Targeting Tim-3 and PD-1 pathways to reverse T cell eximmunity

Journal of Experimental Medicine 207, 2187-2194 DOI: 10.1084/jem.20100643

Citation Report

#	Article	IF	Citations
1	Galectin-9 Increases Tim-3+ Dendritic Cells and CD8+ T Cells and Enhances Antitumor Immunity via Galectin-9-Tim-3 Interactions. Journal of Immunology, 2008, 181, 7660-7669.	0.4	181
2	Protective HIV-specific CD8+ T cells evade Treg cell suppression. Nature Medicine, 2011, 17, 989-995.	15.2	193
3	Cancer immunotherapy comes of age. Nature, 2011, 480, 480-489.	13.7	3,115
4	Emerging Tim-3 functions in antimicrobial and tumor immunity. Trends in Immunology, 2011, 32, 345-349.	2.9	215
5	Potential of immunotherapy for hepatocellular carcinoma. Journal of Hepatology, 2011, 54, 830-834.	1.8	109
6	How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer and Metastasis Reviews, 2011, 30, 71-82.	2.7	72
7	Protective CD8 Memory T Cell Responses to Mouse Melanoma Are Generated in the Absence of CD4 T Cell Help. PLoS ONE, 2011, 6, e26491.	1.1	20
8	Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood, 2011, 117, 4501-4510.	0.6	554
10	Treatment Intensification with Raltegravir in Subjects with Sustained HIV-1 Viraemia Suppression: A Randomized 48-Week Study. Antiviral Therapy, 2012, 17, 355-364.	0.6	108
11	T cell exhaustion. Nature Immunology, 2011, 12, 492-499.	7.0	3,178
12	Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nature Immunology, 2011, 12, 663-671.	7.0	402
13	Are senescence and exhaustion intertwined or unrelated processes that compromise immunity?. Nature Reviews Immunology, 2011, 11, 289-295.	10.6	367
14	Contribution of the immune system to the chemotherapeutic response. Seminars in Immunopathology, 2011, 33, 353-367.	2.8	30
15	Searching for"signal 2â€ı costimulation requirements of γδT cells. Cellular and Molecular Life Sciences, 2011, 68, 2345-2355.	2.4	61
16	T-cell-mediated tumor immune surveillance and expression of B7 co-inhibitory molecules in cancers of the upper gastrointestinal tract. Immunologic Research, 2011, 50, 269-275.	1.3	64
17	Up-regulation of tim-3 expression contributes to development of burn-induced T cell immune suppression in mice. Journal of Huazhong University of Science and Technology [Medical Sciences], 2011, 31, 642-651.	1.0	2
18	Enhanced upper genital tract pathologies by blocking Tim-3 and PD-L1 signaling pathways in mice intravaginally infected with Chlamydia muridarum. BMC Infectious Diseases, 2011, 11, 347.	1.3	24
19	Combination of lentivector immunization and lowâ€dose chemotherapy or PDâ€1/PDâ€L1 blocking primes selfâ€reactive T cells and induces antiâ€tumor immunity. European Journal of Immunology, 2011, 41, 2217-2228.	1.6	69

#	Article	IF	CITATIONS
20	Intratumor OX40 stimulation inhibits IRF1 expression and ILâ€10 production by Treg cells while enhancing CD40L expression by effector memory T cells. European Journal of Immunology, 2011, 41, 3615-3626.	1.6	39
21	Prospects for TIM3-Targeted Antitumor Immunotherapy. Cancer Research, 2011, 71, 6567-6571.	0.4	111
22	The Herpes Simplex Virus 1 Latency-Associated Transcript Promotes Functional Exhaustion of Virus-Specific CD8 ⁺ T Cells in Latently Infected Trigeminal Ganglia: a Novel Immune Evasion Mechanism. Journal of Virology, 2011, 85, 9127-9138.	1,5	66
23	Anti-TIM3 Antibody Promotes T Cell IFN-γ–Mediated Antitumor Immunity and Suppresses Established Tumors. Cancer Research, 2011, 71, 3540-3551.	0.4	489
24	Phosphotyrosine-Dependent Coupling of Tim-3 to T-Cell Receptor Signaling Pathways. Molecular and Cellular Biology, 2011, 31, 3963-3974.	1.1	218
25	Impairment of the Programmed Cell Death-1 Pathway Increases Atherosclerotic Lesion Development and Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1100-1107.	1.1	189
26	The Role of LAT in Increased CD8 ⁺ T Cell Exhaustion in Trigeminal Ganglia of Mice Latently Infected with Herpes Simplex Virus 1. Journal of Virology, 2011, 85, 4184-4197.	1.5	103
27	Impaired Expression of Tim-3 on Th17 and Th1 Cells in Psoriasis. Acta Dermato-Venereologica, 2012, 92, 367-371.	0.6	37
28	Tim-3-Expressing CD4+ and CD8+ T Cells in Human Tuberculosis (TB) Exhibit Polarized Effector Memory Phenotypes and Stronger Anti-TB Effector Functions. PLoS Pathogens, 2012, 8, e1002984.	2.1	85
29	Towards Curative Cancer Immunotherapy: Overcoming Posttherapy Tumor Escape. Clinical and Developmental Immunology, 2012, 2012, 1-12.	3.3	39
30	Retroviral and Lentiviral Vectors for the Induction of Immunological Tolerance. Scientifica, 2012, 2012, 1-14.	0.6	30
31	Metabolic Inhibition of Galectin-1-Binding Carbohydrates Accentuates Antitumor Immunity. Journal of Investigative Dermatology, 2012, 132, 410-420.	0.3	54
32	Detection and Characterization of a Novel Subset of CD8+CD57+ T Cells in Metastatic Melanoma with an Incompletely Differentiated Phenotype. Clinical Cancer Research, 2012, 18, 2465-2477.	3.2	19
33	Virotherapy, gene transfer and immunostimulatory monoclonal antibodies. Oncolmmunology, 2012, 1, 1344-1354.	2.1	8
34	Immunotherapy of hepatocellular carcinoma. OncoImmunology, 2012, 1, 48-55.	2.1	146
35	Cellular Immune Responses to Hepatocellular Carcinoma: Lessons for Immunotherapy. Digestive Diseases, 2012, 30, 483-491.	0.8	36
36	Effects of interferon-α-transduced tumor cell vaccines and blockade of programmed cell death-1 on the growth of established tumors. Cancer Gene Therapy, 2012, 19, 637-643.	2.2	18
37	Antigen-Independent Induction of Tim-3 Expression on Human T Cells by the Common γ-Chain Cytokines IL-2, IL-7, IL-15, and IL-21 Is Associated with Proliferation and Is Dependent on the Phosphoinositide 3-Kinase Pathway. Journal of Immunology, 2012, 188, 3745-3756.	0.4	83

#	Article	IF	CITATIONS
38	Differential Requirement for CD70 and CD80/CD86 in Dendritic Cell-Mediated Activation of Tumor-Tolerized CD8 T Cells. Journal of Immunology, 2012, 189, 1708-1716.	0.4	32
39	Editorial: Tim-3 puts on the brakes. Journal of Leukocyte Biology, 2012, 91, 183-185.	1.5	6
40	CD8+ T Cells Specific for Tumor Antigens Can Be Rendered Dysfunctional by the Tumor Microenvironment through Upregulation of the Inhibitory Receptors BTLA and PD-1. Cancer Research, 2012, 72, 887-896.	0.4	321
41	Positive and Negative Regulation of Cellular Immune Responses in Physiologic Conditions and Diseases. Clinical and Developmental Immunology, 2012, 2012, 1-11.	3.3	78
42	Cell-Intrinsic Abrogation of TGF-Î ² Signaling Delays but Does Not Prevent Dysfunction of Self/Tumor-Specific CD8 T Cells in a Murine Model of Autochthonous Prostate Cancer. Journal of Immunology, 2012, 189, 3936-3946.	0.4	22
43	PD-1 Protects against Inflammation and Myocyte Damage in T Cell-Mediated Myocarditis. Journal of Immunology, 2012, 188, 4876-4884.	0.4	218
44	Inhibitory Receptors on Lymphocytes: Insights from Infections. Journal of Immunology, 2012, 188, 2957-2965.	0.4	145
45	Immunomodulation via Chemotherapy and Targeted Therapy: A New Paradigm in Breast Cancer Therapy?. Breast Care, 2012, 7, 267-272.	0.8	12
46	Chemoembolization in Patients with Hepatocellular Carcinoma. Liver Cancer, 2012, 1, 41-50.	4.2	78
47	PD-1 and its ligand PD-L1 are progressively up-regulated on CD4 and CD8 T-cells in HIV-2 infection irrespective of the presence of viremia. Aids, 2012, 26, 1065-1071.	1.0	20
48	The HIF-1α Hypoxia Response in Tumor-Infiltrating T Lymphocytes Induces Functional CD137 (4-1BB) for Immunotherapy. Cancer Discovery, 2012, 2, 608-623.	7.7	156
49	Expansion of melanoma-specific T cells from lymph nodes of patients in stage III: Implications for adoptive immunotherapy in treating cancer. Surgery, 2012, 152, 557-566.	1.0	8
50	The Stoichiometric Production of IL-2 and IFN-Î ³ mRNA Defines Memory T Cells That Can Self-Renew After Adoptive Transfer in Humans. Science Translational Medicine, 2012, 4, 149ra120.	5.8	51
51	Galectins and their ligands: negative regulators of anti-tumor immunity. Glycoconjugate Journal, 2012, 29, 619-625.	1.4	53
52	Down-regulation of interleukin-2 production by CD4+ T cells expressing TIM-3 through suppression of NFAT dephosphorylation and AP-1 transcription. Immunobiology, 2012, 217, 986-995.	0.8	24
53	Trauma patients' elevated tumor necrosis related apoptosis inducing ligand (TRAIL) contributes to increased T cell apoptosis. Clinical Immunology, 2012, 145, 44-54.	1.4	7
54	Immunotherapy earns its spot in the ranks of cancer therapy. Journal of Experimental Medicine, 2012, 209, 201-209.	4.2	118
55	The secret ally: immunostimulation by anticancer drugs. Nature Reviews Drug Discovery, 2012, 11, 215-233.	21.5	591

#	Article	IF	CITATIONS
56	High transforming growth factor β expression represents an important prognostic parameter for surgically resected non–small cell lung cancer. Human Pathology, 2012, 43, 339-349.	1.1	40
57	The three main stumbling blocks for anticancer T cells. Trends in Immunology, 2012, 33, 364-372.	2.9	127
58	Tim-3, a negative regulator of anti-tumor immunity. Current Opinion in Immunology, 2012, 24, 213-216.	2.4	175
59	Tim-3/galectin-9 signaling pathway mediates T-cell dysfunction and predicts poor prognosis in patients with hepatitis B virus-associated hepatocellular carcinoma. Hepatology, 2012, 56, 1342-1351.	3.6	388
60	Increased bovine Tim-3 and its ligand expressions during bovine leukemia virus infection. Veterinary Research, 2012, 43, 45.	1.1	27
61	Bat3 promotes T cell responses and autoimmunity by repressing Tim-3–mediated cell death and exhaustion. Nature Medicine, 2012, 18, 1394-1400.	15.2	303
63	The Role of Coinhibitory Signaling Pathways in Transplantation and Tolerance. Frontiers in Immunology, 2012, 3, 47.	2.2	55
64	Apoptosis – an Ubiquitous T cell Immunomodulator. Journal of Clinical & Cellular Immunology, 2012, 01, 2.	1.5	13
65	T Cell Immunoglobulin Mucin Domain (TIM)-3 Promoter Activity in a Human Mast Cell Line. Immune Network, 2012, 12, 207.	1.6	10
66	The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, 2012, 12, 252-264.	12.8	10,874
67	The tumor immunosuppressive microenvironment impairs the therapy of anti-HER2/neu antibody. Protein and Cell, 2012, 3, 441-449.	4.8	8
68	Mechanisms of immunosenescence: lessons from models of accelerated immune aging. Annals of the New York Academy of Sciences, 2012, 1247, 69-82.	1.8	58
69	Reversal of functional defects in highly differentiated young and old CD8 T cells by PDL blockade. Immunology, 2012, 135, 355-363.	2.0	40
70	Immune checkpoints in central nervous system autoimmunity. Immunological Reviews, 2012, 248, 122-139.	2.8	90
71	<i>TIM3</i> gene polymorphisms in patients with chronic hepatitis B virus infection: impact on disease susceptibility and hepatocellular carcinoma traits. Tissue Antigens, 2012, 80, 151-157.	1.0	22
72	Immunotherapy for metastatic melanoma. Journal of Cellular Biochemistry, 2012, 113, 725-734.	1.2	14
73	T-cell immunoglobulin- and mucin-domain-containing molecule 3 gene polymorphisms and prognosis of non-small-cell lung cancer. Tumor Biology, 2013, 34, 805-809.	0.8	29
74	Therapeutic Cancer Vaccines. Advances in Cancer Research, 2013, 119, 421-475.	1.9	450

#	Article	IF	CITATIONS
75	Using EAE to better understand principles of immune function and autoimmune pathology. Journal of Autoimmunity, 2013, 45, 31-39.	3.0	212
76	Industry pursues co-stimulatory receptor immunomodulators to treat cancer. Nature Biotechnology, 2013, 31, 181-182.	9.4	5
77	Combined blockade of TIM-3 and TIM-4 augments cancer vaccine efficacy against established melanomas. Cancer Immunology, Immunotherapy, 2013, 62, 629-637.	2.0	46
78	Molecular Pathways: Coexpression of Immune Checkpoint Molecules: Signaling Pathways and Implications for Cancer Immunotherapy. Clinical Cancer Research, 2013, 19, 4917-4924.	3.2	244
79	Dual Blockade of PD-1 and CTLA-4 Combined with Tumor Vaccine Effectively Restores T-Cell Rejection Function in Tumors. Cancer Research, 2013, 73, 3591-3603.	0.4	604
80	A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nature Immunology, 2013, 14, 1212-1218.	7.0	783
81	Restoring Immune Function of Tumor-Specific CD4+ T Cells during Recurrence of Melanoma. Journal of Immunology, 2013, 190, 4899-4909.	0.4	173
82	Rapid Deletion and Inactivation of CTLs upon Recognition of a Number of Target Cells over a Critical Threshold. Journal of Immunology, 2013, 191, 3534-3544.	0.4	15
83	Rational combinations of immunotherapeutics that target discrete pathways. , 2013, 1, 16.		62
84	Immune evasion in acute myeloid leukemia: current concepts and future directions. , 2013, 1, .		85
85	TIM-3 as a novel therapeutic target for eradicating acute myelogenous leukemia stem cells. International Journal of Hematology, 2013, 98, 627-633.	0.7	49
86	Cancer Immunotherapy. Surgical Oncology Clinics of North America, 2013, 22, 765-783.	0.6	27
87	Immune Escape. , 2013, , 149-164.		1
88	Comprehensive Immunomonitoring to Guide the Development of Immunotherapeutic Products for Cancer. , 2013, , 241-258.		1
89	Modulation of Immune System Inhibitory Checkpoints in Colorectal Cancer. Current Colorectal Cancer Reports, 2013, 9, 391-397.	1.0	9
90	PDâ€l targeting in cancer immunotherapy. Cancer, 2013, 119, E1-3.	2.0	24
91	High-Dimensional Analysis of Human CD8+ T Cell Phenotype, Function, and Antigen Specificity. Current Topics in Microbiology and Immunology, 2013, 377, 61-84.	0.7	11
92	<scp>DX</scp> 5 ⁺ <scp>CD</scp> 4 ⁺ <scp>T</scp> cells modulate <scp>CD</scp> 4 ⁺ <scp>T</scp> â€cell response via inhibition of <scp>IL</scp> â€12 production by <scp>DC</scp> s. European Journal of Immunology, 2013, 43, 439-446.	1.6	4

#	Article	IF	CITATIONS
93	TIM-3 Regulates Innate Immune Cells To Induce Fetomaternal Tolerance. Journal of Immunology, 2013, 190, 88-96.	0.4	92
94	T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Current Opinion in Immunology, 2013, 25, 214-221.	2.4	576
95	PD-1–Expressing Tumor-Infiltrating T Cells Are a Favorable Prognostic Biomarker in HPV-Associated Head and Neck Cancer. Cancer Research, 2013, 73, 128-138.	0.4	554
96	Interfering with coinhibitory molecules: BTLA/HVEM as new targets to enhance anti-tumor immunity. Immunology Letters, 2013, 151, 71-75.	1.1	59
97	Longitudinal T cell-derived IFN-Î ³ /IL-17 balances do not correlate with the disease course in two mouse models of experimental autoimmune encephalomyelitis. Journal of Immunological Methods, 2013, 398-399, 68-75.	0.6	2
98	Strategies to reverse melanoma-induced T-cell dysfunction. Clinics in Dermatology, 2013, 31, 251-256.	0.8	8
99	Genetic variations of PD1 and TIM3 are differentially and interactively associated with the development of cirrhosis and HCC in patients with chronic HBV infection. Infection, Genetics and Evolution, 2013, 14, 240-246.	1.0	48
100	Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Current Opinion in Immunology, 2013, 25, 268-276.	2.4	352
101	Anti-programmed death-1 and anti-programmed death-ligand 1 antibodies in cancer therapy. Expert Opinion on Biological Therapy, 2013, 13, 847-861.	1.4	110
102	Modulating T regulatory cells in cancer: how close are we?. Immunology and Cell Biology, 2013, 91, 340-349.	1.0	33
103	Somatic Cells – Growth and Expansion Potential of T Lymphocytes. , 2013, , 915-926.		0
104	Coinhibitory molecules in cancer biology and therapy. Cytokine and Growth Factor Reviews, 2013, 24, 147-161.	3.2	26
105	Melanoma immunotherapy: historical precedents, recent successes and future prospects. Immunotherapy, 2013, 5, 169-182.	1.0	27
106	Manipulating the PD-1 pathway to improve immunity. Current Opinion in Immunology, 2013, 25, 381-388.	2.4	95
107	Comparison of Vaccine-Induced Effector CD8 T Cell Responses Directed against Self- and Non–Self-Tumor Antigens: Implications for Cancer Immunotherapy. Journal of Immunology, 2013, 191, 3955-3967.	0.4	57
108	Systemic therapies in hepatocellular carcinoma: present and future. Future Oncology, 2013, 9, 1533-1548.	1.1	42
109	The Tumor Microenvironment: A Pitch for Multiple Players. Frontiers in Oncology, 2013, 3, 90.	1.3	121
110	The Influence of T Cell Ig Mucin-3 Signaling on Central Nervous System Autoimmune Disease Is Determined by the Effector Function of the Pathogenic T Cells. Journal of Immunology, 2013, 190, 4991-4999.	0.4	60

7

#	Article	IF	CITATIONS
111	A Disintegrin and Metalloprotease (ADAM) 10 and ADAM17 Are Major Sheddases of T Cell Immunoglobulin and Mucin Domain 3 (Tim-3). Journal of Biological Chemistry, 2013, 288, 34529-34544.	1.6	93
112	T Cells and Costimulation in Cancer. Cancer Journal (Sudbury, Mass), 2013, 19, 473-482.	1.0	22
113	Radiation-Induced Equilibrium Is a Balance between Tumor Cell Proliferation and T Cell–Mediated Killing. Journal of Immunology, 2013, 190, 5874-5881.	0.4	140
114	Merkel Polyomavirus-Specific T Cells Fluctuate with Merkel Cell Carcinoma Burden and Express Therapeutically Targetable PD-1 and Tim-3 Exhaustion Markers. Clinical Cancer Research, 2013, 19, 5351-5360.	3.2	176
115	Programmed Cell Death 1-Directed Immunotherapy for Enhancing T-Cell Function. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 239-247.	2.0	38
116	Immunotherapeutic approaches in triple-negative breast cancer: latest research and clinical prospects. Therapeutic Advances in Medical Oncology, 2013, 5, 169-181.	1.4	149
117	T-cell modulatory properties of CD5 and its role in antitumor immune responses. Oncolmmunology, 2013, 2, e22841.	2.1	37
118	Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer. British Journal of Cancer, 2013, 108, 1560-1565.	2.9	139
119	The Expression of Tim-3 in Peripheral Blood of Ovarian Cancer. DNA and Cell Biology, 2013, 32, 648-653.	0.9	36
120	Targeting CD73 Enhances the Antitumor Activity of Anti-PD-1 and Anti-CTLA-4 mAbs. Clinical Cancer Research, 2013, 19, 5626-5635.	3.2	381
121	High-Avidity T Cells Are Preferentially Tolerized in the Tumor Microenvironment. Cancer Research, 2013, 73, 595-604.	0.4	36
122	Role of dendritic cells in the regulation of antitumor immunity. Oncolmmunology, 2013, 2, e23973.	2.1	12
123	TIM3 ⁺ FOXP3 ⁺ regulatory T cells are tissue-specific promoters of T-cell dysfunction in cancer. Oncolmmunology, 2013, 2, e23849.	2.1	251
124	TIM-3 expression in human osteosarcoma: Correlation with the expression of epithelial-mesenchymal transition-specific biomarkers. Oncology Letters, 2013, 6, 490-494.	0.8	52
125	T cell immunoglobulin domain and mucin domain-3 as an emerging target for immunotherapy in cancer management. ImmunoTargets and Therapy, 2013, 2, 135.	2.7	5
126	Tim-3 Expression in Cervical Cancer Promotes Tumor Metastasis. PLoS ONE, 2013, 8, e53834.	1.1	120
127	The Availability of a Functional Tumor Targeting T-Cell Repertoire Determines the Anti-Tumor Efficiency of Combination Therapy with Anti-CTLA-4 and Anti-4-1BB Antibodies. PLoS ONE, 2013, 8, e66081.	1.1	16
128	Dendritic Cell-Targeted Approaches to Modulate Immune Dysfunction in the Tumor Microenvironment. Frontiers in Immunology, 2013, 4, 436.	2.2	21

#	Article	IF	CITATIONS
129	Lentiviral Vectors in Immunotherapy. , 0, , .		0
130	Cellular Composition of the Tumor Microenvironment. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2013, , e91-e97.	1.8	45
131	Prognostic implication of TIM-3 in clear cell renal cell carcinoma. Neoplasma, 2014, 61, 35-40.	0.7	47
132	Circulating Programmed Death-1 as a Marker for Sustained High Hepatitis B Viral Load and Risk of Hepatocellular Carcinoma. PLoS ONE, 2014, 9, e95870.	1.1	64
133	PD-1 identifies the patient-specific CD8+ tumor-reactive repertoire infiltrating human tumors. Journal of Clinical Investigation, 2014, 124, 2246-2259.	3.9	892
134	Enhancement of SIV-specific cell mediated immune responses by co-administration of soluble PD-1 and Tim-3 as molecular adjuvants in mice. Human Vaccines and Immunotherapeutics, 2014, 10, 724-733.	1.4	12
135	Melanoma immunotherapy. Cancer Biology and Therapy, 2014, 15, 665-674.	1.5	73
136	Tissue-Resident Exhausted Effector Memory CD8+ T Cells Accumulate in the Retina during Chronic Experimental Autoimmune Uveoretinitis. Journal of Immunology, 2014, 192, 4541-4550.	0.4	33
137	Tim-3 Directly Enhances CD8 T Cell Responses to Acute <i>Listeria monocytogenes</i> Infection. Journal of Immunology, 2014, 192, 3133-3142.	0.4	76
139	The impact of the TIM gene family on tumor immunity and immunosuppression. Cellular and Molecular Immunology, 2014, 11, 41-48.	4.8	24
140	Treatment of 4T1 Metastatic Breast Cancer with Combined Hypofractionated Irradiation and Autologous T-Cell Infusion. Radiation Research, 2014, 182, 163-169.	0.7	18
141	Hepatocellular Carcinoma: Novel Molecular Targets in Carcinogenesis for Future Therapies. BioMed Research International, 2014, 2014, 1-15.	0.9	66
142	RepSox Slows Decay of CD34+ Acute Myeloid Leukemia Cells and Decreases T Cell Immunoglobulin Mucin-3 Expression. Stem Cells Translational Medicine, 2014, 3, 836-848.	1.6	7
143	Targeting CD8 ⁺ T-cell tolerance for cancer immunotherapy. Immunotherapy, 2014, 6, 833-852.	1.0	41
144	Blocking monoclonal antibodies of TIM proteins as orchestrators of anti-tumor immune response. MAbs, 2014, 6, 1124-1132.	2.6	4
145	PD-1 blockage delays murine squamous cell carcinoma development. Carcinogenesis, 2014, 35, 424-431.	1.3	42
146	Requirement for Interactions of Natural Killer T Cells and Myeloid-Derived Suppressor Cells for Transplantation Tolerance. American Journal of Transplantation, 2014, 14, 2467-2477.	2.6	65
147	Enhanced suppressor function of TIMâ€3 ⁺ FoxP3 ⁺ regulatory TÂcells. European Journal of Immunology. 2014. 44. 2703-2711.	1.6	182

#	Article	IF	CITATIONS
148	Understanding the Biology of Antigen Cross-Presentation for the Design of Vaccines Against Cancer. Frontiers in Immunology, 2014, 5, 149.	2.2	106
149	A Phase I/II Trial of Belinostat in Combination with Cisplatin, Doxorubicin, and Cyclophosphamide in Thymic Epithelial Tumors: A Clinical and Translational Study. Clinical Cancer Research, 2014, 20, 5392-5402.	3.2	83
150	Reversal of natural killer cell exhaustion by TIM-3 blockade. OncoImmunology, 2014, 3, e946365.	2.1	76
151	PhiC31/PiggyBac modified stromal stem cells: effect of interferon Î ³ and/or tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on murine melanoma. Molecular Cancer, 2014, 13, 255.	7.9	16
152	Harnessing the immune system for cancer therapy. Current Opinion in Oncology, 2014, 26, 600-607.	1.1	25
153	Armed Therapeutic Viruses – A Disruptive Therapy on the Horizon of Cancer Immunotherapy. Frontiers in Immunology, 2014, 5, 74.	2.2	39
154	Immunotherapy of hepatocellular carcinoma. Hepatic Oncology, 2014, 1, 433-446.	4.2	5
155	Coinhibitory receptors and CD8 T cell exhaustion in chronic infections. Current Opinion in HIV and AIDS, 2014, 9, 439-445.	1.5	64
156	Virus Infection, Inflammation and Prevention of Cancer. Recent Results in Cancer Research, 2014, 193, 33-58.	1.8	11
157	Comparison of dynamic expressions of Tim-3 and PD-1 in the brains between toxoplasmic encephalitis-resistant BALB/c and -susceptible C57BL/6 mice. Parasitology Research, 2014, 113, 1261-1267.	0.6	9
158	Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Current Opinion in Immunology, 2014, 27, 89-97.	2.4	111
159	High-Dimensional Single Cell Analysis. Current Topics in Microbiology and Immunology, 2014, , .	0.7	4
160	Tim-3: An Emerging Target in the Cancer Immunotherapy Landscape. Cancer Immunology Research, 2014, 2, 393-398.	1.6	278
161	Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene, 2014, 33, 4623-4631.	2.6	128
162	Viruses and Human Cancer. Recent Results in Cancer Research, 2014, , .	1.8	1
163	Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends in Immunology, 2014, 35, 51-60.	2.9	513
164	Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nature Reviews Clinical Oncology, 2014, 11, 24-37.	12.5	380
165	Orchestration of pulmonary T cell immunity during Mycobacterium tuberculosis infection: Immunity interruptus. Seminars in Immunology, 2014, 26, 559-577.	2.7	53

#	Article	IF	CITATIONS
166	The Path to Reactivation of Antitumor Immunity and Checkpoint Immunotherapy. Cancer Immunology Research, 2014, 2, 926-936.	1.6	23
167	PD-1+ CD8+ T cells are exhausted in tumours and functional in draining lymph nodes of colorectal cancer patients. British Journal of Cancer, 2014, 111, 1391-1399.	2.9	90
168	T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion?. Nature Reviews Immunology, 2014, 14, 768-774.	10.6	248
169	Too Much of a Good Thing? Tim-3 and TCR Signaling in T Cell Exhaustion. Journal of Immunology, 2014, 193, 1525-1530.	0.4	149
170	The Programmed Death-1 Immune-Suppressive Pathway: Barrier to Antitumor Immunity. Journal of Immunology, 2014, 193, 3835-3841.	0.4	178
171	PD-1 and Tim-3 Regulate the Expansion of Tumor Antigen–Specific CD8+ T Cells Induced by Melanoma Vaccines. Cancer Research, 2014, 74, 1045-1055.	0.4	179
172	Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. Journal of Experimental Medicine, 2014, 211, 1905-1918.	4.2	182
173	Breast cancer immunotherapy: monoclonal antibodies and peptide-based vaccines. Expert Review of Clinical Immunology, 2014, 10, 927-961.	1.3	33
174	Multifactorial T-cell Hypofunction That Is Reversible Can Limit the Efficacy of Chimeric Antigen Receptor–Transduced Human T cells in Solid Tumors. Clinical Cancer Research, 2014, 20, 4262-4273.	3.2	339
175	Antimetastatic Effects of Blocking PD-1 and the Adenosine A2A Receptor. Cancer Research, 2014, 74, 3652-3658.	0.4	217
176	Regulation of T cell responses by the receptor molecule Tim-3. Immunologic Research, 2014, 59, 56-65.	1.3	73
177	TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin's lymphoma. Leukemia, 2014, 28, 1872-1884.	3.3	112
178	PD-1 deletion restores susceptibility to experimental autoimmune encephalomyelitis in miR-155-deficient mice. International Immunology, 2014, 26, 407-415.	1.8	17
179	Immunotherapy in the treatment of non-small cell lung cancer. Lung Cancer, 2014, 85, 101-109.	0.9	106
180	Tim-3 signaling pathway as a novel negative mediator in lipopolysaccharide-induced endotoxic shock. Human Immunology, 2014, 75, 470-478.	1.2	10
181	Reversal of NK-Cell Exhaustion in Advanced Melanoma by Tim-3 Blockade. Cancer Immunology Research, 2014, 2, 410-422.	1.6	322
182	The interplay between the immune system and chemotherapy: emerging methods for optimizing therapy. Expert Review of Clinical Immunology, 2014, 10, 19-30.	1.3	48
183	New clinical advances in immunotherapy for the treatment of solid tumours. Immunology, 2015, 145, 182-201.	2.0	35

