Abraham's Children in the Genome Era: Major Jewish D Distinct Genetic Clusters with Shared Middle Eastern A

American Journal of Human Genetics 86, 850-859 DOI: 10.1016/j.ajhg.2010.04.015

Citation Report

#	Article	IF	CITATIONS
1	Microdeletions of 3q29 Confer High Risk for Schizophrenia. American Journal of Human Genetics, 2010, 87, 229-236.	2.6	215
2	Mutations in DHDPSL Are Responsible For Primary Hyperoxaluria Type III. American Journal of Human Genetics, 2010, 87, 392-399.	2.6	194
3	Genetic differentiation of Jewish populations. Tissue Antigens, 2010, 76, 442-458.	1.0	39
4	Fine-scale population structure and the era of next-generation sequencing. Human Molecular Genetics, 2010, 19, R221-R226.	1.4	25
5	Signatures of founder effects, admixture, and selection in the Ashkenazi Jewish population. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16222-16227.	3.3	113
6	The origin of Eastern European Jews revealed by autosomal, sex chromosomal and mtDNA polymorphisms. Biology Direct, 2010, 5, 57.	1.9	8
7	A world in a grain of sand: human history from genetic data. Genome Biology, 2011, 12, 234.	13.9	9
8	A Geographic Cline of Skull and Brain Morphology among Individuals of European Ancestry. Human Heredity, 2011, 72, 35-44.	0.4	24
9	Perspectives on Human Population Structure at the Cusp of the Sequencing Era. Annual Review of Genomics and Human Genetics, 2011, 12, 245-274.	2.5	69
10	Genetic Background of Patients from a University Medical Center in Manhattan: Implications for Personalized Medicine. PLoS ONE, 2011, 6, e19166.	1.1	56
11	A Missense Mutation in DHDDS, Encoding Dehydrodolichyl Diphosphate Synthase, Is Associated with Autosomal-Recessive Retinitis Pigmentosa in Ashkenazi Jews. American Journal of Human Genetics, 2011, 88, 207-215.	2.6	120
12	Haplotype structure in Ashkenazi Jewish BRCA1 and BRCA2 mutation carriers. Human Genetics, 2011, 130, 685-699.	1.8	18
13	Genome-Wide association study identifies candidate genes for Parkinson's disease in an Ashkenazi Jewish population. BMC Medical Genetics, 2011, 12, 104.	2.1	149
14	Ancient founder mutation is responsible for Imerslund-GrÃsbeck Syndrome among diverse ethnicities. Orphanet Journal of Rare Diseases, 2011, 6, 74.	1.2	14
15	Wolman Disease (LIPA p.G87V) Genotype Frequency in People of Iranian-Jewish Ancestry. Genetic Testing and Molecular Biomarkers, 2011, 15, 395-398.	0.3	32
16	The History of African Gene Flow into Southern Europeans, Levantines, and Jews. PLoS Genetics, 2011, 7, e1001373.	1.5	224
17	A Genome-Wide Scan of Ashkenazi Jewish Crohn's Disease Suggests Novel Susceptibility Loci. PLoS Genetics, 2012, 8, e1002559.	1.5	144
18	Implications for health and disease in the genetic signature of the Ashkenazi Jewish population. Genome Biology, 2012, 13, R2.	13.9	48

