric Friedel-Crafts alkylation of indoles with α,β-disubstituted enals. Tetrahedron: Asymmetry, 2017, 28, 1070-1077.	1.8	5
574	A one-pot synthesis of 2,2′-disubstituted diindolylmethanes (DIMs) via a sequential Sonogashira coupling and cycloisomerization/C3-functionalization of 2-iodoanilines. Organic and Biomolecular Chemistry, 2017, 15, 6997-7007.	1.5	14
575	Synthesis and biological evaluation of benzothiazol-based 1,3,4-oxadiazole derivatives as amyloid β-targeted compounds against Alzheimer's disease. Monatshefte Für Chemie, 2017, 148, 1807-1815.	0.9	17
576	Rh(III)-Catalyzed C–H Cyclization of Arylnitrones with Diazo Compounds: Access to 3-Carboxylate Substituted <i>N</i> -Hydroxyindoles. Journal of Organic Chemistry, 2017, 82, 8984-8994.	1.7	42

#	Article	IF	CITATIONS
577	An Efficient Route to Highly Substituted Indoles via Tetrahydroindolâ€4(5 <i>H</i>)â€one Intermediates Produced by Ringâ€Opening Cyclization of Spirocyclopropanes with Amines. Chemistry - A European Journal, 2017, 23, 16799-16805.	1.7	21
578	Facile synthesis of 1-aminoindoles via Rh(<scp>iii</scp>)-catalysed intramolecular three-component annulation. Organic Chemistry Frontiers, 2017, 4, 2179-2183.	2.3	30
579	Co(III)-Catalyzed C–H Activation: A Site-Selective Conjugate Addition of Maleimide to Indole at the C-2 Position. ACS Omega, 2017, 2, 4470-4479.	1.6	47
580	An Approach to 3-(Indol-2-yl)succinimide Derivatives by Manganese-Catalyzed C–H Activation. Organic Letters, 2017, 19, 4042-4045.	2.4	107
581	Csp ² –Csp ² and Csp ² –N Bond Formation in a One-Pot Reaction between <i>N</i> -Tosylhydrazones and Bromonitrobenzenes: An Unexpected Cyclization to Substituted Indole Derivatives. Organic Letters, 2017, 19, 6700-6703.	2.4	15
582	Lipase-catalyzed kinetic resolution approach toward enantiomerically enriched 1-(β-hydroxypropyl)indoles. Tetrahedron: Asymmetry, 2017, 28, 1717-1732.	1.8	16
583	Structure-activity relationships and docking studies of synthetic 2-arylindole derivatives determined with aromatase and quinone reductase 1. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5393-5399.	1.0	19
584	Enantioselective synthesis of cyclic quaternary α-amino acid derivatives by chiral phosphoric acid catalysis. Organic and Biomolecular Chemistry, 2017, 15, 6033-6041.	1.5	19
585	Direct C-2 acylation of indoles with toluene derivatives via Pd(<scp>ii</scp>)-catalyzed C–H activation. RSC Advances, 2017, 7, 32559-32563.	1.7	17
586	Beyond C2 and C3: Transition-Metal-Catalyzed C–H Functionalization of Indole. ACS Catalysis, 2017, 7, 5618-5627.	5.5	351
587	Indolylmethanols as Reactants in Catalytic Asymmetric Reactions. Journal of Organic Chemistry, 2017, 82, 7695-7707.	1.7	142
588	Design and Enantioselective Construction of Axially Chiral Naphthylâ€Indole Skeletons. Angewandte Chemie, 2017, 129, 122-127.	1.6	82
589	Design and Enantioselective Construction of Axially Chiral Naphthylâ€Indole Skeletons. Angewandte Chemie - International Edition, 2017, 56, 116-121.	7.2	274
590	3-Naphthylindoles as new promising candidate antioxidant, antibacterial, and antibiofilm agents. Research on Chemical Intermediates, 2017, 43, 2387-2399.	1.3	15
591	Metal-catalyzed dehydrogenative synthesis of pyrroles and indoles from alcohols. Coordination Chemistry Reviews, 2017, 331, 37-53.	9.5	63
592	Identification of the First Marine-Derived Opioid Receptor "Balanced―Agonist with a Signaling Profile That Resembles the Endorphins. ACS Chemical Neuroscience, 2017, 8, 473-485.	1.7	34
593	Divergent reactivity of α-azidochalcones with metal β-diketonates: tunable synthesis of substituted pyrroles and indoles. Organic Chemistry Frontiers, 2017, 4, 124-129.	2.3	20
594	Hydroxyl Functionalized Lewis Acidic Ionic Liquid on Silica: An Efficient Catalyst for the C-3 Friedel-Crafts Benzylation of Indoles with Benzyl Alcohols. Catalysis Letters, 2017, 147, 261-268.	1.4	14

#	Article	IF	CITATIONS
595	Design, selective alkylation and X-ray crystal structure determination of dihydro-indolyl-1,2,4-triazole-3-thione and its 3-benzylsulfanyl analogue as potent anticancer agents. European Journal of Medicinal Chemistry, 2017, 125, 360-371.	2.6	47
596	Pd(OAc)2/Ph3P-catalyzed dimerization of isoprene and synthesis of monoterpenic heterocycles. Beilstein Journal of Organic Chemistry, 2017, 13, 1807-1815.	1.3	2
597	Indole Alkaloids from Plants as Potential Leads for Antidepressant Drugs: A Mini Review. Frontiers in Pharmacology, 2017, 8, 96.	1.6	103
598	Platinum-Catalyzed Allylation of 2,3-Disubstituted Indoles with Allylic Acetates. Molecules, 2017, 22, 2097.	1.7	5
599	Marine Inspired 2-(5-Halo-1H-indol-3-yl)-N,N-dimethylethanamines as Modulators of Serotonin Receptors: An Example Illustrating the Power of Bromine as Part of the Uniquely Marine Chemical Space. Marine Drugs, 2017, 15, 248.	2.2	17
600	Palladium(0)-Catalyzed Benzylic C(<i>sp</i> ³)–H Functionalization for the Concise Synthesis of Heterocycles and Its Applications. Chemical and Pharmaceutical Bulletin, 2017, 65, 409-425.	0.6	16
601	Ethyl 2-[2-(4-Nitrobenzoyl)-1H-indol-3-yl]acetate. MolBank, 2017, 2017, M945.	0.2	1
602	Cu(I)â€Catalyzed Site Selective Acyloxylation of Indoline Using O ₂ as the Sole Oxidant. Advanced Synthesis and Catalysis, 2018, 360, 1644-1649.	2.1	39
603	Synthesis of N-aryl-3-(arylimino)-3H-indol-2-amines via hypervalent iodine promoted oxidative diamination of indoles. Tetrahedron Letters, 2018, 59, 1506-1510.	0.7	23
604	Cleavage of C–C Bonds for the Synthesis of C2-Substituted Quinolines and Indoles by Catalyst-Controlled Tandem Annulation of 2-Vinylanilines and Alkynoates. Organic Letters, 2018, 20, 1534-1537.	2.4	34
605	Rhodium-catalyzed NH-indole-directed ortho C H coupling of 2-arylindoles with diazo compounds via metal carbene migratory insertion. Tetrahedron Letters, 2018, 59, 1568-1572.	0.7	15
606	Palladium-catalyzed intramolecular vinylarylation of alkene: Access to spirocyclic scaffold. Tetrahedron Letters, 2018, 59, 1804-1807.	0.7	5
607	Iodine(III) Reagentâ€Mediated Intramolecular Amination of 2â€Alkenylanilines to Prepare Indoles. Advanced Synthesis and Catalysis, 2018, 360, 1919-1925.	2.1	30
608	One-Pot Highly Regioselective Synthesis of Indole-Fused Pyridazino[4,5-b][1,4]benzoxazepin-4(3H)-ones by a Smiles Rearrangement. Synlett, 2018, 29, 1207-1210.	1.0	13
609	One-pot sequential multicomponent reaction between <i>in situ</i> generated aldimines and succinaldehyde: facile synthesis of substituted pyrrole-3-carbaldehydes and applications towards medicinally important fused heterocycles. RSC Advances, 2018, 8, 15448-15458.	1.7	18
610	Palladium-catalyzed carbonylative bis(indolyl)methanes synthesis with TFBen as the CO source. Journal of Catalysis, 2018, 362, 74-77.	3.1	18
611	Copper-Catalyzed Synthesis of Multisubstituted Indoles through Tandem Ullmann-Type C–N Formation and Cross-dehydrogenative Coupling Reactions. Journal of Organic Chemistry, 2018, 83, 5288-5294.	1.7	43
612	Copper-Catalyzed Oxygenation Approach to Oxazoles from Amines, Alkynes, and Molecular Oxygen. Organic Letters, 2018, 20, 2762-2765.	2.4	47

#	Article	IF	CITATIONS
613	Copper atalyzed Câ^'H Ethoxycarbonyldifluoromethylation of Indoles and Pyrroles. Asian Journal of Organic Chemistry, 2018, 7, 1319-1322.	1.3	11
614	Visibleâ€Lightâ€Mediated Eosin Y Photoredoxâ€Catalyzed Vicinal Thioamination of Alkynes: Radical Cascade Annulation Strategy for 2â€Substitutedâ€3â€sulfenylindoles. European Journal of Organic Chemistry, 2018, 2018, 2117-2121.	1.2	27
615	Tandem Wittig – Reductive annulation decarboxylation approach for the synthesis of indole and 2-substituted indoles. Tetrahedron Letters, 2018, 59, 1851-1854.	0.7	6
616	Design, synthesis, biological evaluations, molecular docking, and <i>in vivo</i> studies of novel phthalimide analogs. Archiv Der Pharmazie, 2018, 351, e1700363.	2.1	19
617	Rhenium―and Manganese atalyzed Selective Alkenylation of Indoles. ChemCatChem, 2018, 10, 2681-2685.	1.8	47
618	Synthesis of Indolo[1,2â€ <i>b</i>]isoquinoline Derivatives by Lewis Acidâ€Catalyzed Intramolecular Friedel–Crafts Alkylation Reaction. European Journal of Organic Chemistry, 2018, 2018, 2817-2821.	1.2	7
619	Gold-catalyzed Bicyclization of Diaryl Alkynes: Synthesis of Polycyclic Fused Indole and Spirooxindole Derivatives. Organic Letters, 2018, 20, 2733-2736.	2.4	75
620	Pd-Catalyzed Asymmetric Dearomative Cycloaddition for Construction of Optically Active Pyrroloindoline and Cyclopentaindoline Derivatives: Access to 3a-Aminopyrroloindolines. Journal of Organic Chemistry, 2018, 83, 2882-2891.	1.7	82
621	Copper-catalyzed synthesis of allenylboronic acids. Access to sterically encumbered homopropargylic alcohols and amines by propargylboration. Chemical Science, 2018, 9, 3305-3312.	3.7	33
622	Ru 3 (CO) 12 -catalyzed dehydrogenative Si N coupling of indoles with hydrosilanes without additive. Tetrahedron, 2018, 74, 1123-1128.	1.0	8
623	Iridium-Catalyzed Dehydrogenative α-Functionalization of (Hetero)aryl-Fused Cyclic Secondary Amines with Indoles. Organic Letters, 2018, 20, 1171-1174.	2.4	25
624	Rhodium(III)â€Catalyzed Regioselective Direct C4â€Alkylation and C2â€Annulation of Indoles: Straightforward Access to Indolopyridone. European Journal of Organic Chemistry, 2018, 2018, 1426-1436.	1.2	35
625	Diastereo- and Enantioselective Synthesis of Spirooxindoles with Contiguous Tetrasubstituted Stereocenters via Catalytic Coupling of Two Tertiary Radicals. Journal of Organic Chemistry, 2018, 83, 2966-2970.	1.7	48
626	Organocatalytic asymmetric synthesis of benzazepinoindole derivatives with trifluoromethylated quaternary stereocenters by chiral phosphoric acid catalysts. Organic and Biomolecular Chemistry, 2018, 16, 1367-1374.	1.5	25
627	Weak Directing Group Steered Formal Oxidative [2+2+2]-Cyclization for Selective Benzannulation of Indoles. Journal of Organic Chemistry, 2018, 83, 1810-1818.	1.7	39
628	En Route to 2-(Cyclobuten-1-yl)-3-(trifluoromethyl)-1H-indole. Journal of Organic Chemistry, 2018, 83, 2486-2493.	1.7	9
629	Palladiumâ€Catalyzed Intramolecular Trost–Oppolzerâ€Type Alder–Ene Reaction of Dienyl Acetates to Cyclopentadienes. Angewandte Chemie, 2018, 130, 1694-1698.	1.6	7
630	A copper-catalyzed reaction of 3-diazoindolin-2-imines with 2-(phenylamino)ethanols: convenient access to spiro[indoline-3,2′-oxazolidin]-2-imines. Chemical Communications, 2018, 54, 1529-1532.	2.2	27

#	Article	IF	CITATIONS
631	Pdâ€ ^{<i>t</i>} BuONO Cocatalyzed Aerobic Indole Synthesis. Advanced Synthesis and Catalysis, 2018, 360, 1590-1594.	2.1	32
632	Synthesis of 1,2,3â€Fused Indole Polyheterocycles by Copperâ€Catalyzed Cascade Reaction. European Journal of Organic Chemistry, 2018, 2018, 1241-1247.	1.2	16
633	Synthesis of Terminal Vinylindoles via Rh ^{III} â€Catalyzed Direct Câ^'H Alkenylation with Potassium Vinyltrifluoroborate. Chemistry - A European Journal, 2018, 24, 5469-5473.	1.7	12
634	Copper-mediated domino C–H iodination and nitration of indoles. Chemical Communications, 2018, 54, 2514-2517.	2.2	40
635	Substrate selective synthesis of indole, tetrahydroquinoline and quinoline derivatives <i>via</i> intramolecular addition of hydrazones and imines. Organic Chemistry Frontiers, 2018, 5, 1170-1175.	2.3	11
636	Iron(<scp>ii</scp>)-catalyzed C-2 cyanomethylation of indoles and pyrroles <i>via</i> direct oxidative cross-dehydrogenative coupling with acetonitrile derivatives. Organic Chemistry Frontiers, 2018, 5, 1129-1134.	2.3	31
637	Catalytic Asymmetric Dearomative [3 + 2] Cycloaddition of Electron-Deficient Indoles with All-Carbon 1,3-Dipoles. Journal of Organic Chemistry, 2018, 83, 2341-2348.	1.7	83
638	Transitionâ€Metalâ€Free Indole C3 Sulfenylation by KIO ₃ Catalysis. Asian Journal of Organic Chemistry, 2018, 7, 371-373.	1.3	28
639	Palladium-catalyzed intramolecular aerobic C-H amination of enamines for the synthesis of 2-trifluoromethylindoles. Tetrahedron, 2018, 74, 720-725.	1.0	14
640	A BF ₃ ·Et ₂ O catalyzed atom-economical approach to highly substituted indole-3-carbinols from nitrosobenzenes and propargylic alcohols. Organic and Biomolecular Chemistry, 2018, 16, 756-764.	1.5	16
641	Facile synthesis of pyrroloindoles <i>via</i> a rhodium(<scp>ii</scp>)-catalyzed annulation of 3-benzylidene-indolin-2-ones and α-imino carbenes. Chemical Communications, 2018, 54, 1595-1598.	2.2	18
642	Rose Bengal catalysed photo-induced selenylation of indoles, imidazoles and arenes: a metal free approach. Organic and Biomolecular Chemistry, 2018, 16, 880-885.	1.5	105
643	Spectroscopic Study of a Photoactive Antibacterial Agent: 2,3-Distyrylindole. Journal of Physical Chemistry A, 2018, 122, 937-945.	1.1	1
644	Gold-catalyzed C5-alkylation of indolines and sequential oxidative aromatization: access to C5-functionalized indoles. Organic and Biomolecular Chemistry, 2018, 16, 3889-3892.	1.5	27
645	Two-Step Continuous Synthesis of Dicarbonyl Indoles via I ₂ /DMSO-Promoted Oxidative Coupling: A Green and Practical Approach to Valuable Diketones from Aryl Acetaldehydes. ACS Sustainable Chemistry and Engineering, 2018, 6, 7979-7988.	3.2	11
646	Asymmetric Arylation of 2,2,2-Trifluoroacetophenones Catalyzed by Chiral Electrostatically-Enhanced Phosphoric Acids. Organic Letters, 2018, 20, 2689-2692.	2.4	35
647	BrÃ,nsted-Acid-Promoted Rh-Catalyzed Asymmetric Hydrogenation of N-Unprotected Indoles: A Cocatalysis of Transition Metal and Anion Binding. Organic Letters, 2018, 20, 2143-2147.	2.4	62
648	Differentiating alkyne reactivity in the post-Ugi transformations: Access to polycyclic indole-fused frameworks. Tetrahedron Letters, 2018, 59, 1823-1827.	0.7	16

ARTICLE IF CITATIONS Iodine-Catalyzed C–H Amidation and Imination at the 2α-Position of 2,3-Disubstituted Indoles with 649 1.7 7 Chloramine Salts. Journal of Organic Chemistry, 2018, 83, 4665-4673. Complex Hydroindoles by an Intramolecular Nitrile-Intercepted Allylic Alkylation Cascade Reaction. 2.4 Organic Letters, 2018, 20, 1970-1973. Diastereoselective Construction of Indole-Bridged Chroman Spirooxindoles through a 651 TfOH-Catalyzed Michael Addition-Inspired Cascade Reaction. Journal of Organic Chemistry, 2018, 83, 1.7 58 3679-3687. Palladium Catalyzed Câ^'C and Câ^'N Bond Formation via <i>ortho</i> Câ^'H Activation and Decarboxylative Strategy: A Practical Approach towards <i>N</i>â€Acylated Indoles. Advanced Synthesis and Catalysis, 2018, 360, 422-426. New thiourea organocatalysts and their application for the synthesis of 5-(1<i>H</i>-indol-3-yl) methyl-2,2-dimethyl-1,3-dioxane-4,6-diones a source of chiral 3-indoylmethyl 653 1.1 7 ketenes. Synthetic Communications, 2018, 48, 14-25. Rhodium atalyzed Câ^'H Functionalization of Indoles with Diazo Compounds: Synthesis of 2.1 Structurally Diverse 2,3â€Fused Indoles. Advanced Synthesis and Catalysis, 2018, 360, 100-105. Journey Heading towards Enantioselective Synthesis Assisted by Organocatalysis. Chemical Record, 655 2.9 12 2018, 18, 137-153. The regioselective synthesis of 2-phosphinoylindoles <i>via</i> Rh(<scp>iii</scp>)-catalyzed Câ€"H 656 2.3 20 activation. Organic Chemistry Frontiers, 2018, 5, 88-91. Unified Strategy to Access 6<i>H</i>â€Benzofuro[2,3â€<i>b</i>]indoles and 657 5,6â€Dihydroindolo[2,3â€<i>b</i>)indoles via UV Lightâ€Mediated Diradical Cyclization. Advanced Synthesis 2.1 13 and Catalysis, 2018, 360, 474-478. A synopsis of anti-psychotic medicinal plants in Nigeria. Transactions of the Royal Society of South 0.8 14 Africa, 2018, 73, 33-41. Palladium-Catalyzed Sequential Vinylic Câ€"H Arylation/Amination of 2-Vinylanilines with Aryl boronic 659 1.7 26 Acids: Access to 2-Arylindoles. Journal of Organic Chemistry, 2018, 83, 323-329. A novel approach to 5<i>H</i>-pyrazino[2,3-<i>b</i>]indoles<i>via</i>annulation of 3-diazoindolin-2-imines with 2<i>H</i>-azirines or 5-alkoxyisoxazoles under Rh(<scp>ii</scp>) catalysis. Organic and Biomolecular Chemistry, 2018, 16, 38-42. 1.5 Mangan(I)â€katalysierte Câ€Hâ€(2â€IndolyI)methylierung: ein einfacher Zugang zu 661 1.6 22 Diheteroarylmethánâ€Derivaten. Angewandte Chemie, 2018, 130, 1413-1417. Direct, Metalâ€free C(sp²)â^'H Chalcogenation of Indoles and Imidazopyridines with Dichalcogenides Catalysed by KIO₃. Chemistry - A European Journal, 2018, 24, 4173-4180. 1.7 Enantioselective Aza-Friedel–Crafts Reaction of Indoles with Ketimines Catalyzed by Chiral Potassium 663 5.542 Binaphthyldisulfonates. ACS Catalysis, 2018, 8, 349-353. Manganese(I)â€Catalyzed Câ[^]H (2â€Indolyl)methylation: Expedient Access to Diheteroarylmethanes. 664 Angewandte Chemie - International Edition, 2018, 57, 1399-1403. Substituent-Directed Regioselective Azidation: Copper-Catalyzed Câ€"H Azidation and Iodine-Catalyzed 665 1.7 27 Dearomatizative Azidation of Indole. Journal of Organic Chemistry, 2018, 83, 228-235. Palladiumâ€Catalyzed Intramolecular Trostâ€"Oppolzerâ€Type Alderâ€"Ene Reaction of Dienyl Acetates to Cyclopentadienes. Angewandte Chemie - International Edition, 2018, 57, 1678-1682.

#	Article	IF	CITATIONS
667	Mechanistic insight into the C7-selective C–H functionalization of <i>N</i> -acyl indole catalyzed by a rhodium complex: a theoretical study. Organic Chemistry Frontiers, 2018, 5, 725-733.	2.3	25
668	Microwaveâ€Assisted Synthesis of Benzimidazole‣inked Indoline and Indole Hybrids from Câ€2 Linked (<i>o</i> â€Aminobenzyl)benzimidazoles. Advanced Synthesis and Catalysis, 2018, 360, 502-512.	2.1	4
669	The Diverse Reactivity of Homopropargylic Amines as "Masked―1C Synthons for the Azaâ€Friedel–Crafts Alkylation of Indoles. European Journal of Organic Chemistry, 2018, 2018, 470-476.	1.2	8
670	Rhodium(<scp>i</scp>)-catalysed decarbonylative direct C–H vinylation and dienylation of arenes. Organic Chemistry Frontiers, 2018, 5, 734-740.	2.3	32
671	Microbial Synthesis and Transformation of Inorganic and Organic Chlorine Compounds. Frontiers in Microbiology, 2018, 9, 3079.	1.5	44
672	HFIP-Promoted Bischler Indole Synthesis under Microwave Irradiation. Molecules, 2018, 23, 3317.	1.7	4
673	Direct construction of benzimidazo[l,2- <i>c</i>]quinazolin-6-ones <i>via</i> metal-free oxidative C–C bond cleavage. Organic Chemistry Frontiers, 2018, 5, 3464-3468.	2.3	21
674	Efficient synthesis of 2-arylquinazolin-4-amines <i>via</i> a copper-catalyzed diazidation and ring expansion cascade of 2-arylindoles. Chemical Communications, 2018, 54, 12602-12605.	2.2	24
675	The fast and efficient KI/H ₂ O ₂ mediated 2-sulfonylation of indoles and <i>N</i> -methylpyrrole in water. RSC Advances, 2018, 8, 41651-41656.	1.7	22
676	Construction of Azepino[2,3- <i>b</i>]indole Core via Sulfur Ylide Mediated Annulations. Organic Letters, 2018, 20, 7628-7632.	2.4	49
677	An Efficient Synthesis of Acenaphtho[1,2-b]indole Derivatives via Domino Reaction. Molecules, 2018, 23, 3045.	1.7	3
678	Direct Synthesis of 3-Acylindoles through Rhodium(III)-Catalyzed Annulation of <i>N</i> -Phenylamidines with α-Cl Ketones. Organic Letters, 2018, 20, 7645-7649.	2.4	51
679	Synthesis of tetrahydroindolones and tetrahydrocarbazolones via palladium catalyzed C–H activation. Tetrahedron Letters, 2018, 59, 4562-4565.	0.7	3
680	Bromo- or Methoxy-Group-Promoted Umpolung Electron Transfer Enabled, Visible-Light-Mediated Synthesis of 2-Substituted Indole-3-glyoxylates. Organic Letters, 2018, 20, 6984-6989.	2.4	35
681	Oxygenophilic Lewis Acid Promoted Synthesis of 2-Arylindoles from Anilines and Cyanoepoxides in Alcohol. Journal of Organic Chemistry, 2018, 83, 14733-14742.	1.7	19
682	Synthesis of Pseudellone Analogs and Characterization as Novel T-type Calcium Channel Blockers. Marine Drugs, 2018, 16, 475.	2.2	6
683	Atom-economical selenation of electron-rich arenes and phosphonates with molecular oxygen at room temperature. Organic and Biomolecular Chemistry, 2018, 16, 9243-9250.	1.5	28
684	Nickel-catalysed carbonylative homologation of aryl iodides. Communications Chemistry, 2018, 1, .	2.0	9

