Chemoselective Hydrogenolysis of Tetrahydropyranâ€ Rheniumâ€Modified Carbonâ€Supported Rhodium Cat

ChemCatChem 2, 547-555 DOI: 10.1002/cctc.201000018

Citation Report

#	Article	IF	CITATIONS
1	Total hydrogenation of furan derivatives over silica-supported Ni–Pd alloy catalyst. Catalysis Communications, 2010, 12, 154-156.	1.6	210
2	Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst. Chemical Communications, 2011, 47, 3924.	2.2	187
3	An attempt to achieve the direct hydrogenolysis of tetrahydrofurfuryl alcohol in supercritical carbon dioxide. Catalysis Science and Technology, 2011, 1, 1466.	2.1	42
4	Selective Hydrogenolysis of Polyols and Cyclic Ethers over Bifunctional Surface Sites on Rhodium–Rhenium Catalysts. Journal of the American Chemical Society, 2011, 133, 12675-12689.	6.6	439
5	Heterogeneous catalysis of the glycerol hydrogenolysis. Catalysis Science and Technology, 2011, 1, 179.	2.1	363
6	Mechanism of the hydrogenolysis of ethers over silica-supported rhodium catalyst modified with rhenium oxide. Journal of Catalysis, 2011, 280, 221-229.	3.1	156
7	Catalyst Development for the Hydrogenolysis of Biomass-Derived Chemicals to Value-Added Ones. Catalysis Surveys From Asia, 2011, 15, 111-116.	1.0	61
8	Renewable Chemicals: Dehydroxylation of Glycerol and Polyols. ChemSusChem, 2011, 4, 1017-1034.	3.6	282
10	Caprolactam from Renewable Resources: Catalytic Conversion of 5â€Hydroxymethylfurfural into Caprolactone. Angewandte Chemie - International Edition, 2011, 50, 7083-7087.	7.2	409
11	Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir–ReOx/SiO2 catalyst. Applied Catalysis B: Environmental, 2011, 105, 117-127.	10.8	293
12	C–O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts. Journal of Catalysis, 2012, 294, 171-183.	3.1	183
13	Production of Biobutanediols by the Hydrogenolysis of Erythritol. ChemSusChem, 2012, 5, 1991-1999.	3.6	112
14	Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol. Catalysis Today, 2012, 195, 136-143.	2.2	136
15	Development of Ni-Based Catalysts for Steam Reforming of Tar Derived from Biomass Pyrolysis. Chinese Journal of Catalysis, 2012, 33, 583-594.	6.9	80
16	Stable Low-Valence ReO _{<i>x</i>} Cluster Attached on Rh Metal Particles Formed by Hydrogen Reduction and Its Formation Mechanism. Journal of Physical Chemistry C, 2012, 116, 3079-3090.	1.5	70
17	Structure of ReO _{<i>x</i>} Clusters Attached on the Ir Metal Surface in Ir–ReO _{<i>x</i>} /SiO ₂ for the Hydrogenolysis Reaction. Journal of Physical Chemistry C, 2012, 116, 23503-23514.	1.5	115
18	Solid acid co-catalyst for the hydrogenolysis of glycerol to 1,3-propanediol over Ir-ReOx/SiO2. Applied Catalysis A: General, 2012, 433-434, 128-134.	2.2	164
19	Total Hydrogenation of Furfural over a Silicaâ€5upported Nickel Catalyst Prepared by the Reduction of a Nickel Nitrate Precursor. ChemCatChem, 2012, 4, 1791-1797.	1.8	241

#	Article	IF	CITATIONS
20	From 5-Hydroxymethylfurfural (HMF) to Polymer Precursors: Catalyst Screening Studies on the Conversion of 1,2,6-hexanetriol to 1,6-hexanediol. Topics in Catalysis, 2012, 55, 612-619.	1.3	100
21	Comparative study of Rh–MoOx and Rh–ReOx supported on SiO2 for the hydrogenolysis of ethers and polyols. Applied Catalysis B: Environmental, 2012, 111-112, 27-37.	10.8	184
22	Catalytic Reduction of Biomass-Derived Furanic Compounds with Hydrogen. ACS Catalysis, 2013, 3, 2655-2668.	5.5	584
23	Bimetallic RhRe/C catalysts for the production of biomass-derived chemicals. Journal of Catalysis, 2013, 308, 226-236.	3.1	69
