Cellulosic Bionanocomposites: A Review of Preparation

Polymers 2, 728-765 DOI: 10.3390/polym2040728

Citation Report

#	Article	IF	CITATIONS
1	Cellulose Nanocrystals and Au Nanoparticles Well-Dispersed in a Poly(styrene- <i>b</i> -ethylene oxide) Block Copolymer Matrix. Journal of Physical Chemistry C, 2011, 115, 22180-22185.	1.5	10
2	Supramolecular Structure Characterization of Molecularly Thin Cellulose I Nanoparticles. Biomacromolecules, 2011, 12, 650-659.	2.6	214
3	Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, 40, 3941.	18.7	5,132
4	Nano Pd(0) supported on cellulose: A highly efficient and recyclable heterogeneous catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols under liquid phase catalysis. International Journal of Biological Macromolecules, 2011, 49, 930-935.	3.6	77
5	The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chemistry, 2011, 13, 1061.	4.6	610
6	Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties. Electrochimica Acta, 2011, 57, 104-111.	2.6	43
7	HPMC reinforced with different cellulose nano-particles. Carbohydrate Polymers, 2011, 86, 1549-1557.	5.1	135
8	Liquid crystalline cellulosic elastomers: free standing anisotropic films under stretching. Cellulose, 2011, 18, 1151-1163.	2.4	12
9	SELF HEALING POTENTIAL OF GREEN NANOCOMPOSITES FROM CRYSTALLINE CELLULOSE. International Journal of Modern Physics B, 2011, 25, 4216-4219.	1.0	16
10	Preliminary Preparation and Characterization Studies of Cellulose from Merbau (<i>Intsia) Tj ETQq1 1 0.784</i>	314 rgBT 0.3	/Oyerlock 10
11	12 Conclusions, applications and likely future trends. , 0, , .		0
12	Clues for biomimetics from natural composite materials. Nanomedicine, 2012, 7, 1409-1423.	1.7	39
13	Bulk composites from microfibrillated cellulose-reinforced thermoset starch made from enzymatically degraded allyl glycidyl ether-modified starch. Journal of Composite Materials, 2012, 46, 3201-3209.	1.2	6
14	Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. Journal of Materials Chemistry, 2012, 22, 20105.	6.7	245
15	Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties. Cellulose, 2012, 19, 1957-1973.	2.4	63
16	An overview on the cellulose based conducting composites. Composites Part B: Engineering, 2012, 43, 2822-2826.	5.9	65
17	High-Modulus Oriented Cellulose Nanopaper. ACS Symposium Series, 2012, , 3-16.	0.5	10
18	Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review. Carbohydrate Polymers, 2012, 90, 735-764.	5.1	1,395

#	Article	IF	CITATIONS
19	Effects of Cellulose Nanowhiskers on Mechanical, Dielectric, and Rheological Properties of Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate)/Cellulose Nanowhisker Composites. Industrial & Engineering Chemistry Research, 2012, 51, 2941-2951.	1.8	108
20	Nanofibrillated cellulose surface grafting in ionic liquid. Soft Matter, 2012, 8, 8338.	1.2	72
21	Water Redispersible Dried Nanofibrillated Cellulose by Adding Sodium Chloride. Biomacromolecules, 2012, 13, 4118-4125.	2.6	100
22	Water-Triggered Modulus Changes of Cellulose Nanofiber Nanocomposites with Hydrophobic Polymer Matrices. Macromolecules, 2012, 45, 4707-4715.	2.2	142
23	Enhancement of thermal stability, strength and extensibility of lipid-based polyurethanes with cellulose-based nanofibers. Polymer Degradation and Stability, 2012, 97, 1970-1978.	2.7	65
24	Biorefining of perennial ryegrass for the production of nanofibrillated cellulose. RSC Advances, 2012, 2, 6424.	1.7	33
25	Supramolecular Structure Characterization of Cellulose II Nanowhiskers Produced by Acid Hydrolysis of Cellulose I Substrates. Biomacromolecules, 2012, 13, 570-578.	2.6	199
26	Preparation and characterization of mesoporous bioactive glass/polycaprolactone nanofibrous matrix for bone tissues engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 2619-2630.	1.7	69
27	RENEWABLE FIBERS AND BIO-BASED MATERIALS FOR PACKAGING APPLICATIONS – A REVIEW OF RECENT DEVELOPMENTS. BioResources, 2012, 7, 2506-2552.	0.5	216
28	Cellulose Nanowhiskers Isolation and Properties from Acid Hydrolysis Combined with High Pressure Homogenization. BioResources, 2012, 8, .	0.5	43
29	Controlled grafting of cellulose fibres – an outlook beyond paper and cardboard. Polymer Chemistry, 2012, 3, 1702-1713.	1.9	123
30	Influence of the Botanic Origin of Starch Nanocrystals on the Morphological and Mechanical Properties of Natural Rubber Nanocomposites. Macromolecular Materials and Engineering, 2012, 297, 969-978.	1.7	32
31	Biodegradable nanocomposites of cellulose acetate phthalate and chitosan reinforced with functionalized nanoclay: Mechanical, thermal, and biodegradability studies. Journal of Applied Polymer Science, 2012, 125, E16.	1.3	19
32	Polycaprolactone/modified bagasse whisker nanocomposites with improved moistureâ€barrier and biodegradability properties. Journal of Applied Polymer Science, 2012, 125, E10.	1.3	35
33	The morphology and properties of poly(methyl methacrylate)â€cellulose nanocomposites prepared by immersion precipitation method. Journal of Applied Polymer Science, 2013, 128, 1563-1568.	1.3	19
34	Chitin Whiskers: An Overview. Biomacromolecules, 2012, 13, 1-11.	2.6	374
35	Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose, 2012, 19, 1209-1223.	2.4	72
36	Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 350-358.	1.7	55

#	Article	IF	CITATIONS
37	Structure and solution properties of cyanoethyl celluloses synthesized in LiOH/urea aqueous solution. Cellulose, 2012, 19, 161-169.	2.4	22
38	Drying cellulose nanofibrils: in search of a suitable method. Cellulose, 2012, 19, 91-102.	2.4	366
39	Fabrication and applications of cellulose nanoparticleâ€based polymer composites. Polymer Engineering and Science, 2013, 53, 1-8.	1.5	77
40	Thermo-responsive nanofibrillated cellulose by polyelectrolyte adsorption. European Polymer Journal, 2013, 49, 2689-2696.	2.6	44
41	Preparation and characterization of bionanocomposite fiber based on cellulose and nano-SiO2 using ionic liquid. Carbohydrate Polymers, 2013, 98, 161-167.	5.1	45
42	Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. European Polymer Journal, 2013, 49, 3144-3154.	2.6	186
43	Effect of chemically modified nanofibrillated cellulose addition on the properties of fiber-based materials. Industrial Crops and Products, 2013, 48, 98-105.	2.5	81
44	Starch nanoparticles formation via high power ultrasonication. Carbohydrate Polymers, 2013, 92, 1625-1632.	5.1	220
45	Extraction of Cellulose Nanocrystals from Phormium tenax Fibres. Journal of Polymers and the Environment, 2013, 21, 319-328.	2.4	98
46	Thermal characteristics of ethyleneâ€ <i>co</i> â€vinyl acetate/cellulose microfibers composites. Polymer Composites, 2013, 34, 616-625.	2.3	4
47	Dispersibility and Emulsion-Stabilizing Effect of Cellulose Nanowhiskers Esterified by Vinyl Acetate and Vinyl Cinnamate. Biomacromolecules, 2013, 14, 2937-2944.	2.6	62
48	Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose, 2013, 20, 2379-2392.	2.4	289
50	Preparation and characterization of electrospun PLA/nanocrystalline celluloseâ€based composites. Journal of Applied Polymer Science, 2013, 130, 3345-3354.	1.3	53
51	Controlling the Rate of Water-Induced Switching in Mechanically Dynamic Cellulose Nanocrystal Composites. Macromolecules, 2013, 46, 8203-8212.	2.2	38
52	Flexible Mesoporous Photonic Resins with Tunable Chiral Nematic Structures. Angewandte Chemie - International Edition, 2013, 52, 8921-8924.	7.2	154
53	Iridescent Chiral Nematic Cellulose Nanocrystal/Polymer Composites Assembled in Organic Solvents. ACS Macro Letters, 2013, 2, 1016-1020.	2.3	118
54	Nanocrystalline cellulose extraction process and utilization of the byproduct for biofuels production. Carbohydrate Polymers, 2013, 93, 357-363.	5.1	44
55	A Jatropha biomass as renewable materials for biocomposites and its applications. Renewable and Sustainable Energy Reviews, 2013, 22, 667-685.	8.2	107

#	Article	IF	CITATIONS
56	Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids and Surfaces B: Biointerfaces, 2013, 103, 143-148.	2.5	110
59	Natural fiber reinforced poly(vinyl chloride) composites: A review. Journal of Reinforced Plastics and Composites, 2013, 32, 330-356.	1.6	78
60	Ionically interacting nanoclay and nanofibrillated cellulose lead to tough bulk nanocomposites in compression by forced self-assembly. Journal of Materials Chemistry B, 2013, 1, 835-840.	2.9	25
61	Chitin and Chitosan Based Blends, Composites and Nanocomposites. Advanced Structured Materials, 2013, , 55-119.	0.3	19
62	Feasibility of nanocrystalline cellulose production by endoglucanase treatment of natural bast fibers. Industrial Crops and Products, 2013, 51, 381-384.	2.5	44
63	Surfactant effects on poly(ethylene-co-vinyl acetate)/cellulose composites. Composites Part B: Engineering, 2013, 47, 137-144.	5.9	11
64	Different strategies for obtaining high opacity films of MFC with TiO2 pigments. Cellulose, 2013, 20, 3025-3037.	2.4	30
65	Celluloses microfibers (CMF)/poly (ethylene-co-vinyl acetate) (EVA) composites for food packaging applications: A study based on barrier and biodegradation behavior. Journal of Food Engineering, 2013, 118, 78-89.	2.7	62
66	From elastomeric to rigid polyurethane/cellulose nanocrystal bionanocomposites. Composites Science and Technology, 2013, 88, 39-47.	3.8	62
67	Bionanowhiskers from jute: Preparation and characterization. Carbohydrate Polymers, 2013, 92, 1116-1123.	5.1	50
68	Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymers, 2013, 94, 154-169.	5.1	918
69	"Smart―Materials Based on Cellulose: A Review of the Preparations, Properties, and Applications. Materials, 2013, 6, 738-781.	1.3	412
70	Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Applied Materials & Interfaces, 2013, 5, 2999-3009.	4.0	773
71	Rubber Nanocomposites: Latest Trends and Concepts. Advanced Structured Materials, 2013, , 69-107.	0.3	18
72	Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part I. Carbohydrate Polymers, 2013, 97, 825-836.	5.1	169
73	Reinforced plastics and aerogels by nanocrystalline cellulose. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	45
75	Tailoring Cellulose Surfaces by Controlled Polymerization Methods. Macromolecular Chemistry and Physics, 2013, 214, 1539-1544.	1.1	37
76	Molecular Dynamics Simulation and Characterization of Graphene–Cellulose Nanocomposites. Journal of Physical Chemistry A, 2013, 117, 5344-5353.	1.1	55

#	Article	IF	Citations
77	Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polymer Degradation and Stability, 2013, 98, 1439-1449.	2.7	113
78	Bacterial Cellulose from Simple and Low Cost Production Media by Gluconacetobacter xylinus. Journal of Polymers and the Environment, 2013, 21, 545-554.	2.4	220
79	Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: Part II. Carbohydrate Polymers, 2013, 97, 837-848.	5.1	53
80	Biobased plastics and bionanocomposites: Current status and future opportunities. Progress in Polymer Science, 2013, 38, 1653-1689.	11.8	866
81	Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose, 2013, 20, 785-794.	2.4	226
82	Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. Journal of Applied Polymer Science, 2013, 128, 3220-3230.	1.3	130
83	Cellulose Nanofibrils. Journal of Renewable Materials, 2013, 1, 195-211.	1.1	152
84	Nanocellulose Patents Trends: A Comprehensive Review on Patents on Cellulose Nanocrystals, Microfibrillated and Bacterial Cellulose. Recent Patents on Nanotechnology, 2013, 7, 56-80.	0.7	191
85	Relationships between tensile strength, morphology and crystallinity of treated kenaf bast fibers. , 2013, , .		10
88	Adsorption of azo dyes on polymer materials. Hemijska Industrija, 2013, 67, 881-900.	0.3	78
89	Assessing nanocellulose developments using science and technology indicators. Materials Research, 2013, 16, 635-641.	0.6	37
90	Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites. Polimeros, 2014, 24, 683-688.	0.2	22
91	Technological indicators of nanocellulose advances obtained from data and text mining applied to patent documents. Materials Research, 2014, 17, 1513-1522.	0.6	14
92	Effect of Preparation Conditions on Cellulose from Oil Palm Empty Fruit Bunch Fiber. BioResources, 2014, 9, 6373-6385.	0.5	64
93	A Comparative Study of Fibrillated Fibers from Different Mechanical and Chemical Pulps. BioResources, 2014, 9, .	0.5	83
94	Microcrystalline Cellulose from Plant Wastes through Sodium Hydroxide-Anthraquinone-Ethanol Pulping. BioResources, 2014, 9, .	0.5	14
95	Cellulose from Lignocellulosic Waste. , 2014, , 1-33.		6
96	Development, application and commercialization of transparent paper. Translational Materials Research, 2014, 1, 015004.	1.2	54

		CITATION REPORT	
#	Article	IF	CITATIONS
97	Recent Developments in Cellulose and Cellulose Derivatives/Clay Nanocomposites. , 2014, , 109	·127.	0
98	Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners. Green Materia 2014, 2, 193-205.	ls, 1.1	30
99	Cellulose nanocrystals and carboxymethyl cellulose from olive stones and their use to improve p sheets properties. International Journal of Nanoparticles, 2014, 7, 261.	oaper 0.1	25
100	Effect of bleaching condition on thermal properties and UV transmittance of PVA/cellulose biocomposites. Materials Research Innovations, 2014, 18, S6-400-S6-404.	1.0	18
101	Effect of the chemical treatments on the characteristics of natural cellulose. , 2014, , .		3
102	Preparation of Nanocellulose: A Review. AATCC Journal of Research, 2014, 1, 17-23.	0.3	87
103	A New Method for Developing Industrially Viable Nanocrystalline Cellulose-based Nanocomposi Melt Compounding. Journal of Renewable Materials, 2014, 2, 107-117.	tes via 1.1	1
104	Chemical Functionalization as a Powerful Tool to Broaden the Scope of Applications of Cellulos Nanofibers. Materials and Energy, 2014, , 123-138.	e 2.5	0
105	Cellulose Nanofibers and Their Use in Paper Industry. Materials and Energy, 2014, , 207-232.	2.5	21
106	Chiral Nematic Self-Assembly of Cellulose Nanocrystals in Suspensions and Solid Films. Material Energy, 2014, , 37-56.	s and 2.5	15
107	Extraction and characterization of rice straw cellulose nanofibers by an optimized chemomecha method. Journal of Applied Polymer Science, 2014, 131, .	inical 1.3	43
108	A Facile and Green Method to Hydrophobize Films of Cellulose Nanofibrils and Silica by Laccaseâ€Mediated Coupling of Nonpolar Colloidal Particles. ChemSusChem, 2014, 7, 2868-28		13
109	All starch nanocomposite coating for barrier material. Journal of Applied Polymer Science, 2014	, 131, . 1.3	15
117	Bacterial cellulose films: influence of bacterial strain and drying route on film properties. Cellulo 2014, 21, 4455-4469.	se, 2.4	96
118	Cellulose nanoparticles: photoacoustic contrast agents that biodegrade to simple sugars. Proceedings of SPIE, 2014, , .	0.8	1
119	Multilevel composition fractionation process for high-value utilization of wheat straw cellulose. Biotechnology for Biofuels, 2014, 7, 137.	6.2	37
120	Starch-based biofilm reinforced with empty fruit bunch cellulose nanofibre. Materials Research Innovations, 2014, 18, S6-322-S6-325.	1.0	18
121	Predictive Multiscale Modeling of Nanocellulose Based Materials and Systems. IOP Conference Materials Science and Engineering, 2014, 64, 012040.	Series: 0.3	9

#	Article	IF	CITATIONS
122	Influence of Surface Treatment on Tensile Properties of Low-Density Polyethylene/Cellulose Woven Biocomposites: A Preliminary Study. Polymers, 2014, 6, 2345-2356.	2.0	17
123	Industrial Point of View of Nanocellulose Materials and Their Possible Applications. Materials and Energy, 2014, , 233-252.	2.5	26
124	Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 2014, 110, 480-488.	5.1	267
125	Improving cellulose/polypropylene nanocomposites properties with chemical modified bagasse nanofibers and maleated polypropylene. Journal of Reinforced Plastics and Composites, 2014, 33, 26-36.	1.6	29
126	Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose, 2014, 21, 1561-1571.	2.4	134
127	Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose, 2014, 21, 1239-1250.	2.4	59
128	Cellulose-based nanocomposites prepared via mini-emulsion polymerization: Understanding the chemistry of the nanocellulose/matrix interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 448, 1-8.	2.3	47
129	Synthesis of β-Cyclodextrin-Modified Cellulose Nanocrystals (CNCs)@Fe ₃ O ₄ @SiO ₂ Superparamagnetic Nanorods. ACS Sustainable Chemistry and Engineering, 2014, 2, 951-958.	3.2	124
130	Novel production method for in-situ hydrophobization of a microfibrillated cellulose network. Materials Letters, 2014, 120, 196-199.	1.3	6
131	Fabrication of cellulose nanofiber/chitin whisker/silk sericin bionanocomposite sponges and characterizations of their physical and biological properties. Composites Science and Technology, 2014, 96, 88-96.	3.8	48
132	The effect of Fenton chemistry on the properties of microfibrillated cellulose. Cellulose, 2014, 21, 1489-1503.	2.4	28
133	Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT - Food Science and Technology, 2014, 59, 1311-1318.	2.5	225
134	Healable, Stable and Stiff Hydrogels: Combining Conflicting Properties Using Dynamic and Selective Threeâ€Component Recognition with Reinforcing Cellulose Nanorods. Advanced Functional Materials, 2014, 24, 2706-2713.	7.8	227
136	Nanocrystalline cellulose reinforced PVDF-HFP membranes for membrane distillation application. Desalination, 2014, 332, 134-141.	4.0	153
137	Short cellulose nanofibrils as reinforcement in polyvinyl alcohol fiber. Cellulose, 2014, 21, 4287-4298.	2.4	51
138	Thermally-activated shape memory behaviour of bionanocomposites reinforced with cellulose nanocrystals. Cellulose, 2014, 21, 4231-4246.	2.4	65
139	Biomass and Bioenergy. , 2014, , .		20
140	Nanofibrillated Cellulose: Sustainable Nanofiller with Broad Potentials Use. , 2014, , 267-305.		9

