Magnonics

Journal Physics D: Applied Physics 43, 264001 DOI: 10.1088/0022-3727/43/26/264001

Citation Report

#	Article	IF	CITATIONS
1	Anisotropic Propagation and Damping of Spin Waves in a Nanopatterned Antidot Lattice. Physical Review Letters, 2010, 105, 067208.	2.9	122
2	Band gaps in the terahertz frequency range in quasiperiodic one-dimensional magnonic crystals. Solid State Communications, 2010, 150, 2325-2328.	0.9	15
3	Electric-field control of spin waves at room temperature in multiferroic BiFeO3. Nature Materials, 2010, 9, 975-979.	13.3	227
4	Anisotropic dynamical coupling for propagating collective modes in a two-dimensional magnonic crystal consisting of interacting squared nanodots. Physical Review B, 2010, 82, .	1.1	75
5	Analysis of collective spin-wave modes at different points within the hysteresis loop of a one-dimensional magnonic crystal comprising alternative-width nanostripes. Physical Review B, 2010, 82, .	1.1	77
6	Negative permeability due to exchange spin-wave resonances in thin magnetic films with surface pinning. Physical Review B, 2010, 82, .	1.1	39
7	Spin excitation frequencies in magnetostatically coupled arrays of vortex state circular Permalloy dots. Applied Physics Letters, 2010, 97, 132501.	1.5	50
8	Effect of Interdot Separation on Collective Magnonic Modes in Chains of Rectangular Dots. IEEE Transactions on Magnetics, 2011, 47, 1563-1566.	1.2	17
9	Fabrication and Static Magnetic Properties of Novel One- and Two-Dimensional Bi-Component Magnonic Crystals. IEEE Transactions on Magnetics, 2011, 47, 1639-1643.	1.2	14
10	Dispersion of collective magnonic modes in stacks of nanoscale magnetic elements. Physical Review B, 2011, 84, .	1.1	23
11	Mode conversion by symmetry breaking of propagating spin waves. Applied Physics Letters, 2011, 99, .	1.5	59
12	Collective magnonic modes of pairs of closely spaced magnetic nano-elements. Journal of Applied Physics, 2011, 109, 07B912.	1.1	37
13	Excitation of propagating spin waves with global uniform microwave fields. Applied Physics Letters, 2011, 98, 122506.	1.5	46
14	Geometry-dependent magnetization reversal mechanism in ordered Py antidot arrays. Journal Physics D: Applied Physics, 2011, 44, 505001.	1.3	52
15	Resonant frequency multiplication in microscopic magnetic dots. Applied Physics Letters, 2011, 99, .	1.5	21
16	Coupled periodic magnetic nanostructures (invited). Journal of Applied Physics, 2011, 109, .	1.1	11
17	Spin-wave damping in ferromagnetic stripes with inhomogeneous magnetization. Physical Review B, 2011, 83, .	1.1	10
18	Control of spin-wave emission from spin-torque nano-oscillators by microwave pumping. Physical Review B, 2011, 83, .	1.1	24

#	Article	IF	CITATIONS
19	Microscopic dipole–exchange theory for planar nanostriped magnonic crystals. Journal Physics D: Applied Physics, 2011, 44, 315001.	1.3	25
20	The effect of lattice structure on dipole–exchange spin waves in ultrathin ferromagnetic films. Journal of Physics Condensed Matter, 2011, 23, 126004.	0.7	10
21	Micromagnetic study of spin wave propagation in bicomponent magnonic crystal waveguides. Applied Physics Letters, 2011, 98, .	1.5	87
22	Spin-wave band gaps created by rotating square rods in two-dimensional magnonic crystals. Journal Physics D: Applied Physics, 2011, 44, 455001.	1.3	20
23	Ultrafast magnetization dynamics of spintronic nanostructures. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 3115-3135.	1.6	19
24	One-dimensional magnonic circuits with size-tunable band gaps and selective transmission. Journal of Physics: Conference Series, 2011, 303, 012017.	0.3	5
25	Magnetic domain structure of La0.7Sr0.3MnO3 nanoislands: Experiment and simulation. Journal of Applied Physics, 2011, 109, .	1.1	27
26	Magnetic vortices in small ferromagnetic particles with the strong dipolar interaction. JETP Letters, 2011, 94, 306-310.	0.4	8
27	Analysis of the collective behavior of a 10 by 10 array of Fe3O4 dots in a large micromagnetic simulation. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 675-679.	1.3	8
28	The building blocks of magnonics. Physics Reports, 2011, 507, 107-136.	10.3	750
28 29	The building blocks of magnonics. Physics Reports, 2011, 507, 107-136. Self-Generation of Chaotic Dissipative Soliton Trains in Active Ring Resonator With 1-D Magnonic Crystal. IEEE Transactions on Magnetics, 2011, 47, 3716-3719.	10.3 1.2	750 27
28 29 30	The building blocks of magnonics. Physics Reports, 2011, 507, 107-136. Self-Generation of Chaotic Dissipative Soliton Trains in Active Ring Resonator With 1-D Magnonic Crystal. IEEE Transactions on Magnetics, 2011, 47, 3716-3719. Apparent sixfold configurational anisotropy and spatial confinement of ferromagnetic resonances in hexagonal magnetic antidot lattices. Journal of Applied Physics, 2011, 109, 083912.	10.3 1.2 1.1	750 27 24
28 29 30 31	The building blocks of magnonics. Physics Reports, 2011, 507, 107-136. Self-Generation of Chaotic Dissipative Soliton Trains in Active Ring Resonator With 1-D Magnonic Crystal. IEEE Transactions on Magnetics, 2011, 47, 3716-3719. Apparent sixfold configurational anisotropy and spatial confinement of ferromagnetic resonances in hexagonal magnetic antidot lattices. Journal of Applied Physics, 2011, 109, 083912. Wide-range control of ferromagnetic resonance by spin Hall effect. Applied Physics Letters, 2011, 99, .	10.3 1.2 1.1 1.5	 750 27 24 51
28 29 30 31 32	The building blocks of magnonics. Physics Reports, 2011, 507, 107-136. Self-Generation of Chaotic Dissipative Soliton Trains in Active Ring Resonator With 1-D Magnonic Crystal. IEEE Transactions on Magnetics, 2011, 47, 3716-3719. Apparent sixfold configurational anisotropy and spatial confinement of ferromagnetic resonances in hexagonal magnetic antidot lattices. Journal of Applied Physics, 2011, 109, 083912. Wide-range control of ferromagnetic resonance by spin Hall effect. Applied Physics Letters, 2011, 99, . Micromagnetic method of s-parameter characterization of magnonic devices. Journal of Applied Physics, 2011, 109, .	10.3 1.2 1.1 1.5 1.1	 750 27 24 51 29
28 29 30 31 32 33	The building blocks of magnonics. Physics Reports, 2011, 507, 107-136. Self-Generation of Chaotic Dissipative Soliton Trains in Active Ring Resonator With 1-D Magnonic Crystal. IEEE Transactions on Magnetics, 2011, 47, 3716-3719. Apparent sixfold configurational anisotropy and spatial confinement of ferromagnetic resonances in hexagonal magnetic antidot lattices. Journal of Applied Physics, 2011, 109, 083912. Wide-range control of ferromagnetic resonance by spin Hall effect. Applied Physics Letters, 2011, 99, . Micromagnetic method of s-parameter characterization of magnonic devices. Journal of Applied Physics, 2011, 109, . Excitation of short-wavelength spin waves in magnonic waveguides. Applied Physics Letters, 2011, 99, 082507.	10.3 1.2 1.1 1.5 1.1	 750 27 24 51 29 97
28 29 30 31 32 33 33	The building blocks of magnonics. Physics Reports, 2011, 507, 107-136. Self-Generation of Chaotic Dissipative Soliton Trains in Active Ring Resonator With 1-D Magnonic Crystal. IEEE Transactions on Magnetics, 2011, 47, 3716-3719. Apparent sixfold configurational anisotropy and spatial confinement of ferromagnetic resonances in hexagonal magnetic antidot lattices. Journal of Applied Physics, 2011, 109, 083912. Wide-range control of ferromagnetic resonance by spin Hall effect. Applied Physics Letters, 2011, 99, . Micromagnetic method of s-parameter characterization of magnonic devices. Journal of Applied Physics, 2011, 109, . Excitation of short-wavelength spin waves in magnonic waveguides. Applied Physics Letters, 2011, 99, 082507. Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature. Applied Physics Letters, 2011, 99, 062504.	10.3 1.2 1.1 1.5 1.5 1.5	 750 27 24 51 29 97 39
28 29 30 31 32 33 33 34	The building blocks of magnonics. Physics Reports, 2011, 507, 107-136. Self-Generation of Chaotic Dissipative Soliton Trains in Active Ring Resonator With 1-D Magnonic Crystal. IEEE Transactions on Magnetics, 2011, 47, 3716-3719. Apparent sixfold configurational anisotropy and spatial confinement of ferromagnetic resonances in hexagonal magnetic antidot lattices. Journal of Applied Physics, 2011, 109, 083912. Wide-range control of ferromagnetic resonance by spin Hall effect. Applied Physics Letters, 2011, 99, . Micromagnetic method of s-parameter characterization of magnonic devices. Journal of Applied Physics, 2011, 109, . Excitation of short-wavelength spin waves in magnonic waveguides. Applied Physics Letters, 2011, 99, 082507. Electric control of magnon frequencies and magnetic moment of bismuth ferrite thin films at room temperature. Applied Physics Letters, 2011, 99, 062504. Band Diagram of Spin Waves in a Two-Dimensional Magnonic Crystal. Physical Review Letters, 2011, 107, 127204.	10.3 1.2 1.1 1.5 1.5 1.5 2.9	 750 27 24 51 29 97 39 93

# 37	ARTICLE Tunable metamaterial response of a Ni <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow /><mml:mn>80</mml:mn></mml:mrow </mml:msub></mml:math> Fe <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>20</mml:mn></mml:mrow </mml:msub>antidot lattice for spin waves. Physical Review B,</mml:math 	IF 1.1	CITATIONS
38	2011, 84, . Magnonic minibands in antidot lattices with large spin-wave propagation velocities. Physical Review B, 2011, 84, .	1.1	69
39	Ultrathin conformal coating for complex magneto-photonic structures. Nanoscale, 2011, 3, 4811.	2.8	12
40	The magnetostatic modes in planar one-dimensional magnonic crystals with nanoscale sizes. Journal of Nanoparticle Research, 2011, 13, 6085-6091.	0.8	53
41	Coplanar probe microwave current injection ferromagnetic resonance of magnetic nanostructures. Europhysics Letters, 2011, 96, 57007.	0.7	10
42	First-principle description of magnonic Pd _n Fe _m multilayers. Journal of Applied Physics, 2011, 109, 07C110.	1.1	2
43	Collective spin modes in chains of dipolarly interacting rectangular magnetic dots. Physical Review B, 2011, 83, .	1.1	59
44	Field- and geometry-controlled avoided crossings of spin-wave modes in reprogrammable magnonic crystals. Physical Review B, 2011, 84, .	1.1	27
45	Large amplitude magnetization dynamics and the suppression of edge modes in a single nanomagnet. Applied Physics Letters, 2011, 98, .	1.5	22
46	Ferromagnetic and antiferromagnetic spin-wave dispersions in a dipole-exchange coupled bi-component magnonic crystal. Applied Physics Letters, 2011, 99, .	1.5	33
47	Linear and nonlinear collective modes in magnetic microstructures formed by coupled disks. Physical Review B, 2011, 83, .	1.1	12
48	Investigation of the switching wave propagation in linear chains of magnetic elements. Journal of Applied Physics, 2011, 110, 043901.	1.1	2
49	All-Optical Excitation and Detection of Picosecond Dynamics of Ordered Arrays of Nanomagnets with Varying Areal Density. Applied Physics Express, 2011, 4, 113003.	1.1	18
50	Tunable magnonic frequency and damping in [Co/Pd]8 multilayers with variable Co layer thickness. Applied Physics Letters, 2011, 98, .	1.5	131
51	Point defect states of exchange spin waves in all-ferromagnetic two-dimensional magnonic crystals. Journal of Applied Physics, 2012, 111, .	1.1	17
52	Spin-wave excitations in superlattices self-assembled in multiferroic single crystals. Journal of Physics Condensed Matter, 2012, 24, 346002.	0.7	7
53	Spin-torque effect on spin wave modes in magnetic nanowires. Applied Physics Letters, 2012, 101, 072409.	1.5	6
54	Realization of a mesoscopic reprogrammable magnetic logic based on a nanoscale reconfigurable magnonic crystal. Applied Physics Letters, 2012, 100, .	1.5	69

#	Article	IF	CITATIONS
55	Generating wave vector specific Damon-Eshbach spin waves in Py using a diffraction grating. Applied Physics Letters, 2012, 101, 052404.	1.5	13
56	Enhanced Transmission through Squeezed Modes in a Self-Cladding Magnonic Waveguide. Physical Review Letters, 2012, 108, 227202.	2.9	33
57	Theoretical study of the temperature dependence of the magnon dispersion relation in transition-metal wires and monolayers. Physical Review B, 2012, 86, .	1.1	7
58	Interfacial magnetization dynamics of a bi-component magnonic crystal comprising contacting ferromagnetic nanostripes. Journal of Applied Physics, 2012, 111, .	1.1	12
59	Enhanced functionality in magnonics by domain walls and inhomogeneous spin configurations. Journal of Physics Condensed Matter, 2012, 24, 024218.	0.7	22
60	Dynamic response of antidot nanostructures with alternating hole diameters. Europhysics Letters, 2012, 98, 16004.	0.7	19
61	Coupling characteristics of point defects modes in two-dimensional magnonic crystals. Journal of Applied Physics, 2012, 112, .	1.1	23
62	Information-signal-transfer rate and energy loss in coupled vortex-state networks. Applied Physics Letters, 2012, 101, 092403.	1.5	18
63	Direct imaging of phase relation in a pair of coupled vortex oscillators. AIP Advances, 2012, 2, .	0.6	14
64	Edge-state-dependent tunneling of dipole-exchange spin waves in submicrometer magnetic strips with an air gap. Nanotechnology, 2012, 23, 495202.	1.3	2
65	Fe ₃ O ₄ nanoparticles: protein-mediated crystalline magnetic superstructures. Nanotechnology, 2012, 23, 415601.	1.3	42
66	Spin Torque Diode Spectroscopy of Quantized Spin Wave Excited in a Magnetic Tunnel Junction. IEEE Transactions on Magnetics, 2012, 48, 2816-2819.	1.2	6
67	Calculation of high-frequency permeability of magnonic metamaterials beyond the macrospin approximation. Physical Review B, 2012, 86, .	1.1	26
68	Deviation from exponential decay for spin waves excited with a coplanar waveguide antenna. Applied Physics Letters, 2012, 101, 252409.	1.5	10
69	Effect of magnetization pinning on the spectrum of spin waves in magnonic antidot waveguides. Physical Review B, 2012, 86, .	1.1	48
70	Magnetostatic surface wave propagation in a one-dimensional magnonic crystal with broken translational symmetry. Applied Physics Letters, 2012, 101, .	1.5	36
71	Spin waves turning a corner. Applied Physics Letters, 2012, 101, 042410.	1.5	131
72	Numerical calculation of spin wave dispersions in magnetic nanostructures. Journal Physics D: Applied Physics, 2012, 45, 015001.	1.3	108

#	Article	IF	CITATIONS
73	Magnon Raman spectroscopy and in-plane dielectric response in BiFeO3: Relation to the Polomska transition. Physical Review B, 2012, 85, .	1.1	31
74	Multiferroic Memory: A Disruptive Technology or Future Technology?. Solid State Phenomena, 0, 189, 1-14.	0.3	5
75	Effects of deterministic and random discrete scale invariance on spin wave spectra. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1697-1702.	1.3	2
76	The impact of the lattice symmetry and the inclusion shape on the spectrum of 2D magnonic crystals. Journal of Applied Physics, 2012, 111, .	1.1	39
77	Micromagnetic simulations using Graphics Processing Units. Journal Physics D: Applied Physics, 2012, 45, 323001.	1.3	117
78	Large magnonic band gaps and spectra evolution in three-dimensional magnonic crystals based on magnetoferritin nanoparticles. Physical Review B, 2012, 86, .	1.1	45
79	Spatial confinement of ferromagnetic resonances in honeycomb antidot lattices. Journal of Magnetism and Magnetic Materials, 2012, 324, 3087-3093.	1.0	10
80	Directional control of spin-wave emission by spatially shaped light. Nature Photonics, 2012, 6, 662-666.	15.6	219
81	Magnetic and electrical properties of multiferroic BiFeO3, its synthesis and applications. Inorganic Materials, 2012, 48, 1210-1225.	0.2	8
82	Magnonic band structure investigation of one-dimensional bi-component magnonic crystal waveguides. Nanoscale Research Letters, 2012, 7, 498.	3.1	16
83	Nanoscale Spin Wave Localization Using Ferromagnetic Resonance Force Microscopy. Physical Review Letters, 2012, 108, 087206.	2.9	39
84	Vortex mode dynamics and bandwidth tunability in a two-dimensional array of interacting magnetic disks. Applied Physics Letters, 2012, 100, 182406.	1.5	18
85	Magnetic nano-oscillator driven by pure spinÂcurrent. Nature Materials, 2012, 11, 1028-1031.	13.3	608
86	Nanoscale spin wave valve and phase shifter. Applied Physics Letters, 2012, 100, .	1.5	83
87	Thermal evolution of the full three-dimensional magnetic excitations in the multiferroic BiFeO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review B, 2012, 86, .	1.1	20
88	Spin wave localization and softening in rod-shaped magnonic crystals with different terminations. Journal of Applied Physics, 2012, 112, 033911.	1.1	7
89	Mixed valence of iron inside tetrahedral and pseudopyramids in BiFe2O5â~δ. Physical Review B, 2012, 85, .	1.1	0
90	Collective spin waves in a bicomponent two-dimensional magnonic crystal. Applied Physics Letters, 2012, 100, 162407.	1.5	48

#	Article	IF	CITATIONS
91	Band structures of exchange spin waves in one-dimensional bi-component magnonic crystals. Journal of Applied Physics, 2012, 111, 064326.	1.1	20
92	Propagation and scattering of spin waves in curved magnonic waveguides. Applied Physics Letters, 2012, 101, .	1.5	57
93	Microscopic dipole-exchange theory for magnonic crystals: Application to ferromagnetic films with patterned surfaces. Journal of Applied Physics, 2012, 111, .	1.1	6
94	Micromagnetic modelling of the anisotropy properties of permalloy antidot arrays with hexagonal symmetry. Journal Physics D: Applied Physics, 2012, 45, 095001.	1.3	21
95	Measurement of the Dynamical Dipolar Coupling in a Pair of Magnetic Nanodisks Using a Ferromagnetic Resonance Force Microscope. Physical Review Letters, 2012, 109, 247602.	2.9	36
96	X-ray photoemission electron microscopy studies of local magnetization in Py antidot array thin films. Physical Review B, 2012, 85, .	1.1	26
97	Dynamics and stability of a linear cluster of spherical magnetic nanoparticles. Journal of Experimental and Theoretical Physics, 2012, 115, 854-865.	0.2	14
98	Mode conversion from quantized to propagating spin waves in a rhombic antidot lattice supporting spin wave nanochannels. Physical Review B, 2012, 86, .	1.1	58
99	Microwave properties of Ni-based ferromagnetic inverse opals. Physical Review B, 2012, 86, .	1.1	16
100	Magnetization dynamics and reversal mechanism of Fe filled Ni80Fe20 antidot nanostructures. Applied Physics Letters, 2012, 100, .	1.5	17
101	Magnetic states of an individual Ni nanotube probed by anisotropic magnetoresistance. Nanoscale, 2012, 4, 4989.	2.8	71
102	Application of Microfocused Brillouin Light Scattering to the Study of Spin Waves in Low-Dimensional Magnetic Systems. Solid State Physics, 2012, 63, 79-150.	1.3	30
103	Spin-Wave Band Structure in 2D Magnonic Crystals with Elliptically Shaped Scattering Centres. Advances in Condensed Matter Physics, 2012, 2012, 1-6.	0.4	25
104	Optically Induced Tunable Magnetization Dynamics in Nanoscale Co Antidot Lattices. ACS Nano, 2012, 6, 3397-3403.	7.3	63
105	Spin caloritronics. Nature Materials, 2012, 11, 391-399.	13.3	1,490
106	Complete band gaps for magnetostatic forward volume waves in a two-dimensional magnonic crystal. Physical Review B, 2012, 85, .	1.1	30
107	Resonant microwave-to-spin-wave transducer. Applied Physics Letters, 2012, 100, .	1.5	101
108	Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metalÂlayer. Nature Physics, 2012, 8, 491-496.	6.5	223

		Citation Ri	EPORT	
#	Article		IF	CITATIONS
109	Spin-torque nano-emitters for magnonic applications. Applied Physics Letters, 2012, 1	00, 162406.	1.5	33
110	Calculation of the spin-wave spectra in planar magnonic crystals with metallic overlaye Applied Physics, 2012, 111, .	rs. Journal of	1.1	24
111	Towards high-frequency negative permeability using magnonic crystals in metamateria Physical Review B, 2012, 86, .	l design.	1.1	31
112	Huge Goos-HÃ ¤ chen effect for spin waves: A promising tool for study magnetic proper interfaces. Applied Physics Letters, 2012, 101, 042404.	ties at	1.5	32
113	Electrochemically Triggered Selective Adsorption of Biotemplated Nanoparticles on Se Organometallic Diblock Copolymer Thin Films. Advanced Functional Materials, 2012, 2	fâ€Assembled 2, 3273-3278.	7.8	19
114	Bragg resonances of magnetostatic surface spin waves in a layered structure: Magnon crystal-dielectric-metal. Applied Physics Letters, 2012, 100, .	ic	1.5	39
115	High propagating velocity of spin waves and temperature dependent damping in a Col Applied Physics Letters, 2012, 100, 262412.	^r eB thin film.	1.5	76
116	Fractal spectra in generalized Fibonacci one-dimensional magnonic quasicrystals. Jourr Magnetism and Magnetic Materials, 2012, 324, 2315-2323.	al of	1.0	16
117	Spin-wave resonances in Eu0.8Ce0.2Mn2O5 and EuMn2O5 multiferroics. JETP Letters,	2012, 95, 386-390.	0.4	16
118	Magnonic crystals composed of Ni80Fe20 film on top of Ni80Fe20 two-dimensional do Physics Letters, 2013, 103, .	ot array. Applied	1.5	26
119	Spin wave propagation through an antidot lattice and a concept of a tunable magnoni of Applied Physics, 2013, 114, .	c filter. Journal	1.1	29
120	Spin Wave Dispersion in Permalloy Antidot Array With Alternating Holes Diameter. IEE on Magnetics, 2013, 49, 3093-3096.	E Transactions	1.2	7
121	Non-reciprocity of dipole-exchange spin waves in thin ferromagnetic films. Journal of A 2013, 113, .	pplied Physics,	1.1	48
122	Band gaps and transmission spectra in generalized Fibonacci σ(<i>p</i> , <i>q</i>) one magnonic quasicrystals. Journal of Physics Condensed Matter, 2013, 25, 286002.	-dimensional	0.7	20
123	Tailoring of the partial magnonic gap in three-dimensional magnetoferritin-based magr Journal of Applied Physics, 2013, 114, 043912.	ionic crystals.	1.1	8
124	Dissipative soliton generation in an active ring resonator based on magnonic quasicrys Fibonacci type structure. Applied Physics Letters, 2013, 103, 022408.	tal with	1.5	30
125	Time-domain study of spin-wave dynamics in two-dimensional arrays of bi-component structures. Applied Physics Letters, 2013, 102, .	magnetic	1.5	14
126	Quantum Bocce: Magnon–magnon collisions between propagating and bound state Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1242-1	s in 1D spin chains. 249.	0.9	6