24	Hydrogenolysis of CO bond over Re-modified Ir catalyst in alkane solvent. Applied Catalysis A: General, 2013, 468, 418-425.	2.2	74
25	Catalytic Conversion of Furfural into a 2,5â€Furandicarboxylic Acidâ€Based Polyester with Total Carbon Utilization. ChemSusChem, 2013, 6, 47-50.	3.6	102
26	Oneâ€Pot Conversion of Sugar and Sugar Polyols to <i>n</i> â€Alkanes without CC Dissociation over the Irâ€ReO _{<i>x</i>} /SiO ₂ Catalyst Combined with Hâ€ZSMâ€5. ChemSusChem, 2013, 613-621.	63.6	128
27	Emerging catalytic processes for the production of adipic acid. Catalysis Science and Technology, 2013, 3, 1465-1479.	2.1	266
28	Transformation of biomass via the selective hydrogenolysis of CO bonds by nanoscale metal catalysts. Current Opinion in Chemical Engineering, 2013, 2, 178-183.	3.8	42
29	Catalyst studies on the ring opening of tetrahydrofuran–dimethanol to 1,2,6-hexanetriol. Catalysis Today, 2013, 210, 106-116.	2.2	67
30	Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation. Chemical Communications, 2013, 49, 7034.	2.2	195
31	CHAPTER 2. General Reaction Mechanisms in Hydrogenation and Hydrogenolysis for Biorefining. RSC Energy and Environment Series, 2014, , 22-51.	0.2	0
32	Role of Re Species and Acid Cocatalyst on Ir-ReO _x /SiO ₂ in the C-O Hydrogenolysis of Biomass-Derived Substrates. Chemical Record, 2014, 14, 1041-1054.	2.9	72
33	Direct conversion of <scp>CO₂</scp> with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. Journal of Chemical Technology and Biotechnology, 2014, 89, 19-33.	1.6	135
34	Selective Hydrogenolysis of C–O Bonds Using the Interaction of the Catalyst Surface and OH Groups. Topics in Current Chemistry, 2014, 353, 127-162.	4.0	29
35	Reaction Mechanisms for the Heterogeneous Hydrogenolysis of Biomass-Derived Glycerol to Propanediols. Progress in Reaction Kinetics and Mechanism, 2014, 39, 1-15.	1.1	28
36	Pt-Re synergy in aqueous-phase reforming of glycerol and the water–gas shift reaction. Journal of Catalysis, 2014, 311, 88-101.	3.1	103
37	One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir–ReO _x /SiO ₂ bifunctional catalyst. Green Chemistry, 2014, 16, 617-626.	4.6	215

#	Article	IF	CITATIONS
38	Conversion of Biomass into Chemicals over Metal Catalysts. Chemical Reviews, 2014, 114, 1827-1870.	23.0	1,504
39	Promoting effect of Ru on Ir-ReOx/SiO2 catalyst in hydrogenolysis of glycerol. Journal of Molecular Catalysis A, 2014, 388-389, 177-187.	4.8	65
40	Direct Synthesis of 1,6â€Hexanediol from HMF over a Heterogeneous Pd/ZrP Catalyst using Formic Acid as Hydrogen Source. ChemSusChem, 2014, 7, 96-100.	3.6	196
41	Aqueous phase reforming of glycerol over Re-promoted Pt and Rh catalysts. Green Chemistry, 2014, 16, 853-863.	4.6	70
42	Role of MoO ₃ on a Rhodium Catalyst in the Selective Hydrogenolysis of Biomass-Derived Tetrahydrofurfuryl Alcohol into 1,5-Pentanediol. Journal of Physical Chemistry C, 2014, 118, 25555-25566.	1.5	63
43	Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol. Journal of Materials Chemistry A, 2014, 2, 6688-6702.	5.2	166
44	One-Pot Conversion of Cellulose into <i>n</i> -Hexane over the Ir-ReO _{<i>x</i>} /SiO ₂ Catalyst Combined with HZSM-5. ACS Sustainable Chemistry and Engineering, 2014, 2, 1819-1827.	3.2	140
45	Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Ir-MoOx/SiO2 catalyst. Journal of Energy Chemistry, 2014, 23, 427-434.	7.1	62
