<i>Colloquium</i>: The transport properties of grapher

Reviews of Modern Physics 82, 2673-2700 DOI: 10.1103/revmodphys.82.2673

Citation Report

#	Article	IF	CITATIONS
2	Conductivity of interacting massless Dirac particles in graphene: Collisionless regime. Physical Review B, 2010, 82, .	1.1	68
3	Analytical expressions for the polarizability of the honeycomb lattice. Physical Review B, 2010, 82, .	1.1	18
4	Spectral and optical properties of doped graphene with charged impurities in the self-consistent Born approximation. Physical Review B, 2010, 82, .	1.1	12
5	Shot noise suppression and hopping conduction in graphene nanoribbons. Physical Review B, 2010, 82, .	1.1	21
6	Quantum pumping in graphene nanoribbons at resonant transmission. Europhysics Letters, 2010, 92, 47010.	0.7	38
7	Dynamical current-current correlation of the hexagonal lattice and graphene. Physical Review B, 2010, 82, .	1.1	36
8	Saturation of interband absorption in graphene. Physical Review B, 2010, 82, .	1.1	57
9	Electronic transport in disordered bilayer and trilayer graphene. Physical Review B, 2010, 82, .	1.1	82
10	Optical properties of strained graphene. Europhysics Letters, 2010, 92, 67001.	0.7	112
11	Mechanism for graphene-based optoelectronic switches by tuning surface plasmon-polaritons in monolayer graphene. Europhysics Letters, 2010, 92, 68001.	0.7	109
12	Modeling electronic structure and transport properties of graphene with resonant scattering centers. Physical Review B, 2010, 82, .	1.1	218
13	Enhanced weak localization effect in few-layer graphene. Physical Chemistry Chemical Physics, 2011, 13, 20208.	1.3	28
14	Exact solution of the spectrum and magneto-optics of multilayer hexagonal graphene. Journal of Applied Physics, 2011, 110, 013725.	1.1	12
15	Seeing Many-Body Effects in Single- and Few-Layer Graphene: Observation of Two-Dimensional Saddle-Point Excitons. Physical Review Letters, 2011, 106, 046401.	2.9	358
16	Tunneling states in graphene heterostructures consisting of two different graphene superlattices. Journal of Applied Physics, 2011, 109, 093703.	1.1	9
17	Monte Carlo simulation of monolayer graphene at nonzero temperature. Physical Review B, 2011, 84, .	1.1	34
18	Comparison between charge and spin transport in few-layer graphene. Physical Review B, 2011, 83, .	1.1	76
19	Alternating current Josephson effect in superconductor–graphene–superconductor junctions. Journal of Applied Physics, 2011, 109, 083704.	1.1	3

#	Article	IF	CITATIONS
20	Effect of electron-hole inhomogeneity on specular Andreev reflection and Andreev retroreflection in a graphene-superconductor hybrid system. Physical Review B, 2011, 83, .	1.1	31
21	Chirality-Assisted Electronic Cloaking of Confined States in Bilayer Graphene. Physical Review Letters, 2011, 107, 156603.	2.9	57
22	Anisotropic photoconductivity in graphene. Europhysics Letters, 2011, 96, 37006.	0.7	22
23	Magnetoplasmons and SU(4) symmetry in graphene. Journal of Physics: Conference Series, 2011, 286, 012054.	0.3	2
24	Band Engineering in Graphene with Superlattices of Substitutional Defects. Journal of Physical Chemistry C, 2011, 115, 3250-3256.	1.5	82
25	Unified description of the dc conductivity of monolayer and bilayer graphene at finite densities based on resonant scatterers. Physical Review B, 2011, 83, .	1.1	152
26	Spectroscopic ellipsometry of few-layer graphene. Journal of Nanophotonics, 2011, 5, 051809.	0.4	32
27	Tuning the Electronic Transport Properties of Zigzag Graphene Nanoribbons via Hydrogenation Separators. Journal of Physical Chemistry C, 2011, 115, 24366-24372.	1.5	10
28	Terahertz surface plasmons in optically pumped graphene structures. Journal of Physics Condensed Matter, 2011, 23, 145302.	0.7	168
29	Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy. Nano Letters, 2011, 11, 3227-3231.	4.5	869
30	Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids. Physical Review B, 2011, 84, .	1.1	125
31	Electron–electron interaction in high-quality epitaxial graphene. New Journal of Physics, 2011, 13, 113005.	1.2	6
32	Band structure and optical absorption in multilayer armchair graphene nanoribbons: A Pariser-Parr-Pople model study. Physical Review B, 2011, 84, .	1.1	16
33	Optical and photogalvanic properties of graphene superlattices formed by periodic strain. Physical Review B, 2011, 84, .	1.1	21
34	Electronic properties of graphene in a strong magnetic field. Reviews of Modern Physics, 2011, 83, 1193-1243.	16.4	759
35	Tuning laser-induced band gaps in graphene. Applied Physics Letters, 2011, 98, .	1.5	215
36	Valley separation in graphene by polarized light. Physical Review B, 2011, 84, .	1.1	93
37	Metal-insulator transition in hydrogenated graphene as manifestation of quasiparticle spectrum rearrangement of anomalous type. Physical Review B, 2011, 83, .	1.1	19

#	Article	IF	CITATIONS
38	Spectrum ofi̇́€electrons in bilayer graphene nanoribbons and nanotubes: An analytical approach. Physical Review B, 2011, 83, .	1.1	17
39	Polar Kerr Effect and Time Reversal Symmetry Breaking in Bilayer Graphene. Physical Review Letters, 2011, 107, 097402.	2.9	53
40	Electronic Properties of Multilayer Graphene. Nanoscience and Technology, 2011, , 325-356.	1.5	1
41	Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets. Physical Review B, 2011, 84, .	1.1	153
42	Spin superconductor in ferromagnetic graphene. Physical Review B, 2011, 84, .	1.1	34
43	Graphene Carrier Transport Theory. Nanoscience and Technology, 2011, , 357-394.	1.5	3
44	Chiral filtering in graphene with coupled valleys. Physical Review B, 2011, 84, .	1.1	4
45	Theory of Doping: Monovalent Adsorbates. , 0, , .		1
46	Single-Particle States and Elementary Excitations in Graphene Bi-Wires: Minding the Substrate. , 2011, , .		0
47	Electronic Transport Properties of Few-Layer Graphene Materials. , 0, , .		2
48	Aspectos quirales del grafeno. Ingeniare, 2011, 19, 67-75.	0.1	3
49	Coulomb drag and high-resistivity behavior in double-layer graphene. Europhysics Letters, 2011, 95, 18001.	0.7	51
50	Second harmonic generation in graphene. JETP Letters, 2011, 93, 366-371.	0.4	98
51	Spin polarized quantum pump effect in zigzag graphene nanoribbons. JETP Letters, 2011, 93, 372-376.	0.4	11
52	Weak localization of two-dimensional Dirac fermions beyond the diffusion regime. Solid State Communications, 2011, 151, 1550-1553.	0.9	16
53	Quantum hall effect in inhomogeneous trilayer graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 530-533.	1.3	5
54	Conductivity of graphene on boron nitride substrates. Physical Review B, 2011, 83, .	1.1	35
55	Graphene field-effect transistors. Journal Physics D: Applied Physics, 2011, 44, 313001.	1.3	116

#	Article	IF	CITATIONS
56	Optical response of graphene under intense terahertz fields. Physical Review B, 2011, 83, .	1.1	126
57	Conductivity and scattering in graphene bilayers: Numerically exact results versus Boltzmann approach. Physical Review B, 2011, 84, .	1.1	13
58	Electron and spin transport in adiabatic quantum pumps based on graphene nanoribbons. Journal of Experimental and Theoretical Physics, 2011, 113, 698-708.	0.2	1
59	Theoretical calculation of excitonic binding energies and optical absorption spectra for Armchair graphene nanoribbons. European Physical Journal B, 2011, 84, 249-253.	0.6	18
60	Zigzag graphene nanoribbon edge reconstruction with Stone-Wales defects. Physical Review B, 2011, 84, .	1.1	65
61	Holography of charged dilatonic black branes at finite temperature. Journal of High Energy Physics, 2011, 2011, 1.	1.6	52
62	Graphene: Piecing it Together. Advanced Materials, 2011, 23, 4471-4490.	11.1	127
63	Phonon structures in the electronic density of states of graphene in magnetic field. Europhysics Letters, 2011, 94, 57006.	0.7	13
64	Competition between excitonic gap generation and disorder scattering in graphene. New Journal of Physics, 2011, 13, 033022.	1.2	13
65	Voltage-driven quantum oscillations of conductance in graphene. Europhysics Letters, 2011, 96, 67009.	0.7	7
66	Wave packet dynamics in hydrogenated graphene at low hydrogen coverages. Journal of Physics Condensed Matter, 2011, 23, 345502.	0.7	1
67	Edge effects in graphene nanostructures: Semiclassical theory of spectral fluctuations and quantum transport. Physical Review B, 2011, 84, .	1.1	21
68	Spin relaxation properties in graphene due to its linear dispersion. Physical Review B, 2011, 84, .	1.1	68
69	Two distinct ballistic processes in graphene at the Dirac point. Physical Review B, 2011, 84, .	1.1	9
70	Generation and recombination processes via acoustic phonons in disordered graphene. Physical Review B, 2011, 84, .	1.1	8
71	Optical conductivity of disordered graphene beyond the Dirac cone approximation. Physical Review B, 2011, 84, .	1.1	59
72	Transport scattering time probed through rf admittance of a graphene capacitor. Physical Review B, 2011, 83, .	1.1	33
73	Electronic doping of graphene by deposited transition metal atoms. Physical Review B, 2011, 84, .	1.1	29

#	Article	IF	CITATIONS
74	Controlling doping in graphene through a SiC substrate: A first-principles study. Physical Review B, 2011, 83, .	1.1	27
75	Signature of the Schwinger pair creation rate via radiation generated in graphene by a strong electric current. Physical Review B, 2011, 84, .	1.1	19
76	Floquet Spectrum and Transport through an Irradiated Graphene Ribbon. Physical Review Letters, 2011, 107, 216601.	2.9	322
77	Quantum thermal Hall effect in graphene. Physical Review B, 2011, 84, .	1.1	18
78	Defect-induced resonances and magnetic patterns in graphene. Physical Review B, 2011, 83, .	1.1	22
79	Depletion of carriers and negative differential conductivity in intrinsic graphene under a dc electric field. Physical Review B, 2011, 83, .	1.1	7
80	Nanomechanical displacement detection using coherent transport in graphene nanoribbon resonators. Physical Review B, 2011, 84, .	1.1	18
81	Probing residual strain in epitaxial graphene layers on 4H-SiC(0001Â⁻) with Raman spectroscopy. Applied Physics Letters, 2011, 98, 051910.	1.5	18
82	Graphene conductivity near the charge neutral point. Physical Review B, 2011, 84, .	1.1	12
83	Magnetic moments and Kondo effect near vacancies and resonant scatterers in graphene. Physical Review B, 2011, 83, .	1.1	37
84	Tunable supercurrent at the charge neutrality point via strained graphene junctions. Physical Review B, 2011, 84, .	1.1	25
85	Transport through Graphene on <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mi>SrTiO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2011, 107, 225501.	2.9	93
86	Vortex and gap generation in gauge models of graphene. Physical Review B, 2011, 83, .	1.1	24
87	Theory of quantum spin Hall effect detection by measurements of the polarization resistance. Physical Review B, 2011, 83, .	1.1	3
88	Theoretical analysis of the density of states of graphene at high magnetic fields using Haldane pseudopotentials. Physical Review B, 2011, 84, .	1.1	3
89	Electric, thermoelectric, and thermal conductivities of graphene with short-range unitary and charged impurities. Physical Review B, 2011, 84, .	1.1	17
90	The effect of disorder on the valley-dependent transport in zigzag graphene nanoribbons. Journal of Applied Physics, 2011, 109, 123718.	1.1	8
91	Transport properties of graphene with one-dimensional charge defects. Europhysics Letters, 2011, 94, 28003.	0.7	63

#	Article	IF	CITATIONS
92	Transition from Metallic to Semiconducting Behavior in Oxygen Plasma-treated Single-layer Graphene. Materials Research Society Symposia Proceedings, 2011, 1336, 20701.	0.1	0
93	A few simple rules governing hydrogenation of graphene dots. Journal of Chemical Physics, 2011, 135, 164701.	1.2	34
94	Theory of giant Faraday rotation and Goos-Hächen shift in graphene. Europhysics Letters, 2011, 96, 27008.	0.7	18
95	Absence of dynamical gap generation in suspended graphene. New Journal of Physics, 2012, 14, 043036.	1.2	41
96	Energy spectrum and Landau levels in bilayer graphene with spin–orbit interaction. New Journal of Physics, 2012, 14, 093026.	1.2	27
97	Geometric magnetoconductance dips by edge roughness in graphene nanoribbons. Europhysics Letters, 2012, 97, 28008.	0.7	6
98	On Coulomb drag in double layer systems. Journal of Physics Condensed Matter, 2012, 24, 335602.	0.7	30
99	Phonon-limited transport coefficients in extrinsic graphene. Journal of Physics Condensed Matter, 2012, 24, 195302.	0.7	21
100	The effects of the magnetopolaron on the energy gap opening in graphene. Journal of Physics Condensed Matter, 2012, 24, 135301.	0.7	15
101	A graphene electron lens. Applied Physics Letters, 2012, 100, 153106.	1.5	7
102	Magnetic field driven instability in the planar NJL model in the real-time formalism. Physical Review D, 2012, 86, .	1.6	5
103	Multiple Dirac fermions from a topological insulator and graphene superlattice. Physical Review B, 2012, 85, .	1.1	12
104	Charge confinement and Klein tunneling from doping graphene. Physical Review B, 2012, 85, .	1.1	18
105	Influence of correlated impurities on conductivity of graphene sheets: Time-dependent real-space Kubo approach. Physical Review B, 2012, 86, .	1.1	76
106	Quantum interference corrections to magnetoconductivity in graphene. Physical Review B, 2012, 85, .	1.1	21
107	One-dimensional quantum channel in a graphene line defect. Physical Review B, 2012, 86, .	1.1	49
108	Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes. Physical Review A, 2012, 85, .	1.0	98
109	Single-parameter quantum charge and spin pumping in armchair graphene nanoribbons. Physical Review B, 2012, 86, .	1.1	44

#	Article	IF	Citations
110	Electron spin relaxation in rippled graphene with low mobilities. Journal of Applied Physics, 2012, 112, 073709.	1.1	12
111	Coulomb drag between massless and massive fermions. Physical Review B, 2012, 86, .	1.1	46
112	Interplay of intra- and interband absorption in a disordered graphene. Physical Review B, 2012, 86, .	1.1	20
113	GRAPHENE: JUNCTIONS AND STM SPECTRA. International Journal of Modern Physics B, 2012, 26, 1242002.	1.0	4
114	CONDUCTIVITY OF GAPPED GRAPHENE WITHIN RANDOM PHASE APPROXIMATION. International Journal of Modern Physics B, 2012, 26, 1250126.	1.0	0
115	Geometrical and topological aspects of graphene and related materials. Journal of Physics A: Mathematical and Theoretical, 2012, 45, 383001.	0.7	55
116	The ac quantum Hall resistance as an electrical impedance standard and its role in the SI. Measurement Science and Technology, 2012, 23, 124009.	1.4	22
117	Electronic band gaps and transport in aperiodic graphene superlattices of Thue-Morse sequence. Applied Physics Letters, 2012, 100, .	1.5	67
118	Chiral tunneling in single-layer and bilayer graphene. Physica Scripta, 2012, T146, 014010.	1.2	88
119	The electronic structure of ideal graphene. , 2012, , 1-22.		4
120	Electron states in a magnetic field. , 0, , 23-62.		0
121	Quantum transport via evanescent waves. , 0, , 63-76.		0
122	Edges, nanoribbons and quantum dots. , 0, , 103-133.		0
123	Optics and response functions. , 2012, , 161-184.		2
124	Crystal lattice dynamics, structure and thermodynamics. , 0, , 205-242.		1
125	Gauge fields and strain engineering. , 0, , 243-265.		0
126	Scattering mechanisms and transport properties. , 0, , 266-300.		0
127	Two distinct ballistic processes in graphene. Journal of Physics: Conference Series, 2012, 400, 042038.	0.3	0