#	Article	IF	CITATIONS
184	Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon cancer. Scientific Reports, 2015, 5, 15659.	1.6	132
185	T-cell number and subtype influence the disease course of primary chronic lymphocytic leukaemia xenografts in alymphoid mice. DMM Disease Models and Mechanisms, 2015, 8, 1401-12.	1.2	7
186	Inhibitory receptors as targets for cancer immunotherapy. European Journal of Immunology, 2015, 45, 1892-1905.	1.6	116
187	Timâ€3 blocking rescue macrophage and T cell function against <i>Mycobacterium tuberculosis</i> infection in HIV+ patients. Journal of the International AIDS Society, 2015, 18, 20078.	1.2	33
188	Tâ€cell immunoglobulin mucinâ€3 expression in bladder urothelial carcinoma: Clinicopathologic correlations and association with survival. Journal of Surgical Oncology, 2015, 112, 430-435.	0.8	56
189	Targeting immune checkpoints in lymphoma. Current Opinion in Hematology, 2015, 22, 337-342.	1.2	38
190	Immunotherapies for bladder cancer. Current Opinion in Urology, 2015, 25, 586-596.	0.9	17
191	Targeting PD-1/PD-L1 in lung cancer: current perspectives. Lung Cancer: Targets and Therapy, 2015, 6, 55.	1.3	10
192	A Herpes Simplex Virus Type 1 Human Asymptomatic CD8+T-Cell Epitopes-Based Vaccine Protects Against Ocular Herpes in a "Humanized―HLA Transgenic Rabbit Model. , 2015, 56, 4013.		27
193	Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators. Frontiers in Immunology, 2015, 6, 418.	2.2	158
194	TIGIT and PD-1 impair tumor antigen–specific CD8+ T cells in melanoma patients. Journal of Clinical Investigation, 2015, 125, 2046-2058.	3.9	603
195	Reinvigorating Exhausted T Cells by Blockade of the PD-1 Pathway. Forum on Immunopathological Diseases and Therapeutics, 2015, 6, 7-17.	0.1	82
196	Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity. Vaccines, 2015, 3, 771-802.	2.1	11
197	Blockade of PD-1/PD-L1 Promotes Adoptive T-Cell Immunotherapy in a Tolerogenic Environment. PLoS ONE, 2015, 10, e0119483.	1.1	35
198	An Exhaustion-Like Phenotype Constrains the Activity of CD4+ T Cells Specific for a Self and Melanoma Antigen. PLoS ONE, 2015, 10, e0123332.	1.1	10
199	Interferon-Î ² Suppresses Murine Th1 Cell Function in the Absence of Antigen-Presenting Cells. PLoS ONE, 2015, 10, e0124802.	1.1	32
200	PD-1 and Tim-3 Pathways Regulate CD8+ T Cells Function in Atherosclerosis. PLoS ONE, 2015, 10, e0128523.	1.1	39
201	Immune Adjuvant Activity of Pre-Resectional Radiofrequency Ablation Protects against Local and Systemic Recurrence in Aggressive Murine Colorectal Cancer. PLoS ONE, 2015, 10, e0143370.	1.1	42

#	Article	IF	CITATIONS
202	TIGIT predominantly regulates the immune response via regulatory T cells. Journal of Clinical Investigation, 2015, 125, 4053-4062.	3.9	470
203	The Immune System in Hepatocellular Carcinoma and Potential New Immunotherapeutic Strategies. BioMed Research International, 2015, 2015, 1-12.	0.9	25
204	Immunotherapy for Bone and Soft Tissue Sarcomas. BioMed Research International, 2015, 2015, 1-11.	0.9	16
205	Elevation of Tim-3 and PD-1 Expression on T Cells Appears Early in HIV Infection, and Differential Tim-3 and PD-1 Expression Patterns Can Be Induced by CommonÎ ³ -Chain Cytokines. BioMed Research International, 2015, 2015, 1-11.	0.9	20
206	Consensus nomenclature for CD8 ⁺ T cell phenotypes in cancer. Oncolmmunology, 2015, 4, e998538.	2.1	119
207	Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. Journal of Experimental Medicine, 2015, 212, 1125-1137.	4.2	368
208	Combining immunotherapy and anticancer agents: the right path to achieve cancer cure?. Annals of Oncology, 2015, 26, 1813-1823.	0.6	219
209	PD-1 and Tim-3 pathways are associated with regulatory CD8+ T-cell function in decidua and maintenance of normal pregnancy. Cell Death and Disease, 2015, 6, e1738-e1738.	2.7	135
210	Programmed death-1 checkpoint blockade in acute myeloid leukemia. Expert Opinion on Biological Therapy, 2015, 15, 1191-1203.	1.4	75
211	Tim-3 pathway affects NK cell impairment in patients with active tuberculosis. Cytokine, 2015, 76, 270-279.	1.4	16
212	The role of active vaccination in cancer immunotherapy: lessons from clinical trials. Current Opinion in Immunology, 2015, 35, 15-22.	2.4	33
213	Microâ€RNAâ€155â€mediated control of heme oxygenase 1 (HOâ€1) is required for restoring adaptively tolerant CD4 ⁺ Tâ€cell function in rodents. European Journal of Immunology, 2015, 45, 829-842.	1.6	22
214	Immunology and Immunotherapy of Breast Cancer. , 2015, , 457-470.		0
215	Costimulation Immunotherapy in Infectious Diseases. , 2015, , 83-129.		10
216	Induction of Inhibitory Receptors on T Cells During <i>Plasmodium vivax</i> Malaria Impairs Cytokine Production. Journal of Infectious Diseases, 2015, 212, 1999-2010.	1.9	42
217	Tim-3 expression in tumour-associated macrophages: a new player in HCC progression. Gut, 2015, 64, 1502-1503.	6.1	20
218	Adenosine Receptor 2A Blockade Increases the Efficacy of Anti–PD-1 through Enhanced Antitumor T-cell Responses. Cancer Immunology Research, 2015, 3, 506-517.	1.6	262
219	Beyond adjuvants: Immunomodulation strategies to enhance T cell immunity. Vaccine, 2015, 33, B21-B28.	1.7	28

#	Article	IF	CITATIONS
220	Cancer and the Immune System: Basic Concepts and Targets for Intervention. Seminars in Oncology, 2015, 42, 523-538.	0.8	220
222	T cells are functionally not impaired in AML: increased PD-1 expression is only seen at time of relapse and correlates with a shift towards the memory T cell compartment. Journal of Hematology and Oncology, 2015, 8, 93.	6.9	127
223	Dysfunction of PSA-specific CD8+ T cells in prostate cancer patients correlates with CD38 and Tim-3 expression. Cancer Immunology, Immunotherapy, 2015, 64, 1487-1494.	2.0	51
224	T Cell Fate in the Tumor Microenvironment. Cancer Drug Discovery and Development, 2015, , 53-74.	0.2	0
225	Identification of TIM-3 as a Leukemic Stem Cell Surface Molecule in Primary Acute Myeloid Leukemia. Oncology, 2015, 89, 28-32.	0.9	33
226	Microglia activity modulated by T cell Ig and mucin domain protein 3 (Tim-3). Cellular Immunology, 2015, 293, 49-58.	1.4	20
227	T-cell-mediated antitumor immunity in B-cell non-Hodgkin lymphoma: activation, suppression and exhaustion. Leukemia and Lymphoma, 2015, 56, 2498-2504.	0.6	18
228	Tim-3 fosters HCC development by enhancing TGF-β-mediated alternative activation of macrophages. Gut, 2015, 64, 1593-1604.	6.1	236
229	The Transcription Factor NFAT Promotes Exhaustion of Activated CD8 + T Cells. Immunity, 2015, 42, 265-278.	6.6	555
230	Mechanisms of tumor-induced T cell immune suppression and therapeutics to counter those effects. Archives of Pharmacal Research, 2015, 38, 1415-1433.	2.7	14
231	Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1809-1814.	3.3	450
232	The evolution of checkpoint blockade as a cancer therapy: what's here, what's next?. Current Opinion in Immunology, 2015, 33, 23-35.	2.4	298
233	An IL-27/NFIL3 signalling axis drives Tim-3 and IL-10 expression and T-cell dysfunction. Nature Communications, 2015, 6, 6072.	5.8	169
234	Induced PD-L1 Expression Mediates Acquired Resistance to Agonistic Anti-CD40 Treatment. Cancer Immunology Research, 2015, 3, 236-244.	1.6	117
235	Cancer immunotherapy utilizing gene-modified T cells: From the bench to the clinic. Molecular Immunology, 2015, 67, 46-57.	1.0	100
236	VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. Journal of Experimental Medicine, 2015, 212, 139-148.	4.2	836
237	Immune checkpoint modulation: Rational design of combination strategies. , 2015, 150, 23-32.		76
238	A novel "priming-boosting―strategy for immune interventions in cervical cancer. Molecular Immunology, 2015, 64, 295-305.	1.0	11

#	Article	IF	CITATIONS
239	IL10 and PD-1 Cooperate to Limit the Activity of Tumor-Specific CD8+ T Cells. Cancer Research, 2015, 75, 1635-1644.	0.4	145
240	Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. , 2015, 3, 2.		93
241	Expression of coinhibitory receptors on T cells in the microenvironment of usual vulvar intraepithelial neoplasia is related to proinflammatory effector T cells and an increased recurrenceâ€free survival. International Journal of Cancer, 2015, 136, E95-106.	2.3	25
242	PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer Journal, 2015, 5, e281-e281.	2.8	129
243	Blockade of PDâ€1 or p38 MAP kinase signaling enhances senescent human CD8 ⁺ Tâ€cell proliferation by distinct pathways. European Journal of Immunology, 2015, 45, 1441-1451.	1.6	108
244	Tim-3 and Tim-4 as the potential targets for antitumor therapy. Human Vaccines and Immunotherapeutics, 2015, 11, 2458-2462.	1.4	44
245	Combination cancer immunotherapy and new immunomodulatory targets. Nature Reviews Drug Discovery, 2015, 14, 561-584.	21.5	1,058
246	Enhancing the efficacy of adoptive cellular therapy by targeting tumor-induced immunosuppression. Immunotherapy, 2015, 7, 499-512.	1.0	18
247	T-cell exhaustion in the tumor microenvironment. Cell Death and Disease, 2015, 6, e1792-e1792.	2.7	743
248	The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nature Reviews Cancer, 2015, 15, 409-425.	12.8	1,474
249	Association between polymorphisms in the promoter region of T cell immunoglobulin and mucin domain-3 and myasthenia gravis-associated thymoma. Oncology Letters, 2015, 9, 1470-1474.	0.8	7
250	Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nature Reviews Cancer, 2015, 15, 457-472.	12.8	576
251	Molecular and cellular insights into T cell exhaustion. Nature Reviews Immunology, 2015, 15, 486-499.	10.6	3,159
252	Cancer Immunotherapy with Vaccines and Checkpoint Blockade. , 2015, , 709-738.e8.		0
253	The New Era of Cancer Immunotherapy. Advances in Cancer Research, 2015, 128, 1-68.	1.9	41
254	OX40 Agonists and Combination Immunotherapy: Putting the Pedal to the Metal. Frontiers in Oncology, 2015, 5, 34.	1.3	193
255	Functional restoration of exhausted CD4+ and CD8+ T cells in chronic viral infection by vinegar-processed flos of Daphne genkwa. Comparative Immunology, Microbiology and Infectious Diseases, 2015, 39, 25-37.	0.7	12
256	Immuno-regulatory antibodies for the treatment of cancer. Expert Opinion on Biological Therapy, 2015, 15, 787-801.	1.4	40

ARTICLE IF CITATIONS Ablative Tumor Radiation Can Change the Tumor Immune Cell Microenvironment to Induce Durable 3.2 373 257 Complete Remissions. Clinical Cancer Research, 2015, 21, 3727-3739. The future of immune checkpoint therapy. Science, 2015, 348, 56-61. 6.0 3,735 259 The role of checkpoints in the treatment of GBM. Journal of Neuro-Oncology, 2015, 123, 413-423. 1.4 15 Role of Type I Interferon Signaling in Human Metapneumovirus Pathogenesis and Control of Viral 260 Replication. Journal of Virology, 2015, 89, 4405-4420. Therapeutic Immunization with a Mixture of Herpes Simplex Virus 1 Glycoprotein D-Derived "Asymptomaticâ€Human CD8 ⁺ T-Cell Epitopes Decreases Spontaneous Ocular Shedding in 261 1.5 29 Latently Infected HLA Transgenic Rabbits: Association with Low Frequency of Local PD-1 ⁺ TIM-3 ⁺ CD8 ⁺ Exhausted T Cells. Journal of Virology, 2015, 89, 6619-6632. B7H6-Specific Bispecific T Cell Engagers Lead to Tumor Elimination and Host Antitumor Immunity. Journal of Immunology, 2015, 194, 5305-5311. 0.4 263 Classifying Cancers Based on T-cell Infiltration and PD-L1. Cancer Research, 2015, 75, 2139-2145. 0.4 1,167 Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and 264 15.2 129 survival during chronic viral infection. Nature Medicine, 2015, 21, 327-334. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen 265 15.2 1,304 receptors. Nature Medicine, 2015, 21, 581-590. Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. 3.3 266 Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6682-6687. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model 267 0.6 158 of chronic lymphocytic leukemia. Blood, 2015, 126, 203-211. Immune checkpoint inhibitors in advanced nonsmall cell lung cancer. Current Opinion in Oncology, 268 1.1 2015, 27, 108-117. Up-regulation of Tim-3 on T cells during acute simian immunodeficiency virus infection and on antigen 269 1.0 19 specific responders. Aids, 2015, 29, 531-536. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nature Communications, 2015, 6, 6340. 270 5.8 CD8+CD103+ Tumor–Infiltrating Lymphocytes Are Tumor-Specific Tissue-Resident Memory T Cells and a 271 0.4 477 Prognostic Factor for Survival in Lung Cancer Patients. Journal of Immunology, 2015, 194, 3475-3486. CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1. Cancer Immunology, Immunotherapy, 2015, 64, 677-688. Toxicity Patterns With Immunomodulating Antibodies and Their Combinations. Seminars in Oncology, 273 0.8 55 2015, 42, 423-428. Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell, 2015, 274 3,266 27, 450-461.

#	Article	IF	CITATIONS
275	Immune Checkpoint Targeting in Cancer Therapy: Toward Combination Strategies with Curative Potential. Cell, 2015, 161, 205-214.	13.5	1,872
276	NOD.H-2h4 Mice. Advances in Immunology, 2015, 126, 1-43.	1.1	40
277	Novel strategies for inhibiting PD-1 pathway-mediated immune suppression while simultaneously delivering activating signals to tumor-reactive T cells. Cancer Immunology, Immunotherapy, 2015, 64, 1287-1293.	2.0	18
278	Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion–like Phenotype. Journal of Immunology, 2015, 195, 4319-4330.	0.4	26
279	Progression of Lung Cancer Is Associated with Increased Dysfunction of T Cells Defined by Coexpression of Multiple Inhibitory Receptors. Cancer Immunology Research, 2015, 3, 1344-1355.	1.6	285
280	Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. International Immunopharmacology, 2015, 29, 635-641.	1.7	170
281	Nuclear FAK Controls Chemokine Transcription, Tregs, and Evasion of Anti-tumor Immunity. Cell, 2015, 163, 160-173.	13.5	304
282	Structure of the Complex of Human Programmed Death 1, PD-1, and Its Ligand PD-L1. Structure, 2015, 23, 2341-2348.	1.6	399
283	The Clinical Significance of Abnormal Tim-3 Expression on NK Cells from Patients with Gastric Cancer. Immunological Investigations, 2015, 44, 578-589.	1.0	64
284	Programmed death-1 & its ligands: promising targets for cancer immunotherapy. Immunotherapy, 2015, 7, 777-792.	1.0	18
285	Targeting immune checkpoints: New opportunity for mesothelioma treatment?. Cancer Treatment Reviews, 2015, 41, 914-924.	3.4	41
286	Strategies for combining immunotherapy with radiation for anticancer therapy. Immunotherapy, 2015, 7, 967-980.	1.0	83
287	IL-36Î ³ Transforms the Tumor Microenvironment and Promotes Type 1 Lymphocyte-Mediated Antitumor Immune Responses. Cancer Cell, 2015, 28, 296-306.	7.7	93
288	Melanoma Cell-Intrinsic PD-1 Receptor Functions Promote Tumor Growth. Cell, 2015, 162, 1242-1256.	13.5	507
289	TCF1 Is Required for the T Follicular Helper Cell Response to Viral Infection. Cell Reports, 2015, 12, 2099-2110.	2.9	134
290	Emerging immune checkpoints for cancer therapy. Acta Oncológica, 2015, 54, 1706-1713.	0.8	40
291	Tim-3 enhances FcεRI-proximal signaling to modulate mast cell activation. Journal of Experimental Medicine, 2015, 212, 2289-2304.	4.2	91
292	Prognostic value of PD-1 and TIM-3 on CD3+ T cells from diffuse large B-cell lymphoma. Biomedicine and Pharmacotherapy, 2015, 75, 83-87.	2.5	30

#	Article	IF	CITATIONS
293	Innovative Medicine. , 2015, , .		17
294	Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Molecular Oncology, 2015, 9, 1936-1965.	2.1	64
295	Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6506-14.	3.3	299
296	T cell exhaustion and Interleukin 2 downregulation. Cytokine, 2015, 71, 339-347.	1.4	45
298	Clinical blockade of PD1 and LAG3 — potential mechanisms of action. Nature Reviews Immunology, 2015, 15, 45-56.	10.6	524
299	CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature, 2015, 517, 386-390.	13.7	525
300	Peptide–MHC multimer-based monitoring of CD8 T-cells in HIV-1 infection and AIDS vaccine development. Expert Review of Vaccines, 2015, 14, 69-84.	2.0	11
301	Immuno-oncology combinations: raising the tail of the survival curve. Cancer Biology and Medicine, 2016, 13, 171-193.	1.4	98
302	Identification of Co-inhibitory Receptors PD-1 and TIM-3 on T Cells from Gastric Cancer Patients. Immunotherapy (Los Angeles, Calif), 2016, 01, .	0.1	1
303	Basic Overview of Current Immunotherapy Approaches in Cancer. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2016, 35, 298-308.	1.8	115
304	Immune checkpoint therapy for pancreatic cancer. World Journal of Gastroenterology, 2016, 22, 9457.	1.4	73
305	Immune Checkpoint Modulators: An Emerging Antiglioma Armamentarium. Journal of Immunology Research, 2016, 2016, 1-14.	0.9	36
306	Differential Expression of Immune Checkpoint Modulators on In Vitro Primed CD4+ and CD8+ T Cells. Frontiers in Immunology, 2016, 7, 221.	2.2	20
307	TIM-3 Regulates Distinct Functions in Macrophages. Frontiers in Immunology, 2016, 7, 229.	2.2	91
308	Combination Approaches with Immune-Checkpoint Blockade in Cancer Therapy. Frontiers in Oncology, 2016, 6, 233.	1.3	148
309	Advances in Cancer Immunotherapy in Solid Tumors. Cancers, 2016, 8, 106.	1.7	131
310	Immune Checkpoint Blockade to Improve Tumor Infiltrating Lymphocytes for Adoptive Cell Therapy. PLoS ONE, 2016, 11, e0153053.	1.1	52
311	Aptamers: A New Technological Platform in Cancer Immunotherapy. Pharmaceuticals, 2016, 9, 64.	1.7	25

#	Article	IF	CITATIONS
312	Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer. Oncotarget, 2016, 7, 17194-17211.	0.8	80
313	Immune checkpoint inhibitor combinations in solid tumors: opportunities and challenges. Immunotherapy, 2016, 8, 821-837.	1.0	139
314	Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model. Journal of Immunology, 2016, 197, 1477-1488.	0.4	42
315	Novel Targets and Their Assessment for Cancer Treatment. , 2016, , 163-180.		0
316	Abnormal expression of Timâ€3 antigen on peripheral blood T cells is associated with progressive disease in osteosarcoma patients. FEBS Open Bio, 2016, 6, 807-815.	1.0	16
317	The promise of immunotherapy in head and neck squamous cell carcinoma: combinatorial immunotherapy approaches. ESMO Open, 2016, 1, e000122.	2.0	55
318	Inflammatory immune infiltration in human tumors: Role in pathogenesis and prognostic and diagnostic value. Biochemistry (Moscow), 2016, 81, 1261-1273.	0.7	10
319	Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Science Translational Medicine, 2016, 8, 367ra166.	5.8	113
320	Survival of Lung Adenocarcinoma Patients Predicted from Expression of PD-L1, Galectin-9, and XAGE1 (GAGED2a) on Tumor Cells and Tumor-Infiltrating T Cells. Cancer Immunology Research, 2016, 4, 1049-1060.	1.6	34
321	The TCF1-Bcl6 axis counteracts type I interferon to repress exhaustion and maintain T cell stemness. Science Immunology, 2016, 1, .	5.6	415
322	Immune checkpoint proteins PD-1 and TIM-3 are both highly expressed in liver tissues and correlate with their gene polymorphisms in patients with HBV-related hepatocellular carcinoma. Medicine (United States), 2016, 95, e5749.	0.4	84
323	IL-15 <i>Trans</i> -Signaling with the Superagonist RLI Promotes Effector/Memory CD8+ T Cell Responses and Enhances Antitumor Activity of PD-1 Antagonists. Journal of Immunology, 2016, 197, 168-178.	0.4	43
324	Inhibitory immunologicznych punktów kontrolnych podziaÅ,u komórki w leczeniu chorób nowotworowych. Acta Haematologica Polonica, 2016, 47, 155-162.	0.1	1
325	Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity, 2016, 44, 989-1004.	6.6	1,538
326	Combinatorial Cancer Immunotherapies. Advances in Immunology, 2016, 130, 251-277.	1.1	107
327	The Role of Surgical Pathology in Guiding Cancer Immunotherapy. Annual Review of Pathology: Mechanisms of Disease, 2016, 11, 313-341.	9.6	15
328	Immune escape to PD-L1/PD-1 blockade: seven steps to success (or failure). Annals of Oncology, 2016, 27, 1492-1504.	0.6	460
329	Antibody-Mediated Phosphatidylserine Blockade Enhances the Antitumor Responses to CTLA-4 and PD-1 Antibodies in Melanoma. Cancer Immunology Research, 2016, 4, 531-540.	1.6	20

#	Article	IF	CITATIONS
330	PD-1 Blockade Boosts Radiofrequency Ablation–Elicited Adaptive Immune Responses against Tumor. Clinical Cancer Research, 2016, 22, 1173-1184.	3.2	207
331	Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Annals of Oncology, 2016, 27, 1482-1492.	0.6	765
332	Immune checkpoint inhibitors in gynecologic cancers with lessons learned from non-gynecologic cancers. Expert Opinion on Biological Therapy, 2016, 16, 989-1004.	1.4	10
333	The role of neoantigens in response to immune checkpoint blockade. International Immunology, 2016, 28, 411-419.	1.8	148
334	Programming the immune checkpoint to treat hematologic malignancies. Expert Opinion on Investigational Drugs, 2016, 25, 755-770.	1.9	11
335	Cancer immunotherapy: the beginning of the end of cancer?. BMC Medicine, 2016, 14, 73.	2.3	908
336	Where Do Programmed Death-1 Inhibitors Fit in the Management of Malignant Lymphoma?. Journal of Oncology Practice, 2016, 12, 101-106.	2.5	12
337	Nivolumab, anti-programmed death-1 (PD-1) monoclonal antibody immunotherapy: Role in advanced cancers. Human Vaccines and Immunotherapeutics, 2016, 12, 2219-2231.	1.4	49
338	Personalized Oncology Meets Immunology: The Path toward Precision Immunotherapy. Cancer Discovery, 2016, 6, 703-713.	7.7	92
339	Tim-3 identifies exhausted follicular helper T cells in breast cancer patients. Immunobiology, 2016, 221, 986-993.	0.8	39
340	A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells. Cell, 2016, 166, 1500-1511.e9.	13.5	315
341	Tumor-infiltrating Tim-3 ⁺ T cells proliferate avidly except when PD-1 is co-expressed: Evidence for intracellular cross talk. OncoImmunology, 2016, 5, e1200778.	2.1	47
342	Costimulatory and coinhibitory immune checkpoint receptors in head and neck cancer: unleashing immune responses through therapeutic combinations. Cancers of the Head & Neck, 2016, 1, 12.	6.2	17
343	Characterization of ageâ€associated exhausted <scp>CD</scp> 8 ⁺ T cells defined by increased expression of Timâ€3 and <scp>PD</scp> â€1. Aging Cell, 2016, 15, 291-300.	3.0	95
344	Chemoattractant Receptors BLT1 and CXCR3 Regulate Antitumor Immunity by Facilitating CD8+ T Cell Migration into Tumors. Journal of Immunology, 2016, 197, 2016-2026.	0.4	118
345	Impaired functional responses in follicular lymphoma CD8 ⁺ TIM-3 ⁺ T lymphocytes following TCR engagement. OncoImmunology, 2016, 5, e1224044.	2.1	32
346	Precision glycocalyx editing as a strategy for cancer immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10304-10309.	3.3	328
347	T Cell Factor 1-Expressing Memory-like CD8+ T Cells Sustain the Immune Response to Chronic Viral Infections. Immunity, 2016, 45, 415-427.	6.6	721

#	Article	IF	CITATIONS
348	Novel immunotherapy in the treatment of advanced non-small cell lung cancer. Expert Review of Clinical Pharmacology, 2016, 9, 1571-1581.	1.3	21
349	PD-L1 in melanoma: facts and myths. Melanoma Management, 2016, 3, 187-194.	0.1	11
350	Galectin-9: From cell biology to complex disease dynamics. Journal of Biosciences, 2016, 41, 507-534.	0.5	66
351	Immediate Dysfunction of Vaccine-Elicited CD8+ T Cells Primed in the Absence of CD4+ T Cells. Journal of Immunology, 2016, 197, 1809-1822.	0.4	41
352	Anti-GITR therapy promotes immunity against malignant glioma in a murine model. Cancer Immunology, Immunotherapy, 2016, 65, 1555-1567.	2.0	33
353	Adoptive immunotherapy for hematological malignancies: Current status and new insights in chimeric antigen receptor T cells. Blood Cells, Molecules, and Diseases, 2016, 62, 49-63.	0.6	34
354	Cytotoxic T Cells in PD-L1–Positive Malignant Pleural Mesotheliomas Are Counterbalanced by Distinct Immunosuppressive Factors. Cancer Immunology Research, 2016, 4, 1038-1048.	1.6	62
355	Non-oncogenic Acute Viral Infections Disrupt Anti-cancer Responses and Lead to Accelerated Cancer-Specific Host Death. Cell Reports, 2016, 17, 957-965.	2.9	22
356	Association of PD-1/PD-L axis expression with cytolytic activity, mutational load, and prognosis in melanoma and other solid tumors. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7769-E7777.	3.3	145
357	BTLA identifies dysfunctional PD-1-expressing CD4 ⁺ T cells in human hepatocellular carcinoma. Oncolmmunology, 2016, 5, e1254855.	2.1	36
358	PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Science Translational Medicine, 2016, 8, 328rv4.	5.8	1,844
359	Cell-Intrinsic Barriers of T Cell-Based Immunotherapy. Trends in Molecular Medicine, 2016, 22, 1000-1011.	3.5	60
360	Emerging role of immunotherapy in urothelial carcinoma—Future directions and novel therapies. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 566-576.	0.8	7
361	Immune checkpoint inhibitors for cancer treatment. Archives of Pharmacal Research, 2016, 39, 1577-1587.	2.7	43
362	Tim-3: Expression on immune cells and roles at the maternal-fetal interface. Journal of Reproductive Immunology, 2016, 118, 92-99.	0.8	43
363	Follicular Lymphoma: The Role of the Tumor Microenvironment in Prognosis. Journal of Clinical and Experimental Hematopathology: JCEH, 2016, 56, 1-19.	0.3	39
364	Galectin-9 modulates immunity by promoting Th2/M2 differentiation and impacts survival in patients with metastatic melanoma. Melanoma Research, 2016, 26, 429-441.	0.6	53
365	Immunotherapy of Colorectal Cancer. Oncology Research and Treatment, 2016, 39, 346-350.	0.8	9

#	Article	IF	CITATIONS
366	Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. Immunity, 2016, 44, 1255-1269.	6.6	797
367	Novel Immunomodulatory Pathways in the Immunoglobulin Superfamily. , 2016, , 41-58.		0
368	Combinatorial approach to cancer immunotherapy: strength in numbers. Journal of Leukocyte Biology, 2016, 100, 275-290.	1.5	90
370	Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers. Breast Cancer Research, 2016, 18, 50.	2.2	56
371	Enhancing the Efficacy of Checkpoint Blockade Through Combination Therapies. , 2016, , 1-39.		0
372	New insights into the anti-PD-L1 and anti-PD-1 reagents in cancer therapy. European Journal of Inflammation, 2016, 14, 61-65.	0.2	0
373	The Outlook for Immune Checkpoint Targeting Strategies in Colorectal Cancer. Current Colorectal Cancer Reports, 2016, 12, 51-56.	1.0	0
374	Innovative perspectives of immunotherapy in head and neck cancer. From relevant scientific rationale to effective clinical practice. Cancer Treatment Reviews, 2016, 43, 113-123.	3.4	9
375	T-Cell Immunoglobulin and ITIM Domain (TIGIT) Associates with CD8+ T-Cell Exhaustion and Poor Clinical Outcome in AML Patients. Clinical Cancer Research, 2016, 22, 3057-3066.	3.2	217
376	Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nature Reviews Clinical Oncology, 2016, 13, 228-241.	12.5	679
377	A Chimeric Switch-Receptor Targeting PD1 Augments the Efficacy of Second-Generation CAR T Cells in Advanced Solid Tumors. Cancer Research, 2016, 76, 1578-1590.	0.4	411
378	Gemcitabine enhances antitumor efficacy of recombinant lipoimmunogen-based immunotherapy. Oncolmmunology, 2016, 5, e1095433.	2.1	15
379	Disruption of evasive immune cell microenvironment in tumors reflects immunity induced by radiation therapy. Oncolmmunology, 2016, 5, e1072673.	2.1	8
380	Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. International Immunology, 2016, 28, 383-391.	1.8	223
381	Emerging therapeutic targets in metastatic progression: A focus on breast cancer. , 2016, 161, 79-96.		53
382	PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis. Critical Reviews in Oncology/Hematology, 2016, 100, 88-98.	2.0	316
383	Programmed cell death-1 (PD-1) and T-cell immunoglobulin mucin-3 (Tim-3) regulate CD4 ⁺ T cells to induce Type 2 helper T cell (Th2) bias at the maternal–fetal interface. Human Reproduction, 2016, 31, 700-711.	0.4	95
384	Expression of the galectin-9-Tim-3 pathway in glioma tissues is associated with the clinical manifestations of glioma. Oncology Letters, 2016, 11, 1829-1834.	0.8	74