46	One-Step Conversion of Biomass-Derived 5-Hydroxymethylfurfural to 1,2,6-Hexanetriol Over Ni–Co–Al Mixed Oxide Catalysts Under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2014, 2, 173-180.	3.2	113
47	Total Hydrogenation of Furfural and 5-Hydroxymethylfurfural over Supported Pd–Ir Alloy Catalyst. ACS Catalysis, 2014, 4, 2718-2726.	5.5	289
48	Performance and characterization of rhenium-modified Rh–Ir alloy catalyst for one-pot conversion of furfural into 1,5-pentanediol. Catalysis Science and Technology, 2014, 4, 2535-2549.	2.1	140
49	Theoretical studies on the electronic structures and photoelectron spectra of tri-rhenium oxide clusters: Re3 <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>O</mml:mtext><mml:mrow><mml:mrow><mml:mrow><mml:mtext>O</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>O</mml:mtext><td>mrævø> < m</td><td>ˈmlɜni>n</td></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	mr ævø > < m	ˈml ɜ ni>n
50	Insights into the Oxidation State and Location of Rhenium in Reâ€Pd/TiO ₂ Catalysts for Aqueousâ€Phase Selective Hydrogenation of Succinic Acid to 1,4â€Butanediol as a Function of Palladium and Rhenium Deposition Methods. ChemCatChem, 2015, 7, 2161-2178.	1.8	58
51	Acceptorless dehydrogenative lactonization of diols by Pt-loaded SnO2 catalysts. RSC Advances, 2015, 5, 29072-29075.	1.7	13
52	One-Step Process for the Production of BTEX and LPG-like fuel from Pentanediol. ACS Sustainable Chemistry and Engineering, 2015, 3, 381-385.	3.2	4
53	Insight into the Mechanism of Hydrogenation of Amino Acids to Amino Alcohols Catalyzed by a Heterogeneous MoO _{<i>x</i>} â€Modified Rh Catalyst. Chemistry - A European Journal, 2015, 21, 3097-3107.	1.7	49
54	Selective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over vanadium modified Ir/SiO2 catalyst. Catalysis Today, 2015, 245, 93-99.	2.2	49
55	One-Pot Catalytic Conversion of Raw Lignocellulosic Biomass into Gasoline Alkanes and Chemicals over LiTaMoO ₆ and Ru/C in Aqueous Phosphoric Acid. ACS Sustainable Chemistry and Engineering, 2015, 3, 1745-1755.	3.2	164

#	Article	IF	CITATIONS
56	Combination of supported bimetallic rhodium–molybdenum catalyst and cerium oxide for hydrogenation of amide. Science and Technology of Advanced Materials, 2015, 16, 014901.	2.8	21
57	Characterization of Re–Pd/SiO ₂ Catalysts for Hydrogenation of Stearic Acid. ACS Catalysis, 2015, 5, 7034-7047.	5.5	96
58	Evidence for the Bifunctional Nature of Pt–Re Catalysts for Selective Glycerol Hydrogenolysis. ACS Catalysis, 2015, 5, 5679-5695.	5.5	108
59	Catalytic Conversions of Furfural to Pentanediols. Catalysis Surveys From Asia, 2015, 19, 249-256.	1.0	67
60	Ir–Re alloy as a highly active catalyst for the hydrogenolysis of glycerol to 1,3-propanediol. Catalysis Science and Technology, 2015, 5, 1540-1547.	2.1	71
61	Implementation of concepts derived from model compound studies in the separation and conversion of bio-oil to fuel. Catalysis Today, 2015, 257, 185-199.	2.2	76
62	Synthesis of 2â€Butanol by Selective Hydrogenolysis of 1,4â€Anhydroerythritol over Molybdenum Oxideâ€Modified Rhodiumâ€Supported Silica. ChemSusChem, 2016, 9, 1680-1688.	3.6	51
63	Selective Hydrogenation of Crotonaldehyde to Crotyl Alcohol over Metal Oxide Modified Ir Catalysts and Mechanistic Insight. ACS Catalysis, 2016, 6, 3600-3609.	5.5	115
64	Palladium–Rhenium Catalysts for Selective Hydrogenation of Furfural: Evidence for an Optimum Surface Composition. ACS Catalysis, 2016, 6, 7438-7447.	5.5	59
65	Effect of carbon supports on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-methanol. Catalysis Science and Technology, 2016, 6, 7841-7851.	2.1	25