#	Article	IF	CITATIONS
141	The production, characterization and applications of nanoparticles in the textile industry. Textile Progress, 2014, 46, 133-226.	1.3	41
142	Controlled release and long-term antibacterial activity of chlorhexidine digluconate through the nanoporous network of microfibrillated cellulose. Cellulose, 2014, 21, 4429-4442.	2.4	48
143	Well defined thermostable cellulose nanocrystals via two-step ionic liquid swelling-hydrolysis extraction. Cellulose, 2014, 21, 4195-4207.	2.4	55
144	Green Process for Chemical Functionalization of Nanocellulose with Carboxylic Acids. Biomacromolecules, 2014, 15, 4551-4560.	2.6	150
145	Microfibrillated cellulose (MFC): pullulan bionanocomposite films. Cellulose, 2014, 21, 4323-4335.	2.4	37
146	Cotton linter nano-fibers as the potential reinforcing agent for guar gum. Iranian Polymer Journal (English Edition), 2014, 23, 869-879.	1.3	12
147	Well-defined ABA- and BAB-type block copolymers of PDMAEMA and PCL. RSC Advances, 2014, 4, 25809.	1.7	19
148	Green Resin from Forestry Waste Residue "Karanja <i>(Pongamia pinnata)</i> Seed Cake―for Biobased Composite Structures. ACS Sustainable Chemistry and Engineering, 2014, 2, 2318-2328.	3.2	24
149	Cellulose nanoparticles are a biodegradable photoacoustic contrast agent for use in living mice. Photoacoustics, 2014, 2, 119-127.	4.4	48
150	Okra Fibres as Potential Reinforcement in Biocomposites. , 2014, , 175-190.		5
151	Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydrate Polymers, 2014, 114, 416-423.	5.1	75
152	Electrospun cellulosic fibre-reinforced composite materials. , 2014, , 115-158.		3
153	Hybrid nanostructured Ag/ZnO decorated powder cellulose fillers for medical plastics with enhanced surface antibacterial activity. Journal of Materials Science: Materials in Medicine, 2014, 25, 2501-2512.	1.7	18
154	Cellulose Nanocrystals: A Potential Nanofiller for Food Packaging Applications. ACS Symposium Series, 2014, , 197-239.	0.5	27
155	Chemical Composition of Natural Fibers and its Influence on their Mechanical Properties. Mechanics of Composite Materials, 2014, 50, 359-376.	0.9	258
156	On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology, 2014, 105, 15-27.	3.8	669
156 157		3.8 14.8	669 190

	CITATION		
#	Article	IF	CITATIONS
159	High strength modified nanofibrillated cellulose-polyvinyl alcohol films. Cellulose, 2014, 21, 3561-3571.	2.4	21
160	Carboxymethylated nanofibrillated cellulose: effect of monovalent electrolytes on the rheological properties. Cellulose, 2014, 21, 3507-3514.	2.4	44
161	Topical caffeine delivery using biocellulose membranes: a potential innovative system for cellulite treatment. Cellulose, 2014, 21, 665-674.	2.4	59
162	Properties of poly(acrylamide)/TEMPO-oxidized cellulose nanofibril composite films. Cellulose, 2014, 21, 291-299.	2.4	51
163	Poly(ε-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams. Cellulose, 2014, 21, 2727-2741.	2.4	107
164	Morphology and properties tuning of PLA/cellulose nanocrystals bio-nanocomposites by means of reactive functionalization and blending with PVAc. Polymer, 2014, 55, 3720-3728.	1.8	168
165	Influence of walnut shell as filler on mechanical and physical properties of MDF improved by nano-SiO2. Journal of the Indian Academy of Wood Science, 2014, 11, 15-20.	0.3	9
166	Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose. Innovative Food Science and Emerging Technologies, 2014, 26, 330-340.	2.7	68
167	Adhesion and Surface Issues in Biocomposites and Bionanocomposites. Reviews of Adhesion and Adhesives, 2014, 2, 173-225.	3.3	9
168	Microfibrillated cellulose coatings as new release systems for active packaging. Carbohydrate Polymers, 2014, 103, 528-537.	5.1	113
169	High-concentration aqueous dispersions of graphene produced by exfoliation of graphite using cellulose nanocrystals. Carbon, 2014, 70, 157-163.	5.4	88
170	Investigation of the scaling law on gelation of oppositely charged nanocrystalline cellulose and polyelectrolyte. Carbohydrate Polymers, 2014, 105, 214-221.	5.1	21
171	The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies. Biomacromolecules, 2014, 15, 2327-2346.	2.6	417
172	Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	56
173	The Development of Chiral Nematic Mesoporous Materials. Accounts of Chemical Research, 2014, 47, 1088-1096.	7.6	256
174	Nanofibrillated cellulose originated from birch sawdust after sequential extractions: a promising polymeric material from waste to films. Cellulose, 2014, 21, 2587-2598.	2.4	61
175	Comparative Study of Properties of Cellulose Nanofibers From Wheat Straw Obtained by Chemical and Chemi-Mechanical Treatments. , 2014, , .		9
176	Comparison of nanocrystalline cellulose and fumed silica in latex coatings. Green Materials, 2014, 2, 206-221.	1.1	13

#	Article	IF	Citations
177	Preparation of Polyimide–Cellulose Composite Using Oligoimide with Ethynyl Terminals. Chemistry Letters, 2014, 43, 787-789.	0.7	3
178	Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production. Biotechnology for Biofuels, 2014, 7, 10.	6.2	87
179	Nanocrystalline Cellulose and Materials Based on It. Fibre Chemistry, 2015, 47, 278-283.	0.0	0
181	Intelligent Responsive Copolymers Based on Cellulose: Structure, Properties, and Applications. , 2015, , 476-495.		1
183	Nanocellulose: Biomedical Nanomaterial Applications. , 2015, , 5077-5100.		1
184	Cellulose Nanomaterials. , 2015, , 1-22.		0
185	Natural Cellulose Fibers: Sources, Isolation, Properties and Applications. , 2015, , 25-59.		1
187	Morphological and spectroscopic analysis of cellulose nanocrystals extracted from oil palm empty fruit bunch fiber. AIP Conference Proceedings, 2015, , .	0.3	2
189	Comparison of steam-assisted versus microwave-assisted treatments for the fractionation of sweet sorghum bagasse. Bioresources and Bioprocessing, 2015, 2, .	2.0	15
190	Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Particle and Fibre Toxicology, 2015, 13, 28.	2.8	64
191	Paperâ€sheet biocomposites based on wood pulp grafted with poly(εâ€caprolactone). Journal of Applied Polymer Science, 2015, 132, .	1.3	5
192	Hybrid Supramolecular and Colloidal Hydrogels that Bridge Multiple Length Scales. Angewandte Chemie, 2015, 127, 5473-5478.	1.6	12
193	Oriented polyvinyl alcohol films using short cellulose nanofibrils as a reinforcement. Journal of Applied Polymer Science, 2015, 132, .	1.3	10
194	Recent Advances in Biopolymer Supported Palladium in Organic Synthesis. Current Organic Chemistry, 2015, 19, 2075-2121.	0.9	37
195	Crystalline Nanocellulose $\hat{a} {\in} "$ Preparation, Modification, and Properties. , 0, , .		76
196	Use of Cellulose and Oxidized Cellulose Nanocrystals from Olive Stones in Chitosan Bionanocomposites. Journal of Nanomaterials, 2015, 2015, 1-11.	1.5	42
197	THE POTENTIAL OF OPTICAL TWEEZER (OT) FOR VISCOELASTIVITY MEASUREMENT OF NANOCELLULOSE SOLUTION. Jurnal Teknologi (Sciences and Engineering), 2015, 74, .	0.3	0
200	The influences of xylan on the properties of bacterial cellulose nanocrystals. , 2015, , .		0

#	Article	IF	CITATIONS
201	Alexa Fluor-Labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments. Bioconjugate Chemistry, 2015, 26, 593-601.	1.8	52
202	Effects of Dilute Acid Pretreatment on Chemical and Physical Properties of Kenaf Biomass. Journal of Natural Fibers, 2015, 12, 256-264.	1.7	5
203	Synergistic reinforcement of poly(vinyl alcohol) nanocomposites with cellulose nanocrystal-stabilized graphene. Composites Science and Technology, 2015, 117, 26-31.	3.8	68
204	Interfacial mechanics of cellulose nanocrystals. MRS Bulletin, 2015, 40, 340-348.	1.7	46
205	XRD and FTIR Studies of Natural Cellulose Isolated from Pineapple (<i>Ananas comosus</i>) Leaf Fibres. Advanced Materials Research, 2015, 1087, 197-201.	0.3	5
206	Extraction and Production of Cellulose Nanofibers. , 2015, , 81-118.		11
207	Flocculation behavior of cellulose nanofibrils under different salt conditions and its impact on network strength and dewatering ability. Cellulose, 2015, 22, 3689-3700.	2.4	45
208	A comparison between micro- and nanocellulose-filled composite adhesives for oil paintings restoration. Nanocomposites, 2015, 1, 195-203.	2.2	29
209	Bagasse and Rice Straw Nanocellulosic Materials and Their Applications. , 2015, , 47-64.		7
210	Synthesis and characterization of iron oxide/cellulose nanocomposite film. International Journal of Biological Macromolecules, 2015, 74, 142-149.	3.6	35
211	Fabrication and electrical characterization of bamboo fiber-reinforced polypropylene composite. Journal of Reinforced Plastics and Composites, 2015, 34, 187-195.	1.6	24
212	Dispersion of Nanocellulose (NC) in Polypropylene (PP) and Polyethylene (PE) Matrix. , 2015, , 179-189.		3
213	Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose, 2015, 22, 935-969.	2.4	624
214	Water-Resistant, Transparent Hybrid Nanopaper by Physical Cross-Linking with Chitosan. Biomacromolecules, 2015, 16, 1062-1071.	2.6	130
215	Microwave solvothermal decoration of the cellulose surface by nanostructured hybrid Ag/ZnO particles: a joint XPS, XRD and SEM study. Cellulose, 2015, 22, 1275-1293.	2.4	83
216	Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue. RSC Advances, 2015, 5, 18204-18212.	1.7	97
217	Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 2015, 75, 176-200.	5.9	369
218	Electrospinning of Poly(Vinyl Alcohol) Nanofiber Mats Reinforced by Lignocellulose Nanowhiskers. Soft Materials, 2015, 13, 18-23.	0.8	8

#	Article	IF	CITATIONS
219	Titania synthesized through regulated mineralization of cellulose and its photocatalytic activity. RSC Advances, 2015, 5, 8544-8551.	1.7	18
220	Elaboration of cellulose based nanobiocomposite: Effect of cellulose nanocrystals surface treatment and interface "meltingâ€: Industrial Crops and Products, 2015, 72, 7-15.	2.5	17
221	Bionanocomposite Films from Resilin-CBD Bound to Cellulose Nanocrystals. Industrial Biotechnology, 2015, 11, 44-58.	0.5	29
222	Ultrasonic assisted cross-flow ultrafiltration of starch and cellulose nanocrystals suspensions: Characterization at multi-scales. Carbohydrate Polymers, 2015, 124, 66-76.	5.1	19
223	Toxicity of Cellulose Nanocrystals: A Review. Industrial Biotechnology, 2015, 11, 25-33.	0.5	248
224	Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: A review. Carbohydrate Polymers, 2015, 125, 120-134.	5.1	80
225	Production and properties of micro-cellulose reinforced thermoplastic starch. IOP Conference Series: Materials Science and Engineering, 2015, 74, 012008.	0.3	4
226	Dimension change in microfibrillated cellulose from different cellulose sources by wet disk milling and its effect on the properties of PVA nanocomposite. Wood Science and Technology, 2015, 49, 495-506.	1.4	13
227	Electric Interfacial Layer of Modified Cellulose Nanocrystals in Aqueous Electrolyte Solution: Predictions by the Molecular Theory of Solvation. Langmuir, 2015, 31, 7106-7116.	1.6	15
228	Contact Antimicrobial Surface Obtained by Chemical Grafting of Microfibrillated Cellulose in Aqueous Solution Limiting Antibiotic Release. ACS Applied Materials & Interfaces, 2015, 7, 18076-18085.	4.0	44
229	Fabrication and Performance Evaluation of Cellulose Nanofiber/PVA Composite Films. Advanced Materials Research, 0, 1110, 40-43.	0.3	0
230	Synthesis and characterization of iron oxide-cellulose nanocomposite films. Proceedings of SPIE, 2015, , .	0.8	0
231	Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Industrial Crops and Products, 2015, 76, 128-140.	2.5	118
232	Room-temperature embedment of anatase titania nanoparticles into porous cellulose aerogels. Applied Physics A: Materials Science and Processing, 2015, 120, 341-347.	1.1	18
233	Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosensors and Bioelectronics, 2015, 74, 353-359.	5.3	117
234	Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydrate Polymers, 2015, 133, 284-293.	5.1	145
235	Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose, 2015, 22, 2483-2498.	2.4	81
236	Thermal Stability of Oil Palm Empty Fruit Bunch (OPEFB) Nanocrystalline Cellulose: Effects of post-treatment of oven drying and solvent exchange techniques. Journal of Physics: Conference Series, 2015, 622, 012025.	0.3	9

#	Article	IF	CITATIONS
237	Cellulose aerogels based on a green NaOH/PEG solution: Preparation, characterization and influence of molecular weight of PEG. Fibers and Polymers, 2015, 16, 1230-1236.	1.1	3
238	Cellulose Nanofiber for Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, 2015, , 323-365.	0.3	7
239	Cellulose Acetate Nanocomposites with Antimicrobial Properties. Advanced Structured Materials, 2015, , 367-398.	0.3	2
240	Eco-friendly Electrospun Polymeric Nanofibers-Based Nanocomposites for Wound Healing and Tissue Engineering. Advanced Structured Materials, 2015, , 399-431.	0.3	7
241	Biodegradable Polymer/Clay Nanocomposites. Advanced Structured Materials, 2015, , 109-135.	0.3	2
242	Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydrate Polymers, 2015, 127, 101-109.	5.1	210
243	Effect of cellulose nanocrystals (CNC) on isothermal crystallization kinetics of polypropylene. Thermochimica Acta, 2015, 608, 30-39.	1.2	44
244	Hybrid Supramolecular and Colloidal Hydrogels that Bridge Multiple Length Scales. Angewandte Chemie - International Edition, 2015, 54, 5383-5388.	7.2	78
245	Microfluidized carboxymethyl cellulose modified pulp: a nanofibrillated cellulose system with some attractive properties. Cellulose, 2015, 22, 1159-1173.	2.4	39
246	Use of nanofillers in wood coatings: a scientific review. Journal of Coatings Technology Research, 2015, 12, 445-461.	1.2	112
247	Structural characteristics of nanofibrillated cellulose mats: Effect of preparation conditions. Fibers and Polymers, 2015, 16, 294-301.	1.1	10
249	Microfibrillated cellulose-SiO2 composite nanopapers produced by spray deposition. Journal of Materials Science, 2015, 50, 4095-4103.	1.7	17
250	Starch/PVA-based nanocomposites reinforced with bamboo nanofibrils. Industrial Crops and Products, 2015, 70, 72-83.	2.5	130
251	Environment friendly green composites based on soy protein isolate – A review. Food Hydrocolloids, 2015, 50, 174-192.	5.6	179
252	A new pathway towards polymer modified cellulose nanocrystals via a "grafting onto―process for drug delivery. Polymer Chemistry, 2015, 6, 4206-4209.	1.9	80
253	Electrical and Optical Properties of Nanocellulose Films and Its Nanocomposites. , 2015, , 395-432.		4
254	Extraction and Characterization of Cellulose Nanofibers from Banana Plant. , 2015, , 65-80.		3
255	Cellulose Nanocomposites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 322-329.	1.2	27

#	Article	IF	CITATIONS
256	TEMPO-Oxidized Nanofibrillated Cellulose as a High Density Carrier for Bioactive Molecules. Biomacromolecules, 2015, 16, 3640-3650.	2.6	84
257	Subcritical Water: A Method for Green Production of Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2015, 3, 2839-2846.	3.2	134
258	Comparison of polyolefin biocomposites prepared with waste cardboard, microcrystalline cellulose, and cellulose nanocrystals via solid-state shear pulverization. Polymer, 2015, 75, 78-87.	1.8	45
259	Natural active molecule chemical grafting on the surface of microfibrillated cellulose for fabrication of contact active antimicrobial surfaces. Industrial Crops and Products, 2015, 78, 82-90.	2.5	12
260	Processing of Soju Industrial Bioresidue to Extract Microcrystalline Cellulose and Characterization. International Polymer Processing, 2015, 30, 337-343.	0.3	0
261	Highly porous, ultra-low refractive index coatings produced through random packing of silicated cellulose nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, 1-8.	2.3	19
262	Wood–Plastic Composite Technology. Current Forestry Reports, 2015, 1, 139-150.	3.4	116
263	Use of surfactants in cellulose nanowhisker/epoxy nanocomposites: effect on filler dispersion and system properties. Cellulose, 2015, 22, 3161-3176.	2.4	41
264	Gold Nanoparticle-Reinforced Eco-friendly Polymer Nanocomposites and Their Applications. Advanced Structured Materials, 2015, , 533-562.	0.3	1
265	Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization. International Journal of Biological Macromolecules, 2015, 81, 768-777.	3.6	202
266	Hydrogels Nanocomposites Based on Crystals, Whiskers and Fibrils Derived from Biopolymers. Advanced Structured Materials, 2015, , 43-71.	0.3	14
267	Functional Materials from Celluloseâ€Derived Liquidâ€Crystal Templates. Angewandte Chemie - International Edition, 2015, 54, 2888-2910.	7.2	324
268	Cellulose grafting by photoinduced controlled radical polymerisation. Polymer Chemistry, 2015, 6, 1865-1874.	1.9	35
269	New finishing possibilities for producing durable multifunctional cotton/wool and viscose/wool blended fabrics. Carbohydrate Polymers, 2015, 119, 182-193.	5.1	19
270	Funktionsmaterialien mit Celluloseâ€basierten Flüssigkristallâ€Templaten. Angewandte Chemie, 2015, 127, 2930-2953.	1.6	12
271	The role of soil properties and it's interaction towards quality plant fiber: A review. Renewable and Sustainable Energy Reviews, 2015, 43, 1006-1015.	8.2	73
272	A Review: Potential Usage of Cellulose Nanofibers (CNF) for Enzyme Immobilization via Covalent Interactions. Applied Biochemistry and Biotechnology, 2015, 175, 1817-1842.	1.4	100
273	Morphological Analyses of Some Micro- and Nanofibrils from Birch and Wheat Straw Sources. Journal of Wood Chemistry and Technology, 2015, 35, 102-112.	0.9	8