#	Article	IF	CITATIONS
128	Signature of Schwinger's pair creation rate via radiation generated in graphene by strong electric current. Journal of Physics: Conference Series, 2012, 400, 042051.	0.3	1
129	Graphene plasmonics. Nature Photonics, 2012, 6, 749-758.	15.6	2,682
130	Manifestation of chiral tunneling at a tilted graphene <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi>-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>p</mml:mi>display="inline">Dusical Paviou R_2012_86</mml:math </mml:math 	1.1	37
131	CODATA recommended values of the fundamental physical constants: 2010. Reviews of Modern Physics, 2012, 84, 1527-1605.	16.4	1,194
132	Drude Weight, Cyclotron Resonance, and the Dicke Model of Graphene Cavity QED. Physical Review Letters, 2012, 109, 267404.	2.9	48
133	CODATA Recommended Values of the Fundamental Physical Constants: 2010. Journal of Physical and Chemical Reference Data, 2012, 41, 043109.	1.9	113
134	Generation of large spin currents in graphene using adiabatic quantum pumping. Journal of Applied Physics, 2012, 112, 073701.	1.1	8
135	Electronic Transport in Graphene. , 2012, , 17-49.		Ο
136	Scattering by linear defects in graphene: A continuum approach. Physical Review B, 2012, 86, .	1.1	22
137	Dirac fermions in strong electric field and quantum transport in graphene. Physical Review D, 2012, 86, .	1.6	47
138	Octagraphene as a versatile carbon atomic sheet for novel nanotubes, unconventional fullerenes, and hydrogen storage. Journal of Applied Physics, 2012, 112, .	1.1	110
139	Classical to quantum crossover of the cyclotron resonance in graphene: a study of the strength of intraband absorption. New Journal of Physics, 2012, 14, 095008.	1.2	24
140	Spectroscopic imaging ellipsometry and Fano resonance modeling of graphene. Journal of Applied Physics, 2012, 112, .	1.1	54
141	Plasmonic terahertz lasing in an array of graphene nanocavities. Physical Review B, 2012, 86, .	1.1	101
142	Effect of Zeeman splitting and interlayer bias potential on electron transport in bilayer graphene. Physical Review B, 2012, 86, .	1.1	10
143	Two-body scattering states in Minkowski space and the Nakanishi integral representation onto the null plane. Physical Review D, 2012, 85, .	1.6	56
144	Disorder by order in graphene. Physical Review B, 2012, 85, .	1.1	49
145	Evidence for Spin-Flip Scattering and Local Moments in Dilute Fluorinated Graphene. Physical Review Letters, 2012, 108, 226602.	2.9	115

#	Article	IF	CITATIONS
146	Energy Dispersions and Minimal Conductivity of Bernal Multilayer Graphene. Journal of Physical Chemistry C, 2012, 116, 22073-22077.	1.5	2
147	Integrating functional oxides with graphene. Solid State Communications, 2012, 152, 1365-1374.	0.9	37
148	Effect of charged impurity correlations on transport in monolayer and bilayer graphene. Solid State Communications, 2012, 152, 1390-1399.	0.9	19
149	Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Communications, 2012, 152, 1341-1349.	0.9	601
150	Magnetic Kronig–Penney-type graphene superlattices: finite energy Dirac points with anisotropic velocity renormalization. Journal of Physics Condensed Matter, 2012, 24, 345502.	0.7	13
151	How Close Can One Approach the Dirac Point in Graphene Experimentally?. Nano Letters, 2012, 12, 4629-4634.	4.5	159
152	Spectrally Wide-Band Terahertz Wave Modulator Based on Optically Tuned Graphene. ACS Nano, 2012, 6, 9118-9124.	7.3	234
153	Graphene: An Emerging Electronic Material. Advanced Materials, 2012, 24, 5782-5825.	11.1	718
154	Using Weyl symmetry to make graphene a real lab for fundamental physics. European Physical Journal Plus, 2012, 127, 1.	1.2	25
155	Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment. Nanoscale Research Letters, 2012, 7, 268.	3.1	24
157	Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport. Reports on Progress in Physics, 2012, 75, 056501.	8.1	220
158	Weak localization in few-layer graphene grown on copper foils by chemical vapor deposition. Carbon, 2012, 50, 5242-5246.	5.4	10
159	Tunnel transport in nitrogen-incorporated rippled graphene. Europhysics Letters, 2012, 100, 26009.	0.7	11
160	Enhanced optical dichroism of graphene nanoribbons. Physical Review B, 2012, 86, .	1.1	18
161	The enhanced optical conductivity for zigzag-edge graphene nanoribbons with applied gate voltage. Applied Physics Letters, 2012, 100, 103101.	1.5	11
162	Photocurrent enhancement in dye-sensitized photovoltaic devices with titania–graphene composite electrodes. Journal of Electroanalytical Chemistry, 2012, 683, 43-46.	1.9	47
163	Electron spin relaxation in graphene with random Rashba field: comparison of the D'yakonov–Perel' and Elliott–Yafet-like mechanisms. New Journal of Physics, 2012, 14, 033015.	1.2	87
164	Modeling of graphene nanoribbon devices. Nanoscale, 2012, 4, 5538.	2.8	53

#	Article	IF	CITATIONS
165	Strain enhanced spin polarization in graphene with Rashba spin-orbit coupling and exchange effects. Journal of Applied Physics, 2012, 111, 033705.	1.1	12
166	Diffusion of photoexcited carriers in graphene. Applied Physics Letters, 2012, 101, 151115.	1.5	3
167	Complete light absorption in graphene-metamaterial corrugated structures. Physical Review B, 2012, 86, .	1.1	80
168	Spin thermopower and thermoconductance in a ferromagnetic graphene nanoribbon. Journal of Physics Condensed Matter, 2012, 24, 385302.	0.7	16
169	Strain-induced suppression of weak localization in CVD-grown graphene. Journal of Physics Condensed Matter, 2012, 24, 475304.	0.7	5
170	Quantum heat engine in the relativistic limit: The case of a Dirac particle. Physical Review E, 2012, 86, 061108.	0.8	50
171	Extend the omnidirectional electronic gap of Thue-Morse aperiodic gapped graphene superlattices. Applied Physics Letters, 2012, 101, .	1.5	23
172	Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cu thin films. SpringerPlus, 2012, 1, 52.	1.2	9
173	Transition in the Equilibrium Distribution Function of Relativistic Particles. Scientific Reports, 2012, 2, 611.	1.6	14
174	Spintronics with graphene. MRS Bulletin, 2012, 37, 1245-1254.	1.7	112
174 175	Spintronics with graphene. MRS Bulletin, 2012, 37, 1245-1254. Temperature dependence of the conductivity of graphene on boron nitride. Physical Review B, 2012, 85,	1.7 1.1	112 33
174 175 176	Spintronics with graphene. MRS Bulletin, 2012, 37, 1245-1254. Temperature dependence of the conductivity of graphene on boron nitride. Physical Review B, 2012, 85, . A transfer matrix approach to electron transport in graphene through arbitrary electric and magnetic potential barriers. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 045010.	1.7 1.1 0.8	112 33 9
174 175 176 177	Spintronics with graphene. MRS Bulletin, 2012, 37, 1245-1254. Temperature dependence of the conductivity of graphene on boron nitride. Physical Review B, 2012, 85, . A transfer matrix approach to electron transport in graphene through arbitrary electric and magnetic potential barriers. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 045010. Graphene-based photodetector with two cavities. Physical Review B, 2012, 85, .	1.7 1.1 0.8 1.1	112 33 9 142
174 175 176 177 178	Spintronics with graphene. MRS Bulletin, 2012, 37, 1245-1254. Temperature dependence of the conductivity of graphene on boron nitride. Physical Review B, 2012, 85, . A transfer matrix approach to electron transport in graphene through arbitrary electric and magnetic potential barriers. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 045010. Graphene-based photodetector with two cavities. Physical Review B, 2012, 85, . Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene. Journal of Physics Condensed Matter, 2012, 24, 245303.	1.7 1.1 0.8 1.1 0.7	112 33 9 142 20
174 175 176 177 178 179	Spintronics with graphene. MRS Bulletin, 2012, 37, 1245-1254. Temperature dependence of the conductivity of graphene on boron nitride. Physical Review B, 2012, 85, . A transfer matrix approach to electron transport in graphene through arbitrary electric and magnetic potential barriers. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 045010. Graphene-based photodetector with two cavities. Physical Review B, 2012, 85, . Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene. Journal of Physics Condensed Matter, 2012, 24, 245303. Tunable graphene-based polarizer. Journal of Applied Physics, 2012, 112, 084320.	1.7 1.1 0.8 1.1 0.7 1.1	 112 33 9 142 20 81
174 175 176 177 178 179 180	Spintronics with graphene. MRS Bulletin, 2012, 37, 1245-1254. Temperature dependence of the conductivity of graphene on boron nitride. Physical Review B, 2012, 85, . A transfer matrix approach to electron transport in graphene through arbitrary electric and magnetic potential barriers. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 045010. Graphene-based photodetector with two cavities. Physical Review B, 2012, 85, . Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene. Journal of Physics Condensed Matter, 2012, 24, 245303. Tunable graphene-based polarizer. Journal of Applied Physics, 2012, 112, 084320. Electron-hole puddles in the absence of charged impurities. Physical Review B, 2012, 85, .	1.7 1.1 0.8 1.1 0.7 1.1	 112 33 9 142 20 81 103
174 175 176 177 178 179 180	Spintronics with graphene. MRS Bulletin, 2012, 37, 1245-1254. Temperature dependence of the conductivity of graphene on boron nitride. Physical Review B, 2012, 85, . A transfer matrix approach to electron transport in graphene through arbitrary electric and magnetic potential barriers. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 045010. Graphene-based photodetector with two cavities. Physical Review B, 2012, 85, . Light scattering by a medium with a spatially modulated optical conductivity: the case of graphene. Journal of Physics Condensed Matter, 2012, 24, 245303. Tunable graphene-based polarizer. Journal of Applied Physics, 2012, 112, 084320. Electron-hole puddles in the absence of charged impurities. Physical Review B, 2012, 85, . Radiation effects on the electronic properties of bilayer graphene. Physical Review B, 2012, 86, .	1.7 1.1 0.8 1.1 0.7 1.1 1.1 1.1	 112 33 9 142 20 81 103 116

#	Article	IF	CITATIONS
183	Impurity and edge roughness scattering in graphene nanoribbons: the Boltzmann approach. Journal of Physics Condensed Matter, 2012, 24, 455303.	0.7	8
184	Coulomb interaction effects in graphene bilayers: electron–hole pairing and plasmaron formation. New Journal of Physics, 2012, 14, 075007.	1.2	21
185	Electronic states in heterostructures with piece-wise uniform Dirac cones. Journal of Applied Physics, 2012, 111, 033706.	1.1	1
186	Continuous-distribution puddle model for conduction in trilayer graphene. European Physical Journal B, 2012, 85, 1.	0.6	1
187	A Fortran 90 Hartree–Fock program for one-dimensional periodic π-conjugated systems using Pariser–Parr–Pople model. Computer Physics Communications, 2012, 183, 677-689.	3.0	6
188	Scarring of Dirac fermions in chaotic billiards. Physical Review E, 2012, 86, 016702.	0.8	22
189	Electron-Electron Interactions in Graphene: Current Status and Perspectives. Reviews of Modern Physics, 2012, 84, 1067-1125.	16.4	999
190	Electronic transport in graphene-based structures: An effective cross-section approach. Physical Review B, 2012, 85, .	1.1	12
191	Analytic model of energy spectrum and absorption spectra of bilayer graphene. Journal of Applied Physics, 2012, 111, 103714.	1.1	6
192	Engineering the Electronic Structure of Graphene. Advanced Materials, 2012, 24, 4055-4069.	11.1	141
193	Thinning and Shaping Solid Films into Functional and Integrative Nanomembranes. Advanced Materials, 2012, 24, 2517-2546.	11.1	105
194	Observation of the semiconductor–metal transition behavior in monolayer graphene. Carbon, 2012, 50, 2273-2279.	5.4	16
195	Strain-tunable band gap in graphene/h-BN hetero-bilayer. Journal of Physics and Chemistry of Solids, 2012, 73, 818-821.	1.9	42
196	Electronic transport for impurity-doped armchair-edge graphene nanoribbons. European Physical Journal B, 2012, 85, 1.	0.6	7
197	Singleâ€Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping. Advanced Materials, 2012, 24, 407-411.	11.1	228
198	Transmission of massless Dirac fermions through an array of random scatterers in terms of Fabry-Perot resonances: a Green's function approach. European Physical Journal B, 2013, 86, 1.	0.6	1
199	Observation of intra- and inter-band transitions in the transient optical response of graphene. New Journal of Physics, 2013, 15, 015009.	1.2	87
200	Electrical and mechanical performance of graphene sheets exposed to oxidative environments. Nano Research, 2013, 6, 485-495.	5.8	41

#	Article	IF	CITATIONS
201	Nitrogen-Doped Graphene Sheets Grown by Chemical Vapor Deposition: Synthesis and Influence of Nitrogen Impurities on Carrier Transport. ACS Nano, 2013, 7, 6522-6532.	7.3	264
202	Magnetic-like field inducing negative Dirac mass in graphene on hexagonal boron nitride. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 52, 70-76.	1.3	3
203	NONCOMMUTATIVE GRAPHENE. International Journal of Modern Physics A, 2013, 28, 1350064.	0.5	30
204	Revealing anisotropic strain in exfoliated graphene by polarized Raman spectroscopy. Nanoscale, 2013, 5, 9626.	2.8	19
205	Relativistic quantum tunneling of a Dirac fermion in nonhyperbolic chaotic systems. Physical Review B, 2013, 87, .	1.1	10
206	ELECTRON OPTICS WITH DIRAC FERMIONS: ELECTRON TRANSPORT IN MONOLAYER AND BILAYER GRAPHENE THROUGH MAGNETIC BARRIER AND THEIR SUPERLATTICES. International Journal of Modern Physics B, 2013, 27, 1341003.	1.0	26
207	Scattering by linear defects in graphene: a tight-binding approach. Journal of Physics Condensed Matter, 2013, 25, 075303.	0.7	11
208	Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening. Physical Review B, 2013, 88, .	1.1	164
209	Ballistic interferences in suspended graphene. Nature Communications, 2013, 4, 2342.	5.8	185
210	Intuitions in physics. SynthÃ^se, 2013, 190, 2959-2980.	0.6	13
211	Modeling electronic properties and quantum transport in doped and defective graphene. Solid State Communications, 2013, 175-176, 90-100.	0.9	34
212	Graphene sheet versus two-dimensional electron gas: A relativistic Fano spin filter via STM and AFM tips. Physical Review B, 2013, 88, .	1.1	4
213	Magneto-optical conductivity of graphene on polar substrates. Physical Review B, 2013, 88, .	1.1	43
214	Manipulation of resonant tunneling by substrate-induced inhomogeneous energy band gaps in graphene with square superlattice potentials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2895-2900.	0.9	8
215	Electronic band gaps and transport properties in aperiodic bilayer graphene superlattices of Thue-Morse sequence. Applied Physics Letters, 2013, 103, 172106.	1.5	20
216	Quantum capacitance measurements of electron-hole asymmetry and next-nearest-neighbor hopping in graphene. Physical Review B, 2013, 88, .	1.1	88
217	Optical properties of the Hofstadter butterfly in the moiré superlattice. Physical Review B, 2013, 88, .	1.1	29
218	Low-frequency optical conductivity in graphene and in other scale-invariant two-band systems. Physical Review B, 2013, 87, .	1.1	58

