Copper-catalyzed azide–alkyne cycloaddition (CuAA) copper(i) acetylides

Chemical Society Reviews 39, 1302 DOI: 10.1039/b904091a

Citation Report

#	Article	IF	CITATIONS
1	Dendrimeric Pyridoxamine Enzyme Mimics. Journal of the American Chemical Society, 2003, 125, 12110-12111.	13.7	90
2	Carboxylic Acid-Promoted Copper(I)-Catalyzed Azideâ^ Alkyne Cycloaddition. Journal of Organic Chemistry, 2010, 75, 7002-7005.	3.2	135
3	Recent Applications of Polymer Supported Organometallic Catalysts in Organic Synthesis. Molecules, 2010, 15, 6306-6331.	3.8	67
4	Chelation-Assisted, Copper(II)-Acetate-Accelerated Azideâ^'Alkyne Cycloaddition. Journal of Organic Chemistry, 2010, 75, 6540-6548.	3.2	146
5	Efficient Synthesis of 1-Sulfonyl-1,2,3-triazoles. Organic Letters, 2010, 12, 4952-4955.	4.6	262
6	Copperâ€Catalyzed Fourâ€Component Reaction of Baylis–Hillman Adducts with Alkynes, Sulfonyl Azides and Alcohols. Advanced Synthesis and Catalysis, 2010, 352, 2432-2436.	4.3	23
7	Nonâ€Magnetic and Magnetic Supported Copper(I) Chelating Adsorbents as Efficient Heterogeneous Catalysts and Copper Scavengers for Click Chemistry. Advanced Synthesis and Catalysis, 2010, 352, 3306-3320.	4.3	80
10	Dramatic Impact of ppb Levels of Palladium on the "Copper atalyzed―Sonogashira Coupling. Chemistry - A European Journal, 2010, 16, 11822-11826.	3.3	78
11	Efficient Access to New Chemical Space Through Flow—Construction of Druglike Macrocycles Through Copper‧urface atalyzed Azide–Alkyne Cycloaddition Reactions. Chemistry - A European Journal, 2010, 16, 14506-14512.	3.3	91
12	Palladium(II) and platinum(II) complexes of bidentate 2-pyridyl-1,2,3-triazole "click―ligands: Synthesis, properties and X-ray structures. Polyhedron, 2010, 29, 3111-3117.	2.2	57
13	The [Cu]-catalyzed SNAR reactions: direct amination of electron deficient aryl halides with sodium azide and the synthesis of arylthioethers under Cu(II)–ascorbate redox system. Tetrahedron, 2010, 66, 7642-7650.	1.9	53
14	Efficient synthesis of deuterated 1,2,3-triazoles. Tetrahedron Letters, 2010, 51, 6275-6277.	1.4	32
15	One-pot syntheses of 1,2,3-triazoles containing a pentafluorosulfanylalkyl group via click chemistry. Tetrahedron Letters, 2010, 51, 6951-6954.	1.4	44
16	Cinchona Alkaloid-Catalyzed Asymmetric Trifluoromethylation of Alkynyl Ketones with Trimethylsilyl Trifluoromethane. Organic Letters, 2010, 12, 5104-5107.	4.6	91
17	Regioselective syntheses of fully-substituted 1,2,3-triazoles: the CuAAC/C–H bond functionalization nexus. Organic and Biomolecular Chemistry, 2010, 8, 4503.	2.8	237
18	Surface Functionalization Using Catalyst-Free Azideâ^ Alkyne Cycloaddition. Bioconjugate Chemistry, 2010, 21, 2076-2085.	3.6	205
19	Click-triazole: coordination of 2-(1,2,3-triazol-4-yl)-pyridine to cations of traditional tetrahedral geometry (Cu(i), Ag(i)). Chemical Communications, 2010, 46, 8454.	4.1	67
20	Biofunctionalization on Alkylated Silicon Substrate Surfaces via "Click―Chemistry. Journal of the American Chemical Society, 2010, 132, 16432-16441.	13.7	80