# 274	ARTICLE The use of biobased nanofibres in composites. , 2015, , 571-647.	IF	CITATIONS
275	Bionanocomposites based on gelatin matrix and nanocellulose. European Polymer Journal, 2015, 62, 1-9.	2.6	101
276	Morphology and Mechanical Properties of a New Nanocrystalline Cellulose/Polysulfone Composite Membrane. Advances in Polymer Technology, 2015, 34, .	0.8	28
277	Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites. Cellulose, 2015, 22, 483-498.	2.4	110
278	Spectroscopic and morphological investigation of chemically treated cellulose nanowhiskers (CNW) prepared from cotton sliver. Applied Nanoscience (Switzerland), 2015, 5, 291-296.	1.6	0
279	A critical review on cellulose: From fundamental to an approach on sensor technology. Renewable and Sustainable Energy Reviews, 2015, 41, 402-412.	8.2	240
280	Bionanocomposites based on thermoplastic starch and cellulose nanofibers. Journal of Thermoplastic Composite Materials, 2016, 29, 817-832.	2.6	26
281	Nanofibre distribution in composites manufactured with epoxy reinforced with nanofibrillated cellulose: model prediction and verification. IOP Conference Series: Materials Science and Engineering, 2016, 139, 012011.	0.3	0
282	Synthesis and characterisation of micro-fibrillated cellulose from jute. International Journal of Biomedical Engineering and Technology, 2016, 22, 99.	0.2	0
283	Nature-Inspired Polymers. , 2016, , 59-74.		0
284	Comparative Study of Microcelluloses Isolated From Two Different Biomasses with Commercial Cellulose. BioResources, 2016, 11, .	0.5	8
285	Biopolymer-mediated Green Synthesis of Noble Metal Nanostructures. , 0, , .		4
286	Nanocellulose-Based Polymeric Blends for Food Packaging Applications. , 2016, , 205-252.		21
287	Nanocellulose in Thin Films, Coatings, and Plies for Packaging Applications: A Review. BioResources, 2016, 12, 2143-2233.	0.5	189
288	Cellulose Nanowhiskers from Moso Bamboo Residues: Extraction and Characterization. BioResources, 2016, 12, .	0.5	5
289	Cellulose Nanocrystals versus Polyethylene Glycol as Toughening Agents for Poly(Lactic) Tj ETQq1 1 0.784314 rg	BT /Overlc	ckz 10 Tf 50
290	Optimizing Extraction of Cellulose and Synthesizing Pharmaceutical Grade Carboxymethyl Sago Cellulose from Malaysian Sago Pulp. Applied Sciences (Switzerland), 2016, 6, 170.	1.3	35
291	Microfibrillated Lignocellulose Enables the Suspension-Polymerisation of Unsaturated Polyester Resin for Novel Composite Applications. Polymers, 2016, 8, 255.	2.0	20

		CITATION REPORT	
# 292	ARTICLE A Review on Grafting of Biofibers for Biocomposites. Materials, 2016, 9, 303.	IF 1.3	Citations
293	Nanocellulose Produced from Rice Hulls and its Effect on the Properties of Biodegradable Starch Films. Materials Research, 2016, 19, 167-174.	0.6	72
294	Extraction of Lignocellulosic Materials From Waste Products. , 2016, , 1-38.		10
295	Caracterização morfológica de nanocristais de celulose por microscopia de força atômica. Rev Materia, 2016, 21, 532-540.	vista 0.1	1
296	Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis. Cellulose, 2016, 23, 2409-2420.	2.4	45
297	A novel approach for extracting cellulose nanofibers from lignocellulosic biomass by ball milling combined with chemical treatment. Journal of Applied Polymer Science, 2016, 133, .	1.3	95
298	Effects of graphene oxide on the formation, structure and properties of bionanocomposite films ma from wheat gluten with chitosan. Polymer International, 2016, 65, 1039-1045.	de 1.6	11
299	Characterization of nanoscale retrograded starch prepared by a sonochemical method. Starch/Staerke, 2016, 68, 264-273.	1.1	16
300	Potato peeling costreams as raw materials for biopolymer film preparation. Journal of Applied Polymer Science, 2016, 133, .	1.3	20
301	Internal Structure of Hydroxypropyl Cellulose Nanofibers Prepared by Electrospinning from Different Phases of Aqueous Solutions. Kobunshi Ronbunshu, 2016, 73, 354-360.	0.2	1
302	Molecular mobility of nanocellulose hydrogels. Russian Journal of Physical Chemistry B, 2016, 10, 839-843.	0.2	5
303	CTViz: A tool for the visualization of transport in nanocomposites. Journal of Molecular Graphics and Modelling, 2016, 66, 168-173.	1.3	3
304	Isolation and characterization of bagasse cellulose nanofibrils by optimized sulfur-free chemical delignification. Wood Science and Technology, 2016, 50, 1071-1088.	1.4	17
305	A delineating procedure to retrieve relevant publication data in research areas: the case of nanocellulose. Scientometrics, 2016, 107, 627-643.	1.6	21
306	A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydrate Polymers, 2016, 150, 216-226.	5.1	394
307	Green One-Pot Synthesis of Surface Hydrophobized Cellulose Nanocrystals in Aqueous Medium. AC Sustainable Chemistry and Engineering, 2016, 4, 3927-3938.	S 3.2	85
308	Solvent resistance of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) treated cellulose nanofiber film f flexible electronics. Cellulose, 2016, 23, 1979-1987.	for 2.4	24
309	Thermal and Morphological Properties of Poly (Lactic Acid)/Nanocellulose Nanocomposites. Procedi Chemistry, 2016, 19, 788-794.	a 0.7	97

#	Article	IF	CITATIONS
310	Cellulose nano-biocomposites from high oleic sunflower oil-derived thermosets. European Polymer Journal, 2016, 79, 109-120.	2.6	11
311	Transparent composite films prepared from chemically modified cellulose fibers. Cellulose, 2016, 23, 2011-2024.	2.4	15
312	PLA composites: From production to properties. Advanced Drug Delivery Reviews, 2016, 107, 17-46.	6.6	651
313	Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview. European Polymer Journal, 2016, 80, 295-316.	2.6	80
314	Active bio-based food-packaging: Diffusion and release of active substances through and from cellulose nanofiber coating toward food-packaging design. Carbohydrate Polymers, 2016, 149, 40-50.	5.1	62
315	Investigation of the mechanism and effectiveness of cationic polymer as a compatibilizer in microfibrillated cellulose-reinforced polyolefins. Cellulose, 2016, 23, 623-635.	2.4	24
317	Plant Derived Polymers, Properties, Modification & Applications. , 2016, , 119-184.		3
318	The role of dilute and semiâ€dilute cellulose nanocrystal (CNC) suspensions on the rheology of carboxymethyl cellulose (CMC) solutions. Canadian Journal of Chemical Engineering, 2016, 94, 1841-1847.	0.9	26
319	Microcrystalline cellulose as reinforcing agent in silicone elastomers. Carbohydrate Polymers, 2016, 151, 899-906.	5.1	34
322	Outlook and Challenges of Nanotechnologies for Food Packaging. Packaging Technology and Science, 2016, 29, 615-648.	1.3	86
323	Morphological investigation of cellulose acetate/cellulose nanocrystal composites obtained by melt extrusion. Journal of Applied Polymer Science, 2016, 133, .	1.3	17
324	Mechanical and antibacterial properties of a nanocellulose-polypyrrole multilayer composite. Materials Science and Engineering C, 2016, 69, 977-984.	3.8	51
325	Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions. Biomacromolecules, 2016, 17, 2747-2754.	2.6	104
326	Luminescent cellulose fibers modified with cerium fluoride doped with terbium particles. Polymer Composites, 2016, 37, 153-160.	2.3	22
327	Overview of Cellulose Nanomaterials, Their Capabilities and Applications. Jom, 2016, 68, 2383-2394.	0.9	180
328	Acid-free extraction of cellulose type I nanocrystals using BrÃ,nsted acid-type ionic liquids. Nanocomposites, 2016, 2, 65-75.	2.2	29
329	Evaluation of novel applications of cellulose hydrogel films reconstituted from acetate and chloride of 1-butyl-3-methylimidazolium by comparing their optical, mechanical, and adsorption properties. Materials Today Communications, 2016, 8, 108-117.	0.9	12
330	Revalorization of barley straw and husk as precursors for cellulose nanocrystals extraction and their effect on PVA_CH nanocomposites. Industrial Crops and Products, 2016, 92, 201-217.	2.5	79

		CITATION REPO	ORT	
#	Article		IF	CITATIONS
331	High-Value Utilization of Natural Cellulose: Cellulose-Based Biocomposite Materials. , 2016	, , 132-173.		0
332	Alkenylation of cellulose nanocrystals (CNC) and their applications. Polymer, 2016, 101, 3	38-346.	1.8	32
333	Microcrystalline cellulose: Isolation, characterization and bio-composites application—A ı International Journal of Biological Macromolecules, 2016, 93, 789-804.	eview.	3.6	497
334	Extraction and functionalization of bagasse cellulose nanofibres to Schiff-base based antin membranes. International Journal of Biological Macromolecules, 2016, 91, 887-894.	nicrobial	3.6	56
335	A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications. Renewable and Sustainable Energy Reviews, 2016, 64, 823-836.		8.2	210
336	Hairy cellulose nanocrystalloids: a novel class of nanocellulose. Nanoscale, 2016, 8, 15101	-15114.	2.8	111
337	High water-content thermoresponsive hydrogels via electrostatic macrocrosslinking of cell nanofibrils. Journal of Polymer Science Part A, 2016, 54, 3415-3424.	ulose	2.5	9
338	Effect of Individualized Cellulose Fibrils on Properties of Poly(Methyl Methacrylate) Compo Journal of Macromolecular Science - Physics, 2016, 55, 867-883.	sites.	0.4	4
339	Analyses of Biomass Fibers by XRD, FT-IR, and NIR. , 2016, , 45-83.			15
340	Nanocompounds as Formulating Aids. Food Preservation Technology, 2016, , 241-261.		0.0	0
341	Crystallinity and thermal resistance of microcrystalline cellulose prepared from manau ratt (Calamusmanan). AIP Conference Proceedings, 2016, , .	an	0.3	3
342	Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology. Journal of Visualized Experiments, 2016, , .		0.2	16
343	Nanocellulose and Nanocomposites. , 2016, , 103-125.			4
344	Enzymatic hydrolysis and fermentation of ultradispersed wood particles after ultrasonic pretreatment. Electronic Journal of Biotechnology, 2016, 20, 14-19.		1.2	17
345	High Temperature Proton Conduction in Nanocellulose Membranes: Paper Fuel Cells. Chen Materials, 2016, 28, 4805-4814.	nistry of	3.2	134
346	Maleic anhydride polypropylene modified cellulose nanofibril polypropylene nanocomposit enhanced impact strength. Polymer Composites, 2016, 37, 782-793.	es with	2.3	58
347	Characterization of bilayer bacterial cellulose membranes with different fiber densities: a p system for controlled release of the antibiotic ceftriaxone. Cellulose, 2016, 23, 737-748.	romising	2.4	42
348	The modified nanocrystalline cellulose for hydrophobic drug delivery. Applied Surface Scier 366, 404-409.	nce, 2016,	3.1	91

#	Article	IF	CITATIONS
349	One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid. Cellulose, 2016, 23, 1209-1219.	2.4	82
350	An eco-friendly composite adsorbent for efficient removal of Cu2+ from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 479-487.	2.7	3
351	Polyhydroxyalkanoates and Their Nanobiocomposites With Cellulose Nanocrystals. , 2016, , 261-285.		11
352	The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose, 2016, 23, 451-464.	2.4	52
353	Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy. Cellulose, 2016, 23, 1031-1041.	2.4	31
354	Emerging trends in eco-compliant, synergistic, and hybrid assembling of multifunctional polymeric bionanocomposites. Reviews in Chemical Engineering, 2016, .	2.3	10
355	Bifunctional graphene oxide–cellulose nanofibril aerogel loaded with Fe(<scp>iii</scp>) for the removal of cationic dye via simultaneous adsorption and Fenton oxidation. RSC Advances, 2016, 6, 19819-19825.	1.7	76
356	Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 2016, 86, 630-645.	3.6	157
357	Nanocellulose—fabrication, structure, properties, and application in the area of care and cure. , 2016, , 243-288.		9
358	Tuning supramolecular interactions of cellulose nanocrystals to design innovative functional materials. Industrial Crops and Products, 2016, 93, 96-107.	2.5	53
359	Hydroxypropyl cellulose/rice straw oxidized cellulose nanocrystals nanocomposites and their use in paper coating. Industrial Crops and Products, 2016, 93, 186-192.	2.5	26
359 360		2.5 5.1	26 128
	paper coating. Industrial Crops and Products, 2016, 93, 186-192. Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites: A Study from		
360	paper coating. Industrial Crops and Products, 2016, 93, 186-192. Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites: A Study from Macro- to Nano-Dimensions. Carbohydrate Polymers, 2016, 139, 139-149. Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent	5.1	128
360 361	 paper coating. Industrial Crops and Products, 2016, 93, 186-192. Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites: A Study from Macro- to Nano-Dimensions. Carbohydrate Polymers, 2016, 139, 139-149. Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent for microcellular foaming. Polymer, 2016, 84, 158-166. Effect of ball milling on the production of nanocellulose using mild acid hydrolysis method. Journal 	5.1 1.8	128 53
360 361 362	 paper coating. Industrial Crops and Products, 2016, 93, 186-192. Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites: A Study from Macro- to Nano-Dimensions. Carbohydrate Polymers, 2016, 139, 139-149. Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent for microcellular foaming. Polymer, 2016, 84, 158-166. Effect of ball milling on the production of nanocellulose using mild acid hydrolysis method. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 617-622. Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose, 	5.1 1.8 2.7	128 53 77
360 361 362 363	 paper coating. Industrial Crops and Products, 2016, 93, 186-192. Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites: A Study from Macro- to Nano-Dimensions. Carbohydrate Polymers, 2016, 139, 139-149. Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent for microcellular foaming. Polymer, 2016, 84, 158-166. Effect of ball milling on the production of nanocellulose using mild acid hydrolysis method. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 617-622. Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose, 2016, 23, 57-91. Multi-perspective application selection: a method to identify sustainable applications for new materials using the example of cellulose nanofiber reinforced composites. Journal of Cleaner 	5.11.82.72.4	128 53 77 197

#	Article	IF	CITATIONS
367	Effects of cellulose fiber content on physical properties of polyurethane based composites. Composite Structures, 2016, 135, 217-223.	3.1	49
368	Cellulose nanofibrils extracted from the byproduct of cotton plant. Carbohydrate Polymers, 2016, 136, 841-850.	5.1	61
369	Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydrate Polymers, 2016, 137, 1-8.	5.1	91
370	Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydrate Polymers, 2016, 135, 18-26.	5.1	276
371	Poly(vinyl alcohol) films reinforced with nanofibrillated cellulose (NFC) isolated from corn husk by high intensity ultrasonication. Carbohydrate Polymers, 2016, 136, 1027-1034.	5.1	97
372	Exploration on compatibilizing effect of nonionic, anionic, and cationic surfactants on mechanical, morphological, and chemical properties of high-density polyethylene/low-density polyethylene/cellulose biocomposites. Journal of Thermoplastic Composite Materials, 2017, 30, 855-884.	2.6	11
373	Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Advances in Colloid and Interface Science, 2017, 239, 136-145.	7.0	235
374	Effects of cellulose nanowhiskers on the properties of poly(vinyl alcohol)/graphene nanoplatelets nanocomposites. Polymer Composites, 2017, 38, E98.	2.3	4
375	Recent progress in cellulose nanocrystals: sources and production. Nanoscale, 2017, 9, 1763-1786.	2.8	752
376	Cellulose nanocrystal-based composite for restoration of lacunae on damaged documents and artworks on paper. Journal of Cultural Heritage, 2017, 23, 170-175.	1.5	20
377	Rheological and Thermo-Mechanical Properties of Poly(lactic acid)/Lignin-Coated Cellulose Nanocrystal Composites. ACS Sustainable Chemistry and Engineering, 2017, 5, 1711-1720.	3.2	142
378	Mechanical properties of phenol/formaldehyde resin composites reinforced by cellulose microcrystal with different aspect ratio extracted from sisal fiber. Polymers for Advanced Technologies, 2017, 28, 1013-1019.	1.6	9
379	Nanocellulose Aerogels for Supporting Iron Catalysts and In Situ Formation of Polyethylene Nanocomposites. Advanced Functional Materials, 2017, 27, 1605586.	7.8	57
380	Cellulose: To depolymerize… or not to?. Biotechnology Advances, 2017, 35, 251-266.	6.0	90
381	Synthesis and characterization of cellulose carbonate using greenchemistry: Surface modification of Avicel. Carbohydrate Polymers, 2017, 163, 254-260.	5.1	19
382	Sustained Dye Release Using Poly(urea–urethane)/Cellulose Nanocrystal Composite Microcapsules. Langmuir, 2017, 33, 1521-1532.	1.6	28
383	Transparent nanostructured cellulose acetate films based on the self assembly of PEO-b-PPO-b-PEO block copolymer. Carbohydrate Polymers, 2017, 165, 437-443.	5.1	17
384	Cellulose nanocrystal supported superparamagnetic nanorods with aminated silica shell: synthesis and properties. Journal of Materials Science, 2017, 52, 6432-6441.	1.7	10

#	Article	IF	CITATIONS
385	Preparation, properties and future perspectives of nanocrystals from agro-industrial residues: a review of recent research. Reviews in Environmental Science and Biotechnology, 2017, 16, 131-145.	3.9	51
386	Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films. Cellulose, 2017, 24, 1745-1758.	2.4	30
390	Cellulosic Biocomposites: Potential Materials for Future. Green Energy and Technology, 2017, , 69-100.	0.4	16
391	Optimization of preparation of thermally stable cellulose nanofibrils via heatâ€induced conversion of ionic bonds to amide bonds. Journal of Polymer Science Part A, 2017, 55, 1750-1756.	2.5	13
393	Fabrication and characterization of cellulose nanocrystal based transparent electroactive polyurethane. Smart Materials and Structures, 2017, 26, 085012.	1.8	10
394	Preparation and evaluation of polyurethane/cellulose nanowhisker bimodal foam nanocomposites for osteogenic differentiation of hMSCs. Carbohydrate Polymers, 2017, 171, 281-291.	5.1	44
395	Effect of varying hydrolysis time on extraction of spherical bacterial cellulose nanocrystals as a reinforcing agent for poly(vinyl alcohol) composites. Journal of Polymer Research, 2017, 24, 1.	1.2	12
396	Hybrid Cellulose Bionanocomposites from banana and jute fibre: A Review of Preparation, Properties and Applications. Materials Today: Proceedings, 2017, 4, 3942-3951.	0.9	19
397	Interfacial properties of green leaf cellulosic particles. Food Hydrocolloids, 2017, 71, 8-16.	5.6	43
398	New approach for extraction of cellulose from tucumã's endocarp and its structural characterization. Journal of Molecular Structure, 2017, 1143, 229-234.	1.8	38
399	Cellulose nanocrystals as new bio-based coating layer for improving fiber-based mechanical and barrier properties. Journal of Materials Science, 2017, 52, 3048-3061.	1.7	60
400	Transfer of Biomatrix/Wood Cell Interactions to Hemicellulose-Based Materials to Control Water Interaction. Chemical Reviews, 2017, 117, 8177-8207.	23.0	50
401	Nanocellulose in Sensing and Biosensing. Chemistry of Materials, 2017, 29, 5426-5446.	3.2	308
403	Nanocellulose-based foams and aerogels: processing, properties, and applications. Journal of Materials Chemistry A, 2017, 5, 16105-16117.	5.2	466
404	The use of cellulose nanocrystals to enhance the thermal insulation properties and sustainability of rigid polyurethane foam. Industrial Crops and Products, 2017, 107, 114-121.	2.5	130
405	Rubber Based Bionanocomposites: Preparation and State of Art. Advanced Structured Materials, 2017, , 1-15.	0.3	0
406	Applications of Rubber Based Biocomposites and Bionanocomposites. Advanced Structured Materials, 2017, , 167-176.	0.3	2
407	Hygroscopic Swelling Determination of Cellulose Nanocrystal (CNC) Films by Polarized Light Microscopy Digital Image Correlation, Biomacromolecules, 2017, 18, 1482-1490.	2.6	63