		Report	
#	Article	IF	Citations
127	Dipole-exchange spin excitations in a thin ferromagnetic nanoshell. Open Physics, 2013, 11, .	0.8	1
128	Bragg resonances of magnetostatic surface waves in a ferrite-magnonic-crystal-dielectric-metal structure. Journal of Communications Technology and Electronics, 2013, 58, 347-352.	0.2	9
129	Artificial ferroic systems: novel functionality from structure, interactions and dynamics. Journal of Physics Condensed Matter, 2013, 25, 363201.	0.7	185
130	MAGNETO-OPTICAL MEASUREMENTS OF COLLECTIVE SPIN DYNAMICS OF TWO-DIMENSIONAL ARRAYS OF FERROMAGNETIC NANOELEMENTS. Spin, 2013, 03, 1330001.	0.6	20
131	Patterned ferrimagnetic thin films of spinel ferrites obtained directly by laser irradiation. Applied Surface Science, 2013, 283, 283-289.	3.1	15
132	Strongly localized magnetization modes in permalloy antidot lattices. Applied Physics Letters, 2013, 102, .	1.5	22
133	Adjustable microwave permeability of nanorings: A micromagnetic investigation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1491-1494.	0.9	12
134	Control of Pure Spin Current by Magnon Tunneling and Three-Magnon Splitting in Insulating Yttrium Iron Carnet Films. Solid State Physics, 2013, 64, 83-122 Electromagnon in Terrimagnetic Anni:math Annis:mml="http://www.w3.org/1998/Math/MathML" display="background-complexity" and the state of	1.3	2
135	mathvariant="bold">Femathvariant="bold">2mathvariant="bold">0	1.1	13
136	R Current-induced spin-wave excitation in Pt/YIG bilayer. Physical Review B, 2013, 88, .	1.1	39
137	Ferromagnetic Resonance Study on a Grid of Permalloy Nanowires. IEEE Transactions on Magnetics, 2013, 49, 3097-3100.	1.2	2
138	Magnon Mediated Domain Wall Heat Conductance in Ferromagnetic Wires. IEEE Transactions on Magnetics, 2013, 49, 3109-3112.	1.2	2
139	<i>Colloquium</i> : Artificial spin ice: Designing and imaging magnetic frustration. Reviews of Modern Physics, 2013, 85, 1473-1490.	16.4	407
140	Magnonic band structures in two-dimensional bi-component magnonic crystals with in-plane magnetization. Journal Physics D: Applied Physics, 2013, 46, 495003.	1.3	69
141	Effects of antidot shape on the spin wave spectra of two-dimensional Ni80Fe20 antidot lattices. Applied Physics Letters, 2013, 103, .	1.5	36
142	Microscopic dipole-exchange theory for magnonic crystal arrays of interacting ferromagnetic nanorings. Journal of the Korean Physical Society, 2013, 63, 667-671.	0.3	1
143	Nanostripe of subwavelength width as a switchable semitransparent mirror for spin waves in a magnonic crystal. Physical Review B, 2013, 88, .	1.1	18
144	Chirality-dependent magnon lifetime in a compensated half-metallic ferrimagnet. Physical Review B, 2013, 87, .	1.1	8

#	Article	IF	CITATIONS
145	Wave modes of collective vortex gyration in dipolar-coupled-dot-array magnonic crystals. Scientific Reports, 2013, 3, 2262.	1.6	66
146	Triple mode-jumping in a spin torque oscillator. , 2013, , .		3
147	Normal Mode Theory for Magnonic Crystal Waveguide. Topics in Applied Physics, 2013, , 223-242.	0.4	0
148	Micromagnetic Simulations in Magnonics. Topics in Applied Physics, 2013, , 101-115.	0.4	36
149	Theory of Carrier-Mediated Magnonic Superlattices. Physical Review Letters, 2013, 110, 267205.	2.9	3
150	Nonreciprocity of spin waves in metallized magnonic crystal. New Journal of Physics, 2013, 15, 113023.	1.2	69
151	Uniaxial anisotropy of two-magnon scattering in an ultrathin epitaxial Fe layer on GaAs. Applied Physics Letters, 2013, 102, 062415.	1.5	40
152	Spin-Wave Emission from Spin-Torque Nano-Oscillators and Its Control by Microwave Pumping. Topics in Applied Physics, 2013, , 163-175.	0.4	1
153	Spin Waves in Artificial Crystals and Metamaterials Created from Nanopatterned Ni80Fe20 Antidot Lattices. Topics in Applied Physics, 2013, , 191-203.	0.4	2
154	Spin Wave Band Structure in Two-Dimensional Magnonic Crystals. Topics in Applied Physics, 2013, , 205-221.	0.4	5
155	Magnon Coherent States and Condensates. Topics in Applied Physics, 2013, , 39-56.	0.4	2
156	Standing spin waves in magnonic crystals. Journal of Applied Physics, 2013, 113, .	1.1	53
157	Magnetostatic spin-wave modes of an in-plane magnetized garnet-film disk. Journal of Applied Physics, 2013, 113, .	1.1	9
158	Generation of Chaotic Microwave Pulses in Ferromagnetic Film Ring Oscillators Under External Influence. IEEE Transactions on Magnetics, 2013, 49, 1047-1054.	1.2	14
159	Direct Excitation of Propagating Spin Waves by Focused Ultrashort Optical Pulses. Physical Review Letters, 2013, 110, 097201.	2.9	87
160	Broadband injection and scattering of spin waves in lossy width-modulated magnonic crystal waveguides. Journal Physics D: Applied Physics, 2013, 46, 135003.	1.3	21
161	An effect of the curvature induced anisotropy on the spectrum of spin waves in a curved magnetic nanowire. Low Temperature Physics, 2013, 39, 163-166.	0.2	14
162	Ultralow-current-density and bias-field-free spin-transfer nano-oscillator. Scientific Reports, 2013, 3, 1426.	1.6	162

#	Article	IF	CITATIONS
163	Plasmon-assisted high reflectivity and strong magneto-optical Kerr effect in permalloy gratings. Applied Physics Letters, 2013, 102, .	1.5	30
164	Low-temperature time-domain terahertz spectroscopy of terbium gallium garnet crystals. Physical Review B, 2013, 87, .	1.1	16
166	Generation of propagating backward volume spin waves by phase-sensitive mode conversion in two-dimensional microstructures. Applied Physics Letters, 2013, 102, .	1.5	40
167	Symmetry-related criteria for the occurrence of defect states in magnonic superlattices. Journal of Applied Physics, 2013, 113, .	1.1	8
168	Broadband ferromagnetic resonance studies on an artificial square spin-ice island array. Journal of Applied Physics, 2013, 113, .	1.1	20
169	Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nature Materials, 2013, 12, 641-646.	13.3	311
170	Spin Torque–Generated Magnetic Droplet Solitons. Science, 2013, 339, 1295-1298.	6.0	237
171	Field-induced phase transitions and phase diagrams in BiFeO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub>-like multiferroics. Physical Review B, 2013, 87, .</mml:math 	1.1	32
172	Magnonic crystal wave guide with large spin-wave propagation velocity in CoFeB. Applied Physics Letters, 2013, 102, .	1.5	58
173	Isolating the Dynamic Dipolar Interaction between a Pair of Nanoscale Ferromagnetic Disks. Physical Review Letters, 2013, 110, 187202.	2.9	22
174	Configurational anisotropic spin waves in cross-shaped Ni80Fe20 nanoelements. Applied Physics Letters, 2013, 102, .	1.5	20
175	Magnetodynamical response of large-area close-packed arrays of circular dots fabricated by nanosphere lithography. Physical Review B, 2013, 87, .	1.1	23
176	Role of boundaries in micromagnetic calculations of magnonic spectra of arrays of magnetic nanoelements. Physical Review B, 2013, 87, .	1.1	11
177	Vortex ground state for small arrays of magnetic particles with dipole coupling. Physical Review B, 2013, 87, .	1.1	3
178	Chiral spin-wave edge modes in dipolar magnetic thin films. Physical Review B, 2013, 87, .	1.1	158
179	Theory of atomistic simulation of spin-transfer torque in nanomagnets. Physical Review B, 2013, 87, .	1.1	6
180	Nonlinear dynamics and solitons of a chain with spherical magnetic nanoparticles. Low Temperature Physics, 2013, 39, 525-529.	0.2	2
181	Magnonic Band Engineering by Intrinsic and Extrinsic Mirror Symmetry Breaking in Antidot Spin-Wave Waveguides. Scientific Reports, 2013, 3, 2444.	1.6	47

#	Article	IF	CITATIONS
182	Review of parallel and distributed architectures for micromagnetic codes. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, 32, 1891-1900.	0.5	3
183	Topological magnon insulator in insulating ferromagnet. Physical Review B, 2013, 87, .	1.1	269
184	Edge rotational magnons in magnonic crystals. Applied Physics Letters, 2013, 103, .	1.5	14
185	Thermally driven classical Heisenberg model in 1D with a local time varying field. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013, P12005.	0.9	2
186	Switching modes in easy and hard axis magnetic reversal in a self-assembled antidot array. Nanotechnology, 2013, 24, 465709.	1.3	18
187	Asymmetry of spin wave dispersions in a hexagonal magnonic crystal. Applied Physics Letters, 2013, 102,	1.5	27
188	Reflection and Refraction Process of Spinwave in a Ferromagnet/Frustrated Ferromagnet Junction System. Journal of the Physical Society of Japan, 2013, 82, 074604.	0.7	2
189	Resonant frequencies of a binary magnetic nanowire. Physical Review B, 2013, 87, .	1.1	24
190	Non-stationary excitation of two localized spin-wave modes in a nano-contact spin torque oscillator. Journal of Applied Physics, 2013, 114, 153906.	1.1	16
191	A micro-structured ion-implanted magnonic crystal. Applied Physics Letters, 2013, 102, .	1.5	75
192	Engineering spin-wave channels in submicrometer magnonic waveguides. AIP Advances, 2013, 3, .	0.6	18
193	Spin-Wave-Mode Coexistence on the Nanoscale: A Consequence of the Oersted-Field-Induced Asymmetric Energy Landscape. Physical Review Letters, 2013, 110, 257202.	2.9	98
194	Tunable magnetic anisotropy in two-dimensional arrays of Ni80Fe20 elements. Applied Physics Letters, 2013, 103, .	1.5	6
195	Topological chiral magnonic edge mode in a magnonic crystal. Physical Review B, 2013, 87, .	1.1	312
196	Observation of propagating edge spin waves modes. Journal of Applied Physics, 2013, 114, .	1.1	12
197	Sublattice magnetizations of ultrathin alloy [Co1â^'cGdc]n nanojunctions between Co leads using the combined effective field theory and mean field theory methods. Journal of Applied Physics, 2013, 113, 094303.	1.1	14
198	Effect of hole shape on spin-wave band structure in one-dimensional magnonic antidot waveguide. Journal of Applied Physics, 2013, 114, .	1.1	33
199	Magnetization dynamics of magnetic domain wall imprinted magnetic films. New Journal of Physics, 2014, 16, 023010.	1.2	13

#	ARTICLE	IF	CITATIONS
200	Goos-HA ¤ chen effect and bending of spin wave beams in thin magnetic films. Applied Physics Letters, 2014, 105, .	1.5	50
201	Resonant mode dynamics of two-dimensional ferromagnetic antidot lattices in the effective stripe limit. , 2014, , .		0
202	Elasto-dipolar magnons—a new class of nonexchange spin-wave excitations. JETP Letters, 2014, 100, 319-323.	0.4	1
203	Micromagnetic and Plane Wave Analysis of an Antidot Magnonic Crystal with a Ring Defect. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	6
204	SPIN WAVES ALONG THE EDGE STATES. Spin, 2014, 04, 1440003.	0.6	1
205	Giant magnetic modulation of a planar, hybrid metamolecule resonance. New Journal of Physics, 2014, 16, 063002.	1.2	20
206	Microwave absorption properties of permalloy nanodots in the vortex and quasi-uniform magnetization states. New Journal of Physics, 2014, 16, 063044.	1.2	15
207	Fabrication and Characterization of 2-D Magnetic Antidot Arrays for Application in Magnonic Crystals. , 2014, , .		0
208	Coupling of spinwave modes in wire structures. Applied Physics Letters, 2014, 104, 102404.	1.5	16
209	Optically induced spin wave dynamics in [Co/Pd]8 antidot lattices with perpendicular magnetic anisotropy. Applied Physics Letters, 2014, 105, .	1.5	26
210	Spin Hall controlled magnonic microwaveguides. Applied Physics Letters, 2014, 104, .	1.5	38
211	Nonreciprocal dispersion of spin waves in ferromagnetic thin films covered with a finite-conductivity metal. Journal of Applied Physics, 2014, 115, .	1.1	36
212	Spin-wave based realization of optical computing primitives. Journal of Applied Physics, 2014, 115, .	1.1	61
213	How finite sample dimensions affect the reversal process of magnetic dot arrays. Applied Physics Letters, 2014, 105, 162407.	1.5	8
214	Microwave eddy-current shielding effect in metallic films and periodic nanostructures of sub-skin-depth thicknesses and its impact on stripline ferromagnetic resonance spectroscopy. Journal of Applied Physics, 2014, 116, .	1.1	32
215	Field-controlled rotation of spin-wave nanochannels in bi-component magnonic crystals. Journal Physics D: Applied Physics, 2014, 47, 325001.	1.3	16
216	Microwave magnetic dynamics in highly conducting magnetic nanostructures. Journal of Applied Physics, 2014, 115, 173903.	1.1	13
217	On the elastically coupled magnetic and ferroelectric domains: A phase-field model. Applied Physics Letters, 2014, 104, .	1.5	15

#	Article	IF	CITATIONS
218	Terahertz emission spectroscopy of laser-induced spin dynamics in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TmFeO</mml:mi><mml:mn>3xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>ErFeO</mml:mi><mml:mn>3Physical Review B, 2014, 90, .</mml:mn></mml:msub></mml:mn></mml:msub></mml:math 	ıml:mn> <br nl:mn> <td>/mml;msub><!--<br-->nml:msub></td>	/mml;msub> <br nml:msub>
219	Observation of magnonic band gaps in magnonic crystals with nonreciprocal dispersion relation. Physical Review B, 2014, 90, .	1.1	55
220	Bandwidth broadening and asymmetric softening of collective spin waves in magnonic crystals. Applied Physics Letters, 2014, 104, .	1.5	18
221	Magnon-mediated Dzyaloshinskii-Moriya torque in homogeneous ferromagnets. Physical Review B, 2014, 90, .	1.1	32
222	Magnonic Bandgaps in Metalized 1-D YIG Magnonic Crystals. IEEE Transactions on Magnetics, 2014, 50, 1-3.	1.2	9
223	Artificial band structure in anisotropic magnetic vortex crystals. Physical Review B, 2014, 89, .	1.1	9
224	Magnonic Bandgap Control in Coupled Magnonic Crystals. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	25
225	Time-resolved Kerr microscopy of coupled transverse domain walls in a pair of curved nanowires. Journal of Applied Physics, 2014, 115, .	1.1	5
226	Nonlinear Magnetostatic Wave Propagation through One Dimensional Finite Magnonic Crystals. Solid State Phenomena, 2014, 215, 394-399.	0.3	3
227	Spin wave non-reciprocity and beating in permalloy by the time-resolved magneto-optical Kerr effect. Journal Physics D: Applied Physics, 2014, 47, 385002.	1.3	2
228	Spin waves in CoFeB on ferroelectric domains combining spin mechanics and magnonics. Solid State Communications, 2014, 198, 13-17.	0.9	28
229	Effects of point defect shapes on defect modes in two-dimensional magnonic crystals. Journal of Magnetism and Magnetic Materials, 2014, 356, 32-36.	1.0	6
230	Magneto- to Electroactive Transmutation of Spin Waves in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>ErMnO</mml:mi></mml:mrow><mml:mrow> Physical Review Letters, 2014, 112, 137201.</mml:mrow></mml:msub></mml:mrow></mml:math 	< 2:9 <mmi:mn< td=""><td>>3</td></mmi:mn<>	>3
231	Magnetostatic wave analog of integer quantum Hall state in patterned magnetic films. Physical Review B, 2014, 89, .	1.1	23
232	Photon Polarization Precession Spectroscopy for High-Resolution Studies of Spin Waves. Physical Review Letters, 2014, 112, 117205.	2.9	2
233	The phase accumulation and antenna near field of microscopic propagating spin wave devices. Applied Physics Letters, 2014, 104, 032408.	1.5	23
234	An antidot array as an edge for total non-reflection of spin waves in yttrium iron garnet films. Applied Physics Letters, 2014, 104, 082412.	1.5	15
235	Magnonic band structure, complete bandgap, and collective spin wave excitation in nanoscale two-dimensional magnonic crystals. Journal of Applied Physics, 2014, 115, 043917.	1.1	30

#	Article	IF	CITATIONS
236	Self-generation of dissipative solitons in magnonic quasicrystal active ring resonator. Journal of Applied Physics, 2014, 115, 053908.	1.1	31
237	Ballistic transport of spin waves incident from cobalt leads across cobalt–gadolinium alloy nanojunctions. Journal of Magnetism and Magnetic Materials, 2014, 363, 66-76.	1.0	20
238	Realization of a spin-wave multiplexer. Nature Communications, 2014, 5, 3727.	5.8	314
239	Spin wave spectra and spatially modulated structures in BiFeO3. Low Temperature Physics, 2014, 40, 58-64.	0.2	3
240	Tunable eigenmodes of coupled magnetic vortex oscillators. Applied Physics Letters, 2014, 104, .	1.5	27
241	Tunable band gaps in a layered structure magnonic crystal-ferroelectric. Journal of Communications Technology and Electronics, 2014, 59, 467-473.	0.2	12
242	Nanomagnonic devices based on the spin-transfer torque. Nature Nanotechnology, 2014, 9, 509-513.	15.6	130
243	Magnons in one-dimensional k-component Fibonacci structures. Journal of Applied Physics, 2014, 115, 17C115.	1.1	6
244	Review and prospects of magnonic crystals and devices with reprogrammable band structure. Journal of Physics Condensed Matter, 2014, 26, 123202.	0.7	449
245	Spin-torque building blocks. Nature Materials, 2014, 13, 11-20.	13.3	539
246	A scheme for tunable magnon laser based on a hybrid quantum dot-ferromagnetic waveguide system. Journal Physics D: Applied Physics, 2014, 47, 065002.	1.3	1
247	Influence of structural changes in a periodic antidot waveguide on the spin-wave spectra. Physical Review B, 2014, 89, .	1.1	27
248	Transverse magneto-optical Kerr effect in subwavelength dielectric gratings. Optics Express, 2014, 22, 8720.	1.7	39
249	Full Control of the Spin-Wave Damping in a Magnetic Insulator Using Spin-Orbit Torque. Physical Review Letters, 2014, 113, 197203.	2.9	143
250	Interface boundary conditions for dynamic magnetization and spin wave dynamics in a ferromagnetic layer with the interface Dzyaloshinskii-Moriya interaction. Journal of Applied Physics, 2014, 115, .	1.1	69
251	Multiferroic periodic structures based on magnonic crystals for electronically tunable microwave devices. Technical Physics Letters, 2014, 40, 568-570.	0.2	32
252	Micromagnetism of permalloy antidot arrays prepared from alumina templates. Nanotechnology, 2014, 25, 475703.	1.3	11
253	Spin waves and domain wall modes in curved magnetic nanowires. Journal of Physics Condensed Matter, 2014, 26, 266003.	0.7	7

		PORT	
#	Article	IF	CITATIONS
254	Magnon transistor for all-magnon data processing. Nature Communications, 2014, 5, 4700.	5.8	632
255	Interfacial Dzialoshinskii–Moriya interaction induced nonreciprocity of spin waves in magnonic waveguides. RSC Advances, 2014, 4, 46454-46459.	1.7	37
256	Spectrum of normal waves in one-dimensional magnonic crystals. Physics of the Solid State, 2014, 56, 2191-2198.	0.2	0
257	Lattice and spin excitations in multiferroic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>h</mml:mi>-YMnO<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>w /><mml:mn>3</mml:mn></mml:mi></mml:msub>. Physical Review B. 2014. 89</mml:math </mml:math 	1.1	24
258	Magnetization boundary conditions at a ferromagnetic interface of finite thickness. Journal of Physics Condensed Matter, 2014, 26, 406001.	0.7	32
259	Thermomagnonic diode: Rectification of energy and magnetization currents. Physical Review B, 2014, 89, .	1.1	19
260	Electric-Field Coupling to Spin Waves in a Centrosymmetric Ferrite. Physical Review Letters, 2014, 113, 037202.	2.9	81
261	The 2014 Magnetism Roadmap. Journal Physics D: Applied Physics, 2014, 47, 333001.	1.3	329
262	Coupling spin waves to circuits through PEEC approach. , 2014, , .		1
263	Splitting of spin-wave modes in thin films with arrays of periodic perturbations: theory and experiment. New Journal of Physics, 2014, 16, 023015.	1.2	34
264	Close-up on spin dynamics. Nature Materials, 2014, 13, 770-771.	13.3	1
265	Spin waves in ferromagnetic insulators coupled via a normal metal. Physical Review B, 2014, 90, .	1.1	15
266	Magnetic antidot to dot crossover in Co and Py nanopatterned thin films. Physical Review B, 2014, 89, .	1.1	35
267	Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field. Applied Physics Letters, 2014, 104, 092405.	1.5	28
268	Control of propagating spin waves via spin transfer torque in a metallic bilayer waveguide. Physical Review B, 2014, 89, .	1.1	48
269	A continuous excitation approach to determine time-dependent dispersion diagrams in 2D magnonic crystals. Journal Physics D: Applied Physics, 2014, 47, 315002.	1.3	8
270	Self-oscillation of standing spin wave in ring resonator with proportional-integral-derivative control. Journal of Applied Physics, 2014, 115, 17D115.	1.1	3
271	Channelling spin waves. Nature Nanotechnology, 2014, 9, 503-504.	15.6	19

#	Article	IF	CITATIONS
272	Tunable magnetic anisotropy in permalloy thin films grown on holographic relief gratings. Applied Physics Letters, 2014, 104, 082408.	1.5	17
273	Long-lived spin plasmons in a spin-polarized two-dimensional electron gas. Physical Review B, 2014, 90, .	1.1	44
274	Effects of symmetry reduction on magnon band gaps in two-dimensional magnonic crystals. Journal Physics D: Applied Physics, 2014, 47, 065004.	1.3	6
275	High-resolution imaging of remanent state and magnetization reversal of superdomain structures in high-density cobalt antidot arrays. Nanotechnology, 2014, 25, 385703.	1.3	10
276	Homogenization of nanostructured media in magnetic field. Photonics and Nanostructures - Fundamentals and Applications, 2014, 12, 447-459.	1.0	4
277	Magnon band structure and magnon density in one-dimensional magnonic crystals. Journal of Magnetism and Magnetic Materials, 2014, 368, 180-190.	1.0	4
278	Recent Advances in Nanocontact Spin-Torque Oscillators. IEEE Transactions on Magnetics, 2014, 50, 1-7.	1.2	21
279	Josephson effects in a Bose–Einstein condensate of magnons. Annals of Physics, 2014, 346, 182-194.	1.0	19
280	Spectrum Gaps of Spin Waves Generated by Interference in a Uniform Nanostripe Waveguide. Scientific Reports, 2015, 4, 5917.	1.6	7
281	Angular Control of a Hybrid Magnetic Metamolecule Using Anisotropic FeCo. Physical Review Applied, 2015, 4, .	1.5	7
282	Band structure engineering of two-dimensional magnonic vortex crystals. Physical Review B, 2015, 91, .	1.1	24
283	Near-field observation of a surface-plasmon wave interacting with a three-dimensional wedge-shaped structure. Physical Review B, 2015, 91, .	1.1	2
284	Phenomenological description of the nonlocal magnetization relaxation in magnonics, spintronics, and domain-wall dynamics. Physical Review B, 2015, 92, .	1.1	28
285	rerahertz magnetization dynamics induced by femtosecond resonant pumping or <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mmi:msup> <mmi:mrow> <mmi:mi>Dy</mmi:mi> in the multisublattice antiferromagnet <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mmi:msub> <mmi:mi>DyFeO </mmi:mi> <mmi:mn>3 <td>nrow><m 1.1 nl:mn><td>ml:mrow> <m 26 1ml:msub> <!--</td--></m </td></m </td></mmi:mn></mmi:msub></mmi:math </mmi:mrow></mmi:msup></mmi:math 	nrow> <m 1.1 nl:mn><td>ml:mrow> <m 26 1ml:msub> <!--</td--></m </td></m 	ml:mrow> <m 26 1ml:msub> <!--</td--></m
286	Physical Review 8, 2015, 92, . Tailoring the magnetodynamic properties of nanomagnets using magnetocrystalline and shape anisotropies. Physical Review B, 2015, 92, .	1.1	15
287	Electron density magnification of the collective spin-orbit field in quantum wells. Physical Review B, 2015, 92, .	1.1	10
288	Influence of magnetic surface anisotropy on spin wave reflection from the edge of ferromagnetic film. Physical Review B, 2015, 92, .	1.1	40
289	Antiferromagnetic magnonic crystals. Physical Review B, 2015, 92, .	1.1	21