66	DFT Studies of the Selective C–O Hydrogenolysis and Ring-Opening of Biomass-Derived Tetrahydrofurfuryl Alcohol over Rh(111) surfaces. Journal of Physical Chemistry C, 2016, 120, 19124-19134.	1.5	17
67	Catalytic Conversion of Renewable Resources into Bulk and Fine Chemicals. Chemical Record, 2016, 16, 2787-2800.	2.9	39
68	Conjugation-Driven "Reverse Mars–van Krevelen―Type Radical Mechanism for Low-Temperature C–O Bond Activation. Journal of the American Chemical Society, 2016, 138, 8104-8113.	6.6	84
69	Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review. ACS Catalysis, 2016, 6, 5026-5043.	5.5	372
70	Efficient hydrogenolysis of biomass-derived furfuryl alcohol to 1,2- and 1,5-pentanediols over a non-precious Cu–Mg ₃ AlO _{4.5} bifunctional catalyst. Catalysis Science and Technology, 2016, 6, 668-671.	2.1	77
71	Production of C4 and C5 alcohols from biomass-derived materials. Green Chemistry, 2016, 18, 2579-2597.	4.6	147
72	Synthesis of 1,6-hexanediol from HMF over double-layered catalysts of Pd/SiO ₂ + Ir–ReO _x /SiO ₂ in a fixed-bed reactor. Green Chemistry, 2016, 18, 2175-2184.	4.6	127
73	WO modified Cu/Al2O3 as a high-performance catalyst for the hydrogenolysis of glucose to 1,2-propanediol. Catalysis Today, 2016, 261, 116-127.	2.2	54

#	Article	IF	CITATIONS
74	New Reaction Schemes for the Production of Biomass-Based Chemicals Created by Selective Catalytic Hydrogenolysis: Catalysts with Noble Metal and Tungsten. Green Chemistry and Sustainable Technology, 2016, , 203-225.	0.4	0
75	One-step Pd/C and Eu(OTf) 3 catalyzed hydrodeoxygenation of branched C 11 and C 12 biomass-based furans to the corresponding alkanes. Applied Catalysis A: General, 2017, 534, 40-45.	2.2	26
76	Selective Câ^'O Hydrogenolysis of Erythritol over Supported Rhâ€ReO _{<i>x</i>} Catalysts in the Aqueous Phase. ChemCatChem, 2017, 9, 2768-2783.	1.8	39
77	Production of 1,6-hexanediol from tetrahydropyran-2-methanol by dehydration–hydration and hydrogenation. Green Chemistry, 2017, 19, 1390-1398.	4.6	24
78	Singleâ€Pot Conversion of Tetrahydrofurfuryl Alcohol into Tetrahydropyran over a Ni/HZSMâ€5 Catalyst under Aqueousâ€Phase Conditions. ChemCatChem, 2017, 9, 1402-1408.	1.8	22
79	Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: Key intermediates for sustainable chemicals, materials and fuels. Renewable and Sustainable Energy Reviews, 2017, 77, 287-296.	8.2	165
80	Catalysts for selective hydrogenation of furfural derived from the double complex salt [Pd(NH3)4](ReO4)2 on I³-Al2O3. Journal of Catalysis, 2017, 350, 111-121.	3.1	18
81	Conversion of Furfural to 1,5-Pentanediol: Process Synthesis and Analysis. ACS Sustainable Chemistry and Engineering, 2017, 5, 4699-4706.	3.2	104
82	Hydrogenolysis of Glycidol as an Alternative Route to Obtain 1,3â€Propanediol Selectively Using MO _{<i>x</i>} â€Modified Nickelâ€Copper Catalysts Supported on Acid Mesoporous Saponite. ChemCatChem, 2017, 9, 3670-3680.	1.8	18
83	Selective hydrogenolysis and hydrogenation using metal catalysts directly modified with metal oxide species. Green Chemistry, 2017, 19, 2876-2924.	4.6	206
84	Unique isodimorphism and isomorphism behaviors of even-odd poly(hexamethylene dicarboxylate) aliphatic copolyesters. Polymer, 2017, 115, 106-117.	1.8	36
85	New catalytic strategies for α,ï‰-diols production from lignocellulosic biomass. Faraday Discussions, 2017, 202, 247-267.	1.6	61