#	Article	IF	CITATIONS
685	Synthesis of Functionalized Indoles via Palladium-Catalyzed Aerobic Cycloisomerization of <i>o</i> -Allylanilines Using Organic Redox Cocatalyst. Journal of Organic Chemistry, 2018, 83, 13523-13529.	1.7	20
686	Recent progress in the synthesis of phosphorus-containing indole derivatives. Organic and Biomolecular Chemistry, 2018, 16, 7544-7556.	1.5	39
687	Tandem Allylation/1,2-Boronate Rearrangement for the Asymmetric Synthesis of Indolines with Adjacent Quaternary Stereocenters. Journal of the American Chemical Society, 2018, 140, 13242-13252.	6.6	81
688	BrÃ,nsted Acid-Promoted Multicomponent Reaction for the Construction of Pyrrolocoumarin Derivatives. Heterocycles, 2018, 96, 501.	0.4	5
689	Detection of Lysosome by a Fluorescent Heterocycle: Development of Fused Pyrido–Imidazo–Indole Framework via Cu-Catalyzed Tandem N-Arylation. Journal of Organic Chemistry, 2018, 83, 13011-13018.	1.7	21
690	Catalytic Asymmetric Chemodivergent C2 Alkylation and [3 + 2]-Cycloaddition of 3-Methylindoles with Aziridines. ACS Catalysis, 2018, 8, 10261-10266.	5.5	35
691	Controllable Pd-Catalyzed Allylation of Indoles with Skipped Enynes: Divergent Synthesis of Indolenines and <i>N</i> -Allylindoles. Organic Letters, 2018, 20, 6084-6088.	2.4	29
692	Synthesis of Indoles through Palladium-Catalyzed Three-Component Reaction of Aryl Iodides, Alkynes, and Diaziridinone. Organic Letters, 2018, 20, 6440-6443.	2.4	39
693	Directing Effects on the Copper-Catalyzed Site-Selective Arylation of Indoles. Organic Letters, 2018, 20, 6502-6505.	2.4	26
694	Trifluoromethylated 5-aminoderivatives of (indol-3-yl)acetic acid. Russian Chemical Bulletin, 2018, 67, 1459-1466.	0.4	3
695	Highly Efficient Rhodiumâ€Catalyzed Oxindoleâ€Directed Oxidative Heckâ€Type Reaction ofNâ€Aryloxindoles with Alkenes. Asian Journal of Organic Chemistry, 2018, 7, 2448-2451.	1.3	4
696	Enantioselective N-Heterocyclic Carbene-Catalyzed Cascade Reaction for the Synthesis of Pyrroloquinolines via N–H Functionalization of Indoles. Organic Letters, 2018, 20, 6998-7002.	2.4	57
697	Carboxylic Acid-Promoted Single-Step Indole Construction from Simple Anilines and Ketones via Aerobic Cross-Dehydrogenative Coupling. Journal of Organic Chemistry, 2018, 83, 14472-14488.	1.7	18
698	Seaweed Secondary Metabolites In Vitro and In Vivo Anticancer Activity. Marine Drugs, 2018, 16, 410.	2.2	66
699	Intramolecular Palladium-Catalyzed Oxidative Amination of Furans: Synthesis of Functionalized Indoles. Journal of Organic Chemistry, 2018, 83, 14010-14021.	1.7	12
700	Palladium-Catalyzed Synthesis of 2,3-Diaryl- <i>N</i> -methylindoles from <i>ortho</i> -Alkynylanilines and Aryl Pinacol Boronic Esters. Organic Letters, 2018, 20, 6872-6876.	2.4	18
701	Enantioselective synthesis of indolo[2,3-b]-dihydrothiopyranones via [3+3] cycloaddition of chiral α,β-unsaturated acylammonium salts. Tetrahedron, 2018, 74, 6804-6808.	1.0	13
702	Visibleâ€Lightâ€Mediated αâ€Oxygenation of 3â€(<i>N</i> , <i>N</i> â€Dimethylaminomethyl)â€Indoles to Aldehy European Journal of Organic Chemistry, 2018, 2018, 6624-6628.	ydes. 1.2	9

C	E A 751	ON	REPO	DT
				ו גוו

#	ARTICLE	IF	CITATIONS
703	Oxidative coupling strategies for the synthesis of indole alkaloids. Chemical Society Reviews, 2018, 47, 8018-8029.	18.7	96
704	Palladium-Catalyzed Dual C(sp ²)–H Functionalization of Indole-2-carboxamides Involving a 1,2-Acyl Migration: A Synthesis of Indolo[3,2- <i>c</i>]quinolinones. Organic Letters, 2018, 20, 5696-5699.	2.4	17
705	BrÃ,nsted acid-catalysed regiodivergent phosphorylation of 2-indolylmethanols to synthesize benzylic site or C3-phosphorylated indole derivatives. Organic and Biomolecular Chemistry, 2018, 16, 7417-7424.	1.5	25
706	K2S2O8-Mediated Arylmethylation of Indoles with Tertiary Amines via sp3 C–H Oxidation in Water. Synlett, 2018, 29, 2306-2310.	1.0	5
707	Gold-catalyzed post-MCR transformations towards complex (poly)heterocycles. Drug Discovery Today: Technologies, 2018, 29, 61-69.	4.0	15
708	Regioselective and Stereoselective Reductive Aziridinium Ring Cleavage Leading to Azabicyclodecane Architecture: Enantioselective Synthesis of (+)-Subincanadine F. Journal of Organic Chemistry, 2018, 83, 12164-12170.	1.7	14
709	The Ambit of Phytotherapy in Psychotic Care. , 2018, , .		0
710	Synergisticâ€Catalysisâ€Enabled Reaction of 2â€Indolymethanols with Oxonium Ylides for the Construction of 3â€Indolylâ€3â€Alkoxy Oxindole Frameworks. Chemistry - an Asian Journal, 2018, 13, 2549-2558.	1.7	62
711	Metalâ€Free [3+2] Tandem Cyclization Synthesis of Unique 11 <i>H</i> â€Pyrido[3′,2′:4,5]Pyrrolo[3,2â€ <i>b</i>]Indolizine from 7â€Azaindoles and Pyridotriazoles. Eu Journal of Organic Chemistry, 2018, 2018, 4197-4201.	rop <i>e</i> an	11
712	Visibleâ€Lightâ€Induced Trifluoromethylation of Isonitrileâ€Substituted Indole Derivatives: Access to 1â€(Trifluoromethyl)â€4,9â€dihydroâ€3 <i>H</i> â€pyrido[3,4â€b]indole and <i>î²</i> â€Carboline Derivatives. A Synthesis and Catalysis, 2018, 360, 2959-2965.	dv an ced	15
713	NH4I-catalyzed chalcogen(S/Se)-functionalization of 5-membered N-heteroaryls under metal-free conditions. Tetrahedron, 2018, 74, 3971-3980.	1.0	53
714	Synthesis of 2-Acylindoles via Ag- and Cu-Catalyzed anti-Michael Hydroamination of β-(2-Aminophenyl)-α,β-ynones: Experimental Results and DFT Calculations. Journal of Organic Chemistry, 2018, 83, 6354-6362.	1.7	36
715	Recent metal-catalysed approaches for the synthesis of cyclopenta[<i>b</i>]indoles. RSC Advances, 2018, 8, 18576-18588.	1.7	56
716	A Bioinspired Synthesis of Polyfunctional Indoles. Angewandte Chemie - International Edition, 2018, 57, 11963-11967.	7.2	26
717	Mechanism of Nickel(II)-Catalyzed C(2)–H Alkynylation of Indoles with Alkynyl Bromide. Organometallics, 2018, 37, 2037-2045.	1.1	23
718	An efficient <i>t</i> -BuOK promoted C3-chalcogenylation of indoles with dichalcogenides. Organic and Biomolecular Chemistry, 2018, 16, 4958-4962.	1.5	51
719	Copper-catalyzed decarboxylative propargylation/hydroamination reactions: access to C3 β-ketoester-functionalized indoles. Chemical Communications, 2018, 54, 8375-8378.	2.2	26
720	Friedel–Crafts Hydroxyalkylation of Indoles with α-Keto Amides using Reusable K ₃ PO ₄ / <i>n</i> Bu ₄ NBr Catalytic System in Water. Journal of Organic Chemistry, 2018, 83, 8827-8839.	1.7	21

	CITATION RE	PORT	
#	Article	IF	CITATIONS
721	Chiral phosphoric acid catalyzed enantioselective <i>N</i> -alkylation of indoles with <i>in situ</i> generated cyclic <i>N</i> -acyl ketimines. Chemical Communications, 2018, 54, 9230-9233.	2.2	38
722	Rh ^{III} â€Catalyzed Directed Selective C7â€Hydroxylation and Acetoxylation of Indolines. ChemistrySelect, 2018, 3, 8035-8039.	0.7	12
723	A catalytic asymmetric interrupted Nazarov-type cyclization of 2-indolylmethanols with cyclic enaminones. Organic and Biomolecular Chemistry, 2018, 16, 5457-5464.	1.5	14
724	Visible Light-Driven C-3 Functionalization of Indoles over Conjugated Microporous Polymers. ACS Catalysis, 2018, 8, 8084-8091.	5.5	113
725	Catalyst Pendentâ€Base Effects on Cyclization of Alkynyl Amines. ChemCatChem, 2018, 10, 4001-4009.	1.8	11
726	Boron Trichlorideâ€Mediated Synthesis of Indoles <i>via</i> the Aminoboration of Alkynes. Advanced Synthesis and Catalysis, 2018, 360, 4054-4059.	2.1	28
727	A Bioinspired Synthesis of Polyfunctional Indoles. Angewandte Chemie, 2018, 130, 12139-12143.	1.6	6
728	Rhodium-catalyzed intramolecular cascade sequence for the formation of fused carbazole-annulated medium-sized rings by cleavage of C(sp ²)–H/C(sp ³)–H bonds. Chemical Communications, 2018, 54, 9147-9150.	2.2	24
729	Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation. Organic Letters, 2018, 20, 3105-3108.	2.4	58
730	A Copper―and Phosphineâ€Free Nickel(II)â€Catalyzed Method for Câ^'H Bond Alkynylation of Benzothiazoles and Related Azoles. Asian Journal of Organic Chemistry, 2018, 7, 1390-1395.	1.3	9
731	Chemodivergent Tandem Cyclizations of 2-Indolylmethanols with Tryptophols: C–N versus C–C Bond Formation. Journal of Organic Chemistry, 2018, 83, 5931-5946.	1.7	20
732	Rhodium-catalyzed asymmetric hydroamination and hydroindolation of keto-vinylidenecyclopropanes. Chemical Science, 2018, 9, 5074-5081.	3.7	11
733	Manganese-catalyzed direct C2-allylation of indoles. Organic Chemistry Frontiers, 2018, 5, 2852-2855.	2.3	19
734	Indole Derivative-Capped Gold Nanoparticles as an Effective Bactericide in Vivo. ACS Applied Materials & Interfaces, 2018, 10, 29398-29406.	4.0	78
735	BrÃ,nsted acid catalysed eco friendly synthesis of quaternary centred C-3 functionalized oxindole derivatives. New Journal of Chemistry, 2018, 42, 14817-14826.	1.4	7
736	Divergent and Orthogonal Approach to Carbazoles and Pyridoindoles from Oxindoles via Indole Intermediates. Organic Letters, 2018, 20, 4759-4763.	2.4	41
737	Hydrosilyl Group-directed Iridium-catalyzed <i>peri</i> -Selective C–H Borylation of Ring-fused (Hetero)Arenes. Chemistry Letters, 2018, 47, 1251-1254.	0.7	9
738	Room temperature MgI2-catalyzed Friedel–Crafts reaction between electron-rich (het)arenes and ethyl glyoxylate. Mendeleev Communications, 2018, 28, 429-430.	0.6	2

#	Article	IF	CITATIONS
739	Chemoselective one-pot access to benzo[e]indole-4,5-diones and naphtho[2,1-b]thiophene-4,5-diones via copper-catalyzed oxidative [3Â+ 2] annulation of α-oxoketene N,S-acetals/β-ketothioamides with α-/β-naphthols. Tetrahedron, 2018, 74, 5920-5931.	1.0	12
740	Synthesis of Chiral Tryptamines via a Regioselective Indole Alkylation. Organic Letters, 2018, 20, 5431-5434.	2.4	22
741	Metal-free benzannulation of yne-allenone esters for atom economical synthesis of functionalized 1-naphthols. Green Chemistry, 2018, 20, 3476-3485.	4.6	40
742	Myoglobinâ€Catalyzed Câ^'H Functionalization of Unprotected Indoles. Angewandte Chemie - International Edition, 2018, 57, 9911-9915.	7.2	113
743	Computational study of Ru-catalyzed cycloisomerization of 2-alkynylanilides. Journal of Molecular Modeling, 2018, 24, 162.	0.8	4
744	Direct Synthesis of Structurally Divergent Indole Alkaloids from Simple Chemicals. Chinese Journal of Chemistry, 2018, 36, 815-818.	2.6	20
745	Regioselective [3+3] Cyclization of 2â€Indolymethanols with Vinylcyclopropanes via Metal Catalysis. Advanced Synthesis and Catalysis, 2018, 360, 3109-3116.	2.1	35
746	Metalâ€Catalyzed Synthesis of Substituted Indoles. Asian Journal of Organic Chemistry, 2018, 7, 1467-1487.	1.3	58
747	Myoglobinâ€Catalyzed Câ^'H Functionalization of Unprotected Indoles. Angewandte Chemie, 2018, 130, 10059-10063.	1.6	23
748	Access to C5-Alkylated Indolines/Indoles via Michael-Type Friedel–Crafts Alkylation Using Aryl-Nitroolefins. Journal of Organic Chemistry, 2018, 83, 9018-9038.	1.7	22
749	Iridiumâ€Catalyzed Direct C4―and C7â€Selective Alkynylation of Indoles Using Sulfurâ€Directing Groups. Angewandte Chemie, 2019, 131, 9961-9965.	1.6	18
750	Direct Access to Functionalized Indoles via Single Electron Oxidation Induced Coupling of Diarylamines with 1,3-Dicarbonyl Compounds. Organic Letters, 2019, 21, 6736-6740.	2.4	19
751	Nickel-catalyzed C–H alkylation of indoles with unactivated alkyl chlorides: evidence of a Ni(<scp>i</scp>)/Ni(<scp>iii</scp>) pathway. Chemical Science, 2019, 10, 9493-9500.	3.7	42
752	Catalyst-free facile synthesis of polycyclic indole/pyrrole substituted-1,2,3-triazoles. Organic and Biomolecular Chemistry, 2019, 17, 8153-8165.	1.5	6
753	Organocatalytic Enantioselective Functionalization of Unactivated Indole C(sp 3)â^'H Bonds. Angewandte Chemie, 2019, 131, 16063-16068.	1.6	5
754	Organocatalytic Enantioselective Functionalization of Unactivated Indole C(sp ³)â^'H Bonds. Angewandte Chemie - International Edition, 2019, 58, 15916-15921.	7.2	17
755	A Strategy for Synthesizing Axially Chiral Naphthylâ€Indoles: Catalytic Asymmetric Addition Reactions of Racemic Substrates. Angewandte Chemie - International Edition, 2019, 58, 15104-15110.	7.2	148
756	Redox-Neutral Rhodium(III)-Catalyzed Annulation of Arylhydrazines with Sulfoxonium Ylides To Synthesize 2-Arylindoles. Journal of Organic Chemistry, 2019, 84, 13013-13021.	1.7	45

#	Article	IF	CITATIONS
757	PIDAâ€Promoted Selective C ₅ Câ^'H Selenylations of Indolines <i>via</i> Weak Interactions. Advanced Synthesis and Catalysis, 2019, 361, 4998-5004.	2.1	18
758	Three-Component One-Pot Synthesis of Highly Functionalized Bis-Indole Derivatives. ACS Omega, 2019, 4, 11832-11837.	1.6	14
759	Synthesis of 2-substituted indoles through cyclization and demethylation of 2-alkynyldimethylanilines by ethanol. Green Chemistry, 2019, 21, 4204-4210.	4.6	18
760	Modular Synthesis of Bicyclic and Tricyclic (Azaâ€) Arenes from Nucleophilic (Azaâ€)Arenes with Electrophilic Side Arms via [4+2] Annulation Reactions. Advanced Synthesis and Catalysis, 2019, 361, 4369-4378.	2.1	7
761	Rhodium(<scp>iii</scp>)-catalyzed indole synthesis at room temperature using the transient oxidizing directing group strategy. Chemical Communications, 2019, 55, 9547-9550.	2.2	25
762	Combining enzymes and organometallic complexes: novel artificial metalloenzymes and hybrid systems for C–H activation chemistry. Organic and Biomolecular Chemistry, 2019, 17, 7114-7123.	1.5	17
763	A BrÃ,nsted Acid Catalyzed Cascade Reaction for the Conversion of Indoles to αâ€(3â€Indolyl) Ketones by Using 2â€Benzyloxy Aldehydes. Chemistry - A European Journal, 2019, 25, 11521-11527.	1.7	25
764	Davis–Beirut Reaction: Diverse Chemistries of Highly Reactive Nitroso Intermediates in Heterocycle Synthesis. Accounts of Chemical Research, 2019, 52, 2256-2265.	7.6	28
765	Phosphine atalyzed [3+2] Cycloaddition and Vinylation of Indoleâ€Đerived α,αâ€Dicyanoolefins with γ‧ubstituted Allenoates. Asian Journal of Organic Chemistry, 2019, 8, 1893-1902.	1.3	3
766	Mass Spectra of New Heterocycles: XIX. Electron Impact and Chemical Ionization Study of 2,7-Dihydrothiopyrano[2,3-b]pyrrol-6-amines. Russian Journal of Organic Chemistry, 2019, 55, 824-830.	0.3	2
767	Nitrobutadienes as powerful benzannulating agents: An unprecedented easy access to rare nitroindoles. Tetrahedron, 2019, 75, 4506-4515.	1.0	7
768	Indole-nitroimidazole conjugates as efficient manipulators to decrease the genes expression of methicillin-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 2019, 179, 723-735.	2.6	57
769	Aza-Annulation of 1,2,3,4-Tetrahydro-β-carboline Derived Enaminones and Nitroenamines: Synthesis of Functionalized Indolizino[8,7-b]indoles, Pyrido[1,2-a:3,4-b′]diindoles, Indolo[2,3-a]quinolizidine-4-ones and Other Tetrahydro-β-carboline Fused Heterocycles. ACS Omega, 2019, 4, 17910-17922.	1.6	11
770	Synthesis of C2â€Phosphorylated Indoles <i>via</i> Metalâ€Free 1,2â€Phosphorylation of 3â€Indolylmethanols with P(O)â€H Species. Advanced Synthesis and Catalysis, 2019, 361, 5311-5316.	2.1	20
771	Construction of pyrrole- and indole-fused CF3-piperazine derivatives. Journal of Fluorine Chemistry, 2019, 226, 109361.	0.9	3
772	Catalyst-Controlled Selective Alkylation/Cyclopropanation of Indoles with Vinyl Diazoesters. Organic Letters, 2019, 21, 8488-8491.	2.4	34
773	miRNA–Microbiota Interaction in Gut Homeostasis and Colorectal Cancer. Trends in Cancer, 2019, 5, 666-669.	3.8	35
774	Palladiumâ€catalyzed regioselective C2â€arylation of 5â€aminoindole. Journal of Heterocyclic Chemistry, 2019, 56, 3289-3296.	1.4	7

#	Article	IF	CITATIONS
775	Cuâ€NHCâ€Catalyzed Enantioselective Conjugate Silyl addition to Indolâ€1â€ylacrylate Derivatives. ChemistrySelect, 2019, 4, 11358-11361.	0.7	7
776	<i>N</i> -Alkylation-Initiated Redox-Neutral [5 + 2] Annulation of 3-Alkylindoles with <i>o</i> -Aminobenzaldehydes: Access to Indole-1,2-Fused 1,4-Benzodiazepines. Organic Letters, 2019, 21, 8904-8908.	2.4	38
777	<i>in</i> â€ <i>situ</i> Formation of RSCI/ArSeCl and Their Oxidative Coupling with Enaminone Derivatives Under Transitionâ€metal Free Conditions. Advanced Synthesis and Catalysis, 2019, 361, 4926-4932.	2.1	35
778	Asymmetric Dearomatization of Indole Derivatives with Nâ€Hydroxycarbamates Enabled by Photoredox Catalysis. Angewandte Chemie, 2019, 131, 18237-18242.	1.6	60
779	Ultrasonic Cavitation Facilitates Rapid Synthesis of Trisubstituted Pyrazole Scaffolds through Michael Addition/Domino Cyclization. ChemistrySelect, 2019, 4, 9807-9810.	0.7	6
780	A consecutive one-pot two-step approach to novel trifluoromethyl-substituted bis(indolyl)methane derivatives promoted by Sc(OTf)3 and p-TSA. Tetrahedron Letters, 2019, 60, 151329.	0.7	15
781	Atroposelective Haloamidation of Indoles with Amino Acid Derivatives and Hypohalides. Organic Letters, 2019, 21, 8819-8823.	2.4	14
782	A Strategy for Synthesizing Axially Chiral Naphthylâ€Indoles: Catalytic Asymmetric Addition Reactions of Racemic Substrates. Angewandte Chemie, 2019, 131, 15248-15254.	1.6	33
783	Asymmetric Dearomatization of Indole Derivatives with Nâ€Hydroxycarbamates Enabled by Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 18069-18074.	7.2	95
784	An effective green and ecofriendly catalyst for synthesis of bis(indolyl)methanes as promising antimicrobial agents. Journal of Heterocyclic Chemistry, 2019, 56, 3324-3332.	1.4	13
785	Remote C6-Enantioselective C–H Functionalization of 2,3-Disubstituted Indoles through the Dual H-Bonds and π–π Interaction Strategy Enabled by CPAs. Organic Letters, 2019, 21, 8662-8666.	2.4	39
786	Protocols for the Syntheses of 2,2′-Bis(indolyl)arylmethanes, 2-Benzylated Indoles, and 5,7-Dihydroindolo[2,3- <i>b</i>]carbazoles. Journal of Organic Chemistry, 2019, 84, 12120-12130.	1.7	12
787	Palladium-catalyzed intramolecular C H acylation of indoles with thioester. Tetrahedron Letters, 2019, 60, 151061.	0.7	6
788	Combining Organocatalysis and Photoredox Catalysis: An Asymmetric Synthesis of Chiral β―Amino α― Substituted Tryptamines. ChemCatChem, 2019, 11, 5723-5727.	1.8	8
789	Synthesis of 2-Arylindoles by Rhodium-Catalyzed/Copper-Mediated Annulative Coupling of N-Aryl-2-aminopyridines and Propargyl Alcohols via Selective C–H/C–C Activation. Organic Letters, 2019, 21, 7455-7459.	2.4	34
790	Cu(II)-Mediated Cross-Dehydrogenative Coupling of Indolines with Sulfonamides, Carboxamides, and Amines. Journal of Organic Chemistry, 2019, 84, 13624-13635.	1.7	20
791	Computational design of an intramolecular photocyclization reaction with state-selective reactivity: a strategy for indole synthesis. Green Chemistry, 2019, 21, 5521-5527.	4.6	8
792	Photodriven Photocatalyst/Metal-Free Direct C–C/C–N Bond Formation: Synthesis of Indoles via EDA Complexes. Journal of Organic Chemistry, 2019, 84, 14168-14178.	1.7	13

#	Article	IF	CITATIONS
793	NH4I/1,10-phenanthroline catalyzed direct sulfenylation of N-heteroarenes with ethyl arylsulfinates. Tetrahedron, 2019, 75, 130664.	1.0	27
794	Three-component 3-(phosphoryl)methylindole synthesis from indoles, H-phosphine oxides and carbonyl compounds under metal-free conditions. Green Chemistry, 2019, 21, 792-797.	4.6	20
795	Theoretical studies on Rh(<scp>iii</scp>)-catalyzed regioselective C–H bond cyanation of indole and indoline. Dalton Transactions, 2019, 48, 168-175.	1.6	9
796	Caulerpa taxifolia inhibits cell proliferation and induces oxidative stress in breast cancer cells. Biologia (Poland), 2019, 74, 187-193.	0.8	6
797	Copperâ€Catalyzed Sequential C(<i>sp</i> ²)/C(<i>sp</i> ³)â^'H Amination of 2â€Vinylanilines with <i>N</i> â€Fluorobenzenesulfonimide. Advanced Synthesis and Catalysis, 2019, 361, 1771-1776.	2.1	11
798	Replacement of Stoichiometric DDQ with a Low Potential <i>o</i> -Quinone Catalyst Enabling Aerobic Dehydrogenation of Tertiary Indolines in Pharmaceutical Intermediates. Organic Letters, 2019, 21, 1176-1181.	2.4	43
799	Electrochemical oxidative C–H/N–H cross-coupling for C–N bond formation with hydrogen evolution. Chemical Communications, 2019, 55, 1809-1812.	2.2	103
800	Control of site selectivity in trifluoromethylation of alkenes bearing a pendant indolyl group: Synthesis of CF3-containing tetrahydrocarbazoles. Tetrahedron, 2019, 75, 1327-1335.	1.0	7
801	Regioselective C3â€Phosphonation of Free Indoles via Transitionâ€Metalâ€Free Radical/Hydrolysis Cascade. European Journal of Organic Chemistry, 2019, 2019, 1808-1814.	1.2	10
802	in vitro Cytotoxic Evaluation of Some New Synthesized Pyridazine Derivatives. Asian Journal of Chemistry, 2019, 31, 744-750.	0.1	2
803	Progress in total synthesis of subincanadine alkaloids and their congeners. Organic and Biomolecular Chemistry, 2019, 17, 745-761.	1.5	14
804	Cu/Pd-Catalyzed chemoselective synthesis of C-3 dicarbonyl indoles and bis(indolyl)alkanes from aldehydes and indoles. Organic Chemistry Frontiers, 2019, 6, 627-631.	2.3	11
805	Fabrication of an amyloid fibril-palladium nanocomposite: a sustainable catalyst for C–H activation and the electrooxidation of ethanol. Journal of Materials Chemistry A, 2019, 7, 4486-4493.	5.2	28
806	Synthesis of Functionalized Indole-1-oxide Derivatives via Cascade Reactions of Allenynes and tBuONO. Organic Letters, 2019, 21, 3918-3922.	2.4	22
807	Theoretical studies on the mechanism of Ru(<scp>ii</scp>)-catalyzed regioselective C–H allylation of indoles with allyl alcohols. Dalton Transactions, 2019, 48, 9181-9186.	1.6	3
808	Cuâ€Mediated C7 Acetoxylation of Indolines. ChemistrySelect, 2019, 4, 5835-5838.	0.7	2
809	Domino Câ^'S/Câ^'N Bond Formation Using Wellâ€Defined Copperâ€Phosphine Complex Catalyst: Divergent Approach to 3â€6ulfenylated Indoles. Advanced Synthesis and Catalysis, 2019, 361, 4005-4015.	2.1	10
810	Synthesis of the Natural Product lotrochamide B. Chemistry of Natural Compounds, 2019, 55, 499-501.	0.2	3