#	Article	IF	CITATIONS
385	The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1865, 168-175.	3.3	27
386	Immunotherapy for Gastric Cancer: A Focus on Immune Checkpoints. Targeted Oncology, 2016, 11, 469-477.	1.7	34
387	Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nature Communications, 2016, 7, 10501.	5.8	1,163
388	Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases. Human Vaccines and Immunotherapeutics, 2016, 12, 1418-1429.	1.4	70
389	"NextGen―Biologics: Bispecific Antibodies and Emerging Clinical Results. Expert Opinion on Biological Therapy, 2016, 16, 675-688.	1.4	37
390	Expanding the antimalarial toolkit: Targeting host–parasite interactions. Journal of Experimental Medicine, 2016, 213, 143-153.	4.2	22
391	Coinhibitory Pathways in Immunotherapy for Cancer. Annual Review of Immunology, 2016, 34, 539-573.	9.5	718
392	Immunotherapy of Cancer. , 2016, , .		3
393	The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nature Reviews Clinical Oncology, 2016, 13, 273-290.	12.5	909
394	Novel Targets of Immune Inhibitory and Stimulatory Co-signals. , 2016, , 295-305.		0
395	Therapy-induced microenvironmental changes in cancer. Journal of Molecular Medicine, 2016, 94, 497-508.	1.7	19
396	CD163 + M2-type tumor-associated macrophage support the suppression of tumor-infiltrating T cells in osteosarcoma. International Immunopharmacology, 2016, 34, 101-106.	1.7	86
397	Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Cancer Letters, 2016, 381, 259-268.	3.2	30
398	Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential. Therapeutic Advances in Medical Oncology, 2016, 8, 4-31.	1.4	40
399	Immune checkpoint blockade: Releasing the brake towards hematological malignancies. Blood Reviews, 2016, 30, 189-200.	2.8	34
400	Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor. Oncolmmunology, 2016, 5, e1062969.	2.1	27
401	Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Research, 2016, 44, e30-e30.	6.5	109
402	Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Seminars in Immunology, 2016, 28, 64-72.	2.7	52

#	Article	IF	Citations
403	Glioblastoma Eradication Following Immune Checkpoint Blockade in an Orthotopic, Immunocompetent Model. Cancer Immunology Research, 2016, 4, 124-135.	1.6	339
404	Combination cancer immunotherapies tailored to the tumour microenvironment. Nature Reviews Clinical Oncology, 2016, 13, 143-158.	12.5	753
405	The role of microenvironment and immunity in drug response in leukemia. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 414-426.	1.9	62
406	Immunotherapy for cancer in the central nervous system: Current and future directions. Oncolmmunology, 2016, 5, e1082027.	2.1	72
407	Ovarian carcinoma-infiltrating regulatory T cells were more potent suppressors of CD8+ T cell inflammation than their peripheral counterparts, a function dependent on TIM3 expression. Tumor Biology, 2016, 37, 3949-3956.	0.8	48
408	Cancer immunotherapy in veterinary medicine: Current options and new developments. Veterinary Journal, 2016, 207, 20-28.	0.6	44
409	Blockade of Programmed Death 1 Augments the Ability of Human T Cells Engineered to Target NY-ESO-1 to Control Tumor Growth after Adoptive Transfer. Clinical Cancer Research, 2016, 22, 436-447.	3.2	107
410	Combination Therapy with Anti-PD-1, Anti-TIM-3, and Focal Radiation Results in Regression of Murine Gliomas. Clinical Cancer Research, 2017, 23, 124-136.	3.2	345
411	Identification of a subset of human natural killer cells expressing high levels of programmed death 1: AÂphenotypic and functional characterization. Journal of Allergy and Clinical Immunology, 2017, 139, 335-346.e3.	1.5	379
412	Immune infiltrates in the breast cancer microenvironment: detection, characterization and clinical implication. Breast Cancer, 2017, 24, 3-15.	1.3	165
413	Aptamers for CD Antigens: From Cell Profiling to Activity Modulation. Molecular Therapy - Nucleic Acids, 2017, 6, 29-44.	2.3	33
414	Immunomodulatory Activity of VEGF in Cancer. International Review of Cell and Molecular Biology, 2017, 330, 295-342.	1.6	153
415	Tumor antigen-specific CD8+ T cells are negatively regulated by PD-1 and Tim-3 in human gastric cancer. Cellular Immunology, 2017, 313, 43-51.	1.4	75
416	Immune Checkpoint Inhibitors in Lung Cancer – An Unheralded Opportunity?. Clinical Oncology, 2017, 29, 207-217.	0.6	6
417	Noncoding <scp>RNA</scp> s and immune checkpoints—clinical implications as cancer therapeutics. FEBS Journal, 2017, 284, 1952-1966.	2.2	99
418	Combined blockade of Tim-3 and MEK inhibitor enhances the efficacy against melanoma. Biochemical and Biophysical Research Communications, 2017, 484, 378-384.	1.0	21
419	Novel immune check point inhibiting antibodies in cancer therapy—Opportunities and challenges. Drug Resistance Updates, 2017, 30, 39-47.	6.5	98
420	T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Communication and Signaling, 2017, 15, 1.	2.7	154

#	Article	IF	CITATIONS
421	Tim-3 is upregulated in human colorectal carcinoma and associated with tumor progression. Molecular Medicine Reports, 2017, 15, 689-695.	1.1	49
422	Transfer of Allogeneic CD4+ T Cells Rescues CD8+ T Cells in Anti-PD-L1–Resistant Tumors Leading to Tumor Eradication. Cancer Immunology Research, 2017, 5, 127-136.	1.6	17
423	Significance of immune checkpoint proteins in EGFR-mutant non-small cell lung cancer. Lung Cancer, 2017, 105, 17-22.	0.9	48
424	Radiotherapy and immunotherapy: a beneficial liaison?. Nature Reviews Clinical Oncology, 2017, 14, 365-379.	12.5	760
425	Emerging role of checkpoint blockade therapy in lymphoma. Therapeutic Advances in Hematology, 2017, 8, 81-90.	1.1	32
426	A review of the importance of immune responses in luminal B breast cancer. Oncolmmunology, 2017, 6, e1282590.	2.1	5
427	Potential immunotherapy targets in recurrent cervical cancer. Gynecologic Oncology, 2017, 145, 462-468.	0.6	19
428	Prognostic and predictive aspects of the tumor immune microenvironment and immune checkpoints in malignant pleural mesothelioma. Oncolmmunology, 2017, 6, e1261241.	2.1	67
429	Virus-Specific CD8+ T Cells Infiltrate Melanoma Lesions and Retain Function Independently of PD-1 Expression. Journal of Immunology, 2017, 198, 2979-2988.	0.4	44
430	Structural basis of a novel PD-L1 nanobody for immune checkpoint blockade. Cell Discovery, 2017, 3, 17004.	3.1	147
431	Inhibitory Receptors Induced by VSV Viroimmunotherapy Are Not Necessarily Targets for Improving Treatment Efficacy. Molecular Therapy, 2017, 25, 962-975.	3.7	22
432	Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Science Translational Medicine, 2017, 9, .	5.8	689
433	Reactivation of dormant anti-tumor immunity – a clinical perspective of therapeutic immune checkpoint modulation. Cell Communication and Signaling, 2017, 15, 5.	2.7	34
434	Tim3/Gal9 interactions between T cells and monocytes result in an immunosuppressive feedback loop that inhibits Th1 responses in osteosarcoma patients. International Immunopharmacology, 2017, 44, 153-159.	1.7	37
435	Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 2017, 168, 707-723.	13.5	3,483
436	Immune checkpoint receptors in cancer: redundant by design?. Current Opinion in Immunology, 2017, 45, 37-42.	2.4	23
437	Timâ€3 and its role in regulating antiâ€ŧumor immunity. Immunological Reviews, 2017, 276, 97-111.	2.8	599
438	Immunoregulatory functions of <scp>VISTA</scp> . Immunological Reviews, 2017, 276, 66-79.	2.8	154

#	Article	IF	CITATIONS
439	Monocytes, Macrophages, and Osteoclasts in Osteosarcoma. Journal of Adolescent and Young Adult Oncology, 2017, 6, 396-405.	0.7	57
440	Radiotherapy in the age of cancer immunology: Current concepts and future developments. Critical Reviews in Oncology/Hematology, 2017, 112, 1-10.	2.0	19
441	Immune checkpoints and their inhibition in cancer and infectious diseases. European Journal of Immunology, 2017, 47, 765-779.	1.6	418
442	CARs: Synthetic Immunoreceptors for Cancer Therapy and Beyond. Trends in Molecular Medicine, 2017, 23, 430-450.	3.5	89
443	Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein and Cell, 2017, 8, 573-589.	4.8	67
444	Elevated Galectin-9 Suppresses Th1 Effector Function and Induces Apoptosis of Activated CD4+ T Cells in Osteoarthritis. Inflammation, 2017, 40, 1062-1071.	1.7	22
445	Increased PD-1+ and TIM-3+ TILs during Cetuximab Therapy Inversely Correlate with Response in Head and Neck Cancer Patients. Cancer Immunology Research, 2017, 5, 408-416.	1.6	84
446	Chemotherapy for Leukemia. , 2017, , .		2
447	Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection. Journal of Zhejiang University: Science B, 2017, 18, 277-288.	1.3	47
448	TIM-3 plays a more important role than PD-1 in the functional impairments of cytotoxic T cells of malignant Schwannomas. Tumor Biology, 2017, 39, 101042831769835.	0.8	13
449	Tim3+ Foxp3 + Treg Cells Are Potent Inhibitors of Effector T Cells and Are Suppressed in Rheumatoid Arthritis. Inflammation, 2017, 40, 1342-1350.	1.7	39
450	Checkpoint inhibitors in hematological malignancies. Journal of Hematology and Oncology, 2017, 10, 103.	6.9	106
451	Immunobiology and Immune Based Therapies of Melanoma. , 2017, , 871-890.		0
452	Hepatitis A virus cellular receptor 2 (<scp>HAVCR</scp> 2) is decreased with viral infection and regulates proâ€labour mediators OA. American Journal of Reproductive Immunology, 2017, 78, e12696.	1.2	7
453	Immunotherapy for the treatment of breast cancer. Expert Opinion on Biological Therapy, 2017, 17, 797-812.	1.4	12
454	Co-Signaling Molecules in Maternal–Fetal Immunity. Trends in Molecular Medicine, 2017, 23, 46-58.	3.5	50
455	Immunosuppression in liver tumors: opening the portal to effective immunotherapy. Cancer Gene Therapy, 2017, 24, 114-120.	2.2	15
456	Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treatment Reviews, 2017, 52, 71-81.	3.4	437

CITATION REPORT ARTICLE IF CITATIONS # Transcriptional and epigenetic regulation of T cell hyporesponsiveness. Journal of Leukocyte Biology, 457 1.5 39 2017, 102, 601-615. Overcoming immunosuppression in bone metastases. Critical Reviews in Oncology/Hematology, 2017, 117, 114-127. Immunotherapy for Head and Neck Squamous Cell Carcinoma: A Review of Current and Emerging 459 1.9 23 Therapeutic Options. Oncologist, 2017, 22, 680-693. Pulmonary Toxicities from Checkpoint Immunotherapy for Malignancy. Clinics in Chest Medicine, 2017, 38, 223-232. Novel Checkpoints and Cosignaling Molecules in Cancer Immunotherapy. Cancer Journal (Sudbury,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 461 IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours. Nature Communications, 2017, 8, 15776. 5.8 119 Cancer immunotherapy by targeting immune checkpoints: mechanism of T cell dysfunction in cancer 463 2.6 88 immunity and new therapeutic targets. Journal of Biomedical Science, 2017, 24, 35. Clinical Features of Nivolumab-Induced Thyroiditis: A Case Series Study. Thyroid, 2017, 27, 894-901. 464 2.4 465 Checkpoint Blockade Immunotherapy for Glioblastoma., 2017, , 261-300. 2 Immune engineering: From systems immunology to engineering immunity. Current Opinion in 1.8 Biomedical Engineering, 2017, 1, 54-62. Role of TIM-3 in ovarian cancer. Clinical and Translational Oncology, 2017, 19, 1079-1083. 467 1.2 20 Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines. , 2017, 89 178, 31-47. Biomarkers and Immunotherapeutic Targets in Glioblastoma. World Neurosurgery, 2017, 102, 494-506. 469 0.7 29 Frequency and functional characterization of exhausted <scp>CD</scp>8⁺ T cells in

	chronic lymphocytic leukemia. European Journal of Haematology, 2017, 98, 622-631.		
471	Biological mechanisms of immune escape and implications for immunotherapy in head and neck squamous cell carcinoma. European Journal of Cancer, 2017, 76, 152-166.	1.3	82
472	Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. OncoImmunology, 2017, 6, e1261779.	2.1	235
473	Co-expression of TIM-3 and CEACAM1 promotes T cell exhaustion in colorectal cancer patients. International Immunopharmacology, 2017, 43, 210-218.	1.7	52
475	Emerging biomarkers for PD-1 pathway cancer therapy. Biomarkers in Medicine, 2017, 11, 53-67.	0.6	11

ARTICLE IF CITATIONS # Integration of nano drug-delivery system with cancer immunotherapy. Therapeutic Delivery, 2017, 8, 1.2 34 476 987-1000. Natural killer cell immunotherapies against cancer: checkpoint inhibitors and more. Seminars in 477 2.7 98 Immunology, 2017, 31, 55-63. The yin and yang of leukotriene B 4 mediated inflammation in cancer. Seminars in Immunology, 2017, 33, 478 2.7 40 58-64. Dual enhancement of T and NK cell function by pulsatile inhibition of SHIP1 improves antitumor 479 immunity and survival. Science Signaling, 2017, 10, . Exhaustion of T lymphocytes in the tumor microenvironment: Significance and effective mechanisms. 480 1.4 114 Cellular Immunology, 2017, 322, 1-14. Mechanisms regulating T-cell infiltration and activity in solid tumors. Annals of Oncology, 2017, 28, xii18-xii32. Cutting Edge: Anti–TIM-3 Treatment Exacerbates Pulmonary Inflammation and Fibrosis in Mice. Journal 482 0.4 21 of Immunology, 2017, 199, 3733-3737. Combination Therapy with Bispecific Antibodies and PD-1 Blockade Enhances the Antitumor Potency of 484 0.4 60 T Cells. Cancer Research, 2017, 77, 5384-5394. Pembrolizumab in the treatment of metastatic non-small cell lung cancer: a review of current 485 1.0 28 evidence. Therapeutic Advances in Respiratory Disease, 2017, 11, 353-373. Timing of PD-1 Blockade Is Critical to Effective Combination Immunotherapy with Anti-OX40. Clinical 3.2 249 Cancer Research, 2017, 23, 6165-6177. T-cell immunoglobulin mucin-3 expression in invasive ductal breast carcinoma: Clinicopathological correlations and association with tumor infiltration by cytotoxic lymphocytes. Molecular and 487 0.4 23 Clinical Oncology, 2017, 7, 557-563. Immunotherapy against endocrine malignancies: immune checkpoint inhibitors lead the way. 488 1.6 Endocrine-Related Cancer, 2017, 24, T261-T281. CD155T/TIGIT Signaling Regulates CD8+ T-cell Metabolism and Promotes Tumor Progression in Human 489 0.4 218 Gastric Cancer. Cancer Research, 2017, 77, 6375-6388. The effect of immune checkpoint inhibitors on lung metastases of osteosarcoma. Journal of Pediatric 0.8 Surgery, 2017, 52, 2047-2050. Analysis of non-small cell lung cancer microenvironment indicates preponderance of T cell 491 1.2 11 exhaustion marker expression. Experimental Cell Research, 2017, 360, 205-209. Tim-3, Lag-3, and TIGIT. Current Topics in Microbiology and Immunology, 2017, 410, 127-156. 109 Loss of regulatory characteristics in CD4+ CD25+/hi T cells induced by impaired transforming growth 493 0.9 3 factor beta secretion in pneumoconiosis. Apmis, 2017, 125, 1108-1116. Immune evasion mechanisms and immune checkpoint inhibition in advanced merkel cell carcinoma. 494 2.1 Oncolmmunology, 2017, 6, e1338237.

# 495	ARTICLE Smac mimetics and oncolytic viruses synergize in driving anticancer T-cell responses through complementary mechanisms. Nature Communications, 2017, 8, 344.	IF 5.8	CITATIONS
496	Low TIM3 expression indicates poor prognosis of metastatic prostate cancer and acts as an independent predictor of castration resistant status. Scientific Reports, 2017, 7, 8869.	1.6	40
497	Antibodies targeting BTLA or TIM-3 enhance HIV-1 specific T cell responses in combination with PD-1 blockade. Clinical Immunology, 2017, 183, 167-173.	1.4	46
498	Programmed cell deathâ€1 (PDâ€1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell–intrinsic PDâ€1. Hepatology, 2017, 66, 1920-1933.	3.6	142
499	Comprehensive Tâ€cell immunophenotyping and nextâ€generation sequencing of human papillomavirus (HPV)â€positive and HPVâ€negative head and neck squamous cell carcinomas. Journal of Pathology, 2017, 243, 354-365.	2.1	14
500	CDK4/6 inhibition triggers anti-tumour immunity. Nature, 2017, 548, 471-475.	13.7	998
501	Immunotherapy of cancers comes of age. Expert Review of Clinical Immunology, 2017, 13, 1001-1015.	1.3	84
502	A TIM-3 Oligonucleotide Aptamer Enhances T Cell Functions and Potentiates Tumor Immunity in Mice. Molecular Therapy, 2017, 25, 2280-2288.	3.7	40
503	Checkpoint inhibition in pediatric hematologic malignancies. Pediatric Hematology and Oncology, 2017, 34, 379-394.	0.3	23
504	Emerging Concepts Targeting Immune Checkpoints in Cancer and Autoimmunity. Current Topics in Microbiology and Immunology, 2017, , .	0.7	1
505	TIM-3 Engagement Promotes Effector Memory T Cell Differentiation of Human Antigen-Specific CD8 T Cells by Activating mTORC1. Journal of Immunology, 2017, 199, 4091-4102.	0.4	32
506	New Combination Strategies Using Programmed Cell Death 1/Programmed Cell Death Ligand 1 Checkpoint Inhibitors as a Backbone. Cancer Journal (Sudbury, Mass), 2017, 23, 10-22.	1.0	45
507	Postoperative Adjuvant Therapy for Resectable Pancreatic Cancer With Gemcitabine and Adoptive Immunotherapy. Pancreas, 2017, 46, 994-1002.	0.5	21
508	The Effect of Inhibitory Signals on the Priming of Drug Hapten–Specific T Cells That Express Distinct Vβ Receptors. Journal of Immunology, 2017, 199, 1223-1237.	0.4	41
509	Broad induction of immunoregulatory mechanisms after a short course of anti-IL-7Rα antibodies in NOD mice. BMC Immunology, 2017, 18, 18.	0.9	8
510	Synergistic effect of IL-12 and IL-18 induces TIM3 regulation of γδT cell function and decreases the risk of clinical malaria in children living in Papua New Guinea. BMC Medicine, 2017, 15, 114.	2.3	41
511	Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia. Journal of Hematology and Oncology, 2017, 10, 124.	6.9	42
512	The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Immunotherapy, 2017, 9, 681-692.	1.0	94

#	Article	IF	CITATIONS
513	Immune checkpoints in chronic obstructive pulmonary disease. European Respiratory Review, 2017, 26, 170045.	3.0	27
514	T-cell exhaustion in tuberculosis: pitfalls and prospects. Critical Reviews in Microbiology, 2017, 43, 133-141.	2.7	75
515	Resistance to anticancer immunity in cancer patients: potential strategies to reverse resistance. Annals of Oncology, 2017, 28, 457-467.	0.6	27
516	New Approaches to Investigate Drug-Induced Hypersensitivity. Chemical Research in Toxicology, 2017, 30, 239-259.	1.7	18
517	Synergistic effect of programmed cell death proteinÂ1 blockade and secondary lymphoid tissue chemokine in the induction of anti-tumor immunity by a therapeutic cancer vaccine. Archives of Virology, 2017, 162, 333-346.	0.9	12
518	Tim-3 Expression on Tumor-Infiltrating PD-1+CD8+ T Cells Correlates with Poor Clinical Outcome in Renal Cell Carcinoma. Cancer Research, 2017, 77, 1075-1082.	0.4	166
519	T‑cell immunoglobulin and mucin domain‑containing protein‑3 and galectin‑9 protein expression: Potential prognostic significance in esophageal squamous cell carcinoma for Chinese patients. Oncology Letters, 2017, 14, 8007-8013.	0.8	11
520	Immune Checkpoint Blockade in Breast Cancer Therapy. Advances in Experimental Medicine and Biology, 2017, 1026, 383-402.	0.8	24
521	Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Advances in Experimental Medicine and Biology, 2017, , .	0.8	9
523	TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nature Communications, 2017, 8, 2256.	5.8	284
524	Adaptive Resistance to Cancer Immunotherapy. Advances in Experimental Medicine and Biology, 2017, 1036, 213-227.	0.8	15
525	Current status of immunotherapy for sarcomas. Immunotherapy, 2017, 9, 1331-1338.	1.0	14
526	Water-soluble polyacetylene: a promising tool for sustainable drug delivery?. Therapeutic Delivery, 2017, 8, 929-932.	1.2	1
527	Tumor-infiltrating CD4+ T cells in patients with gastric cancer. Cancer Cell International, 2017, 17, 114.	1.8	30
528	Antitumor effect of membrane-type Tim-3 on hepatocellular carcinoma Hepa1-6 cells of ICR mice. Oncology Letters, 2017, 15, 2631-2634.	0.8	1
529	Expression of LAG-3 defines exhaustion of intratumoral PD-1+ T cells and correlates with poor outcome in follicular lymphoma. Oncotarget, 2017, 8, 61425-61439.	0.8	146
531	Targeting immune checkpoints in malignant glioma. Oncotarget, 2017, 8, 7157-7174.	0.8	42
532	Control of NK Cell Activation by Immune Checkpoint Molecules. International Journal of Molecular Sciences, 2017, 18, 2129.	1.8	64

#	Article	IF	CITATIONS
533	TIM-3 as a Target for Cancer Immunotherapy and Mechanisms of Action. International Journal of Molecular Sciences, 2017, 18, 645.	1.8	193
534	Immunometabolic Regulations Mediated by Coinhibitory Receptors and Their Impact on T Cell Immune Responses. Frontiers in Immunology, 2017, 8, 330.	2.2	44
535	Comparative Analysis of Immune Checkpoint Molecules and Their Potential Role in the Transmissible Tasmanian Devil Facial Tumor Disease. Frontiers in Immunology, 2017, 8, 513.	2.2	19
536	PD-1 Blockade Promotes Emerging Checkpoint Inhibitors in Enhancing T Cell Responses to Allogeneic Dendritic Cells. Frontiers in Immunology, 2017, 8, 572.	2.2	59
537	Coinhibitory Receptor Expression and Immune Checkpoint Blockade: Maintaining a Balance in CD8+ T Cell Responses to Chronic Viral Infections and Cancer. Frontiers in Immunology, 2017, 8, 1215.	2.2	80
538	Clinical Applications of Immunotherapy Combination Methods and New Opportunities for the Future. BioMed Research International, 2017, 2017, 1-10.	0.9	6
539	Update on immune checkpoint inhibitors in gynecological cancers. Journal of Gynecologic Oncology, 2017, 28, e20.	1.0	49
540	Preoperative Tim-3 expression on peripheral NK cells is correlated with pathologic TNM staging in colorectal cancer. Molecular Medicine Reports, 2017, 15, 3810-3818.	1.1	25
541	The role of tumour heterogeneity and clonal cooperativity in metastasis, immune evasion and clinical outcome. BMC Medicine, 2017, 15, 133.	2.3	166
542	The biology of Hepatocellular carcinoma: implications for genomic and immune therapies. Molecular Cancer, 2017, 16, 149.	7.9	338
543	Tumor-derived exosomes induce CD8+ T cell suppressors. , 2017, 5, 65.		133
544	Tim-3 and PD-1 regulate CD8 ⁺ T cell function to maintain early pregnancy in mice. Journal of Reproduction and Development, 2017, 63, 289-294.	0.5	26
545	Mesenchymal traits at the convergence of tumor-intrinsic and -extrinsic mechanisms of resistance to immune checkpoint blockers. Emerging Topics in Life Sciences, 2017, 1, 471-486.	1.1	5
546	PD1 signal transduction pathways in T cells. Oncotarget, 2017, 8, 51936-51945.	0.8	191
547	Advances in the Treatment of Primary Brain Tumors: The Realm of Immunotherapy. , 0, , .		0
548	Combined Blockade of T Cell Immunoglobulin and Mucin Domain 3 and Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Results in Durable Therapeutic Efficacy in Mice with Intracranial Gliomas. Medical Science Monitor, 2017, 23, 3593-3602.	0.5	20
549	PD-1/PD-Ls: A New Target for Regulating Immunopathogenesis in Central Nervous System Disorders. Current Drug Delivery, 2017, 14, 791-796.	0.8	0
550	Overcoming resistance to targeted therapy with immunotherapy and combination therapy for metastatic melanoma. Oncotarget, 2017, 8, 75675-75686.	0.8	42

#	Article	IF	CITATIONS
551	Down-regulated expression of Tim-3 promotes invasion and metastasis of colorectal cancer cells. Neoplasma, 2017, 64, 101-107.	0.7	18
552	Atorvastatin downregulates co-inhibitory receptor expression by targeting Ras-activated mTOR signalling. Oncotarget, 2017, 8, 98215-98232.	0.8	30
553	Tim-3 co-stimulation promotes short-lived effector T cells, restricts memory precursors, and is dispensable for T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2455-2460.	3.3	124
554	CAR-T Cells: Next Generation Cancer Therapeutics. Journal of the Indian Institute of Science, 2018, 98, 21-31.	0.9	0
555	Cancer-associated fibroblasts induce antigen-specific deletion of CD8 + T Cells to protect tumour cells. Nature Communications, 2018, 9, 948.	5.8	369
556	Multiplexed Immunofluorescence Analysis and Quantification of Intratumoral PD-1 ⁺ Tim-3 ⁺ CD8 ⁺ T Cells. Journal of Visualized Experiments, 2018, , .	0.2	14
557	Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science, 2018, 359, 1037-1042.	6.0	254
558	Importance of immune monitoring approaches and the use of immune checkpoints for the treatment of diffuse intrinsic pontine glioma: From bench to clinic and vice versa (Review). International Journal of Oncology, 2018, 52, 1041-1056.	1.4	4
559	TIM-3 expression identifies a distinctive PD-1 + follicular helper T cell subset, with reduced interleukin 21 production and B cell help function in ovarian cancer patients. International Immunopharmacology, 2018, 57, 139-146.	1.7	14
560	Characterization of TIM-3 expression and its prognostic value in patients with surgically resected lung adenocarcinoma. Lung Cancer, 2018, 121, 18-24.	0.9	24
561	The function and dysfunction of memory <scp>CD</scp> 8 ⁺ T cells in tumor immunity. Immunological Reviews, 2018, 283, 194-212.	2.8	121
562	Quo Vadis—Do Immunotherapies Have a Role in Glioblastoma?. Current Treatment Options in Neurology, 2018, 20, 14.	0.7	22
563	IL21 Therapy Combined with PD-1 and Tim-3 Blockade Provides Enhanced NK Cell Antitumor Activity against MHC Class I–Deficient Tumors. Cancer Immunology Research, 2018, 6, 685-695.	1.6	39
564	T Cell Dysfunction in Cancer. Cancer Cell, 2018, 33, 547-562.	7.7	787
565	Bispecific antibodies in cancer immunotherapy. , 2018, 6, 3-17.	1.4	157
566	Tumor cell-intrinsic Tim-3 promotes liver cancer via NF-κB/IL-6/STAT3 axis. Oncogene, 2018, 37, 2456-2468.	2.6	54
567	CD8 T Cell Exhaustion in Chronic Infection and Cancer: Opportunities for Interventions. Annual Review of Medicine, 2018, 69, 301-318.	5.0	432
568	Expression of programmed cell death protein 1 (PD-1) and indoleamine 2,3-dioxygenase (IDO) in the tumor microenvironment and in tumor-draining lymph nodes of breast cancer. Human Pathology, 2018, 75, 81-90.	1.1	20