#	Article	IF	CITATIONS
19	Population-Specific Association between a Polymorphic Variant in ST18, Encoding a Pro-Apoptotic Molecule, and Pemphigus Vulgaris. Journal of Investigative Dermatology, 2012, 132, 1798-1805.	0.3	98
20	Length Distributions of Identity by Descent Reveal Fine-Scale Demographic History. American Journal of Human Genetics, 2012, 91, 809-822.	2.6	240
21	The adult polyglucosan body disease mutation GBE1 c.1076A>C occurs at high frequency in persons of Ashkenazi Jewish background. Biochemical and Biophysical Research Communications, 2012, 426, 286-288.	1.0	11
22	Cryptic Distant Relatives Are Common in Both Isolated and Cosmopolitan Genetic Samples. PLoS ONE, 2012, 7, e34267.	1.1	184
23	North African Jewish and non-Jewish populations form distinctive, orthogonal clusters. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13865-13870.	3.3	49
24	Recurrent germline mutations in BRCA1 and BRCA2 genes in high risk families in Israel. Breast Cancer Research and Treatment, 2012, 133, 1153-1157.	1.1	18
25	The glucokinase mutation p.T206P is common among MODY patients of Jewish Ashkenazi descent. Pediatric Diabetes, 2012, 13, e14-e21.	1.2	7
26	The impact of Converso Jews on the genomes of modern Latin Americans. Human Genetics, 2012, 131, 251-263.	1.8	31
27	<i>CYP2B6</i> SNPs are associated with methadone dose required for effective treatment of opioid addiction. Addiction Biology, 2013, 18, 709-716.	1.4	88
28	Phylogenetic applications of whole Y-chromosome sequences and the Near Eastern origin of Ashkenazi Levites. Nature Communications, 2013, 4, 2928.	5.8	31
29	Association of genetic variation in pharmacodynamic factors with methadone dose required for effective treatment of opioid addiction. Pharmacogenomics, 2013, 14, 755-768.	0.6	44
30	Genetics and the History of the Samaritans: Y-Chromosomal Microsatellites and Genetic Affinity between Samaritans and Cohanim. Human Biology, 2013, 85, 825-857.	0.4	4
31	From Generation to Generation: The Genetics of Jewish Populations. Human Biology, 2013, 85, 817-823.	0.4	1
32	The population genetics of the Jewish people. Human Genetics, 2013, 132, 119-127.	1.8	92
33	The religion, spirituality, and psychology of Jews , 2013, , 665-679.		10
34	Trends and challenges in searching for HLA-matched unrelated donors in Israel. Human Immunology, 2013, 74, 942-945.	1.2	10
35	Inferring population size changes with sequence and SNP data: lessons from human bottlenecks. Heredity, 2013, 110, 409-419.	1.2	84
36	The Missing Link of Jewish European Ancestry: Contrasting the Rhineland and the Khazarian Hypotheses. Genome Biology and Evolution, 2013, 5, 61-74.	1.1	46

#	Article	IF	CITATIONS
37	Haplotype analysis of the 185delAG BRCA1 mutation in ethnically diverse populations. European Journal of Human Genetics, 2013, 21, 212-216.	1.4	44
38	No Evidence from Genome-Wide Data of a Khazar Origin for the Ashkenazi Jews. Human Biology, 2013, 85, 859-900.	0.4	68
39	Commentary: Who Are the Jews? New Formulations of an Ageâ€Old Question. Human Biology, 2013, 85, 919.	0.4	0
40	Population Structure in a Comprehensive Genomic Data Set on Human Microsatellite Variation. G3: Genes, Genomes, Genetics, 2013, 3, 891-907.	0.8	123
41	Genome-Wide Diversity in the Levant Reveals Recent Structuring by Culture. PLoS Genetics, 2013, 9, e1003316.	1.5	77
42	The Variance of Identity-by-Descent Sharing in the Wright–Fisher Model. Genetics, 2013, 193, 911-928.	1.2	38
43	The substance that empowers? DNA in South Asia. Contemporary South Asia, 2013, 21, 291-303.	0.2	23
44	High mammographic density in women of Ashkenazi Jewish descent. Breast Cancer Research, 2013, 15, R40.	2.2	4
45	Inference of historical migration rates via haplotype sharing. Bioinformatics, 2013, 29, i180-i188.	1.8	68
46	Who are the Jews? New Formulations of an Age-Old Question. Human Biology, 2013, 85, 919-924.	0.4	12
47	Extended haplotype association study in Crohn's disease identifies a novel, Ashkenazi Jewish-specific missense mutation in the NF-κB pathway gene, HEATR3. Genes and Immunity, 2013, 14, 310-316.	2.2	31
48	Gene flow from North Africa contributes to differential human genetic diversity in southern Europe. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11791-11796.	3.3	174
49	A substantial prehistoric European ancestry amongst Ashkenazi maternal lineages. Nature Communications, 2013, 4, 2543.	5.8	80
50	No Evidence from Genome-wide Data of a Khazar Origin fo the Ashkenazi Jews. Human Biology, 2013, 85, 859.	0.4	30
52	Genetics and the History of The Samaritans: Y-Chromosomal Microsatellites and Genetic Affinity between Samaritans and Cohanim. Human Biology, 2013, 85, 825.	0.4	0
53	Dopaminergic pathway polymorphisms and heroin addiction: further support for association of <i>CSNK1E</i> variants. Pharmacogenomics, 2014, 15, 2001-2009.	0.6	27
54	Identification of Genes Promoting Skin Youthfulness by Genome-Wide Association Study. Journal of Investigative Dermatology, 2014, 134, 651-657.	0.3	30
55	Deciphering the fine-structure of tribal admixture in the Bedouin population using genomic data. Heredity, 2014, 112, 182-189.	1.2	21