		CITATION REPORT		
#	Article		IF	CITATIONS
21	Click Polymerization: Progresses, Challenges, and Opportunities. Macromolecules, 2010, 4	3, 8693-8702.	4.8	259
22	Reactions of Terminal Polyynes with Benzyl Azide. Journal of Organic Chemistry, 2010, 75,	8498-8507.	3.2	17
23	Accelerated Growth of Dendrimers via Thiolâ^'Ene and Esterification Reactions. Macromole 43, 6004-6013.	cules, 2010,	4.8	90
24	Anaerobic conditions to reduce oxidation of proteins and to accelerate the copper-catalyze reaction with a water-soluble bis(triazole) ligand. Chemical Communications, 2011, 47, 31	ed "Click― 86.	4.1	36
25	Synthesis of novel molecular probes inspired by harringtonolide. Organic and Biomolecular Chemistry, 2011, 9, 4570.		2.8	18
26	Combining RAFT and Staudinger Ligation: A Potentially New Synthetic Tool for Bioconjugat Formation. Macromolecules, 2011, 44, 3260-3269.	te	4.8	28
27	Application of click chemistry on preparation of separation materials for liquid chromatogr Chemical Society Reviews, 2011, 40, 2177.	aphy.	38.1	195
28	Dynamic clicked surfaces based on functionalised pillar[5]arene. Chemical Communication 11420.	s, 2011, 47,	4.1	91
29	Cationic Gold(I) π-Complexes of Terminal Alkynes and Their Conversion to Dinuclear σ,π-/ Complexes. Organometallics, 2011, 30, 6003-6009.	Acetylide	2.3	116
30	\hat{I}^2 -Olefination of 2-Alkynoates Leading to Trisubstituted 1,3-Dienes. Organic Letters, 2011,	13, 3418-3421.	4.6	30
31	An activated triple bond linker enables â€~click' attachment of peptides to oligonucleo support. Nucleic Acids Research, 2011, 39, 9047-9059.	tides on solid	14.5	34
32	Ligand Steric Contours To Understand the Effects of <i>N</i> -Heterocyclic Carbene Ligand Reversal of Regioselectivity in Ni-Catalyzed Reductive Couplings of Alkynes and Aldehydes. the American Chemical Society, 2011, 133, 6956-6959.		13.7	119
33	Facile, modular transformations of RAFT block copolymers via sequential isocyanate and th reactions. Polymer Chemistry, 2011, 2, 1976.	iiol-ene	3.9	36
34	Simple and Efficient Method for the Synthesis of Azides in Water-THF Solvent System. Org Preparations and Procedures International, 2011, 43, 348-353.	anic	1.3	34
35	CuAAC Macrocyclization: High Intramolecular Selectivity through the Use of Copper–Tris Ligand Complexes. Organic Letters, 2011, 13, 2754-2757.	s(triazole)	4.6	54
36	Stepwise "Click―Chemistry for the Template Independent Construction of a Broad Va Cross-Linked Oligonucleotides: Influence of Linker Length, Position, and Linking Number of Duplex Stability. Journal of Organic Chemistry, 2011, 76, 5584-5597.		3.2	54
37	Tuning the Properties of Layer-by-Layer Assembled Poly(acrylic acid) Click Films and Capsul Macromolecules, 2011, 44, 1194-1202.	es.	4.8	40
38	Chiral Propargyl Alcohols via the Enantioselective Addition of Terminal Di- and Triynes to Al Journal of Organic Chemistry, 2011, 76, 6574-6583.	dehydes.	3.2	34