#	Article	IF	CITATIONS
569	Cell death-based treatments of melanoma:conventional treatments and new therapeutic strategies. Cell Death and Disease, 2018, 9, 112.	2.7	94
570	The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cellular and Molecular Immunology, 2018, 15, 438-446.	4.8	88
571	Biomarkers in Graft-Versus-Host Disease: from Prediction and Diagnosis to Insights into Complex Graft/Host Interactions. Current Hematologic Malignancy Reports, 2018, 13, 44-52.	1.2	13
572	Checkpoint inhibitors in tripleâ€negative breast cancer (TNBC): Where to go from here. Cancer, 2018, 124, 2086-2103.	2.0	141
573	Immune-based therapies for metastatic prostate cancer: an update. Immunotherapy, 2018, 10, 283-298.	1.0	9
574	Immunotherapy, an evolving approach for the management of triple negative breast cancer: Converting non-responders to responders. Critical Reviews in Oncology/Hematology, 2018, 122, 202-207.	2.0	43
575	Preclinical Data Supporting Antitumor Activity of PD-1 Blockade. Cancer Journal (Sudbury, Mass), 2018, 24, 2-6.	1.0	5
576	T cell exhaustion in cancer: Mechanisms and clinical implications. Journal of Cellular Biochemistry, 2018, 119, 4279-4286.	1.2	40
577	Molecular Biomarkers of Primary and Acquired Resistance to T-Cell-Mediated Immunotherapy in Cancer: Landscape, Clinical Implications, and Future Directions. Oncologist, 2018, 23, 410-421.	1.9	23
578	NK Cell-Based Therapies. , 2018, , 275-288.		2
579	Immune checkpoint molecules in acute myeloid leukaemia: managing the doubleâ€edged sword. British Journal of Haematology, 2018, 181, 38-53.	1.2	42
580	Acute stimulation generates Timâ€3â€expressing T helper type 1 <scp>CD</scp> 4 T cells that persist <i>in vivo</i> and show enhanced effector function. Immunology, 2018, 154, 418-433.	2.0	14
581	Expression of LLT1 and its receptor CD161 in lung cancer is associated with better clinical outcome. Oncolmmunology, 2018, 7, e1423184.	2.1	38
582	Mechanisms of resistance to immune checkpoint inhibitors. British Journal of Cancer, 2018, 118, 9-16.	2.9	944
583	TIM-3 Regulates CD103+ Dendritic Cell Function and Response to Chemotherapy in Breast Cancer. Cancer Cell, 2018, 33, 60-74.e6.	7.7	270
584	Novel Effector Phenotype of Tim-3+ Regulatory T Cells Leads to Enhanced Suppressive Function in Head and Neck Cancer Patients. Clinical Cancer Research, 2018, 24, 4529-4538.	3.2	82
587	Long non-coding RNA Lnc-Tim3 exacerbates CD8 T cell exhaustion via binding to Tim-3 and inducing nuclear translocation of Bat3 in HCC. Cell Death and Disease, 2018, 9, 478.	2.7	122
588	Blocking Tim-3 or/and PD-1 reverses dysfunction of tumor-infiltrating lymphocytes in HBV-related hepatocellular carcinoma. Bulletin Du Cancer, 2018, 105, 493-501.	0.6	36

#	Article	IF	CITATIONS
589	T-cell Dysfunction in Glioblastoma: Applying a New Framework. Clinical Cancer Research, 2018, 24, 3792-3802.	3.2	196
590	PD-L1–Independent Mechanisms Control the Resistance of Melanoma to CD4+ T Cell Adoptive Immunotherapy. Journal of Immunology, 2018, 200, 3304-3311.	0.4	6
591	B7-H3 Negatively Modulates CTL-Mediated Cancer Immunity. Clinical Cancer Research, 2018, 24, 2653-2664.	3.2	109
592	Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies. Immunity, 2018, 48, 417-433.	6.6	416
593	The Therapeutic Potential of Targeting Tumor Microenvironment in Breast Cancer: Rational Strategies and Recent Progress. Journal of Cellular Biochemistry, 2018, 119, 111-122.	1.2	51
594	Combination Strategies on the Basis of Immune Checkpoint Inhibitors in Non–Small-Cell Lung Cancer: Where Do We Stand?. Clinical Lung Cancer, 2018, 19, 1-11.	1.1	48
595	CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8+ T Cells. Cancer Research, 2018, 78, 115-128.	0.4	284
596	Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Annals of Oncology, 2018, 29, 71-83.	0.6	253
597	CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cellular and Molecular Life Sciences, 2018, 75, 689-713.	2.4	351
598	The diverse functions of the PD1 inhibitory pathway. Nature Reviews Immunology, 2018, 18, 153-167.	10.6	1,210
599	Immune checkpoint blockade in infectious diseases. Nature Reviews Immunology, 2018, 18, 91-104.	10.6	407
600	Blockade of Tim-3 binding to phosphatidylserine and CEACAM1 is a shared feature of anti-Tim-3 antibodies that have functional efficacy. Oncolmmunology, 2018, 7, e1385690.	2.1	80
601	Graftâ€infiltrating PDâ€L1hi crossâ€dressed dendritic cells regulate antidonor T cell responses in mouse liver transplant tolerance. Hepatology, 2018, 67, 1499-1515.	3.6	77
602	Targets for immunotherapy of liver cancer. Journal of Hepatology, 2018, 68, 157-166.	1.8	129
603	CD8+ T Cells in Immunotherapy, Radiotherapy, and Chemotherapy. , 2018, , 23-39.		7
604	Increased Coexpression of PD-1, TIGIT, and KLRG-1 on Tumor-Reactive CD8+ T Cells During Relapse after Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2018, 24, 666-677.	2.0	45
605	Naive CD4+ T Cells Carrying a TLR2 Agonist Overcome TGF-β–Mediated Tumor Immune Evasion. Journal of Immunology, 2018, 200, 847-856.	0.4	8
606	Conjugated Bilirubin Upregulates TIM-3 Expression on CD4 ⁺ CD25 ⁺ T Cells: Anti-Inflammatory Implications for Hepatitis A Virus Infection. Viral Immunology, 2018, 31, 223-232.	0.6	8

#	Article	IF	CITATIONS
607	Eight-Color Multiplex Immunohistochemistry for Simultaneous Detection of Multiple Immune Checkpoint Molecules within the Tumor Microenvironment. Journal of Immunology, 2018, 200, 347-354.	0.4	181
608	Primary and Acquired Resistance to Immune Checkpoint Inhibitors in Metastatic Melanoma. Clinical Cancer Research, 2018, 24, 1260-1270.	3.2	289
609	Estrogen Regulation of T-Cell Function and Its Impact on the Tumor Microenvironment. , 2018, 2, 81-91.	0.8	9
610	ATR kinase inhibitor AZD6738 potentiates CD8+ T cell–dependent antitumor activity following radiation. Journal of Clinical Investigation, 2018, 128, 3926-3940.	3.9	136
611	Using the Spleen as an <i>In Vivo</i> Systemic Immune Barometer Alongside Osteosarcoma Disease Progression and Immunotherapy with <i>α</i> -PD-L1. Sarcoma, 2018, 2018, 1-13.	0.7	24
612	Increased serum levels of Galectin‑9 in patients with chronic lymphocytic leukemia. Oncology Letters, 2019, 17, 1019-1029.	0.8	10
613	TSC2-deficient tumors have evidence of T cell exhaustion and respond to anti–PD-1/anti–CTLA-4 immunotherapy. JCI Insight, 2018, 3, .	2.3	49
614	Immunotherapy and new frontiers in the treatment of lung cancer. Shanghai Chest, 0, 2, 77-77.	0.3	0
616	On the Dual Role of Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 (CEACAM1) in Human Malignancies. Journal of Immunology Research, 2018, 2018, 1-8.	0.9	28
617	Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1â $\in 6$ hepatocellular carcinoma model. Cancer Science, 2018, 109, 3993-4002.	1.7	215
618	CAR T Cell Therapy for Neuroblastoma. Frontiers in Immunology, 2018, 9, 2380.	2.2	107
619	Harnessing immune checkpoints for cancer therapy. Immunotherapy, 2018, 10, 1265-1284.	1.0	9
620	The Regulatory Status Adopted by Lymph Node Dendritic Cells and T Cells During Healthy Aging Is Maintained During Cancer and May Contribute to Reduced Responses to Immunotherapy. Frontiers in Medicine, 2018, 5, 337.	1.2	2
621	Renal Cell Carcinoma (RCC) Tumors Display Large Expansion of Double Positive (DP) CD4+CD8+ T Cells With Expression of Exhaustion Markers. Frontiers in Immunology, 2018, 9, 2728.	2.2	39
622	CTLA-4 and PD-1 Control of T-Cell Motility and Migration: Implications for Tumor Immunotherapy. Frontiers in Immunology, 2018, 9, 2737.	2.2	123
623	High resolution X-ray and NMR structural study of human T-cell immunoglobulin and mucin domain containing protein-3. Scientific Reports, 2018, 8, 17512.	1.6	35
624	Crosstalk Between PD-1/PD-L1 Blockade and Its Combinatorial Therapies in Tumor Immune Microenvironment: A Focus on HNSCC. Frontiers in Oncology, 2018, 8, 532.	1.3	27
625	Checkpoint Inhibition in Myeloma: Opportunities and Challenges. Frontiers in Immunology, 2018, 9, 2204.	2.2	45

#	Article	IF	CITATIONS
626	Urine-derived lymphocytes as a non-invasive measure of the bladder tumor immune microenvironment. Journal of Experimental Medicine, 2018, 215, 2748-2759.	4.2	34
627	Prognostic Factors for Checkpoint Inhibitor Based Immunotherapy: An Update With New Evidences. Frontiers in Pharmacology, 2018, 9, 1050.	1.6	48
628	Notch2-dependent DC2s mediate splenic germinal center responses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10726-10731.	3.3	53
629	Checkpoint Blockade Reverses Anergy in IL-13Rα2 Humanized scFv-Based CAR T Cells to Treat Murine and Canine Gliomas. Molecular Therapy - Oncolytics, 2018, 11, 20-38.	2.0	123
630	Empowering dendritic cell cancer vaccination: the role of combinatorial strategies. Cytotherapy, 2018, 20, 1309-1323.	0.3	16
631	Cardiac morbidity in HIV infection is associated with checkpoint inhibitor LAG-3 on CD4 T cells. PLoS ONE, 2018, 13, e0206256.	1.1	10
632	Next generation immune-checkpoints for cancer therapy. Journal of Thoracic Disease, 2018, 10, S1581-S1601.	0.6	50
633	Inhibitory Receptors and Pathways of Lymphocytes: The Role of PD-1 in Treg Development and Their Involvement in Autoimmunity Onset and Cancer Progression. Frontiers in Immunology, 2018, 9, 2374.	2.2	150
634	Tim-3 expression and its role in hepatocellular carcinoma. Journal of Hematology and Oncology, 2018, 11, 126.	6.9	89
636	TIM-3, a promising target for cancer immunotherapy. OncoTargets and Therapy, 2018, Volume 11, 7005-7009.	1.0	172
637	Nobel goes to immune checkpoint—Innovative cancer treatment by immunotherapy. Science China Life Sciences, 2018, 61, 1445-1450.	2.3	3
638	TIM-3 expression in breast cancer. Oncolmmunology, 2018, 7, e1502128.	2.1	42
639	New strategies in immunotherapy for lung cancer: beyond PD-1/PD-L1. Therapeutic Advances in Respiratory Disease, 2018, 12, 175346661879413.	1.0	35
640	<scp>PD</scp> â€1+ <scp>TIM</scp> â€3+ T cells in malignant ascites predict prognosis of gastrointestinal cancer. Cancer Science, 2018, 109, 2986-2992.	1.7	33
641	Patients with intracranial aneurysms presented defects in regulatory T cells, which were associated with impairment in Tim-3 upregulation. International Immunopharmacology, 2018, 64, 350-355.	1.7	5
642	Dietary Protein Restriction Reprograms Tumor-Associated Macrophages and Enhances Immunotherapy. Clinical Cancer Research, 2018, 24, 6383-6395.	3.2	69
643	Novel immunotherapy strategies for hepatobiliary cancers. Immunotherapy, 2018, 10, 1077-1091.	1.0	6
644	TLR Stimulation during T-cell Activation Lowers PD-1 Expression on CD8+ T Cells. Cancer Immunology Research, 2018, 6, 1364-1374.	1.6	36

ARTICLE IF CITATIONS # Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells. 645 2.2 93 Frontiers in Immunology, 2018, 9, 2041. Cancer Cells Exploit Notch Signaling to Redefine a Supportive Cytokine Milieu. Frontiers in 646 2.2 Immunology, 2018, 9, 1823. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. 647 2.1 217 Oncolmmunology, 2018, 7, e1466769. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nature 648 5.8 282 Communications, 2018, 9, 1908. Occurrence of type 1 and type 2 diabetes in patients treated with immunotherapy (anti-PD-1 and/or) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 649 2.0 24 67, 1197-1208. Receptors That Inhibit Macrophage Activation: Mechanisms and Signals of Regulation and Tolerance. Journal of Immunology Research, 2018, 2018, 1-14. T Lymphocyte–Based Cancer Immunotherapeutics. International Review of Cell and Molecular Biology, 651 1.6 22 2018, 341, 201-276. Targeting Protein-Protein Interactions by Small Molecules., 2018,,. The changing scenario of 1st line therapy in non-oncogene addicted NSCLCs in the era of 653 2.0 16 immunotherapy. Critical Reviews in Oncology/Hematology, 2018, 130, 1-12. Immune Checkpoint Inhibitors to Treat Malignant Lymphomas. Journal of Immunology Research, 2018, 654 2018, 1-10. Small Molecule Inhibitors Targeting New Targets of Protein-Protein Interactions., 2018, , 179-211. 655 1 PD-L1, TIM-3, and CTLA-4 Blockade Fails To Promote Resistance to Secondary Infection with Virulent 1.0 Strains of Toxoplasma gondii. Infection and Immunity, 2018, 86, . Immune ligands for cytotoxic T Lymphocytes CTLS in cancer stem cells CSCS. Frontiers in Bioscience -658 3.0 6 Landmark, 2018, 23, 563-583. Induction of Tertiary Lymphoid Structures With Antitumor Function by a Lymph Node-Derived Stromal 659 2.2 Cell Line. Frontiers in Immunology, 2018, 9, 1609. Immune Checkpoint-Mediated Interactions Between Cancer and Immune Cells in Prostate 660 2.2 29 Adenocarcinoma and Melanoma. Frontiers in Immunology, 2018, 9, 1786. Combination immune checkpoint blockade as an effective therapy for mesothelioma. Oncolmmunology, 2018, 7, e1494111. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): 662 1.8 157 Combination or Built-In CAR-T. International Journal of Molecular Sciences, 2018, 19, 340. Impact of benznidazole treatment on the functional response of Trypanosoma cruzi antigen-specific CD4+CD8+ T cells in chronic Chagas disease patients. PLoS Neglected Tropical Diseases, 2018, 12, 1.3 e0006480.

#	Article	IF	CITATIONS
664	Resistance to Radiotherapy and PD-L1 Blockade Is Mediated by TIM-3 Upregulation and Regulatory T-Cell Infiltration. Clinical Cancer Research, 2018, 24, 5368-5380.	3.2	189
665	Monoclonal Antibody Therapies for Hematological Malignancies: Not Just Lineage-Specific Targets. Frontiers in Immunology, 2017, 8, 1936.	2.2	39
666	Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy. Frontiers in Immunology, 2018, 9, 14.	2.2	356
667	Checks and Balances in Autoimmune Vasculitis. Frontiers in Immunology, 2018, 9, 315.	2.2	31
668	Adaptive NKG2C+CD57+ Natural Killer Cell and Tim-3 Expression During Viral Infections. Frontiers in Immunology, 2018, 9, 686.	2.2	41
669	Improving the Efficiency of Vγ9Vδ2 T-Cell Immunotherapy in Cancer. Frontiers in Immunology, 2018, 9, 800.	2.2	123
670	Therapeutic Antibodies for Myeloid Neoplasms—Current Developments and Future Directions. Frontiers in Oncology, 2018, 8, 152.	1.3	30
671	Targeting the Immune Microenvironment in Acute Myeloid Leukemia: A Focus on T Cell Immunity. Frontiers in Oncology, 2018, 8, 213.	1.3	100
672	The Role of Inflammatory Cytokines in Creating T Cell Exhaustion in Cancer. Cancer Biotherapy and Radiopharmaceuticals, 2018, 33, 267-273.	0.7	9
673	Activation of NKT Cells in an Anti-PD-1–Resistant Tumor Model Enhances Antitumor Immunity by Reinvigorating Exhausted CD8 T Cells. Cancer Research, 2018, 78, 5315-5326.	0.4	44
674	Early and Partial Reduction in CD4 ⁺ Foxp3 ⁺ Regulatory T Cells during Colitis-Associated Colon Cancer Induces CD4 ⁺ and CD8 ⁺ T Cell Activation Inhibiting Tumorigenesis. Journal of Cancer, 2018, 9, 239-249.	1.2	30
675	Immune checkpoint receptors: homeostatic regulators of immunity. Hepatology International, 2018, 12, 223-236.	1.9	43
676	Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Molecular Cancer, 2018, 17, 7.	7.9	63
677	Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Experimental and Molecular Medicine, 2018, 50, 1-13.	3.2	152
678	Highly elevated soluble Tim-3 levels correlate with increased hepatocellular carcinoma risk and poor survival of hepatocellular carcinoma patients in chronic hepatitis B virus infection. Cancer Management and Research, 2018, Volume 10, 941-951.	0.9	45
679	Microenvironment Cell Contribution to Lymphoma Immunity. Frontiers in Oncology, 2018, 8, 288.	1.3	32
680	Crucial role of CD69 in anti-tumor immunity through regulating the exhaustion of tumor-infiltrating T cells. International Immunology, 2018, 30, 559-567.	1.8	73
681	Dysfunction of HPV16-specific CD8+ T cells derived from oropharyngeal tumors is related to the expression of Tim-3 but not PD-1. Oral Oncology, 2018, 82, 75-82.	0.8	13

#	Article	IF	Citations
682	Human Asymptomatic Epitope Peptide/CXCL10-Based Prime/Pull Vaccine Induces Herpes Simplex Virus-Specific Gamma Interferon-Positive CD107 ⁺ CD8 ⁺ T Cells That Infiltrate the Corneas and Trigeminal Ganglia of Humanized HLA Transgenic Rabbits and Protect against Ocular Herpes Challenge. Journal of Virology, 2018, 92, .	1.5	24
683	Models of Immune Aging. , 2018, , 783-802.		0
684	A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nature Medicine, 2018, 24, 994-1004.	15.2	783
685	Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature, 2018, 558, 454-459.	13.7	336
686	Immunotherapy of Cancer. , 2019, , 1033-1048.e1.		3
687	Acquired resistance to cancer immunotherapy. Seminars in Immunopathology, 2019, 41, 31-40.	2.8	34
688	On the Horizon: Targeting Next-Generation Immune Checkpoints for Cancer Treatment. Chemotherapy, 2019, 64, 62-80.	0.8	34
689	PD-L1 blockade engages tumor-infiltrating lymphocytes to co-express targetable activating and inhibitory receptors. , 2019, 7, 217.		47
690	Immune Conversion of Tumor Microenvironment by Oncolytic Viruses: The Protoparvovirus H-1PV Case Study. Frontiers in Immunology, 2019, 10, 1848.	2.2	56
691	Immunotherapy in Hepatocellular Carcinoma: Is There a Light at the End of the Tunnel?. Cancers, 2019, 11, 1078.	1.7	36
692	Contributions of T cell dysfunction to the resistance against anti-PD-1 therapy in oral carcinogenesis. Journal of Experimental and Clinical Cancer Research, 2019, 38, 299.	3.5	24
693	Caffeine-enhanced anti-tumor immune response through decreased expression of PD1 on infiltrated cytotoxic T lymphocytes. European Journal of Pharmacology, 2019, 859, 172538.	1.7	15
694	New emerging targets in cancer immunotherapy: the role of TIM3. ESMO Open, 2019, 4, e000497.	2.0	72
695	Checkpoint inhibitors in ovarian cancer: A review of preclinical data. Gynecologic Oncology Reports, 2019, 29, 48-54.	0.3	47
696	Clonal replacement of tumor-specific T cells following PD-1 blockade. Nature Medicine, 2019, 25, 1251-1259.	15.2	974
697	Effects of intermittent T-cell cluster disaggregation on proliferative capacity and checkpoint marker expression. Autoimmunity, 2019, 52, 102-107.	1.2	0
698	<p>PD-1 inhibitors dependent CD8⁺ T cells inhibit mouse colon cancer cell metastasis</p> . OncoTargets and Therapy, 2019, Volume 12, 6961-6971.	1.0	11
699	Possible therapeutic applicability of galectin-9 in cutaneous T-cell lymphoma. Journal of Dermatological Science, 2019, 96, 134-142.	1.0	14

#	Article	IF	CITATIONS
700	Tim-3: A co-receptor with diverse roles in T cell exhaustion and tolerance. Seminars in Immunology, 2019, 42, 101302.	2.7	98
701	Monoclonal Antibodies in Dermatooncology—State of the Art and Future Perspectives. Cancers, 2019, 11, 1420.	1.7	9
702	Selective flotation separation of molybdenite and chalcopyrite by thermal pretreatment under air atmosphere. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123958.	2.3	27
703	Does selected immunological panel possess the value of predicting the prognosis of early-stage resectable non-small cell lung cancer?. Translational Lung Cancer Research, 2019, 8, 559-574.	1.3	5
704	The Common Costimulatory and Coinhibitory Signaling Molecules in Head and Neck Squamous Cell Carcinoma. Frontiers in Immunology, 2019, 10, 2457.	2.2	16
705	Immunotherapy in renal cell carcinoma from poverty to the spoiled of choice. Immunotherapy, 2019, 11, 1507-1521.	1.0	17
706	Mechanisms of Relapse After CD19 CAR T-Cell Therapy for Acute Lymphoblastic Leukemia and Its Prevention and Treatment Strategies. Frontiers in Immunology, 2019, 10, 2664.	2.2	214
707	Exhaustion may not be in the human B cell vocabulary, at least not in malaria. Immunological Reviews, 2019, 292, 139-148.	2.8	21
708	Targeting Multiple Receptors to Increase Checkpoint Blockade Efficacy. International Journal of Molecular Sciences, 2019, 20, 158.	1.8	29
709	A molecular signature for CD8 ⁺ T cells from visceral leishmaniasis patients. Parasite Immunology, 2019, 41, e12669.	0.7	12
710	Localized Treatment with Oncolytic Adenovirus Delta-24-RGDOX Induces Systemic Immunity against Disseminated Subcutaneous and Intracranial Melanomas. Clinical Cancer Research, 2019, 25, 6801-6814.	3.2	27
711	Engineered triple inhibitory receptor resistance improves anti-tumor CAR-T cell performance via CD56. Nature Communications, 2019, 10, 4109.	5.8	72
712	Peripheral changes in immune cell populations and soluble mediators after anti-PD-1 therapy in non-small cell lung cancer and renal cell carcinoma patients. Cancer Immunology, Immunotherapy, 2019, 68, 1585-1596.	2.0	37
713	IL-2 Restores T-Cell Dysfunction Induced by Persistent Mycobacterium tuberculosis Antigen Stimulation. Frontiers in Immunology, 2019, 10, 2350.	2.2	31
714	Current Perspectives in Cancer Immunotherapy. Cancers, 2019, 11, 1472.	1.7	149
715	Molecular Modeling Studies on the Binding Mode of the PD-1/PD-L1 Complex Inhibitors. International Journal of Molecular Sciences, 2019, 20, 4654.	1.8	29
716	Radiosurgery and Immunotherapy in the Treatment of Brain Metastases. World Neurosurgery, 2019, 130, 615-622.	0.7	13
717	Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Annals of Oncology, 2019, 30, 1902-1913.	0.6	144

#	Article	IF	CITATIONS
718	Effect of pembrolizumab on CD4+CD25+, CD4+LAP+ and CD4+TIM-3+ T cell subsets. Clinical and Experimental Immunology, 2019, 196, 345-352.	1.1	17
719	On the Other Side: Manipulating the Immune Checkpoint Landscape of Dendritic Cells to Enhance Cancer Immunotherapy. Frontiers in Oncology, 2019, 9, 50.	1.3	11
720	Patterns of TIGIT Expression in Lymphatic Tissue, Inflammation, and Cancer. Disease Markers, 2019, 2019, 1-13.	0.6	47
721	Combining immunotherapies to treat non-small cell lung cancer. Expert Review of Respiratory Medicine, 2019, 13, 621-634.	1.0	2
722	Expression of costimulatory and inhibitory receptors in FoxP3+ regulatory T cells within the tumor microenvironment: Implications for combination immunotherapy approaches. Advances in Cancer Research, 2019, 144, 193-261.	1.9	19
723	Can Immunogenic Chemotherapies Relieve Cancer Cell Resistance to Immune Checkpoint Inhibitors?. Frontiers in Immunology, 2019, 10, 1181.	2.2	20
724	IFN-Î ³ : A cytokine at the right time, is in the right place. Seminars in Immunology, 2019, 43, 101280.	2.7	134
725	Mechanisms of immunogenicity in colorectal cancer. British Journal of Surgery, 2019, 106, 1283-1297.	0.1	32
726	Resistance to Systemic Agents in Renal Cell Carcinoma Predict and Overcome Genomic Strategies Adopted by Tumor. Cancers, 2019, 11, 830.	1.7	29
727	Phosphatidylserine receptor-targeting therapies for the treatment of cancer. Archives of Pharmacal Research, 2019, 42, 617-628.	2.7	26
728	Comparison of IL-2 vs IL-7/IL-15 for the generation of NY-ESO-1-specific T cells. Cancer Immunology, Immunotherapy, 2019, 68, 1195-1209.	2.0	27
729	CD45RA+CCR7â^ CD8 T cells lacking co-stimulatory receptors demonstrate enhanced frequency in peripheral blood of NSCLC patients responding to nivolumab. , 2019, 7, 149.		44
730	Application of PD-1 Blockade in Cancer Immunotherapy. Computational and Structural Biotechnology Journal, 2019, 17, 661-674.	1.9	333
731	Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. Journal of Hematology and Oncology, 2019, 12, 59.	6.9	127
732	Innate Immune Cells: A Potential and Promising Cell Population for Treating Osteosarcoma. Frontiers in Immunology, 2019, 10, 1114.	2.2	41
733	The nextâ€generation BET inhibitor, PLX51107, delays melanoma growth in a CD8â€mediated manner. Pigment Cell and Melanoma Research, 2019, 32, 687-696.	1.5	19
734	Translation of cancer immunotherapy from the bench to the bedside. Advances in Cancer Research, 2019, 143, 1-62.	1.9	28
735	Coexpression of Inhibitory Receptors Enriches for Activated and Functional CD8+ T Cells in Murine Syngeneic Tumor Models. Cancer Immunology Research, 2019, 7, 963-976.	1.6	36

#	Article	IF	CITATIONS
736	Oncolytic Viruses and Immune Checkpoint Inhibition: The Best of Both Worlds. Molecular Therapy - Oncolytics, 2019, 13, 93-106.	2.0	107
737	Intratumoral regulatory T cells: markers, subsets and their impact on antiâ€ŧumor immunity. Immunology, 2019, 157, 232-247.	2.0	79
738	My journey from tyrosine phosphorylation inhibitors to targeted immune therapy as strategies to combat cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11579-11586.	3.3	15
739	TIM-3 Dictates Functional Orientation of the Immune Infiltrate in Ovarian Cancer. Clinical Cancer Research, 2019, 25, 4820-4831.	3.2	71
740	NK cells to cure cancer. Seminars in Immunology, 2019, 41, 101272.	2.7	70
741	NIH3T3 Directs Memory-Fated CTL Programming and Represses High Expression of PD-1 on Antitumor CTLs. Frontiers in Immunology, 2019, 10, 761.	2.2	3
743	Expression Analysis and Significance of PD-1, LAC-3, and TIM-3 in Human Non–Small Cell Lung Cancer Using Spatially Resolved and Multiparametric Single-Cell Analysis. Clinical Cancer Research, 2019, 25, 4663-4673.	3.2	210
744	Cholesterol Induces CD8+ T Cell Exhaustion in the Tumor Microenvironment. Cell Metabolism, 2019, 30, 143-156.e5.	7.2	460
745	CD8+ T cell exhaustion. Seminars in Immunopathology, 2019, 41, 327-337.	2.8	169
746	Co-stimulatory and co-inhibitory pathways in cancer immunotherapy. Advances in Cancer Research, 2019, 143, 145-194.	1.9	53
747	Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Frontiers in Immunology, 2019, 10, 453.	2.2	177
748	Silencing PD-1 and PD-L1 with nanoparticle-delivered small interfering RNA increases cytotoxicity of tumor-infiltrating lymphocytes. Nanomedicine, 2019, 14, 955-967.	1.7	53
749	Immunotherapy in colorectal cancer: rationale, challenges and potential. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 361-375.	8.2	1,039
750	PD-1 and PD-L1 in cancer immunotherapy: clinical implications and future considerations. Human Vaccines and Immunotherapeutics, 2019, 15, 1111-1122.	1.4	297
751	Immunological and clinical implications of immune checkpoint blockade in human cancer. Archives of Pharmacal Research, 2019, 42, 567-581.	2.7	17
752	Divergent <scp>SATB</scp> 1 expression across human life span and tissue compartments. Immunology and Cell Biology, 2019, 97, 498-511.	1.0	20
753	PD-1/PD-L1 Blockade Therapy in Advanced Non-Small-Cell Lung Cancer: Current Status and Future Directions. Oncologist, 2019, 24, S31-S41.	1.9	239
754	Targeting immune cells for cancer therapy. Redox Biology, 2019, 25, 101174.	3.9	151