#	Article	IF	Citations
219	Unusual reflection of electromagnetic radiation from a stack of graphene layers at oblique incidence. Journal of Optics (United Kingdom), 2013, 15, 114004.	1.0	79
220	Fermi velocity renormalization and dynamical gap generation in graphene. Physical Review B, 2013, 88, .	1.1	45
221	Characterization of the thermal expansion properties of graphene using molecular dynamics simulations. Journal Physics D: Applied Physics, 2013, 46, 435302.	1.3	14
222	Optical absorption in twisted bilayer graphene. Physical Review B, 2013, 87, .	1.1	369
223	Electron spin relaxation in bilayer graphene. Physical Review B, 2013, 87, .	1.1	10
224	Enhancing the absorption of graphene in the terahertz range. Europhysics Letters, 2013, 101, 58002.	0.7	44
225	Nanogap based graphene coated AFM tips with high spatial resolution, conductivity and durability. Nanoscale, 2013, 5, 10816.	2.8	18
226	Surface-optical-phonon–induced magnetophonon resonance in graphene. Europhysics Letters, 2013, 103, 37012.	0.7	2
227	Effects of optical and surface polar phonons on the optical conductivity of doped graphene. Physical Review B, 2013, 87, .	1.1	44
228	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews, 2013, 42, 2824-2860.	18.7	1,105
229	Computational study of dielectric function and optical properties of a graphane nano structure containing graphene quantum dot. Journal of Physics: Conference Series, 2013, 472, 012010.	0.3	8
230	Electronic structure of stacking faults in hexagonal graphite. Physical Review B, 2013, 88, .	1.1	6
231	Resonant and nondissipative tunneling in independently contacted graphene structures. Physical Review B, 2013, 87, .	1.1	34
232	Thermopower and thermoconductance properties of zigzag edged graphene nanoribbon based thermoelectric module. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1486-1490.	0.9	3
233	Selective Andreev reflection tuned by magnetic barriers in graphene-superconductor hybrid junctions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 3148-3153.	0.9	2
234	Microscopic theory of resistance anomalous temperature behavior in graphene. Europhysics Letters, 2013, 101, 47006.	0.7	3
235	Effect of topological defects and Coulomb charge on the low energy quantum dynamics of gapped graphene. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 055303.	0.7	9
236	Pseudo-gap opening and Dirac point confined states in doped graphene. Solid State Communications, 2013, 162, 23-27.	0.9	13

#	Article	IF	CITATIONS
237	Exact solution for square-wave grating covered with graphene: surface plasmon-polaritons in the terahertz range. Journal of Physics Condensed Matter, 2013, 25, 125303.	0.7	33
238	Non-ohmic behavior of carrier transport in highly disordered graphene. Nanotechnology, 2013, 24, 165201.	1.3	10
239	The electronic properties of bilayer graphene. Reports on Progress in Physics, 2013, 76, 056503.	8.1	818
240	Effect of geometrical rotation on conductance fluctuations in graphene quantum dots. Journal of Physics Condensed Matter, 2013, 25, 105802.	0.7	6
241	A PRIMER ON SURFACE PLASMON-POLARITONS IN GRAPHENE. International Journal of Modern Physics B, 2013, 27, 1341001.	1.0	325
242	Exact Landau spectrum and wave functions of biased AA-stacked multilayer graphene. Carbon, 2013, 61, 209-215.	5.4	2
243	Generation of Pure Bulk Valley Current in Graphene. Physical Review Letters, 2013, 110, 046601.	2.9	221
244	Effect of charged line defects on conductivity in graphene: Numerical Kubo and analytical Boltzmann approaches. Physical Review B, 2013, 87, .	1.1	37
245	The recursive Green's function method for graphene. Journal of Computational Electronics, 2013, 12, 203-231.	1.3	197
246	Elastic analog of graphene: Dirac cones and edge states for flexural waves in thin plates. Physical Review B, 2013, 87, .	1.1	140
247	Zero-mass fermions in Coulomb and Aharonov-Bohm potentials in 2+1 dimensions. Theoretical and Mathematical Physics(Russian Federation), 2013, 175, 637-654.	0.3	11
248	Stacking-dependent optical absorption in multilayer graphene. New Journal of Physics, 2013, 15, 015010.	1.2	46
249	DYSON–SCHWINGER APPROACH TO STRONGLY COUPLED THEORIES. Modern Physics Letters A, 2013, 28, 1330006.	0.5	8
250	Thermodynamics of a Potts-like model for a reconstructed zigzag edge in graphene nanoribbons. Physical Review B, 2013, 87, .	1.1	3
251	Quantum Faraday and Kerr rotations in graphene. Nature Communications, 2013, 4, 1841.	5.8	167
252	Adiabatic quantum pumping in graphene with magnetic barriers. European Physical Journal B, 2013, 86, 1.	0.6	15
253	Terahertz plasmonics in ferroelectric-gated graphene. Applied Physics Letters, 2013, 102, .	1.5	44
255	Shielding vacuum fluctuations with graphene. Physical Review A, 2013, 88, .	1.0	31

#	Article	IF	Citations
256	Microscopic theory of ultrafast dynamics of carriers photoexcited by THz and near-infrared linearly polarized laser pulses in graphene. New Journal of Physics, 2013, 15, 083038.	1.2	16
257	Transverse current response of graphene at finite temperature: plasmons and absorption. Journal of Optics (United Kingdom), 2013, 15, 114005.	1.0	13
258	Theory of the plasma-wave photoresponse of a gated graphene sheet. Physical Review B, 2013, 88, .	1.1	85
259	Possibility of a Field Effect Transistor Based on Dirac Particles in Semiconducting Anatase-TiO ₂ Nanowires. Nano Letters, 2013, 13, 1073-1079.	4.5	10
260	Spin-dependent Fano resonance in an impurity-doped graphene coupled to ferromagnetic leads. Applied Physics Letters, 2013, 103, 033513.	1.5	6
261	Origami-based spintronics in graphene. Europhysics Letters, 2013, 104, 47001.	0.7	23
262	Strong light–matter interaction in systems described by a modified Dirac equation. Journal of Physics Condensed Matter, 2013, 25, 305801.	0.7	10
263	Quantum Flatland and Monolayer Graphene from a Viewpoint of Geometric Algebra. Acta Physica Polonica A, 2013, 124, 732-739.	0.2	5
264	The Kondo effect of an adatom in graphene and its scanning tunneling spectroscopy. New Journal of Physics, 2013, 15, 053018.	1.2	14
265	Novel Transport Properties in Monolayer Graphene with Velocity Modulation. Chinese Physics Letters, 2013, 30, 047201.	1.3	16
266	Argon annealing procedure for producing an atomically terraced 4H–SiC (0001) substrate and subsequent graphene growth. Journal of Materials Research, 2013, 28, 1-6.	1.2	18
267	Valley-dependent resonant inelastic transmission through a time-modulated region in graphene. Physical Review B, 2013, 88, .	1.1	3
268	Effective contact model for geometry-independent conductance calculations in graphene. Physical Review B, 2013, 88, .	1.1	7
269	Magnetic Correlations in Short and Narrow Graphene Armchair Nanoribbons. Physical Review Letters, 2013, 111, 085504.	2.9	31
270	Optical dichroism by nonlinear excitations in graphene nanoribbons. Physical Review B, 2013, 87, .	1.1	8
271	Effective models for strong correlations and edge magnetism in graphene. Physical Review B, 2013, 87, .	1.1	22
272	Influence of transfer residue on the optical properties of chemical vapor deposited graphene investigated through spectroscopic ellipsometry. Journal of Applied Physics, 2013, 114, .	1.1	37
273	Negative differential transmission in graphene. Physical Review B, 2013, 88, .	1.1	7

		CITATION R	EPORT	
#	Article		IF	Citations
274	Spectral footprints of impurity scattering in graphene nanoribbons. Physical Review B,	2013, 87, .	1.1	10
275	Gate modulation on angle-resolved photoabsorption spectra of zigzag-edge graphene Journal of Applied Physics, 2013, 113, 103510.	nanoribbons.	1.1	3
276	Controlled ripple texturing of suspended graphene membranes due to coupling with ul Physical Review A, 2013, 88, .	tracold atoms.	1.0	8
277	Amplification and lasing of terahertz radiation by plasmons in graphene with a planar d Bragg resonator. Journal of Optics (United Kingdom), 2013, 15, 114009.	istributed	1.0	44
278	Effect of uniaxial strain on ferromagnetic instability and formation of localized magnet adatoms in graphene. Physical Review B, 2013, 87, .	c states on	1.1	21
279	Detecting zero-line mode in bilayer graphene via the quantum Hall effect. Physical Revi	ew B, 2013, 87, .	1.1	11
280	Diverging dc conductivity due to a flat band in a disordered system of pseudospin-1 Di fermions. Physical Review B, 2013, 88, .	°ac-Weyl	1.1	57
281	Chiral Scars in Chaotic Dirac Fermion Systems. Physical Review Letters, 2013, 110, 064	-102.	2.9	36
282	Negative Quantum Capacitance Induced by Midgap States in Single-layer Graphene. Sc 2013, 3, 2041.	ientific Reports,	1.6	18
283	Topology, cosmic strings and quantum dynamics – a case study with graphene. Journ Conference Series, 2013, 442, 012017.	nal of Physics:	0.3	4
284	Ultrarelativistic transport coefficients in two dimensions. Journal of Statistical Mechani and Experiment, 2013, 2013, P02036.	cs: Theory	0.9	16
285	Graphene: QFT in curved spacetimes close to experiments. Journal of Physics: Conferer 442, 012056.	ce Series, 2013,	0.3	21
286	Disorder and de-coherence in graphene probed by low-temperature magneto-transport localization and weak antilocalization. Journal of Physics: Conference Series, 2013, 456	: weak 5, 012032.	0.3	4
287	Quantum Hall effect in monolayer, bilayer and trilayer graphene. Journal of Physics: Con Series, 2013, 456, 012006.	lference	0.3	3
288	Spectroscopic imaging ellipsometry of graphene. SPIE Newsroom, 0, , .		0.1	1
290	Optical conductivity of ABA stacked graphene trilayer: mid-IR resonance due to band n of Physics Condensed Matter, 2014, 26, 395301.	esting. Journal	0.7	11
291	Effect of inter-adatoms correlations on the local density of states of graphene. Europhy 2014, 108, 47006.	vsics Letters,	0.7	1
292	Optical and electronic structure of quasi-freestanding multilayer graphene on the carbo SiC. Europhysics Letters, 2014, 108, 37009.	on face of	0.7	13

#	Article	IF	CITATIONS
293	Electron localization in disordered graphene for nanoscale lattice sizes: multifractal properties of the wavefunctions. 2D Materials, 2014, 1, 011009.	2.0	6
294	Effect of vacuum polarization of charged massive fermions in an Aharonov–Bohm field. European Physical Journal C, 2014, 74, 1.	1.4	9
296	Effect of Oxygen Plasma on the Optical Properties of Monolayer Graphene. Advanced Materials Research, 0, 896, 510-513.	0.3	5
297	Supersymmetric analysis of the Dirac-Weyl operator within PT symmetry. Journal of Mathematical Physics, 2014, 55, 082106.	0.5	4
298	Tunable THz absorption in graphene-based heterostructures. Optics Express, 2014, 22, 30177.	1.7	70
299	Low-loss plasmonic supermodes in graphene multilayers. Optics Express, 2014, 22, 25324.	1.7	39
300	Magnetoresistance of disordered graphene: From low to high temperatures. Physical Review B, 2014, 90, .	1.1	15
301	Wave-packet representation of leads for efficient simulations of time-dependent electronic transport. Physical Review B, 2014, 89, .	1.1	5
302	Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect, and all that. Physical Review D, 2014, 90, .	1.6	82
303	Nonlinear electric transport in graphene with magnetic disorder. Physical Review B, 2014, 90, .	1.1	4
304	Quantum chaotic tunneling in graphene systems with electron-electron interactions. Physical Review B, 2014, 90, .	1.1	13
305	Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice. Journal of Applied Physics, 2014, 116, .	1.1	15
306	High-performance solution of the transport problem in a graphene armchair structure with a generic potential. Physical Review E, 2014, 89, 063309.	0.8	24
307	Scattering of two-dimensional massless Dirac electrons by a circular potential barrier. Physical Review B, 2014, 90, .	1.1	50
308	Random Strain Fluctuations as Dominant Disorder Source for High-Quality On-Substrate Graphene Devices. Physical Review X, 2014, 4, .	2.8	102
309	Theory of integer quantum Hall polaritons in graphene. Physical Review B, 2014, 89, .	1.1	19
310	Effective Theory of Floquet Topological Transitions. Physical Review Letters, 2014, 113, 236803.	2.9	168
311	Charge transport in two dimensions limited by strong short-range scatterers: Going beyond parabolic dispersion and Born approximation. Physical Review B, 2014, 89, .	1.1	3

#	Article	IF	Citations
312	Tuning the Casimir-Polder interaction via magneto-optical effects in graphene. Physical Review A, 2014, 90, .	1.0	40
313	Femtosecond laser induced periodic surface structures on multi-layer graphene. Journal of Applied Physics, 2014, 116, 204306.	1.1	23
314	Magnetoresistance of composites based on graphitic discs and cones. Journal Physics D: Applied Physics, 2014, 47, 335305.	1.3	2
315	Elastic Properties and Stability of Physisorbed Graphene. Applied Sciences (Switzerland), 2014, 4, 282-304.	1.3	52
316	Aspects of the Fractional Quantum Hall Effect in Graphene. Nanoscience and Technology, 2014, , 251-300.	1.5	1
317	Thermodynamical properties of graphene in noncommutative phase–space. Annals of Physics, 2014, 349, 402-410.	1.0	30
318	Absorption Saturation and Two-Photon Absorption in Graphene. Materials Research Society Symposia Proceedings, 2014, 1698, 32.	0.1	0
319	Magnetism of an adatom on biased AA-stacked bilayer graphene. Physica B: Condensed Matter, 2014, 442, 66-69.	1.3	6
320	Correlation between atomistic morphology and electron transport properties in defect-free and defected graphene nanoribbons: An interpretation through Clar sextet theory. Carbon, 2014, 75, 190-200.	5.4	6
321	Large Scale Graphene/Hexagonal Boron Nitride Heterostructure for Tunable Plasmonics. Advanced Functional Materials, 2014, 24, 731-738.	7.8	55
322	Surface plasmon enhanced giant Faraday effect in graphene. Applied Physics B: Lasers and Optics, 2014, 116, 437-445.	1.1	5
323	Detection of resonant impurities in graphene by quantum capacitance measurement. Physical Review B, 2014, 89, .	1.1	18
324	Performance analysis of boron nitride embedded armchair graphene nanoribbon metal–oxide–semiconductor field effect transistor with Stone Wales defects. Journal of Applied Physics, 2014, 115, .	1.1	17
325	Thermoelectric properties of atomically thin silicene and germanene nanostructures. Physical Review B, 2014, 89, .	1.1	164
326	Degenerate Perturbation in Band-Gap Opening of Graphene Superlattice. Journal of Physical Chemistry C, 2014, 118, 8174-8180.	1.5	15
327	Theoretical Analysis of a Dual-Probe Scanning Tunneling Microscope Setup on Graphene. Physical Review Letters, 2014, 112, 096801.	2.9	28
328	Optical conductivity of curved graphene. Journal of Physics Condensed Matter, 2014, 26, 185301.	0.7	20
329	Photosensitive Graphene Transistors. Advanced Materials, 2014, 26, 5239-5273.	11.1	290