#	Article	IF	Citations
811	Multicomponent Ugi Reaction of Indole-N-carboxylic Acids: Expeditious Access to Indole Carboxamide Amino Amides. Organic Letters, 2019, 21, 5269-5272.	2.4	20
812	Nd(OTf)3-catalyzed intramolecular-intermolecular cascade cyclization reaction: An access to phenanthro[9,10-b]furan derivatives. Journal of Saudi Chemical Society, 2019, 23, 1041-1048.	2.4	2
813	2-Phenylindole derivatives as anticancer agents: synthesis and screening against murine melanoma, human lung and breast cancer cell lines. Synthetic Communications, 2019, 49, 2258-2269.	1.1	8
814	Electrochemically enabled chemoselective sulfonylation and hydrazination of indoles. Green Chemistry, 2019, 21, 3807-3811.	4.6	76
815	NaClO-Promoted Atroposelective Couplings of 3-Substituted Indoles with Amino Acid Derivatives. Organic Letters, 2019, 21, 4754-4758.	2.4	16
816	Rh(<scp>iii</scp>)-catalyzed C-7 arylation of indolines with arylsilanes <i>via</i> C–H activation. RSC Advances, 2019, 9, 18191-18195.	1.7	19
817	Synthesis of C4-Aminated Indoles via a Catellani and Retro-Diels–Alder Strategy. Journal of the American Chemical Society, 2019, 141, 9731-9738.	6.6	64
818	Copper(I) atalyzed <i>N</i> arboxamidation of Indoles with Isocyanates: Facile and General Method for the Synthesis of Indoleâ€lâ€carboxamides. European Journal of Organic Chemistry, 2019, 2019, 3949-3954.	1.2	3
819	The effect of Delphinium denudatum (Jadwar) on fatigue: A randomized double blind placebo-controlled clinical trial. Complementary Therapies in Medicine, 2019, 46, 29-35.	1.3	7
820	Facile synthesis of 2-substituted benzo[<i>b</i>]furans and indoles by copper-catalyzed intramolecular cyclization of 2-alkynyl phenols and tosylanilines. RSC Advances, 2019, 9, 17975-17978.	1.7	22
821	Synthesis of 2-Aminoindoles through Gold-Catalyzed C–H Annulations of Sulfilimines with <i>N</i> -Arylynamides. Organic Letters, 2019, 21, 4327-4330.	2.4	53
822	Enantioselective <i>N</i> -Alkylation of Indoles via an Intermolecular Aza-Wacker-Type Reaction. Journal of the American Chemical Society, 2019, 141, 8670-8674.	6.6	47
823	The Selective <i>N</i> â€Functionalization of Indoles via <i>aza</i> â€Michael Addition in the Ligand Sphere of a Chiral Nickel(II) Complex: Asymmetric Synthesis of (<i>S</i>)â€1 <i>H</i> â€Indoleâ€Alanine Derivatives. European Journal of Organic Chemistry, 2019, 2019, 3699-3703.	1.2	19
824	A hexameric resorcinarene capsule as a hydrogen bonding catalyst in the conjugate addition of pyrroles and indoles to nitroalkenes. Organic Chemistry Frontiers, 2019, 6, 2339-2347.	2.3	26
825	Mechanochemical Copperâ€Catalyzed Asymmetric Michaelâ€Type Friedel–Crafts Alkylation of Indoles with Arylidene Malonates. Chemistry - A European Journal, 2019, 25, 9202-9205.	1.7	26
826	Regioselective Synthesis of 2â€Arylindoles via Palladium atalyzed Cyclization of Phenylglyoxal and 2â€Anilinoacetophenones with Anilines. European Journal of Organic Chemistry, 2019, 2019, 3763-3770.	1.2	4
827	Metal- and phosphine-free electrophilic vicinal chloro-alkylthiolation and trifluoromethylthiolation of indoles using sodium sulfinate in the presence of triphosgene. Organic Chemistry Frontiers, 2019, 6, 2435-2440.	2.3	20
828	Iridiumâ€Catalyzed Direct C4―and C7â€Selective Alkynylation of Indoles Using Sulfurâ€Directing Groups. Angewandte Chemie - International Edition, 2019, 58, 9856-9860.	7.2	68

#	ARTICLE Optimizing ligand structure for low-loading and fast catalysis for alkynyl-alcohol and -amine	IF 1.6	Citations
830	cyclization. Dalton Transactions, 2019, 48, 7928-7937. Design, synthesis, and molecular docking of new 5-HT reuptake inhibitors based on modified 1,2-dihydrocyclopenta[b]indol-3(4H)-one scaffold. Journal of Chemical Sciences, 2019, 131, 1.	0.7	4
831	Cobalt Catalyzed Hydroarylation of Michael Acceptors with Indolines Directed by a Weakly Coordinating Functional Group. Organic Letters, 2019, 21, 4049-4053.	2.4	40
832	RhCl ₃ ·3H ₂ O-Catalyzed Regioselective C(sp ²)–H Alkoxycarbonylation: Efficient Synthesis of Indole- and Pyrrole-2-carboxylic Acid Esters. ACS Catalysis, 2019, 9, 5545-5551.	5.5	26
833	Toward Acetylene Renaissance: Functionally Rich <i>N</i> Aminoindoles from Acetylene Gas, Ketones, and Hydrazines in Two Steps. Organic Letters, 2019, 21, 4275-4279.	2.4	10
834	Zinc Chloride Catalyzed Amino Claisen Rearrangement of 1-N-Allylindolines: An Expedient Protocol for the Synthesis of Functionalized 7-Allylindolines. Heterocyclic Communications, 2019, 25, 22-26.	0.6	3
835	Spiro Indane-Based Phosphine-Oxazolines as Highly Efficient P,N Ligands for Enantioselective Pd-Catalyzed Allylic Alkylation of Indoles and Allylic Etherification. Molecules, 2019, 24, 1575.	1.7	12
836	Computational structural enzymology methodologies for the study and engineering of fatty acid synthases, polyketide synthases and nonribosomal peptide synthetases. Methods in Enzymology, 2019, 622, 375-409.	0.4	11
837	Protecting group-directed annulations of tetra-substituted oxindole olefins and sulfur ylides: regio- and chemoselective synthesis of cyclopropane- and dihydrofuran-fused spirooxindoles. RSC Advances, 2019, 9, 12255-12264.	1.7	12
838	Goldâ€Catalyzed Dual Annulation of Homopropargyl Alcohols with Nitrones: Synthesis of Tetrahydropyrano[4,3â€ <i>b</i>]indole Scaffolds. Advanced Synthesis and Catalysis, 2019, 361, 3569-3574.	2.1	10
839	Rhodiumâ€Catalyzed [5+1]â€Cycloaddition Reactions to Spiroâ€Benzo[<i>e</i>][1,3]Oxazineindoline Imines. Asian Journal of Organic Chemistry, 2019, 8, 1385-1389.	1.3	12
840	Ru(II)-catalyzed regioselective C-7 hydroxymethylation of indolines with formaldehyde. Tetrahedron Letters, 2019, 60, 1481-1486.	0.7	10
841	Pdâ€Catalyzed Tandem Coupling Reaction of 2â€ <i>gem</i> â€Dibromovinylanilines and <i>N</i> â€Tosylhydrazones to Construct 2â€(1â€phenylvinyl)â€indoles. Advanced Synthesis and Catalysis, 2019, 361, 3599-3604.	2.1	9
842	Synthesis of indolo[2,1- <i>a</i>]isoquinoline derivatives <i>via</i> visible-light-induced radical cascade cyclization reactions. Chemical Communications, 2019, 55, 5922-5925.	2.2	74
843	Copper-catalyzed oxidative C H bond functionalization of N-allylbenzamide for C N and C C bond formation. Tetrahedron Letters, 2019, 60, 1437-1440.	0.7	7
844	Phosphine-catalyzed regiospecific (3 + 2) cyclization of 3-nitroindoles with allene esters. Organic and Biomolecular Chemistry, 2019, 17, 3894-3901.	1.5	23
845	Exploring the necessity of an acidic additive for Pd(<scp>ii</scp>)-catalyzed exclusive C4-fluoroalkylation of 3-acetylindole: a detailed DFT study on the mechanism and regioselectivity. Organic Chemistry Frontiers, 2019, 6, 2607-2618.	2.3	14
846	Synthesis of indoles and quinazolines <i>via</i> additive-controlled selective C–H activation/annulation of <i>N</i> -arylamidines and sulfoxonium ylides. Chemical Communications, 2019, 55, 4039-4042.	2.2	97

			2
#	ARTICLE	IF	CITATIONS
847	A one-pot four-component domino protocol for the synthesis of indole and coumarin containing pyridine-3-carbonitrile derivatives. Monatshefte Für Chemie, 2019, 150, 691-702.	0.9	10
848	Meglumine as a green, efficient and reusable catalyst for synthesis and molecular docking studies of bis(indolyl)methanes as antioxidant agents. Bioorganic Chemistry, 2019, 87, 465-473.	2.0	18
849	Copper-Catalyzed Tandem <i>O</i> -Vinylation of Arylhydroxylamines/[3,3]-Rearrangement/Cyclization: Synthesis of Highly Substituted Indoles and Benzoindoles. ACS Catalysis, 2019, 9, 3906-3912.	5.5	36
850	Gold(<scp>i</scp>)-catalyzed enantioselective synthesis of polycyclic indoline skeletons and enantiomerically enriched β-substituted tryptamine-allenes by kinetic resolution. Chemical Communications, 2019, 55, 4210-4213.	2.2	14
851	Cobalt-catalyzed C2α-acyloxylation of 2-substituted indoles with <i>tert</i> -butyl peresters. Organic and Biomolecular Chemistry, 2019, 17, 3343-3347.	1.5	2
852	A chemo- and regioselective C6-functionalization of 2,3-disubstituted indoles: highly efficient synthesis of diarylindol-6-ylmethanes. Organic and Biomolecular Chemistry, 2019, 17, 3462-3470.	1.5	21
853	Oxidative dual C–H selenation of imidazoheterocycles with ethers or alkanes using selenium powder <i>via</i> a radical pathway. Organic Chemistry Frontiers, 2019, 6, 1414-1422.	2.3	51
854	Directing-Group-Assisted Manganese-Catalyzed Cyclopropanation of Indoles. Organic Letters, 2019, 21, 2025-2028.	2.4	32
855	Regioselective three-component synthesis of 1,2-diarylindoles from cyclohexanones, α-hydroxyketones and anilines under transition-metal-free conditions. Chemical Communications, 2019, 55, 4079-4082.	2.2	13
856	V ₂ O ₅ based quadruple nanoâ€perovskite as a new catalyst for the synthesis of bis and tetrakis heterocyclic compounds. Applied Organometallic Chemistry, 2019, 33, e4783.	1.7	11
857	Asymmetric <i>N</i> -Hydroxyalkylation of Indoles with Ethyl Glyoxalates Catalyzed by a Chiral Phosphoric Acid: Highly Enantioselective Synthesis of Chiral <i>N,O</i> -Aminal Indole Derivatives. Organic Letters, 2019, 21, 2795-2799.	2.4	27
858	Rhodiumâ€Catalyzed Câ~'H Functionalization of N â€(2â€Pyrimidyl)indole with Internal Alkynes: Formation of Unexpected Products by Regulating the Amount of Silver Acetate. Advanced Synthesis and Catalysis, 2019, 361, 2855-2863.	2.1	26
859	Green and Facile Assembly of Diverse Fused N-Heterocycles Using Gold-Catalyzed Cascade Reactions in Water. Molecules, 2019, 24, 988.	1.7	22
860	Photorearrangement of dihetarylethenes as a tool for the benzannulation of heterocycles. Organic and Biomolecular Chemistry, 2019, 17, 4990-5000.	1.5	19
861	Zn(OTf) ₂ -catalyzed access to symmetrical and unsymmetrical bisindoles from α-keto amides. Organic and Biomolecular Chemistry, 2019, 17, 3921-3933.	1.5	13
862	Annulation Cascades of <i>N</i> -Allyl- <i>N</i> -((2-bromoaryl)ethynyl)amides Involving C–H Functionalization. Organic Letters, 2019, 21, 2786-2789.	2.4	18
863	The Antidepressant-like Effect of Flavonoids from Trigonella Foenum-Graecum Seeds in Chronic Restraint Stress Mice via Modulation of Monoamine Regulatory Pathways. Molecules, 2019, 24, 1105.	1.7	27
864	Synthesis, NMR analysis and X-ray crystal structure of novel 1,5-dibenzyl-1,2,5,6-tetrahydro-1,5-diazocines. Journal of Molecular Structure, 2019, 1188, 7-13.	1.8	4

		CITATION RE	PORT	
#	ARTICLE		IF	Citations
865	Photo-physical properties of substituted 2,3-distyryl indoles: Spectroscopic, computatio biological insights. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376		2.0	1
866	Cyclopentadienyl cobalt(III) complexes: Synthetic and catalytic chemistry. Coordination Reviews, 2019, 387, 1-31.	Chemistry	9.5	41
867	Bioactive and luminescent indole and isatin based gold(i) derivatives. Dalton Transaction 3098-3108.	ıs, 2019, 48,	1.6	17
868	Asymmetric construction of polycyclic indole derivatives with different ring connectivitie organocatalysis triggered two-step sequence. Organic Chemistry Frontiers, 2019, 6, 919		2.3	20
869	Design and Catalytic Asymmetric Construction of Axially Chiral 3,3′â€Bisindole Skele Chemie, 2019, 131, 3046-3052.	tons. Angewandte	1.6	51
870	Synthesis of Functionalised Indoline and Isoquinoline Derivatives through a Silylcarbocyclisation/Desilylation Sequence. ChemistrySelect, 2019, 4, 2505-2511.		0.7	16
871	Copper-catalyzed cross-dehydrogenative coupling between quinazoline-3-oxides and inc Advances, 2019, 9, 5870-5877.	loles. RSC	1.7	17
872	Synthesis of <i>N-</i> Biheteroarenes via Acceptorless Dehydrogenative Coupling of Ber Amines with Indole Derivatives. Journal of Organic Chemistry, 2019, 84, 3559-3565.	zocyclic	1.7	14
873	Design and Strategic Synthesis of Some \hat{I}^2 -Carboline-Based Novel Natural Products of Bi Importance. , 0, , .	ological		1
874	Ruthenium(II)â€Catalyzed Câ^'H Bond [3+2] Annulation of <i>N</i> â€Nitrosoanilines w Asian Journal of Organic Chemistry, 2019, 8, 2209-2212.	ith Alkynes in Water.	1.3	11
875	Gut microbial metabolites in depression: understanding the biochemical mechanisms. N 2019, 6, 454-481.	licrobial Cell,	1.4	161
876	Palladium-catalyzed regioselective C–H alkynylation of indoles with haloalkynes: acce functionalized 7-alkynylindoles. Chemical Communications, 2019, 55, 13769-13772.	ss to	2.2	36
877	Controllable synthesis of pyrido[2,3- <i>b</i>]indol-4-ones or indolo[3,2- <i>b</i>]quinol formal intramolecular C(sp ²)–H functionalization. Organic and Biomolec 2019, 17, 9960-9965.	ines <i>via</i> :ular Chemistry,	1.5	6
878	Copper-catalyzed nitrene transfer/cyclization cascade to synthesize 3a-nitrogenous furc pyrroloindolines. Organic Chemistry Frontiers, 2019, 6, 3934-3938.	vindolines and	2.3	9
879	Cascade π-Extended Decarboxylative Annulation Involving Cyclic Diaryliodonium Salts: Synthesis of Phenanthridines and Benzocarbazoles via a Traceless Directing Group Strat Letters, 2019, 21, 9869-9873.	Site-Selective egy. Organic	2.4	40
880	Recent Studies on Anti-Depressant Bioactive Substances in Selected Species from the G Hemerocallis and Gladiolus: A Systematic Review. Pharmaceuticals, 2019, 12, 172.	enera	1.7	27
881	Metabolites from marine invertebrates and their symbiotic microorganisms: molecular d discovery, mining, and application. Marine Life Science and Technology, 2019, 1, 60-94.		1.8	68
882	Efficient and Chemoselective Amidation of <i>β</i> arboline Carboxylic Acids. Chem 12978-12982.	istrySelect, 2019, 4,	0.7	5

#	Article	IF	CITATIONS
883	Anticancer Molecule Discovery via C2-Substituent Promoted Oxidative Coupling of Indole and Enolate. IScience, 2019, 22, 214-228.	1.9	9
884	BrÃnsted Acid-Catalyzed Tandem Pinacol-Type Rearrangement for the Synthesis of α-(3-Indolyl) Ketones by Úsing α-Hydroxy Aldehydes. Journal of Organic Chemistry, 2019, 84, 16003-16012.	1.7	22
885	Weak Coordination-Guided Regioselective Direct Redox-Neutral C4 Allylation of Indoles with Morita–Baylis–Hillman Adducts. Organic Letters, 2019, 21, 9898-9903.	2.4	38
886	A Fast Track to Indoles and Annulated Indoles through <i>ortho</i> -vs <i>ipso-</i> Amination of Aryl Halides. Organic Letters, 2019, 21, 10143-10148.	2.4	23
887	Silver-promoted regioselective [4+2] annulation reaction of indoles with alkenes to construct dihydropyrimidoindolone scaffolds. Chemical Communications, 2019, 55, 14383-14386.	2.2	21
888	A Sc(OTf) ₃ catalyzed dehydrogenative reaction of electron-rich (hetero)aryl nucleophiles with 9-aryl-fluoren-9-ols. Organic and Biomolecular Chemistry, 2019, 17, 9615-9619.	1.5	6
889	Catalyst-free visible-light-induced condensation to synthesize bis(indolyl)methanes and biological activity evaluation of them as potent human carboxylesterase 2 inhibitors. RSC Advances, 2019, 9, 40168-40175.	1.7	13
890	Tryptophol and derivatives: natural occurrence and applications to the synthesis of bioactive compounds. Natural Product Reports, 2019, 36, 490-530.	5.2	41
891	Paired Electrochemical Method for Synthesis of New Phenylcarbonimidoyl Dicyanide Dyes. ACS Sustainable Chemistry and Engineering, 2019, 7, 1956-1962.	3.2	14
892	Ru ^{II} â€Catalysed Regioselective <i>C–N</i> Bond Formation of Indolines and Carbazole with Acyl Azides. European Journal of Organic Chemistry, 2019, 2019, 1677-1684.	1.2	17
893	Comparative Analysis of Hydrophilic Ingredients in Toad Skin and Toad Venom Using the UHPLC-HR-MS/MS and UPLC-QqQ-MS/MS Methods Together with the Anti-Inflammatory Evaluation of Indolealkylamines. Molecules, 2019, 24, 86.	1.7	27
894	(CH ₃) ₂ CuLi/Cu(OTf) ₂ Mediated <i>N</i> - or <i>O</i> -Cyclization of Urea-Tethered Cyclobuta[<i>b</i>]indolines. Organic Letters, 2019, 21, 129-133.	2.4	4
895	Oneâ€Pot Copper atalyzed Cascade Bicyclization Strategy for Synthesis of 2â€(1 H) Tj ETQq0 0 0 rgBT /Over Oxygen Source. Advanced Synthesis and Catalysis, 2019, 361, 490-495.	lock 10 T 2.1	f 50 267 Td (â 7
896	Design and Catalytic Asymmetric Construction of Axially Chiral 3,3′â€Bisindole Skeletons. Angewandte Chemie - International Edition, 2019, 58, 3014-3020.	7.2	244
897	Harnessing the Chemistry of the Indole Heterocycle to Drive Discoveries in Biology and Medicine. ChemBioChem, 2019, 20, 2273-2297.	1.3	73
898	Highly selective C–H bond activation of <i>N</i> -arylbenzimidamide and divergent couplings with diazophosphonate compounds: a catalyst-controlled selective synthetic strategy for 3-phosphorylindoles and 4-phosphorylisoquinolines. Organic Chemistry Frontiers, 2019, 6, 393-398.	2.3	34
899	Gold atalyzed Rapid Construction of Nitrogen ontaining Heterocyclic Compound Library with Scaffold Diversity and Molecular Complexity. Advanced Synthesis and Catalysis, 2019, 361, 1419-1440.	2.1	34
900	Pd atalyzed Regioselective Direct Double C–H Arylation of 6,7â€Benzindoles. European Journal of Organic Chemistry, 2019, 2019, 73-76.	1.2	6

#	Article	IF	CITATIONS
901	MIL-101 supported highly active single-site metal catalysts for tricomponent coupling. Applied Catalysis A: General, 2019, 569, 110-116.	2.2	23
902	Green and efficient extraction of different types of bioactive alkaloids using deep eutectic solvents. Microchemical Journal, 2019, 145, 345-353.	2.3	90
903	Ruthenium-catalyzed synthesis of indole derivatives from N-aryl-2-aminopyridines and alpha-carbonyl sulfoxonium ylides. Organic and Biomolecular Chemistry, 2019, 17, 240-243.	1.5	42
904	Asymmetric Michael Addition of 2-Acetyl Azaarenes to β-CF ₃ -β-(3-indolyl)nitroalkenes Catalyzed by a Cobalt(II)/(imidazoline-oxazoline) Complex. Journal of Organic Chemistry, 2019, 84, 191-203.	1.7	14
905	Nickel-Catalyzed Straightforward and Regioselective C–H Alkenylation of Indoles with Alkenyl Bromides: Scope and Mechanistic Aspect. ACS Catalysis, 2019, 9, 431-441.	5.5	45
906	Functionalization of π-activated alcohols by trapping carbocations in pure water under smooth conditions. Arabian Journal of Chemistry, 2020, 13, 1866-1873.	2.3	6
907	Copper-Mediated One-Pot Synthesis of Indoles through Sequential Hydroamination and Cross-Dehydrogenative Coupling Reaction. Synthesis, 2020, 52, 75-84.	1.2	6
908	Ironâ€Catalyzed Functionalization of 3â€Benzylideneindoline Through Tandem Csp ² –Csp ³ Bond Formation/Isomerization with Ï€â€Activated Alcohols. European Journal of Organic Chemistry, 2020, 2020, 61-65.	1.2	7
909	Baseâ€Mediated Reductive Coupling of Indoleâ€3â€ŧosylhydrazone with Thiols/Boronic Acids: Facile Synthesis of 3â€{phenylthio)methyl/benzyl Indole Derivatives. ChemistrySelect, 2020, 5, 591-600.	0.7	8
910	Ruthenium(II)-Catalyzed Regioselective Ortho C–H Allenylation of Electron-Rich Aniline and Phenol Derivatives. Journal of Organic Chemistry, 2020, 85, 2048-2058.	1.7	8
911	Site-Selective Rh-Catalyzed C-7 and C-6 Dual C–H Functionalization of Indolines: Synthesis of Functionalized Pyrrolocarbazoles. Journal of Organic Chemistry, 2020, 85, 2793-2805.	1.7	16
912	One pot synthesis of pyrrolo[3,2,1-de]phenanthridines from 7-phenylindoles via tandem C–H olefination/aza-Michael addition. Organic Chemistry Frontiers, 2020, 7, 53-63.	2.3	10
913	Copper-catalysed oxidative α-C(sp3)–H nitroalkylation of (hetero)arene-fused cyclic amines. Organic Chemistry Frontiers, 2020, 7, 425-429.	2.3	9
914	Chemoselective Ring Closure of 4-(3-Methyl-2-oxo-2,5-dihydro-1 <i>H</i> -pyrrol-1-yl)butanal Leading to Pandalizine A. ACS Omega, 2020, 5, 859-863.	1.6	0
915	Dialkylterphenyl Phosphineâ€Based Palladium Precatalysts for Efficient Aryl Amination of <i>N</i> â€Nucleophiles. Chemistry - A European Journal, 2020, 26, 1064-1073.	1.7	10
916	Synthesis of tetrahydrothiopyrano[2,3- <i>b</i>]indoles <i>via</i> [3+3] annulation of nitroallylic acetates with indoline-2-thiones. New Journal of Chemistry, 2020, 44, 1389-1399.	1.4	17
917	Porous organic polymers: a promising platform for efficient photocatalysis. Materials Chemistry Frontiers, 2020, 4, 332-353.	3.2	256
918	Organocatalytic Asymmetric Synthesis of Indole-Based Chiral Heterocycles: Strategies, Reactions, and Outreach. Accounts of Chemical Research, 2020, 53, 425-446.	7.6	414