		CITATION RE	PORT	
#	Article		IF	CITATIONS
290	Narrow Magnonic Waveguides Based on Domain Walls. Physical Review Letters, 2015, 1	14, 247206.	2.9	150
291	Spin-Wave Diode. Physical Review X, 2015, 5, .		2.8	131
292	Saturation of attenuation length of spin waves in thick permalloy films. Japanese Journal Physics, 2015, 54, 113001.	of Applied	0.8	6
293	Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes. App Letters, 2015, 107, .	lied Physics	1.5	82
294	Brillouin light scattering study of transverse mode coupling in confined yttrium iron garr strontium titanate multiferroic. Journal of Applied Physics, 2015, 118, .	iet/barium	1.1	39
295	Spin waves damping in nanometre-scale magnetic materials (Review Article). Low Tempe 2015, 41, 670-681.	erature Physics,	0.2	9
296	Tunable spin wave spectra in two-dimensional Ni80Fe20 antidot lattices with varying lat Journal of Applied Physics, 2015, 118, .	tice symmetry.	1.1	26
297	Parallel database search and prime factorization with magnonic holographic memory depoint of Applied Physics, 2015, 118, .	vices. Journal	1.1	14
298	Self-aligned Ni/NiFe/Fe magnetic lateral heterostructures. Journal of Applied Physics, 201	5, 118, 153901.	1.1	2
299	Coherent precession in arrays of dipolar-coupled soft magnetic nanodots. Journal of App 2015, 117, .	lied Physics,	1.1	9
300	A bridge for accelerating materials by design. Npj Computational Materials, 2015, 1, .		3.5	47
301	Traveling surface spin-wave resonance spectroscopy using surface acoustic waves. Journ Physics, 2015, 118, .	al of Applied	1.1	68
302	Tuning of interlayer exchange coupling in Ni80Fe20/Ru/Ni80Fe20 nanowires. Journal of A 2015, 118, 113902.	Applied Physics,	1.1	5
303	Graded-index magnonics. Low Temperature Physics, 2015, 41, 760-766.		0.2	40
304	Stabilization of weak ferromagnetism by strong magnetic response to epitaxial strain in BiFeO3. Scientific Reports, 2015, 5, 12969.	multiferroic	1.6	17
305	The Landau-Lifshitz equation: 80 years of history, advances, and prospects. Low Tempera 2015, 41, 663-669.	ature Physics,	0.2	11
306	Angle-resolved spin wave band diagrams of square antidot lattices studied by Brillouin lig scattering. Applied Physics Letters, 2015, 106, .	şht	1.5	19
307	A scenario for magnonic spin-wave traps. Scientific Reports, 2015, 5, 12824.		1.6	18

#	Article	IF	CITATIONS
308	Universal dependence of the spin wave band structure on the geometrical characteristics of two-dimensional magnonic crystals. Scientific Reports, 2015, 5, 10367.	1.6	43
309	Tunable Magnetization Dynamics in Interfacially Modified Ni81Fe19/Pt Bilayer Thin Film Microstructures. Scientific Reports, 2015, 5, 17596.	1.6	39
310	Band gap control in a line-defect magnonic crystal waveguide. Applied Physics Letters, 2015, 107, .	1.5	16
311	Width-modulated magnonic crystal and its application for spin-wave logic. , 2015, , .		0
312	Theoretical analysis of microwave magnonic crystals of finite length. Journal of Physics: Conference Series, 2015, 661, 012063.	0.3	0
313	Tunable spin wave properties in [Co/Ni80Fe20]rmultilayers with the number of bilayer repetition. Journal Physics D: Applied Physics, 2015, 48, 395001.	1.3	6
314	Templates as Shadow Masks to Tune the Magnetic Anisotropy in Nanostructured CoCrPt/Ti Bilayer Films. Advanced Materials Interfaces, 2015, 2, 1400551.	1.9	3
315	Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method. Beilstein Journal of Nanotechnology, 2015, 6, 976-986.	1.5	5
316	Magneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures. Nanomaterials, 2015, 5, 577-613.	1.9	81
317	Micro-focused Brillouin light scattering: imaging spin waves at the nanoscale. Frontiers in Physics, 2015, 3, .	1.0	215
318	Skyrmion-Based Dynamic Magnonic Crystal. Nano Letters, 2015, 15, 4029-4036.	4.5	109
319	Universal helimagnon and skyrmion excitations inÂmetallic, semiconducting and insulating chiralÂmagnets. Nature Materials, 2015, 14, 478-483.	13.3	194
320	Magnon spintronics. Nature Physics, 2015, 11, 453-461.	6.5	1,804
321	A spin-wave logic gate based on a width-modulated dynamic magnonic crystal. Applied Physics Letters, 2015, 106, .	1.5	104
322	Magnonic beam splitter: The building block of parallel magnonic circuitry. Applied Physics Letters, 2015, 106, .	1.5	81
323	X-Ray Imaging of Magnetic Structures. IEEE Transactions on Magnetics, 2015, 51, 1-31.	1.2	37
324	Directly Excited Backward Volume Spin Waves in Permalloy Microstrips. IEEE Magnetics Letters, 2015, 6, 1-4.	0.6	10
325	Direct detection of neighboring stray field interaction on a single nanodisk using micro-focused Brillouin Light Scattering spectroscopy. , 2015, , .		0

# 326	ARTICLE Electromagnetic Sensors Based on Magnonic Crystals for Applications in the Fields of Biomedical and NDT. Procedia Engineering, 2015, 120, 1241-1244.	IF 1.2	CITATIONS
327	Magnonics: a new research area in spintronics and spin wave electronics. Physics-Uspekhi, 2015, 58, 1002-1028.	0.8	174
328	Magnetically tunable multi-way splitters based on unidirectional properties of magnetic metamaterials. , 2015, , .		0
329	Thickness dependence of spin wave nonreciprocity in permalloy film. Japanese Journal of Applied Physics, 2015, 54, 083002.	0.8	18
330	Opportunities at the Frontiers of Spintronics. Physical Review Applied, 2015, 4, .	1.5	287
331	Arrays of elliptical Fe(001) nanoparticles: Magnetization reversal, dipolar interactions, and effects of finite array sizes. Physical Review B, 2015, 92, .	1.1	5
332	Width-modulated magnonic crystal and its application for spin-wave logic. , 2015, , .		0
333	Spin waves in a ferromagnetic nanotube in the presence of a spin-polarized current. , 2015, , .		0
334	Waveguide properties in two-dimensional magnonic crystals with line defects. Journal of Magnetism and Magnetic Materials, 2015, 377, 286-290.	1.0	9
335	Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 69, 253-293.	1.3	133
336	Spin wave ballistic transport properties of <mmilmath xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0028.gif" overflow="scroll"> <mmil:mrow> <mmil:mrow> <mmil:mow> <mmil:mow> <mmil:mow> <mmil:mow> <mmil:mow> <mmil:mow> <mmil:mow> <mmil:mow> <mmil:mrow> <mm< td=""><td>1.0 :mrow><r< td=""><td>nml:mn>1</td></r<></td></mm<></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mrow></mmil:mow></mmil:mow></mmil:mow></mmil:mow></mmil:mow></mmil:mow></mmil:mow></mmil:mow></mmil:mrow></mmil:mrow></mmilmath 	1.0 :mrow> <r< td=""><td>nml:mn>1</td></r<>	nml:mn>1
337	s. Journal of Magnetism and Magnetic Materials, 2015, 384, 18-26. Size and shape dependence study of magnetization reversal in magnetic antidot lattice arrays. Journal of Magnetism and Magnetic Materials, 2015, 382, 158-164.	1.0	21
338	Spatial Spectrum Analyzer (SSA): A tool for calculations of spatial distribution of fast Fourier transform spectrum from Object Oriented Micromagnetic Framework output data. Computer Physics Communications, 2015, 189, 207-212.	3.0	10
339	Long-living terahertz magnons in ultrathin metallic ferromagnets. Nature Communications, 2015, 6, 6126.	5.8	36
340	Dipolar field-induced spin-wave waveguides for spin-torque magnonics. Applied Physics Letters, 2015, 106, .	1.5	52
341	Magnonic Waveguides Studied by Microfocus Brillouin Light Scattering. IEEE Transactions on Magnetics, 2015, 51, 1-15.	1.2	102
342	Comprehensive Theoretical and Experimental Analysis of Spin Waves in Magnetic Thin Film. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	2
343	Evolution of the ferromagnetic resonance spectrum of a hexagonal antidot lattice with film thickness: Experiment and numerical simulations. Journal of Applied Physics, 2015, 117, 073903.	1.1	8

	СПАПС	IN REPORT	
#	Article	IF	CITATIONS
344	Spin-wave propagation in domain wall magnonic crystal. Europhysics Letters, 2015, 109, 37008.	0.7	18
345	Axially and radially quantized spin waves in thick permalloy nanodots. Physical Review B, 2015, 92, .	1.1	11
346	Towards graded-index magnonics: Steering spin waves in magnonic networks. Physical Review B, 2015, 92, .	1.1	110
347	Combined analysis of ferromagnetic materials using the Heisenberg Green functions and Ising EFT methods. Journal of Magnetism and Magnetic Materials, 2015, 391, 49-59.	1.0	7
348	Dissipationless Multiferroic Magnonics. Physical Review Letters, 2015, 114, 157203.	2.9	45
349	Guided magnon transport in spin chains: Transport speed and correcting for disorder. Physical Review A, 2015, 91, .	1.0	6
350	Spin-wave bound modes in a circular array of magnetic inclusions embedded into a metallized ferromagnetic thin-film matrix. Physical Review B, 2015, 91, .	1.1	11
351	Frequency-selective manipulation of spin waves: micromagnetic texture as amplitude valve and mode modulator. New Journal of Physics, 2015, 17, 023020.	1.2	3
352	Terahertz-driven magnetism dynamics in the orthoferrite DyFeO3. Applied Physics Letters, 2015, 106, .	1.5	31
353	Spin Precession Mapping at Ferromagnetic Resonance via Nuclear Resonant Scattering of Synchrotron Radiation. Physical Review Letters, 2015, 114, 147601.	2.9	13
354	Field-Controlled Phase-Rectified Magnonic Multiplexer. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	43
355	Surface-topography induced optical and magneto-optical anisotropy of permalloy gratings. Journal Physics D: Applied Physics, 2015, 48, 305002.	1.3	7
356	Spin waves and electromagnetic waves in magnetic nanowires. , 2015, , 679-725.		0
357	Edge Rotational Magnons in Magnonic Crystals. Solid State Phenomena, 0, 233-234, 38-42.	0.3	0
358	Current-Induced Magnetization Dynamics in 1-D Bicomponent Magnonic Crystal. IEEE Transactions on Magnetics, 2015, 51, 1-7.	1.2	0
359	Tunable configurational anisotropy in collective magnetization dynamics of Ni80Fe20 nanodot arrays with varying dot shapes. Journal of Applied Physics, 2015, 117, .	1.1	28
360	Magnonic Band Structure in a Skyrmion Magnonic Crystal. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	8
361	Spin wave differential circuit for realization of thermally stable magnonic sensors. Applied Physics Letters, 2015, 106, 132412.	1.5	8

#	Article	IF	CITATIONS
362	Analysis of the Circuit-Field Interactions in Propagating Spin-Wave Experiments. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	0
363	Burst-mode manipulation of magnonic vortex crystals. Physical Review B, 2015, 91, .	1.1	9
364	Broadband and total autocollimation of spin waves using planar magnonic crystals. Journal of Applied Physics, 2015, 117, 143901.	1.1	9
365	One-Dimensional Magnonic Crystal for Magnetic Field Sensing. Journal of Superconductivity and Novel Magnetism, 2015, 28, 2071-2075.	0.8	19
366	Description of a dissipative quantum spin dynamics with a Landau-Lifshitz/Gilbert like damping and complete derivation of the classical Landau-Lifshitz equation. European Physical Journal B, 2015, 88, 1.	0.6	25
367	Magnonic band gaps in YIG-based one-dimensional magnonic crystals: An array of grooves versus an array of metallic stripes. Physical Review B, 2015, 91, .	1.1	43
368	Spin waves in micro-structured yttrium iron garnet nanometer-thick films. Journal of Applied Physics, 2015, 117, .	1.1	50
369	Thickness- and temperature-dependent magnetodynamic properties of yttrium iron garnet thin films. Journal of Applied Physics, 2015, 117, .	1.1	46
370	Direct Detection of Static Dipolar Interaction on a Single Nanodisk Using Microfocused Brillouin Light Scattering Spectroscopy. Advanced Electronic Materials, 2015, 1, 1500070.	2.6	6
371	All-optical characterisation of the spintronic Heusler compound Co ₂ Mn _{0.6} Fe _{0.4} Si. Journal Physics D: Applied Physics, 2015, 48, 164015.	1.3	15
372	Localization of magnetic and electronic excitations in nanotubes with line defects. International Journal of Modern Physics B, 2015, 29, 1550074.	1.0	4
373	Interaction of microwave electromagnetic waves with 3D magnetic metamaterials. Photonics and Nanostructures - Fundamentals and Applications, 2015, 15, 59-72.	1.0	9
374	Tunable picosecond spin dynamics in two dimensional ferromagnetic nanodot arrays with varying lattice symmetry. RSC Advances, 2015, 5, 34027-34031.	1.7	9
375	Magnetostatic surface waves in a ferrite–ferromagnetic metal layered medium based on yttrium iron garnet epitaxial films and TbCo2/FeCo nanostructures. Journal of Communications Technology and Electronics, 2015, 60, 999-1005.	0.2	5
376	Modeling the sublattice magnetizations for the layered bcc nanojunction …Fe[Fe1â^'cCoc]â""Fe… systems. Journal of Magnetism and Magnetic Materials, 2015, 396, 16-25.	1.0	5
377	Magnonic Band Structure and Filtering Properties of Square Antidot Lattices in Different Configurations: A Micromagnetic Study. IEEE Magnetics Letters, 2015, 6, 1-4.	0.6	8
378	All-optical investigation of tunable picosecond magnetization dynamics in ferromagnetic nanostripes with a width down to 50 nm. Nanoscale, 2015, 7, 18312-18319.	2.8	25
379	Magnetostatic spin wave in a very thin CoFeB film grown on an amorphous FeZr buffer layer. Journal of the Korean Physical Society, 2015, 67, 906-910.	0.3	1

#	Article	IF	CITATIONS
380	Interferometric properties of standing spin waves and the application to a phase comparator. Journal of Applied Physics, 2015, 117, 17A719.	1.1	2
381	Rigorous numerical study of strong microwave photon-magnon coupling in all-dielectric magnetic multilayers. Journal of Applied Physics, 2015, 117, .	1.1	10
382	Electric-field control of electromagnon propagation and spin-wave injection in a spiral multiferroic/ferromagnet composite. Journal of Applied Physics, 2015, 117, .	1.1	5
383	Micro-focused Brillouin light scattering study of the magnetization dynamics driven by Spin Hall effect in a transversely magnetized NiFe nanowire. Journal of Applied Physics, 2015, 117, 17D504.	1.1	6
384	Eddy current interactions in a ferromagnet-normal metal bilayer structure, and its impact on ferromagnetic resonance lineshapes. Journal of Applied Physics, 2015, 117, .	1.1	26
385	Experimental observation of the interaction of propagating spin waves with Néel domain walls in a Landau domain structure. Applied Physics Letters, 2015, 106, .	1.5	22
386	Voltage modulation of propagating spin waves in Fe. Journal of Applied Physics, 2015, 117, 17A905.	1.1	12
387	Damping factor estimation using spin wave attenuation in permalloy film. Journal of Applied Physics, 2015, 117, .	1.1	12
388	Tunable Bandgaps in Layered Structure Magnonic Crystal–Ferroelectric. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	19
389	Fabrication and Characterization of a Microwave Filter Based on a Nanowire-Supported Magnetic Photonic Band Gap Material. Journal of Superconductivity and Novel Magnetism, 2015, 28, 3565-3569.	0.8	2
390	Field-controlled phase-rectified magnonic multiplexor. , 2015, , .		1
391	Direct observation of closure domain wall mediated spin waves. Applied Physics Letters, 2015, 107, .	1.5	22
392	Conversion of magnetostatic spin waves propagating through a junction of magnonic waveguides. , 2015, , .		0
393	Manganese Doping of Monolayer MoS ₂ : The Substrate Is Critical. Nano Letters, 2015, 15, 6586-6591.	4.5	357
394	Spin wave vortex from the scattering on Bloch point solitons. Annals of Physics, 2015, 363, 364-370.	1.0	5
395	Polarization control in magnonic vortex crystals. , 2015, , .		0
396	Mesoscale magnetism. Current Opinion in Solid State and Materials Science, 2015, 19, 253-263.	5.6	20
397	Skyrmion-like bubbles and stripes in a thin ferromagnetic film with lattice of antidots. Journal of Magnetism and Magnetic Materials, 2015, 377, 153-158.	1.0	9

#	Article	IF	CITATIONS
398	Metamaterial Properties of 2D Ferromagnetic Nanostructures: From Continuous Ferromagnetic Films to Magnonic Crystals. , 2016, , .		0
399	Spin wave damping in periodic and quasiperiodic magnonic structures. Journal Physics D: Applied Physics, 2016, 49, 175001.	1.3	19
400	Spin–orbit stiffness of the spinâ€polarized electron gas. Physica Status Solidi - Rapid Research Letters, 2016, 10, 315-319.	1.2	2
401	Spin-wave instabilities of ferromagnetic nanowire stripes under parallel pumping. Journal of Physics Condensed Matter, 2016, 28, 186001.	0.7	12
402	Phase-to-intensity conversion of magnonic spin currents and application to the design of a majority gate. Scientific Reports, 2016, 6, 38235.	1.6	29
403	Raman spectroscopy studies of spin-wave in V ₂ O ₃ thin films. Journal Physics D: Applied Physics, 2016, 49, 465304.	1.3	8
404	Demonstration of a robust magnonic spin wave interferometer. Scientific Reports, 2016, 6, 30268.	1.6	49
405	Direct observation of dynamic modes excited in a magnetic insulator by pure spin current. Scientific Reports, 2016, 6, 32781.	1.6	30
406	Transition from strongly collective to completely isolated ultrafast magnetization dynamics in two-dimensional hexagonal arrays of nanodots with varying inter-dot separation. RSC Advances, 2016, 6, 110393-110399.	1.7	12
407	Spin-transfer torque based damping control of parametrically excited spin waves in a magnetic insulator. Applied Physics Letters, 2016, 108, .	1.5	36
408	Magnonic band structure of domain wall magnonic crystals. IEEE Transactions on Magnetics, 2016, , 1-1.	1.2	3
409	Reconfigurable heat-induced spin wave lenses. Applied Physics Letters, 2016, 109, 232407.	1.5	37
410	Microwave excitation of spin wave beams in thin ferromagnetic films. Scientific Reports, 2016, 6, 22367.	1.6	36
411	Spatially resolved detection of complex ferromagnetic dynamics using optically detected nitrogen-vacancy spins. Applied Physics Letters, 2016, 108, .	1.5	22
412	Ferromagnetic resonance study of interface coupling for spin waves in narrow NiFe/Ru/NiFe multilayer nanowires. Physical Review B, 2016, 94, .	1.1	11
413	Artificial metamaterials for reprogrammable magnetic and microwave properties. Applied Physics Letters, 2016, 108, .	1.5	24
414	Nanoscale device architectures derived from biological assemblies: The case of tobacco mosaic virus and (apo)ferritin. Japanese Journal of Applied Physics, 2016, 55, 03DA01.	0.8	13
415	High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque. Applied Physics Letters, 2016, 108, .	1.5	79

#	Article	IF	CITATIONS
416	Band gap formation and control in coupled periodic ferromagnetic structures. Journal of Applied Physics, 2016, 120, .	1.1	28
417	Magnonics: Selective heat production in nanocomposites with different magnetic nanoparticles. Journal of Applied Physics, 2016, 119, .	1.1	3
418	Low-current, narrow-linewidth microwave signal generation in NiMnSb based single-layer nanocontact spin-torque oscillators. Applied Physics Letters, 2016, 109, .	1.5	3
419	Frequency selective tunable spin wave channeling in the magnonic network. Applied Physics Letters, 2016, 108, .	1.5	46
420	Spin-wave eigenmodes in single disk-shaped FeB nanomagnet. Physical Review B, 2016, 94, .	1.1	9
421	Collective modes in three-dimensional magnonic vortex crystals. Scientific Reports, 2016, 6, 22402.	1.6	20
422	Eddy-current effects on ferromagnetic resonance: Spin wave excitations and microwave screening effects. Journal of Applied Physics, 2016, 119, .	1.1	18
423	Confined states in photonic-magnonic crystals with complex unit cell. Journal of Applied Physics, 2016, 120, .	1.1	24
424	Spin wave amplification using the spin Hall effect in permalloy/platinum bilayers. Applied Physics Letters, 2016, 108, .	1.5	34
425	Mapping of spin wave propagation in a one-dimensional magnonic crystal. Journal of Applied Physics, 2016, 120, 043901.	1.1	20
426	Spin-wave self-modulation instability in a perpendicularly magnetized magnonic crystal. Journal of Physics: Conference Series, 2016, 769, 012071.	0.3	1
427	Microwave magnetic dynamics in ferromagnetic metallic nanostructures lacking inversion symmetry. Journal of Applied Physics, 2016, 119, .	1.1	14
428	Magnon modes localized on defects in a two-dimensional array of magnetic microparticles with transverse anisotropy. JETP Letters, 2016, 104, 32-36.	0.4	6
429	Influence of lattice defects on the ferromagnetic resonance behaviour of 2D magnonic crystals. Scientific Reports, 2016, 6, 22004.	1.6	29
430	Nonlinear spin wave coupling in adjacent magnonic crystals. Applied Physics Letters, 2016, 109, .	1.5	56
431	Magnetic properties engineering of nanopatterned cobalt antidot arrays. Journal Physics D: Applied Physics, 2016, 49, 175004.	1.3	11
432	Magneto-plasmonic nanoantennas: Basics and applications. Reviews in Physics, 2016, 1, 36-51.	4.4	93
433	Deposition of NiFe(200) and NiFe(111) textured films onto Si/SiO2 substrates by DC magnetron sputtering. Physics of the Solid State, 2016, 58, 1053-1057.	0.2	6

#	Article	IF	CITATIONS
434	Spin Waves Observation and Their Modeling Through Effective Parameters in Antidot Arrays. IEEE Transactions on Magnetics, 2016, 52, 1-5.	1.2	2
435	Numerical modeling of wave processes in coupled magnonic crystals with periods shifted relative to each other. Physics of Wave Phenomena, 2016, 24, 1-6.	0.3	9
436	Fiber optics for spin waves. NPG Asia Materials, 2016, 8, e246-e246.	3.8	55
437	Three-dimensional simulation of irregular dynamics of topological solitons in moving magnetic domain walls. Physics of the Solid State, 2016, 58, 485-496.	0.2	11
438	Tuning the bandgaps in a magnonic crystal–ferroelectric–magnonic crystal layered structure. Physics of the Solid State, 2016, 58, 273-279.	0.2	13
439	Antidot effects on micromagnetic behavior of Py ferromagnetic samples. Journal of Magnetism and Magnetic Materials, 2016, 413, 14-18.	1.0	3
440	Asymptotic behavior of local dipolar fields in thin films. Journal of Magnetism and Magnetic Materials, 2016, 416, 449-456.	1.0	4
441	Nanomagnonics. Journal Physics D: Applied Physics, 2016, 49, 391002.	1.3	11
442	Soliton solution for the Landau-Lifshitz equation of a one-dimensional bicomponent magnonic crystal. Physical Review E, 2016, 94, 032222.	0.8	5
443	Magnetic Snell's law and spin-wave fiber with Dzyaloshinskii-Moriya interaction. Physical Review B, 2016, 94, .	1.1	57
444	Nanostructuring Ferroelectrics via Focused Ion Beam Methodologies. Advanced Functional Materials, 2016, 26, 8367-8381.	7.8	24
446	Skyrmion domain wall collision and domain wall-gated skyrmion logic. Physical Review B, 2016, 94, .	1.1	63
447	Magnon-mediated spin current noise in ferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo> </mml:mo>nonmagnetic conductor hybrids. Physical Review B, 2016, 94, .</mml:math 	1.1	31
448	Antiferromagnetic Spin Wave Field-Effect Transistor. Scientific Reports, 2016, 6, 24223.	1.6	92
449	Controlling Gilbert damping in a YIG film using nonlocal spin currents. Physical Review B, 2016, 94, .	1.1	13
450	Curvature-Induced Asymmetric Spin-Wave Dispersion. Physical Review Letters, 2016, 117, 227203.	2.9	100
451	Magnon Hall effect in AB-stacked bilayer honeycomb quantum magnets. Physical Review B, 2016, 94, .	1.1	57
452	A first theoretical realization of honeycomb topological magnon insulator. Journal of Physics Condensed Matter, 2016, 28, 386001.	0.7	183