#	Article	IF	CITATIONS
56	Mitochondrial and Y chromosome haplotype motifs as diagnostic markers of Jewish ancestry: a reconsideration. Frontiers in Genetics, 2014, 5, 384.	1.1	8
57	Genes as a Historical Archive: On the Applicability of Genetic Research to Sociohistorical Questions: The Debate on the Origins of Ashkenazi Jewry Revisited. Perspectives in Biology and Medicine, 2014, 57, 105-117.	0.3	5
58	Competition between Judaism and Christianity: Paul's Galatians as Entry Deterrence. Kyklos, 2014, 67, 204-226.	0.7	6
59	An Integrative Review of Factors Associated with Telomere Length and Implications for Biobehavioral Research. Nursing Research, 2014, 63, 36-50.	0.8	164
60	Pharmacogenetics in Jewish populations. Drug Metabolism and Drug Interactions, 2014, 29, 221-233.	0.3	14
61	The VKORC1 Asp36Tyr variant and VKORC1 haplotype diversity in Ashkenazi and Ethiopian populations. Journal of Applied Genetics, 2014, 55, 163-171.	1.0	5
62	Genome-wide mapping of IBD segments in an Ashkenazi PD cohort identifies associated haplotypes. Human Molecular Genetics, 2014, 23, 4693-4702.	1.4	49
63	Characteristics of Neutral and Deleterious Protein-Coding Variation among Individuals and Populations. American Journal of Human Genetics, 2014, 95, 421-436.	2.6	89
64	Juden. , 2014, , 239-250.		0
65	Cultural Aspects of Healthy BRCA Carriers From Two Ethnocultural Groups. Qualitative Health Research, 2014, 24, 665-681.	1.0	19
66	Population-Genetic Influences on Genomic Estimates of the Inbreeding Coefficient: A Global Perspective. Human Heredity, 2014, 77, 37-48.	0.4	35
67	The peopling of the African continent and the diaspora into the new world. Current Opinion in Genetics and Development, 2014, 29, 120-132.	1.5	45
68	A renewal theory approach to IBD sharing. Theoretical Population Biology, 2014, 97, 35-48.	0.5	34
69	Sequencing an Ashkenazi reference panel supports population-targeted personal genomics and illuminates Jewish and European origins. Nature Communications, 2014, 5, 4835.	5.8	156
70	Stress-related genes and heroin addiction: A role for a functional FKBP5 haplotype. Psychoneuroendocrinology, 2014, 45, 67-76.	1.3	62
71	Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease. Cold Spring Harbor Perspectives in Biology, 2014, 6, a008524-a008524.	2.3	87
72	A genetic contribution from the Far East into Ashkenazi Jews via the ancient Silk Road. Scientific Reports, 2015, 5, 8377.	1.6	17
73	†Jewish Genetics' and the †Nature' of Israeli Citizenship. Transversal, 2015, 13, 90-102.	0.1	22