	CHATION N		
#	Article	IF	Citations
919	Construction of Bisindolines via Oxidative Coupling Cyclization. Organic Letters, 2020, 22, 116-119.	2.4	9
920	Iodine and BrÃ,nsted acid catalyzed C–C bond cleavage of 1,3-diketones for the acylation of amines. Synthetic Communications, 2020, 50, 177-184.	1.1	6
921	Palladium atalyzed Enantioselective Cacchi Reaction: Asymmetric Synthesis of Axially Chiral 2,3â€Disubstituted Indoles. Angewandte Chemie - International Edition, 2020, 59, 2105-2109.	7.2	138
922	Chiral BrÃ,nsted Acid from Chiral Phosphoric Acid Boron Complex and Water: Asymmetric Reduction of Indoles. Angewandte Chemie, 2020, 132, 3320-3325.	1.6	8
923	Palladium atalyzed Enantioselective Cacchi Reaction: Asymmetric Synthesis of Axially Chiral 2,3â€Disubstituted Indoles. Angewandte Chemie, 2020, 132, 2121-2125.	1.6	40
924	Chiral BrÃ,nsted Acid from Chiral Phosphoric Acid Boron Complex and Water: Asymmetric Reduction of Indoles. Angewandte Chemie - International Edition, 2020, 59, 3294-3299.	7.2	37
925	Construction of Unusual Indole-Based Heterocycles from Tetrahydro-1H-pyridazino[3,4-b]indoles. Molecules, 2020, 25, 4124.	1.7	1
926	Copper atalyzed Addition of Grignard Reagents to in situ Generated Indoleâ€Derived Vinylogous Imines. Chemistry - A European Journal, 2020, 26, 16277-16280.	1.7	9
927	Palladium(<scp>ii</scp>)-catalyzed tandem cyclization of 2-ethynylaniline tethered cinnamyl acetate for the synthesis of indenoindoles. Organic and Biomolecular Chemistry, 2020, 18, 8850-8853.	1.5	6
928	Palladium complexes with an annellated mesoionic carbene (MIC) ligand: catalytic sequential Sonogashira coupling/cyclization reaction for one-pot synthesis of benzofuran, indole, isocoumarin and isoquinolone derivatives. Dalton Transactions, 2020, 49, 15238-15248.	1.6	13
929	Tandem Annulations of Propargylic Alcohols to Indole Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 5170-5195.	2.1	27
930	Synthesis of 2â€Substituted Tryptamines via Cyanideâ€Catalyzed Iminoâ€Stetter Reaction. Asian Journal of Organic Chemistry, 2020, 9, 2103-2107.	1.3	3
931	Synthesis of C4-Substituted Indoles via a Catellani and C–N Bond Activation Strategy. Organic Letters, 2020, 22, 8267-8271.	2.4	25
932	Progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives. Organic Chemistry Frontiers, 2020, 7, 3967-3998.	2.3	175
933	The Ugi Threeâ€Component Reaction; a Valuable Tool in Modern Organic Synthesis. European Journal of Organic Chemistry, 2020, 2020, 6525-6554.	1.2	39
934	Bromotryptamine and Imidazole Alkaloids with Anti-inflammatory Activity from the Bryozoan <i>Flustra foliacea</i> . Journal of Natural Products, 2020, 83, 2854-2866.	1.5	20
935	Iridium(III)-Catalyzed Tandem Annulation of Pyridine-Substituted Anilines and α-Cl Ketones for Obtaining 2-Arylindoles. Journal of Organic Chemistry, 2020, 85, 13517-13528.	1.7	14
936	Step and redox efficient nitroarene to indole synthesis. Chemical Communications, 2020, 56, 13185-13188.	2.2	8

#	Article	IF	CITATIONS
937	Metal and Oxidant Free Construction of Substituted―and/or Polycyclic Indoles: A Useful Alternative to Bischler and Related Syntheses. European Journal of Organic Chemistry, 2020, 2020, 5411-5424.	1.2	7
938	Regio- and Enantioselective Friedel–Crafts Benzhydrylation of Indoles in Carbocyclic Ring with <i>ortho</i> -Quinomethanes: Access to Chiral Diarylindolylmethanes. Journal of Organic Chemistry, 2020, 85, 9491-9502.	1.7	11
939	Borane-Catalyzed Stereoselective C–H Insertion, Cyclopropanation, and Ring-Opening Reactions. CheM, 2020, 6, 2364-2381.	5.8	70
940	Bifunctional BrÃ,nsted Base Catalyzed [3 + 3] Annulations of Indolin-2-imines and α,β-Unsaturated Imides: An Enantioselective Approach to α-Carbolinones. Journal of Organic Chemistry, 2020, 85, 9454-9463.	1.7	18
941	The palladium-catalyzed direct C3-cyanation of indoles using acetonitrile as the cyanide source. Organic and Biomolecular Chemistry, 2020, 18, 6108-6114.	1.5	6
942	Sulfenylation of Arenes with Ethyl Arylsulfinates in Water. ACS Omega, 2020, 5, 18515-18526.	1.6	20
943	Functionalization of Heterocycles through 1,2â€Metallate Rearrangement of Boronate Complexes. Chemistry - A European Journal, 2020, 26, 14270-14282.	1.7	26
944	Asymmetric Transfer Hydrogenation of N-Unprotected Indoles with Ammonia Borane. Organic Letters, 2020, 22, 5850-5854.	2.4	26
945	Pd-Catalyzed C–H Halogenation of Indolines and Tetrahydroquinolines with Removable Directing Group. Organic Letters, 2020, 22, 5870-5875.	2.4	23
946	Stereoselective Synthesis of Vinylcyclopropa[b]indolines via a Rh-Migration Strategy. Organic Letters, 2020, 22, 5978-5983.	2.4	13
947	Pyrroles and Their Benzo Derivatives: Structure. , 2020, , .		0
948	Benzophenothiazine and Its Cr(III)-Catalyzed Cross Dehydrogenative Couplings. Organic Letters, 2020, 22, 9196-9198.	2.4	3
949	Highly Reactive Cyclic Monoaryl Iodoniums Tuned as Carbene Generators Couple with Nucleophiles under Metal-Free Conditions. IScience, 2020, 23, 101307.	1.9	6
950	A Study of the Reactivity of (Azaâ€)Quinone Methides in Selective C6â€Alkylations of Indoles. ChemCatChem, 2020, 12, 5053-5057.	1.8	12
951	Palladium-Catalyzed [2 + 2 + 1] Annulation of Alkyne-Tethered Aryl Iodides with Diaziridinone: Synthesis of 3,4-Fused Tricyclic Indoles. Journal of Organic Chemistry, 2020, 85, 10823-10834.	1.7	18
952	Direct C3-Selective Arylation of N-Unsubstituted Indoles with Aryl Chlorides, Triflates, and Nonaflates Using a Palladium–Dihydroxyterphenylphosphine Catalyst. Journal of Organic Chemistry, 2020, 85, 10902-10912.	1.7	13
953	Evolution of phosphorus–thioether ligands for asymmetric catalysis. Chemical Communications, 2020, 56, 10795-10808.	2.2	24
954	Recent Advances in the Synthesis of Nitrogen Heterocycles Using Arenediazonium Salts as Nitrogen Sources. Advanced Synthesis and Catalysis, 2020, 362, 4876-4895.	2.1	55

ARTICLE IF CITATIONS Synthesis Single Crystal X-ray Structure DFT Studies and Hirshfeld Analysis of New 955 1.0 4 Benzylsulfanyl-Triazolyl-Indole Scaffold. Crystals, 2020, 10, 685. BrÃ,nsted acid promoted C–C bond formation between indolylmethyl electrophiles and ketene dithioacetals: Diastereoselective synthesis of highly functionalized cyclopenta[b]indoles. Tetrahedron Letters, 2020, 61, 152349. DBU-Promoted Cascade Selective Nucleophilic Addition/Câ€"C Bond Cleavage/Hetero-Dielsâ€"Alder Reactions of 2-Amino-4<i>H</i>-chromen-4-ones with Î²-Nitrostyrenes and/or Aryl Aldehydes: Access to 957 1.7 13 5<i>H</i>-Chromeno[2,3-<i>b</i>)pyridin-5-ones. Journal of Organic Chemistry, 2020, 85, 14219-14228. I(III)-Catalyzed Oxidative Cyclization–Migration Tandem Reactions of Unactivated Anilines. Organic 2.4 Letters, 2020, 22, 9102-9106. Lewis acid-mediated synthesis of mono- and tris-indole adducts from chiral aziridines. Organic and 959 1.5 5 Biomolecular Chemistry, 2020, 18, 9473-9482. The Structural Diversity of Marine Microbial Secondary Metabolites Based on Co-Culture Strategy: 2.2 2009–2019. Marine Drugs, 2020, 18, 449. Recent Advancements on Transitionâ€Metalâ€Catalyzed, Chelationâ€Induced <i>ortho</i>â€Hydroxylation of 961 2.1 27 Arenes. Advanced Synthesis and Catalysis, 2020, 362, 5301-5351. Palladium-catalyzed one-pot cycloaddition reactions of thioureas with 3<i>H</i>-indol-3-ones generated <i>in situ </i> from 2-alkynyl arylazides: rapid and efficient access to imidazoloindolines. Organic Chemistry Frontiers, 2020, 7, 3480-3485. 962 2.3 14 An Apparent Umpolung Reactivity of Indole through [Au]â€Catalysed Cyclisation and Lewisâ€Acidâ€Mediated Allylation. Chemistry - A European Journal, 2020, 26, 17171-17175. 963 1.7 7 Access to 5<i>H</i>-benzo[<i>a</i>]carbazol-6-ols and benzo[6,7]cyclohepta[1,2-<i>b</i>]indol-6-ols <i>via</i> rhodium-catalyzed C–H activation/carbenoid insertion/aldol-type cyclization. Organic 964 2.3 Chemistry Frontiers, 2020, 7, 3146-3159. Regioselective Câ€"H sulfenylation of <i>N</i>-sulfonyl protected 7-azaindoles promoted by TBAI: a rapid 965 1.7 5 synthesis of 3-thio-7-azaindoles. RSC Advances, 2020, 10, 31819-31823. Streptozotocin-induced diabetic cardiomyopathy in rats: ameliorative effect of PIPERINE via Bcl2 966 Bax/Bcl2, and caspase-3 pathways. Bioscience, Biotechnology and Biochemistry, 2020, 84, 2533-2544. Recent Advances in Total Synthesis of Alkaloids from α,βâ€Unsaturated Aldehydes. ChemistrySelect, 2020, 967 0.7 11 5,9579-9589. Insights into 2-Indolylmethanol-Involved Cycloadditions: Origins of Regioselectivity and 1.7 Enantioselectivity. Journal of Organic Chemistry, 2020, 85, 11641-11653. Wellâ€defined (NHC)Pd(N â€"heterocyclic carboxylate)(OAc) complexesâ€catalyzed direct C2â€arylation of 969 1.7 3 free (NH)â€indoles with arylsulfonyl hydrazides. Applied Organometallic Chemistry, 2020, 34, e5985. Recent Advances of Producing Biobased N-Containing Compounds via Thermo-Chemical Conversion 970 with Ammonia Process. Energy & amp; Fuels, 2020, 34, 10441-10458. Chromene- and Quinoline-3-Carbaldehydes: Useful Intermediates in the Synthesis of Heterocyclic 971 1.7 3 Scaffolds. Molecules, 2020, 25, 3791. Mn(I)-Catalyzed Mechanochemical Câ€"H Bond Activation: C-2 Selective Alkenylation of Indoles. ACS 3.2 19 Sustainable Chemistry and Engineering, 2020, 8, 19105-19116.

#	ARTICLE Impact of outdoor nature-related activities on gut microbiota, fecal serotonin, and perceived stress	IF	CITATIONS
973	in preschool children: the Play&Grow randomized controlled trial. Scientific Reports, 2020, 10, 21993.	1.6	58
974	Catalytic enantioselective synthesis of chiral tetraarylmethanes. Nature Catalysis, 2020, 3, 1010-1019.	16.1	59
975	Assembly of Indole Cores through a Palladium-Catalyzed Metathesis of Ar–X σ-Bonds. Organic Letters, 2020, 22, 9556-9561.	2.4	10
976	Enantioselective Aza-Friedel–Crafts Reaction of Indoles and Pyrroles Catalyzed by Chiral <i>C</i> ₁ -Symmetric Bis(phosphoric Acid). Organic Letters, 2020, 22, 9614-9620.	2.4	20
977	Recent Advances in Metal atalyzed Alkylation, Alkenylation and Alkynylation of Indole/indoline Benzenoid Nucleus. Chemistry - an Asian Journal, 2020, 15, 4184-4198.	1.7	45
978	Organocatalytic Regiodivergent Ring Expansion of Cyclobutanones for the Enantioselective Synthesis of Azepino[1,2-a]indoles and Cyclohepta[b]indoles. Organic Letters, 2020, 22, 4026-4032.	2.4	28
979	Electrochemically enabled functionalization of indoles or anilines for the synthesis of hexafluoroisopropoxy indole and aniline derivatives. Organic and Biomolecular Chemistry, 2020, 18, 3832-3837.	1.5	16
980	An easy-to-operate <i>n</i> -carbonylation of indoles with diaryl carbonates as reagent and Na ₂ CO ₃ as catalyst. Synthetic Communications, 2020, 50, 1854-1862.	1.1	2
981	Insilico analysis of marine indole alkaloids for design of adenosine A2A receptor antagonist. Journal of Biomolecular Structure and Dynamics, 2021, 39, 3515-3522.	2.0	2
982	Monoamine Oxidase (MAO-N) Biocatalyzed Synthesis of Indoles from Indolines Prepared via Photocatalytic Cyclization/Arylative Dearomatization. ACS Catalysis, 2020, 10, 6414-6421.	5.5	25
983	Asymmetric synthesis of spirooxindole–pyranoindole products <i>via</i> Friedel–Crafts alkylation/cyclization of the indole carbocyclic ring. New Journal of Chemistry, 2020, 44, 9788-9792.	1.4	12
984	Thioether-Directed C4-Selective C–H Acylmethylation of Indoles Using α-Carbonyl Sulfoxonium Ylides. Organic Letters, 2020, 22, 4806-4811.	2.4	52
985	Preparation of Oxindoles via Visibleâ€Lightâ€Lnduced Amination/Cyclization of Arylacrylamides with Alkyl Amines. Advanced Synthesis and Catalysis, 2020, 362, 3116-3120.	2.1	22
986	C7â€Indole Amidations and Alkenylations by Ruthenium(II) Catalysis. Angewandte Chemie - International Edition, 2020, 59, 12534-12540.	7.2	70
987	MnBr ₂ -Catalyzed Direct and Site-Selective Alkylation of Indoles and Benzo[<i>h</i>]quinoline. Organic Letters, 2020, 22, 4643-4647.	2.4	21
988	Synthesis of <i>N</i> â€Heterocycles by Reductive Cyclization of Nitroalkenes Using Molybdenum Hexacarbonyl as Carbon Monoxide Surrogate. European Journal of Organic Chemistry, 2020, 2020, 4059-4066.	1.2	12
989	Elaboration of Benzoxadiazepine and Benzotriazocine Scaffolds. ChemistrySelect, 2020, 5, 5604-5614.	0.7	1
990	Visible Lightâ€Triggered βâ€Allylation of Indoles Using Baylisâ€Hillman Bromides. Asian Journal of Organic Chemistry, 2020, 9, 1213-1216.	1.3	4

Сітатіоі	n Report		
	IF	CITATION	s
€2â€Alkynoates for the Synthesis of)20, 362, 2953-2960.	2.1	31	
rs built-in nonconventional		0	

991	Rhodiumâ€Catalyzed Cascade Reactions of Indoles with 4â€Hydroxyâ€2â€Alkynoates for the Synthesis of Indoleâ€Fused Polyheterocycles. Advanced Synthesis and Catalysis, 2020, 362, 2953-2960.	2.1	31
992	Synthesis of medicinally important heterocycles inside the nanoreactors built-in nonconventional reaction media. , 2020, , 181-229.		0
993	Transition-Metal-Free Stereospecific Oxidative Annulative Coupling of Indolines with Aziridines. Journal of Organic Chemistry, 2020, 85, 8261-8270.	1.7	10
994	Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catalysis, 2020, 10, 8344-8394.	5.5	188
995	Versatile Regioselective Deuteration of Indoles via Transition-Metal-Catalyzed H/D Exchange. ACS Catalysis, 2020, 10, 7486-7494.	5.5	26
996	The copper(<scp>ii</scp>)-catalyzed and oxidant-promoted regioselective C-2 difluoromethylation of indoles and pyrroles. Chemical Communications, 2020, 56, 8119-8122.	2.2	22
997	Reductive aromatization of oxindoles to 3-substituted indoles. Tetrahedron Letters, 2020, 61, 152109.	0.7	3
998	C7â€Indolâ€Amidierung und â€Alkenylierung durch Ruthenium(II)―Katalyse. Angewandte Chemie, 2020, 132, 12635-12641.	1.6	13
999	Microwaveâ€Assisted Regioselective Friedel–Crafts Arylation by BF ₃ â‹â€‰OEt _{2Facile Synthetic Access to 3‣ubstitutedâ€3â€Propargyl Oxindole Scaffolds. ChemistrySelect, 2020, 5, 7004-7012.}	o>: A 0.7	8
1000	One-Pot Synthesis of Furo[3,4- <i>c</i>]indolo[2,1- <i>a</i>]isoquinolines through Rh(III)-Catalyzed Cascade Reactions of 2-Phenylindoles with 4-Hydroxy-2-alkynoates. Organic Letters, 2020, 22, 5140-5144.	2.4	45
1001	Organocatalytic Enantioselective Synthesis of Chiral Allenes: Remote Asymmetric 1,8â€Addition of Indole Imine Methides. Angewandte Chemie, 2020, 132, 17197-17202.	1.6	19
1002	Organocatalytic Enantioselective Synthesis of Chiral Allenes: Remote Asymmetric 1,8â€Addition of Indole Imine Methides. Angewandte Chemie - International Edition, 2020, 59, 17049-17054.	7.2	91
1003	Transition Metal Promoted Cascade Heterocycle Synthesis through Câ^'H Functionalization. Chemistry - A European Journal, 2020, 26, 9749-9783.	1.7	66
1004	Manganese(<scp>iii</scp>)-promoted tandem phosphinoylation/cyclization of 2-arylindoles/2-arylbenzimidazoles with disubstituted phosphine oxides. Organic and Biomolecular Chemistry, 2020, 18, 4843-4847.	1.5	47
1005	Palladium-Catalyzed Regioselective Coupling Cyclohexenone into Indoles: Atom-Economic Synthesis of β-Indolyl Cyclohexenones and Derivatization Applications. Organic Letters, 2020, 22, 4898-4902.	2.4	7
1006	Iron-Catalyzed C(sp ²)–H Alkylation of Indolines and Benzo[<i>h</i>]quinoline with Unactivated Alkyl Chlorides through Chelation Assistance. ACS Catalysis, 2020, 10, 7312-7321.	5.5	40
1007	Metalâ€Catalyzed Regiospecific (4+3) Cyclization of 2â€Indolylmethanols with <i>ortho</i> â€Quinone Methides. European Journal of Organic Chemistry, 2020, 2020, 4301-4308.	1.2	21
1008	Cobalt-Catalyzed One-Step Access to Pyroquilon and C-7 Alkenylation of Indoline with Activated Alkenes Using Weakly Coordinating Functional Groups. Journal of Organic Chemistry, 2020, 85, 5330-5341	1.7	24

#

ARTICLE

	CITATION REL		
#	ARTICLE Synthesis of Functionalized Indoles via Palladium-Catalyzed Cyclization of N-(2-allylphenyl)	IF	Citations
1009	Benzamide: A Method for Synthesis of Indomethacin Precursor. Molecules, 2020, 25, 1233.	1.7	8
1010	Two Catalytic Annulation Modes via Cu-Allenylidenes with Sulfur Ylides that Are Dominated by the Presence or Absence of Trifluoromethyl Substituents. IScience, 2020, 23, 100994.	1.9	14
1011	Rh(<scp>iii</scp>)-Catalyzed regioselective C4 alkylation of indoles with allylic alcohols: direct access to β-indolyl ketones. Organic and Biomolecular Chemistry, 2020, 18, 3038-3042.	1.5	21
1012	Isolation and Synthesis of Veranamine, an Antidepressant Lead from the Marine Sponge Verongula rigida. Journal of Natural Products, 2020, 83, 1092-1098.	1.5	13
1013	Copper-Catalyzed Functionalization of Aza-Aromatic Rings with Fluoroalcohols via Direct C(sp ²)–H/C(sp ³)–H Coupling Reactions. Organic Letters, 2020, 22, 3033-3038.	2.4	22
1014	Direct Câ€2 Carboxylation of 3â€5ubstituted Indoles Using a Combined BrÃ,nsted Base Consisting of LiOâ€ <i>t</i> Bu/CsF/18â€crownâ€6. European Journal of Organic Chemistry, 2020, 2020, 1987-1991.	1.2	18
1015	Visible-Light-Induced Decarboxylative Cyclization of 2-Alkenylarylisocyanides with α-Oxocarboxylic Acids: Access to 2-Acylindoles. Journal of Organic Chemistry, 2020, 85, 9503-9513.	1.7	26
1016	Droplet-based continuous flow synthesis of biologically active Bis(indolyl)methanes and Tris(indolyl)methanes. Tetrahedron Letters, 2020, 61, 152178.	0.7	5
1017	Silver-catalyzed regioselective deuteration of (hetero)arenes and α-deuteration of 2-alkyl azaarenes. RSC Advances, 2020, 10, 25475-25479.	1.7	19
1018	Formal oxo- and aza-[3 + 2] reactions of α-enaminones and quinones: a double divergent process and the roles of chiral phosphoric acid and molecular sieves. Chemical Science, 2020, 11, 9386-9394.	3.7	19
1019	Design and Application of <scp>Indoleâ€Based</scp> Allylic Donors for <scp>Pdâ€Catalyzed</scp> Decarboxylative Allylation Reactions ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1612-1618.	2.6	38
1020	The indole-based subincanadine alkaloids and their biogenetic congeners. The Alkaloids Chemistry and Biology, 2020, 83, 187-223.	0.8	3
1021	Copper(<scp>ii</scp>)-catalyzed synthesis of multisubstituted indoles through sequential Chan–Lam and cross-dehydrogenative coupling reactions. RSC Advances, 2020, 10, 24830-24839.	1.7	9
1022	lodine-catalyzed regioselective C-3 arylation of indoles with p-quinols. Journal of Chemical Sciences, 2020, 132, 1.	0.7	1
1023	Synthesis of <i>N</i> â€Fused Sevenâ€Membered Indolineâ€3â€ones <i>via</i> a Palladiumâ€Catalyzed Oneâ€Po Insertion Reaction from 2â€Alkynyl Arylazides and Cyclic <i>β</i> â€Diketones. European Journal of Organic Chemistry, 2020, 2020, 2146-2152.	ot 1.2	7
1024	Weak Coordination Enabled Switchable C4-Alkenylation and Alkylation of Indoles with Allyl Alcohols. Organic Letters, 2020, 22, 1720-1725.	2.4	47
1025	Nickel-Catalyzed Asymmetric Friedel–Crafts Propargylation of 3-Substituted Indoles with Propargylic Carbonates Bearing an Internal Alkyne Group. Organic Letters, 2020, 22, 2049-2053.	2.4	34
1026	BrÃ,nsted acidic ionic liquid–catalyzed tandem trimerization of indoles: An efficient approach towards the synthesis of indole 3,3′â€trimers under solventâ€free conditions. Journal of Heterocyclic Chemistry, 2020, 57, 1863-1874.	1.4	14

#	Article	IF	CITATIONS
1027	Seleniumâ€Mediated Cyclization Reaction of 2â€Vinylanilines with/without Isonitriles: Efficient Synthesis of 2â€Aminoquinoline/ 3â€Arylâ€1 <i>H</i> â€indole Derivatives. Asian Journal of Organic Chemistry, 2020, 9, 588-592.	1.3	6
1028	Oxidation of Nonactivated Anilines to Generate N-Aryl Nitrenoids. Journal of the American Chemical Society, 2020, 142, 4456-4463.	6.6	30
1029	Synthesis of Difluoroalkylated Benzofuran, Benzothiophene, and Indole Derivatives via Palladium-Catalyzed Cascade Difluoroalkylation and Arylation of 1,6-Enynes. Organic Letters, 2020, 22, 1149-1154.	2.4	43
1030	Antibacterial and photocatalytic activities of 5-nitroindole capped bimetal nanoparticles against multidrug resistant bacteria. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110825.	2.5	25
1031	Thermal [2 + 2]-cycloaddition between silylalkynes and allenylphenols followed by the nucleophilic addition of water: metal-free and economical synthesis of arylcyclobutenals. Green Chemistry, 2020, 22, 1220-1228.	4.6	6
1032	Simple iodoalkyne-based organocatalysts for the activation of carbonyl compounds. Organic and Biomolecular Chemistry, 2020, 18, 1594-1601.	1.5	19
1033	An organocatalytic asymmetric Friedel–Crafts reaction of 2-substituted indoles with aldehydes: enantioselective synthesis of α-hydroxyl ketones by low loading of chiral phosphoric acid. Chemical Communications, 2020, 56, 2499-2502.	2.2	12
1034	Straightforward access to novel indolo[2,3- <i>b</i>]indoles <i>via</i> aerobic copper-catalyzed [3+2] annulation of diarylamines and indoles. Chemical Communications, 2020, 56, 2807-2810.	2.2	32
1035	Synthesis of indoline-piperidinones <i>via</i> a novel Ugi, ring expansion, <i>pseudo</i> -Dieckmann condensation and rearrangement cascade reaction. Organic Chemistry Frontiers, 2020, 7, 737-741.	2.3	12
1036	Acid mediated coupling of aliphatic amines and nitrosoarenes to indoles. Chemical Communications, 2020, 56, 3167-3170.	2.2	16
1037	Tandem Phosphaâ€Michael Addition/ <i>N</i> â€Acylation/ Intramolecular Wittig Reaction of azaâ€ <i>o</i> â€Quinone Methides: Approaches to 2,3â€Disubstituted Indoles. Advanced Synthesis and Catalysis, 2020, 362, 2615-2619.	2.1	16
1038	Palladium-catalysed 5- <i>endo-trig</i> allylic (hetero)arylation. Chemical Science, 2020, 11, 4948-4953.	3.7	18
1039	Generation of a Key Synthon of Indole Alkaloid Synthesis by Palladium(II)â€Catalyzed Indole 2â€Methylenephosphorylation. ChemCatChem, 2020, 12, 3644-3649.	1.8	8
1040	5-Hydroxyindole-Based EZH2 Inhibitors Assembled via TCCA-Catalyzed Condensation and Nenitzescu Reactions. Molecules, 2020, 25, 2059.	1.7	5
1041	Rh-Catalyzed nitrene alkyne metathesis/formal C–N bond insertion cascade: synthesis of 3-iminoindolines. Organic Chemistry Frontiers, 2020, 7, 1327-1333.	2.3	15
1042	Screening metal-free photocatalysts from isomorphic covalent organic frameworks for the C-3 functionalization of indoles. Journal of Materials Chemistry A, 2020, 8, 8706-8715.	5.2	66
1043	Current scenario of indole derivatives with potential anti-drug-resistant cancer activity. European Journal of Medicinal Chemistry, 2020, 200, 112359.	2.6	67
1044	Synthesis of 2,3-disubstituted indoles from alkynylanilines and 2-chlorophenols using palladium–dihydroxyterphenylphosphine catalyst. Tetrahedron Letters, 2020, 61, 151896.	0.7	4