		CITATION REPORT		
#	Article		IF	CITATIONS
453	Two-body problem of core-region coupled magnetic vortex stacks. Physical Review B, 20	16, 93, .	1.1	12
454	First-principles studies of the Gilbert damping and exchange interactions for half-metallic alloys. Physical Review B, 2016, 93, .	Heuslers	1.1	21
455	Twist in the bias dependence of spin torques in magnetic tunnel junctions. Physical Revie	ew B, 2016, 93, .	1.1	5
456	Computation of magnons ballistic transport across an ordered magnetic iron-cobalt alloy nanojunction between iron leads. Thin Solid Films, 2016, 616, 6-16.	,	0.8	9
457	Spin-Torque and Spin-Hall Nano-Oscillators. Proceedings of the IEEE, 2016, 104, 1919-19	945.	16.4	276
458	Thickness and temperature dependence of the magnetodynamic damping of pulsed lase La0.7Sr0.3MnO3 on (111)-oriented SrTiO3. Journal of Magnetism and Magnetic Materia 280-284.	r deposited ls, 2016, 420,	1.0	17
459	Magnetic field dependence of the magnon spin diffusion length in the magnetic insulato garnet. Physical Review B, 2016, 93, .	r yttrium iron	1.1	74
460	Reconfigurable wave band structure of an artificial square ice. Physical Review B, 2016, 9	3,.	1.1	64
461	Theoretical formalism for collective spin-wave edge excitations in arrays of dipolarly inter magnetic nanodots. Physical Review B, 2016, 93, .	acting	1.1	28
462	Super-Poissonian Shot Noise of Squeezed-Magnon Mediated Spin Transport. Physical Re 2016, 116, 146601.	view Letters,	2.9	80
463	Snell's Law for Spin Waves. Physical Review Letters, 2016, 117, 037204.		2.9	87
464	Radiation losses and dark mode for spin-wave propagation through a discrete magnetic micro-waveguide. Physical Review B, 2016, 94, .		1.1	11
465	Spin Nernst Effect of Magnons in Collinear Antiferromagnets. Physical Review Letters, 20 217202.)16, 117,	2.9	171
466	Chirality-induced magnon transport in AA-stacked bilayer honeycomb chiral magnets. Jou Physics Condensed Matter, 2016, 28, 47LT02.	ırnal of	0.7	6
467	Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe. Nature Communications, 2016, 7, 12430.		5.8	53
468	Pulse propagation in a nonlinear system on the basis of coupled magnonic crystals. Phys Solid State, 2016, 58, 1967-1974.	ics of the	0.2	8
469	Direct evidence for the spin cycloid in strained nanoscale bismuth ferrite thin films. Natu Communications, 2016, 7, 12664.	re	5.8	40
470	Tunable short-wavelength spin wave excitation from pinned magnetic domain walls. Scie Reports, 2016, 6, 21330.	ntific	1.6	63

		CITATION RE	PORT	
#	Article		IF	CITATIONS
471	Nanoscale control of heat and spin conduction in artificial spin chains. Physical Review	B, 2016, 94, .	1.1	2
472	All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Applied Physics Letters, 2016, 108, 052403.	Hall effect.	1.5	9
473	Magnon heat capacity and magnetic susceptibility of the spin Lieb lattice. Journal of Ma Magnetic Materials, 2016, 417, 208-213.	agnetism and	1.0	26
474	Optical conductivity of the spin Lieb nanolattice. Journal of Magnetism and Magnetic N 419, 240-244.	laterials, 2016,	1.0	8
475	Local probing of magnetic films by optical excitation of magnetostatic waves. Physics c State, 2016, 58, 1128-1134.	of the Solid	0.2	14
476	Magnetoplasmonics and Femtosecond Optomagnetism at the Nanoscale. ACS Photoni 1385-1400.	cs, 2016, 3,	3.2	93
478	Nonreciprocal properties of GHz frequency surface spin waves in nanopatterned ferrom , 2016, , .	nagnetic films.		0
479	Excitation of coherent propagating spin waves by pure spin currents. Nature Communic 10446.	cations, 2016, 7,	5.8	81
480	Static and dynamic properties of three-dimensional dot-type magnonic crystals. Physica Matter, 2016, 486, 177-182.	a B: Condensed	1.3	2
481	Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–o Nature Communications, 2016, 7, 10377.	rbit torque.	5.8	206
482	A reconfigurable waveguide for energy-efficient transmission and local manipulation of in a nanomagnetic device. Nature Nanotechnology, 2016, 11, 437-443.	information	15.6	151
483	Magnetic domain walls as reconfigurable spin-wave nanochannels. Nature Nanotechno 432-436.	ogy, 2016, 11,	15.6	230
484	Dynamical thermal conductivity of the spin Lieb lattice. Solid State Communications, 20 14-20.	016, 234-235,	0.9	16
485	Spin-wave-beam driven synchronization of nanocontact spin-torque oscillators. Nature Nanotechnology, 2016, 11, 280-286.		15.6	119
486	Localization of the electronic excitations in single-walled carbon nanotubes with embed impurities. Journal of Physics Condensed Matter, 2016, 28, 035301.	lded line	0.7	1
487	Terahertz modulation of the Faraday rotation by laser pulses via the optical Kerr effect. Photonics, 2016, 10, 111-114.	Nature	15.6	43
488	Spin waves in a two-sublattice antiferromagnet. A self-similar solution of the Landau-Lif equation. Communications in Nonlinear Science and Numerical Simulation, 2017, 42, 5	shitz 2-61.	1.7	8
489	Order of magnitude improvement of nano-contact spin torque nano-oscillator performa Nanoscale, 2017, 9, 1896-1900.	ance.	2.8	17

		ATION REPORT	
#	Article	IF	CITATIONS
490	Magnetization oscillations and waves driven by pure spin currents. Physics Reports, 2017, 673, 1-31.	10.3	113
491	Suhl instabilities for spin waves in ferromagnetic nanostripes and ultrathin films. Journal of Magnetism and Magnetic Materials, 2017, 426, 380-389.	1.0	12
492	Electrically driven magnetic antenna based on multiferroic composites. Journal of Physics Condensed Matter, 2017, 29, 095804.	0.7	3
493	Magnetic transition from dot to antidot regime in large area Co/Pd nanopatterned arrays with perpendicular magnetization. Nanotechnology, 2017, 28, 085302.	1.3	24
494	A 20 nm spin Hall nano-oscillator. Nanoscale, 2017, 9, 1285-1291.	2.8	55
495	Guided magnonic Michelson interferometer. Scientific Reports, 2017, 7, 41472.	1.6	6
496	Computation of Two-Port Parameters in Magnonic Devices Through Circuit-Field Coupling. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	2
497	X-ray imaging of spin currents and magnetisation dynamics at the nanoscale. Journal of Physics Condensed Matter, 2017, 29, 133004.	0.7	20
498	Enhanced Nonreciprocity of Magnetostatic Surface Waves in Yttrium-Iron-Garnet Films Deposited on Silicon Substrates by Ion-Beam Evaporation. IEEE Magnetics Letters, 2017, 8, 1-5.	0.6	11
499	Lateral transport properties of thermally excited magnons in yttrium iron garnet films. Applied Physics Letters, 2017, 110, .	1.5	22
500	Magnonic Black Holes. Physical Review Letters, 2017, 118, 061301.	2.9	39
501	Voltage-Controlled Spin-Wave Coupling in Adjacent Ferromagnetic-Ferroelectric Heterostructures. Physical Review Applied, 2017, 7, .	1.5	86
502	Creation of unidirectional spin-wave emitters by utilizing interfacial Dzyaloshinskii-Moriya interaction. Physical Review B, 2017, 95, .	1.1	59
503	Formation of the band spectrum of spin waves in 1D magnonic crystals with different types of interfacial boundary conditions. Journal Physics D: Applied Physics, 2017, 50, 094003.	1.3	18
504	Current-induced modulation of backward spin-waves in metallic microstructures. Journal Physics D: Applied Physics, 2017, 50, 094004.	1.3	10
505	Perspectives of using spin waves for computing and signal processing. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1471-1476.	0.9	171
506	Experimental prototype of a spin-wave majority gate. Applied Physics Letters, 2017, 110, .	1.5	158
507	Spin wave surface states in 1D planar magnonic crystals. Journal Physics D: Applied Physics, 2017, 50, 164004.	1.3	16

#	Article	IF	CITATIONS
508	Effect of antiferromagnetic interfacial coupling on spin-wave resonance frequency of multi-layer film. Journal of Magnetism and Magnetic Materials, 2017, 436, 68-76.	1.0	6
509	Unidirectional control of optically induced spin waves. Europhysics Letters, 2017, 117, 67001.	0.7	23
510	Geometrical complexity of the antidots unit cell effect on the spin wave excitations spectra. Journal Physics D: Applied Physics, 2017, 50, 185003.	1.3	10
511	Spin wave and spin flip in hexagonal LuMnO3 single crystal. Applied Physics Letters, 2017, 110, 122405.	1.5	4
512	Magnetization dynamics in magnonic structures with different geometries: interfaces, notches and waveguides. Journal of Physics Condensed Matter, 2017, 29, 214001.	0.7	8
513	Making the Dzyaloshinskii-Moriya interaction visible. Applied Physics Letters, 2017, 110, .	1.5	19
514	Magnonic crystals for data processing. Journal Physics D: Applied Physics, 2017, 50, 244001.	1.3	309
515	Splitting of Ferromagnetic Resonance Spectra in Periodically Modulated 1-D Magnonic Crystal. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	6
516	Overcoming thermal noise in non-volatile spin wave logic. Scientific Reports, 2017, 7, 1915.	1.6	6
517	Analytical study of the edge states in the bosonic Haldane model. Journal of Physics Condensed Matter, 2017, 29, 295701.	0.7	14
518	Spin-Wave Switching in the Side-Coupled Magnonic Stripes. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	5
519	Antiferromagnetic coupling between martensitic twin variants observed by magnetic resonance in Ni-Mn-Sn-Co films. Physical Review B, 2017, 95, .	1.1	19
520	Sub-micrometer yttrium iron garnet LPE films with low ferromagnetic resonance losses. Journal Physics D: Applied Physics, 2017, 50, 204005.	1.3	105
521	Standing spin wave resonant properties of spin-twist structure in exchange coupled composite films. AIP Advances, 2017, 7, 056028.	0.6	0
522	Topological magnon bands in ferromagnetic star lattice. Journal of Physics Condensed Matter, 2017, 29, 185801.	0.7	14
523	Spin wave interference in YIG cross junction. AIP Advances, 2017, 7, .	0.6	15
524	Parametric Resonance of Magnetization Excited by Electric Field. Nano Letters, 2017, 17, 572-577.	4.5	71
525	Brillouin light scattering studies of 2D magnonic crystals. Journal of Physics Condensed Matter, 2017, 29, 073001.	0.7	36

#	Article	IF	CITATIONS
526	Strain and Magnetic Field Induced Spinâ€Structure Transitions in Multiferroic BiFeO ₃ . Advanced Materials, 2017, 29, 1602327.	11.1	76
527	Theory of dual-tunable thin-film multiferroic magnonic crystal. Journal of Applied Physics, 2017, 122, .	1.1	10
528	Pinned domain wall oscillator as a tuneable direct current spin wave emitter. Scientific Reports, 2017, 7, 13559.	1.6	26
529	Mapping the magnonic landscape in patterned magnetic structures. Physical Review B, 2017, 96, .	1.1	32
530	Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes. Physical Review B, 2017, 96, .	1.1	95
531	Topologically Nontrivial Magnon Bands in Artificial Square Spin Ices with Dzyaloshinskii-Moriya Interaction. Physical Review Applied, 2017, 8, .	1.5	24
532	Chiral Spin Mode on the Surface of a Topological Insulator. Physical Review Letters, 2017, 119, 136802.	2.9	33
533	Conversion of electronic to magnonic spin current at a heavy-metal magnetic-insulator interface. Physical Review B, 2017, 95, .	1.1	10
534	Asymmetric spin-wave dispersion in ferromagnetic nanotubes induced by surface curvature. Physical Review B, 2017, 95, .	1.1	43
535	Thermally stable amorphous tantalum yttrium oxide with low IR absorption for magnetophotonic devices. Scientific Reports, 2017, 7, 13805.	1.6	9
536	Role of internal demagnetizing field for the dynamics of a surface-modulated magnonic crystal. Physical Review B, 2017, 95, .	1.1	20
537	Magnonic Weyl semimetal and chiral anomaly in pyrochlore ferromagnets. Physical Review B, 2017, 95, .	1.1	83
538	A switchable spin-wave signal splitter for magnonic networks. Applied Physics Letters, 2017, 111, .	1.5	32
539	Magnon Spin-Momentum Locking: Various Spin Vortices and Dirac magnons in Noncollinear Antiferromagnets. Physical Review Letters, 2017, 119, 107205.	2.9	43
540	Spin wave excitation in sub-micrometer thick Y3Fe5O12films fabricated by pulsed laser deposition on garnet and silicon substrates: A comparative study. Journal of Applied Physics, 2017, 122, 123904.	1.1	19
541	Spectral control of elastic dynamics in metallic nano-cavities. Scientific Reports, 2017, 7, 10600.	1.6	5
542	The role of Snell's law for a magnonic majority gate. Scientific Reports, 2017, 7, 7898.	1.6	47
543	Extrinsic Spin–Orbit Coupling-Induced Large Modulation of Gilbert Damping Coefficient in CoFeB Thin Film on the Graphene Stack with Different Defect Density. Journal of Physical Chemistry C, 2017, 121, 17442-17449.	1.5	8

#	Article	IF	CITATIONS
544	Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale. Physics Reports, 2017, 699, 1-34.	10.3	78
545	Tunable Short-Wavelength Spin-Wave Emission and Confinement in Anisotropy-Modulated Multiferroic Heterostructures. Physical Review Applied, 2017, 8, .	1.5	47
546	Reciprocal excitation of propagating spin waves by a laser pulse and their reciprocal mapping in magnetic metal films. Physical Review B, 2017, 96, .	1.1	22
547	Antiferromagnetic domain wall as spin wave polarizer and retarder. Nature Communications, 2017, 8, 178.	5.8	89
548	Spin wave propagation in a uniformly biased curved magnonic waveguide. Physical Review B, 2017, 96, .	1.1	70
549	Theory of linear spin wave emission from a Bloch domain wall. Physical Review B, 2017, 96, .	1.1	37
550	Magnetization reversal in YIG/GGG(111) nanoheterostructures grown by laser molecular beam epitaxy. Science and Technology of Advanced Materials, 2017, 18, 351-363.	2.8	31
551	Efficient Modulation of Spin Waves in Two-Dimensional Octagonal Magnonic Crystal. ACS Nano, 2017, 11, 8814-8821.	7.3	30
552	Coupled spin waves in magnetic waveguides induced by elastic deformations in YIG–piezoelectric structures. JETP Letters, 2017, 106, 465-469.	0.4	3
553	Helimagnon Resonances in an Intrinsic Chiral Magnonic Crystal. Physical Review Letters, 2017, 119, 237204.	2.9	25
554	Spin-wave propagation and spin-polarized electron transport in single-crystal iron films. Physical Review B, 2017, 96, .	1.1	8
555	Detection of Short-Waved Spin Waves in Individual Microscopic Spin-Wave Waveguides Using the Inverse Spin Hall Effect. Nano Letters, 2017, 17, 7234-7241.	4.5	21
556	Collective spin excitations of helices and magnetic skyrmions: review and perspectives of magnonics in non-centrosymmetric magnets. Journal Physics D: Applied Physics, 2017, 50, 293002.	1.3	165
557	Spin Pumping and Shot Noise in Ferrimagnets: Bridging Ferro- and Antiferromagnets. Physical Review Letters, 2017, 119, 197201.	2.9	46
558	Spin wave modes of width modulated Ni80Fe20/Pt nanostrip detected by spin-orbit torque induced ferromagnetic resonance. Applied Physics Letters, 2017, 111, .	1.5	11
559	Spin-wave modes in ferromagnetic nanodisks, their excitation via alternating currents and fields, and auto-oscillations. Physical Review B, 2017, 95, .	1.1	4
560	Spin-wave propagation in cubic anisotropic materials. NPG Asia Materials, 2017, 9, e392-e392.	3.8	24
561_	Field-induced reentrant magnetoelectric phase in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>LiNiP<u>O</u></mml:mi><mml:mn>4l</mml:mn></mml:msub></mml:math 	ml: m n> <td>مارى 1119-11-11-11-11-11-11-11-11-11-11-11-11</td>	مارى 1119-11-11-11-11-11-11-11-11-11-11-11-11

	1	0
Dhysical Doviou	R 2017 05	
	0, 2017, 75	

		CITATION REPORT		
#	Article		IF	CITATIONS
562	Long-distance spin transport in a disordered magnetic insulator. Nature Physics, 2017	, 13, 987-993.	6.5	69
563	Paving Spin-Wave Fibers in Magnonic Nanocircuits Using Spin-Orbit Torque. Physical R 2017, 7, .	leview Applied,	1.5	16
564	Voltage-controlled nanoscale reconfigurable magnonic crystal. Physical Review B, 201	7, 95, .	1.1	62
565	Influence of spin wave attenuation on a ferromagnetic nanowire-based magnonic Brag Journal of Magnetism and Magnetic Materials, 2017, 426, 794-799.	g mirror.	1.0	2
566	Influence of magnetic anisotropy on dynamic magnonic crystals created by surface ac yttrium iron garnet films. Journal of Magnetism and Magnetic Materials, 2017, 426, 66	oustic waves in 56-669.	1.0	16
567	Magnetization of ultrathin [Fe1â^'Ni] alloy nanojunctions between Fe or Co leads usir EFT-MFT model. Journal of Magnetism and Magnetic Materials, 2017, 423, 359-372.	ıg an Ising	1.0	2
568	Antidot shape dependence of switching mechanism in permalloy samples. Journal of M Magnetic Materials, 2017, 422, 181-187.	lagnetism and	1.0	3
569	Spin Chirality and Hall-Like Transport Phenomena of Spin Excitations. Journal of the Ph of Japan, 2017, 86, 011007.	ysical Society	0.7	36
570	Phase locking of current-driven spin-Hall oscillators: A micromagnetic study. , 2017, , .			0
571	Nonlinear spin waves in dynamic magnonic crystals created by surface acoustic waves garnet films. Journal Physics D: Applied Physics, 2017, 50, 495004.	in yttrium iron	1.3	13
572	The full magnon spectrum of yttrium iron garnet. Npj Quantum Materials, 2017, 2, .		1.8	66
573	Splitting of ferromagnetic resonance spectra of periodically modulated one dimension crystals. , 2017, , .	al magnonic		0
574	Spin-Wave Transport Along In-Plane Magnetized Laterally Coupled Magnonic Stripes. I Letters, 2017, 8, 1-4.	EEE Magnetics	0.6	9
575	Role of interactions in the magneto-plasmonic response at the geometrical threshold continuity. Optics Express, 2017, 25, 32792.	of surface	1.7	11
576	Thermodynamic entanglement of magnonic condensates. Physical Review B, 2018, 97	, .	1.1	12
577	Influence of anisotropic dipolar interaction on the spin dynamics of Ni 80 Fe 20 nanod arranged in honeycomb and octagonal lattices. Journal of Magnetism and Magnetic M 458, 95-104.	ot arrays aterials, 2018,	1.0	11
578	Collective magnetic skyrmion gyrotropic modes in a dot chain. Journal of Physics Com 2018, 2, 035009.	munications,	0.5	7
579	Spin-helix Larmor mode. Scientific Reports, 2018, 8, 3470.		1.6	1

#	Article	IF	CITATIONS
580	Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design. Physical Review Applied, 2018, 9, .	1.5	109
581	Magnon Valve Effect between Two Magnetic Insulators. Physical Review Letters, 2018, 120, 097205.	2.9	97
582	Spin-Current-Controlled Modulation of the Magnon Spin Conductance in a Three-Terminal Magnon Transistor. Physical Review Letters, 2018, 120, 097702.	2.9	95
583	Topological Magnon Modes in Patterned Ferrimagnetic Insulator Thin Films. Nano Letters, 2018, 18, 3032-3037.	4.5	34
584	Exchange-torque-induced excitation of perpendicular standing spin waves in nanometer-thick YIG films. Scientific Reports, 2018, 8, 5755.	1.6	87
585	Multicracking and Magnetic Behavior of Ni ₈₀ Fe ₂₀ Nanowires Deposited onto a Polymer Substrate. Nano Letters, 2018, 18, 3199-3202.	4.5	19
586	Parallel pumping of a ferromagnetic nanostripe: Confinement quantization and off-resonant driving. Journal of Applied Physics, 2018, 123, 043904.	1.1	3
587	Spin-wave intermodal coupling in the interconnection of magnonic units. Applied Physics Letters, 2018, 112, .	1.5	47
588	Fabry–Perot magnonic ballistic coherent transport across ultrathin ferromagnetic lamellar bcc Ni nanostructures between Fe leads. Surface Science, 2018, 672-673, 47-55.	0.8	13
589	Dipolar interaction induced band gaps and flat modes in surface-modulated magnonic crystals. Physical Review B, 2018, 97, .	1.1	26
590	Spin wave propagation spectra in Octonacci one-dimensional magnonic quasicrystals. Journal of Magnetism and Magnetic Materials, 2018, 456, 228-235.	1.0	3
591	Measurement of a magnonic crystal at millikelvin temperatures. Applied Physics Letters, 2018, 112, 012402.	1.5	12
592	Fast micromagnetic simulations on GPU—recent advances made with \$mathsf{mumax}^3\$. Journal Physics D: Applied Physics, 2018, 51, 123002.	1.3	96
593	Magnonic band spectrum of spin waves in an elliptical helix. Royal Society Open Science, 2018, 5, 172285.	1.1	4
594	Tunable geometrical frustration in magnonic vortex crystals. Scientific Reports, 2018, 8, 186.	1.6	12
595	Amplification and stabilization of large-amplitude propagating spin waves by parametric pumping. Applied Physics Letters, 2018, 112, .	1.5	21
596	Spin-resolved inelastic electron scattering by spin waves in noncollinear magnets. Physical Review B, 2018, 97, .	1.1	31
597	Terahertz Magnon-Polaritons in TmFeO ₃ . ACS Photonics, 2018, 5, 1375-1380.	3.2	58