#	Article	IF	CITATIONS
408	Bionanocomposite films based on polysaccharides from banana peels. International Journal of Biological Macromolecules, 2017, 101, 1-8.	3.6	45
409	Bioremediation and Sustainable Technologies for Cleaner Environment. Environmental Science and Engineering, 2017, , .	0.1	8
410	Efficient Hydrolysis of Lignocellulosic Biomass: Potential Challenges and Future Perspectives for Biorefineries. Environmental Science and Engineering, 2017, , 213-237.	0.1	3
411	Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. Langmuir, 2017, 33, 1583-1598.	1.6	382
412	Preparation and characterization of regenerated cellulose films using borassus fruit fibers and an ionic liquid. Carbohydrate Polymers, 2017, 160, 203-211.	5.1	68
413	Review of Nanocellulose Polymer Composite Characteristics and Challenges. Polymer-Plastics Technology and Engineering, 2017, 56, 687-731.	1.9	79
414	Multiscale Modeling of Solvation. , 2017, , 95-139.		17
415	High Efficiency Conversion of Regenerated Cellulose Hydrogel Directly to Functionalized Cellulose Nanoparticles. Macromolecular Rapid Communications, 2017, 38, 1700409.	2.0	8
416	Toward a deeper understanding of the thermal degradation mechanism of nanocellulose. Polymer Degradation and Stability, 2017, 146, 53-60.	2.7	67
417	Reinforcement of cellulose nanofibers in polyacrylamide gels. Cellulose, 2017, 24, 5487-5493.	2.4	37
418	Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from corn husk. Industrial Crops and Products, 2017, 109, 241-247.	2.5	118
419	Green Approaches To Engineer Tough Biobased Epoxies: A Review. ACS Sustainable Chemistry and Engineering, 2017, 5, 9528-9541.	3.2	100
420	Mechanical, rheological and degradation properties of PBAT nanocomposites reinforced by functionalized cellulose nanocrystals. European Polymer Journal, 2017, 97, 356-365.	2.6	170
421	Processing strategies for cellulose nanocrystal/polyethylene-co-vinyl alcohol composites. Polymer, 2017, 126, 211-223.	1.8	14
422	Reinforcement effect of poly (methyl methacrylate)-g-cellulose nanofibers on LDPE/thermoplastic starch composites: preparation and characterization. Iranian Polymer Journal (English Edition), 2017, 26, 733-742.	1.3	14
423	Reactive supramolecular filler for elastomer reinforcement. Polymer, 2017, 129, 12-20.	1.8	3
424	Claim-based patent indicators: A novel approach to analyze patent content and monitor technological advances. World Patent Information, 2017, 50, 64-72.	0.7	19
425	Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study. ACS Applied Materials & Interfaces, 2017, 9, 35305-35318.	4.0	77

#	Article	IF	CITATIONS
426	Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale, 2017, 9, 14758-14781.	2.8	198
427	Extraction and structural characterization of cellulose from milkweed floss. Separation Science and Technology, 0, , 1-7.	1.3	0
431	PLA-Based Nanocomposites Reinforced with CNC for Food Packaging Applications: From Synthesis to Biodegradation. , 2017, , 265-300.		6
432	Nanocellulosic materials as bioinks for 3D bioprinting. Biomaterials Science, 2017, 5, 1988-1992.	2.6	77
433	Cellulose nanocomposites. , 2017, , 483-516.		14
434	Strategy for the Improvement of the Mechanical Properties of Cellulose Nanofiber-Reinforced High-Density Polyethylene Nanocomposites Using Diblock Copolymer Dispersants. ACS Applied Materials & Interfaces, 2017, 9, 44079-44087.	4.0	53
435	Market Opportunities for Cellulose Products From Combined Renewable Resources. Environmental and Climate Technologies, 2017, 19, 33-38.	0.5	22
436	Optimization of a Wood Plastic Composite for Architectural Applications. Procedia Manufacturing, 2017, 12, 203-220.	1.9	33
437	Supramolecular reinforcement of styrene-butadiene rubber composites. Polymer, 2017, 122, 242-248.	1.8	8
438	Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. International Journal of Biological Macromolecules, 2017, 95, 94-105.	3.6	111
439	Nanocellulose-Polymer Composites for Applications in Food Packaging: Current Status, Future Prospects and Challenges. Polymer-Plastics Technology and Engineering, 2017, 56, 805-823.	1.9	106
440	Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material. Carbohydrate Polymers, 2017, 157, 1323-1332.	5.1	93
441	Fabrication and Properties of Polyethylene/Cellulose Nanocrystal Composites. Macromolecular Materials and Engineering, 2017, 302, 1600300.	1.7	70
442	Polyhydroxybutyrate-Based Nanocomposites with Cellulose Nanocrystals and Bacterial Cellulose. Journal of Polymers and the Environment, 2017, 25, 586-598.	2.4	40
443	Controlled delivery systems of cellulose matrix for oxytetracycline: In vitro dissolution. European Journal of Molecular and Clinical Medicine, 2017, 3, 66.	0.5	4
444	Thermal properties and crystallinity of PCL/PBSA/cellulose nanocrystals grafted with PCL chains. Journal of Applied Polymer Science, 2017, 134, .	1.3	27
445	The nanocellulose biorefinery: woody versus herbaceous agricultural wastes for NCC production. Cellulose, 2017, 24, 693-704.	2.4	31
446	Cellulose nanofibers produced from banana peel by enzymatic treatment: Study of process conditions. Industrial Crops and Products, 2017, 95, 664-674.	2.5	87

		CITATION RE	PORT	
#	Article		IF	CITATIONS
447	Nanocellulose-based membranes for CO2 capture. Journal of Membrane Science, 2017, 522, 216-22	.5.	4.1	90
448	Bionanomaterial from agricultural waste and its application. , 2017, , 45-88.			6
449	Nanocellulose. , 2017, , 261-276.			50
450	Novel Nanoscaled Materials from Lignocellulosic Sources: Potential Applications in the Agricultural Sector. , 2017, , 1-24.			3
451	Nanocellulose composites with enhanced interfacial compatibility and mechanical properties using a hybrid-toughened epoxy matrix. Carbohydrate Polymers, 2017, 177, 249-257.	3	5.1	28
452	The Influence of Bleached Jute Fiber Filler on the Properties of Vulcanized Natural Rubber. Materials Research, 2017, 20, 466-471.		0.6	30
453	TEMPO-Oxidized Cellulose with High Degree of Oxidation. Polymers, 2017, 9, 421.		2.0	123
454	Preparation of bionanocomposites and bionanomaterials from agricultural wastes. , 2017, , 341-372			2
455	The Influence of Cellulose Nanocrystals on the Hydration and Flexural Strength of Portland Cement Pastes. Polymers, 2017, 9, 424.		2.0	56
456	The Preparations and Water Vapor Barrier Properties of Polyimide Films Containing Amide Moieties. Polymers, 2017, 9, 677.		2.0	38
457	Preparation, Characterization and Application of Polysaccharide-Based Metallic Nanoparticles: A Review. Polymers, 2017, 9, 689.		2.0	110
458	Spectroscopy and microscopy of microfibrillar and nanofibrillar composites. , 2017, , 279-299.			2
459	Biopolymer Composites With High Dielectric Performance: Interface Engineering. , 2017, , 27-128.			124
460	Structure and Properties of Cellulose and Nanocellulose. , 2017, , 27-40.			2
461	Application of nanocrystalline cellulose. , 2017, , 215-240.			22
462	Disadvantages of Starch-Based Materials, Feasible Alternatives in Order to Overcome These Limitations. , 2017, , 37-76.			33
463	Green hybrid composites from cellulose nanocrystal. , 2017, , 65-99.			3
464	Bioplastics from agro-wastes for food packaging applications. , 2017, , 223-263.			25

#	Article	IF	Citations
465	Preparation and Characterization of Nanofibrillated Cellulose from Bamboo Fiber via Ultrasonication Assisted by Repulsive Effect. International Journal of Polymer Science, 2017, 2017, 1-9.	1.2	42
467	Environmental and Human Health Risks. , 2017, , 221-228.		1
468	PHBV/cellulose nanofibrils composites obtained by solution casting and electrospinning process. Revista Materia, 2017, 22, .	0.1	11
469	Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. EXPRESS Polymer Letters, 2017, 11, 244-265.	1.1	168
470	In-situ Polymerization of Nylon-Cellulose Nano composite. Polymer Science, 2017, 03, .	0.2	11
471	Microbial Paper: Cellulose Fiber-based Photo-Absorber Producing Hydrogen Gas from Acetate using Dry-Stabilized Rhodopseudomonas palustris. BioResources, 2017, 12, .	0.5	8
472	Elaboration of Cellulose Nanocrystal/Ge-Imogolite Nanotube Multilayered Thin Films. Langmuir, 2018, 34, 3386-3394.	1.6	13
473	Development of high throughput, high precision synthesis platforms and characterization methodologies for toxicological studies of nanocellulose. Cellulose, 2018, 25, 2303-2319.	2.4	45
474	Advances in cellulose nanomaterials. Cellulose, 2018, 25, 2151-2189.	2.4	329
475	Materials chemistry and the futurist eco-friendly applications of nanocellulose: Status and prospect. Journal of Saudi Chemical Society, 2018, 22, 949-978.	2.4	243
476	Cellulose nanocrystal/PVA nanocomposite membranes for CO2/CH4 separation at high pressure. Journal of Membrane Science, 2018, 554, 275-281.	4.1	62
477	Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering. International Journal of Biological Macromolecules, 2018, 115, 385-392.	3.6	55
478	Nanocellulose as a natural source for groundbreaking applications in materials science: Today's state. Materials Today, 2018, 21, 720-748.	8.3	625
479	Current characterization methods for cellulose nanomaterials. Chemical Society Reviews, 2018, 47, 2609-2679.	18.7	690
480	Cellulose-mineral interactions based on the DLVO theory and their correlation with flotability. Minerals Engineering, 2018, 122, 44-52.	1.8	26
481	How the shape of fillers affects the barrier properties of polymer/non-porous particles nanocomposites: A review. Journal of Membrane Science, 2018, 556, 393-418.	4.1	147
482	Effect of cellulose nanofibers and acetylated cellulose nanofibers on the properties of lowâ€density polyethylene/thermoplastic starch blends. Polymer International, 2018, 67, 993-1002.	1.6	13
483	Cellulose nanofibers from banana peels as a Pickering emulsifier: High-energy emulsification processes. Carbohydrate Polymers, 2018, 194, 122-131.	5.1	113

#	Article	IF	CITATIONS
484	Extraction and characterization of cellulose single fibers from native african napier grass. Carbohydrate Polymers, 2018, 188, 85-91.	5.1	137
485	Mechanical properties of TEMPO-oxidised bacterial cellulose-amino acid biomaterials. European Polymer Journal, 2018, 101, 29-36.	2.6	19
486	Microfibrillated cellulose addition improved the physicochemical and bioactive properties of biodegradable films based on soy protein and clove essential oil. Food Hydrocolloids, 2018, 79, 416-427.	5.6	87
487	Combining ex-ante LCA and EHS screening to assist green design: A case study of cellulose nanocrystal foam. Journal of Cleaner Production, 2018, 178, 494-506.	4.6	23
488	Ultrasonication of spray- and freeze-dried cellulose nanocrystals in water. Journal of Colloid and Interface Science, 2018, 516, 23-33.	5.0	50
489	Imidazole-doped nanocrystalline cellulose solid proton conductor: synthesis, thermal properties, and conductivity. Cellulose, 2018, 25, 281-291.	2.4	39
490	Bio-derived cellulose nanofibril reinforced poly(N-isopropylacrylamide)-g-guar gum nanocomposite: An avant-garde biomaterial as a transdermal membrane. Polymer, 2018, 135, 85-102.	1.8	41
491	CO ₂ -Switchable Cellulose Nanocrystal Hydrogels. Chemistry of Materials, 2018, 30, 376-385.	3.2	56
492	X-ray powder diffraction and other analyses of cellulose nanocrystals obtained from corn straw by chemical treatments. Carbohydrate Polymers, 2018, 193, 39-44.	5.1	56
493	Optimizing the yield and physico-chemical properties of pine cone cellulose nanocrystals by different hydrolysis time. Cellulose, 2018, 25, 2925-2938.	2.4	67
494	Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. International Journal of Biological Macromolecules, 2018, 114, 54-63.	3.6	138
495	Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydrate Polymers, 2018, 191, 205-215.	5.1	195
496	Polyurethane acrylate networks including cellulose nanocrystals: a comparison between UV and EB- curing. Radiation Physics and Chemistry, 2018, 142, 94-99.	1.4	14
497	Influence of particle size of isotactic polypropylene (iPP) on barrier property against agglomeration of homogenized microcrystalline cellulose (HMCC) in iPP/HMCC composites. Journal of Polymer Engineering, 2018, 38, 213-222.	0.6	4
498	Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts. Carbohydrate Polymers, 2018, 182, 61-68.	5.1	76
499	Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility. Carbohydrate Polymers, 2018, 181, 247-255.	5.1	57
500	Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA). Journal of Thermoplastic Composite Materials, 2018, 31, 1090-1101.	2.6	61
501	Cationic Nanosorbents Biopolymers: Versatile Materials for Environmental Cleanup. Springer Series on Polymer and Composite Materials, 2018, , 75-101.	0.5	2

#	Article	IF	CITATIONS
502	Combined approaches to obtain cellulose nanocrystals, nanofibrils and fermentable sugars from elephant grass. Carbohydrate Polymers, 2018, 180, 38-45.	5.1	50
503	Characterization and mechanical properties of ultraviolet stimuliâ€responsive functionalized cellulose nanocrystal alginate composites. Journal of Applied Polymer Science, 2018, 135, 45857.	1.3	11
504	The effect of hydration on the material and mechanical properties of cellulose nanocrystal-alginate composites. Carbohydrate Polymers, 2018, 179, 186-195.	5.1	23
505	Functionalized cellulose nanocrystals as reinforcement in biodegradable polymer nanocomposites. Polymer Composites, 2018, 39, E9.	2.3	88
506	Cellulose Reinforced Biodegradable Polymer Composite Film for Packaging Applications. , 2018, , 49-69.		26
507	Unravelling cationic cellulose nanofibril hydrogel structure: NMR spectroscopy and small angle neutron scattering analyses. Soft Matter, 2018, 14, 255-263.	1.2	27
508	Mechanisms contributing to mechanical property changes in composites of polypropylene reinforced with spray-dried cellulose nanofibrils. Cellulose, 2018, 25, 439-448.	2.4	33
509	A green Pickering emulsion stabilized by cellulose nanocrystals via RAFT polymerization. Cellulose, 2018, 25, 77-85.	2.4	31
510	Effect of humidity and nanocellulose content on Polyvinylamine-nanocellulose hybrid membranes for CO2 capture. Journal of Membrane Science, 2018, 548, 263-274.	4.1	53
511	Sugar Palm Starch-Based Composites for Packaging Applications. , 2018, , 125-147.		73
512	Cellulose nanofibres as biomaterial for nano-reinforcement of poly[styrene-(ethylene-co-butylene)-styrene] triblock copolymer. Cellulose, 2018, 25, 449-461.	2.4	15
513	Reusable and crossâ€linked cellulose nanofibrils aerogel for the removal of heavy metal ions. Polymer Composites, 2018, 39, 4442-4451.	2.3	27
514	Enhancement of the Physical, Mechanical, and Thermal Properties of Epoxy-based Bamboo Nanofiber Nanocomposites. BioResources, 2018, 13, .	0.5	9
515	Morphology and Strength Characteristics of Composites Based on Nanocrystalline Cellulose and Water-Soluble Polymers. Fibre Chemistry, 2018, 50, 288-292.	0.0	2
518	Eco-friendly cellulose nano fibers via first reported Egyptian Humicola fuscoatra Egyptia X4: Isolation and characterization. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 409-418.	1.7	56
519	Co-Production of Cellulose Nanocrystals and Fermentable Sugars Assisted by Endoglucanase Treatment of Wood Pulp. Materials, 2018, 11, 1645.	1.3	27
520	Recyclable cellulose nanocrystal supported Palladium nanoparticles as an efficient heterogeneous catalyst for the solventâ€free synthesis of coumarin derivatives via von Pechmann condensation. Applied Organometallic Chemistry, 2018, 32, e4546.	1.7	35
521	Dimensionally stable cellulosic aerogels functionalized by titania. Pure and Applied Chemistry, 2018, 90, 1755-1771.	0.9	3

#	Article	IF	CITATIONS
522	Bacterial Exopolysaccharides as Reducing and/or Stabilizing Agents during Synthesis of Metal Nanoparticles with Biomedical Applications. International Journal of Polymer Science, 2018, 2018, 1-15.	1.2	53
523	Effect of ball-milling on crystallinity index, degree of polymerization and thermal stability of cellulose. Bioresource Technology, 2018, 270, 270-277.	4.8	69
524	Protein depletion with bacterial cellulose nanofibers. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1099, 1-9.	1.2	18
525	Cellulose Mineralization as a Route for Novel Functional Materials. Advanced Functional Materials, 2018, 28, 1705042.	7.8	50
526	An environmentally benign methodology to elaborating polymer nanocomposites with tunable properties using core-shell nanoparticles and cellulose nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 169-179.	2.3	4
527	Nanocellulose: Extraction and application. Carbon Resources Conversion, 2018, 1, 32-43.	3.2	613
528	Dynamics of Cellulose Nanocrystal Alignment during 3D Printing. ACS Nano, 2018, 12, 6926-6937.	7.3	203
529	Nanocomposites of acid free CNC and HDPE: Dispersion from solvent driven by fast crystallization/gelation. Journal of Molecular Liquids, 2018, 266, 233-241.	2.3	9
530	Cellulose-Based Hydrogel for Industrial Applications. Polymers and Polymeric Composites, 2018, , 1-41.	0.6	2
531	Cellulose nanocrystals reduce cold damage to reproductive buds in fruit crops. Biosystems Engineering, 2018, 172, 124-133.	1.9	25
532	Grafted Nanocellulose as an Advanced Smart Biopolymer. , 2018, , 521-549.		2
533	Polymer Gels. Gels Horizons: From Science To Smart Materials, 2018, , .	0.3	8
534	Incorporation of Filler/Additives in Polymer Gel for Advanced Application. Gels Horizons: From Science To Smart Materials, 2018, , 445-492.	0.3	2
535	Influence of process variables on physical characteristics of spray freeze dried cellulose nanocrystals. Cellulose, 2018, 25, 5711-5730.	2.4	18
536	Effect of cellulose nanocrystals on crystallization kinetics of polycaprolactone as probed by Rheo-Raman. Polymer, 2018, 153, 70-77.	1.8	19
537	Effect of adsorption of polyethylene glycol (PEG), in aqueous media, to improve cellulose nanostructures stability. Journal of Molecular Liquids, 2018, 268, 415-424.	2.3	35
538	Nanocellulose for Industrial Use. , 2018, , 74-126.		105
539	Nanostructured biomimetic, bioresponsive, and bioactive biomaterials. , 2018, , 35-65.		1