#	Article	IF	CITATIONS
39	Synthesis and Postpolymerization Functionalization of Poly(5-iodo-1,2,3-triazole)s. Macromolecules, 2011, 44, 4735-4741.	4.8	58
40	1,3,4-Trisubtituted-1,2,3-Triazol-5-ylidene 'Click' Carbene Ligands: Synthesis, Catalysis and Self-Assembly. Australian Journal of Chemistry, 2011, 64, 1118.	0.9	154
41	Efficient one-pot synthesis of polysubstituted 6-[(1H-1,2,3-triazol-1-yl)methyl]uracils through the "click―protocol. Collection of Czechoslovak Chemical Communications, 2011, 76, 1121-1131.	1.0	10
42	Experimental Investigation on the Mechanism of Chelation-Assisted, Copper(II) Acetate-Accelerated Azide–Alkyne Cycloaddition. Journal of the American Chemical Society, 2011, 133, 13984-14001.	13.7	160
43	Copper-cascade catalysis: synthesis of 3-functionalized indoles. Chemical Communications, 2011, 47, 3275.	4.1	78
45	The Davis–Beirut Reaction: <i>N</i> ¹ , <i>N</i> ² -Disubstituted-1 <i>H</i> -Indazolones via 1,6-Electrophilic Addition to 3-Alkoxy-2 <i>H</i> -Indazoles. Organic Letters, 2011, 13, 3138-3141.	4.6	29
46	Palladium(II) Complexes of Readily Functionalized Bidentate 2-Pyridyl-1,2,3-triazole "Click―Ligands: A Synthetic, Structural, Spectroscopic, and Computational Study. Inorganic Chemistry, 2011, 50, 6334-6346.	4.0	111
47	Patterned Surface Derivatization Using Diels–Alder Photoclick Reaction. Journal of the American Chemical Society, 2011, 133, 15730-15736.	13.7	89
48	Modular "Click―Chemistry for Electrochemically and Photoelectrochemically Active Molecular Interfaces to Tin Oxide Surfaces. ACS Applied Materials & Interfaces, 2011, 3, 3110-3119.	8.0	38
49	Click Chemistry on Solution-Dispersed Graphene and Monolayer CVD Graphene. Chemistry of Materials, 2011, 23, 3362-3370.	6.7	169
50	Triazole: a unique building block for the construction of functional materials. Chemical Communications, 2011, 47, 8740.	4.1	152
51	Generation of Profluorescent Isoindoline Nitroxides Using Click Chemistry. Journal of Organic Chemistry, 2011, 76, 4964-4972.	3.2	45
52	Rapid preparation of triazolyl substituted NH-heterocyclic kinase inhibitors via one-pot Sonogashira coupling–TMS-deprotection–CuAAC sequence. Organic and Biomolecular Chemistry, 2011, 9, 5129.	2.8	35
53	Addition of alkynes at bridging vinyliminium ligands in diiron complexes: Unprecedented diene formation by enyne-like metathesis. Journal of Organometallic Chemistry, 2011, 696, 4051-4056.	1.8	8
54	Polysaccharides: The "Click―Chemistry Impact. Polymers, 2011, 3, 1607-1651.	4.5	81
55	Acid–Base Jointly Promoted Copper(I)-Catalyzed Azide–Alkyne Cycloaddition. Journal of Organic Chemistry, 2011, 76, 6832-6836.	3.2	130
56	Click novel glycosyl amino acid hydrophilic interaction chromatography stationary phase and its application in enrichment of glycopeptides. Talanta, 2011, 85, 1642-1647.	5.5	21
57	Synthesis of 5-lodo-1,2,3-triazole-Containing Macrocycles Using Copper Flow Reactor Technology. Organic Letters, 2011, 13, 4060-4063.	4.6	101

#	Article	IF	CITATIONS
58	The synthesis of double-headed nucleosides by the CuAAC reaction and their effect in secondary nucleic acid structures. Organic and Biomolecular Chemistry, 2011, 9, 1381.	2.8	27
59	Carboxylate-Assisted Transition-Metal-Catalyzed Câ^'H Bond Functionalizations: Mechanism and Scope. Chemical Reviews, 2011, 111, 1315-1345.	47.7	3,087
60	Fusing Triazoles: Toward Extending Aromaticity. Organic Letters, 2011, 13, 3494-3497.	4.6	41
61	Composite Polymer Materials Consisting of Nanofilms Formed by Click Reaction between Polymers at an Oil–Water Interface. Chemistry Letters, 2011, 40, 270-272.	1.3	12
62	Synthesis of 2-amino-3-arylpropan-1-ols and 1-(2,3-diaminopropyl)-1,2,3-triazoles and evaluation of their antimalarial activity. Beilstein Journal of Organic Chemistry, 2011, 7, 1745-1752.	2.2	28
63	Copper(I)-Catalyzed [3+ 2] Cycloaddition of 3-Azidoquinoline-2,4(1H,3H)-diones with Terminal Alkynes. Molecules, 2011, 16, 4070-4081.	3.8	4
64	Synthesis of N-propynyl analogues of peptide nucleic acid (PNA) monomers and their use in the click reaction to prepare N-functionalized PNAs. Tetrahedron, 2011, 67, 9588-9594.	1.9	12
65	Diversity-oriented syntheses of 7-substituted lentiginosines. Tetrahedron, 2011, 67, 9555-9564.	1.9	18
66	Synthesis of indolequinones via a Sonogashira coupling/cyclization cascade reaction. Tetrahedron Letters, 2011, 52, 4665-4670.	1.4	22
67	Hydroxyapatite-supported copper(II)-catalyzed azide–alkyne [3+2] cycloaddition with neither reducing agents nor bases in water. Tetrahedron Letters, 2011, 52, 6916-6918.	1.4	52
68	Reactivity study of arene(azido)ruthenium Nâ^©O-base complexes with activated alkynes. Inorganica Chimica Acta, 2011, 376, 428-436.	2.4	24
69	The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) "click―reaction and its applications. An overview. Coordination Chemistry Reviews, 2011, 255, 2933-2945.	18.8	853
70	1,3-Dipolar cycloaddition of nitrone-type dipoles to uncomplexed and metal-bound substrates bearing the CN triple bond. Coordination Chemistry Reviews, 2011, 255, 2946-2967.	18.8	75
71	Triazole Bridges as Versatile Linkers in Electron Donor–Acceptor Conjugates. Journal of the American Chemical Society, 2011, 133, 13036-13054.	13.7	109
72	Efficient covalent functionalisation of carbon nanotubes: the use of "click chemistryâ€: Chemical Science, 2011, 2, 1887.	7.4	61
73	Copper(I) 1,2,3-Triazol-5-ylidene Complexes as Efficient Catalysts for Click Reactions of Azides with Alkynes. Organic Letters, 2011, 13, 620-623.	4.6	178
74	Nitrogenâ€Rich Azoles as Ligand Spacers in Coordination Polymers. Chemistry - an Asian Journal, 2011, 6, 292-304.	3.3	67
75	Mitsunobu Reaction of 1,2,3â€NHâ€Triazoles: A Regio―and Stereoselective Approach to Functionalized Triazole Derivatives. Chemistry - an Asian Journal, 2011, 6, 2720-2724.	3.3	42