		CITATION REPORT		
# 755	ARTICLE Biomarkers in immune checkpoint inhibition therapy for cancer patients: what is the role of lymphocyte subsets and PD1/PD-L1?. Translational Medicine Communications, 2019, 4, .	of	IF 0.5	CITATIONS 3
756	Harnessing Radiation Biology to Augment Immunotherapy for Glioblastoma. Frontiers in C 2019, 8, 656.	ncology,	1.3	32
757	Low-Dose Total Body Irradiation Can Enhance Systemic Immune Related Response Induce Hypo-Fractionated Radiation. Frontiers in Immunology, 2019, 10, 317.	d by	2.2	22
758	TIM-3 in endometrial carcinomas: an immunotherapeutic target expressed by mismatch re and intact cancers. Modern Pathology, 2019, 32, 1168-1179.	pair-deficient	2.9	27
759	Current Immunotherapy Approaches for Malignant Melanoma. Biochip Journal, 2019, 13,	105-114.	2.5	10
760	Novel Therapeutic Approaches and Targets Currently Under Evaluation for Renal Cell Carci Waiting for the Revolution. Clinical Drug Investigation, 2019, 39, 503-519.	noma:	1.1	26
761	Computational Redesign of PD-1 Interface for PD-L1 Ligand Selectivity. Structure, 2019, 2	7, 829-836.e3.	1.6	13
762	PD-1/PD-L1 Combinations in Advanced Urothelial Cancer: Rationale and Current Clinical Tr Genitourinary Cancer, 2019, 17, e618-e626.	ials. Clinical	0.9	14
763	Building Potent Chimeric Antigen Receptor T Cells With CRISPR Genome Editing. Frontiers Immunology, 2019, 10, 456.	in	2.2	60
764	Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Advanced Healt Materials, 2019, 8, e1801320.	hcare	3.9	43
765	Irreversible electroporation reverses resistance to immune checkpoint blockade in pancrea Nature Communications, 2019, 10, 899.	itic cancer.	5.8	169
766	Activated and Exhausted MAIT Cells Foster Disease Progression and Indicate Poor Outcom Hepatocellular Carcinoma. Clinical Cancer Research, 2019, 25, 3304-3316.	ie in	3.2	109
767	CRISPR/Cas9-based genome editing in the era of CAR T cell immunotherapy. Human Vacci Immunotherapeutics, 2019, 15, 1126-1132.	nes and	1.4	42
768	Immune-Checkpoint Blockade Opposes CD8+ T-cell Suppression in Human and Murine Ca Immunology Research, 2019, 7, 510-525.	ncer. Cancer	1.6	47
769	FcÎ ³ R-Binding Is an Important Functional Attribute for Immune Checkpoint Antibodies in C Immunotherapy. Frontiers in Immunology, 2019, 10, 292.	ancer	2.2	111
770	Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to ch blockade. Nature Immunology, 2019, 20, 326-336.	eckpoint	7.0	1,148
771	Prevalence and Cellular Distribution of Novel Immune Checkpoint Targets Across Longituc Specimens in Treatment-naÃ ⁻ ve Melanoma Patients: Implications for Clinical Trials. Clinica Research, 2019, 25, 3247-3258.		3.2	27
772	Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblast of Experimental and Clinical Cancer Research, 2019, 38, 87.	oma. Journal	3.5	213

#	Article	IF	CITATIONS
773	The pursuit of transplantation tolerance: new mechanistic insights. Cellular and Molecular Immunology, 2019, 16, 324-333.	4.8	11
774	Exhausted-like Group 2 Innate Lymphoid Cells in Chronic Allergic Inflammation. Trends in Immunology, 2019, 40, 1095-1104.	2.9	10
775	Investigation of protein-protein interactions and hot spot region between PD-1 and PD-L1 by fragment molecular orbital method. Scientific Reports, 2019, 9, 16727.	1.6	43
776	Co-signal Molecules in T Cell Activation. Advances in Experimental Medicine and Biology, 2019, , .	0.8	6
777	Soluble immune checkpoint-related proteins as predictors of tumor recurrence, survival, and T cell phenotypes in clear cell renal cell carcinoma patients. , 2019, 7, 334.		107
778	Significance of TIM3 expression in cancer: From biology to the clinic. Seminars in Oncology, 2019, 46, 372-379.	0.8	49
779	Molecular and immune correlates of TIM-3 (HAVCR2) and galectin 9 (LGALS9) mRNA expression and DNA methylation in melanoma. Clinical Epigenetics, 2019, 11, 161.	1.8	49
780	Tumor microenvironment dictates regulatory T cell phenotype: Upregulated immune checkpoints reinforce suppressive function. , 2019, 7, 339.		65
781	Current Clinical Progress of PD-1/PD-L1 Immunotherapy and Potential Combination Treatment in Non–Small Cell Lung Cancer. Integrative Cancer Therapies, 2019, 18, 153473541989002.	0.8	33
782	Clonal replacement of novel T cells: a new phenomenon in the tumor microenvironment following PD-1 blockade. Signal Transduction and Targeted Therapy, 2019, 4, 43.	7.1	11
783	Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups. Nature Immunology, 2019, 20, 1425-1434.	7.0	336
784	Checkpoint inhibitor treatment induces an increase in HbA1c in nondiabetic patients. Melanoma Research, 2019, 29, 328-332.	0.6	6
785	Immunotherapy – Strategies for Expanding Its Role in the Treatment of All Major Tumor Sites. Cureus, 2019, 11, e5938.	0.2	9
786	T-Cell Receptor–Based Immunotherapy for Hematologic Malignancies. Cancer Journal (Sudbury, Mass), 2019, 25, 179-190.	1.0	28
787	Evaluating the Safety and Efficacy of Nivolumab in Patients with Advanced Hepatocellular Carcinoma: Evidence to Date. OncoTargets and Therapy, 2019, Volume 12, 10335-10342.	1.0	19
788	CD4+ T Cell Help Is Required for the Formation of a Cytolytic CD8+ T Cell Subset that Protects against Chronic Infection and Cancer. Immunity, 2019, 51, 1028-1042.e4.	6.6	393
789	Immune Checkpoints. , 2019, , 19-43.		0
790	Combined \hat{I}_{\pm} -programmed death-1 monoclonal antibody blockade and fractionated radiation therapy reduces tumor growth in mouse EL4 lymphoma. Cancer Biology and Therapy, 2019, 20, 666-679.	1.5	6

#	Article	IF	CITATIONS
791	Rational combination of cancer immunotherapy in melanoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2019, 474, 433-447.	1.4	7
792	HIV Infection Functionally Impairs Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses. Journal of Virology, 2019, 93, .	1.5	48
793	Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 199-224.	3.3	53
794	Advanced stage melanoma therapies: Detailing the present and exploring the future. Critical Reviews in Oncology/Hematology, 2019, 133, 99-111.	2.0	48
795	Irradiation to Improve the Response to Immunotherapeutic Agents in Glioblastomas. Advances in Radiation Oncology, 2019, 4, 268-282.	0.6	13
796	Galectins as potential emerging key targets in different types of leukemia. European Journal of Pharmacology, 2019, 844, 73-78.	1.7	9
797	Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1â^'CD8+ Tumor-Infiltrating T Cells. Immunity, 2019, 50, 181-194.e6.	6.6	424
798	The Eμ-TCL1 Mouse Model of Chronic Lymphocytic Leukemia. , 2019, , 1-29.		0
799	Inhibitory functions of PD-L1 and PD-L2 in the regulation of anti-tumor immunity in murine tumor microenvironment. Cancer Immunology, Immunotherapy, 2019, 68, 201-211.	2.0	46
800	An effective dendritic cellâ€based vaccine containing glioma stemâ€like cell lysate and CpG adjuvant for an orthotopic mouse model of glioma. International Journal of Cancer, 2019, 144, 2867-2879.	2.3	32
801	Immunoregulation effects of TIM-3 on tumors. Neoplasma, 2019, 66, 167-175.	0.7	11
802	The value of immunotherapy in head and neck cancer. Expert Opinion on Biological Therapy, 2019, 19, 35-43.	1.4	14
803	Reasoning the effect of immunotherapy after chemoradiation in the PACIFIC trial. Future Oncology, 2019, 15, 81-94.	1.1	2
804	The tumor microenvironment: Thousand obstacles for effector T cells. Cellular Immunology, 2019, 343, 103730.	1.4	9
805	Immune activation underlies a sustained clinical response to Yttrium-90 radioembolisation in hepatocellular carcinoma. Gut, 2019, 68, 335-346.	6.1	138
806	Immunohistochemical Study of PD-1/PD-L1 Axis Expression in Oral Tongue Squamous Cell Carcinomas: Effect of Neoadjuvant Chemotherapy on Local Recurrence. Pathology and Oncology Research, 2020, 26, 735-742.	0.9	24
807	Cancer Immunology. , 2020, , 84-96.e5.		0
808	Precursor exhausted T cells: key to successful immunotherapy?. Nature Reviews Immunology, 2020, 20, 128-136.	10.6	253

#	Article	IF	CITATIONS
809	Frontline Science: Exhaustion and senescence marker profiles on human T cells in BRGSF-A2 humanized mice resemble those in human samples. Journal of Leukocyte Biology, 2020, 107, 27-42.	1.5	7
810	Immune checkpoints in the tumor microenvironment. Seminars in Cancer Biology, 2020, 65, 1-12.	4.3	146
811	Current Immunotherapeutic Strategies in Cancer. Recent Results in Cancer Research, 2020, , .	1.8	4
812	A TLR7 agonist strengthens T and NK cell function during BRAFâ€ŧargeted therapy in a preclinical melanoma model. International Journal of Cancer, 2020, 146, 1409-1420.	2.3	22
813	Establishment of humanized tumor microenvironment mouse models based on the injection of peripheral blood mononuclear cells and IFN-γ to evaluate the efficacy of PD-L1/PD-1-targeted immunotherapy. Cancer Biology and Therapy, 2020, 21, 130-138.	1.5	6
814	TIM3 comes of age as an inhibitory receptor. Nature Reviews Immunology, 2020, 20, 173-185.	10.6	535
815	Differential Expression of Immune Checkpoint Molecules on CD8 ⁺ T Cells Specific for Immunodominant and Subdominant Herpes Simplex Virus 1 Epitopes. Journal of Virology, 2020, 94, .	1.5	6
816	TIMâ€3: An emerging target in the liver diseases. Scandinavian Journal of Immunology, 2020, 91, e12825.	1.3	21
817	Recombinant fusion proteins for targeting dendritic cell subsets in therapeutic cancer vaccine. Methods in Enzymology, 2020, 632, 521-543.	0.4	7
818	Immune Response Against Head and Neck Cancer: Biological Mechanisms and Implication on Therapy. Translational Oncology, 2020, 13, 262-274.	1.7	49
819	CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1129-1138.	3.3	203
820	Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cellular and Molecular Immunology, 2020, 17, 27-35.	4.8	168
821	Bispecific antibody activated T cells: A newly developed T cells with enhanced proliferation ability and cytotoxicity. Immunology Letters, 2020, 220, 79-87.	1.1	3
822	Supramolecular Photothermal Nanomedicine Mediated Distant Tumor Inhibition via PD-1 and TIM-3 Blockage. Frontiers in Chemistry, 2020, 8, 1.	1.8	434
823	CRISPR/Cas9 technology: towards a new generation of improved CAR-T cells for anticancer therapies. Briefings in Functional Genomics, 2020, 19, 191-200.	1.3	14
824	Discovery of hPRDX5-based peptide inhibitors blocking PD-1/PD-L1 interaction through in silico proteolysis and rational design. Cancer Chemotherapy and Pharmacology, 2020, 85, 185-193.	1.1	10
825	Primary and acquired resistance mechanisms to immune checkpoint inhibition in Hodgkin lymphoma. Cancer Treatment Reviews, 2020, 82, 101931.	3.4	33
826	CD8 ⁺ T cells exhaustion induced by myeloidâ€derived suppressor cells in myelodysplastic syndromes patients might be through TIM3/Galâ€9 pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 1046-1058.	1.6	43

#	Article	IF	CITATIONS
827	Promising approaches in cancer immunotherapy. Immunobiology, 2020, 225, 151875.	0.8	49
828	New avenues for melanoma immunotherapy: Natural Killer cells?. Scandinavian Journal of Immunology, 2020, 91, e12861.	1.3	13
829	Antibody and antibody fragments for cancer immunotherapy. Journal of Controlled Release, 2020, 328, 395-406.	4.8	63
830	Overview of Current Progress in Immune Checkpoint Inhibitor Therapy for Advanced Hepatocellular Carcinoma. Technology in Cancer Research and Treatment, 2020, 19, 153303382094748.	0.8	3
831	Significantly different immunological score in lung adenocarcinoma and squamous cell carcinoma and a proposal for a new immune staging system. Oncolmmunology, 2020, 9, 1828538.	2.1	20
832	The biologically functional identification of a novel TIM3-binding peptide P26 in vitro and in vivo. Cancer Chemotherapy and Pharmacology, 2020, 86, 783-792.	1.1	4
833	Pro-tumor γδT Cells in Human Cancer: Polarization, Mechanisms of Action, and Implications for Therapy. Frontiers in Immunology, 2020, 11, 2186.	2.2	29
834	Common phenotypic dynamics of tumor-infiltrating lymphocytes across different histologies upon checkpoint inhibition: impact on clinical outcome. Cytotherapy, 2020, 22, 204-213.	0.3	9
835	Combinatorial Immunotherapies for Metastatic Colorectal Cancer. Cancers, 2020, 12, 1875.	1.7	19
836	TIM-3 and TIGIT are possible immune checkpoint targets in patients with bladder cancer. Urologic Oncology: Seminars and Original Investigations, 2022, 40, 403-406.	0.8	9
837	Relevance of Regulatory T Cells during Colorectal Cancer Development. Cancers, 2020, 12, 1888.	1.7	34
838	Role of Microenvironment in Non-Hodgkin Lymphoma. Cancer Journal (Sudbury, Mass), 2020, 26, 206-216.	1.0	10
839	Immunotherapies and Combination Strategies for Immuno-Oncology. International Journal of Molecular Sciences, 2020, 21, 5009.	1.8	63
840	Prognostic and clinicopathological value of high expression of TIM â€3 in different cancer types: A metaâ€analysis. Precision Medical Sciences, 2020, 9, 31-42.	0.1	2
841	The Multifaceted Output of c-Jun Biological Activity: Focus at the Junction of CD8 T Cell Activation and Exhaustion. Cells, 2020, 9, 2470.	1.8	58
842	Overcoming Immune Evasion in Melanoma. International Journal of Molecular Sciences, 2020, 21, 8984.	1.8	88
843	Targeting novel inhibitory receptors in cancer immunotherapy. Seminars in Immunology, 2020, 49, 101436.	2.7	8
844	The Role of TIM-3 in Hepatocellular Carcinoma: A Promising Target for Immunotherapy?. Frontiers in Oncology, 2020, 10, 601661.	1.3	28

#	Article	IF	CITATIONS
845	Quantitative and functional characteristics of circulating and bone marrow PD-1- and TIM-3-positive T cells in treated multiple myeloma patients. Scientific Reports, 2020, 10, 20846.	1.6	14
846	Integrating Circulating Biomarkers in the Immune Checkpoint Inhibitor Treatment in Lung Cancer. Cancers, 2020, 12, 3625.	1.7	27
847	Pivotal role of PD-1/PD-L1 immune checkpoints in immune escape and cancer progression: Their interplay with platelets and FOXP3+Tregs related molecules, clinical implications and combinational potential with phytochemicals. Seminars in Cancer Biology, 2022, 86, 1033-1057.	4.3	14
848	Genetic Mutations of Tim-3 Ligand and Exhausted Tim-3+ CD8+ T Cells and Survival in Diffuse Large B Cell Lymphoma. Journal of Immunology Research, 2020, 2020, 1-9.	0.9	12
849	Prognostic Values of TIM-3 Expression in Patients With Solid Tumors: A Meta-Analysis and Database Evaluation. Frontiers in Oncology, 2020, 10, 1288.	1.3	29
850	Enhanced Immunogenicity of Engineered HER2 Antigens Potentiates Antitumor Immune Responses. Vaccines, 2020, 8, 403.	2.1	2
851	Targeting immune checkpoints in hematological malignancies. Journal of Hematology and Oncology, 2020, 13, 111.	6.9	66
852	Significance of TIM-3 expression by CD4+ and CD8+ T lymphocytes in tumor-draining lymph nodes from patients with breast cancer. Molecular Immunology, 2020, 128, 47-54.	1.0	7
853	Emerging immunotherapy targets in lung cancer. Chinese Medical Journal, 2020, 133, 2456-2465.	0.9	8
854	Targeting TIM-3 in solid tumors: innovations in the preclinical and translational realm and therapeutic potential. Expert Opinion on Therapeutic Targets, 2020, 24, 1251-1262.	1.5	16
855	Immunogenicity and antitumor efficacy of a novel human PD-1 B-cell vaccine (PD1-Vaxx) and combination immunotherapy with dual trastuzumab/pertuzumab-like HER-2 B-cell epitope vaccines (B-Vaxx) in a syngeneic mouse model. Oncolmmunology, 2020, 9, 1818437.	2.1	20
856	The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. International Journal of Molecular Sciences, 2020, 21, 7820.	1.8	21
857	ACKR4 restrains antitumor immunity by regulating CCL21. Journal of Experimental Medicine, 2020, 217, .	4.2	25
858	TIM-3 Expression Is Downregulated on Human NK Cells in Response to Cancer Targets in Synergy with Activation. Cancers, 2020, 12, 2417.	1.7	17
859	Checkpoint inhibitor immunotherapy for glioblastoma: current progress, challenges and future outlook. Expert Review of Clinical Pharmacology, 2020, 13, 1147-1158.	1.3	8
860	Resisting Resistance to Immune Checkpoint Therapy: A Systematic Review. International Journal of Molecular Sciences, 2020, 21, 6176.	1.8	19
861	Immunotherapy in prostate cancer: current state and future perspectives. Therapeutic Advances in Urology, 2020, 12, 175628722095140.	0.9	24
862	Non-small cell lung cancer PDL1 >50%—should we go single or combo?. Precision Cancer Medicine, 2020, 3, 7-7.	1.8	1

ARTICLE IF CITATIONS Dysfunction of CD8 + PD-1 + T cells in type 2 diabetes caused by the impairment of metabolism-immune 28 863 axis. Scientific Reports, 2020, 10, 14928. Intratumoral CCR5 ⁺ neutrophils identify immunogenic subtype muscle-invasive bladder 864 2.1 cancer with favorable prognosis and therapeutic responses. Oncolmmunology, 2020, 9, 1802176. Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade 865 1.6 11 in a Bacterial Species- and Host Factor-Dependent Manner. Microorganisms, 2020, 8, 1395. Tumor Infiltrating Regulatory T Cells in Sporadic and Colitis-Associated Colorectal Cancer: The Red 866 1.8 Little Riding Hood and the Wolf. International Journal of Molecular Sciences, 2020, 21, 6744. A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade. Proceedings of the National Academy of Sciences of the United States of 867 3.3 32 America, 2020, 117, 23684-23694. Combined Methylome and Transcriptome Analyses Reveals Potential Therapeutic Targets for EGFR Wild Type Lung Cancers with Low PD-L1 Expression. Cancers, 2020, 12, 2496. 868 1.7 Endogenous Glucocorticoid Signaling Regulates CD8+ T Cell Differentiation and Development of 869 6.6 98 Dysfunction in the Tumor Microenvironment. Immunity, 2020, 53, 658-671.e6. Bioinspired Engineering of a Bacteriumâ€Like Metal–Organic Framework for Cancer Immunotherapy. Advanced Functional Materials, 2020, 30, 2003764. 871 Mechanisms of T-Cell Exhaustion in Pancreatic Cancer. Cancers, 2020, 12, 2274. 1.7 71 Immune checkpoint markers and antiâ€CD20â€mediated NK cell activation. Journal of Leukocyte Biology, 872 1.5 2020, 110, 723-733. Activating the Antitumor Immune Response in Non-Hodgkin Lymphoma Using Immune Checkpoint 873 0.9 13 Inhibitors. Journal of Immunology Research, 2020, 2020, 1-12. Targeting NK Cell Inhibitory Receptors for Precision Multiple Myeloma Immunotherapy. Frontiers in 874 2.2 34 Immunology, 2020, 11, 575609. Reprogramming the tumour microenvironment by radiotherapy: implications for radiotherapy and 875 1.2 62 immunotherapy combinations. Radiation Oncology, 2020, 15, 254. Alternative Checkpoints as Targets for Immunotherapy. Current Oncology Reports, 2020, 22, 126. 876 1.8 Immune Cell Subtypes and Cytokines in Lung Tumor Microenvironment: Influence of COPD. Cancers, 877 12 1.7 2020, 12, 1217. Can the assessment of lymphocyte exhaustion serve as a prognostic predictor after lung cancer surgery?. Translational Lung Cancer Research, 2020, 9, 184-187. Advancing the Science and Management of Renal Cell Carcinoma: Bridging the Divide between 879 1.0 3 Academic and Community Practices. Journal of Clinical Medicine, 2020, 9, 1508. Scientifically based combination therapies with immunoâ€oncology checkpoint inhibitors. British 880 1.1 Journal of Clinical Pharmacology, 2020, 86, 1711-1725.

#	Article	IF	CITATIONS
881	Therapeutic ISCOMATRIXâ,,¢ adjuvant vaccine elicits effective anti-tumor immunity in the TRAMP-C1 mouse model of prostate cancer. Cancer Immunology, Immunotherapy, 2020, 69, 1959-1972.	2.0	7
882	FOLFOX Chemotherapy Ameliorates CD8 T Lymphocyte Exhaustion and Enhances Checkpoint Blockade Efficacy in Colorectal Cancer. Frontiers in Oncology, 2020, 10, 586.	1.3	42
883	Malignant Pleural Mesothelioma: Genetic and Microenviromental Heterogeneity as an Unexpected Reading Frame and Therapeutic Challenge. Cancers, 2020, 12, 1186.	1.7	24
884	Metastatic melanoma: therapeutic agents in preclinical and early clinical development. Expert Opinion on Investigational Drugs, 2020, 29, 739-753.	1.9	2
885	Human cancer germline antigen-specific cytotoxic T cell—what can we learn from patient. Cellular and Molecular Immunology, 2020, 17, 684-692.	4.8	12
886	ATR inhibitor AZD6738 enhances the antitumor activity of radiotherapy and immune checkpoint inhibitors by potentiating the tumor immune microenvironment in hepatocellular carcinoma. , 2020, 8, e000340.		124
887	Co-assembled and self-delivered epitope/CpG nanocomplex vaccine augments peptide immunogenicity for cancer immunotherapy. Chemical Engineering Journal, 2020, 399, 125854.	6.6	29
888	LAG3 (CD223) and autoimmunity: Emerging evidence. Journal of Autoimmunity, 2020, 112, 102504.	3.0	28
889	Targeting NK Cell Checkpoint Receptors or Molecules for Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 1295.	2.2	58
890	Comparative phenotypes of peripheral blood and spleen cells from cancer patients. International Immunopharmacology, 2020, 85, 106655.	1.7	4
891	Dendritic Cells and Their Role in Immunotherapy. Frontiers in Immunology, 2020, 11, 924.	2.2	253
892	Tumor microenvironmental influences on dendritic cell and T cell function: A focus on clinically relevant immunologic and metabolic checkpoints. Clinical and Translational Medicine, 2020, 10, 374-411.	1.7	33
893	<p>TIM-3 Participates in the Invasion and Metastasis of Nasopharyngeal Carcinoma via SMAD7/SMAD2/SNAIL1 Axis-Mediated Epithelial-Mesenchymal Transition</p> . OncoTargets and Therapy, 2020, Volume 13, 1993-2006.	1.0	18
894	Immune-based therapies for hepatocellular carcinoma. Oncogene, 2020, 39, 3620-3637.	2.6	154
895	Development of an Improved T-cell Assay to Assess the Intrinsic Immunogenicity of Haptenic Compounds. Toxicological Sciences, 2020, 175, 266-278.	1.4	13
896	Immunotherapeutic Potential of TGF-β Inhibition and Oncolytic Viruses. Trends in Immunology, 2020, 41, 406-420.	2.9	55
897	Tumor Microenvironment. Cancer Treatment and Research, 2020, , .	0.2	12
898	The Role of Immune Checkpoint Inhibitors in Colorectal Adenocarcinoma. BioDrugs, 2020, 34, 349-362.	2.2	33

		CITATION REPO	RT	
# 899	ARTICLE Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and predictor for anti-PD-1 responses in human cancer. Genome Medicine, 2020, 12, 22.	a 3	5.6	Citations 98
900	Neoantigens in Hematologic Malignancies. Frontiers in Immunology, 2020, 11, 121.	2	2	26
901	NK Cell-Based Immune Checkpoint Inhibition. Frontiers in Immunology, 2020, 11, 167.	2	2	211
902	Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Frontiers in Immunology, 2 1350.	:020, 11,	2	13
903	Tim-3 finds its place in the cancer immunotherapy landscape. , 2020, 8, e000911.			237
904	LAG-3 and PD-1+LAG-3 inhibition promote anti-tumor immune responses in human autologou melanoma/T cell co-cultures. Oncolmmunology, 2020, 9, 1736792.	s 2	.1	36
905	New immunotherapeutic drugs in advanced non-small cell lung cancer (NSCLC): from preclinic phase I clinical trials. Expert Opinion on Investigational Drugs, 2020, 29, 1005-1023.	cal to 1	.9	11
906	News on immune checkpoint inhibitors as immunotherapy strategies in adult and pediatric sc tumors. Seminars in Cancer Biology, 2022, 79, 18-43.	lid 4	.3	35
908	TIM-3 blockade combined with bispecific antibody MT110 enhances the anti-tumor effect of Î Cancer Immunology, Immunotherapy, 2020, 69, 2571-2587.	$^{3\hat{1}'}$ T cells. 2	2.0	16
909	B-cell epitope peptide cancer vaccines: a new paradigm for combination immunotherapies wit checkpoint peptide vaccine. Future Oncology, 2020, 16, 1767-1791.	h novel 1	.1	16
910	CAR T cells and checkpoint inhibition for the treatment of glioblastoma. Expert Opinion on Bio Therapy, 2020, 20, 579-591.	ological 1	.4	37
911	The expression and immunoregulation of immune checkpoint molecule VISTA in autoimmune and cancers. Cytokine and Growth Factor Reviews, 2020, 52, 1-14.	diseases 3	.2	18
912	TIMs, TAMs, and PS- antibody targeting: implications for cancer immunotherapy. Cell Commu and Signaling, 2020, 18, 29.	nication 2	2.7	23
913	Glial TIM-3 Modulates Immune Responses in the Brain Tumor Microenvironment. Cancer Rese 80, 1833-1845.	arch, 2020, c).4	18
914	Potent immunomodulatory effects of an anti-CEA-IL-2 immunocytokine on tumor therapy and stereotactic radiation. OncoImmunology, 2020, 9, 1724052.	effects of 2	2.1	12
915	PD-L1/PD-1 axis as a potent therapeutic target in breast cancer. Life Sciences, 2020, 247, 117	437. 2	.0	33
916	Checkpoint molecules coordinately restrain hyperactivated effector T cells in the tumor microenvironment. Oncolmmunology, 2020, 9, 1708064.	2	.1	33
917	miRNA-5119 regulates immune checkpoints in dendritic cells to enhance breast cancer immu Cancer Immunology, Immunotherapy, 2020, 69, 951-967.	notherapy. 2	.0	36

\sim			n
C1	TAT	ION	Report

#	Article	IF	CITATIONS
918	Resistance to Checkpoint Inhibition in Cancer Immunotherapy. Translational Oncology, 2020, 13, 100738.	1.7	173
919	CD160 expression on CD8+ T cells is associated with active effector responses but limited activation potential in pancreatic cancer. Cancer Immunology, Immunotherapy, 2020, 69, 789-797.	2.0	18
920	The yin and yang of co-inhibitory receptors: toward anti-tumor immunity without autoimmunity. Cell Research, 2020, 30, 285-299.	5.7	129
921	Association of TIM-3 with BCLC Stage, Serum PD-L1 Detection, and Response to Transarterial Chemoembolization in Patients with Hepatocellular Carcinoma. Cancers, 2020, 12, 212.	1.7	20
922	Beyond the concept of cold and hot tumors for the development of novel predictive biomarkers and the rational design of immunotherapy combination. International Journal of Cancer, 2020, 147, 1509-1518.	2.3	44
923	<p>Resistance Mechanism of PD-1/PD-L1 Blockade in the Cancer-Immunity Cycle</p> . OncoTargets and Therapy, 2020, Volume 13, 83-94.	1.0	27
924	Genetic and Epigenetic Biomarkers of Immune Checkpoint Blockade Response. Journal of Clinical Medicine, 2020, 9, 286.	1.0	50
925	Angiocrine endothelium: from physiology to cancer. Journal of Translational Medicine, 2020, 18, 52.	1.8	53
926	Identification of the immune checkpoint signature of multiple myeloma using mass cytometryâ€based singleâ€cell analysis. Clinical and Translational Immunology, 2020, 9, e01132.	1.7	14
927	Immunotherapy in Renal Cell Carcinoma: The Future Is Now. International Journal of Molecular Sciences, 2020, 21, 2532.	1.8	126
928	Unravelling the heterogeneity and dynamic relationships of tumorâ€infiltrating T cells by singleâ€cell RNA sequencing analysis. Journal of Leukocyte Biology, 2020, 107, 917-932.	1.5	21
929	Gut Microbiota Modulate CD8ÂT Cell Responses to Influence Colitis-Associated Tumorigenesis. Cell Reports, 2020, 31, 107471.	2.9	103
930	BRAF inhibition curtails IFNâ€gammaâ€inducible PD‣1 expression and upregulates the immunoregulatory protein galectinâ€1 in melanoma cells. Molecular Oncology, 2020, 14, 1817-1832.	2.1	12
931	Programmed cell death protein 1 (PDâ€1) in infection. Apmis, 2020, 128, 177-187.	0.9	1
932	Inclusion of PD-L1 into a recombinant profilin antigen enhances immunity against Babesia microti in a murine model. Ticks and Tick-borne Diseases, 2020, 11, 101446.	1.1	3
933	Expression and significance of T-cell immunoglobulin mucin molecule 3 and its ligand galectin-9 in patients with adenomyosis. Gynecological Endocrinology, 2020, 36, 605-610.	0.7	5
934	Differential expression of TIM-3 in circulation and tumor microenvironment of colorectal cancer patients. Clinical Immunology, 2020, 215, 108429.	1.4	12
935	ImmunoPET Imaging of TIMâ€3 in Murine Melanoma Models. Advanced Therapeutics, 2020, 3, 2000018.	1.6	12