#	Article	IF	CITATIONS
330	Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals. Nano Letters, 2014, 14, 3270-3276.	4.5	433
331	Influence of Coulomb interaction on the anisotropic Dirac cone in graphene. Physical Review B, 2014, 89, .	1.1	28
332	High frequency electric field induced nonlinear effects in graphene. Physics Reports, 2014, 535, 101-138.	10.3	369
333	Graphene Plasmonics for Terahertz to Mid-Infrared Applications. ACS Nano, 2014, 8, 1086-1101.	7.3	1,165
334	Feshbach-type resonances for two-particle scattering in graphene. Physical Review B, 2014, 89, .	1.1	6
335	Effect of the disorder in graphene grain boundaries: A wave packet dynamics study. Applied Surface Science, 2014, 291, 58-63.	3.1	20
336	A model for ballistic transport across locally gated graphene bipolar junctions. Journal of Physics Condensed Matter, 2014, 26, 015301.	0.7	3
337	Particle transport in graphene nanoribbon driven by ultrashort pulses. European Physical Journal B, 2014, 87, 1.	0.6	5
338	Electrical conductivity and density of state of boron nitride nanotubes due to electronic correlation. International Journal of Modern Physics B, 2014, 28, 1450180.	1.0	5
339	Magnetic moments in graphene with vacancies. Nanoscale, 2014, 6, 8814.	2.8	53
340	Inter-band and intra-band reflections in graphene–insulator–superconductor junctions with zigzag or armchair edge. Physica B: Condensed Matter, 2014, 455, 106-109.	1.3	0
341	An analytical approach for the energy spectrum and optical properties of gated bilayer graphene. RSC Advances, 2014, 4, 32117-32126.	1.7	2
342	Metallic three-coordinated carbon networks with eight-membered rings showing high density of states at the Fermi level. Physical Chemistry Chemical Physics, 2014, 16, 7102.	1.3	9
343	Long-wavelength optical phonon behavior in uniaxial strained graphene: Role of electron-phonon interaction. Physical Review B, 2014, 90, .	1.1	5
344	Adatoms and Anderson localization in graphene. Physical Review B, 2014, 90, .	1.1	13
345	Defect-Induced Supercollision Cooling of Photoexcited Carriers in Graphene. Nano Letters, 2014, 14, 5621-5624.	4.5	38
346	Determination of Quantum Capacitance and Band Filling Potential in Graphene Transistors with Dual Electrochemical and Field-Effect Gates. Journal of Physical Chemistry C, 2014, 118, 21160-21169.	1.5	29
347	Effect of Negatively Charged Impurity on Graphene Magnetic Rings. Journal of the Physical Society of Japan, 2014, 83, 034007.	0.7	5

#	Article	IF	Citations
348	Nanosecond Spin Lifetimes in Single- and Few-Layer Graphene–hBN Heterostructures at Room Temperature. Nano Letters, 2014, 14, 6050-6055.	4.5	149
349	Nonlinear optics of graphene in the presence of Rabi oscillation. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2263.	0.9	4
350	Radiation from electrons in graphene in strong electric field. Annals of Physics, 2014, 351, 166-199.	1.0	13
351	<i>Colloquium</i> : Graphene spectroscopy. Reviews of Modern Physics, 2014, 86, 959-994.	16.4	220
352	Dirac materials. Advances in Physics, 2014, 63, 1-76.	35.9	759
353	Conductivity of epitaxial and CVD graphene with correlated line defects. Solid State Communications, 2014, 195, 88-94.	0.9	24
354	Graphene-Based Sensors: Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 17395-17401.	1.5	45
355	Plasmonics in Dirac systems: from graphene to topological insulators. Journal of Physics Condensed Matter, 2014, 26, 123201.	0.7	190
356	Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nature Communications, 2014, 5, 4224.	5.8	213
357	Hydrogen-dimer lines and electron waveguides in graphene. Physical Chemistry Chemical Physics, 2014, 16, 17610-17616.	1.3	4
358	Quantum corrections to transport in graphene: a trajectory-based semiclassical analysis. New Journal of Physics, 2014, 16, 073015.	1.2	7
359	Electronic transport in bilayer graphene. , 2014, , 228-264.		1
360	van der Waals forces and electron-electron interactions in two strained graphene layers. Physical Review B, 2014, 89, .	1.1	14
361	The numerical operator method to the real time dynamics of currents through the nanostructures with different topologies. European Physical Journal B, 2014, 87, 1.	0.6	1
362	Anderson localization in two-dimensional graphene with short-range disorder: One-parameter scaling and finite-size effects. Physical Review B, 2014, 89, .	1.1	49
363	Effect of point defects on the optical and transport properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS </mml:mi> <mml:mrow> <mml xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>MoS </mml:mi> <mml:mrow> <mml: b_2014_90<="" physical="" review="" td=""><td>:mn>2mn>2<td>ml:mn>nl:mn></td></td></mml:></mml:mrow></mml:msub></mml></mml:mrow></mml:msub></mml:math>	:mn>2mn>2 <td>ml:mn>nl:mn></td>	ml:mn>nl:mn>
364	Generation of spin polarization in graphene by the spin–orbit interaction and a magnetic barrier. Journal Physics D: Applied Physics, 2014, 47, 435302.	1.3	6
365	Atomistic mechanisms of codoping-induced p- to n-type conversion in nitrogen-doped graphene. Nanoscale, 2014, 6, 14911-14918.	2.8	30

ARTICLE IF CITATIONS # Level spacing statistics for two-dimensional massless Dirac billiards. Chinese Physics B, 2014, 23, 366 0.7 12 070507. Density of states as a probe of electrostatic confinement in graphene. Physical Review B, 2014, 89, . 1.1 Effect of off-center positively charged Coulomb impurity on Dirac states in graphene magnetic dot. 369 0.9 2 Solid State Communications, 2014, 185, 52-57. Local moment formation in bilayer graphene. Solid State Communications, 2014, 178, 37-41. 370 0.9 Tunable optical absorption and interactions in graphene via oxygen plasma. Physical Review B, 2014, 89, 371 1.1 42 Effects of nitrogen-doping configurations with vacancies on conductivity in graphene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2270-2274. 373 Structure and stability of hydrogenated carbon atom vacancies in graphene. Carbon, 2014, 77, 165-174. 5.4 30 Effects of doping and bias voltage on the screening in AAA-stacked trilayer graphene. Solid State 374 Communications, 2014, 193, 1-5. Strain-induced edge magnetism at the zigzag edge of a graphene quantum dot. Physical Review B, 2015, 375 1.1 35 91, . 376 Cloaking resonant scatterers and tuning electron flow in graphene. Physical Review B, 2015, 91, . 1.1 Charge transport in gapless electron-hole systems with arbitrary band dispersion. Physical Review B, 377 17 1.1 2015, 91, . Intrinsic charge and spin conductivities of doped graphene in the Fermi-liquid regime. Physical Review 1.1 B, 2015, 91, . Catching the bound states in the continuum of a phantom atom in graphene. Physical Review B, 2015, 379 1.1 11 92, . Optimal traps in graphene. Physical Review B, 2015, 92, . 380 1.1 Anderson localization of light in disordered superlattices containing graphene layers. Physical 381 9 1.1 Review B, 2015, 92, . Conductance fluctuations in chaotic bilayer graphene quantum dots. Physical Review E, 2015, 92, 012918. Conductance stability in chaotic and integrable quantum dots with random impurities. Physical 383 0.8 2 Review E, 2015, 92, 022901. 384 Line of Dirac Nodes in Hyperhoneycomb Lattices. Physical Review Letters, 2015, 115, 026403.

#	Article	IF	CITATIONS
385	Critical Delocalization of Chiral Zero Energy Modes in Graphene. Physical Review Letters, 2015, 115, 106601.	2.9	97
386	Electronic transport in graphene with particle-hole-asymmetric disorder. Physical Review B, 2015, 92, .	1.1	1
387	Active magneto-ontical control of spontaneous emission in graphene. Physical Review B. 2015, 92	11	50
507	Active magneto optical control of spontaneous emission in graphene. Thysical feetice 0, 2013, 92, 1	1.1	50
388	Controllable intrinsic DC spin/valley Hall conductivity in ferromagnetic silicene: Exploring a fully spin/valley polarized transport. Superlattices and Microstructures, 2015, 88, 442-449.	1.4	7
389	Generating and moving Dirac points in a two-dimensional deformed honeycomb lattice arrayed by coupled semiconductor quantum dots. AIP Advances, 2015, 5, 037132.	0.6	1
391	Plasmonic lattice solitons in nonlinear graphene sheet arrays. Optics Express, 2015, 23, 32679.	1.7	10
000	Dynamics of quasiparticles in graphene under intense circularly polarized light. Physical Review B,		
392	2015, 91, .	1.1	20
393	Effects of a random gauge field on the conductivity of graphene sheets with disordered ripples. Physical Review B, 2015, 91	1.1	32
394	Electron transport in carbon wires in contact with Ag electrodes: a detailed first principles investigation. Physical Chemistry Chemical Physics, 2015, 17, 18413-18425.	1.3	17
	Polarization operator in the 2+1 dimensional quantum electrodynamics with a nonzero fermion		
395	density in a constant uniform magnetic field. Éuropean Physical Journal C, 2015, 75, 1.	1.4	16
396	Finite-size effects of hysteretic dynamics in multilayer graphene on a ferroelectric. Physical Review B, 2015, 91	1.1	17
397	Combined effect of oriented strain and external magnetic field on electrical properties of superlattice-graphene nanoribbons. Journal Physics D: Applied Physics, 2015, 48, 405501.	1.3	9
	Graphene, graphene quantum dots and their applications in optoelectronics. Current Opinion in		
398	Colloid and Interface Science, 2015, 20, 439-453.	3.4	73
399	Polarization Reconfigurable Antennas Using Graphene for Microwave Applications. , 2015, , .		2
400	Quantum Field Theory Approach to the Optical Conductivity of Strained and Deformed Graphene. Few-Body Systems, 2015, 56, 915-922.	0.7	5
	Schnol's Theorem and Spectral Properties of Massless Dirac Operators with Scalar Potentials. Letters		
401	in Mathematical Physics, 2015, 105, 1479-1497.	0.5	3
402	Hydrogen adsorption on nitrogen and boron doped graphene. Journal of Physics Condensed Matter,	0.7	19
	۷۲J, ۷۲, ٦٤JJV2.		
403	Superradiant amplification of terahertz radiation by plasmons in inverted graphene with a planar distributed Bragg resonator. Semiconductors, 2015, 49, 1468-1472.	0.2	2

	CIT	TATION REPORT	
#	Article	IF	Citations
404	Rabi oscillations of surface plasmon polaritons in graphene-pair arrays. Optics Express, 2015, 23, 3113	36. 1.7	11
405	Electronic band gaps and transport properties in periodically alternating mono- and bi-layer graphene superlattices. Europhysics Letters, 2015, 112, 58003.	0.7	10
406	Quantized transport of interface and edge states in bent graphene. Solid State Communications, 2015 207, 30-34.	5, 0.9	1
407	Modeling Klein tunneling and caustics of electron waves in graphene. Physical Review B, 2015, 91, .	1.1	54
408	Effect of uniaxial strain on electrical conductance and band gap of superlattice-graphene nanoribbons. Superlattices and Microstructures, 2015, 81, 202-214.	1.4	17
409	Resonant tunneling and localized states in a graphene monolayer with a mass gap. Physical Review B, 2015, 91, .	1.1	12
411	Mechanical properties of locally oxidized graphene electrodes. Archive of Applied Mechanics, 2015, 85 339-345.	, , 1.2	8
412	Electronic structure of a graphene superlattice with a modulated Fermi velocity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1372-1376.	0.9	19
413	Fingerprints of disorder source in graphene. Physical Review B, 2015, 92, .	1.1	34
414	Fiber optic polarization beam splitter using a reduced graphene oxide-based interlayer. Optical Materials, 2015, 46, 324-328.	1.7	11
415	Electronic properties of Boron Nitride sheet and nanotube in the presence of transverse magnetic field. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 73, 100-104.	1.3	2
416	Anisotropic Short-Wavelength Friedel Oscillation with Adjustable Envelope in Graphene. Communications in Theoretical Physics, 2015, 64, 108-112.	1.1	0
417	Surface optical phonon-assisted cyclotron resonance in graphene on polar substrates. Materials Chemistry and Physics, 2015, 163, 116-122.	2.0	25
418	Coulomb screening in graphene with topological defects. European Physical Journal B, 2015, 88, 1.	0.6	0
419	Conductance of disordered graphene sheets: A real space approach. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 74, 347-354.	1.3	8
420	Temperature Dependence of Electric Transport in Few-layer Graphene under Large Charge Doping Induced by Electrochemical Gating. Scientific Reports, 2015, 5, 9554.	1.6	27
421	Curved spacetimes and curved graphene: A status report of the Weyl symmetry approach. Internation Journal of Modern Physics D, 2015, 24, 1530013.	al 0.9	39
422	Long- versus Short-Range Scattering in Doped Epitaxial Graphene. Nano Letters, 2015, 15, 2825-2829	. 4.5	19

#	Article	IF	CITATIONS
423	Charge screening and carrier transport in AA-stacked bilayer graphene: Tuning via a perpendicular electric field. Solid State Communications, 2015, 202, 14-18.	0.9	2
424	Superpersistent currents and whispering gallery modes in relativistic quantum chaotic systems. Scientific Reports, 2015, 5, 8963.	1.6	15
425	Casimir force between metal and graphene sheets. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 157.	0.9	5
426	Tunable superradiance and quantum phase gate based on graphene wrapped nanowire. Optics Express, 2015, 23, 22347.	1.7	9
427	Graphene-Based Photonics and Plasmonics. Nanostructure Science and Technology, 2015, , 93-126.	0.1	2
428	Electronic structure of a graphene superlattice with massive Dirac fermions. Journal of Applied Physics, 2015, 117, .	1.1	19
429	Carrier screening, transport, and relaxation in three-dimensional Dirac semimetals. Physical Review B, 2015, 91, .	1.1	79
430	Local Current Density Calculations for Molecular Films from <i>Ab Initio</i> . Journal of Chemical Theory and Computation, 2015, 11, 5161-5176.	2.3	22
431	Particle creation from the vacuum by an exponentially decreasing electric field. Physica Scripta, 2015, 90, 074005.	1.2	15
432	A new graphene-on-silicon solar cells by introducing an interlayer of silicon quantum dots. , 2015, , .		4
433	Theory for electron transport in graphene. Synthetic Metals, 2015, 210, 2-8.	2.1	3
434	Electron States of Uniaxially Strained Graphene. Nano Letters, 2015, 15, 7943-7948.	4.5	18
435	Enhancement of weak localization for nitrogen-doped graphene by short range potentials. Carbon, 2015, 82, 346-352.	5.4	9
436	Controlling the energy gap of graphene by Fermi velocity engineering. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 179-182.	0.9	44
437	Electronic properties of graphene nanoribbons with AA-stacking order. Solid State Communications, 2015, 201, 76-81.	0.9	14
438	Highly Sensitive and Wide-Band Tunable Terahertz Response of Plasma Waves Based on Graphene Field Effect Transistors. Scientific Reports, 2014, 4, 5470.	1.6	52
439	Relativistic bound states in three space-time dimensions in Minkowski space. AIP Conference Proceedings, 2016, , .	0.3	0
440	Magnetically-Driven Quantum Heat Engines: The Quasi-Static Limit of Their Efficiency. Entropy, 2016, 18, 173.	1.1	12