#	Article	IF	CITATIONS
74	Synaptic Plasticity and Signal Transduction Gene Polymorphisms and Vulnerability to Drug Addictions in Populations of European or African Ancestry. CNS Neuroscience and Therapeutics, 2015, 21, 898-904.	1.9	21
75	Rare Variation Facilitates Inferences of Fine-Scale Population Structure in Humans. Molecular Biology and Evolution, 2015, 32, 653-660.	3.5	38
76	Why the Nonexistence of Biological Races Does Not Mean the Nonexistence of Racism. American Behavioral Scientist, 2015, 59, 1474-1495.	2.3	20
77	Intergroup Conflict and Matthew 23: Towards Responsible Historical Interpretation of a Challenging Text. Biblical Theology Bulletin, 2015, 45, 38-59.	0.2	3
78	Portuguese crypto-Jews: the genetic heritage of a complex history. Frontiers in Genetics, 2015, 6, 12.	1.1	7
79	High Prevalence of Inflammatory Bowel Disease in United States Residents of Indian Ancestry. Clinical Gastroenterology and Hepatology, 2015, 13, 683-689.	2.4	34
80	Premature aging of leukocyte DNA methylation is associated with type 2 diabetes prevalence. Clinical Epigenetics, 2015, 7, 35.	1.8	34
81	Genetic contribution to multiple sclerosis risk among Ashkenazi Jews. BMC Medical Genetics, 2015, 16, 55.	2.1	8
82	Susceptibility loci for heroin and cocaine addiction in the serotonergic and adrenergic pathways in populations of different ancestry. Pharmacogenomics, 2015, 16, 1329-1342.	0.6	15
83	Genotyping of geographically diverse Druze trios reveals substructure and a recent bottleneck. European Journal of Human Genetics, 2015, 23, 1093-1099.	1.4	10
84	Echoes from Sepharad: signatures on the maternal gene pool of crypto-Jewish descendants. European Journal of Human Genetics, 2015, 23, 693-699.	1.4	17
85	In Search of the jüdische Typus: A Proposed Benchmark to Test the Genetic Basis of Jewishness Challenges Notions of "Jewish Biomarkers― Frontiers in Genetics, 2016, 7, 141.	1.1	6
87	The Genetics of Bene Israel from India Reveals Both Substantial Jewish and Indian Ancestry. PLoS ONE, 2016, 11, e0152056.	1.1	17
88	A Genome-Wide Search for Greek and Jewish Admixture in the Kashmiri Population. PLoS ONE, 2016, 11, e0160614.	1.1	8
89	Pitfalls of the Geographic Population Structure (GPS) Approach Applied to Human Genetic History: A Case Study of Ashkenazi Jews. Genome Biology and Evolution, 2016, 8, 2259-2265.	1.1	7
90	Religiosity as a predictor of in-group favoritism within and between religious groups. Personality and Individual Differences, 2016, 98, 311-314.	1.6	19
91	African-specific variability in the acetylcholine muscarinic receptor M4: association with cocaine and heroin addiction. Pharmacogenomics, 2016, 17, 995-1003.	0.6	12
92	The genetic history of Cochin Jews from India. Human Genetics, 2016, 135, 1127-1143.	1.8	12

ARTICLE IF CITATIONS # Was ADH1B under Selection in European Populations?. American Journal of Human Genetics, 2016, 99, 2.6 3 93 1217-1219. Genetic affinities of the Jewish populations of India. Scientific Reports, 2016, 6, 19166. 94 1.6 Consanguinity Rates Predict Long Runs of Homozygosity in Jewish Populations. Human Heredity, 2016, 95 0.4 22 82, 87-102. Differential burden of rare protein truncating variants in Alzheimer's disease patients compared to centenarians. Human Molecular Genetics, 2016, 25, ddw150. 96 The Italian genome reflects the history of Europe and the Mediterranean basin. European Journal of 97 1.4 40 Human Genetics, 2016, 24, 1056-1062. The multiple dimensions of race. Ethnic and Racial Studies, 2016, 39, 1310-1338. 1.5 271 Localizing Ashkenazic Jews to Primeval Villages in the Ancient Iranian Lands of Ashkenaz. Genome 99 1.1 41 Biology and Evolution, 2016, 8, 1132-1149. <i>OPTN</i> 691_692insAG is a founder mutation causing recessive ALS and increased risk in 1.5 37 heterozygotes. Neurology, 2016, 86, 446-453. Genetic diversity of 38 insertion–deletion polymorphisms in Jewish populations. Forensic Science 101 9 1.6 International: Génetics, 2016, 21, 1-4. Glutamatergic and GABAergic susceptibility loci for heroin and cocaine addiction in subjects of African and European ancestry. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2.5 2016, 64, 118-123. The origin of the p.E180 growth hormone receptor gene mutation. Growth Hormone and IGF Research, 103 4 0.5 2016, 28, 51-52. Overcoming the dichotomy between open and isolated populations using genomic data from a large 1.6 European dataset. Scientific Reports, 2017, 7, 41614. Live birth sex ratios and father's geographic origins in Jerusalem, 1964–1976. American Journal of 106 0.8 1 Human Biology, 2017, 29, e22945. Ancient and recent admixture layers in Sicily and Southern Italy trace multiple migration routes along the Mediterranean. Scientific Reports, 2017, 7, 1984. 1.6 The Rare-Variant Generalized Disequilibrium Test for Association Analysis of Nuclear and Extended Pedigrees with Application to Alzheimer Disease WGS Data. American Journal of Human Genetics, 2017, 108 2.6 26 100, 193-204. Genetic portrait of Jewish populations based on three sets of X-chromosome markers: Indels, Alu 109 insertions and STRs. Forensic Science International: Genetics, 2017, 31, e5-e11. The genetic variation in the R1a clade among the Ashkenazi Levites' Y chromosome. Scientific Reports, 110 1.6 13 2017, 7, 14969. The μ-opioid receptor nonsynonymous variant 118A>G is associated with prolonged abstinence from heroin without agonist treatment. Pharmacogenomics, 2017, 18, 1387-1391.