#	Article	IF	CITATIONS
598	Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide. AIP Advances, 2018, 8, .	0.6	5
599	Tunable spin waves in diluted magnetic semiconductor nanoribbon. Journal of Applied Physics, 2018, 123, 013904.	1.1	1
600	Reconfigurable nanoscale spin-wave directional coupler. Science Advances, 2018, 4, e1701517.	4.7	150
601	Ultrafast laser-induced changes of the magnetic anisotropy in a low-symmetry iron garnet film. Physical Review B, 2018, 97, .	1.1	40
602	Effects of the magnetic field variation on the spin wave interference in a magnetic cross junction. AIP Advances, 2018, 8, 056619.	0.6	5
603	Magnetization precession by short-wavelength magnon excitations and spin-transfer torque. Physical Review B, 2018, 97, .	1.1	5
605	Single-nitrogen-vacancy-center quantum memory for a superconducting flux qubit mediated by a ferromagnet. Physical Review A, 2018, 97, .	1.0	22
606	Magnetic droplet soliton nucleation in oblique fields. Physical Review B, 2018, 97, .	1.1	17
607	Co- and contra-directional vertical coupling between ferromagnetic layers with grating for short-wavelength spin wave generation. New Journal of Physics, 2018, 20, 053021.	1.2	18
608	Influence of microwave magnetic dissipation on dispersion characteristic of a magnonic crystal. , 2018, , .		1
609	Eavesdropping on spin waves inside the domain-wall nanochannel via three-magnon processes. Physical Review B, 2018, 97, .	1.1	31
610	Spin wave steering in three-dimensional magnonic networks. Applied Physics Letters, 2018, 112, 122404. Magnetic damping in sputter-deposited <mml:math< td=""><td>1.5</td><td>40</td></mml:math<>	1.5	40
611	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi mathvariant="normal">C <mml:msub> <mml:mi mathvariant="normal">o <mml:mn>2</mml:mn> </mml:mi </mml:msub> <mml:mi> MnGe</mml:mi> Heusler compounds with <mml:math< td=""><td>> <1,1 <1mml:m</td><td>ath\$</td></mml:math<></mml:mi </mml:mrow>	> < 1 ,1 < 1 mml:m	ath\$
612	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>A</mml:mi>A2Anomalous magnon Nernst effect of topological magnonic materials. Journal Physics D: Applied Physics, 2018, 51, 194001.</mml:mrow>	> <mml:mo 1.3</mml:mo 	o>,12
613	Spin transport across antiferromagnets induced by the spin Seebeck effect. Journal Physics D: Applied Physics, 2018, 51, 144004.	1.3	32
614	Absorbing boundary layers for spin wave micromagnetics. Journal of Magnetism and Magnetic Materials, 2018, 450, 34-39.	1.0	39
615	Homogeneous microwave field emitted propagating spin waves: Direct imaging and modeling. Journal of Magnetism and Magnetic Materials, 2018, 450, 7-12.	1.0	7
616	Temporal evolution of the spin-wave intensity and phase in a local parametric amplifier. Journal of Magnetic Materials, 2018, 450, 60-64.	1.0	3

#	Article	IF	CITATIONS
617	Propagation of magnetostatic modes on aperiodic rare-earth multilayers. Solid State Communications, 2018, 269, 76-82.	0.9	7
618	Spin wave propagation detected over <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si10.gif" overflow="scroll"><mml:mrow><mml:mn>100</mml:mn><mml:mspace <br="" width="0.25em">/><mml:mi mathvariant="normal">μ</mml:mi><mml:mtext>m</mml:mtext></mml:mspace></mml:mrow></mml:math> in half-metallic Heusler allov Co2MnSi, lournal of Magnetism and Magnetic Materials, 2018, 450, 13-17.	1.0	6
619	Current induced multi-mode propagating spin waves in a spin transfer torque nano-contact with strong perpendicular magnetic anisotropy. Journal of Magnetism and Magnetic Materials, 2018, 450, 40-45.	1.0	4
620	Enhanced spin wave propagation in magnonic rings by bias field modulation. AIP Advances, 2018, 8, 056006.	0.6	3
621	Role of interbranch pumping on the quantum-statistical behavior of multi-mode magnons in ferromagnetic nanowires. Journal of Physics Condensed Matter, 2018, 30, 025802.	0.7	0
622	CoPt/TiN films nanopatterned by RF plasma etching towards dot-patterned magnetic media. Applied Surface Science, 2018, 435, 31-38.	3.1	6
623	Magnetization State Determination Using Deep Learning. , 2018, , .		1
624	Integrated magnonic networks based on the lateral magnonic stripes and magnonic crystals , 2018, , .		0
625	Neuromorphic Calculations Using Lateral Arrays of Magnetic Microstructures with Broken Translational Symmetry. JETP Letters, 2018, 108, 312-317.	0.4	24
626	Magnonic ballistic transport across Fe-Ni alloy nanojunctions between Fe/Co leads using Phase Field Matching and Ising Effective Field Theory approaches. Materialia, 2018, 4, 373-387.	1.3	2
627	Features of Dispersion Characteristics of Surface Spin Waves in Coupled Antiferromagnetic Films with Easy-Axis Anisotropy. Journal of Communications Technology and Electronics, 2018, 63, 1439-1443.	0.2	1
628	3D magnonic crystals , 2018, , .		0
629	Spin wave coupling in strain-tuned magnonic waveguide and reconfigurable magnonic crystals , 2018, , .		0
630	Discrete diffraction in network of magnonic crystals. Journal of Physics: Conference Series, 2018, 1124, 071006.	0.3	0
631	Electric Field Control of Spin-wave Propagation in Ferromagnetic Nanostripe. , 2018, , .		0
632	Direct Observation of Sub-100 nm Spin Wave Propagation in Magnonic Wave-Guides. , 2018, , .		0
633	A Luneburg lens for spin waves. Applied Physics Letters, 2018, 113, .	1.5	40
634	Colossal electromagnon excitation in the non-cycloidal phase of TbMnO3 under pressure. Npj Quantum Materials, 2018, 3, .	1.8	10

#	Article	IF	CITATIONS
635	Volume Magnetostatic Spin Waves in 3D Ferromagnetic Structures. Journal of Communications Technology and Electronics, 2018, 63, 1431-1438.	0.2	5
636	Propagating spin waves in nanometer-thick yttrium iron garnet films: Dependence on wave vector, magnetic field strength, and angle. Physical Review B, 2018, 98, .	1.1	39
637	Dependence of non-reciprocity in spin wave excitation on antenna configuration. Journal of Applied Physics, 2018, 124, .	1.1	15
638	Squeezed States of Damon–Eshbach-Like Modes in Ferromagnetic Films Under Microwave Pumping. IEEE Transactions on Magnetics, 2018, 54, 1-9.	1.2	2
639	Low-loss YIG-based magnonic crystals with large tunable bandgaps. Nature Communications, 2018, 9, 5445.	5.8	50
640	Active Control of Mode Crossover and Mode Hopping of Spin Waves in a Ferromagnetic Antidot Lattice. Physical Review Applied, 2018, 10, .	1.5	14
641	The effects of thermal and correlated noise on magnons in a quantum ferromagnet. New Journal of Physics, 2018, 20, 093017.	1.2	4
642	Topological magnon modes in a chain of magnetic spheres. Physical Review B, 2018, 98, .	1.1	25
643	Selective Excitation of Localized Spin-Wave Modes by Optically Pumped Surface Acoustic Waves. Physical Review Applied, 2018, 10, .	1.5	15
644	Magnons. Springer Series in Solid-state Sciences, 2018, , 299-334.	0.3	6
645	An analog magnon adder for all-magnonic neurons. Journal of Applied Physics, 2018, 124, .	1.1	49
646	Observation of a Goos-HÃ ¤ chen-like Phase Shift for Magnetostatic Spin Waves. Physical Review Letters, 2018, 121, 137201.	2.9	17
647	Magnetic Characterization of Direct-Write Free-Form Building Blocks for Artificial Magnetic 3D Lattices. Materials, 2018, 11, 289.	1.3	40
648	Magnetic Vortices. Springer Series in Solid-state Sciences, 2018, , 75-115.	0.3	3
649	Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures. Communications Physics, 2018, 1, .	2.0	74
650	Gilbert damping phenomenology for two-sublattice magnets. Physical Review B, 2018, 98, .	1.1	53
651	Frequencyâ€Division Multiplexing in Magnonic Logic Networks Based on Causticâ€Like Spinâ€Wave Beams. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800409.	1.2	31
652	Nonreciprocity of backward volume spin wave beams excited by the curved focusing transducer. Applied Physics Letters, 2018, 113, .	1.5	12

		CITATION REPORT		
#	Article		IF	CITATIONS
653	Magnon valves based on YIC/NiO/YIG all-insulating magnon junctions. Physical Review	B, 2018, 98, .	1.1	48
654	Effective damping enhancement in noncollinear spin structures. Physical Review B, 201	18, 98, .	1.1	10
655	Temperature Dependence of Magnetic Properties of a Ultrathin Yttrium-Iron Garnet Fili Liquid Phase Epitaxy: Effect of a Pt Overlayer. IEEE Magnetics Letters, 2018, 9, 1-5.	m Grown by	0.6	23
656	Time-domain propagating spin-wave spectroscopy for forward spin waves in a ferromage Japanese Journal of Applied Physics, 2018, 57, 0902B4.	gnetic metal.	0.8	2
657	Magnetic domain walls as broadband spin wave and elastic magnetisation wave emitte Reports, 2018, 8, 13871.	ers. Scientific	1.6	24
658	Magnetic interfaces as sources of coherent spin waves. Physical Review B, 2018, 98, .		1.1	12
659	Electron interactions with the heteronuclear carbonyl precursor H ₂ FeRu ₃ (CO) ₁₃ and comparison with HFeCo ₃ (CO) ₁₂ : from fundamental gas phase and surface so focused electron beam induced deposition. Beilstein Journal of Nanotechnology, 2018	ience studies to , 9, 555-579.	1.5	16
660	Atomic-scale structure and chemistry of YIG/GGG. AIP Advances, 2018, 8, 085117.		0.6	6
661	Incoherent Nuclear Resonant Scattering from a Standing Spin Wave. Scientific Reports	s, 2018, 8, 11261.	1.6	2
662	Micromagnetic view on ultrafast magnon generation by femtosecond spin current puls Review B, 2018, 98, .	ses. Physical	1.1	11
663	Spin-Wave Drop Filter Based on Asymmetric Side-Coupled Magnonic Crystals. Physical 2018, 9, .	Review Applied,	1.5	55
664	Static and Dynamic Magnetic Properties of Singleâ€Crystalline Yttrium Iron Garnet Filn Grown on Three Garnet Substrates. Advanced Electronic Materials, 2018, 4, 1800106.	ns Epitaxially	2.6	23
665	Weak localization of magnons in chiral magnets. Physical Review B, 2018, 97, .		1.1	4
666	Opening and closing of band gaps in magnonic waveguide by rotating the triangular as micromagnetic study. AIP Conference Proceedings, 2018, , .	ntidots – A	0.3	2
667	Strong Interactions and Correlations. Springer Theses, 2018, , 1-37.		0.0	0
668	Suppression of periodic spatial power transfer in a layered structure based on ferromag Journal of Magnetism and Magnetic Materials, 2018, 466, 119-124.	gnetic films.	1.0	10
669	Magnonic waveguide based on exchange-spring magnetic structure. AIP Advances, 201	18, 8, .	0.6	8
670	Excitation and Amplification of Spin Waves by Spin–Orbit Torque. Advanced Materia e1802837.	ls, 2018, 30,	11.1	55

(ITATION R	FPORT

#	Article	IF	CITATIONS
671	Band structure and Wannier-Stark ladders in the spin wave spectrum. Journal of Magnetism and Magnetic Materials, 2018, 466, 150-163.	1.0	3
672	Ferromagnet/Superconductor Hybridization for Magnonic Applications. Advanced Functional Materials, 2018, 28, 1802375.	7.8	43
673	Functional Magnetic Metamaterials for Spintronics. Nanoscience and Technology, 2018, , 221-245.	1.5	2
674	Ferromagnetic resonance in coupled magnetic nanostructured arrays. AIP Advances, 2018, 8, .	0.6	3
675	Magnon-induced high-order sideband generation. Optics Letters, 2018, 43, 3698.	1.7	67
676	Spin waves in quasiperiodic magnonic crystal arrays of metallic nanostripes. Journal Physics D: Applied Physics, 2018, 51, 355003.	1.3	6
677	Electric-field control of spin-wave power flow and caustics in thin magnetic films. Physical Review B, 2018, 98, .	1.1	23
678	Effects of Edge on-Site Potential in a Honeycomb Topological Magnon Insulator. Journal of the Physical Society of Japan, 2018, 87, 064005.	0.7	18
679	Spin-wave propagation through a magnonic crystal in a thermal gradient. Journal Physics D: Applied Physics, 2018, 51, 344002.	1.3	15
680	Theory of Spin-Electromagnetic Waves in Planar Thin-Film Multiferroic Heterostructures Based on a Coplanar Transmission Line and Its Application for Electromagnonic Crystals. IEEE Transactions on Magnetics, 2018, 54, 1-5.	1.2	8
681	Localization of magnon modes in a curved magnetic nanowire. Low Temperature Physics, 2018, 44, 634-643.	0.2	17
682	Damping of Magnetization Dynamics by Phonon Pumping. Physical Review Letters, 2018, 121, 027202.	2.9	61
683	Direct-write of free-form building blocks for artificial magnetic 3D lattices. Scientific Reports, 2018, 8, 6160.	1.6	87
684	FMR-driven spin pumping in Y ₃ Fe ₅ O ₁₂ -based structures. Journal Physics D: Applied Physics, 2018, 51, 253001.	1.3	51
685	Symmetry and localization properties of defect modes in magnonic superlattices. Physical Review B, 2018, 97, .	1.1	15
686	Control of Spin-Wave Propagation using Magnetisation Gradients. Scientific Reports, 2018, 8, 11099.	1.6	51
687	Electric field controlled spin waveguide phase shifter in YIG. Journal of Applied Physics, 2018, 124, .	1.1	27
688	Electron Microscopy Characterization of Electrodeposited Homogeneous and Multilayered Nanowires in the Ni-Co-Cu System. Journal of the Electrochemical Society, 2018, 165, D536-D542.	1.3	11

#	Article	IF	CITATIONS
689	Field-controlled ultrafast magnetization dynamics in two-dimensional nanoscale ferromagnetic antidot arrays. Beilstein Journal of Nanotechnology, 2018, 9, 1123-1134.	1.5	10
690	Temperature-dependent relaxation of dipole-exchange magnons in yttrium iron garnet films. Physical Review B, 2018, 97, .	1.1	32
691	Magnetic properties of artificially designed magnetic stray field landscapes in laterally confined exchange-bias layers. Nanotechnology, 2018, 29, 355708.	1.3	6
692	Magnon Straintronics: Reconfigurable Spin-Wave Routing in Strain-Controlled Bilateral Magnetic Stripes. Physical Review Letters, 2018, 120, 257203.	2.9	131
693	Effect of Chemical Composition on Volume and Surface Magnon Creation in Multilayer CoxPt1â^'x/Pt. Journal of Superconductivity and Novel Magnetism, 2019, 32, 667-676.	0.8	2
694	Resonant Magnetic Induction Tomography of a Magnetized Sphere. Physical Review Applied, 2019, 12, .	1.5	13
695	Far-Infrared Reflection from Heterostructures Made of Ultrathin Ferromagnetic Layers. Physical Review Applied, 2019, 12, .	1.5	5
696	Domain Wall Based Spin-Hall Nano-Oscillators. Physical Review Letters, 2019, 123, 057204.	2.9	37
697	Enhanced spin transport in a ferrite having distributed energy barriers for exchange bias. Journal of Magnetism and Magnetic Materials, 2019, 492, 165644.	1.0	6
698	Collective and localized modes in 3D magnonic crystals. Journal of Magnetism and Magnetic Materials, 2019, 492, 165647.	1.0	8
699	MuFA (Multi-type Fourier Analyzer): A tool for batch generation of MuMax3 input scripts and multi-type Fourier analysis from micromagnetic simulation output data. Computer Physics Communications, 2019, 244, 311-318.	3.0	1
700	Expanding the Lorentz concept in magnetism. New Journal of Physics, 2019, 21, 073063.	1.2	2
701	Ferromagnet/Superconductor Hybrid Magnonic Metamaterials. Advanced Science, 2019, 6, 1900435.	5.6	25
702	Femtosecond Laser-Excitation-Driven High Frequency Standing Spin Waves in Nanoscale Dielectric Thin Films of Iron Garnets. Physical Review Letters, 2019, 123, 027202.	2.9	24
703	Anomalous Behaviors of Spin Waves Studied by Inelastic Light Scattering. Crystals, 2019, 9, 357.	1.0	6
704	Magnon-photon induced transparency in a cavity-quantum-electrodynamics system coupling yttrium-iron-garnet sphere. Results in Physics, 2019, 15, 102516.	2.0	2
705	Spin wave propagation in ferrimagnetic Gd <i> _x </i> Co _{1â^'} <i> _x </i> /i>. Japanese Journal of Applied Physics, 2019, 58, 080909.	0.8	4
706	Influence of the conductivity on spin wave propagation in a Permalloy waveguide. Journal of Applied Physics, 2019, 126, .	1.1	6

#	Article	IF	CITATIONS
707	Anisotropic spin waves in two-dimensional triangular shaped bi-component magnonic crystal. Journal of Magnetism and Magnetic Materials, 2019, 490, 165484.	1.0	6
708	Dynamic susceptibility of skyrmionic bubbles stabilized in the absence of Dzyaloshinskii-Moriya interaction in cylindrical nanostructures. Journal of Applied Physics, 2019, 125, 244308.	1.1	2
709	Tuning exchange-dominated spin-waves using lateral current spread in nanocontact spin-torque nano-oscillators. Journal of Magnetism and Magnetic Materials, 2019, 492, 165503.	1.0	3
710	Spin-wave excitation and critical angles in a hybrid photon-magnon-coupled system. Journal of Applied Physics, 2019, 126, 163902.	1.1	3
711	Twisting and tweezing the spin wave: on vortices, skyrmions, helical waves, and the magnonic spiral phase plate. Journal of Optics (United Kingdom), 2019, 21, 124001.	1.0	14
712	Band structure of a one-dimensional bilayer magnonic crystal. Physical Review B, 2019, 100, .	1.1	10
713	Dynamics in artificial spin ice and magnetic metamaterials. Solid State Physics, 2019, 70, 171-235.	1.3	4
714	Nanoscale spin-wave wake-up receiver. Applied Physics Letters, 2019, 115, .	1.5	9
715	Dynamical Mode Coupling and Coherence in a Spin Hall Nano-Oscillator with Perpendicular Magnetic Anisotropy. Physical Review Applied, 2019, 11, .	1.5	17
716	Surface spin waves propagation in tapered magnetic stripe. Journal of Applied Physics, 2019, 126, .	1.1	13
717	Optical heterodyne imaging of magnetostatic modes in one-dimensional magnonic crystals. Physical Review B, 2019, 100, .	1.1	7
718	Scattering theory of transport through disordered magnets. Physical Review B, 2019, 100, .	1.1	5
719	Three port logic gate using forward volume spin wave interference in a thin yttrium iron garnet film. Scientific Reports, 2019, 9, 16472.	1.6	27
720	A magnetic phase diagram for nanoscale epitaxial BiFeO3 films. Applied Physics Reviews, 2019, 6, .	5.5	19
721	Electrical manipulation of spin pumping signal through nonlocal thermal magnon transport. Applied Physics Letters, 2019, 115, .	1.5	1
722	Magnetooptical response of permalloy multilayer structures on different substrate in the IR–VIS–UV spectral range. Journal Physics D: Applied Physics, 2019, 52, 485002.	1.3	2
723	Revealing the Coherence of Magnons. Physics Magazine, 2019, 12, .	0.1	0
724	Pulsed spin wave propagation in a magnonic crystal. Journal of Applied Physics, 2019, 126, 083902.	1.1	2

#	Article	IF	CITATIONS
725	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>H</mml:mi><mml:mtext>â^'<!--<br-->phase diagram of rare-earth–transition-metal alloys in the vicinity of the compensation point. Physical Review B, 2019, 100, .</mml:mtext></mml:mrow></mml:math 	mml:mtext> 1.1	<mml:mi>T</mml:mi>
726	Strongly hybridized dipole-exchange spin waves in thin Fe-N ferromagnetic films. Physical Review B, 2019, 100, .	1.1	17
727	Graded index lenses for spin wave steering. Physical Review B, 2019, 100, .	1.1	18
728	Propagation of Spin Waves in Microstructures Based on Yttrium–Iron Garnet Films Decorated by a Ferromagnetic Metal. Physics of the Solid State, 2019, 61, 1614-1621.	0.2	5
729	Excitation of unidirectional exchange spin waves by a nanoscale magnetic grating. Physical Review B, 2019, 100, .	1.1	111
730	High spin-wave propagation length consistent with low damping in a metallic ferromagnet. Applied Physics Letters, 2019, 115, .	1.5	26
731	Exchange-Enhanced Ultrastrong Magnon-Magnon Coupling in a Compensated Ferrimagnet. Physical Review Letters, 2019, 123, 117204.	2.9	77
732	Enhancement of superconductivity mediated by antiferromagnetic squeezed magnons. Physical Review B, 2019, 100, .	1.1	30
733	Impact of electromagnetic fields and heat on spin transport signals in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mi mathvariant="normal">Y <mml:mn> 3</mml:mn> </mml:mi </mml:msub> <mml:msub> <mml:mi> Fe</mml:mi> mathvariant="normal">O <mml:mn> 12</mml:mn> </mml:msub> </mml:mrow> .</mml:math 	×mml ım in>5	
734	Two-Dimensional Magnonic Crystals. , 2019, , 233-250.		1
735	Spin-wave modes in transition from a thin film to a full magnonic crystal. Physical Review B, 2019, 99, .	1.1	23
736	Spin-Wave Amplification and Lasing Driven by Inhomogeneous Spin-Transfer Torques. Physical Review Letters, 2019, 122, 037203.	2.9	16
737	Angular-dependent spin dynamics of a triad of permalloy macrospins. Physical Review B, 2019, 99, .	1.1	19
738	Reconfigurable microwave properties in C-, L- and S-shaped nanomagnets. Journal Physics D: Applied Physics, 2019, 52, 335003.	1.3	6
739	Spin Pinning and Spin-Wave Dispersion in Nanoscopic Ferromagnetic Waveguides. Physical Review Letters, 2019, 122, 247202.	2.9	93
740	Polarization of Eigenwaves and Microwave Fields in a Metal Ferromagnetic Plate. Journal of Communications Technology and Electronics, 2019, 64, 251-257.	0.2	1
741	A single layer spin-orbit torque nano-oscillator. Nature Communications, 2019, 10, 2362.	5.8	66
742	Controlled evolution of spin waves in unconventional defective honeycomb antidot lattices. Journal of Magnetism and Magnetic Materials, 2019, 489, 165408	1.0	7

ARTICLE IF CITATIONS # Collective induced antidiffusion effect and general magnon Boltzmann transport theory. Physical 743 1.1 8 Review B, 2019, 99, . Electrical generation and propagation of spin waves in antiferromagnetic thin-film nanostrips. 744 1.5 Applied Physics Letters, 2019, 114, . Topological Magnons and Edge States in Antiferromagnetic Skyrmion Crystals. Physical Review 745 2.9 97 Letters, 2019, 122, 187203. Room-Temperature Slow Light in a Coupled Cavity Magnon-Photon System. IEEE Access, 2019, 7, 746 57047-57053. Topological magnon bands for magnonics. Physical Review B, 2019, 99, . 747 1.1 26 Correction of Phase Errors in a Spin-Wave Transmission Line by Nonadiabatic Parametric Pumping. Physical Review Applied, 2019, 11, . 748 1.5 Reconfigurable nanoscale spin-wave directional coupler using spin-orbit torque. Scientific Reports, 749 1.6 13 2019, 9, 7093. Twisted magnon beams carrying orbital angular momentum. Nature Communications, 2019, 10, 2077. 5.8 38 Spin-Wave Phase Inverter upon a Single Nanodefect. ACS Applied Materials & amp; Interfaces, 2019, 11, 751 4.0 46 17654-17662. Spin Current Cross-Correlations as a Probe of Magnon Coherence. Physical Review Letters, 2019, 122, 187701. Expansion of the spin cycloid in multiferroic BiFeO3 thin films. Npj Quantum Materials, 2019, 4, . 753 1.8 33 Layered optomagnonic structures: Time Floquet scattering-matrix approach. Physical Review B, 2019, 754 1.1 19 99, . Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths. Physical Review 755 2.9 69 Letters, 2019, 122, 117202. Many-body theory of spin-current driven instabilities in magnetic insulators. Physical Review B, 2019, 1.1 99,. Simultaneous Optical and Electrical Spin-Torque Magnetometry with Phase-Sensitive Detection of Spin 757 1.5 14 Precession. Physical Review Applied, 2019, 11, . Magnetic properties of permalloy antidot array fabricated by interference lithography. AIP Advances, 2019,9,. Magnetochiral nonreciprocity of spin wave damping in long-period structures. Physical Review B, 759 1.1 5 2019,99,. Nonreciprocal superposition state in antiferromagnetic optospintronics. Physical Review B, 2019, 99, . 1.1