		EPORT	
#	Article	IF	CITATIONS
441	Raman and Conductivity Analysis of Graphene for Biomedical Applications. Materials, 2016, 9, 897.	1.3	8
442	Firstâ€Principles Study on Doping of SnSe ₂ Monolayers. ChemPhysChem, 2016, 17, 375-379.	1.0	30
443	Magneto-strain driven quantum engine on a graphene flake. , 2016, , .		0
444	Numerical calculation of the Casimir-Polder interaction between a graphene sheet with vacancies and an atom. Physical Review B, 2016, 94, .	1.1	15
445	Graphene <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mi>njunction in a quantizing magnetic field: Conductance at intermediate disorder strength. Physical Review B, 2016, 94, .</mml:mi></mml:mrow></mml:math 	> <td>row_{}2}</td>	row _{}2}
446	Ab-initio study of thermal expansion in pure graphene. AIP Conference Proceedings, 2016, , .	0.3	2
447	A robust relativistic quantum two-level system with edge-dependent currents and spin polarization. Europhysics Letters, 2016, 115, 20005.	0.7	6
448	Ballistic conductivity of graphene channel with p-n junction at ferroelectric domain wall. Applied Physics Letters, 2016, 108, .	1.5	19
449	Controlling resonant tunneling in graphene via Fermi velocity engineering. Journal of Applied Physics, 2016, 119, .	1.1	27
450	Midgap states and band gap modification in defective graphene/h-BN heterostructures. Physical Review B, 2016, 94, .	1.1	23
451	Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards. Physical Review E, 2016, 94, 062214.	0.8	19
452	Two-dimensional B–C–O alloys: a promising class of 2D materials for electronic devices. Nanoscale, 2016, 8, 8910-8918.	2.8	23
453	Hydrogen on silicene: like or unlike graphene?. Physical Chemistry Chemical Physics, 2016, 18, 15654-15666.	1.3	27
454	Modifications in development of graphene oxide synthetic routes. Chemical Engineering Journal, 2016, 294, 458-477.	6.6	77
455	Impurity invisibility in graphene: Symmetry guidelines for the design of efficient sensors. Physical Review B, 2016, 94, .	1.1	22
456	Transport properties of the topological Kondo insulator SmB 6 under the irradiation of light. Chinese Physics B, 2016, 25, 107303.	0.7	2
457	Magnetoplasma excitations and the effect of electron and hole velocity renormalization in free-hanging graphene studied by Raman scattering. JETP Letters, 2016, 104, 37-42.	0.4	2
458	Optimization of a relativistic quantum mechanical engine. Physical Review E, 2016, 94, 022109.	0.8	18

	Сітатіо	n Report	
#	Article	IF	CITATIONS
459	Vector plasmonic lattice solitons in nonlinear graphene-pair arrays. Optics Letters, 2016, 41, 3619.	1.7	22
460	Optical Properties of Graphene. , 2016, , 295-314.		0
461	Complex transport behaviors of rectangular graphene quantum dots subject to mechanical vibrations. Europhysics Letters, 2016, 114, 47006.	0.7	1
462	Pumping electrons in graphene to theMpoint in the Brillouin zone: Emergence of anisotropic plasmons. Physical Review B, 2016, 94, .	1.1	5
463	Tunable anomalous Andreev reflection and triplet pairings in spin-orbit-coupled graphene. Physical Review B, 2016, 94, .	1.1	45
464	Controlling spin polarization in graphene by cloaking magnetic and spin-orbit scatterers. Physical Review B, 2016, 94, .	1.1	1
465	Electrical control of intervalley scattering in graphene via the charge state of defects. Physical Review B, 2016, 93, .	1.1	18
466	Multiple negative differential conductance regions and inelastic phonon assisted tunneling in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>graphene</mml:mtext><mml:mo>/Physical Review B. 2016. 93</mml:mo></mml:math 	ml:mo> <mml:r< td=""><td>ni>h</td></mml:r<>	ni>h
467	Nature of single-particle states in disordered graphene. Physical Review B, 2016, 93, .	1.1	2
468	Conductivity of pure graphene: Theoretical approach using the polarization tensor. Physical Review B, 2016, 93, .	1.1	28
469	Quantization of charged fields in the presence of critical potential steps. Physical Review D, 2016, 93, .	1.6	31
470	<i>Colloquium</i> : Topological band theory. Reviews of Modern Physics, 2016, 88, .	16.4	1,124
471	Physical properties of low-dimensional <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi>s</mml:mi><mml:mi>p</mml:mi>carbon nanostructures. Reviews of Modern Physics, 2016, 88, .</mml:mrow></mml:msup></mml:mrow></mml:math>	nrow> ۱๗ ฑl:n	nro 1/6 00 mml:1
472	Transport properties of bilayer graphene in a strong in-plane magnetic field. Physical Review B, 2016, 93, .	1.1	14
473	Quantum thermal transport in stanene. Physical Review B, 2016, 94, .	1.1	41
474	Floquet-Engineered Valleytronics in Dirac Systems. Physical Review Letters, 2016, 116, 016802.	2.9	66
475	Quantum electrodynamic approach to the conductivity of gapped graphene. Physical Review B, 2016, 94,	1.1	20
476	Dynamical charge and pseudospin currents in graphene and possible Cooper pair formation. Physical Review B, 2016, 94, .	1.1	2

#	Article	IF	CITATIONS
477	Magnetotransport signatures of the proximity exchange and spin-orbit couplings in graphene. Physical Review B, 2016, 94, .	1.1	16
478	Tunable multi-qubit quantum phase gates with high fidelity based on graphene wrapped particle. AIP Advances, 2016, 6, 115007.	0.6	1
479	Scattering strength of the scatterer inducing variability in graphene on silicon oxide. Journal of Physics Condensed Matter, 2016, 28, 115301.	0.7	3
480	Effect of Fe, Co, Si and Ge impurities on optical properties of graphene sheet. Thin Solid Films, 2016, 612, 214-224.	0.8	6
481	Tunable valley filtering in graphene with intervalley coupling. Europhysics Letters, 2016, 114, 37008.	0.7	5
482	Graphene field-effect transistor array with integrated electrolytic gates scaled to 200 mm. Journal of Physics Condensed Matter, 2016, 28, 085302.	0.7	40
483	Functionalizing Arrays of Transferred Monolayer Graphene on Insulating Surfaces by Bipolar Electrochemistry. Langmuir, 2016, 32, 6289-6296.	1.6	17
484	Efficient Multiscale Lattice Simulations of Strained and Disordered Graphene. Semiconductors and Semimetals, 2016, , 35-99.	0.4	12
485	Strain engineering the charged-impurity-limited carrier mobility in phosphorene. Superlattices and Microstructures, 2016, 89, 204-215.	1.4	8
486	Periodic barrier structure in AA-stacked bilayer graphene. Materials Research Express, 2016, 3, 065005.	0.8	5
487	Novel effects of strains in graphene and other two dimensional materials. Physics Reports, 2016, 617, 1-54.	10.3	315
488	Tunable dwell time in gated silicene nanostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 502-508.	0.9	10
489	Valley Seebeck effect in gate tunable zigzag graphene nanoribbons. Carbon, 2016, 99, 451-455.	5.4	28
490	Emerging ferroelectric transistors with nanoscale channel materials: the possibilities, the limitations. Journal of Physics Condensed Matter, 2016, 28, 103003.	0.7	55
491	Enhancement of spin polarization by chaos in graphene quantum dot systems. Physical Review B, 2016, 93, .	1.1	10
492	Spin polarisation using gate voltage through a Rashba barrier in graphene. Journal Physics D: Applied Physics, 2016, 49, 105305.	1.3	2
493	Ferromagnetic properties in low-doped zigzag graphene nanoribbons. Journal of Physics Condensed Matter, 2016, 28, 086001.	0.7	7
494	On adatomic-configuration-mediated correlation between electrotransport and electrochemical properties of graphene. Carbon, 2016, 101, 37-48.	5.4	35

#	Article	IF	CITATIONS
495	Current-induced birefringent absorption and non-reciprocal plasmons in graphene. 2D Materials, 2016, 3, 015011.	2.0	46
496	Spatial variation of wear and electrical properties across wrinkles in chemical vapour deposition graphene. Carbon, 2016, 102, 304-310.	5.4	90
497	Strain engineering of graphene: a review. Nanoscale, 2016, 8, 3207-3217.	2.8	453
498	Excitation of graphene plasmons as an analogy with the two-level system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 803-808.	0.9	3
499	Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Physics Reports, 2016, 606, 1-58.	10.3	449
500	Spin Transport in Carbon Nanotubes and Graphene: Experiments and Theory. , 2016, , 681-706.		1
501	Rabi Oscillations of Plasmonic Supermodes in Graphene Multilayer Arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 125-129.	1.9	27
502	Excitation of Surface Plasmon Polaritons in an Inhomogeneous Graphene-Covered Grating. Plasmonics, 2017, 12, 209-213.	1.8	12
503	Role of acoustic phonons in frequency dependent electronic thermal conductivity of graphene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 924-930.	0.9	8
504	Linear and nonlinear magneto-optical properties of monolayer phosphorene. Journal of Applied Physics, 2017, 121, .	1.1	47
505	Quantum-Matter Heterostructures. Annual Review of Condensed Matter Physics, 2017, 8, 145-164.	5.2	54
506	Spin-valley Hall conductivity of doped ferromagnetic silicene under strain. Chinese Physics B, 2017, 26, 017203.	0.7	6
507	Influence of NO and (NO) ₂ adsorption on the properties of Fe-N4 porphyrin-like graphene sheets. Physical Chemistry Chemical Physics, 2017, 19, 3201-3213.	1.3	27
508	Dominant source of disorder in graphene: charged impurities or ripples?. 2D Materials, 2017, 4, 025004.	2.0	6
509	Thermal expansion coefficient of graphene using molecular dynamics simulation: A comparative study on potential functions. Journal of Physics: Conference Series, 2017, 785, 012006.	0.3	14
510	Performance Analysis of Hybrid Metal–Graphene Frequency Reconfigurable Antennas in the Microwave Regime. IEEE Transactions on Antennas and Propagation, 2017, 65, 1558-1569.	3.1	46
511	General Green's function formalism for layered systems: Wave function approach. Physical Review B, 2017, 95, .	1.1	15
512	Signature of curved QFT effects on the optical properties of deformed graphene. Europhysics Letters, 2017, 117, 27003.	0.7	3

	СІТАТ	ion Report	
#	Article	IF	CITATIONS
513	Optical properties of dielectric plates coated with gapped graphene. Physical Review B, 2017, 95, .	1.1	13
514	Spin-polarized transport in graphene nanoribbons with Rashba spin–orbit interaction: the effects of spatial symmetry. Physical Chemistry Chemical Physics, 2017, 19, 6871-6877.	1.3	13
515	The magnetoresistance effect and spin-polarized photocurrent of zigzag graphene-graphyne nanoribbon heterojunctions. Computational Materials Science, 2017, 136, 1-11.	1.4	24
516	Linear and nonlinear magneto-optical absorption coefficients and refractive index changes in graphene. Optical Materials, 2017, 69, 328-332.	1.7	26
517	Electronic heat capacity and magnetic susceptibility of ferromagnetic silicene sheet under strain. Solid State Communications, 2017, 250, 84-91.	0.9	29
518	Effect of magnetic field on electronic transport in a bilayer graphene nanomesh. Nanotechnology, 2017, 28, 235303.	1.3	11
519	Controlling Thermodynamic Properties of Ferromagnetic Group-IV Graphene-Like Nanosheets by Dilute Charged Impurity. Communications in Theoretical Physics, 2017, 67, 569.	1.1	4
520	The influence of anisotropic Rashba spin–orbit coupling on current-induced spin polarization in graphene. Journal of Physics Condensed Matter, 2017, 29, 315502.	0.7	3
521	Surface Plasmonic Lattice Solitons in Semi-Infinite Graphene Sheet Arrays. Journal of Lightwave Technology, 2017, 35, 2960-2965.	2.7	37
522	Nitrogen doping for facile and effective modification of graphene surfaces. RSC Advances, 2017, 7, 28383-28392.	1.7	45
523	Relativistic <i>Zitterbewegung</i> in non-Hermitian photonic waveguide systems. New Journal of Physics, 2017, 19, 013017.	1.2	0
524	The relativistic Black-Scholes model. Europhysics Letters, 2017, 117, 38004.	0.7	1
525	Enhanced Light–Matter Interaction in Graphene/h-BN van der Waals Heterostructures. Journal of Physical Chemistry Letters, 2017, 8, 1464-1471.	2.1	26
526	Frequency dependent optical conductivity of strained graphene at T =0 from an effective quantum field theory. Physica B: Condensed Matter, 2017, 511, 80-82.	1.3	2
527	Superconductivity in two-dimensional disordered Dirac semimetals. Physical Review B, 2017, 95, .	1.1	12
528	Stacking defectâ€induced electronic cloaking of confined states and Fano resonance in zeroâ€energy shifted bilayer graphene. Physica Status Solidi (B): Basic Research, 2017, 254, 1600430.	0.7	3
529	Auger and carrier-surface phonon interaction processes in graphene on a substrate made of polar materials. Superlattices and Microstructures, 2017, 102, 212-220.	1.4	2
530	Two Dimensional Honeycomb Materials: Random Fields, Dissipation and Fluctuations. Brazilian Journal of Physics, 2017, 47, 9-18.	0.7	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
531	Strain-Dependent Edge Structures in MoS ₂ Layers. Nano Letters, 2017, 17, 70)21-7026.	4.5	40
532	Thermal effect in the Casimir force for graphene and graphene-coated substrates: Impact o mass gap and chemical potential. Physical Review B, 2017, 96, .	f nonzero	1.1	20
533	Shot noise in a harmonically driven ballistic graphene transistor. Physical Review B, 2017, 9	5,.	1.1	6
534	Keldysh functional renormalization group for electronic properties of graphene. Physical Re 2017, 95, .	view B,	1.1	3
535	Terahertz Electric Field Driven Electric Currents and Ratchet Effects in Graphene. Annalen D 2017, 529, 1600406.	er Physik,	0.9	22
536	Oxygen impact on the electronic and vibrational properties of black phosphorus probed by synchrotron infrared nanospectroscopy. 2D Materials, 2017, 4, 035028.		2.0	16
537	Rectified photocurrent in a planar ITO/graphene/ITO photodetector on SiC by local irradiati ultraviolet light. Journal Physics D: Applied Physics, 2017, 50, 405102.	on of	1.3	3
538	Quantized Transport, Strain-Induced Perfectly Conducting Modes, and Valley Filtering on Shape-Optimized Graphene Corbino Devices. Nano Letters, 2017, 17, 5304-5313.		4.5	32
539	Optical Properties of Graphene. , 2017, , 38-51.			7
540	Covariant Conservation Laws and the Spin Hall Effect in Dirac-Rashba Systems. Physical Rev Letters, 2017, 119, 246801.	view	2.9	46
541	Quasi-stationary states and fermion pair creation from a vacuum in supercritical Coulomb f Modern Physics Letters A, 2017, 32, 1750200.	ield.	0.5	4
542	Disorder-Induced Dephasing in Backscattering-Free Quantum Transport. Physical Review Le 119, 176802.	tters, 2017,	2.9	16
543	The structural and electronic properties of metal atoms adsorbed on graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 93, 265-270.		1.3	9
544	The influence of strain on the energy band structures of phosphorene nanoribbons. Physics Section A: General, Atomic and Solid State Physics, 2017, 381, 2827-2831.	Letters,	0.9	12
545	Topological state engineering by in-plane electric field in graphene nanoribbon. Physics Let Section A: General, Atomic and Solid State Physics, 2017, 381, 2841-2844.	ers,	0.9	4
546	Antibonding ground state of adatom molecules in bulk Dirac semimetals. Physical Review B	, 2017, 96, .	1.1	6
547	Scalable Graphene Electro-Patterning, Functionalization, and Printing. Journal of Physical Cl C, 2017, 121, 14954-14961.	nemistry	1.5	7
548	Ultra-sensitive graphene based mid-infrared plasmonic bio-chemical sensing using dielectric medium. Carbon, 2017, 122, 404-410.	beads as a	5.4	11