#	Article	IF	CITATIONS
112	Impact of Sixteen Established Pancreatic Cancer Susceptibility Loci in American Jews. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1540-1548.	1.1	6
113	Ethnicity of Patients With Germline GCM2-Activating Variants and Primary Hyperparathyroidism. Journal of the Endocrine Society, 2017, 1, 488-499.	0.1	28
114	The Origins of Ashkenaz, Ashkenazic Jews, and Yiddish. Frontiers in Genetics, 2017, 8, 87.	1.1	11
115	Editorial: Population Genetics of Worldwide Jewish People. Frontiers in Genetics, 2017, 8, 101.	1.1	1
116	Refining the South Asian Origin of the Romani people. BMC Genetics, 2017, 18, 82.	2.7	26
117	Genetic variations in genes of the stress response pathway are associated with prolonged abstinence from heroin. Pharmacogenomics, 2018, 19, 333-341.	0.6	12
118	Ripples on the surface. Surnames and genes in Sicily and Southern Italy. Annals of Human Biology, 2018, 45, 57-65.	0.4	5
119	High-depth whole genome sequencing of an Ashkenazi Jewish reference panel: enhancing sensitivity, accuracy, and imputation. Human Genetics, 2018, 137, 343-355.	1.8	24
120	Haplotype Sharing Provides Insights into Fine-Scale Population History and Disease in Finland. American Journal of Human Genetics, 2018, 102, 760-775.	2.6	57
121	Donorâ€recipient ethnic mismatching impacts short―and longâ€ŧerm results of heart transplantation. Clinical Transplantation, 2018, 32, e13389.	0.8	2
122	Whole-genome sequencing of 175 Mongolians uncovers population-specific genetic architecture and gene flow throughout North and East Asia. Nature Genetics, 2018, 50, 1696-1704.	9.4	38
123	Revealing the impact of the Caucasus region on the genetic legacy of Romani people from genome-wide data. PLoS ONE, 2018, 13, e0202890.	1.1	5
124	Pharmacogenetic and clinical predictors of response to clopidogrel plus aspirin after acute coronary syndrome in Egyptians. Pharmacogenetics and Genomics, 2018, 28, 207-213.	0.7	9
126	Genetic Basis of Delayed Hypersensitivity Reactions to Drugs in Jewish and Arab Populations. Pharmaceutical Research, 2018, 35, 211.	1.7	3
127	Revealing the Genetic Impact of the Ottoman Occupation on Ethnic Groups of East-Central Europe and on the Roma Population of the Area. Frontiers in Genetics, 2019, 10, 558.	1.1	9
128	Historic migration to South Asia in the last two millennia: A case of Jewish and Parsi populations. Journal of Biosciences, 2019, 44, 1.	0.5	3
129	The spectrum of <i>BRCA1</i> and <i>BRCA2</i> pathogenic sequence variants in Middle Eastern, North African, and South European countries. Human Mutation, 2019, 40, e1-e23.	1.1	34
130	Genetic history of the population of Crete. Annals of Human Genetics, 2019, 83, 373-388.	0.3	2