#	Article	IF	CITATIONS
1045	Direct Access to (±)â€10â€Desbromoarborescidine A from Tryptamine and Pentaneâ€1,5â€diol. Asian Journal of Organic Chemistry, 2020, 9, 910-913.	1.3	5
1046	Photoredox Catalysis: 1,4-Conjugate Addition of <i>N</i> -Methyl Radicals to Electron-Deficient Olefins via Decarboxylation of <i>N</i> -Substituted Acetic Acids. Organic Letters, 2020, 22, 3418-3422.	2.4	13
1047	Catalytic Arylative Endo Cyclization of Gold Acetylides: Access to 3,4â€Diphenyl Isoquinoline, 2,3â€Diphenyl Indole, and Mesoionic Normal NHC–Gold Complex. Chemistry - A European Journal, 2021, 27, 212-217.	1.7	6
1048	Metal-free cascade boron–heteroatom addition and alkylation with diazo compounds. Chinese Chemical Letters, 2021, 32, 691-694.	4.8	11
1049	Regioselective Direct C2 Arylation of Indole, Benzothiophene and Benzofuran: Utilization of Reusable Pd NPs and NHC-Pd@MNPs Catalyst for C–H Activation Reaction. Catalysis Letters, 2021, 151, 1397-1405.	1.4	17
1050	Spermine Derivatives of Indoleâ€3â€carboxylic Acid, Indoleâ€3â€acetic Acid and Indoleâ€3â€acrylic Acid as Gramâ€Negative Antibiotic Adjuvants. ChemMedChem, 2021, 16, 513-523.	1.6	18
1051	<i>p</i> -TSA-catalyzed a simple and efficient one-pot eco-friendly synthesis of functionalized new isoxazolyl-4-hydroxyindole-3-carboxylate derivatives in aqueous medium. Synthetic Communications, 2021, 51, 279-289.	1.1	5
1052	Synthesis of indole-fused scaffolds via [3+3] cyclization reaction of 2-indolylmethanols with quinone imines. Tetrahedron, 2021, 77, 131742.	1.0	7
1053	Selective Synthesis of Fused Tricyclic [1,3]oxazino[3,4â€ <i>a</i>]indolone and Dihydropyrimido [1,6â€a]indolone <i>via</i> Rh(III)â€catalyzed [3+3] or [4+2] Câ^'H Annulation. Advanced Synthesis and Catalysis, 2021, 363, 446-452.	2.1	26
1054	Marine-derived fungi as a source of bioactive indole alkaloids with diversified structures. Marine Life Science and Technology, 2021, 3, 44-61.	1.8	17
1055	Metal–Organic Layers Hierarchically Integrate Three Synergistic Active Sites for Tandem Catalysis. Angewandte Chemie - International Edition, 2021, 60, 3115-3120.	7.2	25
1056	Rhodiumâ€Catalyzed Chemodivergent Regio―and Enantioselective Allylic Alkylation of Indoles. Chemistry - A European Journal, 2021, 27, 3457-3462.	1.7	19
1057	Design and application of intramolecular vinylogous Michael reaction for the construction of 2-alkenyl indoles. Chemical Communications, 2021, 57, 231-234.	2.2	8
1058	KO t â€Buâ€Catalyzed Chemo―and Regioselective Hydroamination of Allylic Sulfones with Indoles. European Journal of Organic Chemistry, 2021, 2021, 125-137.	1.2	8
1059	Metal–Organic Layers Hierarchically Integrate Three Synergistic Active Sites for Tandem Catalysis. Angewandte Chemie, 2021, 133, 3152-3157.	1.6	4
1060	Rhodiumâ€Catalyzed Atroposelective Construction of Indoles via Câ^H Bond Activation. Angewandte Chemie - International Edition, 2021, 60, 8391-8395.	7.2	99
1061	Palladium-catalyzed dearomative allylation of indoles with cyclopropyl acetylenes: access to indolenine derivatives. Organic and Biomolecular Chemistry, 2021, 19, 635-644.	1.5	8
1062	A comprehensive insight into aldehyde deformylation: mechanistic implications from biology and chemistry. Organic and Biomolecular Chemistry, 2021, 19, 1879-1899.	1.5	25

#	Article	IF	CITATIONS
1063	DMSO/SOCl ₂ -mediated C(sp ²)–H amination: switchable synthesis of 3-unsubstituted indole and 3-methylthioindole derivatives. Chemical Communications, 2021, 57, 460-463.	2.2	26
1064	Palladium-catalyzed allylic alkylation dearomatization of β-naphthols and indoles with <i>gem</i> -difluorinated cyclopropanes. Chemical Communications, 2021, 57, 1262-1265.	2.2	51
1065	Rhodium atalyzed Atroposelective Construction of Indoles via Câ^'H Bond Activation. Angewandte Chemie, 2021, 133, 8472-8476.	1.6	23
1066	Recent Developments in Photoâ€Catalyzed/Promoted Synthesis of Indoles and Their Functionalization: Reactions and Mechanisms. Advanced Synthesis and Catalysis, 2021, 363, 62-119.	2.1	44
1067	Theoretical insights into the mechanism of rhodiumâ€catalyzed, P III â€directed regioselective CH arylation of indole with anhydride. International Journal of Quantum Chemistry, 2021, 121, e26475.	1.0	4
1068	Trifluoroethanol-promoted ring-opening cyclization of 4-(2-oxiranylmethoxy)indoles: access to 4,5-fused indoles. Organic and Biomolecular Chemistry, 2021, 19, 6761-6765.	1.5	11
1069	A one-pot "back-to-front―approach for the synthesis of benzene ring substituted indoles using allylboronic acids. Chemical Communications, 2021, 57, 5274-5277.	2.2	9
1070	Palladium-catalyzed carbonylative cyclization of 2-alkynylanilines and aryl iodides to access N-acyl indoles. Organic Chemistry Frontiers, 2021, 8, 1926-1929.	2.3	11
1071	Organocatalytic stereoselective 1,6-addition of thiolacetic acids to alkynyl indole imine methides: access to axially chiral sulfur-containing tetrasubstituted allenes. Organic Chemistry Frontiers, 2021, 8, 3469-3474.	2.3	27
1072	Ruthenium(II)-Catalyzed Direct C7-Selective Amidation of Indoles with Dioxazolones at Room Temperature. Journal of Organic Chemistry, 2021, 86, 2827-2839.	1.7	18
1073	Iminyl-radicals by electrochemical decarboxylation of α-imino-oxy acids: construction of indole-fused polycyclics. Chemical Communications, 2021, 57, 10242-10245.	2.2	12
1074	2-Indolymethanols as 4-atom-synthons in oxa-Michael reaction cascade: access to tetracyclic indoles. Chemical Communications, 2021, 57, 8921-8924.	2.2	9
1075	A Cascade Rh(III)â€catalyzed Câ^'H Activation/Chemodivergent Annulation of <i>N</i> â€carbamoylindoles with Sulfoxonium Ylides for the Synthesis of Dihydropyrimidoindolone and Tricyclic [1,3]Oxazino[3,4â€ <i>a</i>]indolâ€1â€ones Derivatives. Advanced Synthesis and Catalysis, 2021, 363, 1436-144	2.1 ł2.	31
1076	Polarization-induced charge separation in conjugated microporous polymers for efficient visible light-driven C-3 selenocyanation of indoles. Chemical Science, 2021, 12, 5631-5637.	3.7	28
1077	The C–H functionalization of <i>N</i> -alkoxycarbamoyl indoles by transition metal catalysis. Organic and Biomolecular Chemistry, 2021, 19, 7949-7969.	1.5	9
1078	Recent advances in cascade radical cyclization of radical acceptors for the synthesis of carbo- and heterocycles. Organic Chemistry Frontiers, 2021, 8, 1345-1363.	2.3	92
1079	C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles by tuning Pd catalytic modes: Pd(<scp>i</scp>)–Pd(<scp>ii</scp>) catalysis <i>vs.</i> Pd(<scp>ii</scp>) catalysis. Chemical Science, 2021, 12, 3216-3225.	3.7	44
1080	Sequential Sonogashira/intramolecular aminopalladation/cross-coupling of ortho-ethynyl-anilines catalyzed by a single palladium source: rapid access to 2,3-diarylindoles. Organic and Biomolecular Chemistry, 2021, 19, 1329-1333.	1.5	4

#	Article	IF	CITATIONS
1081	Applications of chiral spirocyclic phosphoric acid in the synthesis of natural products. E3S Web of Conferences, 2021, 245, 03068.	0.2	0
1082	The photoredox-catalyzed hydrosulfamoylation of styrenes and its application in the novel synthesis of naratriptan. Chemical Communications, 2021, 57, 9140-9143.	2.2	7
1083	Palladium-Catalyzed Direct and Specific C-7 Acylation of Indolines with 1,2-Diketones. Organic Letters, 2021, 23, 410-415.	2.4	34
1084	Decarboxylative C–H alkylation of heteroarenes by copper catalysis. Organic Chemistry Frontiers, 2021, 8, 3128-3136.	2.3	18
1085	Transition metal-catalyzed C–H functionalizations of indoles. New Journal of Chemistry, 2021, 45, 13692-13746.	1.4	48
1086	Relieving the stress together: annulation of two different strained rings towards the formation of biologically significant heterocyclic scaffolds. Chemical Communications, 2021, 57, 5359-5373.	2.2	15
1087	Multi-component synthesis of dihydro-1,3-azaborinine derived oxindole isosteres. Chemical Communications, 2021, 57, 7689-7692.	2.2	3
1088	Naturally based ionic liquids with indole-3-acetate anions and cations derived from cinchona alkaloids. RSC Advances, 2021, 11, 27530-27540.	1.7	3
1089	Employing arynes in transition-metal-free synthesis of benzo-fused five and six-membered heterocycles: an update. , 2021, , 355-382.		2
1090	Catalytic asymmetric coupling of vinylogous species <i>via</i> deconjugated butenolide addition to vinylogous imines <i>in situ</i> generated from arylsulfonyl indoles. Chemical Communications, 2021, 57, 4938-4941.	2.2	3
1091	Modular Counter-Fischer–Indole Synthesis through Radical-Enolate Coupling. Organic Letters, 2021, 23, 1096-1102.	2.4	11
1092	Copper-catalyzed, <i>N</i> -auxiliary group-controlled switchable transannulation/nitration initiated by nitro radicals: selective synthesis of pyridoquinazolones and 3-nitroindoles. Organic Chemistry Frontiers, 2021, 8, 5821-5830.	2.3	7
1093	NaI/TBHP-promoted reaction of indole-2-thiones with arylsulfonyl hydrazides: construction of achiral axial 3,3â€2-biindole-2,2â€2-dibenzenesulfonothioate derivatives. Organic Chemistry Frontiers, 2021, 8, 5383-5388.	2.3	3
1094	Rh(<scp>iii</scp>)-catalyzed regioselective C–H activation dialkenylation/annulation cascade for rapid access to 6 <i>H</i> -isoindolo[2,1- <i>a</i>]indole. RSC Advances, 2021, 11, 25194-25198.	1.7	3
1095	C3-Arylation of indoles with aryl ketones <i>via</i> C–C/C–H activations. Chemical Communications, 2021, 57, 9716-9719.	2.2	12
1096	Copper catalysis for biologically active N-heterocycles. , 2021, , 457-477.		0
1097	Organocatalytic asymmetric allylic alkylation of 2-methyl-3-nitroindoles: a route to direct enantioselective functionalization of indole C(sp3)–H bonds. Organic and Biomolecular Chemistry, 2021, 19, 1503-1507.	1.5	7
1098	Bimetallic copper/cobalt-cocatalyzed double aerobic phenol oxidation/cyclization toward ï€-extended benzofuro[2,3- <i>b</i>]indoles as electron donors for electroluminescence. Green Chemistry, 2021, 23, 5031-5036.	4.6	13

#	Article	IF	CITATIONS
1099	Visible-light-promoted thiocyanation of sp ² C–H bonds over heterogeneous graphitic carbon nitrides. New Journal of Chemistry, 2021, 45, 14058-14062.	1.4	8
1100	Strong and Confined Acids Catalyze Asymmetric Intramolecular Hydroarylations of Unactivated Olefins with Indoles. Journal of the American Chemical Society, 2021, 143, 675-680.	6.6	49
1101	Rhodium(<scp>iii</scp>)-catalyzed C–H/C–F activation sequence: expedient and divergent synthesis of 2-benzylated indoles and 2,2′-bis(indolyl)methanes. Organic Chemistry Frontiers, 2021, 8, 4445-4451.	2.3	12
1102	Facile synthesis of indolizinoindolone, indolylepoxypyrrolooxazole, indolylpyrrolooxazolone and isoindolopyrazinoindolone heterocycles from indole and imide derivatives. Organic and Biomolecular Chemistry, 2021, 19, 6160-6169.	1.5	4
1103	Regioselective cascade annulation of indoles with alkynediones for construction of functionalized tetrahydrocarbazoles triggered by Cp*Rh ^{III} -catalyzed C–H activation. Organic Chemistry Frontiers, 2021, 8, 3809-3814.	2.3	12
1104	Bis-indolylation of aldehydes and ketones using silica-supported FeCl ₃ : molecular docking studies of bisindoles by targeting SARS-CoV-2 main protease binding sites. RSC Advances, 2021, 11, 30827-30839.	1.7	16
1105	Rh(III)-Catalyzed [4+2] Annulation of Indoles with Sulfoxonium Ylides for the Synthesis of Dihydropyrimidoindolone Derivatives. Chinese Journal of Organic Chemistry, 2021, 41, 3171.	0.6	2
1106	Ruthenium(<scp>ii</scp>)-catalyzed regioselective direct C4- and C5-diamidation of indoles and mechanistic studies. Chemical Science, 2021, 12, 11427-11437.	3.7	11
1107	Recent advances in directed sp ² C–H functionalization towards the synthesis of N-heterocycles and O-heterocycles. Chemical Communications, 2021, 57, 8699-8725.	2.2	29
1108	Advances in organocatalytic asymmetric reactions of vinylindoles: powerful access to enantioenriched indole derivatives. Organic Chemistry Frontiers, 2021, 8, 2643-2672.	2.3	82
1109	FeCl ₃ ·6H ₂ O as a Mild Catalyst for Nucleophilic Substitution of Symmetrical Bis(indoyl)methanes. Journal of Organic Chemistry, 2021, 86, 2312-2327.	1.7	19
1110	Base-promoted, CBr ₄ -mediated tandem bromination/intramolecular Friedel–Crafts alkylation of <i>N</i> -aryl enamines: a facile access to 1 <i>H</i> - and 3 <i>H</i> -indoles. Organic and Biomolecular Chemistry, 2021, 19, 5377-5382.	1.5	6
1111	(4 + 2) cyclization of aza- <i>o</i> -quinone methides with azlactones: construction of biologically important dihydroquinolinone frameworks. Organic and Biomolecular Chemistry, 2021, 19, 1334-1343.	1.5	15
1112	Recent advances in the transition metal-free oxidative dehydrogenative aromatization of cyclohexanones. Organic and Biomolecular Chemistry, 2021, 19, 6380-6391.	1.5	20
1113	Au-promoted Pd-catalyzed arylative cyclization of N,N-dimethyl-o-alkynylaniline with aryl iodides: Access to 2,3-diaryl indoles and mechanistic insight. Tetrahedron Letters, 2021, 65, 152766.	0.7	4
1114	Direct Synthesis of Indoles from Azoarenes and Ketones with Bis(neopentylglycolato)diboron Using 4,4′-Bipyridyl as an Organocatalyst. Journal of Organic Chemistry, 2021, 86, 3287-3299.	1.7	9
1115	Synthesis of 7â€Phenylindole Derivatives through Rhodiumâ€Catalyzed Dehydrogenative Coupling of 2â€(Acetylamino)â€1,1'â€biphenyls with Alkynes. Asian Journal of Organic Chemistry, 2021, 10, 868-871.	1.3	2
1116	Tunable Electrocatalytic Annulations of <i>o-</i> Arylalkynylanilines: Green and Switchable Syntheses of Skeletally Diverse Indoles. Journal of Organic Chemistry, 2021, 86, 15886-15896.	1.7	19

#	Article	IF	CITATIONS
1117	PPTS atalyzed Bicyclization Reaction of 2â€Isocyanobenzaldehydes with Various Amines: Synthesis of Diverse Fused Quinazolines. Advanced Synthesis and Catalysis, 2021, 363, 1923-1929.	2.1	9
1118	Transition Metalâ€Free Synthesis of Sulfonyl―and Bromoâ€&ubstituted Indolo[2,1â€ <i>α</i>]isoquinoline Derivatives through Electrochemical Radical Cascade Cyclization. Advanced Synthesis and Catalysis, 2021, 363, 1944-1954.	2.1	36
1119	Metal-free synthesis of indolo[2,3-b]indoles through aerobic cascade dehydrogenative aromatization/oxidative annulation. Green Synthesis and Catalysis, 2021, 2, 78-81.	3.7	30
1120	Liquidâ€Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Advanced Synthesis and Catalysis, 2021, 363, 1246-1271.	2.1	170
1121	A Cascade Approach for the Synthesis of 5-(Indol-3-yl)hydantoin: An Application to the Total Synthesis of (±)-Oxoaplysinopsin B. Journal of Organic Chemistry, 2021, 86, 3730-3740.	1.7	1
1122	Friedel-Crafts Benzylation of Unprotected Anilines with Indole-3-carbinols to Access Trifluoro-methyl(indolyl)phenylmethanes. Letters in Organic Chemistry, 2021, 18, .	0.2	0
1123	Cytotoxic Alkaloids Derived from Marine Sponges: A Comprehensive Review. Biomolecules, 2021, 11, 258.	1.8	19
1124	Recent Advances in Multicomponent Reactions with Organic and Inorganic Sulfur Compounds. Chemical Record, 2021, 21, 893-905.	2.9	17
1125	Transition metal-catalyzed synthesis of N, Oâ^'Heterocycles via C–H functionalization. Tetrahedron, 2021, 84, 132025.	1.0	20
1126	Base-Mediated Intramolecular Cyclization of $\hat{I}\pm$ -Nitroethylallenic Esters as a Synthetic Route to 5-Hydroxy-3-pyrrolin-2-ones. Journal of Organic Chemistry, 2021, 86, 5630-5638.	1.7	2
1127	Chiral Phosphoric Acid-Catalyzed C6 Functionalization of 2,3-Disubstituted Indoles for Synthesis of Heterotriarylmethanes. Organic Letters, 2021, 23, 2393-2398.	2.4	18
1128	Synthesis of 5â€[(1 H â€ındolâ€3â€yl)methyl]â€1,3,4â€oxadiazoleâ€2(3 H)â€thiones and their protective activit oxidative stress. Archiv Der Pharmazie, 2021, 354, 2100001.	y against 2.1	1
1129	From C4 to C7: Innovative Strategies for Site-Selective Functionalization of Indole C–H Bonds. Accounts of Chemical Research, 2021, 54, 1723-1736.	7.6	126
1130	Metal-Free [3+2] Annulation of Ynamides with Anthranils to Construct 2-Aminoindoles. Organic Letters, 2021, 23, 2029-2035.	2.4	19
1131	Synthesis of 4-Alkylindoles from 2-Alkynylanilines via Dearomatization- and Aromatization-Triggered Alkyl Migration. Organic Letters, 2021, 23, 2130-2134.	2.4	16
1132	K2CO3-Promoted Highly Selective N-Hydroxymethylation of Indoles Under Metal- and Lewis Acid-Free Conditions. Letters in Organic Chemistry, 2021, 18, 160-165.	0.2	0
1133	KI catalyzed Câ \in "H functionalization of acetone for the synthesis of 2-oxopropyl hetero-aromatic carboxylates. Synthetic Communications, 0, , 1-11.	1.1	1
1134	Rhodium(I)â€Catalyzed C2â€Selective Decarbonylative Câ^'H Alkylation of Indoles with Alkyl Carboxylic Acids and Anhydrides. Asian Journal of Organic Chemistry, 2021, 10, 879-885.	1.3	12

#	Article	IF	CITATIONS
1135	Organocatalytic Enantioselective Azaâ€Michael Addition of Arylamines to 7â€Methideâ€7 <i>H</i> â€Indoles. Advanced Synthesis and Catalysis, 2021, 363, 2557-2561.	2.1	10
1136	Catalyst- and Substituent-Controlled Regio- and Stereoselective Synthesis of Indolyl Acrylates by Lewis-Acid-Catalyzed Direct Functionalization of 3-Formylindoles with Diazo Esters. Organic Letters, 2021, 23, 2140-2146.	2.4	4
1137	Synthesis of new potentially biologically active pyranopyridones with tryptamine fragment. Russian Chemical Bulletin, 2021, 70, 555-561.	0.4	3
1138	Palladium/Norbornene Catalyzed <i>ortho</i> Amination/Cyclization of Aryl Iodide: Process to 3-Methyl-indole Derivates and Controllable Reductive Elimination against the Second Amination. Organic Letters, 2021, 23, 2988-2993.	2.4	16
1139	Synthesis, characterization, docking study and antimicrobial activity of Journal of the Iranian Chemical Society, 2021, 18, 2741-2756.	1.2	5
1140	BF3-OEt2 Catalyzed C3-Alkylation of Indole: Synthesis of Indolylsuccinimidesand Their Cytotoxicity Studies. Molecules, 2021, 26, 2202.	1.7	4
1141	Synthesis of <scp>3â€Methylthioindoles</scp> <i>via</i> Intramolecular Cyclization of <scp>2â€Alkynylanilines</scp> Mediated by <scp>DMSO</scp> / <scp>DMSO</scp> â€ <i>d</i> and <scp>SOCl₂</scp> . Chinese Journal of Chemistry, 2021, 39, 1211-1224.	2.6	14
1142	Total Synthesis of (â^')â€Arborisidine. Angewandte Chemie, 2021, 133, 12842-12846.	1.6	4
1143	The novel acid-base magnetic recyclable catalyst prepared through carbon disulfide trapping process: Applied for green, one-pot, and efficient synthesis of 2,3-dihydroquinazolin-4 (1H) -ones and bis(indolyl)methanes in large-scale. Molecular Catalysis, 2021, 506, 111532.	1.0	2
1144	Total Synthesis of (â^)â€Arborisidine. Angewandte Chemie - International Edition, 2021, 60, 12732-12736.	7.2	14
1145	N-Acetyl-α-hydroxy-β-oxotryptamine, a racemic natural product isolated from Streptomyces sp. 80H647. Journal of Antibiotics, 2021, 74, 477-479.	1.0	1
1146	Wittig Reactions of Maleimide-Derived Stabilized Ylides with Alkyl Pyruvates: Concise Approach to Methyl Ester of (±)-Chaetogline A. Synthesis, 2021, 53, 2897-2902.	1.2	0
1147	Allenylidene Induced 1,2â€Metalate Rearrangement of Indoleâ€Boronates: Diastereoselective Access to Highly Substituted Indolines. Angewandte Chemie - International Edition, 2021, 60, 12366-12370.	7.2	15
1148	Relay Cu(I)/BrÃ,nsted Base Catalysis for <i>Phospha</i> â€Michael Addition/5â€ <i>exo</i> â€ <i>dig</i> Cyclization/Isomerization of <i>in</i> â€ <i>situ</i> Formed <i>aza</i> âAlkynyl <i>oâ€</i> quinone methides with P(O)â [°] H compounds to C3â€Phosphorylated Indoles. Advanced Synthesis and Catalysis, 2021, 363, 3006-3012.	2.1	9
1149	Allenylidene Induced 1,2â€Metalate Rearrangement of Indoleâ€Boronates: Diastereoselective Access to Highly Substituted Indolines. Angewandte Chemie, 2021, 133, 12474-12478.	1.6	2
1150	Ru(II)â€Catalyzed Regioselective Hydroarylative Coupling of Indolines with Internal Alkynes by Câ^H Activation. European Journal of Organic Chemistry, 2021, 2021, 2107-2113.	1.2	9
1151	Tandem Iridium-Catalyzed Decarbonylative C–H Activation of Indole: Sacrificial Electron-Rich Ketone-Assisted Bis-arylsulfenylation. Organic Letters, 2021, 23, 3331-3336.	2.4	12
1152	Metallaphotoredox Dearomatization of Indoles by a Benzamide-Empowered [4 + 2] Annulation: Facile Access to Indolo[2,3-c]isoquinolin-5-ones. ACS Catalysis, 2021, 11, 5054-5060.	5.5	28