	Сітаті	on Report	
#	Article	IF	CITATIONS
549	Excitonic mass gap in uniaxially strained graphene. Physical Review B, 2017, 95, .	1.1	17
550	The method of uniqueness and the optical conductivity of graphene: New application of a powerful technique for multiloop calculations. Theoretical and Mathematical Physics(Russian Federation), 2017, 190, 446-457.	0.3	20
551	Effects of random potentials in three-dimensional quantum electrodynamics. Physical Review B, 2017, 95, .	1.1	9
552	Carbon Photodetectors: The Versatility of Carbon Allotropes. Advanced Energy Materials, 2017, 7, 1601574.	10.2	44
553	The Dilute Charged Impurity Effects on Electronic Heat Capacity and Magnetic Susceptibility of Ferromagnetic Silicene Sheet. Journal of Superconductivity and Novel Magnetism, 2017, 30, 681-689.	0.8	1
554	The effects of strain on DC transverse and spin-valley Hall conductivity of ferromagnetic MoS2 and silicene. Journal of Magnetism and Magnetic Materials, 2017, 426, 621-628.	1.0	28
555	Carrier Transport in Armchair and Zigzag Graphene Nanoribbons. Journal of Electronic Materials, 2017, 46, 573-578.	1.0	6
556	Conductivity of graphene in the framework of Dirac model: Interplay between nonzero mass gap and chemical potential. Physical Review B, 2017, 96, .	1.1	21
557	Investigation on the extended range of absorbing film for a microcavity enhanced graphene photodetector. Europhysics Letters, 2017, 119, 24003.	0.7	4
558	Crystalline Soda Can Metamaterial exhibiting Graphene-like Dispersion at subwavelength scale. Scientific Reports, 2017, 7, 15359.	1.6	19
559	Asymmetric plasmonic supermodes in nonlinear graphene multilayers. Optics Express, 2017, 25, 1234.	1.7	10
560	Surface vector plasmonic lattice solitons in semi-infinite graphene-pair arrays. Optics Express, 2017, 25, 20708.	1.7	4
561	Graphene-Based Materials for Biosensors: A Review. Sensors, 2017, 17, 2161.	2.1	351
562	A Guide to and Review of the Use of Multiwavelength Raman Spectroscopy for Characterizing Defective Aromatic Carbon Solids: from Graphene to Amorphous Carbons. Coatings, 2017, 7, 153.	1.2	272
564	Topological interface modes in graphene multilayer arrays. Optics and Laser Technology, 2018, 103, 272-278.	2.2	31
565	Symmetry and optical selection rules in graphene quantum dots. Physical Review B, 2018, 97, .	1.1	9
566	Topological phase transitions and quantum Hall effect in the graphene family. Physical Review B, 2018, 97, .	1.1	17
567	Kramers-Kronig relations and causality conditions for graphene in the framework of the Dirac model. Physical Review D, 2018, 97, .	1.6	14

		CITATION REPORT		
#	Article		IF	CITATIONS
568	Giant Auxetic Behaviour in Engineered Graphene. Annalen Der Physik, 2018, 530, 170)330.	0.9	24
569	Quantum Hall effect in graphene with interface-induced spin-orbit coupling. Physical R 97, .	eview B, 2018,	1.1	20
570	Linear and nonlinear magneto-optical properties of monolayer MoS2. Journal of Applie 123, .	d Physics, 2018,	1.1	29
571	Reduced Thermal Transport in the Graphene/MoS ₂ /Graphene Heterostruc Comparison with Freestanding Monolayers. Langmuir, 2018, 34, 3326-3335.	tture: A	1.6	25
572	Scattering of graphene plasmons at abrupt interfaces: An analytic and numeric study. B, 2018, 97, .	Physical Review	1.1	18
573	Airy beams on two dimensional materials. Optics Communications, 2018, 414, 40-44.		1.0	7
574	Optical Absorption in Periodic Graphene Superlattices: Perpendicular Applied Magneti Temperature Effects. Annalen Der Physik, 2018, 530, 1700414.	: Field and	0.9	8
575	Experimental investigation of the influence of temperature on the reinforcing effect of oxide nano-platelet on nanocomposite adhesively bonded joints. Theoretical and Appli Mechanics, 2018, 94, 95-100.	graphene ed Fracture	2.1	31
576	Temperature effect of the bound magnetopolaron on the bandgap in monolayer graph Superlattices and Microstructures, 2018, 123, 30-36.	iene.	1.4	7
577	Lorentz Violation and Topologically Trapped Fermions in 2+1 Dimensions. Annalen De 1700405.	[.] Physik, 2018, 530,	0.9	2
578	Relativistic quantum chaos—An emergent interdisciplinary field. Chaos, 2018, 28, 05	2101.	1.0	25
579	Enhancement and modulation of photonic spin Hall effect by defect modes in photoni graphene. Carbon, 2018, 134, 293-300.	c crystals with	5.4	50
580	Barrier tunneling of the loop-nodal semimetal in the hyperhoneycomb lattice. Journal o Condensed Matter, 2018, 30, 185402.	of Physics	0.7	3
581	Low-field magnetotransport in graphene cavity devices. Nanotechnology, 2018, 29, 20	05707.	1.3	1
582	A critical review on the carrier dynamics in 2D layered materials investigated using TH2 Optics Communications, 2018, 406, 24-35.	spectroscopy.	1.0	22
583	Active Plasmonics: Principles, Structures, and Applications. Chemical Reviews, 2018, 1	18, 3054-3099.	23.0	483
584	Design of high-activity single-atom catalysts via n-p codoping. Applied Surface Science	, 2018, 433, 60-65.	3.1	10
585	Valley-polarized pumping current in zigzag graphene nanoribbons with different spatia Chinese Physics B, 2018, 27, 127203.	l symmetries.	0.7	2

#	Article	IF	CITATIONS
586	Field theoretic renormalization study of interaction corrections to the universal ac conductivity of graphene. Journal of High Energy Physics, 2018, 2018, 1.	1.6	13
587	Basic Properties and Band Structure. , 2018, , 1-26.		0
588	Electronic Properties. , 2018, , 27-65.		0
589	Effects of Dirac cone tilt in a two-dimensional Dirac semimetal. Physical Review B, 2018, 98, .	1.1	20
590	Nonlinear optical response of doped monolayer and bilayer graphene: Length gauge tight-binding model. Physical Review B, 2018, 98, .	1.1	18
591	Optical conductivity and transparency in an effective model for graphene. Physical Review B, 2018, 98, .	1.1	7
592	Measuring Dirac Cones in a Subwavelength Metamaterial. Physical Review Letters, 2018, 121, 267601.	2.9	11
593	Electronic properties of graphene with point defects. Low Temperature Physics, 2018, 44, 1112-1138.	0.2	14
594	Anisotropic conductivity in 2D massive Dirac Fermions: an effect of time reversal symmetry breaking in the surface states of a topological insulator. Journal of Physics Condensed Matter, 2018, 30, 445302.	0.7	1
595	Functionalizing Two-Dimensional Materials for Energy Applications. , 2018, , 1-37.		0
596	Transport properties and thermoelectric effects in gated silicene superlattices. Journal of Applied Physics, 2018, 124, .	1.1	12
597	Anomalous Hall Effect in 2D Dirac Materials. Physical Review Letters, 2018, 121, 126802.	2.9	33
598	The Optical Properties of Thin Film Reduced Graphene Oxide/Poly (3,4 Ethylenedioxtriophene):Poly (Styrene Sulfonate)(PEDOT:PSS) Fabricated by Spin Coating. Journal of Physics: Conference Series, 2018, 1011, 012007.	0.3	12
599	Relativistic quantum chaos. Physics Reports, 2018, 753, 1-128.	10.3	38
600	Impact of chemical potential on the reflectance of graphene in the infrared and microwave domains. Physical Review A, 2018, 98, .	1.0	15
601	Collective resonances near zero energy induced by a point defect in bilayer graphene. Scientific Reports, 2018, 8, 10938.	1.6	1
602	Magnetotransport of Monolayer Graphene with Inert Gas Adsorption in the Quantum Hall Regime. Journal of Physics: Conference Series, 2018, 969, 012130.	0.3	1
603	Reducing sheet resistance of self-assembled transparent graphene films by defect patching and doping with UV/ozone treatment. Applied Surface Science, 2018, 458, 446-453.	3.1	25

ARTICLE IF CITATIONS # Absorption-free superluminal light propagation in a Landau-quantized graphene. AIP Advances, 2018, 8, 604 0.6 9 075023. Temperature-dependent thermal expansion of graphene. Physica A: Statistical Mechanics and Its 1.2 Applications, 2018, 512, 981-985. Surface plasmons in a semi-bounded massless Dirac plasma. Physics Letters, Section A: General, Atomic 607 0.9 16 and Solid State Physics, 2018, 382, 2133-2136. Sticking of atomic hydrogen on graphene. Journal of Physics Condensed Matter, 2018, 30, 283002. 608 Maximum reflectance and transmittance of films coated with gapped graphene in the context of the 609 1.0 4 Dirac model. Physical Review A, 2018, 97, . Probing the electric double-layer capacitance in a Keggin-type polyoxometalate ionic liquid gated graphene transistor. Physical Chemistry Chemical Physics, 2018, 20, 18474-18483. 1.3 Spectroscopic and morphological study of graphene nanoplatelets thin films on Si/SiO₂ 611 0.8 6 substrates. Materials Research Express, 2019, 6, 106432. Interplay between in-plane and flexural phonons in electronic transport of two-dimensional 1.1 semiconductors. Physical Review B, 2019, 100, . Nonlinear optical response of the $l \pm a^{-1}T3$ model due to the nontrivial topology of the band dispersion. 613 1.1 24 Physical Review B, 2019, 100, . Relativistic Poisson-Kac processes and equilibrium $J\tilde{A}^{1}/4$ ttner distribution. Europhysics Letters, 2019, 126, 614 50001. Experimental near infrared absorption enhancement of graphene layers in an optical resonant cavity. 615 21 1.3 Nanotechnology, 2019, 30, 445201. On elastic scattering amplitude of planar charged fermions in a constant magnetic field. 0.5 International Journal of Modern Physics A, 2019, 34, 1950189. Valley and Zeeman Splittings in Multilayer Epitaxial Graphene Revealed by Circular Polarization 619 4.5 6 Resolved Magneto-infrared Spectroscopy. Nano Letters, 2019, 19, 7043-7049. Phase diagram of a two-dimensional dirty tilted Dirac semimetal. Physical Review B, 2019, 100, . 1.1 Manifestations of chaos in relativistic quantum systems - A study based on out-of-time-order 621 3 0.7 correlator. Physics Open, 2019, 1, 100001. Josephson signatures of Weyl node creation and annihilation in irradiated Dirac semimetals. Physical 1.1 Review B, 2019, 100, . Review of Electron-Electron Interaction Effects in Planar Dirac Liquids. Theoretical and Mathematical 623 0.3 4 Physics(Russian Federation), 2019, 200, 1222-1236. Interplay between tilt, disorder, and Coulomb interaction in type-I Dirac fermions. Physical Review B, 624 1.1 2019, 100, .

#	ARTICLE	IF	CITATIONS
625	Negative terahertz conductivity and amplification of surface plasmons in graphene–black phosphorus injection laser heterostructures. Physical Review B, 2019, 100, .	1.1	21
626	Electron dynamics in strained graphene. Modern Physics Letters B, 2019, 33, 1930001.	1.0	16
627	Robust negative differential resistance and abnormal magnetoresistance effects in heteroatom-substituted zigzag Î ³ -graphyne nanoribbon homojunctions. Journal of Materials Chemistry C, 2019, 7, 1359-1369.	2.7	11
628	Experimental demonstration of angular momentum-dependent topological transport using a transmission line network. Nature Communications, 2019, 10, 434.	5.8	14
629	Photomodulated edge states and multiterminal transport in silicenelike nanoribbons. Physical Review B, 2019, 99, .	1.1	10
630	Spin-filtering and tunneling magnetoresistance effects in 6,6,12-graphyne-based molecular magnetic tunnel junctions. Physical Chemistry Chemical Physics, 2019, 21, 2734-2742.	1.3	6
631	Atomic collapse in pseudospin-1 systems. Physical Review B, 2019, 99, .	1.1	9
632	Effect of resonant impurity scattering of carriers on the Drude-peak broadening in uniaxially strained graphene. Physical Review B, 2019, 99, .	1.1	0
633	Darboux transformations for the massless Dirac equation with matrix potential: Radially symmetric zero-energy states. European Physical Journal Plus, 2019, 134, 1.	1.2	3
634	Temperature Effect on the First Excited State Energy and Average Phonon Number of Bound Magnetopolarons in Monolayer Graphene. Journal of Electronic Materials, 2019, 48, 4997-5002.	1.0	1
635	Dissipative properties of relativistic two-dimensional gases. Physica A: Statistical Mechanics and Its Applications, 2019, 530, 121559.	1.2	3
636	States of charged quantum fields and their statistical properties in the presence of critical potential steps. Physical Review A, 2019, 99, .	1.0	3
637	Fate of superconductivity in disordered Dirac and semi-Dirac semimetals. Journal of Physics Communications, 2019, 3, 055006.	0.5	1
638	Iterative approach to arbitrary nonlinear optical response functions of graphene. Physical Review B, 2019, 99, .	1.1	4
639	Graphene Nanomaterials-Based Radio-Frequency/Microwave Biosensors for Biomaterials Detection. Materials, 2019, 12, 952.	1.3	17
640	Antiferromagnetically ordered Mott insulator and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si20.gif" overflow="scroll"><mml:mrow><mml:mi>d</mml:mi><mml:mo>+</mml:mo><mml:mi mathvariant="normal">i<mml:mi>d</mml:mi></mml:mi </mml:mrow> superconductivity in</mml:math 	4.3	109
641	Radiative dynamical mass of planar charged fermion in a constant homogeneous magnetic field. European Physical Journal C, 2019, 79, 1.	1.4	7
642	Phonon-induced giant linear-in- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>T</mml:mi> resistivity in magic angle twisted bilayer graphene: Ordinary strangeness and exotic superconductivity. Physical Review B. 2019, 99.</mml:math 	1.1	140

		LEPORT	
#	Article	IF	CITATIONS
643	Graphene: Free electron scattering within an inverted honeycomb lattice. Physical Review B, 2019, 99, .	1.1	9
644	Influence of Ag nanoparticles on the physical properties of multilayers of graphene. DYNA (Colombia), 2019, 86, 49-53.	0.2	0
646	Singular low-energy states of tilted Dirac semimetals induced by the fermion-fermion interactions. European Physical Journal B, 2019, 92, 1.	0.6	0
647	Mid-IR reflectance spectrum of multilayer graphene: Influence of adsorbate at the graphene – substrate interface. Quantum Electronics, 2019, 49, 1074-1077.	0.3	Ο
648	Structure stability and high Li storage capacity of the unzipped graphene oxide monolayer. Applied Surface Science, 2019, 475, 151-157.	3.1	17
649	Direct Growth of Graphene on Fused Quartz by Atmospheric Pressure Chemical Vapor Deposition with Acetylene. Journal of Physical Chemistry C, 2019, 123, 2370-2377.	1.5	9
650	Quantum interference transport in AuGe alloy thin films. Physica B: Condensed Matter, 2019, 554, 17-20.	1.3	0
651	Thermoelectric transport in graphene and 2D layered materials. Nanoscale and Microscale Thermophysical Engineering, 2019, 23, 117-127.	1.4	21
652	Interplay of resonant states and Landau levels in functionalized graphene. Physical Review B, 2019, 99, .	1.1	5
653	How doping configuration affects electron transport in monolayer zigzag graphene nanoribbon. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 108, 244-248.	1.3	2
654	Enhanced magneto-optical response due to the flat band in nanoribbons made from the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>â^'lattice. Physical Review B, 2019, 99, .</mml:mo></mml:mrow></mml:math 	:mo ı. ₄mml	:msuob> <mml< td=""></mml<>
655	Variable Angle Spectroscopic Ellipsometry investigation of CVD-grown monolayer graphene. Applied Surface Science, 2019, 467-468, 213-220.	3.1	33
656	Thermal transport across graphene step junctions. 2D Materials, 2019, 6, 011005.	2.0	15
657	Optical conductivity in an effective model for graphene: finite temperature corrections. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 015401.	0.7	5
658	Thermal Dissipation in Two Dimensional Relativistic Fermi Gases with a Relaxation Time Model. Journal of Statistical Physics, 2020, 178, 936-953.	0.5	2
659	High sensitive gas sensor based on vertical graphene field effect transistor. Nanotechnology, 2020, 31, 165503.	1.3	16
660	Carbon Nanomaterials for Halide Perovskitesâ€Based Hybrid Photodetectors. Advanced Materials Technologies, 2020, 5, 2000643.	3.0	9
661	Systematic Enumeration of Lowâ€Energy Graphyne Allotropes Based on a Coordinationâ€Constrained Searching Strategy. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000437.	1.2	17