#	Article	IF	CITATIONS
540	Recent Advances in Nanocellulose Composites with Polymers: A Guide for Choosing Partners and How to Incorporate Them. Polymers, 2018, 10, 517.	2.0	190
541	Cellulose Nanocrystals for Health Care Applications. , 2018, , 415-459.		23
542	The Effect of Cellulose Nanocrystals (CNC) on Isothermal Crystallization Kinetics of LLDPE and HDPE. International Polymer Processing, 2018, 33, 371-380.	0.3	5
543	Nanofiller Reinforced Biodegradable PLA/PHA Composites: Current Status and Future Trends. Polymers, 2018, 10, 505.	2.0	134
544	Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers, 2018, 10, 623.	2.0	311
545	Derivation of Nanocellulose from Native Rice Husk. Chemical Engineering Research Bulletin, 2018, 20, 19.	0.2	9
546	Application of micro- and nanocrystalline cellulose. IOP Conference Series: Materials Science and Engineering, 2018, 347, 012006.	0.3	3
547	Analysis of the Porous Architecture and Properties of Anisotropic Nanocellulose Foams: A Novel Approach to Assess the Quality of Cellulose Nanofibrils (CNFs). ACS Sustainable Chemistry and Engineering, 2018, 6, 11959-11967.	3.2	40
548	Preparation and characterization of polylactic acid-g-bamboo fiber based on in-situ solid phase polymerization. Industrial Crops and Products, 2018, 123, 646-653.	2.5	37
549	Lignin Based Functional Additives for Natural Rubber. ACS Sustainable Chemistry and Engineering, 2018, 6, 11843-11852.	3.2	56
550	Effects of Replacement of Part of the Silica Reinforcement with Hybrid Modified Microcrystalline Cellulose on the Properties of their Rubber Composites. Journal of Macromolecular Science - Physics, 2018, 57, 243-254.	0.4	9
551	High-Pressure Microfluidization as a Green Tool for Optimizing the Mechanical Performance of All-Cellulose Composites. ACS Sustainable Chemistry and Engineering, 2018, 6, 12727-12735.	3.2	15
552	How do cellulose nanocrystals affect the overall properties of biodegradable polymer nanocomposites: A comprehensive review. European Polymer Journal, 2018, 108, 274-285.	2.6	150
553	Polylactic acid nanocomposites toughened with nanofibrillated cellulose: microstructure, thermal, and mechanical properties. Iranian Polymer Journal (English Edition), 2018, 27, 785-794.	1.3	18
554	Bio-Composites Based on Poly(lactic acid) Containing Mallow and Eucalyptus Surface Modified Natural Fibers. Journal of Polymers and the Environment, 2018, 26, 3785-3801.	2.4	5
555	A Review on Preparation and Properties of Cellulose Nanocrystal-Incorporated Natural Biopolymer. Journal of Packaging Technology and Research, 2018, 2, 149-166.	0.6	30
556	A Host–Guest Interaction Assisted Approach for Fabrication of Polybutadiene Nanocomposites Reinforced with Well-Dispersed Cellulose Nanocrystals. Macromolecules, 2018, 51, 4578-4587.	2.2	18
557	Production of cellulose nanofibers from Alfa grass and application as reinforcement for polyvinyl alcohol. Plastics, Rubber and Composites, 2018, 47, 297-305.	0.9	13

#	Article	IF	CITATIONS
558	Bionanocomposites: Green materials for a sustainable future. , 2018, , 699-712.		33
559	Conductivity, dielectric and modulus study of chitosan-methyl cellulose – BMIMTFSI polymer electrolyte doped with cellulose nano crystal. AIP Conference Proceedings, 2018, , .	0.3	12
560	Bio-Based Nanocomposites in Food Packaging. , 2018, , 71-110.		19
561	Sugarcane Bagasse Fibers Treated and Untreated: Performance as Reinforcement in Phenolic-Type Matrices Based on Lignosulfonates. Waste and Biomass Valorization, 2019, 10, 3515-3524.	1.8	14
562	Morphological, barrier, and mechanical properties of cassava starch films reinforced with cellulose and starch nanoparticles. Journal of Applied Polymer Science, 2019, 136, 47001.	1.3	29
563	Carboxylated nanocellulose/poly(ethylene oxide) composite films as solid–solid phase-change materials for thermal energy storage. Carbohydrate Polymers, 2019, 225, 115215.	5.1	32
564	Nanocellulose for Sensing Applications. Advanced Materials Interfaces, 2019, 6, 1900424.	1.9	54
565	Preparation and thermostability of cellulose nanocrystals and nanofibrils from two sources of biomass: rice straw and poplar wood. Cellulose, 2019, 26, 8625-8643.	2.4	65
566	Effect of exfoliating agent on rheological behavior of β-chitin fibrils in aqueous suspensions and on mechanical properties of poly(acrylic acid)/β-chitin composites. International Journal of Biological Macromolecules, 2019, 139, 161-169.	3.6	6
567	Nanocellulose-Polymer Composites: Novel Materials for Food Packaging Applications. , 2019, , 553-599.		11
568	Impact of sonication on the rheological and colloidal properties of highly concentrated cellulose nanocrystal suspensions. Cellulose, 2019, 26, 7619-7634.	2.4	49
569	Nanocellulose-Reinforced Unsaturated Polyester Composites. , 2019, , 257-274.		0
570	Removal of Cu2+ ions by cellulose nanofibers-assisted starch-g-poly(acrylic acid) superadsorbent hydrogels. Composites Part B: Engineering, 2019, 176, 107084.	5.9	45
571	Influence of Natural Fillers on Thermal and Mechanical Properties and Surface Morphology of Cellulose Acetate-Based Biocomposites. International Journal of Polymer Science, 2019, 2019, 1-17.	1.2	9
572	Production of new cellulose nanocrystals from Ferula gummosa and their use in medical applications via investigation of their biodistribution. Industrial Crops and Products, 2019, 139, 111538.	2.5	32
573	Critical insights into the reinforcement potential of cellulose nanocrystals in polymer nanocomposites. Current Opinion in Solid State and Materials Science, 2019, 23, 100761.	5.6	71
574	Biocomposite Reinforced with Nanocellulose for Packaging Applications. Materials Horizons, 2019, , 83-123.	0.3	3
575	Polylactide cellulose-based nanocomposites. International Journal of Biological Macromolecules, 2019, 137, 912-938.	3.6	114

#	Article	IF	CITATIONS
576	Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review. Membranes, 2019, 9, 74.	1.4	22
578	Preparation and Characterization of Soy Protein Isolate-Based Nanocomposite Films with Cellulose Nanofibers and Nano-Silica via Silane Grafting. Polymers, 2019, 11, 1835.	2.0	32
580	Recent progress in nanomaterial-based electrochemical and optical sensors for hypoxanthine and xanthine. A review. Mikrochimica Acta, 2019, 186, 749.	2.5	49
581	Processing cellulose@Fe3O4 into mechanical, magnetic and biodegradable synapse-like material. Composites Part B: Engineering, 2019, 177, 107432.	5.9	22
582	Dielectric response of hydrated water as a structural component of nanofibrillated cellulose (NFC) from different plant sources. Carbohydrate Polymers, 2019, 225, 115217.	5.1	6
583	Biomass and Industrial Wastes as Resource Materials for Aerogel Preparation: Opportunities, Challenges, and Research Directions. Industrial & Engineering Chemistry Research, 2019, 58, 17621-17645.	1.8	56
584	Highly reversible photochromism in composite WO3/nanocellulose films. Cellulose, 2019, 26, 9095-9105.	2.4	29
585	Transparent Cellulose/Technical Lignin Composite Films for Advanced Packaging. Polymers, 2019, 11, 1455.	2.0	44
586	Alkali Hydrolysis of Sulfated Cellulose Nanocrystals: Optimization of Reaction Conditions and Tailored Surface Charge. Nanomaterials, 2019, 9, 1232.	1.9	41
587	Dynamic Nanocellulose Networks for Thermoset-like yet Recyclable Plastics with a High Melt Stiffness and Creep Resistance. Biomacromolecules, 2019, 20, 3924-3932.	2.6	13
588	Macrostructure and optical studies of hydroxypropyl cellulose in pure and Nano-composites forms. Results in Physics, 2019, 15, 102637.	2.0	15
589	Interfacial Polymerization of Cellulose Nanocrystal Polyamide Janus Nanocomposites with Controlled Architectures. ACS Macro Letters, 2019, 8, 1334-1340.	2.3	18
590	Flexible cellulose nanofibril/pristine graphene nanocomposite films with high electrical conductivity. Composites Part A: Applied Science and Manufacturing, 2019, 119, 119-126.	3.8	30
591	Processing Aspects and Biomedical and Environmental Applications of Sustainable Nanocomposites Containing Nanofillers. , 2019, , 727-757.		1
592	Biodegradable PBAT-Based Nanocomposites Reinforced with Functionalized Cellulose Nanocrystals from Pseudobombax munguba: Rheological, Thermal, Mechanical and Biodegradability Properties. Journal of Polymers and the Environment, 2019, 27, 757-766.	2.4	52
593	Tuning the Morphology of Microparticles from Spray Drying of Cellulose Nanocrystal Suspensions by Hydrophobic Lignin. ACS Sustainable Chemistry and Engineering, 2019, 7, 5376-5384.	3.2	23
594	REINFORCEMENT OF RUBBER USING REACTIVE OLIGO(Î ² -ALANINE) SUPRAMOLECULAR FILLERS. Rubber Chemistry and Technology, 2019, 92, 198-217.	0.6	2
595	Polymer Composites Reinforced with Natural Fibers and Nanocellulose in the Automotive Industry: A Short Review. Journal of Composites Science, 2019, 3, 51.	1.4	124

#	Article	IF	CITATIONS
596	Estimation of Aspect Ratio of Cellulose Nanocrystals by Viscosity Measurement: Influence of Aspect Ratio Distribution and Ionic Strength. Polymers, 2019, 11, 781.	2.0	14
597	Structure, Rheological Behavior, and <i>in Situ</i> Local Flow Fields of Cellulose Nanocrystal Dispersions during Cross-Flow Ultrafiltration. ACS Sustainable Chemistry and Engineering, 2019, 7, 10679-10689.	3.2	9
598	An overview of biopolymer nanostructures for encapsulation of food ingredients. , 2019, , 1-35.		10
599	Nanostructures of cellulose for encapsulation of food ingredients. , 2019, , 493-519.		5
600	Tailoring Rheological Properties of Thermoresponsive Hydrogels through Block Copolymer Adsorption to Cellulose Nanocrystals. Biomacromolecules, 2019, 20, 2545-2556.	2.6	27
601	Structural characterization of carboxyl cellulose nanofibers extracted from underutilized sources. Science China Technological Sciences, 2019, 62, 971-981.	2.0	18
602	General scenarios of cellulose and its use in the biomedical field. Materials Today Chemistry, 2019, 13, 59-78.	1.7	89
603	Extraction and characterization of nanocellulose crystals from cotton gin motes and cotton gin waste. Cellulose, 2019, 26, 5959-5979.	2.4	84
604	Microstructure of Thermoplastic Composites Reinforced with Wool and Wood. Applied Mechanics and Materials, 0, 890, 98-112.	0.2	4
605	Modifications of microcrystalline cellulose (MCC), nanofibrillated cellulose (NFC), and nanocrystalline cellulose (NCC) for antimicrobial and wound healing applications. E-Polymers, 2019, 19, 103-119.	1.3	85
606	Cellulose Nanocrystals: Particles and Polymer Nanocomposites. , 2019, , 395-434.		2
607	Rapid Determination of the Distribution of Cellulose Nanomaterial Aggregates in Composites Enabled by Multi-Channel Spectral Confocal Microscopy. Microscopy and Microanalysis, 2019, 25, 682-689.	0.2	13
608	Structure evolution mechanism of highly ordered graphite during carbonization of cellulose nanocrystals. Carbon, 2019, 150, 142-152.	5.4	69
609	Cellulose Nanocrystals: Production, Functionalization and Advanced Applications. Reviews on Advanced Materials Science, 2019, 58, 1-16.	1.4	59
610	Evaluation of different methods for extraction of nanocellulose from yerba mate residues. Carbohydrate Polymers, 2019, 218, 78-86.	5.1	57
611	Effects of Sodium Montmorillonite on the Preparation and Properties of Cellulose Aerogels. Polymers, 2019, 11, 415.	2.0	19
612	Lignocellulose-Based Nanoparticles and Nanocomposites: Preparation, Properties, and Applications. , 2019, , 41-69.		11
613	Superabsorbent polymers: A review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and â€~smart' derivatives. European Polymer Journal, 2019, 117, 165-178.	2.6	168

#	Article	IF	CITATIONS
614	Preparation of spherical nanocellulose from waste paper by aqueous NaOH/thiourea. Cellulose, 2019, 26, 5177-5185.	2.4	65
615	Relationship between interface chemistry and reinforcement in polybutadiene/cellulose nanocrystal nanocomposites. Composites Science and Technology, 2019, 177, 103-110.	3.8	14
616	All-Aqueous SI-ARGET ATRP from Cellulose Nanofibrils Using Hydrophilic and Hydrophobic Monomers. Biomacromolecules, 2019, 20, 1937-1943.	2.6	29
617	Preparation of different polymorphs of cellulose from different acid hydrolysis medium. International Journal of Biological Macromolecules, 2019, 130, 969-976.	3.6	72
618	Nanocelluloses: Natural-Based Materials for Fiber-Reinforced Cement Composites. A Critical Review. Polymers, 2019, 11, 518.	2.0	82
619	Algae as a Source of Microcrystalline Cellulose. , 2019, , 331-350.		13
620	Freeze–Thaw Gelation of Cellulose Nanocrystals. ACS Macro Letters, 2019, 8, 486-491.	2.3	57
622	Bio-Based Polymers with Antimicrobial Properties towards Sustainable Development. Materials, 2019, 12, 641.	1.3	123
623	Novel Nanoscaled Materials from Lignocellulosic Sources: Potential Applications in the Agricultural Sector. , 2019, , 2657-2679.		3
624	Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A Sustainable World, 2019, , .	0.3	5
625	Macroporous hybrid Pickering foams based on carbon nanotubes and cellulose nanocrystals. Journal of Colloid and Interface Science, 2019, 544, 78-87.	5.0	30
626	Cellulose nanocrystalâ€based poly(butylene adipateâ€coâ€terephthalate) nanocomposites covered with antimicrobial silver thin films. Polymer Engineering and Science, 2019, 59, E356.	1.5	31
627	Biomass-Derived Nanomaterials. Environmental Chemistry for A Sustainable World, 2019, , 243-270.	0.3	2
628	A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: Surface functionalization, biomass treatment, combatting cancer and other medical uses. Applied Catalysis B: Environmental, 2019, 248, 309-319.	10.8	99
629	Properties of microcrystalline cellulose prepared from oil palm empty fruit bunch at different sulfuric acid concentration and hydrolysis temperature. IOP Conference Series: Materials Science and Engineering, 2019, 702, 012035.	0.3	0
630	Structure and properties of high quality natural cellulose nano fibrils from a novel material Ficus natalensis barkcloth. Journal of Industrial Textiles, 2021, 51, 664-680.	1.1	17
631	Cellulose nanocrystals decorated with gold nanoparticles immobilizing GOx enzyme for non-invasive biosensing of human salivary glucose. Analytical Methods, 2019, 11, 6073-6083.	1.3	24
632	Characterization of Agricultural and Food Processing Residues for Potential Rubber Filler Applications. Journal of Composites Science, 2019, 3, 102.	1.4	13

#	Article	IF	CITATIONS
633	Preparation and Applications of the Cellulose Nanocrystal. International Journal of Polymer Science, 2019, 2019, 1-10.	1.2	31
634	A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. International Journal of Biological Macromolecules, 2019, 121, 1314-1328.	3.6	120
635	Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohydrate Polymers, 2019, 208, 314-322.	5.1	54
636	Chitosan-based nanocomposite matrices: Development and characterization. International Journal of Biological Macromolecules, 2019, 123, 189-200.	3.6	25
637	Optimization of a green process for the extraction of nanofibril from windmill palm fiber using response surface methodology (RSM). Materials Research Express, 2019, 6, 025037.	0.8	2
638	Super Gas Barrier and Fire Resistance of Nanoplatelet/Nanofibril Multilayer Thin Films. Advanced Materials Interfaces, 2019, 6, 1801424.	1.9	44
639	A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. International Journal of Biological Macromolecules, 2019, 124, 591-626.	3.6	51
640	Cellulose nanocrystals from rice and oat husks and their application in aerogels for food packaging. International Journal of Biological Macromolecules, 2019, 124, 175-184.	3.6	97
641	Cellulose-Based Hydrogel for Industrial Applications. Polymers and Polymeric Composites, 2019, , 909-949.	0.6	2
642	Threeâ€dimensional printing of poly(lactic acid) bioâ€based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance. Polymers for Advanced Technologies, 2019, 30, 910-922.	1.6	111
643	Adsorption versus grafting of poly(N-Isopropylacrylamide) in aqueous conditions on the surface of cellulose nanocrystals. Carbohydrate Polymers, 2019, 210, 100-109.	5.1	26
644	Preparation and properties of cellulose/Thespesia lampas microfiber composite films. International Journal of Biological Macromolecules, 2019, 127, 153-158.	3.6	15
645	Polysaccharides for tissue engineering: Current landscape and future prospects. Carbohydrate Polymers, 2019, 205, 601-625.	5.1	104
646	Emerging Cellulose-Based Nanomaterials and Nanocomposites. , 2019, , 307-351.		16
647	Green synthesis of cellulose nanofibers using immobilized cellulase. Carbohydrate Polymers, 2019, 205, 255-260.	5.1	67
648	Adsorption Behavior of Chromium(VI) onto Regenerated Cellulose Membrane. Industrial & Engineering Chemistry Research, 2019, 58, 720-728.	1.8	38
649	A novel colorimetric indicator based on agar incorporated with Arnebia euchroma root extracts for monitoring fish freshness. Food Hydrocolloids, 2019, 90, 198-205.	5.6	186
650	Development of carrageenan modified with nanocellulose-based materials in removing of Cu2+, Pb2+, Ca2+, Mg2+, and Fe2+. International Journal of Environmental Science and Technology, 2019, 16, 5569-5576.	1.8	17