#	Article	IF	CITATIONS
1153	Palladium-Catalyzed Sequential C–H Activation/Amination with Diaziridinone: An Approach to Indoles. Organic Letters, 2021, 23, 3646-3651.	2.4	19
1154	Rh(III)-Catalyzed Chemodivergent Annulations between Indoles and Iodonium Carbenes: A Rapid Access to Tricyclic and Tetracyclic <i>N</i> -Heterocylces. Organic Letters, 2021, 23, 4233-4238.	2.4	56
1155	From Hybrids to New Scaffolds: The Latest Medicinal Chemistry Goals in Multi-target Directed Ligands for Alzheimer's Disease. Current Neuropharmacology, 2021, 19, 832-867.	1.4	8
1156	Rh(III)-catalyzed selective C7-H functionalization of indolines with 1,3-enynes enables access to six-membered 1,7-fused indolines. Tetrahedron Letters, 2021, 72, 153065.	0.7	2
1157	Theoretical studies on the mechanism of Pd2+-catalyzed regioselective C-H alkylation of indole with MesICH2CF3OTf. Journal of Molecular Modeling, 2021, 27, 150.	0.8	1
1158	Indoleâ€2 arboxaldehyde: An Emerging Precursor for the Construction of Diversified Imperative Skeleton. ChemistrySelect, 2021, 6, 4591-4619.	0.7	4
1159	Understanding Mechanistic Differences between 3â€Diazoindolinâ€2â€Imines and N â€Sulfonyl â€1,2, 3â€Triazo the Rh 2 (II)â€Catalyzed Reactions with Nitrosoarenes. Chinese Journal of Chemistry, 2021, 39, 1565-1572.	les in 2.6	4
1160	Iridium-Catalyzed Isomerization/Cycloisomerization/Aromatization of <i>N</i> -AllyI- <i>N</i> -sulfonyI- <i>o</i> -(λ ¹ -silylethynyI)aniline Derivatives to Give Substituted Indole Derivatives. Organic Letters, 2021, 23, 4284-4288.	2.4	4
1161	Palladium atalyzed Remote Câ^'H Phosphonylation of Indoles at the C4 and C6 Positions by a Radical Approach. Angewandte Chemie - International Edition, 2021, 60, 13871-13876.	7.2	15
1162	Ruthenium(II)-carboxylate-catalyzed C4/C6–H dual alkylations of indoles. Tetrahedron Letters, 2021, 72, 153064.	0.7	5
1163	Palladium atalyzed Remote Câ^'H Phosphonylation of Indoles at the C4 and C6 Positions by a Radical Approach. Angewandte Chemie, 2021, 133, 13990-13995.	1.6	1
1164	Catalyst-Controlled Regiodivergence in Rearrangements of Indole-Based Onium Ylides. Journal of the American Chemical Society, 2021, 143, 9016-9025.	6.6	27
1165	Tris(pentafluorophenyl)borane-Catalyzed Formal Cyanoalkylation of Indoles with Cyanohydrins. Journal of Organic Chemistry, 2021, 86, 8389-8401.	1.7	7
1166	Nickel atalyzed Câ^'H Bond Functionalization of Azoles and Indoles. Chemical Record, 2021, 21, 3573-3588.	2.9	13
1167	[4+n] Annulation Reactions Using ortho-Chloromethyl Anilines as Aza-ortho-Quinone Methide Precursors. Synthesis, 0, , .	1.2	3
1168	Direct C4-Acetoxylation of Tryptophan and Tryptophan-Containing Peptides <i>via</i> Palladium(II)-Catalyzed C–H Activation. Organic Letters, 2021, 23, 4699-4704.	2.4	9
1169	One-pot, catalyst-free synthesis of novel dihydropyrano[2,3-e]indole derivatives. Chemical Data Collections, 2021, 33, 100693.	1.1	3
1170	Selective synthesis of 2-aryl-3-alkenylindoles and 2-aryl-3-alkynylindoles by palladium-catalyzed ligand-promoted annulative coupling of anilines and propargyl alcohols. Journal of Organometallic Chemistry, 2021, 948, 121930.	0.8	2

#	Article	IF	CITATIONS
1171	Psammocindoles A–C: Isolation, Synthesis, and Bioactivity of Indole-γ-lactams from the Sponge <i>Psammocinia vermis</i> . Organic Letters, 2021, 23, 4667-4671.	2.4	7
1172	Visible-Light-Induced Carbonylation of Indoles with Phenols under Metal-Free Conditions: Synthesis of Indole-3-carboxylates. Organic Letters, 2021, 23, 4769-4773.	2.4	5
1173	Palladium Nanoparticles Supported on Smopex-234® as Valuable Catalysts for the Synthesis of Heterocycles. Catalysts, 2021, 11, 706.	1.6	11
1174	Synthesis of 2â€Phosphorylâ€3â€Monofluorovinylindoles under Catalyst―and Additiveâ€Free Conditions. Advanced Synthesis and Catalysis, 2021, 363, 3496-3501.	2.1	7
1175	Decoding Directing Groups and Their Pivotal Role in Câ^'H Activation. Chemistry - A European Journal, 2021, 27, 12453-12508.	1.7	71
1176	Redox-Neutral Rhodium(III)-Catalyzed Chemospecific and Regiospecific [4+1] Annulation between Indoles and Alkenes for the Synthesis of Functionalized Imidazo[1,5- <i>a</i>]indoles. Journal of Organic Chemistry, 2021, 86, 10591-10607.	1.7	11
1177	Application of 3-Alkyl-2-vinylindoles in Catalytic Asymmetric Dearomative (2+3) Cycloadditions. Journal of Organic Chemistry, 2021, 86, 10427-10439.	1.7	16
1178	Counterion Control of t â€BuOâ€Mediated Single Electron Transfer to Nitrostilbenes to Construct N â€Hydroxyindoles or Oxindoles. Angewandte Chemie, 2021, 133, 19356-19362.	1.6	1
1179	Counterion Control of t â€BuOâ€Mediated Single Electron Transfer to Nitrostilbenes to Construct N â€Hydroxyindoles or Oxindoles. Angewandte Chemie - International Edition, 2021, 60, 19207-19213.	7.2	13
1180	Mn(III)-Mediated Radical Cyclization of <i>o</i> -Alkenyl Aromatic Isocyanides with Boronic Acids: Access to N-Unprotected 2-Aryl-3-cyanoindoles. Organic Letters, 2021, 23, 5826-5830.	2.4	19
1181	Site-Selective Electrochemical C–H Cyanation of Indoles. Organic Letters, 2021, 23, 5983-5987.	2.4	20
1182	Electrocatalytic Dehydrogenative Cyclization of 2-Vinylanilides for the Synthesis of Indoles. Journal of Organic Chemistry, 2021, 86, 16001-16007.	1.7	22
1183	Chemo―and Regioselective Synthesis of Functionalized 1 <i>H</i> ―midazo[1,5â€ <i>a</i>]indolâ€3(2 <i>H</i>)â€ones via a Redoxâ€Neutral Rhodium(III)â€Catalyzed [4 Annulation between Indoles and Alkynes. Advanced Synthesis and Catalysis, 2021, 363, 4380-4389.	+2.]1	9
1184	Construction of Atropisomeric 3-Arylindoles via Enantioselective Cacchi Reaction. Organic Letters, 2021, 23, 5901-5905.	2.4	37
1185	Recent Advances on Photoinduced Cascade Strategies for the Synthesis of <i>N</i> â€Heterocycles. Chemical Record, 2021, 21, 2666-2687.	2.9	13
1186	Synthesis of arylsulfonyl-substituted indolo[2,1-a]isoquinolin-6(5H)-one derivatives via a TBAI-catalyzed radical cascade cyclization. Chinese Chemical Letters, 2022, 33, 276-279.	4.8	19
1187	Regioselective Mercury(I)/Palladium(II)-Catalyzed Single-Step Approach for the Synthesis of Imines and 2-Substituted Indoles. Molecules, 2021, 26, 4092.	1.7	2
1188	Catalytic Systemâ€Controlled Divergent Reaction Strategies for the Construction of Diversified Spiropyrazolone Skeletons from Pyrazolidinones and Diazopyrazolones. Angewandte Chemie - International Edition, 2021, 60, 21327-21333.	7.2	28

#	Article	IF	Citations
1189	Pdâ€Catalyzed Cascade Heckâ€Type Annulation And Carbonylation to β â€Oxindolysulfoximidoyl Amides at Room Temperature. Asian Journal of Organic Chemistry, 2021, 10, 2351-2354.	1.3	5
1190	Salicylaldehyde-Promoted Cobalt-Catalyzed C–H/N–H Annulation of Indolyl Amides with Alkynes: Direct Synthesis of a 5-HT3 Receptor Antagonist Analogue. Organic Letters, 2021, 23, 7094-7099.	2.4	12
1191	Difluorocarbene enables to access 2-fluoroindoles from ortho-vinylanilines. Nature Communications, 2021, 12, 4986.	5.8	32
1192	Catalytic Systemâ€Controlled Divergent Reaction Strategies for the Construction of Diversified Spiropyrazolone Skeletons from Pyrazolidinones and Diazopyrazolones. Angewandte Chemie, 2021, 133, 21497-21503.	1.6	0
1193	Cascade Reaction to Selectively Synthesize Multifunctional Indole Derivatives by Ir ^{III} â€Catalyzed Câ^'H Activation. Chemistry - A European Journal, 2021, 27, 13123-13127.	1.7	6
1194	Rhodium(III)â€Catalyzed Cascade Câ~H Activation/Annulation of N arbamoylindoles with Silyl Enol Ethers for the Construction of Dihydropyrimidoindolone Skeletons. Asian Journal of Organic Chemistry, 0, , .	1.3	4
1195	Sulfur-Directed C ₇ -Selective Alkenylation of Indoles under Rhodium Catalysis. Organic Letters, 2021, 23, 6252-6256.	2.4	9
1196	Recent Developments in the Palladium atalyzed/Norborneneâ€Mediated Synthesis of Carbo―and Heterocycles. ChemistrySelect, 2021, 6, 8085-8106.	0.7	7
1197	Catalytic C2 prenylation of unprotected indoles: Late-stage diversification of peptides and two-step total synthesis of tryprostatin B. Chinese Journal of Catalysis, 2021, 42, 1593-1607.	6.9	13
1198	Breaking the Trend: Insight into Unforeseen Reactivity of Alkynes in Cobalt-Catalyzed Weak Chelation-Assisted Regioselective C(4)–H Functionalization of 3-Pivaloyl Indole. ACS Catalysis, 2021, 11, 11579-11587.	5.5	19
1199	Tris(pentafluorophenyl)borane Catalyzed Carbenium Ion Generation and Autocatalytic Pyrazole Synthesis — A Computational and Experimental Study. Angewandte Chemie, 0, , .	1.6	2
1200	Ni(II)-Catalyzed Intramolecular C–H/C–H Oxidative Coupling: An Efficient Route to Functionalized Cycloindolones and Indenoindolones. ACS Catalysis, 2021, 11, 12384-12393.	5.5	5
1201	LED Light Sources in Organic Synthesis: An Entry to a Novel Approach. Letters in Organic Chemistry, 2022, 19, 283-292.	0.2	6
1202	Short Total Synthesis of (±)-Gelliusine E and 2,3′-Bis(indolyl)ethylamines <i>via</i> PTSA-Catalyzed Transindolylation. Journal of Organic Chemistry, 2021, 86, 13360-13370.	1.7	13
1203	Pd-Catalyzed Indole Synthesis via C–H Activation and Bisamination Sequence with Diaziridinone. Organic Letters, 2021, 23, 7561-7565.	2.4	8
1204	Metal-free oxidative ketonization–olefination of indoles by cross-coupling with 1,3-dicarbonyl substrate. Tetrahedron Letters, 2021, 80, 153322.	0.7	0
1205	Iron atalyzed Reductive Cyclization by Hydromagnesiation: A Modular Strategy Towards N â€Heterocycles. Angewandte Chemie - International Edition, 2021, 60, 22345-22351.	7.2	6
1206	Tris(pentafluorophenyl)borane atalyzed Carbenium Ion Generation and Autocatalytic Pyrazole Synthesis—A Computational and Experimental Study. Angewandte Chemie - International Edition, 2021, 60, 24395-24399.	7.2	18

#	Article	IF	CITATIONS
1207	Tandem Nenitzescu Reaction/Nucleophilic Aromatic Substitution to Form Novel Pyrido Fused Indole Frameworks. European Journal of Organic Chemistry, 2021, 2021, 4865-4875.	1.2	4
1208	Asymmetric Synthesis of Axially Chiral Naphthyl-C3-indoles via a Palladium-Catalyzed Cacchi Reaction. Organic Letters, 2021, 23, 7401-7406.	2.4	39
1209	Ironâ€Catalyzed Reductive Cyclization by Hydromagnesiation: A Modular Strategy Towards N â€Heterocycles. Angewandte Chemie, 2021, 133, 22519-22525.	1.6	1
1210	Syntheses of 1 <i>H</i> â€Indoles, Quinolines, and 6â€Membered Aromatic <i>N</i> â€Heterocycleâ€Fused Scaffolds via Palladium(II)â€Catalyzed Aerobic Dehydrogenation under Alkoxideâ€Free Conditions. Chemistry - an Asian Journal, 2021, 16, 3469-3475.	1.7	9
1211	Palladium catalyzed reductive Heck coupling and its application in total synthesis of (â^')-17-nor-excelsinidine. RSC Advances, 2021, 11, 7570-7574.	1.7	3
1212	Access to the C2 C–H olefination, alkylation and deuteration of indoles by rhodium(<scp>iii</scp>) catalysis: an opportunity for diverse syntheses. Organic Chemistry Frontiers, 2021, 8, 3032-3040.	2.3	12
1213	Additive-Free Copper(I)-Mediated Synthesis of 5- or 6-Brominated 2-Aryl-1 <i>H</i> -Indole-3-Carboxylates from α,α-Dibromo β-Iminoesters. Journal of Organic Chemistry, 2021, 86, 1964-1971.	1.7	7
1214	Diastereoselective synthesis of functionalized tetrahydropyridazines containing indole scaffolds <i>via</i> an inverse-electron-demand aza-Diels–Alder reaction. Organic Chemistry Frontiers, 2021, 8, 4392-4398.	2.3	12
1215	One-pot multi-step cascade protocols toward β-indolyl sulfoximidoyl amides <i>via</i> intermolecular trapping of an α-indolylpalladium complex by CO. Organic and Biomolecular Chemistry, 2021, 19, 3359-3369.	1.5	4
1216	Iridium-Catalyzed Diastereo- and Enantioselective [4 + 3] Cycloaddition of 4-Indolyl Allylic Alcohols with Azomethine Ylides. Organic Letters, 2021, 23, 588-594.	2.4	24
1217	Synthesis of 3-Methyl Indoles via Catellani Reaction. Chinese Journal of Organic Chemistry, 2021, 41, 2532.	0.6	6
1218	Regioselective C5-H direct iodination of indoles. Organic Chemistry Frontiers, 2021, 8, 1844-1850.	2.3	8
1219	Metalâ€Free Selective and Diverse Synthesis of Three Distinct Sets of Isoindolinones from 2â€Alkynylbenzoic Acids and Amines. European Journal of Organic Chemistry, 2020, 2020, 7343-7357.	1.2	7
1220	Oceans and Human Health ocean/oceanic oceans and human health (OHH) , Social ocean/oceanic oceans and human health (OHH) social impacts and Economic Impacts ocean/oceanic oceans and human health (OHH) economic impacts. , 2012, , 7383-7393.		2
1221	Controlled fabrication of core-shell silica@chiral metal-organic framework for significant improvement chromatographic separation of enantiomers. Talanta, 2020, 218, 121155.	2.9	31
1222	Regio- and diastereoselectivity of the cycloaddition of nitrones with N-propadienylindole and pyrroles. Tetrahedron, 2018, 74, 174-183.	1.0	25
1223	Electrocatalytic reactivity of imine/oxime-type cobalt complex for direct perfluoroalkylation of indole and aniline derivatives. Dalton Transactions, 2020, 49, 7546-7551.	1.6	15
1224	Rhodium(<scp>iii</scp>)-catalyzed C4-amidation of indole-oximes with dioxazolones <i>via</i> C–H activation. Organic and Biomolecular Chemistry, 2020, 18, 7922-7931.	1.5	10

#	Article	IF	CITATIONS
1225	Ethyl 5-methoxy-2-trifluoromethyl-1 <i>H</i> -indole-3-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, o339-o339.	0.2	1
1226	Cryptic effects of biological invasions: Reduction of the aggressive behaviour of a native fish under the influence of an "invasive―biomolecule. PLoS ONE, 2017, 12, e0185620.	1.1	15
1227	Bromotryptophan and its Analogs in Peptides from Marine Animals. Protein and Peptide Letters, 2019, 26, 251-260.	0.4	4
1228	Marine Natural Product Bis-indole Alkaloid Caulerpin: Chemistry and Biology. Mini-Reviews in Medicinal Chemistry, 2019, 19, 751-761.	1.1	36
1229	Griseofulvin Derivatives: Synthesis, Molecular Docking and Biological Evaluation. Current Topics in Medicinal Chemistry, 2019, 19, 1145-1161.	1.0	12
1230	Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action. Marine Drugs, 2013, 11, 2510-2573.	2.2	268
1231	Bioactive Bis(indole) Alkaloids from a Spongosorites sp. Sponge. Marine Drugs, 2021, 19, 3.	2.2	14
1232	Synthesis of 3-alkenylindoles through regioselective C–H alkenylation of indoles by a ruthenium nanocatalyst. Beilstein Journal of Organic Chemistry, 2020, 16, 140-148.	1.3	7
1233	Divergent Synthesis of Indole-2-carboxylic Acid Derivatives via Ligand-free Copper-catalyzed Ullmann Coupling Reaction. Heterocycles, 2019, 98, 904.	0.4	2
1234	Studies on the red sea sponge Haliclona sp. for its chemical and cytotoxic properties. Pharmacognosy Magazine, 2016, 12, 114.	0.3	17
1235	New Developments in the Mechanism of Drug Action and Toxicity of Conjugated Imines and Iminiums, including Related Alkaloids. Open Journal of Preventive Medicine, 2014, 04, 583-597.	0.2	2
1236	Psychoactive natural products: overview of recent developments. Annali Dell'Istituto Superiore Di Sanita, 2014, 50, 12-27.	0.2	31
1237	Evaluation of the Biological Activities of Marine Bacteria Collected from Jeju Island, Korea, and Isolation of Active Compounds from their Secondary Metabolites. Fisheries and Aquatic Sciences, 2014, 17, 215-222.	0.3	10
1238	Nickel-catalyzed cascade carbonylative synthesis of <i>N</i> -benzoyl indoles from 2-nitroalkynes and aryl iodides. Organic Chemistry Frontiers, 2021, 8, 6541-6545.	2.3	17
1239	Rh(<scp>iii</scp>)-Catalyzed tandem C(sp ²)–H allylation/ <i>N</i> -alkylation annulation of arene amides with 2-alkylidenetrimethylene carbonates. Organic Chemistry Frontiers, 2021, 8, 6585-6590.	2.3	18
1240	Gold-Catalyzed Domino Cycloisomerization/Alkoxylation: An Entry to 3,4-Dihydro-1H-[1,4]oxazino[4,3-a]indole. Journal of Organic Chemistry, 2021, , .	1.7	7
1241	Sulfenylation of Indoles Mediated by Iodine and Its Compounds. ChemistrySelect, 2021, 6, 10369-10378.	0.7	4
1242	Synthesis of Indolyl-Tethered Spiro[cyclobutane-1,1′-indenes] through Cascade Reactions of 1-(Pyridin-2-yl)-1 <i>H</i> -indoles with Alkynyl Cyclobutanols. Organic Letters, 2021, 23, 8510-8515.	2.4	13

#	Article	IF	CITATIONS
1243	Aerobic Oxidative Cascade Thiolation and Cyclization to Construct Indole-Fused Isoquinolin-6(5 <i>H</i>)-one Derivatives in EtOH. Journal of Organic Chemistry, 2021, 86, 15835-15844.	1.7	16
1244	Rhodium(III)â€Catalyzed Regioselective Câ^'H Allylation and Prenylation of Indoles at C4â€Position. Advanced Synthesis and Catalysis, 2022, 364, 64-70.	2.1	12
1245	Unprecedented Multicomponent Reaction of Indoles, CS ₂ and Nitroarenes: Stereoselective Synthesis of (<i>Z</i>)â€3â€{(Arylamino)methylene)indolineâ€2â€thiones. Chemistry - an Asian Journal, 2021, 16, 3890-3894.	1.7	6
1246	Organocatalytic Direct Asymmetric Indolization from Anilines by Enantioselective [3 + 2] Annulation. Organic Letters, 2021, 23, 8434-8438.	2.4	15
1247	Synthesis of Indole-Fused Oxepines via C–H Activation Initiated Diastereoselective [5 + 2] Annulation of Indoles with 1,6-Enynes. Organic Letters, 2021, 23, 8365-8369.	2.4	14
1248	Palladium-Catalyzed, Enantioselective Desymmetrization of <i>N</i> -Acylaziridines with Indoles. Organic Letters, 2021, 23, 7916-7920.	2.4	6
1249	One-Pot Synthesis of 6H-Indolo[2,3-b]quinolines from 2-Nitrobenzaldehyde and Indole Derivatives via Domino Reaction. Heterocycles, 2018, 96, 1821.	0.4	1
1250	Functionalizations of Indoles by Intermolecular Interrupted Pummerer Reaction. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 678-689.	0.0	2
1251	Pd(OAc)2/CuI-Catalyzed Tandem Reaction for Synthesis of Polysubstituted 3-Chalcogenylindoles. Chinese Journal of Organic Chemistry, 2019, 39, 3215.	0.6	0
1252	Direct Formation of Disubstituted Vinylidenes from Internal Alkynes at Group 8 Metal Complexes and its Application to Organic Synthesis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 691-702.	0.0	1
1253	Ruthenium(II)-Catalyzed Highly Chemo- and Regioselective Oxidative C6 Alkenylation of Indole-7-carboxamides. Organic Letters, 2021, 23, 8673-8677.	2.4	4
1254	Organocatalytic cycloaddition–elimination cascade for atroposelective construction of heterobiaryls. Chemical Science, 2021, 12, 14920-14926.	3.7	36
1255	Rhodium(<scp>iii</scp>)-catalyzed C–H annulation of 2-acetyl-1-arylhydrazines with sulfoxonium ylides: synthesis of 2-arylindoles. RSC Advances, 2020, 10, 39708-39711.	1.7	5
1256	Chemo- and Stereoselective Dearomative Coupling of Indoles and Bielectrophilic β-Imino Boronic Esters via Imine-Induced 1,2-Boronate Migration. Organic Letters, 2021, 23, 8984-8988.	2.4	4
1257	Rhodium(III) atalyzed Direct C7â€Selective Alkenylation and Alkylation of Indoles with Maleimides. Advanced Synthesis and Catalysis, 2022, 364, 307-313.	2.1	14
1258	Organocatalytic Asymmetric [2 + 4] Cycloadditions of 3-Vinylindoles with ortho-Quinone Methides. Molecules, 2021, 26, 6751.	1.7	6
1259	Study on the interaction between 4-(1H-indol-3-yl)-2-(p-tolyl)quinazoline-3-oxide and human serum albumin. Bioorganic and Medicinal Chemistry, 2020, 28, 115720.	1.4	6
1260	Decarboxylative Propargylation/Hydroamination/Aromatization Enabled by Copper/ Amine Cooperative Catalysis: Construction of Cyclopenta[b]indole Derivatives. Current Organic Chemistry, 2020, 24, 1384-1395.	0.9	1

#	Article	IF	CITATIONS
1261	Phosphorylation of arenes, heteroarenes, alkenes, carbonyls and imines by dehydrogenative cross-coupling of P(O)–H and P(R)–H. Organic and Biomolecular Chemistry, 2022, 20, 498-537.	1.5	15
1262	Marine Indole Alkaloids—Isolation, Structure and Bioactivities. Marine Drugs, 2021, 19, 658.	2.2	19
1263	Construction of poly-N-heterocyclic scaffolds via the controlled reactivity of Cu-allenylidene intermediates. Communications Chemistry, 2021, 4, .	2.0	5
1264	Recent Advances in Benzocyclobutene Chemistry. Asian Journal of Organic Chemistry, 2021, 10, 3166-3185.	1.3	13
1265	Catalytic Atroposelective Dynamic Kinetic Resolution of Substituted Indoles. Synlett, 2022, 33, 201-206.	1.0	1
1266	Lewis acid-catalyzed [4 + 2] cycloaddition of 3-alkyl-2-vinylindoles with β,γ-unsaturated α-ketoesters. Green Synthesis and Catalysis, 2022, 3, 84-88.	3.7	12
1267	Triflic Acid-Catalyzed Synthesis of Indole-Substituted Indane Derivatives via <i>In Situ</i> Formed Acetal-Facilitated Nucleophilic Addition and 4ï€-Electron-5-Carbon Electrocyclization Sequence. Journal of Organic Chemistry, 2021, 86, 16278-16292.	1.7	9
1268	Reaction of Indoleâ€2 arboxylates/Carboxylic Acids with Propargylic Alcohols: Dearomative Ring Expansion/Spirocyclization vs Fused Pentacyclics. Advanced Synthesis and Catalysis, 2022, 364, 643-657.	2.1	6
1269	Synthesis of indolo[2,1- <i>α</i>]isoquinoline derivatives <i>via</i> metal-free radical cascade cyclization. Organic and Biomolecular Chemistry, 2021, 19, 10376-10384.	1.5	16
1270	Synthesis of 5,7-diarylindoles via Suzuki–Miyaura coupling in water. Organic and Biomolecular Chemistry, 2021, 19, 10343-10347.	1.5	2
1271	Friedel–Crafts reaction of indoles for (3-indolyl)methyl ethers under basic condition: Application in unsymmetrical bis(indolyl)methanes. Results in Chemistry, 2021, 3, 100247.	0.9	1
1272	Electrochemical Annulations of <i>o</i> -Alkynylanilines for Synthesis of 3-lodoindoles. Chinese Journal of Organic Chemistry, 2021, 41, 4696.	0.6	7
1273	Annulation of 2â€Alkynylanilines: The Versatile Chemical Compounds. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	5
1274	A facile synthesis of pyrrolo[2,3â€ <i>j</i>]phenanthridines via the cascade reaction of indoleanilines and aldehydes. Journal of Heterocyclic Chemistry, 2022, 59, 1116-1122.	1.4	4
1275	β-Methyltryptamine Provoking the Crucial Role of Strictosidine Synthase Tyr151-OH for Its Stereoselective Pictetâ^'Spengler Reactions to Tryptoline-type Alkaloids. ACS Chemical Biology, 2022, 17, 187-197.	1.6	3
1276	Synthesis of chiral N-alkylated indoles through replacement of aniline nitrogen by natural amino acids. Green Synthesis and Catalysis, 2022, 3, 282-286.	3.7	4
1277	Design, synthesis and evaluation of structurally diverse <i>ortho</i> -acylphenol-diindolylmethane hybrids as anticancer agents. New Journal of Chemistry, 2022, 46, 1295-1307.	1.4	5
1278	BrÃุnsted-Acid-Promoted Selective C2–N1 Ring-Expansion Reaction of Indoles toward Cyclopenta[<i>b</i>]quinolines. Organic Letters, 2022, 24, 966-970.	2.4	10