#	ARTICLE	IF	Citations
662	Magnetic field effects on the thermoelectric properties of monolayer graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 124, 114361.	1.3	3
663	Radiation Problems Accompanying Carrier Production by an Electric Field in the Graphene. Universe, 2020, 6, 205.	0.9	3
664	On the creation of charged massless fermion pair by a photon in an external constant uniform magnetic field in 2+1 dimensions. International Journal of Modern Physics A, 2020, 35, 2050204.	0.5	2
665	Two-Dimensional Dirac Semimetals without Inversion Symmetry. Physical Review Letters, 2020, 125, 116402.	2.9	19
666	Flexural modes of graphene resonators derived from the reactive empirical bond-order potential. Physical Review B, 2020, 101, .	1.1	3
667	<i>Colloquium</i> : Spintronics in graphene and other two-dimensional materials. Reviews of Modern Physics, 2020, 92, .	16.4	265
668	Electron–phonon and electron–electron interaction effects in twisted bilayer graphene. Annals of Physics, 2020, 417, 168193.	1.0	14
669	The electronic structure of ideal graphene. , 2020, , 1-23.		0
672	Electron states in a magnetic field. , 2020, , 24-62.		1
673	Quantum transport via evanescent waves. , 2020, , 63-76.		0
674	The Klein paradox and chiral tunneling. , 2020, , 77-107.		0
675	Edges, nanoribbons, and quantum dots. , 2020, , 108-140.		0
676	Point defects. , 2020, , 141-167.		0
677	Optics and response functions. , 2020, , 168-192.		0
678	The Coulomb problem. , 2020, , 193-212.		0
679	Crystal lattice dynamics, structure, and thermodynamics. , 2020, , 213-256.		0
680	Gauge fields and strain engineering. , 2020, , 257-278.		0
681	Scattering mechanisms and transport properties. , 2020, , 279-325.		0

#	Article	IF	CITATIONS
682	Spin effects and magnetism. , 2020, , 326-350.		0
683	Graphene on hexagonal boron nitride. , 2020, , 351-378.		0
684	Twisted bilayer graphene. , 2020, , 379-388.		0
685	Many-body effects in graphene. , 2020, , 389-400.		0
688	Intra- and inter-band magneto-optical absorption in monolayer WS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e213" altimg="si5.svg"><mml:msub><mml:mrow /><mml:mrow><mml:mn></mml:mn></mml:mrow></mml:mrow </mml:msub>. Physica E:</mml:math 	1.3	4
689	Low-Dimensional Systems and Nanostructures, 2020, 124, 114315. Optical Absorption and Tsallis Entropy of Polaron in Monolayer Graphene. Journal of Low Temperature Physics, 2020, 200, 173-186.	0.6	5
690	Orthogonality Catastrophe as a Consequence of the Quantum Speed Limit. Physical Review Letters, 2020, 124, 110601.	2.9	59
691	Graphite thermal expansion coefficient measured by in-situ x-ray diffraction. Nanotechnology, 2020, 31, 285709.	1.3	4
692	Ground state superconducting pair correlations in twisted bilayer graphene. Modern Physics Letters B, 2020, 34, 2050016.	1.0	6
693	Vertex correction and conductivity in 2D Dirac-like systems with non-conserving spin disorder. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126428.	0.9	1
694	Tunable strong photo-mixing in Weyl semimetals. Physical Review B, 2020, 101, .	1.1	7
695	Phonon scattering induced carrier resistivity in twisted double-bilayer graphene. Physical Review B, 2020, 101, .	1.1	19
696	Intermediate phase in interacting Dirac fermions with staggered potential. Physical Review B, 2020, 101,	1.1	6
697	Effect of Fluorine Patterns on Electronic Transport in Fluorinated Graphene. Advanced Theory and Simulations, 2020, 3, 1900199.	1.3	13
698	Switchable crossed spin conductance in a graphene-based junction: The role of spin-orbit coupling. Scientific Reports, 2020, 10, 2009.	1.6	2
699	Transport in Bilayer Graphene near Charge Neutrality: Which Scattering Mechanisms Are Important?. Physical Review Letters, 2020, 124, 026601.	2.9	14
700	Adiabatic and non-adiabatic quantum charge and spin pumping in zigzag and armchair graphene nanoribbons. Journal of Applied Physics, 2020, 127, 164303.	1.1	4
701	Spectrum-Wide Quantum Criticality at the Surface of Class AIII Topological Phases: An "Energy Stack― of Integer Quantum Hall Plateau Transitions. Physical Review X, 2020, 10, .	2.8	11

#	Article	IF	CITATIONS
702	Entropy and specific heat of graphene at low and high temperatures under an external magnetic field. Solid State Communications, 2020, 313, 113911.	0.9	9
703	Phonon dispersions and electronic structures of two-dimensional IV-V compounds. Carbon, 2021, 172, 345-352.	5.4	9
704	Significant improvement of infrared graphene nanoribbon phototransistor performance: A quantum simulation study. Sensors and Actuators A: Physical, 2021, 317, 112446.	2.0	8
705	Mechanical modulation of spontaneous emission of nearby nanostructured black phosphorus. Optics Express, 2021, 29, 1037.	1.7	4
706	Synthesis of Diamond-like Carbon as a Dielectric Platform for Graphene Field Effect Transistors. ACS Applied Nano Materials, 2021, 4, 1385-1393.	2.4	7
707	Hot carriers in graphene – fundamentals and applications. Nanoscale, 2021, 13, 8376-8411.	2.8	75
708	Broadband Frequency and Spatial On-Demand Tailoring of Topological Wave Propagation Harnessing Piezoelectric Metamaterials. Frontiers in Materials, 2021, 7, .	1.2	12
709	Electronic transport in bilayer graphene. , 2021, , 51-84.		0
710	Multiple crossings of Landau levels of two-dimensional fermions in double HgTe quantum wells. Physical Review B, 2021, 103, .	1.1	3
711	Universal mobility characteristics of graphene originating from charge scattering by ionised impurities. Communications Physics, 2021, 4, .	2.0	65
712	A dual-gate field-effect transistor in graphene heterojunctions. Superlattices and Microstructures, 2021, 150, 106778.	1.4	4
713	Strong localization in suspended monolayer graphene by intervalley scattering. Physical Review B, 2021, 103, .	1.1	1
714	Quantum spin Hall phase transition in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>α</mml:mi><mml:mtext>â^'lattice. Physical Review B, 2021, 103, .</mml:mtext></mml:mrow></mml:math 	nl:mutext><	mmal:msub><
715	Improving the thermoelectric properties of graphene through zigzag graphene–graphyne nanoribbon heterostructures. European Physical Journal B, 2021, 94, 1.	0.6	3
716	Signatures of optical conductivity in double-layer graphene excitonic condensate. Physical Review B, 2021, 103, .	1.1	1
717	Thermophysical and optical properties of NiCo2O4@ZrO2: A potential composite for thermochemical processes. International Journal of Hydrogen Energy, 2021, 46, 10632-10641.	3.8	3
718	Optical absorption in bilayer graphene superlattices. Journal of Computational Electronics, 2021, 20, 1248-1259.	1.3	1
719	Free-electron nanolaser based on graphene plasmons. Laser Physics, 2021, 31, 055801.	0.6	2

CITATION REPORT IF CITATIONS Dominant superconducting pairing symmetry in doped staggered-flux Hubbard model on a square 0.8 0 lattice. International Journal of Modern Physics C, 0, , 2150089. Linear scaling quantum transport methodologies. Physics Reports, 2021, 903, 1-69. Synthesis of Waferâ€Scale Graphene with Chemical Vapor Deposition for Electronic Device Applications. 3.0 46 Advanced Materials Technologies, 2021, 6, 2000744. An experimental viscosity investigation on the use of <scp>nonâ€Newtonian</scp> graphene heat transfer nanofluids at belowâ€ambient temperatures. International Journal of Energy Research, 2021, 45, Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges – A 3.3 133 review. Journal of Environmental Chemical Engineering, 2021, 9, 105028. Nonlinear dynamics of topological Dirac fermions in 2D spin-orbit coupled materials. Scientific Reports, 2021, 11, 9734. 1.6 Magnetically confined electrons and the Nambuâ€"Jona-Lasinio model. European Physical Journal Plus, 1.2 5 Dominant role of two-photon vertex in nonlinear response in two-dimensional Dirac systems. Npj 2D Materials and Applications, 2021, 5, . Magnetic-Field-Driven Electron Dynamics in Graphene. Journal of Physical Chemistry Letters, 2021, 12, 2.1 1

729	Current Transfer Torque and Hall conductance at the ferromagnetic topological insulators junction. Journal of Physics Condensed Matter, 2021, 33, .	0.7	1
730	Chemical sensing with graphene: A quantum field theory perspective. Physical Review B, 2021, 103, .	1.1	1
731	The sensitive tunability of superconducting critical temperature in high-buckled plumbene by shifting Fermi level. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 130, 114688.	1.3	3
732	Optical-Thermally Excited Graphene Resonant Mass Detection: A Molecular Dynamics Analysis. Nanomaterials, 2021, 11, 1924.	1.9	2
733	Optical conductivity of a Dirac-Fermi liquid. Physical Review B, 2021, 104, .	1.1	13
734	Valley-dependent electronic transport in quantum Hall systems of α-T3 model. Journal of Physics: Conference Series, 2021, 1978, 012011.	0.3	0
735	Honeycomb structures in magnetic fields. Journal of Physics A: Mathematical and Theoretical, 2021, 54, 345203.	0.7	0
736	Density of states analysis of electrostatic confinement in gapped graphene. Solid State Communications, 2021, 333, 114335.	0.9	4
737	Integer quantum Hall effect in AAA-stacked trilayer graphene. Physica B: Condensed Matter, 2021, 613, 413022.	1.3	2

ARTICLE

14530-14546.

2021, 136, 1.

4749-4754.

#

720

722

724

726

727

#	Article	IF	CITATIONS
738	Chiral phonons in the honeycomb sublattice of layered CoSn-like compounds. Physical Review B, 2021, 104, .	1.1	17
739	Experimental and theoretical investigation of the thermal effect in the Casimir interaction from graphene. Physical Review B, 2021, 104, .	1.1	24
740	Hydrodynamical Model for Charge Transport in Graphene Nanoribbons. Journal of Statistical Physics, 2021, 184, 1.	0.5	2
741	Enhanced Andreev reflection in Kekulé-Y patterned graphene. Physical Review B, 2021, 104, .	1.1	10
742	Strong magnetoresistance in a graphene Corbino disk at low magnetic fields. Physical Review B, 2021, 104, .	1.1	13
743	In-situ lattice structure analysis in sp2 hybridization of stable carbon isotopes: Precision modelling of temperature. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114828.	1.3	0
744	SnSe2 monolayer is a promising Na host material: A DFT study. Materials Science in Semiconductor Processing, 2021, 136, 106175.	1.9	14
745	Raman Spectroscopy Characterization of Carbon Materials: From Graphene to All-carbon Heterostructures. , 2021, , 317-346.		2
746	Negative-curvature spacetime solutions for graphene. Journal of Physics Condensed Matter, 2021, 33, 135501.	0.7	20
748	Non-volatile Memory of New Generation and Ultrafast IR Modulators Based on Graphene on Ferroelectric Substrate. Engineering Materials, 2014, , 163-177.	0.3	3
749	Functionalizing Two-Dimensional Materials for Energy Applications. , 2020, , 567-603.		2
750	The Effect of Atomic-Scale Defects on Graphene Electronic Structure. Carbon Nanostructures, 2012, , 137-145.	0.1	1
751	Nonlinear effects in topological materials. Frontiers of Optoelectronics, 2021, 14, 99-109.	1.9	4
754	Analytic approach to magneto-strain tuning of electronic transport through a graphene nanobubble: perspectives for a strain sensor. Journal of Physics Condensed Matter, 2017, 29, 445302.	0.7	18
755	Scars in Dirac fermion systems: the influence of an Aharonov–Bohm flux. New Journal of Physics, 2017, 19, 013018.	1.2	9
756	Effect of temperature on the first excited state splitting energy of the impurity magneto acoustic polaron in monolayer graphene. Physica Scripta, 2020, 95, 115807.	1.2	2
757	Confocal laser scanning microscopy as a real-time quality-assessment tool for industrial graphene synthesis. 2D Materials, 2020, 7, 045014.	2.0	4
758	Robustness of persistent currents in two-dimensional Dirac systems with disorder. Physical Review B, 2017, 96, .	1.1	9