#	Article	IF	CITATIONS
651	Accelerated testing methodology for long-term life prediction of cellulose-based polymeric composite materials. , 2019, , 149-171.		2
652	Flexible cellulose nanofibrils as novel pickering stabilizers: The emulsifying property and packing behavior. Food Hydrocolloids, 2019, 88, 180-189.	5.6	101
653	Interfacial compatible poly(ethylene glycol) chains modified cellulose nanosphere as bifunctional reinforcements in green polylatic acid for food packagings. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 583-593.	2.7	28
654	An overview on properties and applications of poly(butylene adipateâ€ <i>co</i> â€ŧerephthalate)–PBAT based composites. Polymer Engineering and Science, 2019, 59, E7.	1.5	257
655	PHBV/CNC bionanocomposites processed by extrusion: Structural characterization and properties. Polymer Composites, 2019, 40, E275.	2.3	16
656	Wellâ€dispersed polyurethane/cellulose nanocrystal nanocomposites synthesized by a solventâ€free procedure in bulk. Polymer Composites, 2019, 40, E456.	2.3	21
657	Extraction of Cellulose Nanocrystals with Structure I and II and Their Applications for Reduction of Graphene Oxide and Nanocomposite Elaboration. Waste and Biomass Valorization, 2019, 10, 1913-1927.	1.8	35
658	Influence of morphology and dispersion stability of CNC modified with ethylene oxide derivatives on mechanical properties of PLAâ€based nanocomposites. Polymer Composites, 2019, 40, E399.	2.3	13
659	Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials. Critical Reviews in Food Science and Nutrition, 2020, 60, 435-460.	5.4	135
660	Improved properties of keratin-based bioplastic film blended with microcrystalline cellulose: A comparative analysis. Journal of King Saud University - Science, 2020, 32, 853-857.	1.6	57
661	Lignocellulosic Nanofiber from Eucalyptus Waste by a Green Process and Their Influence in Bionanocomposites. Waste and Biomass Valorization, 2020, 11, 3761-3774.	1.8	17
662	Overview of Nanocellulose in Food Packaging. Recent Patents on Food, Nutrition & Agriculture, 2020, 11, 154-167.	0.5	20
663	Preparation and mechanical properties of green epoxy nanocomposites with cellulose nanocrystals. Polymer Engineering and Science, 2020, 60, 439-445.	1.5	9
664	Nanocellulose for oil and gas field drilling and cementing applications. Journal of Petroleum Science and Engineering, 2020, 184, 106292.	2.1	38
665	Waste paper: An underutilized but promising source for nanocellulose mining. Waste Management, 2020, 102, 281-303.	3.7	103
666	Dual responsive wool fabric by cellulose nanowhisker reinforced shape memory polyurethane. Journal of Applied Polymer Science, 2020, 137, 48674.	1.3	19
667	Rheology of polymer nanocomposites. , 2020, , 73-96.		5
668	Highly flame retardant zeolitic imidazole framework-8@cellulose composite aerogels as absorption materials for organic pollutants. Cellulose, 2020, 27, 2237-2251.	2.4	55

#	Article	IF	CITATIONS
669	Tuning of polyurethane foam mechanical and thermal properties using ball-milled cellulose. Carbohydrate Polymers, 2020, 231, 115772.	5.1	53
670	Synthesis, 99mTc-radiolabeling, and biodistribution of new cellulose nanocrystals from Dorema kopetdaghens. International Journal of Biological Macromolecules, 2020, 146, 299-310.	3.6	15
671	Coaxial Spinning of All-Cellulose Systems for Enhanced Toughness: Filaments of Oxidized Nanofibrils Sheathed in Cellulose II Regenerated from a Protic Ionic Liquid. Biomacromolecules, 2020, 21, 878-891.	2.6	25
672	From Douglas fir to renewable H ₂ -enriched syngas <i>via ex situ</i> catalytic pyrolysis over metal nanoparticles–nanocellulose derived carbon catalysts. Sustainable Energy and Fuels, 2020, 4, 1084-1087.	2.5	4
673	Interfaces in biopolymer nanocomposites: Their role in the gas barrier properties and kinetics of residual solvent desorption. Applied Surface Science, 2020, 507, 145066.	3.1	9
674	Surface modification effects on the thermal stability of cellulose nanostructures obtained from lignocellulosic residues. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1263-1277.	2.0	9
675	On the potential of lignin-containing cellulose nanofibrils (LCNFs): a review on properties and applications. Cellulose, 2020, 27, 1853-1877.	2.4	99
676	Polymeric Nanoparticles. , 2020, , 303-324.		23
677	On the use of microwave pretreatment to assist zero-waste chemical-free production process of nanofibrillated cellulose from lime residue. Carbohydrate Polymers, 2020, 230, 115630.	5.1	23
679	Biopolymer-clay nanocomposites as novel and ecofriendly adsorbents for environmental remediation. Applied Clay Science, 2020, 198, 105838.	2.6	67
680	Potential of polylactide based nanocomposites-nanopolysaccharide filler for reinforcement purpose: a comprehensive review. Journal of Polymer Research, 2020, 27, 1.	1.2	23
681	Plant celluloses, hemicelluloses, lignins, and volatile oils for the synthesis of nanoparticles and nanostructured materials. Nanoscale, 2020, 12, 22845-22890.	2.8	108
682	Organocatalyzed ring opening polymerization of lactide from the surface of cellulose nanofibrils. Carbohydrate Polymers, 2020, 250, 116974.	5.1	14
683	Smart polyester fabric with comfort regulation by temperature and moisture responsive shape memory nanocomposite treatment. Journal of Industrial Textiles, 2022, 51, 7920S-7941S.	1.1	6
684	Nanocellulose/Starch Biopolymer Nanocomposites: Processing, Manufacturing, and Applications. , 2020, , 65-88.		23
685	High mechanical strength gelatin composite hydrogels reinforced by cellulose nanofibrils with unique beads-on-a-string morphology. International Journal of Biological Macromolecules, 2020, 164, 1776-1784.	3.6	31
686	Evaluation of cellulose based patches for oral mucosal impairment. Journal of Drug Delivery Science and Technology, 2020, 58, 101839.	1.4	4
687	Nanocellulose- based biosensor for colorimetric detection of glucose. Sensing and Bio-Sensing Research, 2020, 29, 100368.	2.2	22

	CITATIO	N REPORT	
#	Article	IF	Citations
688	Cellulose nanocrystal research; A personal perspective. Carbohydrate Polymers, 2020, 250, 116888.	5.1	16
689	Isolation and Characterization of Nanocrystalline Cellulose from Ramie Fibers via Phosphoric Acid Hydrolysis. Journal of Natural Fibers, 2022, 19, 2744-2755.	1.7	18
690	Modelling of water absorption kinetics and biocompatibility study of synthesized cellulose nanofiber-assisted starch-graft-poly(acrylic acid) hydrogel nanocomposites. Cellulose, 2020, 27, 9927-9945.	2.4	31
691	Biofilms of cellulose and hydroxyapatite composites: Alternative synthesis process. Journal of Bioactive and Compatible Polymers, 2020, 35, 469-478.	0.8	4
692	Bioprocess Engineering for Bioremediation. Handbook of Environmental Chemistry, 2020, , .	0.2	1
693	Surface and Interface Engineering for Nanocellulosic Advanced Materials. Advanced Materials, 2021, 33, e2002264.	11.1	239
694	Nanocellulose Hybrids with Metal Oxides Nanoparticles for Biomedical Applications. Molecules, 2020, 25, 4045.	1.7	48
696	Decoration of cellulose nanocrystals with iron oxide nanoparticles. Materials Research Express, 2020, 7, 055003.	0.8	6
697	Reinforcement of Refined and Semi-Refined Carrageenan Film with Nanocellulose. Polymers, 2020, 12, 1145.	2.0	29
698	Obtaining cellulose nanocrystals from pineapple crown fibers by free-chlorite hydrolysis with sulfuric acid: physical, chemical and structural characterization. Cellulose, 2020, 27, 5745-5756.	2.4	48
699	Effects of nanocellulose formulation on physicomechanical properties of Aquazol–nanocellulose composites. Cellulose, 2020, 27, 5757-5769.	2.4	8
700	Mechanical and Self-Healing Behavior of Matrix-Free Polymer Nanocomposites Constructed via Grafted Graphene Nanosheets. Langmuir, 2020, 36, 7427-7438.	1.6	16
701	Review on Polysaccharides Used in Coatings for Food Packaging Papers. Coatings, 2020, 10, 566.	1.2	104
702	Structural and Ecofriendly Holocellulose Materials from Wood: Microscale Fibers and Nanoscale Fibrils. Advanced Materials, 2021, 33, e2001118.	11.1	52
703	Starch-based nanocomposites with cellulose nanofibers obtained from chemical and mechanical treatments. International Journal of Biological Macromolecules, 2020, 161, 132-146.	3.6	34
704	A Review on Thermoplastic or Thermosetting Polymeric Matrices Used in Polymeric Composites Manufactured with Banana Fibers from the Pseudostem. Applied Sciences (Switzerland), 2020, 10, 3023.	1.3	4
705	Green Nanomaterials. Advanced Structured Materials, 2020, , .	0.3	5
706	Nanocelluloses from phormium (Phormium tenax) fibers. Cellulose, 2020, 27, 4975-4990.	2.4	12

#	ARTICLE Isolation of Cellulose from Wheat Straw Using Alkaline Hydrogen Peroxide and Acidified Sodium	IF	CITATIONS
707	Chlorite Treatments: Comparison of Yield and Properties. Advances in Polymer Technology, 2020, 2020, 1-7.	0.8	31
708	Cellulose as a Delivery System of Raspberry Juice Volatiles and Their Stability. Molecules, 2020, 25, 2624.	1.7	11
709	Sustainable Water Responsive Mechanically Adaptive and Self-Healable Polymer Composites Derived from Biomass. Processes, 2020, 8, 726.	1.3	4
710	Dual Antioxidant Properties and Organic Radical Stabilization in Cellulose Nanocomposite Films Functionalized by In Situ Polymerization of Coniferyl Alcohol. Biomacromolecules, 2020, 21, 3163-3175.	2.6	19
711	Recent Developments in Food-Based Bioplastics Production. Handbook of Environmental Chemistry, 2020, , 107-127.	0.2	1
712	Fast-Growing Bacterial Cellulose with Outstanding Mechanical Properties via Cross-Linking by Multivalent Ions. Materials, 2020, 13, 2838.	1.3	7
713	Development, processing and applications of bio-sourced cellulose nanocrystal composites. Progress in Polymer Science, 2020, 103, 101221.	11.8	138
714	Patents involving nanocellulose: Analysis of their evolution since 2010. Carbohydrate Polymers, 2020, 237, 116039.	5.1	83
715	Development of electrically conductive nanocomposites from cellulose nanowhiskers, polypyrrole and silver nanoparticles assisted with Nickel(III) oxide nanoparticles. Reactive and Functional Polymers, 2020, 149, 104533.	2.0	51
716	Interpenetrating Polymer Network: Biomedical Applications. , 2020, , .		5
717	Pineapple Leaf Fibers. Green Energy and Technology, 2020, , .	0.4	17
718	Screening of Nanocellulose from Different Biomass Resources and Its Integration for Hydrophobic Transparent Nanopaper. Molecules, 2020, 25, 227.	1.7	38
719	Characterization studies of biopolymeric matrix and cellulose fibres based composites related to functionalized fibre-matrix interface. , 2020, , 29-93.		43
720	Impact of microfluidization on the microstructure and functional properties of pea hull fibre. Food Hydrocolloids, 2020, 103, 105660.	5.6	17
721	Analysis on cellulose extraction from hybrid biomass for improved crystallinity. Journal of Molecular Structure, 2020, 1217, 128350.	1.8	8
722	Specimen preparation optimization for size and morphology characterization of nanocellulose by TEM. Cellulose, 2020, 27, 5435-5444.	2.4	20
723	A New Strategy to Produce Hemp Fibers through a Waterglass-Based Ecofriendly Process. Materials, 2020, 13, 1844.	1.3	5
724	Natural Fibers: Applications. , 0, , .		14

Сітаті	ion Report	
	IF	CITATIONS
through the incorporation of Chemical Technology	1.6	20
ickaging: A review. Trends in	7.8	173

725	Enhancing the desalination performance of forward osmosis membrane through the incorporation of green nanocrystalline cellulose and halloysite dual nanofillers. Journal of Chemical Technology and Biotechnology, 2020, 95, 2359-2370.	1.6	20
726	Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends in Food Science and Technology, 2020, 100, 210-222.	7.8	173
727	A new approach for the use of anionic surfactants: nanocellulose modification and development of biodegradable nanocomposites. Cellulose, 2020, 27, 5707-5728.	2.4	20
728	Effect of nanofibers on the structure and properties of biocomposites. , 2020, , 321-357.		8
729	Tensile and morphological properties of nanocrystalline cellulose and nanofibrillated cellulose reinforced <scp>PLA</scp> bionanocomposites: A review. Polymer Engineering and Science, 2021, 61, 22-38.	1.5	27
730	Electrochemical applications of nanocellulose. , 2021, , 313-335.		2
731	Functional properties of starch-chitosan blend bionanocomposite films for food packaging: the influence of amylose-amylopectin ratios. Journal of Food Science and Technology, 2021, 58, 3368-3378.	1.4	13
732	Characterization of cellulose nano/microfibril reinforced polypropylene composites processed via solidâ€state shear pulverization. Polymer Composites, 2021, 42, 1371-1382.	2.3	10
733	Sonocatalytic degradation of Congo Red using biomass-based cellulose/TiO2 composite. Materials Today: Proceedings, 2021, 42, 50-55.	0.9	7
734	Osteogenic differentiation of mesenchymal stem cells on the bimodal polymer polyurethane/polyacrylonitrile containing cellulose phosphate nanowhisker. Human Cell, 2021, 34, 310-324.	1.2	7
735	Substitution of petroleum-based polymeric materials used in the electrospinning process with nanocellulose: A review and future outlook. Chemosphere, 2021, 269, 128710.	4.2	19
736	Food-Grade Colloidal Systems for the Delivery of Essential Oils. Food Reviews International, 2021, 37, 1-45.	4.3	56
737	Refractive Index Change of Cellulose Nanocrystal-Based Electroactive Polyurethane by an Electric Field. Frontiers in Bioengineering and Biotechnology, 2021, 9, 606008.	2.0	1
738	Various Types of Natural Fibers Reinforced Poly-Lactic Acid Composites. Composites Science and Technology, 2021, , 165-180.	0.4	0
739	Poly(butylene adipate-co-terephthalate) Polyester Synthesis Process and Product Development. Polymer Science - Series C, 2021, 63, 102-111.	0.8	11
740	Sustainable Product Packaging Using Vegetables Fibres and Its Composite. Composites Science and Technology, 2021, , 275-302.	0.4	0
741	Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers, 2021, 13, 231.	2.0	192
742	Starch-based nanomaterials in drug delivery applications. , 2021, , 31-56.		0

#

ARTICLE

#	Article	IF	CITATIONS
743	Starch. , 2021, , 75-100.		1
744	Nanocellulose for Sustainable Future Applications. , 2021, , 421-432.		Ο
745	Nanoscience and nanotechnology regarding food packaging and nanomaterials to extending the postharvest life and the shelf life of foods. , 2021, , 313-384.		2
746	Influence of cellulose II polymorph nanowhiskers on bio-based nanocomposite film from Jatropha oil polyurethane. Materials Research Express, 2021, 8, 015003.	0.8	13
747	Synthesis of biopolymer-based metal nanoparticles. , 2021, , 255-316.		11
748	The effects of reinforced cellulose nanocrystals from sugarcane bagasse fiber on the hardness of glass ionomer cements. Scientific Dental Journal, 2021, 5, 33.	0.2	2
749	Preparation and characterization of Pd supported on 5-carboxyoxindole functionalized cell@Fe3O4 nanoparticles as a novel magnetic catalyst for the Heck reaction. Nanoscale Advances, 2021, 3, 1917-1926.	2.2	9
750	Effect of phosphate treatment on interfacial properties of poplar fiber/high-density polyethylene composites. Composites and Advanced Materials, 2021, 30, 263498332110246.	0.5	0
751	A green technology for cellulosic nanofibers production. , 2021, , 137-152.		0
752	Polymer Nanocomposite Matrix-Based Nanoproducts. , 2021, , 1-14.		0
753	Nanocellulose-Based Materials for Heavy Metal Removal from Wastewater. Environmental Chemistry for A Sustainable World, 2021, , 1-34.	0.3	0
754	Tuning mechanical properties of seaweeds for hard capsules: A step forward for a sustainable drug delivery medium. Food Hydrocolloids for Health, 2021, 1, 100023.	1.6	11
755	Composition of plant biomass and its impact on pretreatment. , 2021, , 71-85.		7
756	Mechanical Properties and Water Sorption of Chemically Modified Natural Fiber-Based Composites. , 2021, , 159-167.		1
757	Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: a comprehensive review on chemical treatments. Cellulose, 2021, 28, 2675-2695.	2.4	95
758	A Review on the Life Cycle Assessment of Cellulose: From Properties to the Potential of Making It a Low Carbon Material. Materials, 2021, 14, 714.	1.3	45
759	Polyimides with low coefficient of thermal expansion derived from diamines containing benzimidazole and amide: Synthesis, properties, and the Nâ€substitution effect. Journal of Polymer Science, 2021, 59, 510-518.	2.0	16
760	Comparison of Effects of Sodium Chloride and Potassium Chloride on Spray Drying and Redispersion of Cellulose Nanofibrils Suspension. Nanomaterials, 2021, 11, 439.	1.9	14

#	Article	IF	CITATIONS
761	2D Correlation Spectroscopy (2DCoS) Analysis of Temperature-Dependent FTIR-ATR Spectra in Branched Polyethyleneimine/TEMPO-Oxidized Cellulose Nano-Fiber Xerogels. Polymers, 2021, 13, 528.	2.0	23
762	Extraction of Cellulose Nanocrystal from Multilayer Packaging Residues Composed of a Mixture of Eucalyptus and Pine Fibers. Waste and Biomass Valorization, 2021, 12, 5763-5777.	1.8	9
763	A Combined Theoretical and Experimental Study of the Polymer Matrix-Mediated Stress Transfer in a Cellulose Nanocomposite. Macromolecules, 2021, 54, 3507-3516.	2.2	13
764	Development and characterization of cellulose nanofibre reinforced Acacia nilotica gum nanocomposite. Industrial Crops and Products, 2021, 161, 113180.	2.5	9
765	Recent Developments in Nanocellulose-Based Aerogels in Thermal Applications: A Review. ACS Nano, 2021, 15, 3849-3874.	7.3	122
766	Impact of cellulose nanocrystals reinforcement on molecular dynamics and dielectric properties of <scp>PCL</scp> â€based polyurethane. Polymer Composites, 2021, 42, 2737-2750.	2.3	6
767	An Overview of the Antimicrobial Properties of Lignocellulosic Materials. Molecules, 2021, 26, 1749.	1.7	27
768	PREPARATION AND ANALYSIS OF CELLULOSE PFA COMPOSITES: A CRITICAL REVIEW. Cellulose Chemistry and Technology, 2021, 55, 299-309.	0.5	1
769	Active biopackaging produced from byâ€products and waste from food and marine industries. FEBS Open Bio, 2021, 11, 984-998.	1.0	19
770	Spraycoating of Nanocellulose Fibrilated (CNF) onto Glass Fiber and Carbon Fiber Fabrics and its Role as Hierarchical Reinforcement on GFRP and CFRP composites. Composite Interfaces, 2022, 29, 121-140.	1.3	3
771	Application of Nanocellulose as particle stabilizer in food Pickering emulsion: Scope, Merits and challenges. Trends in Food Science and Technology, 2021, 110, 573-583.	7.8	82
772	Evaluation of the effect of isocyanate modification on the thermal and rheological properties of poly(ε-caprolactone)/cellulose composites. Polymer Bulletin, 2022, 79, 4941-4955.	1.7	15
774	Viscoelasticity and Solution Stability of Cyanoethylcellulose with Different Molecular Weights in Aqueous Solution. Molecules, 2021, 26, 3201.	1.7	2
775	Some Properties of Polycaprolactone Composites with Cellulose Nanocrystals. Russian Journal of General Chemistry, 2021, 91, 864-869.	0.3	2
776	Flaxseed gum/agar blends and nanocomposites: preparation and physical properties. Iranian Polymer Journal (English Edition), 2021, 30, 821-830.	1.3	7
777	Breakdown and buildup mechanisms of cellulose nanocrystal suspensions under shear and upon relaxation probed by SAXS and SALS. Carbohydrate Polymers, 2021, 260, 117751.	5.1	31
778	Isolation and utilization of tobacco-based cellulose nanofiber (TCNF) for high performance reconstructed tobacco sheet (RTS). Carbohydrate Polymers, 2021, 261, 117865.	5.1	15
779	Nanomaterials for 3D Printing of Polymers via Stereolithography: Concept, Technologies, and Applications. Macromolecular Materials and Engineering, 2021, 306, 2100345.	1.7	21