#	Article	IF	CITATIONS
761	Spin-wave non-reciprocity in magnetization-graded ferromagnetic films. New Journal of Physics, 2019, 21, 033026.	1.2	43
762	Theory for the spin dynamics in ultrathin disordered binary magnetic alloy films: Application to cobalt-gadolinium. Journal of Magnetism and Magnetic Materials, 2019, 482, 88-98.	1.0	10
763	Chiral Phonon Transport Induced by Topological Magnons. Physical Review Letters, 2019, 122, 107201.	2.9	47
764	Y-shaped magnonic demultiplexer using induced transparency resonances. AIP Advances, 2019, 9, 035011.	0.6	12
765	Temperature-Dependent Dielectric Characterization of Magneto-Optical Tb 3 Sc 2 Al 3 O 12 Crystal Investigated by Terahertz Time-Domain Spectroscopy. Chinese Physics Letters, 2019, 36, 044203.	1.3	3
766	Emission of coherent spin waves from a magnetic layer excited by a uniform microwave magnetic field. Journal Physics D: Applied Physics, 2019, 52, 135001.	1.3	3
767	Anisotropic and Controllable Gilbert-Bloch Dissipation in Spin Valves. Physical Review Letters, 2019, 122, 147201.	2.9	6
768	Optimization of Spin-Wave Propagation with Enhanced Group Velocities by Exchange-Coupled Ferrimagnet-Ferromagnet Bilayers. Physical Review Applied, 2019, 11, .	1.5	14
769	Selective and fast plasmon-assisted photo-heating of nanomagnets. Nanoscale, 2019, 11, 7656-7666.	2.8	16
770	Tunable perpendicular magnetic anisotropy in epitaxial Y3Fe5O12 films. APL Materials, 2019, 7, .	2.2	32
771	Route toward semiconductor magnonics: Light-induced spin-wave nonreciprocity in a YIC/GaAs structure. Physical Review B, 2019, 99, .	1.1	88
772	Effects of lattice geometry on the dynamic properties of dipolar-coupled magnetic nanodisk arrays. Physical Review B, 2019, 99, .	1.1	5
773	Higher-order exceptional point in a cavity magnonics system. Physical Review B, 2019, 99, .	1.1	90
774	Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in anisotropic spin textures. Nature Nanotechnology, 2019, 14, 328-333.	15.6	115
775	Magnon–fluxon interaction in a ferromagnet/superconductor heterostructure. Nature Physics, 2019, 15, 477-482.	6.5	83
776	Spin transport in the bulk of two-dimensional Hall insulator. Applied Physics Letters, 2019, 114, .	1.5	12
777	Exchange spin waves transmission through the interface between two antiferromagnetically coupled ferromagnetic media. Journal of Magnetism and Magnetic Materials, 2019, 484, 484-489.	1.0	5
778	Microwave control of thermal-magnon spin transport. Physical Review B, 2019, 99, .	1.1	10

# 779	ARTICLE Flat Bands, Indirect Gaps, and Unconventional Spin-Wave Behavior Induced by a Periodic Dzyaloshinskii-Moriya Interaction. Physical Review Letters, 2019, 122, 067204.	IF 2.9	CITATIONS
780	Electric Field Control of Spin-wave Refraction in Thin Ferromagnetic Film. , 2019, , .		0
781	Spin Wave Interference in a Metal Ferromagnetic Plate. Journal of Communications Technology and Electronics, 2019, 64, 1407-1413.	0.2	0
782	Discretized dynamics of exchange spin wave bulk and edge modes in honeycomb nanoribbons with armchair edge boundaries. Journal of Physics Condensed Matter, 2019, 31, 315801.	0.7	9
783	Controlling the Properties of Spin–Wave Transport in a Semiring Magnon Microwavevguide. Technical Physics, 2019, 64, 1636-1641.	0.2	3
784	Influence of nonmagnetic dielectric spacers on the spin-wave response of one-dimensional planar magnonic crystals. Physical Review B, 2019, 100, .	1.1	10
785	Reconfigurable Lateral Spin-Wave Transport in a Ring Magnonic Microwaveguide. JETP Letters, 2019, 110, 430-435.	0.4	12
786	Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science, 2019, 366, 1121-1125.	6.0	115
787	Standing spin waves in perpendicularly magnetized triangular dots. Physical Review B, 2019, 100, .	1.1	6
788	Dynamic electromagnonic crystal based on artificial multiferroic heterostructure. Communications Physics, 2019, 2, .	2.0	27
789	Dynamics of spiral spin waves in magnetic nanopatches: Influence of thickness and shape. Physical Review B, 2019, 100, .	1.1	8
790	Experimental Realization of Atomic-Scale Magnonic Crystals. Physical Review Letters, 2019, 123, 257202.	2.9	16
791	Controlled Spin-Wave Transport in a Magnon-Crystal Structure with a One-Dimensional Array of Holes. JETP Letters, 2019, 110, 533-539.	0.4	4
792	Use of Dynamic Magnonic Crystals for Measuring the Parameters of Surface Magnetostatic Waves. Instruments and Experimental Techniques, 2019, 62, 850-854.	0.1	1
793	Direct observation of coherent magnons with suboptical wavelengths in a single-crystalline ferrimagnetic insulator. Physical Review B, 2019, 100, .	1.1	24
794	Functional Magnon Network Blocks Based on Structures with Translational Symmetry Violation. Technical Physics, 2019, 64, 1615-1621.	0.2	0
795	Features of the scattering of exchange spin waves by layer and superlattice of biaxial ferromagnets. Journal of Physics: Conference Series, 2019, 1389, 012134.	0.3	1
796	Spin wave propagation in three-dimensional magnonic crystals and coupled structures. Journal of Magnetism and Magnetic Materials, 2019, 476, 423-427.	1.0	24

#	Article	IF	CITATIONS
797	Quasiperiodic spin waves in bi-component magnonic crystal arrays of nanowires. Journal Physics D: Applied Physics, 2019, 52, 095001.	1.3	7
798	Spin wave modes in a cylindrical nanowire in crossover dipolar-exchange regime. Journal Physics D: Applied Physics, 2019, 52, 075003.	1.3	9
799	Multiple spin waves excitation modes observed in the Py film with antidots-like structure. Journal Physics D: Applied Physics, 2019, 52, 085002.	1.3	0
800	Temperature control of spin wave propagation over 100 μ m distance in 100 nm-thick YIG film. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 366-368.	0.9	7
801	Electric-field control of nonreciprocity of spin wave excitation in ferromagnetic nanostripes. Journal of Magnetism and Magnetic Materials, 2019, 474, 9-13.	1.0	12
802	Surface spin waves in coupled easy-axis antiferromagnetic films. Journal of Magnetism and Magnetic Materials, 2019, 475, 778-781.	1.0	9
803	Magnetic Textures and Dynamics in Magnetic Weyl Semimetals. Annalen Der Physik, 2020, 532, 1900287.	0.9	35
804	Efficient excitation of exchange dominated spin waves in oblique deposited CoFeB thin films. Journal of Magnetism and Magnetic Materials, 2020, 499, 166072.	1.0	6
805	Observation of spectral narrowing and mode conversion in two-dimensional binary magnonic crystal. Journal of Magnetism and Magnetic Materials, 2020, 501, 166378.	1.0	2
806	Effect of annealing on the electrical and magnetic properties of electrodeposited Ni and permalloy nanowires. Journal of Magnetism and Magnetic Materials, 2020, 499, 166276.	1.0	11
807	Intensity and magnetization angle reconfigurable lateral spin-wave coupling and transport. Journal of Magnetism and Magnetic Materials, 2020, 500, 166344.	1.0	4
808	Double magnonic chains of particles: Spin waves slowing and snaking. Journal of Magnetism and Magnetic Materials, 2020, 500, 166351.	1.0	1
809	Intensity enhancement of ferromagnetic resonance modes in exchange coupled magnetic multilayers. New Journal of Physics, 2020, 22, 013017.	1.2	7
810	Dynamic magnetic properties of amorphous Fe80B20 thin films and their relation to interfaces. AIP Advances, 2020, 10, 015013.	0.6	7
811	Nanopatterned hard/soft bilayer magnetic antidot arrays with long-range periodicity. Journal of Magnetism and Magnetic Materials, 2020, 498, 166142.	1.0	5
812	Bias-free reconfigurable magnonic phase shifter based on a spin-current controlled ferromagnetic resonator. Journal Physics D: Applied Physics, 2020, 53, 105002.	1.3	6
813	Subpicoliter Magnetoptical Cavities. Physical Review Applied, 2020, 14, .	1.5	15
814	Spin insulatronics. Physics Reports, 2020, 885, 1-27.	10.3	83

#	Article	IF	Citations
815	A magnonic directional coupler for integrated magnonic half-adders. Nature Electronics, 2020, 3, 765-774.	13.1	139
816	Hybrid magnonics: Physics, circuits, and applications for coherent information processing. Journal of Applied Physics, 2020, 128, .	1.1	141
817	Direct Observation of Worm‣ike Nanochannels and Emergent Magnon Motifs in Artificial Ferromagnetic Quasicrystals. Advanced Functional Materials, 2020, 30, 2001388.	7.8	18
818	Spin waves in meander shaped YIG film: Toward 3D magnonics. Applied Physics Letters, 2020, 117, .	1.5	21
819	Investigations on Gilbert damping, Curie temperatures and thermoelectric properties in CoFeCrZ quaternary Heusler alloys. Current Applied Physics, 2020, 20, 593-603.	1.1	14
820	Magnonic crystal-semiconductor heterostructure: Double electric and magnetic fields control of spin waves properties. Journal of Magnetism and Magnetic Materials, 2020, 514, 167202.	1.0	5
821	Direct observation of spin-wave focusing by a Fresnel lens. Physical Review B, 2020, 102, .	1.1	19
822	Hippopede curves for modeling radial spin waves in an azimuthally graded magnonic landscape. Physical Review B, 2020, 102, .	1.1	0
823	Manipulation of nonlinear magnon effects using a secondary microwave frequency. Applied Physics Letters, 2020, 117, .	1.5	9
824	Wannier-Stark ladder spectrum of Bloch oscillations of magneto-dipole spin waves in graded 1D magnonic crystals. Low Temperature Physics, 2020, 46, 830-835.	0.2	3
825	Metal–insulator switching of vanadium dioxide for controlling spin-wave dynamics in magnonic crystals. Journal of Applied Physics, 2020, 128, .	1.1	6
826	Current-controlled nanomagnetic writing for reconfigurable magnonic crystals. Communications Physics, 2020, 3, .	2.0	10
827	Temperature scaling of two-ion anisotropy in pure and mixed anisotropy systems. Physical Review B, 2020, 102, .	1.1	24
828	Magnetic resonance imaging of spin-wave transport and interference in a magnetic insulator. Science Advances, 2020, 6, .	4.7	70
829	Spin wave generation via localized spin–orbit torque in an antiferromagnet-topological insulator heterostructure. Journal of Applied Physics, 2020, 128, 043901.	1.1	0
830	2-Output Spin Wave Programmable Logic Gate. , 2020, , .		9
831	Coherent spin waves driven by optical spin-orbit torque. Physical Review B, 2020, 102, .	1.1	6
832	Probing magnon–magnon coupling in exchange coupled Y\$\$_3\$\$Fe\$\$_5\$\$O\$\$_{12}\$\$/Permalloy bilayers with magneto-optical effects. Scientific Reports, 2020, 10, 12548.	1.6	23

#	Article	IF	Citations
833	Influence of the Vertex Region on Spin Dynamics in Artificial Kagome Spin Ice. Physical Review Applied, 2020, 14, .	1.5	22
834	Nonlinear losses in magnon transport due to four-magnon scattering. Applied Physics Letters, 2020, 117, .	1.5	14
835	Controlling the propagation of dipole-exchange spin waves using local inhomogeneity of the anisotropy. Physical Review B, 2020, 102, .	1.1	5
836	Strain reconfigurable spin-wave transport in the lateral system of magnonic stripes. Journal of Magnetism and Magnetic Materials, 2020, 515, 167302.	1.0	4
837	Bloch oscillations of backward volume magnetostatic spin waves. Physical Review B, 2020, 102, .	1.1	4
838	Spin-wave modes localized on isolated defects in a two-dimensional array of dipolarly coupled magnetic nanodots. Physical Review B, 2020, 102, .	1.1	2
839	Magnon Blocking Effect in an Antiferromagnet-Spaced Magnon Junction. Physical Review Applied, 2020, 14, .	1.5	12
840	Introduction to spin wave computing. Journal of Applied Physics, 2020, 128, .	1.1	179
841	Magnon-squeezing as a niche of quantum magnonics. Applied Physics Letters, 2020, 117, .	1.5	34
842	Influence of flicker noise and nonlinearity on the frequency spectrum of spin torque nano-oscillators. Scientific Reports, 2020, 10, 13116.	1.6	4
843	The Experimentalist's Guide to the Cycloid, or Noncollinear Antiferromagnetism in Epitaxial BiFeO ₃ . Advanced Materials, 2020, 32, e2003711.	11.1	45
844	Hybrid magnetoacoustic metamaterials for ultrasound control. Applied Physics Letters, 2020, 117, .	1.5	5
845	Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nature Reviews Physics, 2020, 2, 634-648.	11.9	154
846	Magnetization Dynamics in Proximity-Coupled Superconductor-Ferromagnet-Superconductor Multilayers. Physical Review Applied, 2020, 14, .	1.5	34
847	Magnon polarons induced by a magnetic field gradient. Physical Review B, 2020, 102, .	1.1	10
848	Scattering of exchange spin waves from a helimagnetic layer sandwiched between two semi-infinite ferromagnetic media. Physical Review B, 2020, 102, .	1.1	6
849	Growth and Properties of Y3Fe5O12 Films on LiNbO3 Substrates. Inorganic Materials, 2020, 56, 847-853.	0.2	4
850	Steering magnonic dynamics and permeability at exceptional points in a parity–time symmetric waveguide. Nature Communications, 2020, 11, 5663.	5.8	27

#	Article	IF	CITATIONS
851	Surface anisotropy induced spin wave nonreciprocity in epitaxial La0.33 Sr0.67 MnO3 film on SrTiO3 substrate. Applied Physics Letters, 2020, 117, .	1.5	5
852	Observation of terahertz magnon of Kaplan-Kittel exchange resonance in yttrium-iron garnet by Raman spectroscopy. Physical Review B, 2020, 102, .	1.1	7
853	Magnon thermal Edelstein effect detected by inverse spin Hall effect. Applied Physics Letters, 2020, 117,	1.5	8
854	Spin waves in metallic iron and nickel measured by soft x-ray resonant inelastic scattering. Physical Review B, 2020, 102, .	1.1	10
855	Quantum Spin-Wave Materials, Interface Effects and Functional Devices for Information Applications. Frontiers in Materials, 2020, 7, .	1.2	4
856	Spin wave propagation in a ferrimagnetic thin film with perpendicular magnetic anisotropy. Applied Physics Letters, 2020, 117, .	1.5	18
857	Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films*. Chinese Physics B, 2020, 29, 067601.	0.7	4
858	Pure Spin Current and Magnon Chemical Potential in a Nonequilibrium Magnetic Insulator. Physical Review X, 2020, 10, .	2.8	11
859	Spin–orbit-torque magnonics. Journal of Applied Physics, 2020, 127, .	1.1	41
860	Backward Magnetostatic Surface Spin Waves in Coupled Co/FeNi Bilayers. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000118.	1.2	8
861	Dynamic susceptibility of interconnected pentagonal spin ice lattices. Journal of Magnetism and Magnetic Materials, 2020, 513, 167084.	1.0	2
862	Spin dynamics and magnonic characteristics of a magnetically ordered fcc Fe-Ni alloy monolayer on an fcc Ni slab substrate. Journal of Magnetism and Magnetic Materials, 2020, 511, 166958.	1.0	1
863	Interaction of spin waves propagating along narrow domain walls with a magnetic vortex in a thin-film-nanostrip cross-structure. Journal of Applied Physics, 2020, 127, 183906.	1.1	13
864	Imaging of caustic-like spin wave beams using optical heterodyne detection. Applied Physics Letters, 2020, 116, 192411.	1.5	5
865	Switchable giant nonreciprocal frequency shift of propagating spin waves in synthetic antiferromagnets. Science Advances, 2020, 6, eaaz6931.	4.7	57
866	Band structure formation in magnonic Bragg gratings superlattice. Journal Physics D: Applied Physics, 2020, 53, 395002.	1.3	3
867	Sustained coherent spin wave emission using frequency combs. Physical Review B, 2020, 101, .	1.1	10
868	Ferromagnetic and FMR properties of the YIG/TiO2/PZT structures obtained by ion-beam sputtering. Journal of Magnetism and Magnetic Materials, 2020, 514, 167099.	1.0	6

		CITATION REPORT		
#	Article		IF	Citations
869	Magnetization dynamics in artificial spin ice. Journal of Physics Condensed Matter, 202	0, 32, 013001.	0.7	50
870	Coherent Spin Pumping in a Strongly Coupled Magnon-Magnon Hybrid System. Physica 2020, 124, 117202.	al Review Letters,	2.9	75
871	Micromagnetic Simulation of Voltage-Induced Spin Wave Resonance Properties in Ferr Nanowires with Perpendicular Anisotropy. Journal of the Magnetics Society of Japan, 20	omagnetic)20, 44, 40-44.	0.5	0
872	Spin excitations in laser-molecular-beam epitaxy-grown nanosized YIG films: towards lo and desirable magnetization profile. Journal Physics D: Applied Physics, 2020, 53, 2650	w relaxation 03.	1.3	6
873	Ultra Thin Films of Yttrium Iron Garnet with Very Low Damping: A Review. Physica Statu Basic Research, 2020, 257, 1900644.	ıs Solidi (B):	0.7	61
874	Magnetic Skyrmion Tubes as Nonplanar Magnonic Waveguides. Physical Review Applie	d, 2020, 13, .	1.5	23
875	Modulation of magnonic bands of dipole-exchange spin waves in fishbone-like yttrium i nanostrip magnonic crystal waveguides. Journal Physics D: Applied Physics, 2020, 53, 3	ron garnet 15001.	1.3	2
876	Magnetism of nanotwinned martensite in magnetic shape memory alloys. Journal of Ph Matter, 2020, 32, 313001.	ysics Condensed	0.7	10
877	Tunable Magnon-Magnon Coupling Mediated by Dynamic Dipolar Interaction in Synthe Antiferromagnets. Physical Review Letters, 2020, 125, 017203.	tic	2.9	72
878	Effect of exchange and dipolar interlayer interactions on the magnonic band structure Fe/Cu/Py nanowires with symmetric and asymmetric layer widths. Physical Review B, 20	of dense 020, 101, .	1.1	4
879	Electrodynamics of Magnetoelectric Media and Magnetoelectric Fields. Annalen Der Ph 1900423.	ysik, 2020, 532,	0.9	4
880	Magnetization reversal in Co/GGG/YIG/GGG(1Â1Â1) nanoheterostructures: Interlayer m and orange peel effect. Journal of Magnetism and Magnetic Materials, 2020, 502, 1665	agnetic coupling 542.	1.0	4
881	Effect of inhomogeneous Dzyaloshinskii-Moriya interaction on antiferromagnetic spin-v propagation. Physical Review B, 2020, 101, .	Nave	1.1	8
882	Voltage-Controlled Magnonic Spin Tunneling Junction. Journal of the Physical Society o 89, 013601.	f Japan, 2020,	0.7	1
883	Dephasing-Assisted Macrospin Transport. Entropy, 2020, 22, 210.		1.1	0
884	Reflection-less width-modulated magnonic crystal. Communications Physics, 2020, 3, .		2.0	32
885	Sub-micrometer near-field focusing of spin waves in ultrathin YIG films. Applied Physics 116, .	Letters, 2020,	1.5	8
886	Brillouin-Mandelstam spectroscopy of stress-modulated spatially confined spin waves in on piezoelectric substrates. Journal of Magnetism and Magnetic Materials, 2020, 501,	n Ni thin films 166440.	1.0	2

		CITATION REPORT		
#	Article		IF	CITATIONS
887	Magnon decay theory of Gilbert damping in metallic antiferromagnets. Physical Review	[,] B, 2020, 101, .	1.1	13
888	Chiral Spin-Wave Velocities Induced by All-Garnet Interfacial Dzyaloshinskii-Moriya Inte Ultrathin Yttrium Iron Garnet Films. Physical Review Letters, 2020, 124, 027203.	raction in	2.9	80
889	Experimental Realization of a Passive Gigahertz Frequencyâ€Division Demultiplexer for Networks. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900695.	⁻ Magnonic Logic	1.2	33
890	Direct light–induced spin transfer between different elements in a spintronic Heusle femtosecond laser excitation. Science Advances, 2020, 6, eaaz1100.	r material via	4.7	47
891	Room-temperature magnetoresistance of nanocrystalline Ni metal with various grain s Physical Journal Plus, 2020, 135, 1.	izes. European	1.2	7
892	Optically Inspired Nanomagnonics with Nonreciprocal Spin Waves in Synthetic Antifer Advanced Materials, 2020, 32, e1906439.	romagnets.	11.1	58
893	Influence of spin Nernst effect on continuum spin conductivity in antiferromagnets in checkerboard lattice. Journal of Magnetism and Magnetic Materials, 2020, 500, 16642	the !7.	1.0	0
894	Ferromagnetic spin waves in nanostriped magnonic crystals with quasiperiodic vertical European Physical Journal B, 2020, 93, 1.	development.	0.6	1
895	Propagation of Spin-Wave Packets in Individual Nanosized Yttrium Iron Garnet Magnor Nano Letters, 2020, 20, 4220-4227.	nic Conduits.	4.5	75
896	Magnon-phonon interactions in magnon spintronics (Review article). Low Temperature 46, 383-399.	e Physics, 2020,	0.2	62
897	Spin-wave transmission through an internal boundary: Beyond the scalar approximatio Review B, 2020, 101, .	n. Physical	1.1	12
898	Spin Wave Injection and Propagation in a Magnetic Nanochannel from a Vortex Core. I 2020, 20, 3140-3146.	Nano Letters,	4.5	26
899	Tailoring Spin-Wave Channels in a Reconfigurable Artificial Spin Ice. Physical Review Ap	plied, 2020, 13, .	1.5	34
900	Dynamical behavior of ferromagnetic nanowire arrays: From 1-D to 3-D. , 2020, , 559-6	11.		1
901	Spin waves and electromagnetic waves in magnetic nanowires. , 2020, , 613-672.			1
902	Dynamics of reconfigurable artificial spin ice: Toward magnonic functional materials. A 2020, 8, .	PL Materials,	2.2	52
903	Magnonic crystals: towards terahertz frequencies. Journal of Physics Condensed Matter 363001.	r, 2020, 32,	0.7	26
904	Detecting Phase-Resolved Magnetization Dynamics by Magneto-Optic Effects at 1550 IEEE Transactions on Magnetics, 2021, 57, 1-7.	nm Wavelength.	1.2	3

r

#	Article	IF	CITATIONS
905	Nanochannels for spin-wave manipulation in Ni80Fe20 nanodot arrays. Journal of Magnetism and Magnetic Materials, 2021, 522, 167550.	1.0	5
906	Magnonic Bending, Phase Shifting and Interferometry in a 2D Reconfigurable Nanodisk Crystal. ACS Nano, 2021, 15, 674-685.	7.3	8
907	Spin Wave Normalization Toward All Magnonic Circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 536-549.	3.5	14
908	Spin Waves. , 2021, , 1-66.		0
909	Ni ₈₀ Fe ₂₀ nanotubes with optimized spintronic functionalities prepared by atomic layer deposition. Nanoscale, 2021, 13, 13451-13462.	2.8	9
910	Tunable Fano Resonances in Irregular Magnonic Structure. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	2
911	Design of a Coplanar-Waveguide-Based Microwave-to-Spin-Wave Transducer. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	2
912	Current-induced spin-wave Doppler shift and attenuation in compensated ferrimagnets. Physical Review B, 2021, 103, .	1.1	9
913	Magnetoelectric Near Fields. Topics in Applied Physics, 2021, , 523-561.	0.4	2
914	Bose-Einstein condensate of Dirac magnons: Pumping and collective modes. Physical Review Research, 2021, 3, .	1.3	1
915	Spintronics. , 2021, , 305-424.		1
916	Frequency Filtering with a Magnonic Crystal Based on Nanometer-Thick Yttrium Iron Garnet Films. ACS Applied Nano Materials, 2021, 4, 121-128. Efficient Modulation of Magnon Conductivity in Amplimath	2.4	18
917	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub><mml:mi mathvariant="normal">Y<mml:mn>3</mml:mn></mml:mi </mml:msub> <mml:msub><mml:mi>Fe</mml:mi><m mathvariant="normal">O<mml:mn>12</mml:mn></m </mml:msub> Using Anomalous	ml 1 m5>5<	/mml:mn> </td
918	Spin Hall Effect of a Permalloy Gate Electrode. Physical Review Applied, 2021, 15, . Numerical Ferromagnetic Resonance Experiments in Nanosized Elements. IEEE Magnetics Letters, 2021, 12, 1-5.	0.6	10
919	Probing a mesoscopic elephant. Nature Materials, 2021, 20, 127-128.	13.3	0
920	Transported properties and low-temperature magnetic behaviors of Ti x Cr1â^' x O2 films. Journal Physics D: Applied Physics, 2021, 54, 135004.	1.3	3
921	Current-Driven Magnetization Reversal in Orbital Chern Insulators. Physical Review Letters, 2021, 126, 056801.	2.9	15
922	Time-domain imaging of curling modes in a confined magnetic vortex and a micromagnetic study exploring the role of spiral spin waves emitted by the core. Physical Review B, 2021, 103, .	1.1	3