#	Article	IF	CITATIONS
759	DC conductivity of twisted bilayer graphene: Angle-dependent transport properties and effects of disorder. Physical Review Materials, 2018, 2, .	0.9	34
760	Quantization of massive Dirac billiards and unification of nonrelativistic and relativistic chiral quantum scars. Physical Review Research, 2019, 1, .	1.3	13
761	Transport across twist angle domains in moir $ ilde{A}$ © graphene. Physical Review Research, 2020, 2, .	1.3	30
762	New method of second quantization of the strained-graphene Kerr and Faraday rotations. Optics Express, 2019, 27, 28350.	1.7	3
763	Graphene-assisted resonant transmission and enhanced Goos–Hächen shift in a frustrated total internal reflection configuration. Optics Letters, 2016, 41, 4468.	1.7	32
764	Non-volatile memory and IR radiation modulators based upon graphene-on-ferroelectric substrate. A review. Ukrainian Journal of Physical Optics, 2012, 13, S5.	9.7	12
766	Use of Graphene and Cucurbit[7]uril Electrodes for the Determination of Amantadine in Biological Fluids. American Journal of Analytical Chemistry, 2015, 06, 623-630.	0.3	3
767	Impact of nitrogen doping on the linear and nonlinear terahertz response of graphene. Physical Review B, 2021, 104, .	1.1	3
768	Towards a Graphene-Based Quantum Interference Device. Carbon Nanostructures, 2012, , 57-60.	0.1	0
769	Electronic Transport in Graphene. , 2012, , 59-94.		0
769 771	Electronic Transport in Graphene. , 2012, , 59-94. Relativistic Black-Scholes Model. SSRN Electronic Journal, 0, , .	0.4	0
769 771 772	Electronic Transport in Graphene. , 2012, , 59-94. Relativistic Black-Scholes Model. SSRN Electronic Journal, 0, , . Efecto del meltodo de silntesis en la morfologila del TiO2/Grafeno. QuÂmica Hoy Chemistry Sciences \$b, 2013, 3, 5.	0.4	0 0 0
769 771 772 773	Electronic Transport in Graphene., 2012, , 59-94. Relativistic Black-Scholes Model. SSRN Electronic Journal, 0, , . Efecto del meltodo de silntesis en la morfologila del TiO2/Grafeno. QuÃmica Hoy Chemistry Sciences \$b, 2013, 3, 5. Study on the Synthesis of Graphene Nanowall by Controlling Electric Field in a Radio Frequency Plasma CVD Process. Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 2014, 28, 45-51.	0.4 0.1 0.0	0 0 0
769 771 772 773 774	Electronic Transport in Graphene., 2012,, 59-94. Relativistic Black-Scholes Model. SSRN Electronic Journal, 0, , . Efecto del meltodo de silntesis en la morfologila del TiO2/Grafeno. QuAmica Hoy Chemistry Sciences \$b, 2013, 3, 5. Study on the Synthesis of Graphene Nanowall by Controlling Electric Field in a Radio Frequency Plasma CVD Process. Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 2014, 28, 45-51. Spin Transport in Carbon Nanotubes and Graphene: Experiments and Theory., 2015, 1-21.	0.4 0.1 0.0	0 0 0 0
769 771 772 773 774 776	Electronic Transport in Graphene. , 2012, , 59-94. Relativistic Black-Scholes Model. SSRN Electronic Journal, 0, , . Efecto del meltodo de silintesis en la morfologilia del TiO2/Grafeno. QuÃmica Hoy Chemistry Sciences \$b, 2013, 3, 5. Study on the Synthesis of Graphene Nanowall by Controlling Electric Field in a Radio Frequency Plasma CVD Process. Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 2014, 28, 45-51. Spin Transport in Carbon Nanotubes and Graphene: Experiments and Theory. , 2015, 1-21. Graphene Conductance in the Presence of Resonant Impurities. Acta Physica Polonica A, 2015, 128, 163-166.	0.4 0.1 0.0 0.2	0 0 0 0 0
769 771 772 773 774 776	Electronic Transport in Graphene., 2012, , 59-94. Relativistic Black-Scholes Model. SSRN Electronic Journal, 0, , . Efecto del meltodo de silntesis en la morfologila del TiO2/Grafeno. QuÀmica Hoy Chemistry Sciences \$b, 2013, 3, 5. Study on the Synthesis of Graphene Nanowall by Controlling Electric Field in a Radio Frequency Plasma CVD Process. Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 2014, 28, 45-51. Spin Transport in Carbon Nanotubes and Graphene: Experiments and Theory., 2015, 1-21. Graphene Conductance in the Presence of Resonant Impurities. Acta Physica Polonica A, 2015, 128, 163-166. Nanoelectronics Â*bottom – upÂ*: the role of electrostatics and contacts. ScienceRise, 2015, 12, 51.	0.4 0.1 0.0 0.2 0.1	0 0 0 0 2 0
 769 771 772 773 774 776 777 778 	Electronic Transport in Craphene., 2012,, 59-94. Relativistic Black-Scholes Model. SSRN Electronic Journal, 0, , . Efecto del meltodo de silntesis en la morfologila del TiO2/Crafeno. QuÀmica Hoy Chemistry Sciences \$b, 2013, 3, 5. Study on the Synthesis of Graphene Nanowall by Controlling Electric Field in a Radio Frequency Plasma CVD Process. Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 2014, 28, 45-51. Spin Transport in Carbon Nanotubes and Graphene: Experiments and Theory., 2015, 1-21. Graphene Conductance in the Presence of Resonant Impurities. Acta Physica Polonica A, 2015, 128, 163-166. Nanoelectronics Âxbottom âC ^{er} upÂx: the role of electrostatics and contacts. ScienceRise, 2015, 12, 51. First-principles study on the structure stability and doping performance of double layer h-BN/Graphene. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 136101.	0.4 0.1 0.0 0.2 0.1	 0 0 0 0 0 2 0 1

#	Article	IF	CITATIONS
780	Josephson Effect in Graphene and 3D Topological Insulators. Springer Series in Materials Science, 2019, , 529-553.	0.4	1
783	Circularly Polarized Light on Graphene with Trigonal Warping. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2020, 9, 697-702.	0.1	0
784	Signature of pseudodiffusive transport in mesoscopic topological insulators. Physical Review Research, 2020, 2, .	1.3	3
785	Electronic and Optical Properties ofÂGraphene. Springer Theses, 2020, , 51-70.	0.0	1
786	Quantum Nonlocal Effects Probed byÂUltraconfined Graphene Plasmons. Springer Theses, 2020, , 139-155.	0.0	0
787	Environmental Sensitivity of Fabry-Perot Microcavities Induced by Layered Graphene-Dielectric Hybrid Coatings. Physical Review Applied, 2021, 16, .	1.5	Ο
789	Interplay of Intra- and Interband Absorption in a Disordered Graphene *. , 2020, , 125-143.		0
790	Fluence and wavelength dependent ultrafast differential transmission dynamics in graphene. Materials Research Express, 2020, 7, 095601.	0.8	7
791	Graphene resistivity in diffusive limit due to scalar and vector potential electron-phonon scattering. Physica Scripta, 2020, 95, 105703.	1.2	1
792	Heteroatom-doped Clar's goblet: Tunable magnetic order and programmable spin logic gate. Applied Physics Letters, 2021, 119, 192408.	1.5	2
793	Ultrafast dynamics of helical Dirac fermions in the topological insulators. Advances in Physics: X, 2022, 7, .	1.5	2
794	Thickness and Layer Stacking Order Effects on Complex Optical Conductivity and Exciton Strength of Few-Layer Graphene: Implications for Optical Modulators and Photodetectors. ACS Applied Nano Materials, 2022, 5, 1864-1872.	2.4	7
795	Quantum Transport of Edge States in Zigzag Graphene NanoRibbon in the Presence of an Abrupt Structure Change due to Missing Atoms. , 2020, , .		0
796	Moiré graphene nanoribbons: nearly perfect absorptions and highly efficient reflections with wide angles. Optics Express, 2022, 30, 2219.	1.7	7
797	Universal features of point defect spectrum in graphene. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 430, 127971.	0.9	1
798	Electronic Properties of Single-Layer and Bilayer Graphene Nanoribbons: An Intensive Comparison. SSRN Electronic Journal, 0, , .	0.4	0
799	Wet-Chemical Noncovalent Functionalization of CVD Graphene: Molecular Doping and Its Effect on Electrolyte-Gated Graphene Field-Effect Transistor Characteristics. Journal of Physical Chemistry C, 2022, 126, 4522-4533.	1.5	9
800	Notable effect of magnetic order on the phonon transport in semi-hydrogenated graphene. Applied Physics Letters, 2022, 120, .	1.5	8

#	Article	IF	CITATIONS
801	The Casimir effect in graphene systems: Experiment and theory. International Journal of Modern Physics A, 2022, 37, .	0.5	3
802	Facile one pot green synthesis of –NH2 surface functionalized graphene-polymer nanocomposite: Subsequent utilization as stabilizer in pickering emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128594.	2.3	5
803	High-quality multi-band absorber in a hybrid all-dielectric system using the surface plasmon polaritons. Optics and Laser Technology, 2022, 151, 108066.	2.2	13
804	Quad-Band Graphene Antenna for 60â \in 120 GHz Indoor Communication System. , 2021, , .		1
805	Radiative effects in two-dimensional models of quantum electrodynamics in a constant magnetic field. Physical Review D, 2021, 104, .	1.6	2
806	Effect of GNPs on the Piezoresistive, Electrical and Mechanical Properties of PHA and PLA Films. Fibers, 2021, 9, 86.	1.8	7
807	Anomalies at the Dirac Point in Graphene and Its Hole-Doped Compositions. Physical Review Letters, 2022, 128, 166401.	2.9	3
809	van der Waals forces enhanced light–graphene interaction in optical microfiber polarizer. AIP Advances, 2022, 12, 045027.	0.6	1
810	First principles study of SnX ₂ (XÂ=ÂS, Se) and Janus SnSSe monolayer for thermoelectric applications. Nanotechnology, 2022, 33, 325402.	1.3	10
811	Pairing in the Hubbard model on the honeycomb lattice with hopping up to the third-nearest-neighbor. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 442, 128175.	0.9	1
812	Large suppression of spin-relaxation rate in graphene nanoribbons in the presence of magnetic impurities. Physical Review B, 2022, 105, .	1.1	1
813	Quantum theory of synchrotron radiation in (<mml:math) 0.784314="" 1="" 10="" 312="" 50="" etqq1="" overlock="" rgbt="" td="" td<="" tf="" tj=""><td>(xmlns:mr 1.6</td><td>nl="http://ww 1</td></mml:math)>	(xmlns:mr 1.6	nl="http://ww 1
814	Emergent space-time supersymmetry at disordered quantum critical points. Physical Review B, 2022, 105,	1.1	4
815	Influence of MWCNTs on strength properties of high viscous epoxy adhesive and fracture behavior of adhesively bonded joints. Theoretical and Applied Fracture Mechanics, 2022, 120, 103412.	2.1	11
816	Dynamical noncommutative graphene. International Journal of Modern Physics A, 2022, 37, .	0.5	4
817	Effect of functionalised and non-functionalised GNPs addition on strength properties of high viscous epoxy adhesive and lap shear joints. Polymer Testing, 2022, 113, 107680.	2.3	19
818	Bipolar Hydrodynamical Model for Charge Transport in Graphene Nanoribbons. Journal of Computational and Theoretical Transport, 2022, 51, 80-100.	0.3	1
819	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Ïf</mml:mi><mml:mi>h</mml:mi> symmetry and electron-phonon interaction in two-dimensional crystalline systems. Physical Review B, 2022, 106, .</mml:msub></mml:math 	<td>ub₄> </td>	ub ₄ >

		CITATION REPORT		
#	Article		IF	CITATIONS
820	Cavity-mediated drag in double-layer graphene. Journal of Physics Condensed Matter, 20	22, 34, 395602.	0.7	2
821	Functionalization of Quasi-Two-Dimensional Materials: Chemical and Strain-Induced Moc Progress in Physics of Metals, 2022, 23, 147-238.	ifications.	0.5	20
822	Novel transport properties of the $\hat{I}\pm$ -T3 lattice with uniform electric and magnetic fields. S Reports, 2022, 12, .	Scientific	1.6	2
823	Effects of surface potentials on Goos-Hächen and Imbert-Fedorov shifts in Weyl semim Review B, 2022, 106, .	etals. Physical	1.1	4
824	Tunable Optimal Dual Band Metamaterial Absorber for High Sensitivity THz Refractive Inc Nanomaterials, 2022, 12, 2693.	lex Sensing.	1.9	32
826	Electrical resistivity of polycrystalline graphene: effect of grain-boundary-induced strain f Scientific Reports, 2022, 12, .	elds.	1.6	4
827	Characterization and Manipulation of Intervalley Scattering Induced by an Individual Mor Graphene. Physical Review Letters, 2022, 129, .	iovacancy in	2.9	6
828	Electrical and Structural Characterization of Few-Layer Graphene Sheets on Quartz. Mate 15, 5330.	rials, 2022,	1.3	1
829	Various defects in graphene: a review. RSC Advances, 2022, 12, 21520-21547.		1.7	65
830	The magnetic anisotropy and spin filtering effect in ferromagnetic phosphorene. Materia Proceedings, 2022, 67, 931-934.	s Today:	0.9	0
831	Monolayer and bilayer graphene. , 2024, , 602-622.			0
832	Goos–HÃ ¤ chen shift of a light beam tunable by graphene in the resonant optical tunne Journal of Optics (United Kingdom), 2022, 24, 115606.	ling structure.	1.0	3
833	Energy Relaxation and Cooling in Impure Bilayer Graphene at Low Temperatures. Physica (B): Basic Research, 0, , 2200168.	Status Solidi	0.7	0
834	Spin–orbit interaction and laser field radiation frequency effects on optical absorption and thermodynamics properties of doped graphene. European Physical Journal Plus, 2022	coefficient 2, 137, .	1.2	0
835	Massive Dirac electrons in a Kronig–Penney potential: dispersion relation and transmis properties. Indian Journal of Physics, 0, , .	sion	0.9	0
836	Penta-graphene and phagraphene: thermal expansion, linear compressibility, and Poissor Journal of Physics Condensed Matter, 2022, 34, 505301.	's ratio.	0.7	3
837	Phase diagrams and edge-state transitions in graphene with spin-orbit coupling and mag pseudomagnetic fields. Physical Review B, 2022, 106, .	netic and	1.1	7
838	Theoretical and experimental investigation of the metal–insulator transition in disorde graphene. New Journal of Physics, 2022, 24, 113027.	red anti-dot	1.2	1

CITA	TION	DEDODT	
CITA	TION	REPORT	

#	Article	IF	CITATIONS
839	A comparative study of GNPs and MWCNTs additives on dispersion behavior and strength characteristics of the adhesively bonded joints. Journal of Dispersion Science and Technology, 2024, 45, 272-283.	1.3	3
840	Fingerprints of magnetoinduced charge density waves in monolayer graphene beyond half filling. Scientific Reports, 2022, 12, .	1.6	0
841	Coulomb drag between two graphene layers at different temperatures. Physical Review B, 2022, 106, .	1.1	2
842	Effect of GNP and MWCNT Addition on Lap Shear Strength of Adhesively Bonded Joints. , 2022, , .		2
843	Many-body spectral statistics of relativistic quantum billiard systems. Physical Review Research, 2023, 5, .	1.3	0
844	Electronic Properties of Single‣ayer and Bilayer Graphene Nanoribbons. Physica Status Solidi (B): Basic Research, 2023, 260, .	0.7	1
845	Theory of Edge Effects and Conductance for Applications in Graphene-Based Nanoantennas. Applied Sciences (Switzerland), 2023, 13, 2221.	1.3	2
846	Scanning gate microscopy in graphene nanostructures. Physical Review B, 2023, 107, .	1.1	2
847	Photon emission in the graphene under the action of a quasiconstant external electric field. European Physical Journal Plus, 2023, 138, .	1.2	0
848	Strategies to break the trade-off between infrared transparency and conductivity. Progress in Materials Science, 2023, 136, 101112.	16.0	8
849	Quantum confinement in Dirac-like nanostructures. , 2024, , 344-349.		0
850	Multiâ€Dimensional Topological Fermions in Electrides. , 2023, 2, .		4
851	Localised strain and doping of 2D materials. Nanoscale, 2023, 15, 7227-7248.	2.8	3
852	Rashba spin–orbit coupling induced rectified currents in monolayer graphene with exchange field and sublattice potential. Chinese Physics B, 2023, 32, 087103.	0.7	1
853	Observation of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:msup><mml:mi>k</mml:mi><mml:mn>4<!--<br-->-Tails after Expansion of Bose-Einstein Condensates with Impurities. Physical Review Letters, 2023, 130, .</mml:mn></mml:msup></mml:math>	m æla mn>«	:/maml:msup
854	Tunable responsivity in high-performance SiC/graphene UV photodetectors through interfacial quantum states by bias regulation. Applied Physics Letters, 2023, 122, .	1.5	3
855	Long-range electrostatic contribution to electron-phonon couplings and mobilities of two-dimensional and bulk materials. Physical Review B, 2023, 107, .	1.1	6
856	Graphene, transport. , 2024, , 295-309.		0

#	Article	IF	CITATIONS
857	Determination of electron mobility in graphene on Cu2O substrate by numerical simulation with the Monte Carlo method. AIP Conference Proceedings, 2023, , .	0.3	1
865	Gap Opening in Graphene by Substrate-Induced Strain Engineering Coupled with Magnetic Spin- Engineering. Lecture Notes in Electrical Engineering, 2023, , 377-385.	0.3	0
868	Spintronics in 2D graphene-based van der Waals heterostructures. , 2024, , 205-222.		0