#	Article	IF	CITATIONS
780	Preparation of cellulose nanospheres via combining ZnCl2·3H2O pretreatment and p-toluenesulfonic hydrolysis as a two-step method. International Journal of Biological Macromolecules, 2021, 181, 621-630.	3.6	8
781	SUSTAINABLE CELLULOSE NANOCRYSTAL REINFORCED CHITOSAN/HPMC BIO-NANOCOMPOSITE FILMS CONTAINING MENTHOL OIL AS PACKAGING MATERIALS. Cellulose Chemistry and Technology, 2021, 55, 649-658.	0.5	3
782	Effect of Tannic Acid and Cellulose Nanocrystals on Antioxidant and Antimicrobial Properties of Gelatin Films. ACS Sustainable Chemistry and Engineering, 2021, 9, 8539-8549.	3.2	57
783	Luminescent nanohybrid of ZnO quantum dot and cellulose nanocrystal as anti-counterfeiting ink. Carbohydrate Polymers, 2021, 262, 117864.	5.1	21
784	Present Status and Future Prospects of Jute in Nanotechnology: A Review. Chemical Record, 2021, 21, 1631-1665.	2.9	97
785	Advanced natural fibre-based fully biodegradable and renewable composites and nanocomposites: a comprehensive review. International Wood Products Journal, 2021, 12, 178-193.	0.6	7
786	A review of nanocellulose as a new material towards environmental sustainability. Science of the Total Environment, 2021, 775, 145871.	3.9	175
788	The role of fiber-matrix compatibility in vacuum processed natural fiber/epoxy biocomposites. Cellulose, 2021, 28, 7845-7857.	2.4	4
789	Evaluation of the Mechanical and Biocidal Properties of Lapacho from Tabebuia Plant as a Biocomposite Material. Materials, 2021, 14, 4241.	1.3	4
790	Formation of hairy cellulose nanocrystals by cryogrinding. Cellulose, 2021, 28, 8387-8403.	2.4	12
791	Orientation of Cellulose Nanocrystals Controlled in Perpendicular Directions by Combined Shear Flow and Ultrasound Waves Studied by Small-Angle X-ray Scattering. Journal of Physical Chemistry C, 2021, 125, 18409-18419.	1.5	7
792	The Use of Nanocellulose in Edible Coatings for the Preservation of Perishable Fruits and Vegetables. Coatings, 2021, 11, 990.	1.2	25
794	Binary Mixtures of Colloidal Cellulose Nanocrystals and Laponite for Preparation of Functional Nanocomposites. ACS Applied Nano Materials, 2021, 4, 8586-8599.	2.4	5
795	Conversion of Lignocellulose for Bioethanol Production, Applied in Bio-Polyethylene Terephthalate. Polymers, 2021, 13, 2886.	2.0	25
796	Elaboration and properties of nanofibrillated cellulose composites with polypyrrole nanotubes or their carbonized analogs. Synthetic Metals, 2021, 278, 116806.	2.1	14
797	Influence of nanofillers on biodegradable composites: A comprehensive review. Polymer Composites, 2021, 42, 5691-5711.	2.3	105
798	Microalgal nanocellulose – opportunities for a circular bioeconomy. Trends in Plant Science, 2021, 26, 924-939.	4.3	25
799	Recycled Cardboard Containers as a Low Energy Source for Cellulose Nanofibrils and Their Use in Poly(<scp>l</scp> -lactide) Nanocomposites. ACS Sustainable Chemistry and Engineering, 2021, 9, 13460-13470	3.2	14

#	Article	IF	CITATIONS
800	Colloidal Stability of Cellulose Suspensions. , 0, , .		0
801	Grafting of poly(εâ€caprolactone) from Abaca cellulose fibers via <scp>ringâ€opening</scp> polymerization resulting in facile oneâ€pot biocomposites. SPE Polymers, 2021, 2, 297-310.	1.4	5
802	Novel Bio-Based Materials and Applications in Antimicrobial Food Packaging: Recent Advances and Future Trends. International Journal of Molecular Sciences, 2021, 22, 9663.	1.8	36
803	Current technologies to control fungal diseases in postharvest papaya (Carica papaya L.). Biocatalysis and Agricultural Biotechnology, 2021, 36, 102128.	1.5	9
804	Glycerol-based polymer adhesives reinforced with cellulose nanocrystals. International Journal of Adhesion and Adhesives, 2021, 110, 102935.	1.4	14
805	Macro-microporous zeolitic imidazole framework-8/cellulose aerogel for semi-automated pipette tip solid phase extraction of fluoroquinolones in water. Analytica Chimica Acta, 2021, 1184, 338984.	2.6	17
806	Cellulose nanocrystals‑silver nanoparticles-reduced graphene oxide based hybrid PVA nanocomposites and its antimicrobial properties. International Journal of Biological Macromolecules, 2021, 191, 445-456.	3.6	22
807	Effect of tetraethoxysilane on the dimensional stability and static bending properties of nanocellulose, tannin, and activated carbon mixed with epoxy resin. Journal of Materials Research and Technology, 2021, 15, 416-426.	2.6	1
808	Cellulose bionanocomposites for sustainable planet and people: A global snapshot of preparation, properties, and applications. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100065.	1.6	15
809	Nanocellulose: A mini-review on types and use in drug delivery systems. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100031.	1.6	45
810	Modulating the controlled release of hydroxychloroquine mobilized on pectin films through film-forming pH and incorporation of nanocellulose. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100140.	1.6	7
811	Occurrence, distribution, and structure of natural polysaccharides. , 2022, , 1-27.		6
812	Silver Nanoparticles with Natural Polymers. Engineering Materials, 2021, , 139-157.	0.3	4
813	Processing and Properties of Starch-Based Thermoplastic Matrix for Green Composites. Materials Horizons, 2021, , 63-133.	0.3	0
814	Polysaccharides and Applications in Regenerative Medicine. , 2021, , 1-33.		0
815	Thermoplastic natural fiber based composites. , 2021, , 113-139.		2
816	Recent Developments of Polymer Bionanocomposites and Bionanoceramics. , 2021, , 667-688.		0
817	Recent advances in nanocellulose processing, functionalization and applications: a review. Materials Advances, 2021, 2, 1872-1895.	2.6	108

#	Article	IF	Citations
818	Fundamentals of cellulose lightweight materials: bio-based assemblies with tailored properties. Green Chemistry, 2021, 23, 3542-3568.	4.6	57
821	Insulation Materials Made with Vegetable Fibres. , 2013, , 411-455.		1
822	Extraction of Cellulose Nanofibers and Their Eco-friendly Polymer Composites. , 2019, , 653-691.		25
824	Cellulose from Lignocellulosic Waste. , 2015, , 475-511.		16
825	Cementitious Composites Reinforced with Natural Fibres. Research for Development, 2017, , 197-331.	0.2	4
826	Cellulose Nanostructures Extracted from Pineapple Fibres. Green Energy and Technology, 2020, , 185-234.	0.4	6
827	Bionanocomposites in food industry. , 2020, , 421-456.		3
828	General introduction on sustainable nanocellulose and nanohydrogel matrices. , 2020, , 1-31.		5
829	Cellulose and hydrogel matrices for environmental applications. , 2020, , 255-274.		13
830	Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites. Carbohydrate Polymers, 2020, 234, 115899.	5.1	41
831	Life-cycle and environmental impact assessments on processing of plant fibres and its bio-composites: A critical review. Journal of Industrial Textiles, 2022, 51, 5518S-5542S.	1.1	159
832	Evaluating the Composition and Processing Potential of Novel Sources of Brazilian Biomass for Sustainable Biorenewables Production. , 2015, , 21-63.		1
833	Nanocrystalline cellulose from agricultural waste: an overview. International Journal of Nanoparticles, 2018, 10, 284.	0.1	2
834	A Review of Physio-Biochemical Properties of Natural Fibers and Their Application in Soil Reinforcement. Advances in Civil Engineering Materials, 2017, 6, 323-359.	0.2	25
835	In Situ Green Synthesis and Functionalization of Reduced Graphene Oxide on Cellulose Fibers by Cannabis sativa L. Extract. Materials Performance and Characterization, 2019, 8, 20180149.	0.2	3
836	Cellulase Production Potentials of the Microbial Profile of Some Sugarcane Bagasse Dumping Sites in Ilorin, Nigeria. Notulae Scientia Biologicae, 2013, 5, 445-449.	0.1	1
837	A review of cellulose nanocrystals and nanocomposites. Tappi Journal, 2011, 10, 9-16.	0.2	70
838	Peculiarities of cellulose nanoparticles. Tappi Journal, 2014, 13, 45-51.	0.2	26

#	Article	IF	CITATIONS
839	Functionalization of wood/plant-based natural cellulose fibers with nanomaterials: a review. Tappi Journal, 2018, 17, 92-111.	0.2	8
840	Crosslinked Facilitated Transport Membranes Based on Carboxymethylated NFC and Amine-Based Fixed Carriers for Carbon Capture, Utilization, and Storage Applications. Applied Sciences (Switzerland), 2020, 10, 414.	1.3	8
841	Industrial Application of Nanocelluloses in Papermaking: A Review of Challenges, Technical Solutions, and Market Perspectives. Molecules, 2020, 25, 526.	1.7	86
842	Nanomaterials-Based Health Care and Bioanalytical Applications: Trend and Prospects. Journal of Nanomaterials & Molecular Nanotechnology, 2013, 02, .	0.1	4
843	Waterproof and Oil Repellent Treatments of Cotton Fabric. Journal of Textile Science and Technology, 2020, 06, 59-80.	0.2	2
844	The Use of Cellulose Nanofillers in Obtaining Polymer Nanocomposites: Properties, Processing, and Applications, 2016, 07, 257-294.	0.3	25
845	Development and Characterization of Polypropylene/Polyethylene Vinyl Acetate/Micro Cellulose Trays as a Prototype for Chilled Food Packaging Application. Walailak Journal of Science and Technology, 2018, 15, 765-777.	0.5	3
846	PROSPECĂ‡ĂƒO TECNOLÓGICA DOS PROCESSOS DE OBTENĂ‡ĂƒO DA NANOCELULOSE A PARTIR DE INDICADORES TECNOLÓGICOS. , 0, , .		1
847	Effect of pMDI as Coupling Agent on The Properties of Microfibrillated Cellulose-reinforced PBS Nanocomposite. Journal of the Korean Wood Science and Technology, 2014, 42, 483-490.	0.8	3
848	Preparation and Physical Properties of Poly(lactic acid) Bio-Composites using Surface Modified Microfibriled Celluloses. Elastomers and Composites, 2015, 50, 62-67.	0.1	1
849	Effect of the Number of Passes through Grinder on the Pore Characteristics of Nanofibrillated Cellulose Mat. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2013, 45, 35~41-35~41.	0.1	5
850	Paper Properties Improvement by adding Microfibrillated Cellulose-Mineral Composites. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2016, 48, 83-90.	0.1	4
851	Improving Dyeing Properties of Cotton Fabrics to Natural Dyes with Cellulose Nanocrystals (CNCs) [Mejora de las propiedades de teñido de telas de algodón a tintes naturales con nanocristales de celulosa (CNC)]. Journal of Nanotechnology, 2021, 5, 1-8.	0.2	0
852	Cellulose Nanofibers/Polycarbonate Nanocomposite. Materials Science Forum, 0, 1047, 15-19.	0.3	0
853	Polylactic Acid Cellulose Nanocomposite Films Comprised of Wood and Tunicate CNCs Modified with Tannic Acid and Octadecylamine. Polymers, 2021, 13, 3661.	2.0	8
854	Isolation of nanocellulose from lignocellulosic biomass: Synthesis, characterization, modification, and potential applications. Journal of Environmental Chemical Engineering, 2021, 9, 106606.	3.3	35
855	Structure and Mechanical Properties of Thermoplastic Composites Using Microcrystalline Cellulose Nanofibers. Textile Science and Engineering, 2013, 50, 386-392.	0.4	0
856	Surface Modification of Nanofibrillated Cellulose by LbL (Layer-by-Layer) Multilayering and its Effect on the Dewatering Ability of Suspension. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2014, 46, 46-55.	0.1	4

	CITATION RE	PORT	
#	Article	IF	Citations
857	Morphological Characteristics of Weed Seed Fibers. Weed & Turfgrass Science, 2014, 3, 196-205.	0.1	2
858	Chemical and Physical Characteristics of Four Weed Seed Fibers (Hemistepta lyrata, Imperata) Tj ETQq1 1 0.7843 253-261.	314 rgBT / 0.1	Overlock 10 0
859	Physical Properties of Cellulose Acetate Reinforced by Cellulose Nanowhisker. Textile Science and Engineering, 2014, 51, 299-305.	0.4	0
860	Hemp Fibres and Shives, Nano- and Micro-Composites. World Sustainability Series, 2015, , 291-305.	0.3	1
862	Mechanical and Thermal Properties of Hydroxypropyl Cellulose/TEMPO-oxidized Cellulose Nanofibril Composite Films. Journal of the Korean Wood Science and Technology, 2015, 43, 740-745.	0.8	3
863	Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber. Journal of the Korean Wood Science and Technology, 2015, 43, 730-739.	0.8	1
864	Biocomposites: Natural and Synthetic Fibers. , 0, , 585-601.		0
865	Cellulose-Based Biopolymers: Formulation and Delivery Applications. , 0, , 1378-1408.		0
866	Bagasse Sustainable Polymers for Cellulose Hydrogel Sheets Showing Tissue Regeneration. , 2016, , 745-764.		1
868	Cellulose-Based Biopolymers: Formulation and Delivery Applications. , 2017, , 270-300.		0
869	Dissolution of LAS Micronized-residues with Sodium Chlorite. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2018, 50, 5-12.	0.1	2
870	Recent Developments of Polymer Bionanocomposites and Bionanoceramics. , 2019, , 1-22.		0
871	Nanocellulose as Polymer Composite Reinforcement Material. Nanotechnology in the Life Sciences, 2019, , 409-427.	0.4	1
872	Ionic Liquids as Solvents for the Production of Materials from Biomass. , 2019, , 1-22.		Ο
873	Production of Cellulose Nanocrystals from Agricultural Waste, Their Characteristics and Application Areas. Akademik Gıda, 2019, 17, 140-148.	0.5	4
874	Bio-nanocomposite IPN for Biomedical Application. , 2020, , 313-337.		1
875	Flexural Properties of Surface-Modified Sisal Fiber-Reinforced Polyester Resin Composites. Journal of Natural Fibers, 0, , 1-14.	1.7	1
876	Nanocellulose Extraction of Pineapple Leaves for Chitosan-starch Nanocomposites. Journal of Natural Fibers, 2022, 19, 3624-3637.	1.7	6

		CITATION REPORT		
#	Article	I	IF	CITATIONS
877	Effect of Particle Size of Cellulose Nanofibril on the Structure and Property of Polyacryloniti (PAN) Membrane by Electrospinning. Fibers and Polymers, 2020, 21, 119-126.	ile	1.1	5
878	Bionanomaterials from Agricultural Wastes. Advanced Structured Materials, 2020, , 243-26	0.	0.3	3
879	Extraction and Characterization of Nanomaterials from Agrowaste. , 2020, , 841-897.			0
880	Bioengineering. , 2020, , 193-208.			0
881	On the development of a continuous methodology to fractionate microfibriallated cellulose Pulp and Paper Research Journal, 2020, 35, 205-214.	. Nordic	0.3	1
882	Nanocomposites Assembled via Electrostatic Interactions between Cellulose Nanocrystals a Cationic Polymer. Biomacromolecules, 2021, 22, 5087-5096.	ind a	2.6	11
883	Alkaline deep eutectic solvents as novel and effective pretreatment media for hemicellulose dissociation and enzymatic hydrolysis enhancement. International Journal of Biological Macromolecules, 2021, 193, 1610-1616.		3.6	32
884	Comprehensive Review on Silicon-enhanced Green Nanocomposites Towards Sustainable D Silicon, 0, , 1.	evelopment.	1.8	1
885	The Effectivity of One-pot Concentrated Maleic Anhydride Hydrolysis for Betung Bamboo P (Dendrocalamus asper sp). IOP Conference Series: Earth and Environmental Science, 2020,	یاp 572, 012044.	0.2	0
886	Nanocomposite and bio-nanocomposite polymeric materials/membranes development in er medical sector: A review. International Journal of Biological Macromolecules, 2021, 193, 21	nergy and 21-2139.	3.6	57
888	A hybrid bionanocomposite for Pb (II) ion removal from water: synthesis, characterization a adsorption kinetics studies. Polymer Bulletin, 2022, 79, 10675-10706.	nd -	1.7	4
889	Chemical Degradation of Aflatoxins. , 2021, , 233-258.			1
890	Fabrication of transparent paper devices from nanocellulose fiber. Materials Chemistry and 2022, 281, 125707.	Physics,	2.0	13
892	Fly ash as a potential filler for the rubber industry. , 2022, , 763-792.			4
893	Organic antimicrobial nanomaterials and reducing copper use in sustainable plant protection 179-209.	ən. , 2022, ,		1
894	Mechanochemical Transformations of Biomass into Functional Materials. ChemSusChem, 2	022, 15, .	3.6	25
895	Nanocellulose applications in packaging materials. , 2022, , 289-310.			0
896	Nanocellulose: Chemistry, preparation, and applications in the food industry. , 2022, , 155-	177.		0