#	Article	IF	CITATIONS
936	Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature, 2020, 581, 100-105.	13.7	628
937	Identification and characterization of M6903, an antagonistic anti–TIM-3 monoclonal antibody. Oncolmmunology, 2020, 9, 1744921.	2.1	25
938	Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science, 2020, 368, .	6.0	716
939	Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood, 2020, 135, 713-723.	0.6	123
940	Heterogeneity of MSI-H gastric cancer identifies a subtype with worse survival. Journal of Medical Genetics, 2021, 58, 12-19.	1.5	22
941	Upregulation of TIGIT and PD-1 in Colorectal Cancer with Mismatch-repair Deficiency. Immunological Investigations, 2021, 50, 338-355.	1.0	18
942	Tumorâ€Targeted Inhibition of Monocarboxylate Transporter 1 Improves Tâ€Cell Immunotherapy of Solid Tumors. Advanced Healthcare Materials, 2021, 10, e2000549.	3.9	47
943	Immune cell constitution in the tumor microenvironment predicts the outcome in diffuse large B-cell lymphoma. Haematologica, 2021, 106, 718-729.	1.7	75
944	In vitro and in vivo evaluation of anti-tumoral effect of M1 phenotype induction in macrophages by miR-130 and miR-33 containing exosomes. Cancer Immunology, Immunotherapy, 2021, 70, 1323-1339.	2.0	39
945	Immune Co-inhibitory Receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT in Medullary Thyroid Cancers: A Large Cohort Study. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 120-132.	1.8	42
946	Rethinking peripheral T cell tolerance: checkpoints across a T cell's journey. Nature Reviews Immunology, 2021, 21, 257-267.	10.6	122
947	The presence of TIMâ€3 positive cells in WHO grade III and IV astrocytic gliomas correlates with isocitrate dehydrogenase mutation status. Brain Pathology, 2021, 31, e12921.	2.1	5
948	Donor plasmacytoid dendritic cells modulate effector and regulatory T cell responses in mouse spontaneous liver transplant tolerance. American Journal of Transplantation, 2021, 21, 2040-2055.	2.6	9
949	CD137 agonist-based combination immunotherapy enhances activated, effector memory T cells and prolongs survival in pancreatic adenocarcinoma. Cancer Letters, 2021, 499, 99-108.	3.2	22
950	Immune evasion mechanisms in acute myeloid leukemia: A focus on immune checkpoint pathways. Critical Reviews in Oncology/Hematology, 2021, 157, 103164.	2.0	40
951	In vivo tracking of bioorthogonally labeled T-cells for predicting therapeutic efficacy of adoptive T-cell therapy. Journal of Controlled Release, 2021, 329, 223-236.	4.8	15
952	Expression of the Immune Checkpoint Regulators LAG-3 and TIM-3 in Classical Hodgkin Lymphoma. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, 257-266.e3.	0.2	35
953	Combination therapy with antiâ€Tâ€cell immunoglobulin and mucinâ€domain containing molecule 3 and radiation improves antitumor efficacy in murine hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 1357-1365.	1.4	8

#	Article	IF	CITATIONS
954	Expression of T-Cell Exhaustion Molecules and Human Endogenous Retroviruses as Predictive Biomarkers for Response to Nivolumab in Metastatic Clear Cell Renal Cell Carcinoma. Clinical Cancer Research, 2021, 27, 1371-1380.	3.2	49
955	Distribution of novel immune-checkpoint targets in ovarian cancer tumor microenvironment: A dynamic landscape Gynecologic Oncology, 2021, 160, 279-284.	0.6	18
956	Immune checkpoint expression on peripheral cytotoxic lymphocytes in cervical cancer patients: moving beyond the PD-1/PD-L1 axis. Clinical and Experimental Immunology, 2021, 204, 78-95.	1.1	10
957	Emerging immunotherapies for metastasis. British Journal of Cancer, 2021, 124, 37-48.	2.9	32
958	TIM-3 pathway dysregulation and targeting in cancer. Expert Review of Anticancer Therapy, 2021, 21, 523-534.	1.1	54
959	TIM3 expression on tumor cells predicts response to anti-PD-1 therapy for renal cancer. Translational Oncology, 2021, 14, 100918.	1.7	11
960	Immune checkpoint-related serum proteins and genetic variants predict outcomes of localized prostate cancer, a cohort study. Cancer Immunology, Immunotherapy, 2021, 70, 701-712.	2.0	40
961	Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. Advanced Therapeutics, 2021, 4, 2000147.	1.6	2
962	Combined Next-generation Sequencing and Flow Cytometry Analysis for an Anti-PD-L1 Partial Responder over Time: An Exploration of Mechanisms of PD-L1 Activity and Resistance in Bladder Cancer. European Urology Oncology, 2021, 4, 117-120.	2.6	5
963	PD-1 and LAG-3 blockade improve anti-tumor vaccine efficacy. Oncolmmunology, 2021, 10, 1912892.	2.1	25
964	TIGIT and PD1 Co-blockade Restores exÂvivo Functions of Human Tumor-Infiltrating CD8+ T Cells in Hepatocellular Carcinoma. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 443-464.	2.3	43
965	Tim-3 on CD4 ⁺ T cells is associated with pathology in experimental autoimmune encephalomyelitis of mouse. European Journal of Inflammation, 2021, 19, 205873922110301.	0.2	1
966	Integrative Expression and Prognosis Analysis of DHX37 in Human Cancers by Data Mining. BioMed Research International, 2021, 2021, 1-12.	0.9	7
967	Checkpoint inhibition in the fight against cancer: NK cells have some to say in it. , 2021, , 267-304.		1
968	The Immune Contexture and Cancer Therapy Aspects of the TIM-3 Checkpoint Pathway. E3S Web of Conferences, 2021, 271, 02021.	0.2	0
969	T Cells in Chronic Lymphocytic Leukemia: A Two-Edged Sword. Frontiers in Immunology, 2020, 11, 612244.	2.2	31
970	Eomes Impedes Durable Response to Tumor Immunotherapy by Inhibiting Stemness, Tissue Residency, and Promoting the Dysfunctional State of Intratumoral CD8+ T Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 640224.	1.8	13
971	Blocking TIM-3 in Treatment-refractory Advanced Solid Tumors: A Phase Ia/b Study of LY3321367 with or without an Anti-PD-L1 Antibody. Clinical Cancer Research, 2021, 27, 2168-2178.	3.2	67

ARTICLE IF CITATIONS Addition of anti-TIM3 or anti-TIGIT Antibodies to anti-PD1 Blockade Augments Human T cell Adoptive 972 2.1 20 Cell Transfer. Oncolmmunology, 2021, 10, 1873607. Challenges for NK cell-based therapies: What can we learn from lymph nodes?., 2021, , 33-51. Memory stem T cells modified with a redesigned CD30â€chimeric antigen receptor show an enhanced 974 1.7 18 antitumor effect in Hodgkin lymphoma. Clinical and Translational Immunology, 2021, 10, e1268. The Role of Immunotherapy in the Treatment of Adrenocortical Carcinoma. Biomedicines, 2021, 9, 98. Neoadjuvant immunotherapy in resectable head and neck cancer: oral cavity carcinoma as a potential 976 1.4 8 research model. Therapeutic Advances in Medical Oncology, 2021, 13, 175883592098406. T cells drive negative feedback mechanisms in cancer associated fibroblasts, promoting expression of 977 2.1 co-inhibitory ligands, CD73 and IL-27 in non-small cell lung cancer. Oncolmmunology, 2021, 10, 1940675. Therapeutic Approaches to Employ Monoclonal Antibody for Cancer Treatment. Advances in Medical 979 0.1 0 Diagnosis, Treatment, and Care, 2021, , 42-88. Perspectives of Radiotherapy in Immuno-oncology Era., 2021, , 325-337. 980 981 Immune System Efficiency in Cancer and the Microbiota Influence. Pathobiology, 2021, 88, 170-186. 1.9 14 Fine-Tuning the Tumour Microenvironment: Current Perspectives on the Mechanisms of Tumour 1.8 14 Immunosuppression. Cells, 2021, 10, 56. Modeling <i>ex vivo</i> tumor-infiltrating lymphocyte expansion from established solid malignancies. 983 3 2.1 Oncolmmunology, 2021, 10, 1959101. CD3D has the Potential to be a Prognostic Factor for Endometrial Carcinoma and an Indicator of Tumor Immune Microenvironment Regulation: a Study based on TCGA Data Mining. Indian Journal of 0.1 Gynecologic Oncology, 2021, 19, 1. Expression of immune check point gene TIMâ€'3 in patients newly diagnosed with acute myeloid leukemia: 985 0.8 13 Significance and impact on outcome. Oncology Letters, 2021, 21, 325. Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer 5.8 248 immunotherapy. Nature Communications, 2021, 12, 832. Low Distribution of TIM-3+ Cytotoxic Tumor-Infiltrating Lymphocytes Predicts Poor Outcomes in 987 0.9 3 Gastrointestinal Stromal Tumors. Journal of Immunology Research, 2021, 2021, 1-10. Recent Advancements in the Mechanisms Underlying Resistance to PD-1/PD-L1 Blockade Immunotherapy. 34 Cancers, 2021, 13, 663. Combined inhibition of PD-1/PD-L1, Lag-3, and Tim-3 axes augments antitumor immunity in gastric 989 2.7 32 cancer–T cell coculture models. Gastric Cancer, 2021, 24, 611-623. Photodynamic/ photothermal therapy enhances neutrophil-mediated ibrutinib tumor delivery for 990 potent tumor immunotherapy: More than one plus one?. Biomaterials, 2021, 269, 120652.

#	Article	IF	CITATIONS
991	Immune-Checkpoint Inhibitors Combinations in Metastatic NSCLC: New Options on the Horizon?. ImmunoTargets and Therapy, 2021, Volume 10, 9-26.	2.7	14
992	Novel roles of VAT1 expression in the immunosuppressive action of diffuse gliomas. Cancer Immunology, Immunotherapy, 2021, 70, 2589-2600.	2.0	5
993	Neural stem cells secreting bispecific T cell engager to induce selective antiglioma activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
994	Immune subtyping for pancreatic cancer with implication in clinical outcomes and improving immunotherapy. Cancer Cell International, 2021, 21, 137.	1.8	15
995	Trogocytosis between Non-Immune Cells for Cell Clearance, and among Immune-Related Cells for Modulating Immune Responses and Autoimmunity. International Journal of Molecular Sciences, 2021, 22, 2236.	1.8	7
996	Potential therapeutic targets in the tumor microenvironment of hepatocellular carcinoma: reversing the protumor effect of tumor-associated macrophages. Journal of Experimental and Clinical Cancer Research, 2021, 40, 73.	3.5	24
997	Leukemia vaccine overcomes limitations of checkpoint blockade by evoking clonal T cell responses in a murine acute myeloid leukemia model. Haematologica, 2021, 106, 1330-1342.	1.7	19
998	Polyamines drive myeloid cell survival by buffering intracellular pH to promote immunosuppression in glioblastoma. Science Advances, 2021, 7, .	4.7	45
999	Fundamentals of T Cell Metabolism and Strategies to Enhance Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 645242.	2.2	69
1000	Radiotherapy as an immune checkpoint blockade combination strategy for hepatocellular carcinoma. World Journal of Gastroenterology, 2021, 27, 919-927.	1.4	14
1001	Functional characterization of PD1+TIM3+ tumor-infiltrating T cells in DLBCL and effects of PD1 or TIM3 blockade. Blood Advances, 2021, 5, 1816-1829.	2.5	22
1002	Development of a Prognostic Model for Ovarian Cancer Patients Based on Novel Immune Microenvironment Related Genes. Frontiers in Oncology, 2021, 11, 647273.	1.3	9
1003	Advanced Nanotechnology for Enhancing Immune Checkpoint Blockade Therapy. Nanomaterials, 2021, 11, 661.	1.9	23
1004	A combination of PD‑1/PD‑L1 inhibitors: The prospect of overcoming the weakness of tumor immunotherapy (Review). Molecular Medicine Reports, 2021, 23, .	1.1	16
1005	Immunotherapy for recurrent glioblastoma: practical insights and challenging prospects. Cell Death and Disease, 2021, 12, 299.	2.7	25
1006	Tertiary Lymphoid Structure-B Cells Narrow Regulatory T Cells Impact in Lung Cancer Patients. Frontiers in Immunology, 2021, 12, 626776.	2.2	39
1007	Roles of the Dynamic Tumor Immune Microenvironment in the Individualized Treatment of Advanced Clear Cell Renal Cell Carcinoma. Frontiers in Immunology, 2021, 12, 653358.	2.2	19
1008	PD-L1 expression in tumor lesions and soluble PD-L1 serum levels in patients withÂbreast cancer: TNBC versus TPBC. Breast Disease, 2021, 40, 43-50.	0.4	11

ARTICLE IF CITATIONS Cancer Immunology and CAR-T Cells: A Turning Point Therapeutic Approach in Colorectal Carcinoma 1009 0.6 6 with Clinical Insight. Current Molecular Medicine, 2021, 21, 221-236. One Stone, Two Birds: The Roles of Tim-3 in Acute Myeloid Leukemia. Frontiers in Immunology, 2021, 12, 2.2 24 618710. Exhaustion in tumor-infiltrating Mucosal-Associated Invariant T (MAIT) cells from colon cancer 1011 2.0 19 patients. Cancer Immunology, Immunotherapy, 2021, 70, 3461-3475. Phase I/Ib Clinical Trial of Sabatolimab, an Anti–TIM-3 Antibody, Alone and in Combination with Spartalizumab, an Anti–PD-1 Antibody, in Advanced Solid Tumors. Clinical Cancer Research, 2021, 27, 151 3620-3629. Mucinous Colorectal Cancer is Associated With Expression of the TIM-3 Immune Checkpoint Independently of Microsatellite Instability (MSI) Status. Annals of Surgical Oncology, 2021, 28, 1013 0.7 3 7999-8006. Tim-3 adaptor protein Bat3 is a molecular checkpoint of T cell terminal differentiation and exhaustion. 4.7 Science Advances, 2021, 7, . Envisioning the immune system to determine its role in pancreatic ductal adenocarcinoma: Culprit or 1015 1.1 2 victim?. Immunology Letters, 2021, 232, 48-59. TIM-3 drives temporal differences in restimulation-induced cell death sensitivity in effector CD8+ T 9 2.7 cells in conjunction with CEACAM1. Cell Death and Disease, 2021, 12, 400. 1017 The regulation of immune checkpoints by the hypoxic tumor microenvironment. PeerJ, 2021, 9, e11306. 0.9 22 TCF-1 maintains CD8+ T cell stemness in tumor microenvironment. Journal of Leukocyte Biology, 2021, 1.5 110, 585-590. The relationship between cytokine and neutrophil gene network distinguishes SARS-CoV-2–infected 1019 2.3 17 patients by sex and age. JCÍ Insight, 2021, 6, . Role of nuclear localization in the regulation and function of T-bet and Eomes in exhausted CD8 2.9 TÂcells. Cell Reports, 2021, 35, 109120. Clinical Insights Into Novel Immune Checkpoint Inhibitors. Frontiers in Pharmacology, 2021, 12, 681320. 1021 1.6 76 Immune Landscape of Gastric Carcinoma Tumor Microenvironment Identifies a Peritoneal Relapse 2.2 14 Relevant Immune Signature. Frontiers in Immunology, 2021, 12, 651033. Generation of TIM3 inhibitory singleâ€'domain antibodies to boost the antitumor activity of chimeric 1023 2 0.8 antigen receptor T cells. Oncology Letters, 2021, 22, 542. Immunotherapy for Chordoma and Chondrosarcoma: Current Evidence. Cancers, 2021, 13, 2408. 1024 24 The therapeutic landscape of hepatocellular carcinoma. Med, 2021, 2, 505-552. 1025 2.220 5â€Aminolevulinic acid/sodium ferrous citrate enhanced the antitumor effects of programmed cell 1027 deathâ€ligand 1 blockade by regulation of exhausted T cell metabolism in a melanoma model. Cancer 1.7 Science, 2021, 112, 2652-2663

# 1028	ARTICLE Clinicopathological and Prognostic Value of Programmed Cell Death 1 Expression in Hepatitis B Virus-related Hepatocellular Carcinoma: A Meta-analysis. Journal of Clinical and Translational	IF 0.7	CITATIONS
1029	Hepatology, 2021, 000, 000-000. Role of CD8+ T lymphocyte cells: Interplay with stromal cells in tumor microenvironment. Acta Pharmaceutica Sinica B, 2021, 11, 1365-1378.	5.7	38
1030	Interactions between Cancer-Associated Fibroblasts and T Cells in the Pancreatic Tumor Microenvironment and the Role of Chemokines. Cancers, 2021, 13, 2995.	1.7	29
1031	The costimulatory activity of Tim-3 requires Akt and MAPK signaling and its recruitment to the immune synapse. Science Signaling, 2021, 14, .	1.6	22
1032	Immunotherapeutic Approaches in Malignant Pleural Mesothelioma. Cancers, 2021, 13, 2793.	1.7	8
1033	TIM-3 restrains anti-tumour immunity by regulating inflammasome activation. Nature, 2021, 595, 101-106.	13.7	169
1034	Comprehensive analysis of radiosensitivity in head and neck squamous cell carcinoma. Radiotherapy and Oncology, 2021, 159, 126-135.	0.3	10
1035	A toolmaker's perspective on CRISPR-directed gene editing as a therapeutic strategy for leukemia and beyond. Expert Review of Hematology, 2021, 14, 587-592.	1.0	0
1036	Aging- and Tumor-Mediated Increase in CD8+CD28â^' T Cells Might Impose a Strong Barrier to Success of Immunotherapy in Glioblastoma. ImmunoHorizons, 2021, 5, 395-409.	0.8	8
1037	A Subset of Localized Prostate Cancer Displays an Immunogenic Phenotype Associated with Losses of Key Tumor Suppressor Genes. Clinical Cancer Research, 2021, 27, 4836-4847.	3.2	20
1038	Advancing to the era of cancer immunotherapy. Cancer Communications, 2021, 41, 803-829.	3.7	90
1039	Our current understanding of checkpoint inhibitor therapy in cancer immunotherapy. Annals of Allergy, Asthma and Immunology, 2021, 126, 630-638.	0.5	23
1040	Single-cell RNA sequencing in human lung cancer: Applications, challenges, and pathway towards personalized therapy. Journal of the Chinese Medical Association, 2021, 84, 563-576.	0.6	7
1041	Single-Cell Transcriptome Analysis Reveals the M2 Macrophages and Exhausted T Cells and Intratumoral Heterogeneity in Triple-Negative Breast Cancer. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 294-312.	0.9	7
1042	The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake. Immunity, 2021, 54, 1154-1167.e7.	6.6	109
1043	Role of Tim-3 in regulating tumorigenesis, inflammation, and antitumor immunityÂtherapy. Cancer Biomarkers, 2021, 32, 237-248.	0.8	6
1044	Targeting dual gene delivery nanoparticles overcomes immune checkpoint blockade induced adaptive resistance and regulates tumor microenvironment for improved tumor immunotherapy. Nano Today, 2021, 38, 101194.	6.2	29
1045	Immune checkpoint inhibitors in lymphoma: challenges and opportunities. Annals of Translational Medicine, 2021, 9, 1037-1037.	0.7	30

#	Article	IF	CITATIONS
1046	Targeting Immune Modulators in Glioma While Avoiding Autoimmune Conditions. Cancers, 2021, 13, 3524.	1.7	4
1047	Hepatocellular carcinoma in patients with renal dysfunction: Pathophysiology, prognosis, and treatment challenges. World Journal of Gastroenterology, 2021, 27, 4104-4142.	1.4	15
1048	Identification of the Immunological Changes Appearing in the CSF During the Early Immunosenescence Process Occurring in Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 685139.	2.2	13
1049	Clinical Research on the Mechanisms Underlying Immune Checkpoints and Tumor Metastasis. Frontiers in Oncology, 2021, 11, 693321.	1.3	16
1050	Belantamab Mafodotin (GSK2857916) Drives Immunogenic Cell Death and Immune-mediated Antitumor Responses <i>In Vivo</i> . Molecular Cancer Therapeutics, 2021, 20, 1941-1955.	1.9	41
1051	High levels of Tim-3+Foxp3+Treg cells in the tumor microenvironment is a prognostic indicator of poor survival of diffuse large B cell lymphoma patients. International Immunopharmacology, 2021, 96, 107662.	1.7	13
1052	The Role of Mathematical Models in Immuno-Oncology: Challenges and Future Perspectives. Pharmaceutics, 2021, 13, 1016.	2.0	9
1053	Phytochemicals in Cancer Immune Checkpoint Inhibitor Therapy. Biomolecules, 2021, 11, 1107.	1.8	21
1054	Targeting galectins in T cell-based immunotherapy within tumor microenvironment. Life Sciences, 2021, 277, 119426.	2.0	6
1055	Terphenyl-Based Small-Molecule Inhibitors of Programmed Cell Death-1/Programmed Death-Ligand 1 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2021, 64, 11614-11636.	2.9	42
1056	Myocarditis Induced by Immune Checkpoint Inhibitors: Mechanisms and Therapeutic Prospects. Journal of Inflammation Research, 2021, Volume 14, 3077-3088.	1.6	5
1057	The Role of Cytokines in Predicting the Response and Adverse Events Related to Immune Checkpoint Inhibitors. Frontiers in Immunology, 2021, 12, 670391.	2.2	48
1058	TIMâ€3 in normal and malignant hematopoiesis: Structure, function, and signaling pathways. Cancer Science, 2021, 112, 3419-3426.	1.7	18
1059	The TIM3/Gal9 signaling pathway: An emerging target for cancer immunotherapy. Cancer Letters, 2021, 510, 67-78.	3.2	60
1060	LAG3 and PD1 Regulate CD8+ T Cell in Diffuse Large B-cell Lymphoma Patients. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-8.	0.7	3
1061	Safety and Antitumor Activity of α-PD-L1 Antibody as Monotherapy or in Combination with α-TIM-3 Antibody in Patients with Microsatellite Instability–High/Mismatch Repair–Deficient Tumors. Clinical Cancer Research, 2021, 27, 6393-6404.	3.2	29
1062	Trinity immune enhancing nanoparticles for boosting antitumor immune responses of immunogenic chemotherapy. Nano Research, 2022, 15, 1183-1192.	5.8	7
1063	Structure and Functions of T-cell Immunoglobulin-domain and Mucin- domain Protein 3 in Cancer. Current Medicinal Chemistry, 2022, 29, 1851-1865.	1.2	4

#	Article	IF	CITATIONS
1064	Combined DNA Methylation and Transcriptomic Assessments to Determine a Prognostic Model for PD-1-Negative Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 708819.	1.8	4
1065	The Potential of Tissue-Resident Memory T Cells for Adoptive Immunotherapy against Cancer. Cells, 2021, 10, 2234.	1.8	10
1066	Strategies to Overcome Failures in T-Cell Immunotherapies by Targeting PI3K-δ and –γ. Frontiers in Immunology, 2021, 12, 718621.	2.2	16
1067	Combining an Alarmin HMGN1 Peptide with PD-L1 Blockade Results in Robust Antitumor Effects with a Concomitant Increase of Stem-Like/Progenitor Exhausted CD8+ T Cells. Cancer Immunology Research, 2021, 9, 1214-1228.	1.6	12
1068	Schrödinger's T Cells: Molecular Insights Into Stemness and Exhaustion. Frontiers in Immunology, 2021, 12, 725618.	2.2	22
1069	Immune Checkpoints: Therapeutic Targets for Pituitary Tumors. Disease Markers, 2021, 2021, 1-7.	0.6	5
1070	Unraveling How Tumor-Derived Galectins Contribute to Anti-Cancer Immunity Failure. Cancers, 2021, 13, 4529.	1.7	10
1071	Tumor-Derived Exosomes: Hidden Players in PD-1/PD-L1 Resistance. Cancers, 2021, 13, 4537.	1.7	20
1072	Cancer immunotherapy: Classification, therapeutic mechanisms, and nanomaterial-based synergistic therapy. Applied Materials Today, 2021, 24, 101149.	2.3	7
1073	T cell exhaustion drives osteosarcoma pathogenesis. Annals of Translational Medicine, 2021, 9, 1447-1447.	0.7	10
1075	Resistance to immunotherapy in human malignancies: Mechanisms, research progresses, challenges, and opportunities. Journal of Cellular Physiology, 2022, 237, 346-372.	2.0	13
1076	The Expression of Immune Checkpoint Receptors and Ligands in the Colorectal Cancer Tumor Microenvironment. Anticancer Research, 2021, 41, 4895-4905.	0.5	6
1077	Targeting Tim-3 in Cancer With Resistance to PD-1/PD-L1 Blockade. Frontiers in Oncology, 2021, 11, 731175.	1.3	47
1078	The HIV-1 accessory protein Nef increases surface expression of the checkpoint receptor Tim-3 in infected CD4+ T cells. Journal of Biological Chemistry, 2021, 297, 101042.	1.6	11
1079	An engineered IL-2 partial agonist promotes CD8+ T cell stemness. Nature, 2021, 597, 544-548.	13.7	94
1080	Research Progresses in Immunological Checkpoint Inhibitors for Breast Cancer Immunotherapy. Frontiers in Oncology, 2021, 11, 582664.	1.3	11
1081	TIM-3 in Leukemia; Immune Response and Beyond. Frontiers in Oncology, 2021, 11, 753677.	1.3	35
1082	Nanobodies Enhancing Cancer Visualization, Diagnosis and Therapeutics. International Journal of Molecular Sciences, 2021, 22, 9778.	1.8	13

		CITATION RE	PORT	
#	Article		IF	Citations
1083	Phosphatidylserine binding directly regulates TIM-3 function. Biochemical Journal, 2021,	478, 3331-3349.	1.7	19
1084	An anti-tumor coup: TIM3 ablation activates the immune arsenal. Signal Transduction ar Therapy, 2021, 6, 348.	id Targeted	7.1	2
1085	Immune checkpoints and immunotherapy in non‑small cell lung cancer: Novel study p challenges and solutions (Review). Oncology Letters, 2021, 22, 787.	rogression,	0.8	8
1086	The tumor microenvironment as driver of stemness and therapeutic resistance in breast challenges and therapeutic opportunities. Cellular Oncology (Dordrecht), 2021, 44, 120		2.1	71
1087	A reservoir of stem-like CD8 ⁺ T cells in the tumor-draining lymph node presongoing antitumor immune response. Science Immunology, 2021, 6, eabg7836.	serves the	5.6	123
1088	Fragment-Based Discovery of Small Molecules Bound to T-Cell Immunoglobulin and Muc Domain-Containing Molecule 3 (TIM-3). Journal of Medicinal Chemistry, 2021, 64, 14757		2.9	13
1089	TIM-3: An update on immunotherapy. International Immunopharmacology, 2021, 99, 10	7933.	1.7	71
1090	Recent advances in immune checkpoint therapy in non-small cell lung cancer and opport nanoparticle-based therapy. European Journal of Pharmacology, 2021, 909, 174404.	cunities for	1.7	18
1091	Targeted knockdown of Tim3 by short hairpin RNAs improves the function of anti-mesot cells. Molecular Immunology, 2021, 139, 1-9.	helin CAR T	1.0	13
1092	The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunctic neck cancer. Phytomedicine, 2021, 92, 153758.	n in head and	2.3	26
1093	Delivery strategies to overcome tumor immunotherapy resistance. , 2022, , 529-547.			0
1095	A Review of Current Strategies Towards the Elimination of Latent HIV-1 and Subsequent Current HIV Research, 2021, 19, 14-26.	HIV-1 Cure.	0.2	10
1096	Immune Therapy: What Can We Learn From Acquired Resistance?. Current Cancer Resea 75-114.	arch, 2021, ,	0.2	0
1097	Evaluation of Production Protocols for the Generation of NY-ESO-1-Specific T Cells. Cells 152.	, 2021, 10,	1.8	2
1098	The efficacy and safety of the combination of axitinib and pembrolizumabâ€activated au cell immunotherapy for patients with advanced renal cell carcinoma: a phase 2 study. Cl Translational Immunology, 2021, 10, e1257.		1.7	4
1099	Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint Insight, 2021, 6, .	blockade. JCI	2.3	46
1100	Tumor-Infiltrating Lymphoid Cells in Colorectal Cancer Patients with Varying Disease Sta Microsatellite Instability-High/Stable Tumors. Vaccines, 2021, 9, 64.	ges and	2.1	11
1101	Quiescent Cancer Cells Resist T Cell Attack by Forming an Immunosuppressive Niche. SS Journal, 0, , .	RN Electronic	0.4	2

#	Article	IF	CITATIONS
1102	Hyperprogression: A novel response pattern under immunotherapy. Clinical and Translational Medicine, 2020, 10, e167.	1.7	22
1103	Mechanisms of NK cell dysfunction in the tumor microenvironment and current clinical approaches to harness NK cell potential for immunotherapy. Journal of Leukocyte Biology, 2021, 109, 1071-1088.	1.5	25
1104	Immunological Targets for Immunotherapy: Inhibitory T Cell Receptors. Methods in Molecular Biology, 2020, 2055, 23-60.	0.4	12
1105	Personalized Neo-Epitope Vaccines for Cancer Treatment. Recent Results in Cancer Research, 2020, 214, 153-167.	1.8	9
1106	Translational Biomarkers and Rationale Strategies to Overcome Resistance to Immune Checkpoint Inhibitors in Solid Tumors. Cancer Treatment and Research, 2020, 180, 251-279.	0.2	15
1107	Chimeric Antigen Receptors for the Tumour Microenvironment. Advances in Experimental Medicine and Biology, 2020, 1263, 117-143.	0.8	8
1108	The Role of Exhaustion in Tumor-Induced T Cell Dysfunction in Cancer. , 2015, , 61-75.		2
1109	TIM-3 Is a Novel Therapeutic Target for Eradicating Acute Myelogenous Leukemia Stem Cells. , 2015, , 307-315.		8
1110	Antibody Therapies in Cancer. Advances in Experimental Medicine and Biology, 2016, 909, 1-67.	0.8	8
1111	Mechanisms of Resistance to Checkpoint Blockade Therapy. Advances in Experimental Medicine and Biology, 2020, 1248, 83-117.	0.8	22
1112	Cancer Immunotherapy Targeting Co-signal Molecules. Advances in Experimental Medicine and Biology, 2019, 1189, 313-326.	0.8	4
1113	Cancer Immunology. , 2014, , 78-97.e5.		3
1114	Fas/FasL signaling is critical for the survival of exhausted antigen-specific CD8+ T cells during tumor immune response. Molecular Immunology, 2019, 107, 97-105.	1.0	10
1122	Programmed Cell Death 1-Directed Immunotherapy for Enhancing T-Cell Function. Cold Spring Harbor Symposia on Quantitative Biology, 2013, 78, 239-247.	2.0	38
1123	Vaccine-Elicited CD8+ T Cells Cure Mesothelioma by Overcoming Tumor-Induced Immunosuppressive Environment. Cancer Research, 2014, 74, 6010-6021.	0.4	32
1124	Combination of PD-L1 and PVR determines sensitivity to PD-1 blockade. JCI Insight, 2020, 5, .	2.3	27
1125	Targeting tumors with IL-21 reshapes the tumor microenvironment by proliferating PD-1intTim-3–CD8+ T cells. JCI Insight, 2020, 5, .	2.3	30
1126	Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity. JCI Insight, 2017, 2, .	2.3	24