#	Article	IF	CITATIONS
131	The Geography of Jewish Ethnogenesis. Journal of Anthropological Research, 2019, 75, 206-234.	0.1	3
132	The Effect of Consanguinity on Between-Individual Identity-by-Descent Sharing. Genetics, 2019, 212, 305-316.	1.2	19
133	Dissecting the Pre-Columbian Genomic Ancestry of Native Americans along the Andes–Amazonia Divide. Molecular Biology and Evolution, 2019, 36, 1254-1269.	3.5	47
134	High-resolution inference of genetic relationships among Jewish populations. European Journal of Human Genetics, 2020, 28, 804-814.	1.4	6
135	Investigating the genetic characteristics of the Csangos, a traditionally Hungarian speaking ethnic group residing in Romania. Journal of Human Genetics, 2020, 65, 1093-1103.	1.1	2
136	High-depth African genomes inform human migration and health. Nature, 2020, 586, 741-748.	13.7	197
137	Middle eastern genetic legacy in the paternal and maternal gene pools of Chuetas. Scientific Reports, 2020, 10, 21428.	1.6	2
138	The Genomic History of the Bronze Age Southern Levant. Cell, 2020, 181, 1146-1157.e11.	13.5	51
140	Toward a fine-scale population health monitoring system. Cell, 2021, 184, 2068-2083.e11.	13.5	78
142	The Restoration of Israel in the Persian and Hellenistic Periods. , 2021, , 142-180.		0
144	Israel, Jews, and Restoration Eschatology in Josephus. , 2021, , 210-232.		0
145	Israel and Restoration in Philo of Alexandria. , 2021, , 233-258.		0
149	Exile and Diaspora Theology. , 2021, , 183-209.		0
150	Between Disaster and Restoration. , 2021, , 121-141.		0
151	Judah's Bible and the Narrative Construction of Biblical Israel. , 2021, , 87-120.		0
152	Index of Primary Sources. , 2021, , 406-419.		0
154	Jews and Israelites in Antiquity. , 2021, , 25-53.		0
155	Israel in Second Temple Eschatological and Apocalyptic Literature. , 2021, , 316-338.		0

#	Article	IF	CITATIONS
156	Novel ultra-rare exonic variants identified in a founder population implicate cadherins in schizophrenia. Neuron, 2021, 109, 1465-1478.e4.	3.8	21
159	Exile and Israel's Restoration in the Dead Sea Scrolls. , 2021, , 259-289.		0
160	Israel, Hebrews, Jews, and Restoration Eschatology. , 2021, , 339-348.		0
161	The Other Israelites. , 2021, , 54-84.		0
162	Israel, Jews, and Restoration in Other Second Temple Narrative Literature. , 2021, , 290-315.		0
164	Recommendation of premarital genetic screening in the Syrian Jewish community based on mutation carrier frequencies within Syrian Jewish cohorts. Molecular Genetics & amp; Genomic Medicine, 2021, 9, e1756.	0.6	5
165	Genetic epidemiology of BRCA1- and BRCA2-associated cancer across Latin America. Npj Breast Cancer, 2021, 7, 107.	2.3	13
166	Crohn's Disease Susceptibility and Onset Are Strongly Related to Three NOD2 Gene Haplotypes. Journal of Clinical Medicine, 2021, 10, 3777.	1.0	9
167	Paths and timings of the peopling of Polynesia inferred from genomic networks. Nature, 2021, 597, 522-526.	13.7	31
168	Fine-Scale Genetic Structure and Demographic History in the Miyako Islands of the Ryukyu Archipelago. Molecular Biology and Evolution, 2021, 38, 2045-2056.	3.5	11
173	THE BEHAVIOR OF ADMIXED POPULATIONS IN NEIGHBOR-JOINING INFERENCE OF POPULATION TREES. , 2012, , .		10
175	A Spatial Framework for Understanding Population Structure and Admixture. PLoS Genetics, 2016, 12, e1005703.	1.5	109
176	The time and place of European admixture in Ashkenazi Jewish history. PLoS Genetics, 2017, 13, e1006644.	1.5	25
177	Predicting Diabetic Nephropathy Using a Multifactorial Genetic Model. PLoS ONE, 2011, 6, e18743.	1.1	29
178	Reconstructing Roma History from Genome-Wide Data. PLoS ONE, 2013, 8, e58633.	1.1	61
179	Characterization of SNPs Associated with Prostate Cancer in Men of Ashkenazic Descent from the Set of GWAS Identified SNPs: Impact of Cancer Family History and Cumulative SNP Risk Prediction. PLoS ONE, 2013, 8, e60083.	1.1	21
180	Native American Admixture in the Quebec Founder Population. PLoS ONE, 2013, 8, e65507.	1.1	13
181	Jews worldwide share genetic ties. Nature, 0, , .	13.7	2