#	Article	IF	CITATIONS
897	Prospects on utilization of biopolymer materials for ion exchange membranes in fuel cells. Green Chemistry Letters and Reviews, 2022, 15, 253-275.	2.1	9
898	Biomass. , 2022, , 45-94.		1
899	Green polymer nanocomposites based on natural rubber and nanocellulose whiskers from Acacia caesia: Mechanical, thermal, and diffusion properties. Materials Today: Proceedings, 2022, 51, 2444-2449.	0.9	4
900	Antimicrobial Activity of Cellulose Based Materials. Polymers, 2022, 14, 735.	2.0	16
901	Current international research into cellulose as a functional nanomaterial for advanced applications. Journal of Materials Science, 2022, 57, 5697-5767.	1.7	73
902	Highly Foldable, Super-Sensitive, and Transparent Nanocellulose/Ceramic/Polymer Cover Windows for Flexible OLED Displays. ACS Applied Materials & Interfaces, 2022, 14, 16658-16668.	4.0	17
903	Rheological and rheo-optical behaviors of nanocellulose suspensions containing unfibrillated fibers. Cellulose, 2022, 29, 3703-3719.	2.4	4
904	Photocured Nanocellulose Composites: Recent Advances. ACS Sustainable Chemistry and Engineering, 2022, 10, 3131-3149.	3.2	9
905	Novel ranking framework for retrospective simultaneous assessment of fire and mechanical performances of natural fiberâ€reinforced polymeric composites: Literature update from the previous decade. Journal of Vinyl and Additive Technology, 0, , .	1.8	5
906	Nucleation roles of cellulose nanocrystals and chitin nanocrystals in poly(ε-caprolactone) nanocomposites. International Journal of Biological Macromolecules, 2022, 205, 587-594.	3.6	14
907	Sociallyâ€Directed Development of Materials for Structural Color. Advanced Materials, 2022, 34, e2100939.	11.1	14
908	Modification of Cellulose Micro- and Nanomaterials to Improve Properties of Aliphatic Polyesters/Cellulose Composites: A Review. Polymers, 2022, 14, 1477.	2.0	31
909	Thermal and mechanical properties of PLA-based multiscale cellulosic biocomposites. Journal of Materials Research and Technology, 2022, 18, 485-495.	2.6	35
910	Novel 3D porous aerogels engineered at nano scale from cellulose nano fibers and curcumin: An effective treatment for chronic wounds. Carbohydrate Polymers, 2022, 287, 119338.	5.1	25
911	The digital printing of chromatic pattern with a single cellulose nanocrystal ink. Chemical Engineering Journal, 2022, 439, 135670.	6.6	19
912	Hyaluronic acid based nanomedicines as promising wound healers for acute-to-chronic wounds: a review of recent updates and emerging trends. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 252-270.	1.8	2
913	POWDERED CELLULOSIC MATERIALS: OVERVIEW, CLASSIFICATION, CHARACTERISTICS AND FIELDS OF APPLICATION. Khimiya Rastitel'nogo Syr'ya, 2021, , 31-45.	0.0	0
914	Effect of Coupling Agent on Softwood Kraft Nanocellulose Fibril-Reinforced Polylactic Acid Biocomposite. Journal of Nanomaterials, 2021, 2021, 1-13.	1.5	48

#	Article	IF	CITATIONS
915	Chiral Nematic Cellulose Nanocrystal Films Cooperated with Amino Acids for Tunable Optical Properties. Polymers, 2021, 13, 4389.	2.0	6
916	Strategies to mitigate the synergistic effects of moist-heat aging on TEMPO-oxidized nanocellulose. Polymer Degradation and Stability, 2022, 200, 109943.	2.7	3
917	Polymer Nanocomposite Matrix-Based Nanoproducts. , 2022, , 243-256.		0
918	Polycaprolactones based bionanocomposites for food packaging applications. , 2022, , 135-151.		0
919	Adsorption Mechanism of Chloropropanol by Crystalline Nanocellulose. Polymers, 2022, 14, 1746.	2.0	2
920	Extraction, Applications and Characterization of Plant Fibers. , 0, , .		4
921	Study on the Characteristics of the Dispersion and Conductivity of Surfactants for the Nanofluids. Nanomaterials, 2022, 12, 1537.	1.9	2
922	Gelatin/Persian gum/bacterial nanocellulose composite films containing Frankincense essential oil and Teucrium polium extract as a novel and bactericidal wound dressing. Journal of Drug Delivery Science and Technology, 2022, 72, 103423.	1.4	8
923	Preparation and characterization of ZnO nanoparticles incorporated by mechanical milling into cellulose for electrical insulator applications. Digest Journal of Nanomaterials and Biostructures, 2022, 17, 579-588.	0.3	0
924	Bionanocomposites based on natural rubber and cellulose nanofibrils from arecanut husk: Rheological, mechanical and thermal characterizations. Journal of Polymer Research, 2022, 29, .	1.2	1
925	Nanocelluloses: Production, Characterization and Market. Advances in Experimental Medicine and Biology, 2022, 1357, 129-151.	0.8	1
927	Nanostructured Materials from Biobased Precursors for Renewable Energy Storage Applications. ACS Symposium Series, 0, , 307-366.	0.5	1
928	Bio-nanomaterial for Renewable Energy Storage Applications. ACS Symposium Series, 0, , 91-127.	0.5	9
932	Cellulose Fibre from Schinus molle and Its Characterization. Journal of Renewable Materials, 2022, 10, 2593-2606.	1.1	4
933	Bionanocomposite Using Nanocellulose Obtained from Agricultural Biomass. ACS Symposium Series, 0, , 75-90.	0.5	0
934	Biorenewable Nanocomposites as Robust Materials for Energy Storage Applications. ACS Symposium Series, 0, , 197-224.	0.5	0
936	Food Packaging Applications for Biorenewable-Based Nanomaterials. ACS Symposium Series, 0, , 257-267.	0.5	1
937	Functional Bionanomaterials—Embedded Devices for Sustainable Energy Storage. ACS Symposium Series, 0, , 1-23.	0.5	2

#	Article	IF	CITATIONS
938	Hydrogel Nanocomposites Derived from Renewable Resources. ACS Symposium Series, 0, , 269-285.	0.5	2
939	Polyaniline-Based Flexible Nanocomposite Materials. ACS Symposium Series, 0, , 367-395.	0.5	2
940	Biomimetic Nanocomposites for Biomedical Applications. ACS Symposium Series, 0, , 163-196.	0.5	2
941	Nanocomposite Materials for Emerging Supercapacitor Applications: Recent Progress. ACS Symposium Series, 0, , 287-306.	0.5	Ο
942	Biorenewables: Properties and Functions in Materials Application. ACS Symposium Series, 0, , 129-161.	0.5	0
944	Potential Applications of Biorenewable Nanocomposite Materials for Electrocatalysis, Energy Storage, and Wastewater Treatment. ACS Symposium Series, 0, , 25-46.	0.5	4
947	Bionanocomposite Synthesized from Nanocellulose Obtained from Agricultural Biomass as Raw Material. ACS Symposium Series, 0, , 47-74.	0.5	1
948	Emerging Trends in Biomass-Derived Carbon-Supported Metal Nanostructures as Efficient Electrocatalysts for Critical Electrochemical Reactions in Low Temperature Fuel Cell Applications. ACS Symposium Series, 0, , 225-256.	0.5	3
949	Metal–Ligand Complexes as Dynamic Sacrificial Bonds in Elastic Polymers. Macromolecules, 2022, 55, 5164-5175.	2.2	8
950	Green composites for food packaging. , 2022, , 237-259.		2
951	Nanocellulose as Reinforcement Materials for Polymer Matrix Composites. , 2022, , 407-440.		1
952	Effects of Nanocrystal Cellulose from Bamboo on the Flexural Strength of Acrylic Resin: In Vitro. Dentistry Journal, 2022, 10, 129.	0.9	Ο
953	Food biopolymers-derived nanogels for encapsulation and delivery of biologically active compounds: A perspective review. Food Hydrocolloids for Health, 2022, 2, 100079.	1.6	18
954	Tailor-made dual doping for morphology control of polyaniline chains in cellulose nanofiber-based flexible electrodes: electrical and electrochemical performance. Journal of Materials Science, 2022, 57, 13945-13961.	1.7	2
955	Nonwoven viscose fabricâ€polyvinyl alcohol based flexible composite. Journal of Vinyl and Additive Technology, 2023, 29, 41-47.	1.8	4
957	Effective utilization of natural fibres (coir and jute) for sustainable low-volume rural road construction – A critical review. Construction and Building Materials, 2022, 347, 128606.	3.2	10
958	Cellulose nanofibers and composites: An insight into basics and biomedical applications. Journal of Drug Delivery Science and Technology, 2022, 75, 103601.	1.4	14
959	Advances and prospects of corn husk as a sustainable material in composites and other technical applications. Journal of Cleaner Production, 2022, 371, 133563.	4.6	25

#	Article	IF	CITATIONS
960	Thermoformable fiberboards of wood pulp and nanofibrillated cellulose. Industrial Crops and Products, 2022, 187, 115433.	2.5	0
961	Preparation and application of edible agar-based composite films modified by cellulose nanocrystals. Food Packaging and Shelf Life, 2022, 34, 100936.	3.3	11
962	One-step preparation of flexible nanocellulose-based composite hydrogel supercapacitors with high specific capacitance. Composites Science and Technology, 2022, 230, 109725.	3.8	21
963	Synthesis and characterization of nanofibrilated cellulose films modified with blocked isocyanates in aqueous media and their barrier properties to water vapor and oxygen. Carbohydrate Polymer Technologies and Applications, 2022, 4, 100249.	1.6	0
964	Biodegradable Inorganic Nanocomposites. , 2022, , 1-40.		0
965	Cellulose-Based Functional Materials for Sensing. Chemosensors, 2022, 10, 352.	1.8	15
966	Covalent Crosslinking of Colloidal Cellulose Nanocrystals for Multifunctional Nanostructured Hydrogels with Tunable Physicochemical Properties. Biomacromolecules, 2022, 23, 4085-4096.	2.6	3
967	Study of Progress on Nanocrystalline Cellulose and Natural Fiber Reinforcement Biocomposites. Journal of Nanomaterials, 2022, 2022, 1-16.	1.5	3
968	Cellulose nanocrystal dispersions improve cold tolerance in developing apple flowers. Acta Horticulturae, 2022, , 407-412.	0.1	0
969	Comparative Study of the Morphology of Cellulose Nanofiber Fabricated Using Two Kinds of Grinding Method. Materials, 2022, 15, 7048.	1.3	4
970	Fabrication of Flame Retarded Cellulose Aerogel with Hydrophobicity via MF/MTMS Double Cross-Linking. Journal of Natural Fibers, 2023, 20, .	1.7	1
971	A comprehensive review on fused deposition modelling of polylactic acid. Progress in Additive Manufacturing, 2023, 8, 775-799.	2.5	19
972	A Comparative Study of Nanofibers from Regenerated Cotton and Jute. Journal of Natural Fibers, 2023, 20, .	1.7	0
973	Sources, Chemical Functionalization, and Commercial Applications of Nanocellulose and Nanocellulose-Based Composites: A Review. Polymers, 2022, 14, 4468.	2.0	12
974	Nanocellulose-Based Nanocomposites for Sustainable Applications: A Review. Nanomaterials, 2022, 12, 3483.	1.9	41
975	Alternative High-Performance Fibers for Nonwoven HEPA Filter Media. Aerosol Science and Engineering, 2023, 7, 36-58.	1.1	6
976	Hierarchical Model for Optimizing Natural Fiber Selection Process for Eco-design of Buildings. Journal of Natural Fibers, 2022, 19, 10897-10909.	1.7	2
977	Effectiveness of sulfonation to produce lignin-containing cellulose micro/nanofibrils (LCM/NF) by grinding. Cellulose, 2023, 30, 815-832.	2.4	2

#	Article	IF	CITATIONS
978	Printed Humidity Sensors from Renewable and Biodegradable Materials. Advanced Materials Technologies, 2023, 8, .	3.0	17
979	Internal freezing and heat loss of apple (Malus domestica Borkh.) and sweet cherry (Prunus avium L.) reproductive buds are decreased with cellulose nanocrystal dispersions. Frontiers in Plant Science, 0, 13, .	1.7	1
981	Nanolatex architectonics: Influence of cationic charge density and size on their adsorption onto surfaces with a 2D or 3D distribution of anionic groups. Journal of Colloid and Interface Science, 2023, 634, 610-620.	5.0	3
982	Physicochemical and morphological properties of microcrystalline cellulose and nanocellulose extracted from coir fibers and its composites. , 2022, , 255-273.		1
983	APPROACHING SUSTAINABILITY: NANOCELLULOSE REINFORCED ELASTOMERS—A REVIEW. Rubber Chemistry and Technology, 2022, 95, 515-549.	0.6	3
984	Microscale 3D Printing and Tuning of Cellulose Nanocrystals Reinforced Polymer Nanocomposites. Small, 2023, 19, .	5.2	11
985	Mechanical properties of celluloseâ€based multiscale composites: A review. Polymer Composites, 2023, 44, 734-756.	2.3	18
986	Recent Progress on Tailoring the Biomass-Derived Cellulose Hybrid Composite Photocatalysts. Polymers, 2022, 14, 5244.	2.0	6
988	Porous and three-dimensional carbon aerogels from nanocellulose/pristine graphene for high-performance supercapacitor electrodes. Diamond and Related Materials, 2023, 132, 109626.	1.8	9
989	Review of Bacterial Nanocellulose-Based Electrochemical Biosensors: Functionalization, Challenges, and Future Perspectives. Biosensors, 2023, 13, 142.	2.3	8
990	Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chemical Reviews, 2023, 123, 2016-2048.	23.0	98
991	Carboxymethylcellulose reinforced starch films and rapid detection of spoiled beverages. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1
992	Nanofillers and Nanomaterials for Green Based Nanocomposites. Engineering Materials, 2023, , 13-30.	0.3	1
993	Enhanced specific capacity and cycling stability of flexible nanocellulose-based pseudocapacitive electrodes by controlled nanostructuring of polyaniline. Electrochimica Acta, 2023, 441, 141830.	2.6	6
994	Composites of resorcinol and hexamethylenetetramine modified nanocellulose whiskers as potential biofiller in natural rubber latex: synthesis, characterization and property evaluation. Biomass Conversion and Biorefinery, 0, , .	2.9	0
995	Nanocellulose from agro-waste: a comprehensive review of extraction methods and applications. Reviews in Environmental Science and Biotechnology, 2023, 22, 1-27.	3.9	12
996	Perspective Chapter: Cellulose in Food Production - Principles and Innovations. , 0, , .		0
997	Flexible, ultrathin and light films from one-dimensional nanostructures of polypyrrole and cellulose nanofibers for high performance electromagnetic interference shielding. Carbohydrate Polymers, 2023, 309, 120662.	5.1	5

#	Article	IF	CITATIONS
998	Lignocellulosic biowaste for composite applications. , 2023, , 639-678.		0
999	Experimental Effect of Biopolymers, Synthetic and Modified Polymers on Western Pakistan Shale (GHAZIJ) Stability. Arabian Journal for Science and Engineering, 2023, 48, 16639-16653.	1.7	4
1000	Preparation, characteristics, and soil-biodegradable analysis of corn starch/nanofibrillated cellulose (CS/NFC) and corn starch/nanofibrillated lignocellulose (CS/NFLC) films. Carbohydrate Polymers, 2023, 309, 120699.	5.1	13
1001	Preparation of niacinamide imprinted starch-based biomaterials for treating of hyperpigmentation. International Journal of Biological Macromolecules, 2023, 232, 123382.	3.6	3
1002	lonic Liquids as Solvents for the Production of Materials from Biomass. , 2022, , 642-663.		0
1003	Preliminary study on the strength enhancement of Klucel E with cellulose nanofibrils (CNFs) for the conservation of wooden artifacts. Journal of Cultural Heritage, 2023, 60, 41-49.	1.5	2
1004	Extraction Optimization and Characterization of Cellulose Nanocrystals from Apricot Pomace. Foods, 2023, 12, 746.	1.9	4
1005	High-Yield Alpha-Cellulose from Oil Palm Empty Fruit Bunches by Optimizing Thermochemical Delignification Processes for Use as Microcrystalline Cellulose. International Journal of Biomaterials, 2023, 2023, 1-15.	1.1	3
1006	Biodegradable Inorganic Nanocomposites. , 2023, , 603-642.		0
1007	Wood Biorefineries. Springer Handbooks, 2023, , 1713-1751.	0.3	0
1008	Plant-Fiber and Wood-Based Functional Materials. Springer Handbooks, 2023, , 1645-1693.	0.3	2
1010	Three-dimensional flexible SERS substrate based on bacterial cellulose membrane for detection of glutathione in serum. Cellulose, 2023, 30, 5187-5200.	2.4	6
1011	Polyester–melamine coil coating formulation reinforced with surface-modified cellulose nanofibrils. Progress in Organic Coatings, 2023, 182, 107608.	1.9	0
1012	Biodegradable and biocompatible polymer nanocomposites for tissue engineering applications. , 2023, , 271-309.		0
1013	Biodegradable polymer nanocomposites for food packaging applications. , 2023, , 639-674.		1
1019	Application of Expert Decision Systems for Optimal Fiber Selection for Green Building Design Components. , 2023, , 21-37.		0
1020	Bionanocomposites for rejuvenation of heavily contaminated environment. , 2023, , 75-125.		1
1026	Structure and Properties of Cellulose and Its Derivatives. Composites Science and Technology, 2023, , 443-463.	0.4	Ο

#	Article	IF	CITATIONS
1027	Advances in the Production of Cellulose Nanomaterials and Their Use in Engineering (Bio)Plastics. Composites Science and Technology, 2023, , 333-393.	0.4	0
1036	Environmental Remediation of Agrochemicals and Dyes Using Clay Nanocomposites: Review on Operating Conditions, Performance Evaluation, and Machine Learning Applications. Reviews of Environmental Contamination and Toxicology, 2023, 261, .	0.7	1
1037	Nanocellulose Aerogels. Springer Handbooks, 2023, , 707-725.	0.3	0
1038	Starch-based bionanocomposites: Synthesis, properties, and applications. , 2024, , 169-190.		0
1041	Multifunctional Materials for the Sensing of Gases. Advances in Chemical and Materials Engineering Book Series, 2023, , 128-158.	0.2	0
1042	Cellulose Nanocrystals: Particles and Polymer Nanocomposites. , 2019, , 395-434.		0
1053	Advanced Applications of Lignocellulosic Fibers and Mycelium-Based Composites for a Sustainable World. Engineering Materials, 2024, , 367-400.	0.3	0
1057	How to make membrane distillation greener: a review of environmentally friendly and sustainable aspects. Green Chemistry, 2024, 26, 164-185.	4.6	1
1058	Agricultural Crop Residues Biomass. , 2023, , 1-35.		0
1061	Review of the sources, synthesis, and applications of nanocellulose materials. Polymer Bulletin, 0, , .	1.7	0
1062	Polymeric Nanoparticles in Drug Delivery. Advances in Medical Diagnosis, Treatment, and Care, 2023, , 137-177.	0.1	0
1064	Polysaccharide-based superabsorbent hydrogels. , 2024, , 265-305.		0
1071	Modification of Cellulose. , 2024, , 1-37.		0
1072	Rheological behavior of nanocellulose suspensions and nanocellulose reinforced composites. , 2024, , 349-364.		0
1076	An overview of biocomposites. , 2024, , 1-39.		0