#	Article	IF	CITATIONS
1127	Emerging strategies for combination checkpoint modulators in cancer immunotherapy. Journal of Clinical Investigation, 2018, 128, 3209-3218.	3.9	170
1128	Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. Journal of Clinical Investigation, 2011, 121, 2350-2360.	3.9	707
1129	IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. Journal of Clinical Investigation, 2012, 122, 1271-1282.	3.9	243
1130	Viral acute lower respiratory infections impair CD8+ T cells through PD-1. Journal of Clinical Investigation, 2012, 122, 2967-2982.	3.9	156
1131	Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction. Journal of Clinical Investigation, 2014, 124, 2425-2440.	3.9	203
1132	Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice. Journal of Clinical Investigation, 2014, 124, 687-695.	3.9	1,627
1133	Podoplanin negatively regulates CD4+ effector T cell responses. Journal of Clinical Investigation, 2015, 125, 129-140.	3.9	40
1134	Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance. Journal of Clinical Investigation, 2019, 129, 1278-1294.	3.9	102
1135	Immune regulation by Tim-3. F1000Research, 2018, 7, 316.	0.8	68
1136	TIM-3 Expression Characterizes Regulatory T Cells in Tumor Tissues and Is Associated with Lung Cancer Progression. PLoS ONE, 2012, 7, e30676.	1.1	309
1137	Extended Co-Expression of Inhibitory Receptors by Human CD8 T-Cells Depending on Differentiation, Antigen-Specificity and Anatomical Localization. PLoS ONE, 2012, 7, e30852.	1.1	166
1138	Tim-3 Expression Defines Regulatory T Cells in Human Tumors. PLoS ONE, 2013, 8, e58006.	1.1	148
1139	Combinatorial PD-1 Blockade and CD137 Activation Has Therapeutic Efficacy in Murine Cancer Models and Synergizes with Cisplatin. PLoS ONE, 2013, 8, e84927.	1.1	85
1140	Increased Frequency of Tim-3 Expressing T Cells Is Associated with Symptomatic West Nile Virus Infection. PLoS ONE, 2014, 9, e92134.	1.1	17
1141	Pancreatic Ductal Adenocarcinoma Contains an Effector and Regulatory Immune Cell Infiltrate that Is Altered by Multimodal Neoadjuvant Treatment. PLoS ONE, 2014, 9, e96565.	1.1	108
1142	Tim-3 Negatively Mediates Natural Killer Cell Function in LPS-Induced Endotoxic Shock. PLoS ONE, 2014, 9, e110585.	1.1	23
1143	Upregulation of Programmed Death-1 and Its Ligand in Cardiac Injury Models: Interaction with GADD153. PLoS ONE, 2015, 10, e0124059.	1.1	74
1144	TIM-3 Suppresses Anti-CD3/CD28-Induced TCR Activation and IL-2 Expression through the NFAT Signaling Pathway. PLoS ONE, 2015, 10, e0140694.	1.1	58

#	Article	IF	CITATIONS
1145	Immune-Modulation by Epidermal Growth Factor Receptor Inhibitors: Implication on Anti-Tumor Immunity in Lung Cancer. PLoS ONE, 2016, 11, e0160004.	1.1	33
1146	TIM3 Mediates T Cell Exhaustion during Mycobacterium tuberculosis Infection. PLoS Pathogens, 2016, 12, e1005490.	2.1	147
1147	Stimulation of Camel Polyclonal Antibody against Human T cell Immunoglobulin and Mucin 3. Iranian Journal of Biotechnology, 2017, 15, 166-171.	0.3	3
1148	Prognostic value of prostaglandin I2 synthase and its correlation with tumor-infiltrating immune cells in lung cancer, ovarian cancer, and gastric cancer. Aging, 2020, 12, 9658-9685.	1.4	30
1149	Discovery of peptide inhibitors targeting human programmed death 1 (PD-1) receptor. Oncotarget, 2016, 7, 64967-64976.	0.8	42
1150	T-cell responses against CD19+ pediatric acute lymphoblastic leukemia mediated by bispecific T-cell engager (BiTE) are regulated contrarily by PD-L1 and CD80/CD86 on leukemic blasts. Oncotarget, 2016, 7, 76902-76919.	0.8	131
1151	Distinct patterns of infiltrating CD8+ T cells in HPV+ and CD68 macrophages in HPV- oropharyngeal squamous cell carcinomas are associated with better clinical outcome but PD-L1 expression is not prognostic. Oncotarget, 2017, 8, 14416-14427.	0.8	70
1152	TIM-3 is a potential prognostic marker for patients with solid tumors: A systematic review and meta-analysis. Oncotarget, 2017, 8, 31705-31713.	0.8	72
1153	The antitumor activity and preliminary modeling on the potential mechanism of action of human peroxiredoxin-5. Oncotarget, 2017, 8, 27189-27198.	0.8	5
1154	Radiation improves antitumor effect of immune checkpoint inhibitor in murine hepatocellular carcinoma model. Oncotarget, 2017, 8, 41242-41255.	0.8	89
1155	Characterization of infiltrating lymphocytes in human benign and malignant prostate tissue. Oncotarget, 2017, 8, 60257-60269.	0.8	12
1156	Prostaglandin E2 and PD-1 mediated inhibition of antitumor CTL responses in the human tumor microenvironment. Oncotarget, 2017, 8, 89802-89810.	0.8	54
1157	High Tim-3 expression on AML blasts could enhance chemotherapy sensitivity. Oncotarget, 2017, 8, 102088-102096.	0.8	17
1158	Prognostic immune markers for recurrence and survival in locally advanced esophageal adenocarcinoma. Oncotarget, 2019, 10, 4546-4555.	0.8	11
1159	Differential expression and biochemical activity of the immune receptor Tim-3 in healthy and malignant human myeloid cells. Oncotarget, 2015, 6, 33823-33833.	0.8	49
1160	Identification of TIM3 2′-fluoro oligonucleotide aptamer by HT-SELEX for cancer immunotherapy. Oncotarget, 2016, 7, 4522-4530.	0.8	44
1161	Genetic polymorphisms of immune checkpoint proteins PD-1 and TIM-3 are associated with survival of patients with hepatitis B virus-related hepatocellular carcinoma. Oncotarget, 2016, 7, 26168-26180.	0.8	15
1162	Resistance mechanisms in melanoma to immuneoncologic therapy with checkpoint inhibitors. , 2019, 2, 744-761.		3

		CITATION REPORT		
#	Article		IF	CITATIONS
1163	Exhausted T cells and epigenetic status. Cancer Biology and Medicine, 2020, 17, 923-93	6.	1.4	32
1164	Future perspectives in cancer immunotherapy. Annals of Translational Medicine, 2016, 4	, 273-273.	0.7	29
1165	Rational combinations of immunotherapy for pancreatic ductal adenocarcinoma. Chines Oncology, 2017, 6, 31-31.	e Clinical	0.4	12
1166	T cell immunoglobulin and mucin-domain containing-3 in non-small cell lung cancer. Trar Lung Cancer Research, 2019, 8, 895-906.	islational	1.3	29
1167	Histone Deacetylase Inhibitors in Tumor Immunotherapy. Current Medicinal Chemistry, 2 2990-3008.	:019, 26,	1.2	32
1168	Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory (Molecules. Current Medicinal Chemistry, 2020, 27, 2402-2448.	Checkpoint	1.2	12
1169	Targeting PD-L1 Protein: Translation, Modification and Transport. Current Protein and Pe 2018, 20, 82-91.	ptide Science,	0.7	20
1170	Immunomodulatory Drugs: Immune Checkpoint Agents in Acute Leukemia. Current Drug 18, 315-331.	g Targets, 2017,	1.0	39
1171	Monoclonal Antibodies for the Treatment of Cancer. Anticancer Research, 2017, 37, 593	5-5939.	0.5	79
1172	Upregulation of Galectin-9 and PD-L1 Immune Checkpoints Molecules in Patients with C Lymphocytic Leukemia. Asian Pacific Journal of Cancer Prevention, 2017, 18, 2269-2274	hronic ,	0.5	26
1173	Targeting Tumor-Associated Macrophages in the Pediatric Sarcoma Tumor Microenviron Frontiers in Oncology, 2020, 10, 581107.	ment.	1.3	14
1174	The Role of Immune Checkpoints after Cellular Therapy. International Journal of Molecula 2020, 21, 3650.	r Sciences,	1.8	7
1175	Specific CD8 ⁺ T cell response immunotherapy for hepatocellular carcinoma hepatitis. World Journal of Gastroenterology, 2016, 22, 6469.	and viral	1.4	53
1176	Immune checkpoint and inflammation as therapeutic targets in pancreatic carcinoma. W of Gastroenterology, 2016, 22, 7440.	'orld Journal	1.4	15
1177	Role of Tim-3 in hepatitis B virus infection: An overview. World Journal of Gastroenterolo 2294-2303.	gy, 2016, 22,	1.4	33
1178	Emergence of immunotherapy as a novel way to treat hepatocellular carcinoma. World J Gastroenterology, 2018, 24, 1839-1858.	burnal of	1.4	30
1179	Checkpoint inhibitors: What gastroenterologists need to know. World Journal of Gastroe 2018, 24, 5433-5438.	enterology,	1.4	14
1181	IDO inhibitor synergized with radiotherapy to delay tumor growth by reversing T cell exh Molecular Medicine Reports, 2020, 21, 445-453.	austion.	1.1	26

#	Article	IF	CITATIONS
1182	Gene silencing of indoleamine 2,3‑dioxygenase 1 inhibits lung cancer growth by suppressing T‑cell exhaustion. Oncology Letters, 2020, 19, 3827-3838.	0.8	7
1183	Hydrogen gas activates coenzyme Q10 to restore exhausted CD8+ T cells, especially PD‑1+Tim3+terminal CD8+ T cells, leading to better nivolumab outcomes in patients with lung cancer. Oncology Letters, 2020, 20, 1-1.	0.8	17
1184	Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2014, 26, 104-11.	0.7	90
1185	Immunotherapy in lung cancer. Translational Lung Cancer Research, 2014, 3, 2-14.	1.3	53
1186	The past, present and future of immunotherapy against tumor. Translational Lung Cancer Research, 2015, 4, 253-64.	1.3	34
1187	Immunotherapy in oral cancer. Journal of Pharmacy and Bioallied Sciences, 2019, 11, 107.	0.2	37
1188	Re-defining T-Cell Exhaustion: Subset, Function, and Regulation. Immune Network, 2020, 20, e2.	1.6	33
1189	Tumor immune response and immunotherapy in gastric cancer. Journal of Pathology and Translational Medicine, 2020, 54, 20-33.	0.4	59
1190	Aiming to immune elimination of ovarian cancer stem cells. World Journal of Stem Cells, 2013, 5, 149.	1.3	6
1191	The Expression of Programmed Death-1 in Circulating CD4 ⁺ and CD8 ⁺ T Cells during Hepatitis B Virus Infection Progression and Its Correlation with Clinical Baseline Characteristics. Gut and Liver, 2014, 8, 186-195.	1.4	27
1192	Cancer immunotherapy by targeting immune checkpoint receptors. World Journal of Immunology, 2018, 8, 1-11.	0.5	4
1193	Mechanism of T cell exhaustion in a chronic environment. BMB Reports, 2011, 44, 217-231.	1.1	50
1194	Increased Tim-3 expression on TILs during treatment with the Anchored GM-CSF vaccine and anti-PD-1 antibodies is inversely correlated with response in prostate cancer. Journal of Cancer, 2020, 11, 648-656.	1.2	25
1195	Prognostic Value of T Cell Immunoglobulin Mucin-3 in Prostate Cancer. Asian Pacific Journal of Cancer Prevention, 2013, 14, 3897-3901.	0.5	48
1196	Advances in immunotherapy for treatment of lung cancer. Cancer Biology and Medicine, 2015, 12, 209-22.	1.4	50
1197	Fueling the engine and releasing the break: combinational therapy of cancer vaccines and immune checkpoint inhibitors. Cancer Biology and Medicine, 2015, 12, 201-8.	1.4	67
1198	PD-L1, PD-1, LAG-3, and TIM-3 in Melanoma: Expression in Brain Metastases Compared to Corresponding Extracranial Tumors. Cureus, 2019, 11, e6352.	0.2	7
1199	Currently Used Laboratory Methodologies for Assays Detecting PD-1, PD-L1, PD-L2 and Soluble PD-L1 in Patients with Metastatic Breast Cancer. Cancers, 2021, 13, 5225.	1.7	8

#	Article	IF	CITATIONS
1200	Cure the Incurable? Recent Breakthroughs in Immune Checkpoint Blockade for Hepatocellular Carcinoma. Cancers, 2021, 13, 5295.	1.7	9
1201	Nature vs. Nurture: The Two Opposing Behaviors of Cytotoxic T Lymphocytes in the Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 11221.	1.8	9
1202	Metabolic regulation by PD-1 signaling promotes long-lived quiescent CD8 T cell memory in mice. Science Translational Medicine, 2021, 13, eaba6006.	5.8	33
1203	Improving CAR T-Cell Persistence. International Journal of Molecular Sciences, 2021, 22, 10828.	1.8	44
1204	Review of the recent clinical trials for PD-1/PD-L1 based lung cancer immunotherapy. Expert Review of Anticancer Therapy, 2021, 21, 1355-1370.	1.1	6
1205	Analysis of Prognostic Alternative Splicing Reveals the Landscape of Immune Microenvironment in Thyroid Cancer. Frontiers in Oncology, 2021, 11, 763886.	1.3	1
1206	Monitoring PD-1 Phosphorylation to Evaluate PD-1 Signaling during Antitumor Immune Responses. Cancer Immunology Research, 2021, 9, 1465-1475.	1.6	8
1207	PD-1 and TIGIT downregulation distinctly affect the effector and early memory phenotypes of CD19-targeting CAR TAcells. Molecular Therapy, 2022, 30, 579-592.	3.7	29
1208	Novel immunotherapeutic drugs for the treatment of lung cancer. Current Opinion in Oncology, 2022, 34, 89-94.	1.1	9
1209	Somatic Cells: Growth and Expansion Potential of T Lymphocytes. , 2011, , 451-462.		0
1210	Dendritic Cells and Lentiviral Vectors: Mapping the Way to Successful Immuno Gene Therapy. , 0, , .		0
1211	Immunomodulation by Genetic Modification Using Lentiviral Vectors. SpringerBriefs in Biochemistry and Molecular Biology, 2012, , 51-67.	0.3	0
1212	Effects of Interleukin-4-Transduced Tumor Cell Vaccines and Blockade of Programmed Cell Death 1 on the Growth of Established Tumors. The Showa University Journal of Medical Sciences, 2012, 24, 127-137.	0.1	0
1213	Viruses Strive to Suppress Host Immune Responses and Prolong Persistence. , 0, , .		0
1215	Cancer immunotherapy with blocking of immune checkpoints. Okayama Igakkai Zasshi, 2013, 125, 13-18.	0.0	0
1216	Development of Antitumor Cellular Immunity. , 2013, , 107-133.		0
1217	Immune Cells Within the Tumor Microenvironment. , 2014, , 1-23.		2
1218	Tim-3 Regulation of Cancer Immunity. , 2014, , 239-261.		Ο

#	Article	IF	CITATIONS
1219	Vaccines in RCC: Clinical and Biological Relevance. , 2015, , 483-525.		0
1220	T Cell Modulation: Anti-PD-1 Antibodies for the Treatment of Cancer. Cancer Drug Discovery and Development, 2015, , 231-244.	0.2	0
1223	Surgical Considerations and Emergencies in the Cancer Patient Receiving Immunotherapy. , 2017, , 31-44.		0
1224	Immunotolerance and Immunoregulation. , 2017, , 39-47.		0
1225	Therapies Targeting Leukemic Stem Cells. , 2017, , 343-361.		0
1226	Immune Checkpoint Blockade: Subjugation of the Masses. , 0, , .		0
1227	Blimp-1 Expression as an Exhaustion Transcription Factor in Chronic Lymphocytic Leukemia. Research in Molecular Medicine, 2017, 5, 5-10.	0.1	0
1229	Immunotherapy in Head and Neck Squamous Cell Carcinoma (HNSCC). Current Cancer Research, 2018, , 365-396.	0.2	0
1233	The Eμ-TCL1 Mouse Model of Chronic Lymphocytic Leukemia. , 2019, , 2213-2241.		0
1234	Checkpoint Inhibitors in the Treatment of Metastatic Melanoma. , 2019, , 1-24.		0
1236	Beyond PD-1/PD-L1 Axis Blockade: New Combination Strategies in Metastatic Melanoma Treatment. Current Cancer Therapy Reviews, 2019, 15, 110-119.	0.2	0
1237	Checkpoint Inhibitors in the Treatment of Metastatic Melanoma. , 2020, , 1141-1164.		0
1238	Lack of CD8 ⁺ T cell effector differentiation during priming mediates checkpoint blockade resistance in non–small cell lung cancer. Science Immunology, 2021, 6, eabi8800.	5.6	58
1239	TIM3+ cells in gastric cancer: clinical correlates and association with immune context. British Journal of Cancer, 2022, 126, 100-108.	2.9	12
1240	T Cell Exhaustion Could Be Regulating by Yangyin Fuzheng Decoction in Lewis Lung Cancer in a Tumor Burdened Mice. World Journal of Cancer Research, 2020, 10, 31-40.	0.1	0
1241	CHAPTER 14. Cell and Immune Therapy. RSC Detection Science, 2020, , 303-344.	0.0	0
1242	Current Perspectives on Cancer Immunotherapy in Bone. , 2020, , 421-437.		0
1243	Future Therapies for Malignant Brainstem Tumors. , 2020, , 347-392.		О

#	Article	IF	Citations
1244	Galectins in Glioma: Current Roles in Cancer Progression and Future Directions for Improving Treatment. Cancers, 2021, 13, 5533.	1.7	3
1245	Disease Progression in Patients With Nontuberculous Mycobacterial Lung Disease of Nodular Bronchiectatic (NB) Pattern: The Roles of Cavitary NB and Soluble Programmed Death Protein-1. Clinical Infectious Diseases, 2022, 75, 239-247.	2.9	6
1246	The double-edged sword: Harnessing PD-1 blockade in tumor and autoimmunity. Science Immunology, 2021, 6, eabf4034.	5.6	22
1249	Protective low-avidity anti-tumour CD8+ T cells are selectively attenuated by regulatory T cells. Immunotherapy Advances, 2021, 1, Itaa001.	1.2	5
1250	Blockade of the B7-H1/PD-1 pathway for cancer immunotherapy. Yale Journal of Biology and Medicine, 2011, 84, 409-21.	0.2	97
1251	Introduction to monoclonal antibodies. Cancer Immunity, 2012, 12, 11.	3.2	4
1252	Upregulation of TIM-3 and PD-1 on CD4+ and CD8+ T Cells Associated with Dysfunction of Cell-Mediated Immunity after Colorectal Cancer Operation. Yonago Acta Medica, 2012, 55, 1-9.	0.3	26
1253	Tim-3 is highly expressed in T cells in acute myeloid leukemia and associated with clinicopathological prognostic stratification. International Journal of Clinical and Experimental Pathology, 2014, 7, 6880-8.	0.5	31
1254	Up-regulation of Tim-3 is associated with poor prognosis of patients with colon cancer. International Journal of Clinical and Experimental Pathology, 2015, 8, 8018-27.	0.5	46
1255	Expression of Tim-3 in gastric cancer tissue and its relationship with prognosis. International Journal of Clinical and Experimental Pathology, 2015, 8, 9452-7.	0.5	25
1256	T-cell Exhaustion and Cancer Immunotherapy. Journal of International Oral Health, 2015, 7, i-ii.	0.0	0
1257	TIM-3, a Possible Target for Immunotherapy in Cancer and Chronic Viral Infections. , 2014, 1, .		2
1258	Preferential Tim-3 expression on Treg and CD8(+) T cells, supported by tumor-associated macrophages, is associated with worse prognosis in gastric cancer. American Journal of Translational Research (discontinued), 2016, 8, 3419-28.	0.0	11
1259	Preparation and characterization of a novel nanobody against T-cell immunoglobulin and mucin-3 (TIM-3). Iranian Journal of Basic Medical Sciences, 2016, 19, 1201-1208.	1.0	28
1260	Tim-3 Up-regulation in Patients with Gastric Cancer and Peptic Ulcer Disease. Asian Pacific Journal of Cancer Prevention, 2017, 18, 765-770.	0.5	2
1262	Co-inhibition of TIGIT, PD1, and Tim3 reverses dysfunction of Wilms tumor protein-1 (WT1)-specific CD8+ T lymphocytes after dendritic cell vaccination in gastric cancer. American Journal of Cancer Research, 2018, 8, 1564-1575.	1.4	13
1264	Expression Analysis of Fyn and Bat3 Signal Transduction Molecules in Patients with Chronic Lymphocytic Leukemia. Asian Pacific Journal of Cancer Prevention, 2020, 21, 2615-2621.	0.5	0
1265	Down-regulation of immune checkpoints by doxorubicin and carboplatin-containing neoadjuvant regimens in a murine breast cancer model. Iranian Journal of Basic Medical Sciences, 2021, 24, 537-544.	1.0	2

#	Article	IF	CITATIONS
1266	Various Uses of PD1/PD-L1 Inhibitor in Oncology: Opportunities and Challenges. Frontiers in Oncology, 2021, 11, 771335.	1.3	15
1267	Divergent fates of antigen-specific CD8+ TÂcell clones in mice with acute leukemia. Cell Reports, 2021, 37, 109991.	2.9	3
1268	Intravesical High Dose BCG Tokyo and Low Dose BCG Tokyo with GMCSF+IFN α Induce Systemic Immunity in a Murine Orthotopic Bladder Cancer Model. Biomedicines, 2021, 9, 1766.	1.4	2
1269	Anticancer natural products targeting immune checkpoint protein network. Seminars in Cancer Biology, 2022, 86, 1008-1032.	4.3	8
1270	Increased Expressions of Programmed Death Ligand 1 and Galectin 9 in Transplant Recipients Who Achieved Tolerance After Immunosuppression Withdrawal. Liver Transplantation, 2022, 28, 647-658.	1.3	3
1271	Pushing Past the Blockade: Advancements in T Cell-Based Cancer Immunotherapies. Frontiers in Immunology, 2021, 12, 777073.	2.2	5
1272	Expression of PD-1 and TIM-3 inhibitory checkpoint molecules by T-lymphocytes in early post-transplant period in multiple myeloma patients. Gematologiya I Transfuziologiya, 2021, 66, 499-511.	0.1	0
1273	An NK-like CAR TÂcell transition in CAR TÂcell dysfunction. Cell, 2021, 184, 6081-6100.e26.	13.5	160
1274	Immunotherapy for Melanoma. Advances in Experimental Medicine and Biology, 2021, 1342, 81-111.	0.8	7
1275	Acidosis Significantly Alters Immune Checkpoint Expression Profiles of T Cells. SSRN Electronic Journal, 0, , .	0.4	0
1276	Immunotherapy for prostate cancer: Requirements for a successful regime transfer. Investigative and Clinical Urology, 2022, 63, 3.	1.0	8
1277	Expression Analysis of Fyn and Bat3 Signal Transduction Molecules in Patients with Chronic Lymphocytic Leukemia. Asian Pacific Journal of Cancer Prevention, 2020, 21, 2615-2621.	0.5	2
1278	LCVM infection generates tumor antigen-specific immunity and inhibits growth of nonviral tumors. Oncolmmunology, 2022, 11, 2029083.	2.1	3
1279	Identification of an at-risk subpopulation with high immune infiltration based on the peroxisome pathway and TIM3 in colorectal cancer. BMC Cancer, 2022, 22, 44.	1.1	8
1280	Design, Synthesis, and Targeted Delivery of an Immune Stimulant that Selectively Reactivates Exhausted CAR T Cells. Angewandte Chemie, 0, , .	1.6	0
1281	Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Molecular Cancer, 2022, 21, 28.	7.9	393
1282	miR-4759 suppresses breast cancer through immune checkpoint blockade. Computational and Structural Biotechnology Journal, 2022, 20, 241-251.	1.9	5
1283	Cell membrane-anchored and tumor-targeted IL-12 (attIL12)-T cell therapy for eliminating large and heterogeneous solid tumors. , 2022, 10, e003633.		19

#	Article	IF	CITATIONS
1284	Design, Synthesis, and Targeted Delivery of an Immune Stimulant that Selectively Reactivates Exhausted CAR T Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	2
1285	Therapeutic Targets and Emerging Treatments in Advanced Chondrosarcoma. International Journal of Molecular Sciences, 2022, 23, 1096.	1.8	17
1286	Molecular hybridization used to design and synthesize neo-tanshinlactone derivatives as PD-1/PD-L1 inhibitors. Bioorganic and Medicinal Chemistry, 2022, 54, 116579.	1.4	3
1287	Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments. Molecular Therapy, 2022, 30, 1054-1070.	3.7	62
1288	Differential expression of inhibitory receptor NKG2A distinguishes diseaseâ€specific exhausted CD8 + T cells. MedComm, 2022, 3, e111.	3.1	2
1289	Overcoming resistance to immune checkpoint therapy in PTEN-null prostate cancer by intermittent anti-PI3K $\hat{I} \pm \int \hat{I}^2 \int \hat{I}'$ treatment. Nature Communications, 2022, 13, 182.	5.8	40
1290	Gastroenteropancreatic Neuroendocrine Neoplasms (GEP NENs) : The Role of Checkpoint Inhibitors. Current Cancer Drug Targets, 2022, 22, .	0.8	0
1291	Presence of <scp>Tim</scp> 3 ⁺ and <scp>PD</scp> â€1 ⁺ <scp>CD8</scp> ⁺ <scp>T</scp> cells identifies microsatellite stable colorectal carcinomas with immune exhaustion and distinct clinicopathological features. Iournal of Pathology, 2022, 257, 186-197.	2.1	13
1292	Selective delivery of low-affinity IL-2 to PD-1+ T cells rejuvenates antitumor immunity with reduced toxicity. Journal of Clinical Investigation, 2022, 132, .	3.9	38
1293	Immune priming using DC- and TÂcell-targeting gene therapy sensitizes both treated and distant B16 tumors to checkpoint inhibition. Molecular Therapy - Oncolytics, 2022, 24, 429-442.	2.0	9
1294	Neoantigen Immunotherapeutic-Gel Combined with TIM-3 Blockade Effectively Restrains Orthotopic Hepatocellular Carcinoma Progression. Nano Letters, 2022, 22, 2048-2058.	4.5	17
1295	Disrupting cancer angiogenesis and immune checkpoint networks for improved tumor immunity. Seminars in Cancer Biology, 2022, 86, 981-996.	4.3	15
1296	Genetic and molecular biology of gastric cancer among Iranian patients: an update. Egyptian Journal of Medical Human Genetics, 2022, 23, .	0.5	4
1297	Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Seminars in Cancer Biology, 2022, 86, 542-565.	4.3	51
1300	Increased PD-L1 Expression in Acquired Cisplatin-Resistant Lung Cancer Cells via Mir-181a. Tohoku Journal of Experimental Medicine, 2022, 257, 33-43.	0.5	6
1301	Photophosphatidylserine Guides Natural Killer Cell Photoimmunotherapy <i>via</i> Tim-3. Journal of the American Chemical Society, 2022, 144, 3863-3874.	6.6	10
1302	Tumor suppression and improvement in immune systems by specific activation of dopamine D1-receptor-expressing neurons in the nucleus accumbens. Molecular Brain, 2022, 15, 17.	1.3	5
1303	CD84 is a Suppressor of T and B Cell Activation during Mycobacterium tuberculosis Pathogenesis. Microbiology Spectrum, 2022, 10, e0155721.	1.2	3

#	Article	IF	CITATIONS
1304	Emerging immuno-oncology targets in Myelodysplastic Syndromes (MDS). Current Problems in Cancer, 2022, 46, 100824.	1.0	3
1306	Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. Journal of Hematology and Oncology, 2022, 15, 24.	6.9	136
1308	New Perspectives in Treating Acute Myeloid Leukemia: Driving towards a Patient-Tailored Strategy. International Journal of Molecular Sciences, 2022, 23, 3887.	1.8	16
1309	The key to immunotherapy: how to choose better therapeutic biomarkers for patients with non-small cell lung cancer. Biomarker Research, 2022, 10, 9.	2.8	28
1310	Checkpoint protein expression in the tumor microenvironment defines the outcome of classical Hodgkin lymphoma patients. Blood Advances, 2022, 6, 1919-1931.	2.5	7
1311	Tumor endothelial cellâ€induced CD8 ⁺ Tâ€cell exhaustion via GPNMB in hepatocellular carcinoma. Cancer Science, 2022, 113, 1625-1638.	1.7	18
1312	Tim-3 adapter protein Bat3 acts as an endogenous regulator of tolerogenic dendritic cell function. Science Immunology, 2022, 7, eabm0631.	5.6	22
1313	Tim-3 mediates T cell trogocytosis to limit antitumor immunity. Journal of Clinical Investigation, 2022, 132, .	3.9	25
1314	Safety and Efficacy of Transarterial Chemoembolization and Immune Checkpoint Inhibition with Camrelizumab for Treatment of Unresectable Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 2022, Volume 9, 265-272.	1.8	18
1315	Simultaneous Genetic Ablation of PD-1, LAG-3, and TIM-3 in CD8 T Cells Delays Tumor Growth and Improves Survival Outcome. International Journal of Molecular Sciences, 2022, 23, 3207.	1.8	7
1316	Future Prospects of Immunotherapy in Non-Small-Cell Lung Cancer Patients: Is There Hope in Other Immune Checkpoints Targeting Molecules?. International Journal of Molecular Sciences, 2022, 23, 3087.	1.8	5
1317	Transcriptional profiling demonstrates altered characteristics of <scp>CD8</scp> ⁺ cytotoxic Tâ€cells and regulatory Tâ€cells in <i><scp>TP53</scp>â€</i> mutated acute myeloid leukemia. Cancer Medicine, 2022, 11, 3023-3032.	1.3	4
1318	Novel Immunotherapies for Osteosarcoma. Frontiers in Oncology, 2022, 12, 830546.	1.3	25
1319	Dahuang Fuzi Baijiang decoction restricts progenitor to terminally exhausted T cell differentiation in colorectal cancer. Cancer Science, 2022, 113, 1739-1751.	1.7	9
1320	Agents of cancer immunosurveillance: HSPs and dsDNA. Trends in Immunology, 2022, 43, 404-413.	2.9	7
1321	Non-Canonical NF-κB Signaling Stratifies LGG into Subtypes with Distinct Molecular and Cellular Characteristic and Survival Expectancy. International Journal of General Medicine, 2022, Volume 15, 3677-3686.	0.8	0
1322	Systemic levels of the soluble co-inhibitory immune checkpoints, CTLA-4, LAG-3, PD-1/PD-L1 and TIM-3 are markedly increased in basal cell carcinoma. Translational Oncology, 2022, 19, 101384.	1.7	10
1323	Splenic and PB immune recovery in neoadjuvant treated gastrointestinal cancer patients. International Immunopharmacology, 2022, 106, 108628.	1.7	1