#	Article	IF	CITATIONS
182	Genetische Unterschiede? Die Irrtümer des Biologismus. , 2012, , 127-134.		0
184	Differences in Autosomal DNA Characteristics between Jewish and Non-Jewish Populations. Surname DNA Journal, 0, , .	0.0	0
188	Hypothesizing Molecular Genetics of the Holocaust: Were Dopaminergic Genes Involved or Brain Wash?. SOJ Psychology, 2016, 3, 1-5.	0.3	4
189	From DNA to Politics. History, Philosophy and Theory of the Life Sciences, 2017, , 175-202.	0.4	0
191	Does Mitochondrial DNA T2e1 Reflect Traces of Judaism on the "Down-Low�. Journal of Phylogenetics & Evolutionary Biology, 2018, 06, .	0.2	0
193	"Mame Loshenâ€: Linguistik Aktuell, 2019, , 365-386.	0.5	0
196	The behavior of admixed populations in neighbor-joining inference of population trees. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2013, , 273-84.	0.7	8
197	Nonsyndromic retinitis pigmentosa is highly prevalent in the Jerusalem region with a high frequency of founder mutations. Molecular Vision, 2015, 21, 783-92.	1.1	48
198	NF-κB1 Rs28362491 Mutant Allele Frequencies along the Silk Road and Beyond. Iranian Journal of Public Health, 2018, 47, 397-406.	0.3	0
199	Historic migration to South Asia in the last two millennia: A case of Jewish and Parsi populations. Journal of Biosciences, 2019, 44, .	0.5	1
200	Genome-Wide Marker Data-Based Comparative Population Analysis of Szeklers From Korond, Transylvania, and From Transylvania Living Non-Szekler Hungarians. Frontiers in Genetics, 2022, 13, 841769.	1.1	1
207	Reconstructing the history of founder events using genome-wide patterns of allele sharing across individuals. PLoS Genetics, 2022, 18, e1010243.	1.5	24
208	Genomes from a medieval mass burial show Ashkenazi-associated hereditary diseases pre-date the 12th century. Current Biology, 2022, 32, 4350-4359.e6.	1.8	3
209	Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Scientific Reports, 2022, 12, .	1.6	48
210	Is There Anything New in Antisemitism? Settler Colonialism. , 2022, , 805-829.		0
212	Genome-wide data from medieval German Jews show that the Ashkenazi founder event pre-dated the 14th century. Cell, 2022, 185, 4703-4716.e16.	13.5	12
213	Characterization of Danube Swabian population samples on a high-resolution genome-wide basis. BMC Genomics, 2023, 24, .	1.2	1
214	Genetic and selfâ€perceived ancestries in Argentina: Beyond the threeâ€hybrid model. American Journal of Biological Anthropology, 2023, 181, 85-95.	0.6	0

	C	CITATION REPORT	
#	Article	IF	CITATIONS
215	An HLA map of the world: A comparison of HLA frequencies in 200 worldwide populations reveals diverse patterns for class I and class II. Frontiers in Genetics, 0, 14, .	1.1	12
216	Identifying high-impact variants and genes in exomes of Ashkenazi Jewish inflammatory bowel diseas patients. Nature Communications, 2023, 14, .	e 5.8	1