#	Article	IF	CITATIONS
1279	Solvent-controlled regioselective arylation of indoles and mechanistic explorations. Organic Chemistry Frontiers, 2022, 9, 1023-1032.	2.3	4
1280	Direct Bis-Alkyl Thiolation for Indoles with Sulfinothioates under Pummerer-Type Conditions. Journal of Organic Chemistry, 2022, 87, 1133-1143.	1.7	6
1281	Synthesis of Multisubstituted Benzofurans/Indoles Using Multichlorinated Phenols/Anilines via Palladium-Catalyzed Site-Selective Sonogashira Coupling. Heterocycles, 2022, 104, 3.	0.4	5
1282	Palladiumâ€Catalyzed Coupling Reaction of o â€Alkenyl Chloroformylaniline with o â€Alkynylaniline: An Approach to Indolylmethyl Oxindole. Asian Journal of Organic Chemistry, 0, , .	1.3	1
1283	LiBr-Catalyzed C3-Disulfuration between Indole and <i>N</i> -Dithiophthalimide. Journal of Organic Chemistry, 2023, 88, 2550-2556.	1.7	6
1284	Metalâ€free and Oneâ€pot for the Synthesis of Indolo[2,1â€ <i>a</i>]isoquinoline Aldehyde via a Free Radical Cascade Pathway followed by Direct Hydrolyzation. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	10
1285	Aymmetric Aza-Friedel–Crafts Reaction of Isatin-Derived Ketimines with Indoles Catalyzed by a Chiral Phase-Transfer Catalyst. Journal of Organic Chemistry, 2022, 87, 2532-2542.	1.7	11
1286	Synthesis of C3-functionalized indole derivatives <i>via</i> BrÃ,nsted acid-catalyzed regioselective arylation of 2-indolylmethanols with guaiazulene. Organic and Biomolecular Chemistry, 2022, 20, 1510-1517.	1.5	5
1287	Enantioselective synthesis of 2-indolyl methanamine derivatives through disulfonimide-catalyzed Friedel–Crafts C2-alkylation of 3-substituted indoles with imines. Organic and Biomolecular Chemistry, 2022, 20, 1916-1925.	1.5	7
1288	Synthesis of 2â€Substituted Indoles by Pdâ€Catalyzed Reductive Cyclization of 1â€Haloâ€2â€nitrobenzene with Alkynes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
1289	Qualitative analysis and differentiation of ginkgo cultivars based on UHPLC-QTOF-MS/MS with the characteristic ion and neutral loss strategy combined with chemometric methods. Journal of Pharmaceutical and Biomedical Analysis, 2022, 211, 114595.	1.4	7
1290	Camphorsulfonic Acid-Mediated One-Pot Tandem Consecutive via the Ugi Four-Component Reaction for the Synthesis of Functionalized Indole and 2-Quinolone Derivatives by Switching Solvents. ACS Omega, 2022, 7, 5713-5729.	1.6	3
1291	Additive-Controlled Divergent Synthesis of Indole and 4H-Benzo[d][1,3]oxazine Derivatives: Palladium-Catalyzed Carbonylative Cyclization of 2-Alkynylanilines and Benzyl Chlorides. Journal of Organic Chemistry, 2022, , .	1.7	3
1292	Interrupted Intramolecular Hydroaminomethylation of N-Protected-2-vinyl Anilines: Novel Access to 3-Substitued Indoles or Indoline-2-ols. Molecules, 2022, 27, 1074.	1.7	1
1293	A Mild Two-Step Synthesis of Structurally Valuable Indole-Fused Derivatives. Journal of Organic Chemistry, 2022, 87, 3212-3222.	1.7	6
1294	Synthesis of functionalized indoles <i>via</i> cascade benzannulation strategies: a decade's overview. Organic and Biomolecular Chemistry, 2022, 20, 3029-3042.	1.5	20
1295	Cu(OTf) ₂ -catalyzed C3 aza-Friedel–Crafts alkylation of indoles with <i>N</i> , <i>O</i> -acetals. Organic and Biomolecular Chemistry, 2022, 20, 2261-2270.	1.5	3
1296	Copper-catalyzed amino radical tandem cyclization toward the synthesis of indolo-[2,1- <i>a</i>]isoquinolines. Organic Chemistry Frontiers, 2022, 9, 2438-2443.	2.3	9

#	Article	IF	Citations
1297	The synthesis of anticancer sulfonated indolo[2,1- <i>a</i>]isoquinoline and benzimidazo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones derivatives <i>via</i> a free radical cascade pathway. RSC Advances, 2022, 12, 9763-9772.	1.7	8
1298	The mechanism and impact of mono/bis(iodoimidazolium) halogen bond donor catalysts on Michael addition of indole with <i>trans</i> -crotonophenone: DFT calculations. Physical Chemistry Chemical Physics, 2022, 24, 6690-6698.	1.3	5
1299	Construction of Aza-spiro[4,5]indole Scaffolds via Rhodium-Catalyzed Regioselective C(4)—H Activation of Indole [※] . Acta Chimica Sinica, 2022, 80, 277.	0.5	0
1300	Synthesis of indoles and carbazoles from a lignin model compound α-hydroxyacetophenone. Green Chemistry, 2022, 24, 2919-2926.	4.6	9
1301	Solvent-controlled regioselective C(5)–H/N(1)–H bond alkylations of indolines and C(6)–H bond alkylations of 1,2,3,4-tetrahydroquinolines with <i>para</i> -quinone methides. Organic and Biomolecular Chemistry, 2022, 20, 3570-3588.	1.5	7
1302	Recent advances in the tandem copper-catalyzed Ullmann–Goldberg <i>N</i> -arylation–cyclization strategies. Organic and Biomolecular Chemistry, 2022, 20, 2993-3028.	1.5	13
1303	Total synthesis of monoterpenoid indole alkaloid (–)-arbophyllidine. Organic Chemistry Frontiers, 0, ,	2.3	0
1304	Base-controlled dearomative [3 + 2] cycloadditions between 3-nitro-indoles and fumaric acid amide esters. Organic and Biomolecular Chemistry, 2022, 20, 3072-3075.	1.5	7
1305	Sulphur ylide-mediated cyclopropanation and subsequent spirocyclopropane rearrangement reactions. Organic and Biomolecular Chemistry, 2022, , .	1.5	2
1306	Visible-light-promoted radical amidoarylation of arylacrylamides towards amidated oxindoles. Organic Chemistry Frontiers, 2022, 9, 2164-2168.	2.3	9
1307	Nickel-catalyzed carbonylative domino cyclization of arylboronic acid pinacol esters with 2-alkynyl nitroarenes toward <i>N</i> -aroyl indoles. Organic Chemistry Frontiers, 2022, 9, 2685-2689.	2.3	12
1308	Co(II)-Catalyzed C–H/N–H Annulation of Cyclic Alkenes with Indole-2-carboxamides at Room Temperature: One-Step Access to β-Carboline-1-one Derivatives. Journal of Organic Chemistry, 2022, 87, 4438-4448.	1.7	4
1309	Asymmetric Addition of Î \pm -Diazomethylphosphonate to Alkylideneindolenine Catalyzed by a Trifunctional BINAP-Based Monophosphonium Salt. Organic Letters, 2022, 24, 1657-1661.	2.4	6
1310	Synthesis of Nonâ€Terminal Alkenyl Ethers, Alkenyl Sulfides, and Nâ€Vinylazoles from Arylaldehydes or Diarylketones, DMSO and O, S, Nâ€Nucleophiles. Advanced Synthesis and Catalysis, 0, , .	2.1	3
1311	Palladium-Catalyzed Synthesis of Functionalized Indoles by Acylation/Allylation of 2-Alkynylanilines with Three-Membered Rings. Organic Letters, 2022, 24, 2093-2098.	2.4	33
1312	Pd-Catalyzed C–H Functionalization of Indole-Containing Alkene-Tethered Aryl Halides with Alkynes To Construct Indole Alkaloid Scaffolds. Organic Letters, 2022, 24, 2910-2914.	2.4	9
1313	Catalyst-Controlled C–H Transformation of Pyrazolidinones with 1,3-Diynes for Highly Selective Synthesis of Functionalized Bisindoles and Indoles. Journal of Organic Chemistry, 2022, , .	1.7	11
1314	Manganese atalyzed C(sp ²)â~'H Alkylation of Indolines and Arenes with Unactivated Alkyl Bromides. Chemistry - an Asian Journal, 2022, 17, .	1.7	2

#	Article	IF	CITATIONS
1315	Rutheniumâ€Catalyzed C7â€Formylmethylation or Sequential Acetalization of Indolines with Vinylene Carbonate in Different Solvents. Advanced Synthesis and Catalysis, 2022, 364, 1580-1586.	2.1	18
1316	Electrochemical Regioselective Cross-Dehydrogenative Coupling of Indoles with Xanthenes. Journal of Organic Chemistry, 2022, 87, 1056-1064.	1.7	21
1317	An Efficient Approach to 2-CF3-Indoles Based on ortho-Nitrobenzaldehydes. Molecules, 2021, 26, 7365.	1.7	3
1318	Marine-Derived Indole Alkaloids and Their Biological and Pharmacological Activities. Marine Drugs, 2022, 20, 3.	2.2	28
1319	Palladium-Catalyzed 2-fold C–H Activation/C–C Coupling for C4-Arylation of Indoles Using Weak Chelation. Organic Letters, 2022, 24, 554-558.	2.4	12
1320	Diversity Synthesis of Indole-derivatives via Catalyst Control Cyclization Reaction of 2-Indolylmethanols and Azonaphthalene. Organic and Biomolecular Chemistry, 2022, , .	1.5	0
1321	Metal-catalyzed reactions of organic nitriles and boronic acids to access diverse functionality. Organic and Biomolecular Chemistry, 2022, 20, 4243-4277.	1.5	21
1322	Design, synthesis, and applications of stereospecific 1,3-diene carbonyls. Science China Chemistry, 2022, 65, 912-917.	4.2	1
1323	Indoles Oxidative Ring-Opening/Cyclization Cascade with the 1,2-Diaminoarenes: Direct Synthesis of 2-Aryl-3-(2-aminoaryl)quinoxalines. Journal of Organic Chemistry, 2022, 87, 6347-6351.	1.7	7
1324	Indole Editing Enabled by HFIPâ€Mediated Ringâ€Switch Reactions of 3â€Aminoâ€2â€Hydroxyindolines. Chemist A European Journal, 2022, 28, .	^{ry} 1.7	6
1325	1-Acryloyl-2-cyanoindole: A Skeleton for Visible-Light-Induced Cascade Annulation. Organic Letters, 2022, 24, 3014-3018.	2.4	25
1326	Targeting the N-Terminus Domain of the Coronavirus Nucleocapsid Protein Induces Abnormal Oligomerization via Allosteric Modulation. Frontiers in Molecular Biosciences, 2022, 9, 871499.	1.6	6
1327	<i>Regio</i> -Selective C3- and N-Alkylation of Indolines in Water under Air Using Alcohols. Journal of Organic Chemistry, 2022, 87, 5603-5616.	1.7	17
1328	Palladium-catalyzed aminocarbonylative cyclization of benzyl chlorides with 2-nitroaryl alkynes to construct indole derivatives. Molecular Catalysis, 2022, 524, 112302.	1.0	2
1329	Visible-light-mediated defluorinative cyclization of α-fluoro-β-enamino esters catalyzed by 4-CzIPN. Organic Chemistry Frontiers, 2022, 9, 3499-3505.	2.3	4
1330	A facile protocol for the preparation of 2-carboxylated thieno [2,3- <i>b</i>] indoles: a <i>de novo</i> access to alkaloid thienodolin. Organic and Biomolecular Chemistry, 2022, 20, 4167-4175.	1.5	5
1331	Catalytic Ring Expansion of Indole toward Dibenzoazepine Analogues Enabled by Cationic Palladium(II) Complexes. ACS Catalysis, 2022, 12, 6216-6226.	5.5	7
1332	Metal-free synthesis of sulfonylated indolo[2,1- <i>a</i>]isoquinolines from sulfur dioxide. Organic Chemistry Frontiers, 2022, 9, 3521-3526.	2.3	21

#	Article	IF	CITATIONS
1333	A Review on Bioactive Compounds from Marine-Derived <i>Chaetomium</i> Species. Journal of Microbiology and Biotechnology, 2022, 32, 541-550.	0.9	10
1334	Electrochemical triamination of alkynes: controllable synthesis of functionalized indolines and indoles. Green Chemistry, 2022, 24, 4754-4760.	4.6	11
1335	Halogen-Bonding-Promoted C–H Malonylation of Indoles under Visible-Light Irradiation. Journal of Organic Chemistry, 0, , .	1.7	4
1336	Solid acid-catalyzed one-pot multi-step cascade reaction: Multicomponent synthesis of indol-3-yl acetates and indol-3-yl acetamides in water. Tetrahedron, 2022, 117-118, 132839.	1.0	2
1337	Efficient metal-free green syntheses of 4 <i>H</i> -chromenes and 3-amino alkylated indoles using a reusable graphite oxide carbocatalyst under aqueous and solvent-free reaction conditions. New Journal of Chemistry, 0, , .	1.4	1
1338	Copper-catalyzed regioselective C2–H chlorination of indoles with <i>para</i> -toluenesulfonyl chloride. Organic and Biomolecular Chemistry, 2022, 20, 4815-4825.	1.5	1
1339	Copper-Catalyzed Radical Cascade Reaction of Indole with Benzimidazole to Synthesize 3-Haloindole-Benzimidazoles. SSRN Electronic Journal, 0, , .	0.4	0
1340	Visibleâ€Lightâ€Promoted Radical Cyclization and Nâ^'N Bond Cleavage Relay of Nâ€Aminopyridinium Ylides for Access to 2,3â€Difunctionalized Indoles. Advanced Synthesis and Catalysis, 2022, 364, 2211-2220.	2.1	7
1341	Catalytic Atroposelective Electrophilic Amination of Indoles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	24
1342	Cu(I)/Pd(II)-Catalyzed Intramolecular Hydroamidation and C-H Dehydrogenative Coupling of ortho-Alkynyl-N-arylbenzamides for Access to Isoindolo[2,1-a]Indol-6-Ones. Molecules, 2022, 27, 3393.	1.7	2
1343	Directed C–H Functionalization of C3-Aldehyde, Ketone, and Acid/Ester-Substituted Free (NH) Indoles with Iodoarenes <i>via</i> a Palladium Catalyst System. Journal of Organic Chemistry, 2023, 88, 1299-1318.	1.7	6
1344	Catalytic Atroposelective ElectrophilicÂAmination of Indoles. Angewandte Chemie, 0, , .	1.6	7
1345	TfOH-Catalyzed Cascade C–H/N–H Chemo-/Regioselective Annulation of Indole-2-carboxamides with Benzoquinones for the Construction of Anticancer Tetracyclic Indolo[2,3- <i>c</i>]quinolinones. Journal of Organic Chemistry, 2022, 87, 7955-7967.	1.7	2
1346	Does an Enol Pathway Preclude High Stereoselectivity in Iron-Catalyzed Indole C–H Functionalization via Carbene Insertion?. Journal of Organic Chemistry, 2022, 87, 7919-7933.	1.7	10
1347	Catalytic Asymmetric Allylic Substitution/Isomerization with Central Chirality Transposition. Organic Letters, 2022, 24, 4246-4251.	2.4	22
1348	Rhodium(<scp>iii</scp>)-catalyzed regioselective C(sp ²)–H activation of indoles at the C4-position with iodonium ylides. Organic and Biomolecular Chemistry, 0, , .	1.5	8
1349	Synthesis of Tryptamines from Radical Cyclization of 2-Iodoaryl Allenyl Amines and Coupling with 2-Azallyls. Journal of Organic Chemistry, 2022, 87, 8099-8103.	1.7	3
1350	O ₂ -Mediated Te(II)-Redox Catalysis for the Cross-Dehydrogenative Coupling of Indoles. Jacs Au, 2022, 2, 1318-1323.	3.6	6

#	Article	IF	CITATIONS
1351	Carbeneâ€Catalyzed Activation of Câ€Si Bonds for Chemo―and Enantioselective Cross Brookâ€Benzoin Reaction. Angewandte Chemie, 0, , .	1.6	0
1352	Enantioselective Cascade Michael/Hemiaminal Formation of α,β-Unsaturated Iminoindoles with Aldehydes Using a Chiral Aminomethylpyrrolidine Catalyst Bearing a SO ₂ C ₆ F ₅ Group as a Strongly Electron Withdrawing ArvIsulfonvl Group, ACS Catalysis, 2022, 12, 7436-7442.	5.5	8
1353	Recent Advances in the Synthesis of 5â€Membered <i>N</i> â€Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect, 2022, 7, .	0.7	8
1354	Construction of Axially Chiral Indoles by Cycloaddition–Isomerization via Atroposelective Phosphoric Acid and Silver Sequential Catalysis. ACS Catalysis, 2022, 12, 8094-8103.	5.5	30
1355	Asymmetric synthesis of pyrrolo[2,3–b]indole scaffolds by organocatalytic [3Â+Â2] dearomative annulation. Tetrahedron Letters, 2022, 103, 153969.	0.7	5
1356	Easy Access to Indoleâ€based Biâ€Sulfurylateâ€Heterocyclic Scaffolds. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	2
1357	One-Pot Synthesis of Highly Functionalized Indole in Choline Chloride/Oxalic Acid as a Deep Eutectic Solvent. Polycyclic Aromatic Compounds, 2023, 43, 4305-4312.	1.4	4
1358	Carbeneâ€Catalyzed Activation of Câ^'Si Bonds for Chemo―and Enantioselective Cross Brook–Benzoin Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
1359	A Convenient Wittigâ€Horner Mediated Synthesis of 3â€Vinylsulfide Derivatives of Indoles. ChemistrySelect, 2022, 7, .	0.7	1
1360	Divergent synthesis of 4-amino indoles with free amine groups <i>via</i> tandem reaction of 2-alkynylanilines. Organic Chemistry Frontiers, 2022, 9, 4146-4150.	2.3	1
1361	N-Heterocyclic Analogs of Indenocorannulene. Heterocycles, 2022, 105, 477.	0.4	0
1362	Azuleno[6,5-b]indoles: Palladium-Catalyzed Oxidative Ring-Closing Reaction of 6-(Arylamino)azulenes. Heterocycles, 2022, 105, 383.	0.4	0
1363	Visible-light-promoted decarboxylative radical cascade cyclization to acylated benzimidazo/indolo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones in water. RSC Advances, 2022, 12, 19736-19740.	1.7	15
1364	Design, Synthesis and Cytotoxicity Evaluation of N-Amide Derivatives of Indole-Benzimidazole-Isoxazole. SSRN Electronic Journal, 0, , .	0.4	0
1365	Development of potent cholinesterase inhibitors based on a marine pharmacophore. Organic and Biomolecular Chemistry, 2022, 20, 5589-5601.	1.5	1
1366	Synthesis of Bridgehead-Azacycles via Dual C-N/C-C Annulation of α-Amino Acids, Aminals and Maleimides. Organic and Biomolecular Chemistry, 0, , .	1.5	3
1367	Chitosan supported ionic liquid (CSIL): An excellent catalyst for one-pot synthesis of bis(indolyl)methanes. Results in Chemistry, 2022, 4, 100436.	0.9	5
1368	Copper-catalyzed cascade reaction of indole and benzimidazole radicals to synthesize 3-haloindole-benzimidazole compounds. Tetrahedron Letters, 2022, , 153979.	0.7	0

#	Article	IF	CITATIONS
1369	Decatungstateâ€Photocatalyzed Dearomative Hydroacylation of Indoles: Direct Synthesis of 2â€Acylindolines. Chemistry - A European Journal, 2022, 28, .	1.7	10
1370	Electrochemical [3+2] Cycloaddition of Anilines and 1,3â€Dicarbonyl Compounds: Construction of Multisubstituted Indoles. Advanced Synthesis and Catalysis, 2022, 364, 2865-2871.	2.1	6
1371	Electrosynthesis of <i>ortho</i> â€Amino Aryl Ketones by Aerobic Electrooxidative Cleavage of the C(2)=C(3)/C(2)â^'N Bonds of <i>N</i> â€Boc Indoles. Advanced Synthesis and Catalysis, 2022, 364, 2565-2570.	2.1	5
1372	Indole: A promising scaffold for the discovery and development of potential anti-tubercular agents. Current Research in Pharmacology and Drug Discovery, 2022, 3, 100119.	1.7	9
1373	Regioselective C3-Fluoroalcoholation of Indoles with Heptafluoroisopropyl lodide via Palladium-Catalyzed C(sp ²)–C(sp ³) Cross-Coupling in the Presence of O ₂ . Journal of Organic Chemistry, 2022, 87, 9128-9138.	1.7	1
1374	Rigid-induced aggregated annihilation electrochemiluminescence of 1,2,3-triaryl-substituted indoles in aqueous phase. Journal of Electroanalytical Chemistry, 2022, 920, 116569.	1.9	1
1375	Catalyst-Switchable Divergent Synthesis of Bis(indolyl)alkanes and 3-Alkylated Indoles from Styrene Oxides. Journal of Organic Chemistry, 2022, 87, 10229-10240.	1.7	3
1376	Palladiumâ€Catalyzed Regioselective C4 Functionalization of Indoles with Quinones. Advanced Synthesis and Catalysis, 0, , .	2.1	0
1377	Discovery, total syntheses and potent anti-inflammatory activity of pyrrolinone-fused benzoazepine alkaloids Asperazepanones A and B from Aspergillus candidus. Communications Chemistry, 2022, 5, .	2.0	5
1378	Divergent construction of 3-(indol-2-yl)succinimide/maleimide and fused benzodiazepine skeletons from 2-(1 <i>H</i> -indol-1-yl)anilines and maleimides. Organic Chemistry Frontiers, 2022, 9, 4663-4669.	2.3	7
1379	Charge transfer complex enabled photoreduction of Wittig phosphonium salts. Organic Chemistry Frontiers, 2022, 9, 5469-5472.	2.3	7
1380	Palladium-Catalyzed Three-Component Cross-Coupling of Conjugated Dienes with Indoles Using Ethynylbenziodazolones as Electrophilic Alkynylating Reagents. Organic Letters, 2022, 24, 5777-5781.	2.4	6
1381	α-Iminyl Cation-Involved Indole Construction via BrÃ,nsted Acid-Promoted Reaction of Isoxazol-5-ones. Journal of Organic Chemistry, 2022, 87, 11226-11230.	1.7	4
1382	Organocatalytic Asymmetric 3â€Allenylation of Indoles via Remote Stereocontrolled 1,10â€Additions of Alkynyl Indole Imine Methides. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	8
1383	Design, Synthesis and Cytotoxicity Evaluation of N-Amide Derivatives of Indole-benzimidazole-Isoxazole. Chemical Data Collections, 2022, 41, 100925.	1.1	1
1384	Copperâ€Catalyzed Multicomponent Reaction to Construct Fluorinated Indoleâ€quinoxalinâ€2(1 <i>H</i>)â€ones and Their Biological Evaluation. European Journal of Organic Chemistry, 2022, 2022, .	1.2	6
1385	Recent advances in theoretical studies on transition-metal–catalyzed regioselective C-H functionalization of indoles. Journal of Molecular Modeling, 2022, 28, .	0.8	2
1386	Anti-Alphaviral Alkaloids: Focus on Some Isoquinolines, Indoles and Quinolizidines. Molecules, 2022, 27, 5080.	1.7	4