#	Article	IF	Citations
923	Spin-Wave Emission from Vortex Cores under Static Magnetic Bias Fields. Nano Letters, 2021, 21, 1584-1590.	4.5	18
924	Irreducible first Brillouin zone for two-dimensional magnonic crystals with asymmetric complex lattices. Modern Physics Letters B, 2021, 35, 2150170.	1.0	1
925	Magnonic crystals with complex geometry. Physical Review B, 2021, 103, .	1.1	7
926	Magnon valve effect and resonant transmission in a one-dimensional magnonic crystal. Physical Review B, 2021, 103, .	1.1	11
927	Skew scattering and side jump of spin wave across magnetic texture. Physical Review B, 2021, 103, .	1.1	20
928	Fan-out of 2 Triangle Shape Spin Wave Logic Gates. , 2021, , .		3
929	Giant Magnetoresistance in Boundary-Driven Spin Chains. Physical Review Letters, 2021, 126, 077203.	2.9	9
930	Emergent Spin Dynamics Enabled by Lattice Interactions in a Bicomponent Artificial Spin Ice. Nano Letters, 2021, 21, 1921-1927.	4.5	19
931	Fast acquisition of spin-wave dispersion by compressed sensing. Applied Physics Express, 2021, 14, 033004.	1.1	2
932	Chiral switching and dynamic barrier reductions in artificial square ice. New Journal of Physics, 2021, 23, 033024.	1.2	9
933	Photocrosslinking and photopatterning of magneto-optical nanocomposite sol–gel thin film under deep-UV irradiation. Scientific Reports, 2021, 11, 5075.	1.6	6
934	Voltage-controlled spin-wave intermodal coupling in lateral ensembles of magnetic stripes with patterned piezoelectric layer. AIP Advances, 2021, 11, 035316.	0.6	0
935	Spin Wave Resonance in Perpendicularly Magnetized Synthetic Antiferromagnets. Journal of the Magnetics Society of Japan, 2021, 45, 25-29.	0.5	7
936	Broadband phonon to magnon conversion in yttrium iron garnet. Materials for Quantum Technology, 2021, 1, 011003.	1.2	7
937	Spin wave propagation in corrugated waveguides. Applied Physics Letters, 2021, 118, .	1.5	13
938	Multimode unidirectional spin-wave coupling in an array of non-identical magnonic crystals near band gap frequencies. Journal Physics D: Applied Physics, 2021, 54, 245001.	1.3	3
939	Enhanced Sensitivity at Magnetic High-Order Exceptional Points and Topological Energy Transfer in Magnonic Planar Waveguides. Physical Review Applied, 2021, 15, .	1.5	23
940	Controlling the Nonlinear Relaxation of Quantized Propagating Magnons in Nanodevices. Physical Review Letters, 2021, 126, 097202.	2.9	13

# 941	ARTICLE Spin waves transport in 3D magnonic waveguides. AIP Advances, 2021, 11, 035024.	IF 0.6	CITATIONS
942	Spin-wave eigenmodes in direct-write 3D nanovolcanoes. Applied Physics Letters, 2021, 118, .	1.5	25
943	Difference between angular momentum and pseudoangular momentum. Physical Review B, 2021, 103, .	1.1	21
944	Gapless Spin Wave Transport through a Quantum Canted Antiferromagnet. Physical Review X, 2021, 11, .	2.8	15
945	Unidirectional spin wave propagation due to a saturation magnetization gradient. Physical Review B, 2021, 103, .	1.1	6
946	Spin Nernst effect and quantum entanglement in two-dimensional antiferromagnets on checkerboard lattice. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114580.	1.3	8
947	Resonant Spin Transmission Mediated by Magnons in a Magnetic Insulator Multilayer Structure. Advanced Materials, 2021, 33, e2008555.	11.1	13
948	Magnetic texture based magnonics. Physics Reports, 2021, 905, 1-59.	10.3	107
949	Nanoscale magnonic Fabry-Pérot resonator for low-loss spin-wave manipulation. Nature Communications, 2021, 12, 2293.	5.8	53
950	Self-Hybridization and Tunable Magnon-Magnon Coupling in van der Waals Synthetic Magnets. Physical Review Applied, 2021, 15, .	1.5	17
951	Topological magnonics. Journal of Applied Physics, 2021, 129, .	1.1	29
952	Increase of Gilbert damping in Permalloy thin films due to heat-induced structural changes. Journal of Applied Physics, 2021, 129, 153903.	1.1	4
953	Observation of mode splitting in artificial spin ice: A comparative ferromagnetic resonance and Brillouin light scattering study. Applied Physics Letters, 2021, 118, 162407.	1.5	11
954	Spin-wave wells revisited: From wavelength conversion and Möbius modes to magnon valleytronics. Physical Review B, 2021, 103, .	1.1	9
955	Observation of Coherent Spin Waves in a Three-Dimensional Artificial Spin Ice Structure. Nano Letters, 2021, 21, 4629-4635.	4.5	29
956	Spin-Wave Dynamics in an Artificial Kagome Spin Ice. Chinese Physics Letters, 2021, 38, 047501.	1.3	3
957	Insights on magnon topology and valley-polarization in 2D bilayer quantum magnets. New Journal of Physics, 2021, 23, 053022.	1.2	13
958	Electricâ€Field Control of Propagating Spin Waves by Ferroelectric Domainâ€Wall Motion in a Multiferroic Heterostructure. Advanced Materials, 2021, 33, e2100646.	11.1	25

#	Article	IF	CITATIONS
959	Directional control of spin-wave transport in tunable spin-photonic YIG/Fe-Rh bilayer structure for signal processing. , 2021, , .		0
960	Control of Structural and Magnetic Properties of Polycrystalline Co2FeGe Films via Deposition and Annealing Temperatures. Nanomaterials, 2021, 11, 1229.	1.9	5
961	Reconfigurable magnonic mode-hybridisation and spectral control in a bicomponent artificial spin ice. Nature Communications, 2021, 12, 2488.	5.8	30
962	Tunable spin-wave coupling in lateral arrays of magnonic structures for magnonic logic applications. , 2021, , .		0
963	Inverse-design magnonic devices. Nature Communications, 2021, 12, 2636.	5.8	53
964	Local heat emission due to unidirectional spin-wave heat conveyer effect observed by lock-in thermography. Applied Physics Letters, 2021, 118, .	1.5	5
965	Magnetic Damping in Polycrystalline Thin-Film <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Fe</mml:mi><mml:mtext>â^'</mml:mtext><mml:mrow><mml:mrow><mml:mrow><mml:mi mathvariant="normal">V</mml:mi </mml:mrow></mml:mrow> Alloys. Physical Review</mml:mrow></mml:math 	1.5	11
966	Applied, 2021, 15, . Development of One-dimensional Magnonic Crystal using Forward Volume Spin Wave. IEEJ Transactions on Fundamentals and Materials, 2021, 141, 327-332.	0.2	0
967	Tunable Damping in Magnetic Nanowires Induced by Chiral Pumping of Spin Waves. ACS Nano, 2021, 15, 9076-9083.	7.3	12
968	Multifunctional operation of the double-layer ferromagnetic structure coupled by a rectangular nanoresonator. Applied Physics Letters, 2021, 118, 182406.	1.5	6
969	Electron–Phonon Interaction Enables Strong Thermoelectric Seebeck Effect Variation in Hybrid Nanoscale Systems. Journal of Physical Chemistry C, 2021, 125, 13167-13175.	1.5	5
970	Third-order topological insulator in three-dimensional lattice of magnetic vortices. Physical Review B, 2021, 103, .	1.1	2
971	Spin-wave localization and guiding by magnon band structure engineering in yttrium iron garnet. Physical Review Materials, 2021, 5, .	0.9	8
972	Ferromagnetic Resonance in Permalloy Metasurfaces. Applied Magnetic Resonance, 2021, 52, 749-758.	0.6	4
973	Nanomagnonics with artificial spin ice. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 402, 127364.	0.9	33
974	Measuring the dispersion relations of spin wave bands using time-of-flight spectroscopy. Physical Review B, 2021, 103, .	1.1	6
975	One-dimensional optomagnonic microcavities for selective excitation of perpendicular standing spin waves. Journal of Magnetism and Magnetic Materials, 2022, 543, 168167.	1.0	5
976	Geometric magnonics with chiral magnetic domain walls. Physical Review B, 2021, 103, .	1.1	8

ARTICLE IF CITATIONS # Spin waves and high-frequency response in layered superconductors with helical magnetic structure. 1.1 0 977 Physical Review B, 2021, 103, . Characteristics of parametric spin waves in rectangular magnonic blocks. Journal Physics D: Applied 978 1.3 Physics, 2021, 54, 365001. Using Mandelstam–Brillouin Spectroscopy to Study Energy-Efficient Devices for Processing Information Signals on the Basis of Magnon Straintronics. Bulletin of the Russian Academy of 979 0.1 2 Sciences: Physics, 2021, 85, 595-598. A magnon scattering platform. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . Control of Nonlocal Magnon Spin Transport via Magnon Drift Currents. Physical Review Letters, 981 2.9 30 2021, 126, 257201. Differentiated Strain-Control of Localized Magnetic Modes in Antidot Arrays. ACS Applied Materials 4.0 & Interfaces, 2021, 13, 29906-29915. Strain-mediated tunability of spin-wave spectra in the adjacent magnonic crystal stripes with 983 1.5 11 piezoelectric layer. Applied Physics Letters, 2021, 118, . Topological insulators and semimetals in classical magnetic systems. Physics Reports, 2021, 915, 1-64. 10.3 984 56 Polymer Micelle Directed Magnetic Cargo Assemblies Towards Spinâ€wave Manipulation. Advanced 985 1.9 3 Materials Interfaces, 2021, 8, 2100455. Nonreciprocal emergence of hybridized magnons in magnetic thin films. Physical Review B, 2021, 104, . 1.1 Advances in coherent magnonics. Nature Reviews Materials, 2021, 6, 1114-1135. 987 23.3 170 Reconfigurable Spin-Wave Interferometer at the Nanoscale. Nano Letters, 2021, 21, 6237-6244. 988 4.5 Spin-phonon interaction in yttrium iron garnet. Physical Review B, 2021, 104, . 989 1.1 1 Coherent spin-wave transport in an antiferromagnet. Nature Physics, 2021, 17, 1001-1006. 990 6.5 61 Parametric excitation and mode control using an Oersted field in a NiFe nanowire. Scientific Reports, 991 1.6 5 2021, 11, 14207. Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit. Applied 992 20 Physics Letters, 2021, 119, . Spatially resolved GHz magnetization dynamics of a magnetite nano-particle chain inside a 993 1.36 magnetotactic bacterium. Physical Review Research, 2021, 3, . Conceptual design of demultiplexer using coupled-gyration-mode signals in vortex-state disk arrays. 994 1.1 Journal of Applied Physics, 2021, 130, 013901.

#	Article	IF	CITATIONS
995	Dispersion relation of spin wave in chiral helimagnet under stationary optical vortex radiation. Japanese Journal of Applied Physics, 2021, 60, 098001.	0.8	2
996	Direct Observation of Magnon-Phonon Strong Coupling in Two-Dimensional Antiferromagnet at High Magnetic Fields. Physical Review Letters, 2021, 127, 097401.	2.9	54
997	Direct observation of multiband transport in magnonic Penrose quasicrystals via broadband and phase-resolved spectroscopy. Science Advances, 2021, 7, .	4.7	9
998	Dispersionless Propagation of Ultrashort Spin-Wave Pulses in Ultrathin Yttrium Iron Garnet Waveguides. Physical Review Applied, 2021, 16, .	1.5	6
999	Magnonics Based on Thin-Film Iron Garnets. Journal of the Physical Society of Japan, 2021, 90, 081005.	0.7	15
1000	Spin-wave control using dark modes in chiral magnonic resonators. Physical Review B, 2021, 104, .	1.1	13
1001	Functional magnetic waveguides for magnonics. Applied Physics Letters, 2021, 119, .	1.5	15
1002	Anatomy of inertial magnons in ferromagnetic nanostructures. Physical Review B, 2021, 104, .	1.1	19
1003	Ultrafast Optomagnonics in Ferrimagnetic Multi-Sublattice Garnets. Journal of the Physical Society of Japan, 2021, 90, 081008.	0.7	3
1004	Nonlocal magnon transport in a magnetic domain wall waveguide. Physical Review B, 2021, 104, .	1.1	3
1005	Mesoscopic magnetic systems: From fundamental properties to devices. Applied Physics Letters, 2021, 119, 080401.	1.5	4
1006	Measuring spin wave resonance in Ni ₁₀₀ â^' _x Fe _x films: compositional and temperature dependence. Journal Physics D: Applied Physics, 2021, 54, 445002.	1.3	3
1007	Topological phonon-magnon hybrid excitations in a two-dimensional honeycomb ferromagnet. Physical Review B, 2021, 104, .	1.1	2
1008	Skyrmion based magnonic crystals. Journal of Applied Physics, 2021, 130, .	1.1	18
1009	Spin Transport in a Quantum Hall Insulator. Applied Sciences (Switzerland), 2021, 11, 8131.	1.3	0
1010	Classical approaches to prethermal discrete time crystals in one, two, and three dimensions. Physical Review B, 2021, 104, .	1.1	20
1011	Numerical study of structural and magnetic properties of thin films obliquely deposited on rippled substrates. Journal of Physics Condensed Matter, 2021, 33, 495802.	0.7	3
1012	Enhancement and flexible control of slow light in a magnon–photon coupling system with N cavities. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 3032.	0.9	1

# 1013	ARTICLE Unidirectional emission and reconfigurability of channeled spin waves from a vortex core in a teardrop-shaped nanopatch. Physical Review B, 2021, 104, .	IF 1.1	CITATIONS 2
1014	Theoretical realization of rich magnon topology by symmetry-breaking in honeycomb bilayer ferromagnets. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 135, 114984.	1.3	3
1015	Magnetodynamic properties of dipole-coupled 1D magnonic crystals. Journal of Magnetism and Magnetic Materials, 2021, 539, 168376.	1.0	2
1016	Reconfigurable microwave properties in trapezoid-shaped nanomagnets without bias magnetic field. Journal of Magnetism and Magnetic Materials, 2021, 540, 168431.	1.0	3
1017	Dynamic configurational anisotropy in Ni80Fe20 antidot lattice with complex geometry. Journal of Alloys and Compounds, 2021, 884, 161105.	2.8	1
1018	Engineered magnetization and exchange stiffness in direct-write Co–Fe nanoelements. Applied Physics Letters, 2021, 118, .	1.5	13
1019	Topology in Magnetism. Topics in Applied Physics, 2021, , 357-403.	0.4	6
1021	Tunable Spin Wave Propagation in YIG/Fe-Rh Stripe. IEEE Transactions on Magnetics, 2022, 58, 1-4.	1.2	0
1022	Surface Spin-Wave Propagation in the Orthogonal Transverse Junction of YIG-Based Magnonic Stripes. IEEE Transactions on Magnetics, 2022, 58, 1-4.	1.2	1
1023	Dynamic Magnonic Crystals for Measuring the Dispersion of Bulk Magnetostatic Spin Waves Caused by Magnetic Anisotropy in YIG Films. Instruments and Experimental Techniques, 2021, 64, 121-126.	0.1	1
1024	Vertex dependent dynamic response of a connected Kagome artificial spin ice. Applied Physics Letters, 2021, 118	1.5	7
1025	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"> <mml:msub><mml:mi>Co</mml:mi><mml:mn>40</mml:mn></mml:msub> <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msub><mml:mi>Fe</mml:mi><mml:mi>40</mml:mi></mml:msub></mml:math>	1.5	17
1026	Nonreciprocal coherent coupling of nanomagnets by exchange spin waves. Nano Research, 2021, 14, 2133-2138.	5.8	26
1027	Spin waves in finite chain of dipolarly coupled ferromagnetic pillars. Journal of Magnetism and Magnetic Materials, 2018, 465, 519-523.	1.0	15
1028	Giant Goos–HÃ ¤ chen shift of a reflected spin wave from the ultrathin interface separating two antiferromagnetically coupled ferromagnets. Optics Communications, 2020, 474, 126067.	1.0	20
1029	Ultralow-current-density and bias-field-free spin-transfer nano-oscillator. , 0, .		1
1030	A nonlinear magnonic nano-ring resonator. Npj Computational Materials, 2020, 6, .	3.5	29
1031	Investigation of spin stiffness in spin-depolarized states of two-dimensional electron systems with time-resolved Kerr rotation. Scientific Reports, 2020, 10, 2270.	1.6	8

#	Article	IF	CITATIONS
1032	Patterned time-orbiting potentials for the confinement and assembly of magnetic dipoles. Scientific Reports, 2013, 3, 3124.	1.6	8
1033	Broadband conversion of microwaves into propagating spin waves in patterned magnetic structures. Applied Physics Letters, 2017, 111, .	1.5	33
1034	Strong coupling between magnons confined in a single magnonic cavity. Journal of Applied Physics, 2020, 127, .	1.1	12
1035	Nanometer-thick YIG-based magnonic crystals: Bandgap dependence on groove depth, lattice constant, and film thickness. Applied Physics Letters, 2020, 116, 202403.	1.5	5
1036	Reconfigurable and self-biased magnonic metamaterials. Journal of Applied Physics, 2020, 128, .	1.1	18
1037	Magnetic and structural properties of CoFeB thin films grown by pulsed laser deposition. Materials Research Express, 2020, 7, 106406.	0.8	8
1038	Magnon valley Hall effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi> CrI </mml:mi> -based van der Waals heterostructures. Physical Review B, 2020, 101, .</mml:mrow></mml:msub></mml:math 	nr ∆ıl ∕> <mn< td=""><td>nໄໝຄn>3</td></mn<>	n ໄໝ ຄn>3
1039	Graded index confined spin waves in a mixed Bloch-Néel domain wall. Physical Review B, 2020, 102, .	1.1	1
1040	Crystal structure and crystal growth of the polar ferrimagnet CaBaFe4O7. Physical Review Materials, 2018, 2, .	0.9	3
1041	Role of gailium diffusion in the formation of a magnetically dead layer at the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Y<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi>Fe</mml:mi><m mathvariant="normal">O<mml:mn>12</mml:mn></m </mml:msub><mml:mo>/</mml:mo>//<td>າໄດາຈາ>5<!--<br-->າml:mi>Gc</td><td>naal:mn> «/r l <</td></mml:mrow></mml:math 	າ ໄດາຈ າ>5 <br າml:mi>Gc	n aal: mn> «/r l <
1042	Physical Review Materials, 2018, 2, . Giant magnetocaloric effect driven by indirect exchange in magnetic multilayers. Physical Review Materials, 2018, 2, .	0.9	12
1043	Influence of flexoelectricity on the spin cycloid in (110)-oriented <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>BiFe</mml:mi> <mml:msub> <mml:r mathvariant="normal">O <mml:mn>3</mml:mn> </mml:r </mml:msub> </mml:mrow> films. Physical Review Materials 2019 3</mml:math 	ni 0.9	9
1044	Low damping and microstructural perfection of sub-40nm-thin yttrium iron garnet films grown by liquid phase epitaxy. Physical Review Materials, 2020, 4, .	0.9	49
1045	Effect of correlation and disorder on the spin-wave spectra of <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mmi:mrow> <mmi:msub> <mmi:mi>Pd </mmi:mi> <mmi:mr , and <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mmi:mrow> <mmi:msub> <mmi:mi>Cu </mmi:mi> <mmi:mi< td=""><td>1>20.9 n>2<td>:mn>5 I:mn></td></td></mmi:mi<></mmi:msub></mmi:mrow></mmi:math </mmi:mr </mmi:msub></mmi:mrow></mmi:math 	1>20.9 n>2 <td>:mn>5 I:mn></td>	:mn>5 I:mn>
1046	Physical Review Materials, 2020, 4, . Many-body localization from random magnetic anisotropy. Physical Review Research, 2019, 1, .	1.3	3
1047	Chiral magnonic edge states in ferromagnetic skyrmion crystals controlled by magnetic fields. Physical Review Research, 2020, 2, .	1.3	47
1048	Unconventional spin currents in magnetic films. Physical Review Research, 2020, 2, .	1.3	13
1049	Defect Modes Control in Coupled Magnonic Crystals. IEEE Transactions on Magnetics, 2017, 53, 1-4.	1.2	4

#	Article	IF	Citations
1050	Visualizing nanoscale spin waves using MAXYMUS. , 2019, , .		9
1051	Electric Field Control of Magnon Power Flow in Thin Ferromagnet Films. Acta Physica Polonica A, 2018, 133, 463-465.	0.2	4
1052	Dipole-exchange spin waves in a periodically layered ferromagnetic nanotube. Functional Materials, 2013, 20, 516-522.	0.4	1
1053	Dipole-Exchange Spin Waves in a Ferromagnetic Nanotube. Ukrainian Journal of Physics, 2014, 59, 541-546.	0.1	3
1054	MAGNONIC LOGIC DEVICES. Izvestiya of Saratov University, New Series: Physics, 2017, 17, 216-241.	0.1	3
1055	Dielectric magnonics: from gigahertz to terahertz. Physics-Uspekhi, 2020, 63, 945-974.	0.8	40
1057	Bose-Einstein Condensation of Confined Magnons in Nanostructures. Journal of Modern Physics, 2014, 05, 693-705.	0.3	6
1058	Phase stability of magnonic logic operation in microfabricated metallic wires. Applied Physics Express, 2016, 9, 083001.	1.1	6
1059	Artificial Spin Ice: Beyond Pyrochlores and Magnetism. Springer Series in Solid-state Sciences, 2021, , 419-453.	0.3	0
1060	Topological phase transition and thermal Hall effect in kagome ferromagnets. Physical Review B, 2021, 104, .	1.1	7
1061	Sub-50 nm wavelength spin waves excited by low-damping Co25Fe75 nanowires. Applied Physics Letters, 2021, 119, .	1.5	10
1062	Theoretical Study on Metasurfaces for Transverse Magneto-Optical Kerr Effect Enhancement of Ultra-Thin Magnetic Dielectric Films. Nanomaterials, 2021, 11, 2825.	1.9	2
1063	Unidirectional spin-wave propagation and devices. Journal Physics D: Applied Physics, 2022, 55, 123001.	1.3	26
1064	Cylindrical nanowire arrays: From advanced fabrication to static and microwave magnetic properties. Journal of Magnetism and Magnetic Materials, 2022, 543, 168634.	1.0	14
1065	Co \$\$_{2}\$\$ 2 Mn \$\$_{0.6}\$\$ 0.6 Fe \$\$_{0.4}\$\$ 0.4 Si: A Heusler Compound Opening New Perspectives in Materials Science, 2016, , 321-340.	0.4	0
1066	Spin Waves in a Ferromagnetic Nanotube. Account of Dissipation and Spin-Polarized Current. Ukrainian Journal of Physics, 2016, 61, 59-65.	0.1	0
1067	Spin Excitations in â€~Nanorice'-Type Ferromagnetic Nanoshell. Metallofizika I Noveishie Tekhnologii, 2016, 36, 1023-1033.	0.2	0
1069	Spin textures patterned via thermally assisted magnetic scanning probe lithography for magnonics. , 2018, , .		0