#	Article	IF	CITATIONS
1324	Circulating biomarkers of inflammaging as potential predictors of COVID-19 severe outcomes. Mechanisms of Ageing and Development, 2022, 204, 111667.	2.2	12
1325	Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions. International Journal of Molecular Sciences, 2021, 22, 13311.	1.8	54
1326	Compartmentalized T cell profile in the lungs of patients with HIV-1-associated pulmonary Kaposi sarcoma. Medicine (United States), 2021, 100, e28328.	0.4	2
1327	Reversing T-cell Exhaustion in Cancer: Lessons Learned from PD-1/PD-L1 Immune Checkpoint Blockade. Cancer Immunology Research, 2022, 10, 146-153.	1.6	87
1328	CRISPRi-mediated knock-down of PRDM1/BLIMP1 programs central memory differentiation in <i>ex vivo</i> -expanded human T cells. BioImpacts, 2021, , .	0.7	0
1329	Tumor Endothelial Marker TEM7 is a Prognostic Biomarker and Correlating with Immune Infiltrates in Gastric Cancer. International Journal of General Medicine, 2021, Volume 14, 10155-10171.	0.8	1
1330	The Current Understanding of and Treatment Paradigm for Newly-Diagnosed TP53-Mutated Acute Myeloid Leukemia. Hemato, 2021, 2, 748-763.	0.2	2
1331	Development of a T-cell activation-related module with predictive value for the prognosis and immune checkpoint blockade therapy response in glioblastoma. PeerJ, 2021, 9, e12547.	0.9	1
1332	Autoimmunity regulation within the tumor microenvironment. , 2022, , 51-71.		0
1333	Pregnancy and Tumour: The Parallels and Differences in Regulatory T Cells. Frontiers in Immunology, 2022, 13, 866937.	2.2	5
1334	TIM-3 Expression Level on AML Blasts Correlates With Presence of Core Binding Factor Translocations Rather Than Clinical Outcomes. Frontiers in Oncology, 2022, 12, 879471.	1.3	3
1335	Quiescent cancer cells resist TÂcell attack by forming an immunosuppressive niche. Cell, 2022, 185, 1694-1708.e19.	13.5	100
1337	The effect of local <scp>nonâ€ŧhermal</scp> plasma therapy on the <scp>cancerâ€ɨmmunity</scp> cycle in a melanoma mouse model. Bioengineering and Translational Medicine, 2022, 7, .	3.9	15
1338	Establishment of a mechanism-based in vitro coculture assay for evaluating the efficacy of immune checkpoint inhibitors. Cancer Immunology, Immunotherapy, 2022, , 1.	2.0	0
1339	Therapeutic approaches for the treatment of head and neck squamous cell carcinoma–An update on clinical trials. Translational Oncology, 2022, 21, 101426.	1.7	33
1363	TIGIT marks exhausted T cells and serves as a target for immune restoration in patients with chronic HBV infection American Journal of Translational Research (discontinued), 2022, 14, 942-954.	0.0	0
1364	Immune Checkpoint Inhibitors in Peripheral T-Cell Lymphoma. Frontiers in Pharmacology, 2022, 13, 869488.	1.6	8
1365	Combinatorial Herpes Simplex Vaccine Strategies: From Bedside to Bench and Back. Frontiers in Immunology, 2022, 13, 849515.	2.2	15

#	Article	IF	CITATIONS
1366	Glioblastoma: Pitfalls and Opportunities of Immunotherapeutic Combinations. OncoTargets and Therapy, 2022, Volume 15, 437-468.	1.0	11
1367	Diffuse large B-cell lymphoma (DLBCL) is infiltrated with activated CD8 ⁺ T-cells despite immune checkpoint signaling. Blood Research, 2022, , .	0.5	3
1368	Self-assembled polysaccharide nanogel delivery system for overcoming tumor immune resistance. Journal of Controlled Release, 2022, 347, 175-182.	4.8	22
1369	Upregulated TIGIT+ and Helios+ regulatory T cell levels in bronchoalveolar lavage fluid of NSCLC patients. Molecular Immunology, 2022, 147, 40-49.	1.0	1
1370	Are We Moving the Needle for Patients with TP53-Mutated Acute Myeloid Leukemia?. Cancers, 2022, 14, 2434.	1.7	7
1371	OX40 enhances T cell immune response to PD-1 blockade therapy in non-small cell lung cancer. International Immunopharmacology, 2022, 108, 108813.	1.7	7
1373	An optimal portfolio of photothermal combined immunotherapy. Cell Reports Physical Science, 2022, 3, 100898.	2.8	22
1374	Glycans as shapers of tumour microenvironment: A sweet driver of Tâ€cellâ€mediated antiâ€ŧumour immune response. Immunology, 2023, 168, 217-232.	2.0	10
1376	Cancer combination therapies by silencing of CTLAâ€4, PD‣1, and TIM3 in osteosarcoma. IUBMB Life, 2022, 74, 908-917.	1.5	12
1377	Current state and upcoming opportunities for immunoPET biomarkers in lung cancer. Lung Cancer, 2022, 169, 84-93.	0.9	3
1378	CAR-T cells for cancer immunotherapy—the barriers ahead and the pathsÂthrough. International Reviews of Immunology, 2022, 41, 567-581.	1.5	1
1379	Overcoming Resistance to Checkpoint Inhibitors: Natural Killer Cells in Non-Small Cell Lung Cancer. Frontiers in Oncology, 0, 12, .	1.3	12
1380	Novel Immune Checkpoints in Esophageal Cancer: From Biomarkers to Therapeutic Targets. Frontiers in Immunology, 2022, 13, .	2.2	10
1381	Peptide vaccine-treated, long-term surviving cancer patients harbor self-renewing tumor-specific CD8+ T cells. Nature Communications, 2022, 13, .	5.8	8
1382	Exhausted PD-1+ TOX+ CD8+ T Cells Arise Only in Long-Term Experimental Trypanosoma cruzi Infection. Frontiers in Immunology, 2022, 13, .	2.2	4
1383	A new emerging target in cancer immunotherapy: Galectin-9 (LGALS9). Genes and Diseases, 2023, 10, 2366-2382.	1.5	13
1384	An Update on Protective Effectiveness of Immune Responses After Recovery From COVID-19. Frontiers in Immunology, 0, 13, .	2.2	7
1385	Targeting Triple Negative Breast Cancer With Oncolytic Adenoviruses. Frontiers in Molecular Biosciences, 0, 9, .	1.6	0

#	Article	IF	CITATIONS
1386	The role of IL-33/ST2 signaling in the tumor microenvironment and Treg immunotherapy. Experimental Biology and Medicine, 2022, 247, 1810-1818.	1.1	3
1387	Genome-wide CRISPR screens of TÂcell exhaustion identify chromatin remodeling factors that limit TÂcell persistence. Cancer Cell, 2022, 40, 768-786.e7.	7.7	104
1388	Acidosis significantly alters immune checkpoint expression profiles of T cells from oesophageal adenocarcinoma patients. Cancer Immunology, Immunotherapy, 2023, 72, 55-71.	2.0	8
1389	Immune signature as a potential marker for predicting response to immunotherapy in obesityâ€associated colorectal cancer. Journal of Gastroenterology and Hepatology (Australia), 2022, 37, 1579-1587.	1.4	1
1390	The prospect of targeting T cell immunoglobulin and mucinâ€domain containingâ€3 in renal cell carcinoma immunotherapy. Scandinavian Journal of Immunology, 2022, 96, .	1.3	3
1391	Real-time evaluation of a hydrogel delivery vehicle for cancer immunotherapeutics within embedded spheroid cultures. Journal of Controlled Release, 2022, 348, 386-396.	4.8	2
1392	Immune checkpoint inhibitor-based therapy for advanced clear cell renal cell carcinoma: A narrative review. International Immunopharmacology, 2022, 110, 108900.	1.7	13
1393	Dapl1 controls NFATc2 activation to regulate CD8+ T cell exhaustion and responses in chronic infection and cancer. Nature Cell Biology, 2022, 24, 1165-1176.	4.6	9
1394	The Role of Immune Checkpoints in Cancer Progression. , 0, , .		0
1395	The cellular and molecular basis of CD69 function in anti-tumor immunity. International Immunology, 2022, 34, 555-561.	1.8	11
1396	Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. International Journal of Molecular Sciences, 2022, 23, 7325.	1.8	7
1397	Single-Cell RNA Sequencing Reveals the Tissue Architecture in Human High-Grade Serous Ovarian Cancer. Clinical Cancer Research, 2022, 28, 3590-3602.	3.2	57
1398	Tumor immunotherapy: Mechanisms and clinical applications. , 2022, 1, .		2
1399	Development and Characterization of a Nanobody against Human T-Cell Immunoglobulin and Mucin-3. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-8.	0.7	5
1400	Implications of PD-1, Tim-3, and TIGIT Expression for Cancer Immunity and Pancreatic Cancer Prognosis. Anticancer Research, 2022, 42, 3373-3380.	0.5	4
1401	The role of HMGB1 in inflammatory skin diseases. Journal of Dermatological Science, 2022, 107, 58-64.	1.0	7
1402	Multiplex immunohistochemistry defines the tumor immune microenvironment and immunotherapeutic outcome in CLDN18.2-positive gastric cancer. BMC Medicine, 2022, 20, .	2.3	30
1403	Anti-GD2 Antibodies Conjugated to IL15 and IL21 Mediate Potent Antitumor Cytotoxicity against Neuroblastoma. Clinical Cancer Research, 2022, 28, 3785-3796.	3.2	10

#	Article	IF	CITATIONS
1405	Glioblastoma: Current Status, Emerging Targets, and Recent Advances. Journal of Medicinal Chemistry, 2022, 65, 8596-8685.	2.9	29
1406	Earlyâ€like differentiation status of systemic <scp>PD</scp> â€l ⁺ <scp>CD8</scp> ⁺ T cells predicts <scp>PD</scp> â€l blockade outcome in nonâ€small cell lung cancer. Clinical and Translational Immunology, 2022, 11, .	1.7	3
1407	Enhanced Inhibitory Effect of DC-CIK Cells on Lung Adenocarcinoma via Anti-Tim-3 Antibody and Antiprogrammed Cell Death-1 Antibody and Possible Mechanism. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-11.	0.5	2
1408	Cutting-Edge: Preclinical and Clinical Development of the First Approved Lag-3 Inhibitor. Cells, 2022, 11, 2351.	1.8	29
1409	BET bromodomain inhibition rescues PD-1-mediated T-cell exhaustion in acute myeloid leukemia. Cell Death and Disease, 2022, 13, .	2.7	23
1410	Differential expression of HAVCR2 gene in pan-cancer: A potential biomarker for survival and immunotherapy. Frontiers in Genetics, 0, 13, .	1.1	7
1411	Immune-based combination therapy to convert immunologically cold tumors into hotÂtumors: an update and new insights. Acta Pharmacologica Sinica, 2023, 44, 288-307.	2.8	14
1412	Inhibition of Melanoma Cell–Intrinsic Tim-3 Stimulates MAPK-Dependent Tumorigenesis. Cancer Research, 2022, 82, 3774-3784.	0.4	7
1413	The Features of Checkpoint Receptor—Ligand Interaction in Cancer and the Therapeutic Effectiveness of Their Inhibition. Biomedicines, 2022, 10, 2081.	1.4	3
1414	Upregulation of PD-1 Expression and High sPD-L1 Levels Associated with COVID-19 Severity. Journal of Immunology Research, 2022, 2022, 1-9.	0.9	9
1415	Immunotherapy in Advanced NSCLC Without Driver Mutations: Available Therapeutic Alternatives After Progression and Future Treatment Options. Clinical Lung Cancer, 2022, 23, 643-658.	1.1	5
1416	Characterization of sabatolimab, a novel immunotherapy with immuno-myeloid activity directed against TIM-3 receptor. Immunotherapy Advances, 2022, 2, .	1.2	20
1417	Aberrant T-cell exhaustion in severe combined immunodeficiency survivors with poor T-cell reconstitution after transplantation. Journal of Allergy and Clinical Immunology, 2023, 151, 260-271.	1.5	1
1418	On-demand integrated nano-engager converting cold tumors to hot via increased DNA damage and dual immune checkpoint inhibition. Acta Pharmaceutica Sinica B, 2023, 13, 1740-1754.	5.7	5
1419	Current Trends in Anticancer Drug Delivery System for Oral Cancer- A PRISMA complaint Systematic Review. Open Dentistry Journal, 2022, 16, .	0.2	0
1420	Phase I/II Trial of Cabozantinib Plus Durvalumab in Advanced Gastroesophageal Cancer and Other Gastrointestinal Malignancies (CAMILLA): Phase Ib Safety and Efficacy Results. SSRN Electronic Journal, 0, , .	0.4	0
1421	Importance of Photophosphatidylserine and Tim-3 in photoimmunotherapy. RSC Medicinal Chemistry, 0, , .	1.7	1
1422	Immunosuppression in tumor immune microenvironment and its optimization from CAR-T cell therapy. Theranostics, 2022, 12, 6273-6290.	4.6	25

#	Article	IF	CITATIONS
1423	Current Trends in Immuno-Oncology. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2023, 21, 96-107.	0.4	1
1424	Unveiling the tumor immune microenvironment of organ-specific melanoma metastatic sites. , 2022, 10, e004884.		15
1425	Tumor accomplice: T cell exhaustion induced by chronic inflammation. Frontiers in Immunology, 0, 13, .	2.2	9
1426	An engineered concealed IL-15-R elicits tumor-specific CD8+T cell responses through PD-1-cis delivery. Journal of Experimental Medicine, 2022, 219, .	4.2	9
1427	Emerging Therapeutic Strategies of Different Immunotherapy Approaches Combined with PD-1/PD-L1 Blockade in Cervical Cancer. Drug Design, Development and Therapy, 0, Volume 16, 3055-3070.	2.0	6
1428	Pyroptosis: a novel signature to predict prognosis and immunotherapy response in gliomas. Human Cell, 2022, 35, 1976-1992.	1.2	2
1429	Advanced Acral Melanoma Therapies: Current Status and Future Directions. Current Treatment Options in Oncology, 2022, 23, 1405-1427.	1.3	9
1430	T-cell exhaustion in immune-mediated inflammatory diseases: New implications for immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	18
1431	Molecular Biomarkers of Response to Cancer Immunotherapy. Clinics in Laboratory Medicine, 2022, 42, 469-484.	0.7	3
1432	Harnessing the immune system by targeting immune checkpoints: Providing new hope for Oncotherapy. Frontiers in Immunology, 0, 13, .	2.2	6
1433	PD-L1 antibody enhanced β-glucan antitumor effects via blockade of the immune checkpoints in a melanoma model. Cancer Immunology, Immunotherapy, 2023, 72, 719-731.	2.0	5
1434	Combined PD-L1 and TIM3 blockade improves expansion of fit human CD8+ antigen-specific T cells for adoptive immunotherapy. Molecular Therapy - Methods and Clinical Development, 2022, 27, 230-245.	1.8	5
1435	Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	33
1436	Impact of cryopreservation on CAR T production and clinical response. Frontiers in Oncology, 0, 12, .	1.3	5
1437	Tumor Microenvironment in Hepatocellular Carcinoma: Key Players for Immunotherapy. Journal of Hepatocellular Carcinoma, 0, Volume 9, 1109-1125.	1.8	11
1439	Tumor infiltrating CD8/CD103/TIM-3-expressing lymphocytes in epithelial ovarian cancer co-express CXCL13 and associate with improved survival. Frontiers in Immunology, 0, 13, .	2.2	1
1440	CRISPR-Cas9-based Strategies for Acute Lymphoblastic Leukemia Therapy. , 0, , .		0
1441	Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. Journal of the National Cancer Center, 2022, 2, 243-262.	3.0	5

#	Article	IF	CITATIONS
1442	Gemcitabine-mediated depletion of immunosuppressive dendritic cells enhances the efficacy of therapeutic vaccination. Frontiers in Immunology, 0, 13, .	2.2	0
1443	Clinical Value of the PD-1/PD-L1/PD-L2 Pathway in Patients Suffering from Endometriosis. International Journal of Molecular Sciences, 2022, 23, 11607.	1.8	4
1444	High-Dimensional Cytometry Dissects Immunological Fingerprints of Idiopathic Inflammatory Myopathies. Cells, 2022, 11, 3330.	1.8	2
1445	Advances in immunotherapy for glioblastoma multiforme. Frontiers in Immunology, 0, 13, .	2.2	24
1446	TIM3 Expression in Anaplastic-Thyroid-Cancer-Infiltrating Macrophages: An Emerging Immunotherapeutic Target. Biology, 2022, 11, 1609.	1.3	2
1447	Deciphering molecular and cellular ex vivo responses to bispecific antibodies PD1-TIM3 and PD1-LAG3 in human tumors. , 2022, 10, e005548.		9
1448	Prognosis prediction and tumor immune microenvironment characterization based on tryptophan metabolism-related genes signature in brain glioma. Frontiers in Pharmacology, 0, 13, .	1.6	3
1449	The impact of microbiota on PD-1/PD-L1 inhibitor therapy outcomes: A focus on solid tumors. Life Sciences, 2022, 310, 121138.	2.0	14
1450	VISTA immune regulatory effects in bypassing cancer immunotherapy: Updated. Life Sciences, 2022, 310, 121083.	2.0	19
1451	A single dose of heated chemo-immunotherapy for long-term tumor inhibition. Nano Today, 2022, 47, 101650.	6.2	1
1452	Population dynamics and gene regulation of T cells in response to chronic antigen stimulation. International Immunology, 2023, 35, 67-77.	1.8	0
1453	Characterizing and correcting immune dysfunction in non-tuberculous mycobacterial disease. Frontiers in Immunology, 0, 13, .	2.2	2
1454	Transarterial chemoembolization plus apatinib with or without camrelizumab for unresected hepatocellular carcinoma: A two-center propensity score matching study. Frontiers in Oncology, 0, 12, .	1.3	0
1456	New perspectives in the treatment of patients with intermediate-2 and high-risk myelodysplastic syndrome. Oncogematologiya, 2022, 17, 106-117.	0.1	0
1457	Advances in T Cells Based on Inflammation in Metabolic Diseases. Cells, 2022, 11, 3554.	1.8	7
1458	Immunotherapy and Targeted Therapy in the Management of Oral Cancers. Critical Reviews in Oncogenesis, 2022, , .	0.2	0
1459	Mechanisms of resistance to immune checkpoint inhibitors in melanoma: What we have to overcome?. Cancer Treatment Reviews, 2023, 113, 102499.	3.4	19
1460	PD-1 expression, among other immune checkpoints, on tumor-infiltrating NK and NKT cells is associated with longer disease-free survival in treatment-naà ve CRC patients. Cancer Immunology, Immunotherapy, 0, , .	2.0	3

		15	0
#	ARTICLE	IF	CITATIONS
1461	Mechanisms of Resistance and Strategies to Combat Resistance in PD-(L)1 Blockade. Immuno, 2022, 2, 671-691.	0.6	2
1462	The Glycosylation of Immune Checkpoints and Their Applications in Oncology. Pharmaceuticals, 2022, 15, 1451.	1.7	3
1463	The Combination of TIM3-Based Checkpoint Blockade and Oncolytic Virotherapy Regresses Established Solid Tumors. Journal of Immunotherapy, 2023, 46, 1-4.	1.2	1
1464	IL-2 delivery by engineered mesenchymal stem cells re-invigorates CD8+ T cells to overcome immunotherapy resistance in cancer. Nature Cell Biology, 2022, 24, 1754-1765.	4.6	22
1465	Pharmaceutical targeting Th2-mediated immunity enhances immunotherapy response in breast cancer. Journal of Translational Medicine, 2022, 20, .	1.8	12
1466	Applications of virus-specific T cell therapies post-BMT. Seminars in Hematology, 2023, 60, 10-19.	1.8	9
1467	Role of T cells in cancer immunotherapy: Opportunities and challenges. , 2023, 1, 116-126.		11
1468	Current and novel therapeutic strategies for optimizing immunotherapy outcomes in advanced non-small cell lung cancer. Frontiers in Oncology, 0, 12, .	1.3	4
1469	Combined Immune Checkpoint Blockade Enhances Antiviral Immunity against Bovine Leukemia Virus. Journal of Virology, 2023, 97, .	1.5	1
1471	Nonâ€SMC condensin I complex subunit H participates in antiâ€programmed cell deathâ€1 resistance of clear cell renal cell carcinomas. Cell Proliferation, 2023, 56, .	2.4	3
1472	Low T-cell proportion in the tumor microenvironment is associated with immune escape and poor survival in diffuse large B-cell lymphoma. Haematologica, 2023, 108, 2167-2177.	1.7	3
1473	The complex network of transcription factors, immune checkpoint inhibitors and stemness features in colorectal cancer: A recent update. Seminars in Cancer Biology, 2023, 89, 1-17.	4.3	6
1475	Improved Targeting of Therapeutics by Nanocarrier-Based Delivery in Cancer Immunotherapy and Their Future Perspectives. BioNanoScience, 2023, 13, 278-299.	1.5	1
1476	CD200 ⁺ cytotoxic T lymphocytes in the tumor microenvironment are crucial for efficacious anti–PD-1/PD-L1 therapy. Science Translational Medicine, 2023, 15, .	5.8	12
1477	Reprogramming the tumor microenvironment with biotechnology. Biomaterials Research, 2023, 27, .	3.2	7
1478	Risk stratification and molecular heterogeneity of endometrial cancer and expression profile of TIM-3: A retrospective cohort study. Gynecologic Oncology, 2023, 170, 210-220.	0.6	1
1479	Engineered skin bacteria induce antitumor T cell responses against melanoma. Science, 2023, 380, 203-210.	6.0	37
1480	CAR T-cells to treat brain tumors. Brain Research Bulletin, 2023, 196, 76-98.	1.4	7

#	ARTICLE 30-color full spectrum flow cytometry panel for deep immunophenotyping of T cell subsets in murine	IF	Citations
1481	tumor tissue. Journal of Immunological Methods, 2023, 516, 113459. Train your T cells: How skeletal muscles and T cells keep each other fit during aging. Brain, Behavior, and Immunity, 2023, 110, 237-244.	2.0	4
1483	Immune Checkpoint Inhibitors in Urological Cancers. , 2023, , 1-25.		0
1485	Anticoagulants Enhance Molecular and Cellular Immunotherapy of Cancer by Improving Tumor Microcirculation Structure and Function and Redistributing Tumor Infiltrates. Clinical Cancer Research, 2023, 29, 2525-2539.	3.2	5
1486	G9a/GLP inhibition during ex vivo lymphocyte expansion increases in vivo cytotoxicity of engineered T cells against hepatocellular carcinoma. Nature Communications, 2023, 14, .	5.8	5
1488	Low TCR Binding Strength Results in Increased Progenitor-like CD8+ Tumor-Infiltrating Lymphocytes. Cancer Immunology Research, 2023, 11, 570-582.	1.6	2
1489	Galectin functions in cancer-associated inflammation and thrombosis. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	3
1490	T-cell exhaustion and stemness in antitumor immunity: Characteristics, mechanisms, and implications. Frontiers in Immunology, 0, 14, .	2.2	5
1491	Advances in antibody-based therapy in oncology. Nature Cancer, 2023, 4, 165-180.	5.7	32
1492	Emerging therapeutic strategies for enhancing sensitivity and countering resistance to programmed cell death protein 1 or programmed deathâ€igand 1 inhibitors in non–small cell lung cancer. Cancer, 2023, 129, 1319-1350.	2.0	3
1493	β3-adrenergic receptor on tumor-infiltrating lymphocytes sustains IFN-γ-dependent PD-L1 expression and impairs anti-tumor immunity in neuroblastoma. Cancer Gene Therapy, 2023, 30, 890-904.	2.2	5
1494	Immune Gene Therapy of Cancer. , 2023, , 1-45.		0
1495	Diversity of immune checkpoints in cancer immunotherapy. Frontiers in Immunology, 0, 14, .	2.2	11
1496	Whole-Exome Sequencing in Family Trios Reveals De Novo Mutations Associated with Type 1 Diabetes Mellitus. Biology, 2023, 12, 413.	1.3	0
1497	Integrative profiling of CEACAM1 in different malignancies with implications on the SARS-CoV-2 infection genes ACE2 and TMPRSS2. Hacettepe Journal of Biology and Chemistry, 0, , .	0.3	1
1498	Immune checkpoint inhibitors in metastatic NSCLC: challenges and future directions (CME article). International Journal of Cancer Care and Delivery, 2023, 3, .	0.0	0
1499	Structure-based small inhibitors search combined with molecular dynamics driven energies for human programmed cell death-1 (PD-1) protein. Journal of Biomolecular Structure and Dynamics, 2023, 41, 14771-14785.	2.0	1
1500	Acute rejection was observed in a combination therapy of CTLA-4 and PD-1 inhibitors before liver transplantation: A case report and literature review. , 2023, , .		0

#	Article	IF	CITATIONS
1502	Human TÂcell generation is restored in CD3δ severe combined immunodeficiency through adenine base editing. Cell, 2023, 186, 1398-1416.e23.	13.5	21
1503	Tim3 and PD-1 as a therapeutic and prognostic targets in colorectal cancer: Relationship with sidedness, clinicopathological parameters, and survival. Frontiers in Oncology, 0, 13, .	1.3	1
1504	The therapeutic potential of immunotherapy in the treatment of breast cancer: Rational strategies and recent progress. Journal of Cellular Biochemistry, 2023, 124, 477-494.	1.2	4
1505	Bispecific antibodies targeting immunomodulatory checkpoints for cancer therapy. Cancer Biology and Medicine, 2023, 20, 181-195.	1.4	10
1506	Genetic engineering strategies to enhance antitumor reactivity and reduce alloreactivity for allogeneic cell-based cancer therapy. Frontiers in Medicine, 0, 10, .	1.2	3
1507	Peripheral PD-1 and Tim-3 percentages are associated with primary sites and pathological types of peritoneal neoplasms. BMC Cancer, 2023, 23, .	1.1	2
1508	Navigating through the PD-1/PDL-1 Landscape: A Systematic Review and Meta-Analysis of Clinical Outcomes in Hepatocellular Carcinoma and Their Influence on Immunotherapy and Tumor Microenvironment. International Journal of Molecular Sciences, 2023, 24, 6495.	1.8	6
1509	Regulatory Mechanisms and Reversal of CD8+T Cell Exhaustion: A Literature Review. Biology, 2023, 12, 541.	1.3	2
1510	Novel strategies for cancer immunotherapy: counter-immunoediting therapy. Journal of Hematology and Oncology, 2023, 16, .	6.9	14
1511	The pathogenetic significance of exhausted T cells in a mouse model of mature B cell neoplasms. Cancer Immunology, Immunotherapy, 0, , .	2.0	0
1512	Immune-checkpoint inhibitor resistance in cancer treatment: Current progress and future directions. Cancer Letters, 2023, 562, 216182.	3.2	15
1513	Risk Factors for Immune Checkpoint Inhibitor–Mediated Cardiovascular Toxicities. Current Oncology Reports, 2023, 25, 753-763.	1.8	3
1514	Tissue-resident memory T cell maintenance during antigen persistence requires both cognate antigen and interleukin-15. Science Immunology, 2023, 8, .	5.6	8
1515	Late-stage MC38 tumours recapitulate features of human colorectal cancer – implications for appropriate timepoint selection in preclinical studies. Frontiers in Immunology, 0, 14, .	2.2	0
1525	The major clinical components of cancer immunotherapy (modulating cell-mediated immune) Tj ETQq0 0 0 rgBT	/Overlock	10 ₀ Tf 50 182
1550	Multiparametric analysis of tumor infiltrating lymphocytes in solid tumors. Methods in Cell Biology, 2023, , .	0.5	0
1561	TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunology, Immunotherapy, 2023, 72, 3405-3425.	2.0	4
1567	Polymer-mediated nanoformulations: a promising strategy for cancer immunotherapy. Naunyn-Schmiedeberg's Archives of Pharmacology, 2024, 397, 1311-1326.	1.4	0

#	Article	IF	CITATIONS
1583	In the Pipeline: Emerging Therapy for MDS and MDS/MPN. , 2023, , 477-500.		0
1584	TP53-mutated acute myeloid leukemia and myelodysplastic syndrome: biology, treatment challenges, and upcoming approaches. Annals of Hematology, 0, , .	0.8	2
1614	Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death and Disease, 2024, 15, .	2.7	0
1621	Pan-cancer analysis of HAVCR2 based on machine learning: A potential target of survival and immunotherapy. , 2023, , .		0
1630	Therapeutic Strategies in BRAF V600 Wild-Type Cutaneous Melanoma. American Journal of Clinical Dermatology, 0, , .	3.3	0
1632	Targeting monoamine oxidase A: a strategy for inhibiting tumor growth with both immune checkpoint inhibitors and immune modulators. Cancer Immunology, Immunotherapy, 2024, 73, .	2.0	0
1641	Breakthroughs in synthetic controlling strategies for precision in CAR-T therapy. Progress in Molecular Biology and Translational Science, 2024, , .	0.9	0