#	Article	IF	Citations
1387	Weak Chelation-Assisted C4-Selective Alkylation of Indoles with Cyclopropanols via Sequential C–H/C–C Bond Activation. Organic Letters, 2022, 24, 6000-6005.	2.4	15
1388	Seleniumâ€Electrocatalytic Cyclization of 2â€Vinylanilides towards Indoles of Peptide Labeling. Chemistry - an Asian Journal, 2022, 17, .	1.7	11
1389	Mgl ₂ -Catalyzed Nucleophilic Ring-Opening Reactions of Donor–Acceptor Cyclopropanes with Indoline-2-thiones. Journal of Organic Chemistry, 2022, 87, 10890-10901.	1.7	10
1390	Lewis Acidâ€Catalyzed (3+2) Cycloaddition of 2â€Indolylmethanols with β,γâ€Unsaturated αâ€Ketoesters. European Journal of Organic Chemistry, 2022, 2022, .	1.2	8
1391	Palladium-catalyzed domino carbonylative cyclization to access functionalized heterocycles. Journal of Catalysis, 2022, 414, 313-318.	3.1	6
1392	One-pot three-component access to 5-hydroxyindoles based on an oxidative dearomatization strategy. Organic and Biomolecular Chemistry, 2022, 20, 7241-7244.	1.5	0
1393	Divergent synthesis of 2-methylthioindole and 2-unsubstituted indole derivatives mediated by SOCl ₂ and dimethyl/diethyl sulfoxides. Organic and Biomolecular Chemistry, 2022, 20, 7886-7890.	1.5	2
1394	Ligand-controlled regiodivergent direct arylation of indoles <i>via</i> oxidative boron Heck reaction. Organic Chemistry Frontiers, 2022, 9, 5906-5911.	2.3	4
1395	Palladium-catalyzed oxidative C–H activation/annulation of <i>N</i> -alkylanilines with bromoalkynes: access to functionalized 3-bromoindoles. Chemical Communications, 2022, 58, 9666-9669.	2.2	5
1396	Catalytic enantioselective hydrophosphinylation of <i>in situ</i> -generated indole-derived vinylogous imines to access 3-(1-diphenylphosphoryl-arylmethyl)indoles. Chemical Communications, 2022, 58, 12062-12065.	2.2	1
1397	Visible-light-induced indole synthesis <i>via</i> intramolecular C–N bond formation: desulfonylative C(sp ²)–H functionalization. Chemical Science, 2022, 13, 11623-11632.	3.7	5
1398	BrÃ,nsted acid-catalyzed cascade cyclization: an efficient strategy for divergent synthesis of cyclohepta[<i>b</i>]indole derivatives. Green Chemistry, 2022, 24, 7376-7381.	4.6	7
1399	Annulation strategies for diverse heterocycles <i>via</i> the reductive transformation of 2-nitrostyrenes. Organic and Biomolecular Chemistry, 2022, 20, 7675-7693.	1.5	3
1400	Visible-Light-Promoted Tandem Decarboxylation Coupling/Cyclization of N-Aryl Glycines with Quinoxalinones: Easy Access to Tetrahydroimidazo[1,5-A]Quinoxalin-4(5h)-Ones. SSRN Electronic Journal, 0, , .	0.4	0
1401	Catalyst-Controlled Divergent Reactions of 2,3-Disubstituted Indoles with Propargylic Alcohols: Synthesis of 3 <i>H</i> -Benzo[<i>b</i>]azepines and Axially Chiral Tetrasubstituted Allenes. Organic Letters, 2022, 24, 6472-6476.	2.4	14
1402	Divergent Pd-catalyzed Functionalization of 4-Oxazolin-2-ones and 4-Methylene-2-oxazolidinones and Synthesis of Heterocyclic-Fused Indoles. Journal of Organic Chemistry, 2022, 87, 13034-13052.	1.7	1
1403	Switchable Reductive <i>N</i> -Trifluoroethylation and <i>N</i> -Trifluoroacetylation of Indoles with Trifluoroacetic Acid and Trimethylamine Borane. Organic Letters, 2022, 24, 7440-7445.	2.4	6
1404	Hypervalent Iodine(III)-Mediated Umpolung Dialkoxylation of N-Substituted Indoles. Journal of Organic Chemistry, 2022, 87, 12759-12771.	1.7	5

#	Article	IF	CITATIONS
1405	3-Sulfonylindoles via Gold- or Silver-Catalyzed Cyclization─1,3-Sulfonyl Migration Sequences under Visible Light Irradiation. ACS Organic & Inorganic Au, 2023, 3, 19-26.	1.9	3
1406	Design and Application of <scp><i>m</i>â€Hydroxybenzyl</scp> Alcohols in Regioselective (3 + 3) Cycloadditions of <scp>2â€Indolymethanols</scp> ^{â€} . Chinese Journal of Chemistry, 2023, 41, 27-36.	2.6	33
1407	Rh(III)â€Catalyzed Chemoâ€divergent Coupling of Sulfoxonium Ylides and Acryloyl Silanes. European Journal of Organic Chemistry, 0, , .	1.2	2
1408	Cobalt-catalyzed direct functionalization of indoles with isocyanides. Journal of Catalysis, 2022, 414, 349-355.	3.1	4
1410	Recent Advances in the Catalytic Asymmetric Friedel–Crafts Reactions of Indoles. ACS Omega, 2022, 7, 35446-35485.	1.6	19
1411	Advances in Catalytic Asymmetric Reactions Using 2-Indolylmethanols as Platform Molecules. Chinese Journal of Organic Chemistry, 2022, 42, 3351.	0.6	38
1412	Oxidative two-way regiocontrolled coupling of 3-methoxycarbonylcatechol and indoles to arylindoles. Chemical Communications, 2022, 58, 12935-12938.	2.2	3
1413	Mechanism of [3+2] Annulations between Indole-2-formaldehydes and Isatins Mediated by N-Heterocyclic Carbene: A DFT Study. New Journal of Chemistry, 0, , .	1.4	0
1414	Research Progress of Sulfoxonium Ylides in the Construction of Five/Six-Membered Nitrogen-Containing Heterocycles. Chinese Journal of Organic Chemistry, 2022, 42, 2745.	0.6	5
1415	Recent advances in the synthesis of cyclic compounds using α,α-dicyanoolefins as versatile vinylogous nucleophiles. Organic and Biomolecular Chemistry, 2022, 20, 8366-8394.	1.5	6
1416	Copper-catalyzed reactions of 1-tert-butyloxycarbonyl-substituted gramine with diazo compounds. Russian Chemical Bulletin, 2022, 71, 1949-1954.	0.4	0
1417	11H-Benzo[4,5]imidazo[1,2-a]indol-11-one as a New Precursor of Azomethine Ylides: 1,3-Dipolar Cycloaddition Reactions with Cyclopropenes and Maleimides. International Journal of Molecular Sciences, 2022, 23, 13202.	1.8	3
1418	Novel, Practical, and Efficient Process for the Preparation of 4,5-Dichloroindole. Organic Process Research and Development, 2022, 26, 3067-3072.	1.3	2
1419	Visible-light-promoted tandem decarboxylation coupling/cyclization of N-aryl glycines with quinoxalinones: Easy access to tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones. Green Synthesis and Catalysis, 2024, 5, 31-34.	3.7	5
1420	Mechanistic Insights into Cobalt-Catalyzed Regioselective C4-Alkenylation of 3-Acetylindole: A Detailed Theoretical Study. Journal of Organic Chemistry, 2022, 87, 14125-14136.	1.7	1
1421	C–H Alkenylation of Indoles through a Dual 1,3-Sulfur Migration Process. Organic Letters, 2022, 24, 7742-7746.	2.4	5
1422	Arylation and Aryne Insertion into C-Acylimines: A Simple, Flexible, and Divergent Synthesis of C2-Aryl Indoles. Journal of Organic Chemistry, 2022, 87, 14250-14263.	1.7	5
1423	Copper-Catalyzed C7-Selective C–H/N–H Cross-Dehydrogenative Coupling of Indolines with Sulfoximines. Organic Letters, 2022, 24, 7997-8001.	2.4	6

#	Article	IF	CITATIONS
	BF3.OEt2 Catalysed synthesis of diverse 9-fluorenlidene appended indole-1-oxides and		
1424	nitrosobenzene. Tetrahedron Letters, 2022, , 154218.	0.7	2
1425	Pd/Novel Axially Chiral Phosphine-Alkene Ligands Catalyzed Asymmetric Allylic Alkylation of Indoles. Chinese Journal of Organic Chemistry, 2022, 42, 3373.	0.6	3
1426	A substrate-controlled Ru(<scp>ii</scp>)-catalyzed C–H activation/[5 + 2] annulation cascade and unusual acyl migration to synthesize diverse indoline scaffolds. Organic Chemistry Frontiers, 2022, 10, 62-67.	2.3	7
1427	Selective Construction of All-Carbon Quaternary Centers via Relay Catalysis of Indole C–H Functionalization/Allylic Alkylation. Organic Letters, 2022, 24, 8423-8428.	2.4	9
1428	Rhodium atalyzed Vinyl Sulfonylation of 3 arbonyl‧ubstituted Indoles with Ethenesulfonyl Fluoride by Crossâ€Dehydrogenative Coupling: An Application in (3+2) Cycloaddition. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
1429	Palladium-Catalyzed Chemodivergent Carbonylation of <i>ortho-</i> Bromoarylimine to Biisoindolinones and Spiroisoindolinones. Journal of Organic Chemistry, 0, , .	1.7	4
1430	Cellular Stress-Induced Metabolites in <i>Escherichia coli</i> . Journal of Natural Products, 2022, 85, 2626-2640.	1.5	3
1431	Enantioselective synthesis of N-alkylindoles enabled by nickel-catalyzed C-C coupling. Nature Communications, 2022, 13, .	5.8	10
1432	Four-Winged Propeller-Shaped Indole-Modified and Indole-Substituted Tetraphenylethylenes: Greenish-Blue Emitters with Aggregation-Induced Emission Features for Conventional Organic Light-Emitting Diodes. ACS Omega, 2022, 7, 44322-44337.	1.6	6
1433	Chiral phosphoric acid-catalyzed chemo and enantioselective 1,2-addition of isatin-derived β,γ-unsaturated α-ketoesters with 4-aminoindoles at the C7 position. Organic Chemistry Frontiers, 0, , .	2.3	0
1434	lodonium ylides: an emerging and alternative carbene precursor for C–H functionalizations. Organic and Biomolecular Chemistry, 2022, 21, 24-38.	1.5	11
1435	Ring-closing metathesis in the synthesis of fused indole structures. Advances in Heterocyclic Chemistry, 2022, , .	0.9	0
1436	Catalytic multicomponent synthesis, biological evaluation, molecular docking and in silico ADMET studies of some novel 3-alkyl indoles. Journal of King Saud University - Science, 2023, 35, 102475.	1.6	3
1437	Design, synthesis and anticancer activity of sulfonamide derivatives of 1,2,3-triazole-indoles. Chemical Data Collections, 2023, 43, 100975.	1.1	4
1438	Boron Trifluoride Etherate Promoted Regioselective 3-Acylation of Indoles with Anhydrides. Molecules, 2022, 27, 8281.	1.7	0
1439	Palladium(II)-Catalyzed Regioselective Hydrocarbofunctionalization of <i>N</i> -Alkenyl Amides: Synthesis of Tryptamine Derivatives. Organic Letters, 2022, 24, 9228-9232.	2.4	1
1440	Polystyrene stabilized Pd-Au nanoalloy for efficient synthesis of bis(indolyl)methanes from aryl iodides using oxalic acid as CO and H2 source. Journal of Industrial and Engineering Chemistry, 2023, 119, 199-207.	2.9	2
1441	Metal, iodine and oxidant-free electrosynthesis of substituted indoles from 1-(2-aminophenyl)alcohols. Green Synthesis and Catalysis, 2023, 4, 311-315.	3.7	3

#	Article	IF	CITATIONS
1442	Cascade Ring-Opening/Cyclization Reaction of Spiro(nitrocyclopropane)oxindoles with Huisgen Zwitterions and Synthesis of Pyrazolo[3,4- <i>b</i>]indoles. Journal of Organic Chemistry, 2022, 87, 16707-16721.	1.7	2
1443	Synthesis and biological evaluation of 1,3,4-oxadiazole linked azaindole derivatives as anticancer agents. Chemical Data Collections, 2023, 44, 100981.	1.1	1
1444	Synthesis, characterization, and <i>in vitro</i> anti-cholinesterase screening of novel indole amines. RSC Advances, 2023, 13, 1203-1215.	1.7	3
1445	Synthesis of 3-Haloindoles via Cascade Oxidative Cyclization/Halogenation of 2-Alkenylanilines Mediated by PIDA and LiBr/KI. Journal of Organic Chemistry, 2023, 88, 1493-1503.	1.7	4
1446	Enantioselective synthesis of tetraarylmethanes through meta-hydroxyl-directed benzylic substitution. , 2023, 2, 275-285.		2
1447	1,2-Metallate Rearrangement Using Indole Boronate Species to Access 2,3-Diarylindoles and Indolines. Organic Letters, 2023, 25, 314-319.	2.4	3
1448	Development of a General and Selective Nanostructured Cobalt Catalyst for the Hydrogenation of Benzofurans, Indoles and Benzothiophenes. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
1449	Development of a general and selective nanostructured cobalt catalyst for the hydrogenation of benzofurans, indoles and benzothiophenes. Angewandte Chemie, 0, , .	1.6	0
1450	Catalytic Enantioselective Synthesis of 2,3′-Bis(indolyl)methanes Bearing All-Carbon Quaternary Stereocenters via 2-Indole Imine Methides. Organic Letters, 2023, 25, 477-482.	2.4	6
1451	Gold-Catalyzed Cascade Reaction of 2-Alkynyl Aryl Azides with Enecarbamates for Direct Synthesis of α-(3-Indolyl)ketones. Organic Letters, 2023, 25, 421-425.	2.4	5
1452	Straightforward Access to Pyrazineâ€(2,3)â€diones through Sequential Three omponent Reaction. European Journal of Organic Chemistry, 2023, 26, .	1.2	2
1453	Unified Radical Sulfonylative-Annulation of 1,6-Enynols with Sodium Sulfinates: A Modular Synthesis of 2,3-Disubstituted Benzoheteroles. Journal of Organic Chemistry, 2023, 88, 1635-1648.	1.7	1
1454	Organocatalytic Regio- and Enantioselective Allylic Alkylation of Indolin-2-imines with MBH Carbonates toward 3-Allylindoles. Journal of Organic Chemistry, 2023, 88, 7810-7814.	1.7	4
1455	Silver-Catalyzed Direct Nucleophilic Cyclization: Enantioselective <i>De Novo</i> Synthesis of C–C Axially Chiral 2-Arylindoles. Organic Letters, 2023, 25, 522-527.	2.4	13
1456	Graphene oxide-supported nickel(<scp>ii</scp>) complex as a reusable nano catalyst for the synthesis of bis(indolyl)methanes. Dalton Transactions, 2023, 52, 3431-3437.	1.6	4
1457	Synthesis of 2â€Methylindoles through Ruthenium(II)â€Catalyzed Reaction of Aniline Derivatives with Allylamines. Advanced Synthesis and Catalysis, 2023, 365, 355-366.	2.1	1
1458	Synthesis of 2-(2-nitrophenyl)indoline-3-acetic acid derivatives <i>via</i> base-catalyzed cyclization of <i>N</i> -(2-nitrobenzyl)-2-aminocinnamic acid derivatives. Organic and Biomolecular Chemistry, 0, , .	1.5	0
1459	Iridium-catalyzed selective amination of B(4)–H for the synthesis of <i>o</i> -carborane-fused indolines. Dalton Transactions, 2023, 52, 2933-2936.	1.6	4

ARTICLE IF CITATIONS Recent advances in the (3+2) cycloaddition of azomethine ylide. New Journal of Chemistry, 2023, 47, 1.4 9 1460 8997-9034. Cobalt-Catalyzed Direct Alkoxylation of Indoles. Journal of Organic Chemistry, 2023, 88, 6274-6280. 1461 1.7 Green One-Pot Syntheses of 2-Sulfoximidoyl-3,6-dibromo Indoles Using N-Br Sulfoximines as Both 1462 1.7 1 Brominating and Sulfoximinating Reagents. Molecules, 2023, 28, 3380. Synthesis of Alkylsulfonylâ€Substituted Indolo[2,1â€a]Isoquinolines via Photoredoxâ€Catalyzed Radicalâ€Cascade Addition/Sulfonylation/Cyclization with DABCO â... (SO₂)₂ and 1463 Thianthrenium Salts. Advanced Synthesis and Catalysis, 2023, 365, 555-567. Rhodium(I)-Catalyzed Direct Enantioselective Câ€"H Functionalization of Indoles. Journal of Organic 1464 1.7 1 Chemistry, 2023, 88, 7844-7848. Microwave-assisted copper catalyzed decarboxylative reductive coupling of <i>para</i>-quinone methides with 3-indoleacetic acids: rapid access to polycyclic spiroindolequinone derivatives. Organic 2.3 Chemistry Frontiers, 2023, 10, 1512-1520. Solvent-Mediated Tunable Regiodivergent C6- and N1-Alkylations of 2,3-Disubstituted Indoles with 1466 1.7 1 <i>p</i>Quinone Methides. Journal of Organic Chemistry, 2023, 88, 3132-3147. Marine indole alkaloid diversity and bioactivity. What do we know and what are we missing?. Natural 1467 5.2 Product Reports, 2023, 40, 1595-1607. Access to Dihydroquinazolinones, spiroâ€Quinazolinones and their Bioactive Molecular Scaffolds bv 1468 Exploring the Unique Reactivity of 2â€Nitrobenzonitrile towards Cuâ€Hydrazine Hydrate. ChemistrySelect, 0.7 1 2023, 8, . Metalâ€Free Iodineâ€Catalyzed Oxidative Dehydrogenation of <i>N</i>â€Heterocycles. Asian Journal of 1469 1.3 Organic Chemistry, 2023, 12, . Palladium-Catalyzed Tandem Nucleophilic Addition/C–H Functionalization of Anilines and 1470 2.4 8 Bromoalkynes for the Synthesis of 2-Phenylindoles. Organic Letters, 2023, 25, 1409-1414. Insights into the regioselectivity and diastereoselectivity of the Nazarov cyclization of 1471 2.3 3-alkenyl-2-indolylmethanol with tryptophol. Organic Chemistry Frontiers, 2023, 10, 1721-1730. Verification of preparations of (1H-indol-3-yl)methyl electrophiles and development of their 1472 2.0 5 microflow rapid generation and substitution. Communications Chemistry, 2023, 6, . Pyrrole-Containing Alkaloids from a Marine-Derived Actinobacterium StreptomycesÂzhaozhouensis and 1473 2.2 Their Antimicrobial and Cytotoxic Activities. Marine Drugs, 2023, 21, 167 1474 Highly Chemoselective Synthesis of Indole Derivatives. Chemistry - A European Journal, 2023, 29, . 1.7 1 Chemical Reactions of Indole Alkaloids That Enable Rapid Access to New Scaffolds for Discovery. 1475 SynOpen, 0, , . Multicomponent Approaches Involving Carbon Disulfide. Asian Journal of Organic Chemistry, 2023, 12, 1476 1.32 Weak Chelating-Group-Directed Palladium-Catalyzed C-4 Arylation of Indoles. Journal of Organic 1477 Chemistry, 2023, 88, 4254-4263.

CITATION REPORT

#	Article	IF	CITATIONS
1478	Multicomponent Tandem Triple Functionalization of Indoles <i>via</i> a Directingâ€groupâ€free Strategy. Advanced Synthesis and Catalysis, 2023, 365, 990-996.	2.1	3
1479	Synthesis of 3-chalcogenyl-indoles mediated by the safer reagent urea-hydrogen peroxide (UHP). Tetrahedron Letters, 2023, 120, 154446.	0.7	0
1480	Construction of Bisâ€Indole Derivatives Using αâ€Amylase Enzyme: Application in the Gramâ€Scale Synthesis of Bisâ€Indole Containing Bioactive Molecules. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	2
1481	Multicomponent synthesis of chromophores – The one-pot approach to functional π-systems. Frontiers in Chemistry, 0, 11, .	1.8	5
1482	A microwave-assisted intramolecular aminopalladation-triggered domino sequence: an atom economical route to 5,10-dihydroindeno[1,2- <i>b</i>]indoles. Organic and Biomolecular Chemistry, 2023, 21, 3121-3131.	1.5	2
1483	Biochemical Discovery, Intracellular Evaluation, and Crystallographic Characterization of Synthetic and Natural Product Adenosine 3′,5′-Cyclic Monophosphate-Dependent Protein Kinase A (PKA) Inhibitors. ACS Pharmacology and Translational Science, 2023, 6, 633-650.	2.5	1
1484	Efficient Synthesis of 3â€Mercaptoindoles via HIâ€Promoted Sulfenylation of Indoles with Sodium Sulfinates. ChemistryOpen, 2023, 12, .	0.9	2
1485	Synthesis of 3-substituted 2,3-dihydropyrazino[1,2- <i>a</i>]indol-4(1 <i>H</i>)-ones by sequential reactions of 2-indolylmethyl acetates with α-amino acids. RSC Advances, 2023, 13, 10090-10096.	1.7	0
1486	Oneâ€pot Synthesis of 2â€Aminoindole through SET Oxidative Cyclization: Concise Synthesis of Tryptanthrin & Phaitanthrin E. Chemistry - A European Journal, 0, , .	1.7	0
1487	Acid-Modulated Construction of Cyclopenta[<i>b</i>]indole and Cyclohepta[<i>b</i>]indole via Unprecedented C3/C2 Carbocation Rearrangement. Journal of Organic Chemistry, 2023, 88, 5440-5456.	1.7	4
1488	Modular Divergent Synthesis of Functionalized Indoles via TFA-Promoted Amino-Claisen Rearrangement at Room Temperature. Organic Letters, 2023, 25, 2680-2684.	2.4	2
1489	Radical Cascade Cyclization of Alkeneâ€Tethered Compounds: Versatile Approach towards Ringâ€Fused Polycyclic Structures. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	6
1490	Regioselective Reaction of 2-Indolylmethanols with Enamides. Molecules, 2023, 28, 3341.	1.7	0
1491	BrÃ,nsted acid-catalyzed C6 functionalization of 2,3-disubstituted indoles for construction of cyano-substituted all-carbon quaternary centers. Organic and Biomolecular Chemistry, 0, , .	1.5	0
1492	Iridium catalysed C2 site-selective methylation of indoles using a pivaloyl directing group through weak chelation-assistance. RSC Advances, 2023, 13, 11291-11295.	1.7	0
1493	Geminal/Vicinal Amino―and Oxyâ€⊺rifluoromethylation of orthoâ€Ethynyl Anilines and Phenols by Cu(III) F3 Compounds. Advanced Synthesis and Catalysis, 0, , .	2.1	0
1494	Heterocycles from Sulfur Ylides. Topics in Heterocyclic Chemistry, 2023, , 63-105.	0.2	1
1497	Intramolecular Heterocyclization/Fluoromethylthiolation of Alkynes Enabled by a Multicomponent Reagent System. Organic Letters, 2023, 25, 3517-3521.	2.4	2

#	Article	IF	CITATIONS
1498	Indolization of <i>N</i> -Aryl Tertiary Amines with Diazoacetates by a Single Organophotocatalyst. Organic Letters, 2023, 25, 3778-3783.	2.4	1
1501	Aqueous mediated iodine catalyzed C–N coupling followed by C–C coupling towards 5 <i>H</i> -pyrazino[2,3- <i>b</i>]indoles. Chemical Communications, 2023, 59, 7771-7774.	2.2	0
1504	Enantioselective synthesis of 3a-azido-pyrroloindolines by copper-catalyzed asymmetric dearomative azidation of tryptamines. Chemical Communications, 2023, 59, 7831-7834.	2.2	1
1526	Annulation of enaminones with quinonediimides/quinoneimides for selective synthesis of indoles and 2-aminobenzofurans. Chemical Communications, 2023, 59, 6885-6888.	2.2	8
1527	<i>Syn</i> - <i>versus anti</i> -carbopalladation of alkynes with organoborons: access to indoles symmetrically and unsymmetrically substituted on their 2,3-positions. Chemical Communications, 2023, 59, 6873-6876.	2.2	0
1535	N-Heterocyclic Carbene-Catalyzed Enantioselective Synthesis of N-Fused Polycyclic Dihydropyrido[1,2-α]-indolones. Organic Letters, 2023, 25, 5061-5066.	2.4	0
1541	Naturally Occurring Organohalogen Compounds—A Comprehensive Review. Progress in the Chemistry of Organic Natural Products, 2023, , 1-546.	0.8	5
1546	B(C ₆ F ₅) ₃ -mediated direct intramolecular C7-alkenylation of <i>N</i> -propargylindoles. Chemical Communications, 2023, 59, 10279-10282.	2.2	0
1547	N-Heterocyclic carbene-catalyzed enantioselective annulation of 2-amino-1 <i>H</i> -indoles and bromoenals for the synthesis of chiral 2-aryl-2,3-dihydropyrimido[1,2- <i>a</i>]indol-4 (1 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2023, 21, 6675-6680.	1.5	0
1559	A redox-neutral weak carbonyl chelation assisted C4–H allylation of indoles with vinylcyclopropanes. Chemical Communications, 2023, 59, 11568-11571.	2.2	1
1577	Alkaloids as New Leads for Neurodegenerative Diseases. , 0, , .		0
1588	An interrupted Heyns rearrangement approach to regioselective synthesis of acylindoles. Chemical Communications, 0, , .	2.2	0
1622	Neuroactive Peptides and Neuroprotective Molecules from Marine Sponges and Associated Bacteria: An Untapped Resource for Systemic Drug Development. , 2023, , 283-323.		0
1634	Synthesis of 3-arylamino-2-polyhydroxyalkyl-substituted indoles from unprotected saccharides and anilines. Green Chemistry, 2024, 26, 1883-1888.	4.6	0