#	Article	IF	CITATIONS
1070	Dipole-Exchange Spin Waves in the System of One-Dimensional Periodic Chain of Elliptic Antidots. Metallofizika I Noveishie Tekhnologii, 2019, 41, 837-849.	0.2	0
1071	Electromagnonic Crystals Based on Ferrite-Ferroelectric Thin-film Multilayers. , 2019, , .		0
1072	Y3Fe5O12 İnce Filmlerin Gd3Ga5O12 AlttaÅŸ Üzerine Darbeli Lazer Biriktirme (PLD) Yöntemiyle BüyütÃ Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2019, 12, 1634-1639.	¹ /4lmesi. 0.1	1
1073	Width modulation on square shaped antidots based magnonic waveguide for spin wave filters applications. AIP Conference Proceedings, 2020, , .	0.3	0
1074	Controlling the three dimensional propagation of spin waves in continuous ferromagnetic films with an increasing out of plane undulation. Scientific Reports, 2021, 11, 21344.	1.6	4
1075	Efficient geometrical control of spin waves in microscopic YIG waveguides. Applied Physics Letters, 2021, 119, .	1.5	3
1076	Identification and manipulation of spin wave polarizations in perpendicularly magnetized synthetic antiferromagnets. New Journal of Physics, 2021, 23, 113029.	1.2	8
1077	Temperature Dependence of Spin Pinning and Spin-Wave Dispersion in Nanoscopic Ferromagnetic Waveguides. Ukrainian Journal of Physics, 2020, 65, 1094.	0.1	1
1078	Ferromagnetic resonance in single vertices and 2D lattices macro-dipoles of elongated nanoelements: measurements and simulations. Journal of Physics Condensed Matter, 2021, 33, 065803.	0.7	2
1079	Observation of the dispersion relations for quantized coherent spin waves excited by a microwave antenna. Physical Review B, 2020, 102, .	1.1	3
1080	Electric steering of spin excitation in nanostructured synthetic antiferromagnet. Applied Physics Letters, 2020, 117, .	1.5	7
1081	Magnon straintronics for tunable spin-wave transport with YIG/GaAs and YIG/PZT structures. AIP Conference Proceedings, 2020, , .	0.3	2
1082	Nanopatterned Thin Films with Perpendicular Magnetic Anisotropy – Structure and Magnetism. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 47-71.	0.2	1
1083	Magnetic Surfaces, Thin Films and Nanostructures. Springer Handbooks, 2020, , 625-698.	0.3	3
1084	Green's function formalism for nonlocal elliptical magnon transport. Physical Review B, 2021, 104, .	1.1	1
1085	Magnetically tunable Maxwell fisheye lens for spin waves focusing. Journal of Magnetism and Magnetic Materials, 2022, 545, 168743.	1.0	1
1086	Damping of Magnetoelastic Waves. Ukrainian Journal of Physics, 2020, 65, 912.	0.1	0
1087	The interactions between spin wave and stacked domain walls. Journal of Physics Condensed Matter, 2021, 33, 065806.	0.7	2

#	Article	IF	CITATIONS
1088	Spin wave filtration by resonances in the sidewalls of corrugated yttrium-iron garnet films. Journal of Magnetism and Magnetic Materials, 2022, 545, 168786.	1.0	3
1089	Nonreciprocal spin wave propagation in bilayer magnonic waveguide. Journal of Magnetism and Magnetic Materials, 2022, 546, 168736.	1.0	7
1090	Field-dependent nonelectronic contributions to thermal conductivity in a metallic ferromagnet with low Gilbert damping. Physical Review Materials, 2021, 5, .	0.9	1
1091	Frequency fluctuations of ferromagnetic resonances at millikelvin temperatures. Applied Physics Letters, 2021, 119, 212403.	1.5	1
1092	Chiral magnonic resonators: Rediscovering the basic magnetic chirality in magnonics. Applied Physics Letters, 2021, 119, 200502.	1.5	18
1093	Magnon junction effect in Y3Fe5O12/CoO/Y3Fe5O12 insulating heterostructures. Applied Physics Letters, 2021, 119, .	1.5	9
1094	Tunable magnonic cavity analogous to Fabry–Pérot interferometer. Applied Physics Letters, 2021, 119, 202401.	1.5	2
1095	Spin Waves. , 2021, , 281-346.		0
1096	Femtosecond laser comb driven perpendicular standing spin waves. Applied Physics Letters, 2022, 120, .	1.5	3
1097	Magnonic bands in periodic arrays of vertically-stacked cylindrical magnetic nanoelements. Solid State Communications, 2022, 342, 114588.	0.9	1
1098	Hypersonic magnetoelastic waves in inhomogeneous structures. Ultrasonics, 2022, 121, 106656.	2.1	2
1099	Learning phase transitions in the ferrimagnetic GdFeCo alloy. , 2020, , .		0
1101	Spin wave propagation in uniform waveguide: effects, modulation and its application. Journal Physics D: Applied Physics, 2022, 55, 263002.	1.3	2
1102	Subterahertz and terahertz spin and lattice dynamics of the insulating ferromagnet PbMnBO4. Physical Review Research, 2022, 4, .	1.3	1
1103	Topological thermal Hall effect and magnonic edge states in kagome ferromagnets with bond anisotropy. New Journal of Physics, 2022, 24, 023033.	1.2	4
1104	Advances in Magnetics Roadmap on Spin-Wave Computing. IEEE Transactions on Magnetics, 2022, 58, 1-72.	1.2	179
1105	Observation and control of collective spin-wave mode hybridization in chevron arrays and in square, staircase, and brickwork artificial spin ices. Physical Review Research, 2022, 4, .	1.3	13
1106	Elastically stressed state at the interface in the layered ferromagnetic / ferroelectric structures with magnetoelectric effect. Ceramics International, 2022, 48, 12387-12394.	2.3	5

#	Article	IF	CITATIONS
1107	Investigation of structural, magnetic, and electrical properties of Ru doped brownmillerite oxide: KBiFe2O5. Materials Chemistry and Physics, 2022, 280, 125812.	2.0	1
1108	Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures. Nature Communications, 2021, 12, 7258.	5.8	15
1109	Comparison of spin-wave transmission in parallel and antiparallel magnetic configurations. Physical Review B, 2022, 105, .	1.1	4
1110	Unified formulation of interfacial magnonic pumping from noncollinear magnets. Physical Review B, 2022, 105, .	1.1	2
1111	Unveiling ferromagnetism and antiferromagnetism in two dimensions at room temperature. Journal Physics D: Applied Physics, 2022, 55, 283003.	1.3	7
1112	Valley modulation and single-edge transport of magnons in breathing kagome ferromagnets. Physical Review B, 2022, 105, .	1.1	2
1113	Magnon polarons in spin Seebeck effect of easy axis antiferromagnets. Journal of Applied Physics, 2022, 131, 103902.	1.1	1
1114	Magnonic proximity effect in insulating ferromagnetic and antiferromagnetic trilayers. Physical Review B, 2022, 105, .	1.1	2
1115	Lumped circuit model for inductive antenna spin-wave transducers. Scientific Reports, 2022, 12, 3796.	1.6	8
1116	Manipulation of polarized magnon transmission in a trilayer magnonic spin valve. Physical Review B, 2022, 105, .	1.1	1
1117	Nonlinear signal processing with magnonic superlattice with two periods. Applied Physics Letters, 2022, 120, 122407.	1.5	3
1118	Magic-angle magnonic nanocavity in a magnetic moir $ ilde{A}$ $ ilde{C}$ superlattice. Physical Review B, 2022, 105, .	1.1	11
1119	Single-crystal studies and electronic structure investigation of the room-temperature semiconductor NaMnAs. Physical Review B, 2022, 105, .	1.1	1
1120	influence of adjacent metal films on magnon propagation in <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mmi:mrow> <mmi:msub> <mmi:mi mathvariant="normal">Y <mmi:mn> 3 </mmi:mn> </mmi:mi </mmi:msub> <mmi:msub> <mmi:mi> Fe </mmi:mi> <m mathvariant="normal">O <mmi:mn> 12 </mmi:mn> </m </mmi:msub> </mmi:mrow> .</mmi:math 	mlımın>5<	/næml:mn>
1121	Physical Review B, 2022, 105, . Writable spin wave nanochannels in an artificial-spin-ice-mediated ferromagnetic thin film. Applied Physics Letters, 2022, 120, 132404.	1.5	2
1122	High spin-wave asymmetry and emergence of radial standing modes in thick ferromagnetic nanotubes. Physical Review B, 2022, 105, .	1.1	9
1123	Magnonic Metamaterials for Spin-Wave Control with Inhomogeneous Dzyaloshinskii–Moriya Interactions. Nanomaterials, 2022, 12, 1159.	1.9	3
1124	Dirac cones and valley topological states of classical spin waves in artificial magnonic crystals with two-dimensional honeycomb lattice. Materials Research Express, 2022, 9, 046101.	0.8	1

#	Article	IF	CITATIONS
1125	Narrow and wide bandgap tunablity by changing channel width in 1D cascaded magnonic antidot waveguide. Chinese Journal of Physics, 2022, , .	2.0	0
1126	Generation of Magnon Orbital Angular Momentum by a Skyrmion-Textured Domain Wall in a Ferromagnetic Nanotube. Frontiers in Physics, 2022, 10, .	1.0	5
1127	Shock-wave-like emission of spin waves induced by the interfacial Dzyaloshinskii-Moriya interaction. Journal of Magnetism and Magnetic Materials, 2022, 553, 169264.	1.0	1
1128	Tailoring ferromagnetic resonance in bicomponent artificial spin ices. , 2021, , .		0
1129	Synthesis and Properties of Y3Fe5O12 Films on Ferroelectric Ceramic Substrates PbZr0.45Ti0.55O3 and Ba0.4Sr0.6TiO3. Russian Journal of Inorganic Chemistry, 2021, 66, 1822-1828.	0.3	3
1130	Effect of Nonuniform Magnetic Field That Magnetizes a Ferrite Film on the Measurement Accuracy for Characteristics of Spin Waves. Journal of Communications Technology and Electronics, 2021, 66, 1378-1384.	0.2	3
1131	Tunable asymmetric spin wave excitation and propagation in a magnetic system with two rectangular blocks. Scientific Reports, 2021, 11, 24385.	1.6	0
1132	Anomalous Thermal Hall Effect in an Insulating van der Waals Magnet. Physical Review Letters, 2021, 127, 247202.	2.9	31
1133	Determination of the Range of Magnetic Interactions from the Relations between Magnon Eigenvalues at High-Symmetry κ Points. Chinese Physics Letters, 2021, 38, 117101.	1.3	3
1134	Spin wave propagation and nonreciprocity in metallic magnonic quasi-crystals. Journal Physics D: Applied Physics, 2022, 55, 115005.	1.3	1
1135	Ferrimagnetic spintronics. Nature Materials, 2022, 21, 24-34.	13.3	129
1136	Topological magnon modes on honeycomb lattice with coupling textures. Scientific Reports, 2022, 12, 6257.	1.6	3
1137	Strain-Tuned Spin-Wave Interference in Micro- and Nanoscale Magnonic Interferometers. Nanomaterials, 2022, 12, 1520.	1.9	5
1138	Anomalous anisotropic spin-wave propagation in thin manganite films with uniaxial magnetic anisotropy. Applied Physics Letters, 2022, 120, .	1.5	3
1139	Functional properties of Yttrium Iron Garnett thin films on graphene-coated Gd3Ga5O12 for remote epitaxial transfer. Journal of Magnetism and Magnetic Materials, 2022, 556, 169440.	1.0	5
1140	Generation of twisted magnons via spin-to-orbital angular momentum conversion. Physical Review B, 2022, 105, .	1.1	2
1141	Curvilinear manipulation of polarized spin waves. Physical Review B, 2022, 105, .	1.1	6
1142	Measuring a population of spin waves from the electrical noise of an inductively coupled antenna. Physical Review B, 2022, 105, .	1.1	4

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1143	Exchange spin waves in thin films with gradient composition. Physical Review Materials, 202	22, 6, .	0.9	5
1144	Intensity nonreciprocity reversal of spin wave in magnonic crystal by specific wavenumber e Journal Physics D: Applied Physics, 2022, 55, 365001.	xcitation.	1.3	3
1145	Bias-free spin-wave propagation in a micrometer-thick ferrimagnetic film with perpendicular anisotropy. AIP Advances, 2022, 12, .	magnetic	0.6	1
1146	Interface magnetization in Y3Fe5O12 / Nd3Ga5O12 epitaxial heterostructures caused by Fe exchange coupling. Thin Solid Films, 2022, 756, 139346.	23+ - Nd3+	0.8	1
1147	Giant enhancement of the transverse magneto-optical Kerr effect based on the Tamm plasn polaritons and its application in sensing. Optics and Laser Technology, 2022, 154, 108353.	างท	2.2	11
1148	Handedness filter and Doppler shift of spin waves in ferrimagnetic domain walls. Physical Re 2022, 105, .	view B,	1.1	4
1149	Reconfigurable Spin-Wave Coupler Based on Domain-Wall Channels. Physical Review Applie	d, 2022, 17, .	1.5	6
1150	Emergent Phenomena in Magnetic Two-Dimensional Materials and van der Waals Heterostr ACS Applied Electronic Materials, 2022, 4, 3278-3302.	uctures.	2.0	26
1151	Experimental observation of the interlayer perpendicular standing spin wave mode with low in skyrmion-hosting [Pt/Co/Ta] ₁₀ multilayer. Chinese Physics B, 0, , .	damping	0.7	0
1152	Dipolar spin-waves and tunable band gap at the Dirac points in the 2D magnet ErBr3. Comn Physics, 2022, 5, .	nunications	2.0	0
1153	Interface modes in planar one-dimensional magnonic crystals. Scientific Reports, 2022, 12,		1.6	3
1154	Highâ€Efficiency Magnonâ€Mediated Magnetization Switching in Allâ€Oxide Heterostruct∟ Perpendicular Magnetic Anisotropy. Advanced Materials, 2022, 34, .	ires with	11.1	16
1155	Polarization-Selective Excitation of Antiferromagnetic Resonance in Perpendicularly Magnet Synthetic Antiferromagnets. Physical Review Applied, 2022, 18, .	ized	1.5	5
1156	High-density spin wave soliton train. Applied Physics Express, 0, , .		1.1	1
1157	Mechanism of Band Gap Formation in the Spin-Wave Spectrum of Coupled Magnon Crystal Letters, 2022, 115, 742-748.	s. JETP	0.4	2
1158	Imaging magnonic frequency multiplication in nanostructured antidot lattices. Physical Rev 2022, 106, .	ew B,	1.1	3
1159	Nonreciprocal propagation of spin waves in a bilayer magnonic waveguide based on yttrium garnet films. Russian Technological Journal, 2022, 10, 55-64.	-iron	0.6	0
1160	Realization of Multifunctional Bosonic Magnon Transistor via Thermal Phonon Gating. Adva Functional Materials, 2022, 32, .	nced	7.8	1

#	Article	IF	CITATIONS
1161	Experimental visualization of dispersion characteristics of backward volume spin wave modes. Journal of Magnetism and Magnetic Materials, 2022, 563, 169747.	1.0	1
1162	Magnonic Band-Pass and Band-Stop Filters with Structurally Modulated Waveguides. Chinese Physics B, O, , .	0.7	0
1163	Interfacial roughness driven manipulation of magnetic anisotropy and coercivity in ultrathin thulium iron garnet films. Journal of Alloys and Compounds, 2022, 927, 166800.	2.8	6
1164	Hybridized propagating spin waves in a CoFeB/IrMn bilayer. Physical Review B, 2022, 106, .	1.1	7
1165	Surface plasmon-phonon-magnon polariton in a topological insulator-antiferromagnetic bilayer structure. Physical Review Materials, 2022, 6, .	0.9	5
1166	Excitations of the ferroelectric order. Physical Review B, 2022, 106, .	1.1	12
1167	{Sc _{<i>n</i>} Gd _{<i>n</i>} } Heterometallic Rings: Tunable Ring Topology for Spin-Wave Excitations. Journal of the American Chemical Society, 2022, 144, 15193-15202.	6.6	10
1168	Spin-wave interconversion via thermoelectric point-contact control. Physical Review Research, 2022, 4, .	1.3	2
1169	Functional nanostructures for bias-magnet-free and reconfigurable microwave magnetic devices. , 2022, 2, 100008.		3
1170	Magnon Dynamics in Parity-Time-Symmetric Dipolarly Coupled Waveguides and Magnonic Crystals. Physical Review Applied, 2022, 18, .	1.5	3
1171	Magnonic frequency combs based on the resonantly enhanced magnetostrictive effect. Fundamental Research, 2023, 3, 8-14.	1.6	15
1172	Exciton-coupled coherent magnons in a 2D semiconductor. Nature, 2022, 609, 282-286.	13.7	59
1173	Origin and dynamics of umbrella states in rare-earth iron garnets. Annals of Physics, 2022, 447, 169117.	1.0	3
1174	From microelectronics to spintronics and magnonics. Chinese Physics B, 2022, 31, 117504.	0.7	4
1175	Magnon Straintronics in the 2D van der Waals Ferromagnet CrSBr from First-Principles. Nano Letters, 2022, 22, 8771-8778.	4.5	20
1176	Controlling High-Frequency Spin-Wave Dynamics Using Double-Pulse Laser Excitation. Physical Review Applied, 2022, 18, .	1.5	4
1177	Tubular Geometries. Topics in Applied Physics, 2022, , 163-213.	0.4	2
1178	Complex-Shaped 3D Nanoarchitectures for Magnetism and Superconductivity. Topics in Applied Physics, 2022, , 215-268.	0.4	2

#	Article	IF	CITATIONS
1179	Topological magnons in the honeycomb-kagome lattice. Journal of Physics Condensed Matter, 2022, 34, 505801.	0.7	0
1180	Scaling Theory of Wave Confinement in Classical and Quantum Periodic Systems. Physical Review Letters, 2022, 129, .	2.9	3
1181	Magnonic spin Joule heating and rectification effects. Physical Review B, 2022, 106, .	1.1	4
1182	Topological magnons in one-dimensional ferromagnetic Su–Schrieffer–Heeger model with anisotropic interaction. Journal of Physics Condensed Matter, 2022, 34, 495801.	0.7	0
1184	Lowâ€Damping Spinâ€Wave Transmission in YIG/Ptâ€Interfaced Structures. Advanced Materials Interfaces, 2022, 9, .	1.9	4
1185	Unidirectional Chiral Magnonics in Cylindrical Synthetic Antiferromagnets. Physical Review Applied, 2022, 18, .	1.5	5
1186	Tuning of spin-wave transmission and mode conversion in microscopic YIG waveguides with magnonic crystals. Journal of Applied Physics, 2022, 132, 193904.	1.1	1
1187	Hybrid magnonic-oscillator system. Journal of Applied Physics, 2022, 132, .	1.1	6
1188	Nonreciprocal spin waves driven by left-hand microwaves. Physical Review B, 2022, 106, .	1.1	2
1189	Effect of an external magnetic field on the phase states and dynamic properties of the strongly anisotropic antiferromagnet. Journal of Magnetism and Magnetic Materials, 2023, 565, 170238.	1.0	0
1190	Surface Cooper-Pair Spin Waves in Triplet Superconductors. Physical Review Letters, 2022, 129, .	2.9	3
1191	Antisite Defects and Chemical Expansion in Lowâ€damping, Highâ€magnetization Yttrium Iron Garnet Films. ChemNanoMat, 2023, 9, .	1.5	1
1192	Magnon-Phonon-Interaction-Induced Electromagnetic Wave Radiation in the Strong-Coupling Region. Physical Review Applied, 2022, 18, .	1.5	3
1193	Acoustic attenuation in magnetic insulator films: effects of magnon polaron formation. Journal Physics D: Applied Physics, 2023, 56, 054004.	1.3	1
1194	Plane wave implementation of the magnetic force theorem for magnetic exchange constants: application to bulk Fe, Co and Ni. Journal of Physics Condensed Matter, 2023, 35, 105802.	0.7	5
1195	Nonreciprocal spin waves in ferrimagnetic domain-wall channels. Physical Review B, 2022, 106, .	1.1	4
1196	Lock-in thermographic study of spin-wave propagation in magnonic crystals. Journal of Applied Physics, 2022, 132, 233901.	1.1	1
1197	Micromagnetic frequency-domain simulation methods for magnonic systems. Journal of Applied Physics, 2023, 133, .	1.1	5

#	Article	IF	CITATIONS
1198	Realization of a magnonic analog adder with frequency-division multiplexing. AIP Advances, 2023, 13, 015115.	0.6	1
1199	Nonclassicality of dissipative cavity optomagnonics in the presence of Kerr nonlinearities. Physica Scripta, 2023, 98, 025103.	1.2	3
1200	Magnonic Interconnections: Spin-Wave Propagation across Two-Dimensional and Three-Dimensional Junctions between Yttrium Iron Garnet Magnonic Stripes. Physical Review Applied, 2022, 18, .	1.5	3
1201	Nonlocal Detection of Interlayer Three-Magnon Coupling. Physical Review Letters, 2023, 130, .	2.9	10
1202	Frequency-selective spin-wave propagation in magnonic waveguide with a local laser-heated region. Physical Review B, 2023, 107, .	1.1	5
1205	Spin-wave-based tunable coupler between superconducting flux qubits. Physical Review A, 2023, 107, .	1.0	0
1206	Magnetic Damping and Dzyaloshinskii–Moriya Interactions in Pt/Co2FeAl/MgO Systems Grown on Si and MgO Substrates. Materials, 2023, 16, 1388.	1.3	0
1207	Sublattice Magnetizations of Ultrathin Ferrimagnetic Lamellar Nanostructures between Cobalt Leads. Spin, 2023, 13, .	0.6	0
1208	Confined spin waves in magnetochiral nanotubes with axial and circumferential magnetization. Physical Review Materials, 2023, 7, .	0.9	3
1209	Hybridized Propagation of Spin Waves and Surface Acoustic Waves in a Multiferroic-Ferromagnetic Heterostructure. Physical Review Applied, 2023, 19, .	1.5	5
1210	Topological states and quantum effects in magnonics. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 057503.	0.2	2
1211	Spin-Phonon Coupling in Two-Dimensional Magnetic Materials. , 2023, , .		4
1212	Theoretical studies on electronic, magnetic and optical properties of two dimensional transition metal trihalides. Journal of Physics Condensed Matter, 2023, 35, 233001.	0.7	2
1213	Long-Distance Coherent Propagation of High-Velocity Antiferromagnetic Spin Waves. Physical Review Letters, 2023, 130, .	2.9	6
1214	Magnon-Fluxon Interaction in Coupled Superconductor/Ferromagnet Hybrid Periodic Structures. Physical Review Applied, 2023, 19, .	1.5	1
1215	Magnetization Dynamics in Proximity-Coupled Superconductor-Ferromagnet-Superconductor Multilayers. II. ThicknessÂDependence of the Superconducting Torque. Physical Review Applied, 2023, 19,	1.5	5
1216	Modelling of coupled magnetoelastic waves in structure containing thin antiferromagnetic films on an elastic substrate. Journal Physics D: Applied Physics, 2023, 56, 205301.	1.3	0
1217	Thickness dependence of magnetic properties of Ir/FeV-based systems. Physical Review Materials, 2023, 7, .	0.9	0

		CHAHON R	LEPORT	
#	Article		IF	Citations
1218	Pure magnon valley currents in a patterned ferromagnetic thin film. Physical Review B,	2023, 107, .	1.1	3
1219	Spatially-resolved dynamic sampling of different phasic magnetic resonances of nanop ensembles in a magnetotactic bacterium Magnetospirillum magnetotacticum. New Jou 2023, 25, 043010.	article Irnal of Physics,	1.2	Ο
1220	Controlling the Modes of Spin Wave Propagation in an Yttrium Iron Garnet Waveguide Heating. Bulletin of the Russian Academy of Sciences: Physics, 2023, 87, 362-366.	by Local Laser	0.1	1
1221	Breaking Down the Magnonic Wiedemann-Franz Law in the Hydrodynamic Regime. Phy Letters, 2023, 130, .	ysical Review	2.9	1
1242	Control of band gap of spin waves in width-modulated nanostrip using voltage-control anisotropy: Spin wave filter. , 2023, , .	led magnetic		0
1245	From Spintronic Memristors to Quantum Computing. , 2023, 5, 2197-2215.			4
1246	Spin-waves propagation as a basis for adaptive magnonic networks. , 2023, , .			0
1260	Generation of Spin-wave Soliton using Magnetostatic Surface Mode. , 2023, , .			0