86	[Ru(triphos)(CH ₃ CN) ₃](OTf) ₂ as a homogeneous catalyst for the hydrogenation of biomass derived 2,5-hexanedione and 2,5-dimethyl-furan in aqueous acidic medium. Green Chemistry, 2017, 19, 4666-4679.	4.6	13
87	Adipic Acid Production via Metal-Free Selective Hydrogenolysis of Biomass-Derived Tetrahydrofuran-2,5-Dicarboxylic Acid. ACS Catalysis, 2017, 7, 6619-6634.	5.5	55
88	Selective hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol over Ni/γ-Al2O3 catalysts. Research on Chemical Intermediates, 2017, 43, 1179-1195.	1.3	26
89	Self-Assembled Materials for Catalysis. , 2017, , 329-349.		0
90	Foundational techniques for catalyst design in the upgrading of biomass-derived multifunctional molecules. Progress in Energy and Combustion Science, 2018, 67, 1-30.	15.8	24
91	Catalytic cascade conversion of furfural to 1,4-pentanediol in a single reactor. Green Chemistry, 2018, 20, 1770-1776.	4.6	71

#	Article	IF	CITATIONS
92	Catalytic Advances in the Production and Application of Biomass-Derived 2,5-Dihydroxymethylfuran. ACS Catalysis, 2018, 8, 2959-2980.	5.5	210
93	Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst. Angewandte Chemie - International Edition, 2018, 57, 8058-8062.	7.2	51
95	Base free oxidation of 1,6-hexanediol to adipic acid over supported noble metal mono- and bimetallic catalysts. Applied Catalysis A: General, 2018, 551, 88-97.	2.2	19
96	Synthesis of 1,6-Hexanediol from Cellulose Derived Tetrahydrofuran-Dimethanol with Pt-WO _{<i>x</i>} /TiO ₂ Catalysts. ACS Catalysis, 2018, 8, 1427-1439.	5.5	111
97	Transformation of Sugars into Chiral Polyols over a Heterogeneous Catalyst. Angewandte Chemie, 2018, 130, 8190-8194.	1.6	11
98	Hydrogenolysis of glycerol with in-situ produced H 2 by aqueous-phase reforming of glycerol using Pt-modified Ir-ReO x /SiO 2 catalyst. Catalysis Today, 2018, 303, 106-116.	2.2	36
99	Câ^'O Hydrogenolysis of Tetrahydrofurfuryl Alcohol to 1,5â€Pentanediol Over Biâ€functional Nickelâ€Tungsten Catalysts. ChemCatChem, 2018, 10, 4652-4664.	1.8	28
100	How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chemical Reviews, 2018, 118, 11023-11117.	23.0	585
101	Bimetallic Pt–Re Nanoporous Networks: Synthesis, Characterization, and Catalytic Reactivity. Journal of Physical Chemistry C, 2018, 122, 24801-24808.	1.5	18
102	Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives. Green Chemistry, 2018, 20, 3657-3682.	4.6	233
103	Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-WOx/SAPO-34 catalysts. Molecular Catalysis, 2018, 456, 22-30.	1.0	37
104	Selective hydrogenolysis of furfuryl alcohol to 1,5- and 1,2-pentanediol over Cu-LaCoO3 catalysts with balanced Cu0-CoO sites. Chinese Journal of Catalysis, 2018, 39, 1711-1723.	6.9	42
105	Composition-tuned oxidation levels of Pt–Re bimetallic nanoparticles for the etherification of allylic alcohols. Nano Research, 2018, 11, 5902-5912.	5.8	3
106	Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catalysis, 2019, 9, 8012-8067.	5.5	146
107	Catalytic C-O bond hydrogenolysis of tetrahydrofuran-dimethanol over metal supported WOx/TiO2 catalysts. Applied Catalysis B: Environmental, 2019, 258, 117945.	10.8	32
108	Selective synthesis of 1,3-propanediol from glycidol over a carbon film encapsulated Co catalyst. Catalysis Science and Technology, 2019, 9, 5022-5030.	2.1	6
109	Effect of carbon chain length on catalytic C O bond cleavage of polyols over Rh-ReOx/ZrO2 in aqueous phase. Applied Catalysis A: General, 2019, 586, 117213.	2.2	23
110	Phyllosilicate-Derived CuNi/SiO ₂ Catalysts in the Selective Hydrogenation of Adipic Acid to 1,6-Hexanediol. ACS Sustainable Chemistry and Engineering, 2019, 7, 17872-17881.	3.2	21

#	Article	IF	CITATIONS
111	Aerobic oxidation of C ₄ –C ₆ α,ï‰-diols to the diacids in base-free medium over zirconia-supported (bi)metallic catalysts. New Journal of Chemistry, 2019, 43, 9873-9885.	1.4	8
112	CO ₂ Conversion with Alcohols and Amines into Carbonates, Ureas, and Carbamates over CeO ₂ Catalyst in the Presence and Absence of 2 yanopyridine. Chemical Record, 2019, 19, 1354-1379.	2.9	70
113	Taming heterogeneous rhenium catalysis for the production of biomass-derived chemicals. Chinese Chemical Letters, 2020, 31, 1071-1077.	4.8	27
114	Design of supported metal catalysts modified with metal oxides for hydrodeoxygenation of biomass-related molecules. Current Opinion in Green and Sustainable Chemistry, 2020, 22, 13-21.	3.2	41
115	Catalytic valorization of biomass and bioplatforms to chemicals through deoxygenation. Advances in Catalysis, 2020, , 1-108.	0.1	9
116	Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications. Fuel Processing Technology, 2020, 209, 106528.	3.7	86
117	Chemical Synthesis of Adipic Acid from Glucose and Derivatives: Challenges for Nanocatalyst Design. ACS Sustainable Chemistry and Engineering, 2020, 8, 18732-18754.	3.2	8
118	Furfuryl alcohol—a promising platform chemical. , 2020, , 323-353.		6
119	Reduction of sugar derivatives to valuable chemicals: utilization of asymmetric carbons. Catalysis Science and Technology, 2020, 10, 3805-3824.	2.1	20
120	Hydrogenolysis of tetrahydrofuran-2-carboxylic acid over tungsten-modified rhodium catalyst. Applied Catalysis A: General, 2020, 602, 117723.	2.2	9
121	Aerobic oxidation of 1,6-hexanediol to adipic acid over Au-based catalysts: the role of basic supports. Catalysis Science and Technology, 2020, 10, 2644-2651.	2.1	14
122	Solid catalysts for conversion of furfural and its derivatives to alkanediols. Catalysis Reviews - Science and Engineering, 2020, 62, 566-606.	5.7	12
123	Experimental and correlated liquid–liquid equilibrium data for (waterÂ+Â1,6-hexanediolÂ+Â1-butanol or) Tj ETÇ	<u>0</u> q0,00 rgł 1.0 0 rgł	3T ₁ /Overlock
124	Production of biomass-derived monomers through catalytic conversion of furfural and hydroxymethylfurfural. Green Chemical Engineering, 2021, 2, 158-173.	3.3	14
125	Experimental and correlated liquid-liquid equilibrium data for waterÂ+Â1,6-hexanediolÂ+Â1-pentanol/3-methyl-1-butanol/2-methyl-2-butanol at different temperatures. Journal of Chemical Thermodynamics, 2021, 154, 106341.	1.0	7
126	Promoting effect of PdZn alloy for selective hydrogenation of 5â€hydroxylmethylfurfural: An experimental and density functional theory study. International Journal of Quantum Chemistry, 2021, 121, e26545.	1.0	3
127	Ru Nanoparticles on a Sulfonated Carbon Layer Coated SBA-15 for Catalytic Hydrogenation of Furfural into 1, 4-pentanediol. Catalysis Letters, 2021, 151, 2513-2526.	1.4	14

	Detailed Characterization of MoO _{<1>x<!--1-->} -Modified Rh Metal Particles by	15	91
120	Ambient-Pressure XPS and DFT Calculations. Journal of Physical Chemistry C, 2021, 125, 4540-4549.	1.0	21

#	Article	IF	CITATIONS
129	The Role of the Surface Acid–Base Nature of Nanocrystalline Hydroxyapatite Catalysts in the 1,6-Hexanediol Conversion. Nanomaterials, 2021, 11, 659.	1.9	6
130	Promoting the Effect of Au on the Selective Hydrogenolysis of Glycerol to 1,3-Propanediol over the Pt/WO _{<i>x</i>} /Al ₂ O ₃ Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 5705-5715.	3.2	26
132	Catalytic Transformation of the Furfural Platform into Bifunctionalized Monomers for Polymer Synthesis. ACS Catalysis, 2021, 11, 10058-10083.	5.5	60
133	Effect of Support Properties on Selective Butanediols Production from Erythritol using Ir/ReO _x Catalysts. ChemCatChem, 2021, 13, 3889-3906.	1.8	6
134	Insights into the Nature of the Active Sites of Pt-WOx/Al2O3 Catalysts for Glycerol Hydrogenolysis into 1,3-Propanediol. Catalysts, 2021, 11, 1171.	1.6	8
135	Cu boosting the collaborative effect of Ni and H ⁺ in alloyed NiCu/saponite catalysts for hydrogenolysis of glycidol. Dalton Transactions, 2021, 50, 9198-9207.	1.6	2
136	Production of Diols from Biomass. Biofuels and Biorefineries, 2017, , 343-373.	0.5	4
137	Selective Hydrodeoxygenation of γ-Valerolactone over Silica-supported Rh-based Bimetallic Catalysts. Energy & Fuels, 2020, 34, 7190-7197.	2.5	11
138	Catalytically Active Interface between Noble Metal and Low-valence Transition Metal for C-O Hydrogenolysis. Hyomen Kagaku, 2011, 32, 439-444.	0.0	0
139	Sustainable Routes for the Synthesis of Renewable Adipic Acid from Biomass Derivatives. ChemSusChem, 2022, 15, .	3.6	30
140	Regulating oxygen defects via atomically dispersed alumina on Pt/WOx catalyst for enhanced hydrogenolysis of glycerol to 1,3-propanediol. Applied Catalysis B: Environmental, 2022, 307, 121207.	10.8	27
141	Synthesis of renewable nylon monomers with poplar wood. Chem Catalysis, 2022, 2, 595-609.	2.9	8
142	Cu-Based Nanoparticles as Catalysts for Selective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural to 1,2-Hexanediol. ACS Applied Nano Materials, 2022, 5, 5882-5894.	2.4	9
143	Efficient Base Nickel-Catalyzed Hydrogenolysis of Furfural-Derived Tetrahydrofurfuryl Alcohol to 1,5-Pentanediol. ACS Sustainable Chemistry and Engineering, 2022, 10, 4954-4968.	3.2	14
144	Cu nanoparticles supported on core–shell MgO-La2O3 catalyzed hydrogenolysis of furfuryl alcohol to pentanediol. Journal of Catalysis, 2022, 410, 42-53.	3.1	22
146	Highly Efficient Chemoselective Hydrogenation of 5â€HMF to BHMF over Reusable Bimetallic Pdâ€ŀr/C Catalyst. ChemistrySelect, 2022, 7, .	0.7	2
147	Substrate Effect of Ir and Rh on Surface ReO _{<i>x</i>} Species under a Hydrogen Atmosphere Studied by NAP-XPS. Journal of Physical Chemistry C, 2022, 126, 11544-11552.	1.5	2
148	Toward Renewable Amines: Recent Advances in the Catalytic Amination of Biomass-Derived Oxygenates. ACS Catalysis, 2022, 12, 10400-10440.	5.5	26

#	Article	IF	CITATIONS
149	Direct conversion of furfural to 1,5-pentanediol over a nickel–cobalt oxide–alumina trimetallic catalyst. Applied Catalysis B: Environmental, 2023, 320, 121971.	10.8	24
150	Hydrodeoxygenation of 1,2-Decanediol to Produce 1-Decanol Over Cu/Sio2-Al2o3 Catalyst. SSRN Electronic Journal, 0, , .	0.4	Ο
151	Stability of solid rhenium catalysts for liquid-phase biomass valorization–various facets of catalyst deactivation and rhenium leaching. Materials Today Chemistry, 2022, 26, 101191.	1.7	2
152	Hydrodeoxygenation of 1,2-decanediol to produce 1-decanol over Cu/SiO2-Al2O3 catalyst. Applied Catalysis A: General, 2022, 647, 118905.	2.2	4
153	Ru/ReO _x /TiO ₂ Selective and Reusable Catalyst for Câ^'O Hydrogenolysis of C ₄ Polyols. ChemCatChem, 2023, 15, .	1.8	4
154	ReO as a BrÃ,nsted acidic modifier in glycerol hydrodeoxygenation: Computational insight into the balance between acid and metal catalysis. Journal of Catalysis, 2023, 422, 12-23.	3.1	1