#	Article	IF	CITATIONS
76	Steroid/Triterpenoid Functional Molecules based on "Click Chemistry― Chemistry - an Asian Journal, 2011, 6, 2636-2647.	3.3	22
77	Sulfated Ligands for the Copper(I)â€Catalyzed Azide–Alkyne Cycloaddition. Chemistry - an Asian Journal, 2011, 6, 2796-2802.	3.3	95
78	Ligandâ€Assisted, Copper(II) Acetateâ€Accelerated Azide–Alkyne Cycloaddition. Chemistry - an Asian Journal, 2011, 6, 2825-2834.	3.3	46
79	Palladium atalyzed Alkynylthiolation of Alkynes with Triisopropylsilylethynyl Sulfide. Chemistry - an Asian Journal, 2011, 6, 3190-3194.	3.3	21
80	N-Heterocyclic carbene-catalyzed 1,3-dipolar cycloaddition reactions: a facile synthesis of 3,5-di- and 3,4,5-trisubstituted isoxazoles. Organic and Biomolecular Chemistry, 2011, 9, 7869.	2.8	50
81	The Efficient Copper(I) (Hexabenzyl)tren Catalyst and Dendritic Analogues for Green "Click―Reactions between Azides and Alkynes in Organic Solvent and in Water: Positive Dendritic Effects and Monometallic Mechanism. Advanced Synthesis and Catalysis, 2011, 353, 3434-3450.	4.3	62
82	One-pot synthesis of substituted indolines via a copper-catalyzed sequential multicomponent/C–N coupling reaction. Tetrahedron, 2011, 67, 1178-1182.	1.9	19
83	"Click―synthesis of thermally stable au nanoparticles with highly grafted polymer shell and control of their behavior in polymer matrix. Journal of Polymer Science Part A, 2011, 49, 3464-3474.	2.3	45
84	Modulating catalytic activity of polymerâ€based cuAAC "click―reactions. Journal of Polymer Science Part A, 2011, 49, 4539-4548.	2.3	12
85	Novel Synthesis of Difluoromethylâ€Containing 1,4â€Disubstituted 1,2,3â€Triazoles <i>via</i> a Click–Multicomponent Reaction and Desulfanylation Strategy. Advanced Synthesis and Catalysis, 2011, 353, 580-584.	4.3	28
86	Insights into Supported Copper(II) atalyzed Azideâ€Alkyne Cycloaddition in Water. Advanced Synthesis and Catalysis, 2011, 353, 1534-1542.	4.3	77
87	Nanoporous Copper Metal Catalyst in Click Chemistry: Nanoporosityâ€Dependent Activity without Supports and Bases. Advanced Synthesis and Catalysis, 2011, 353, 3095-3100.	4.3	70
88	Heterogeneous Catalytic Reactions "On Water―by Using Stable Polymeric Alkynylcopper(I) Preâ€Catalysts: Alkyne/Azide Cycloaddition Reactions. European Journal of Organic Chemistry, 2011, 2011, 770-776.	2.4	37
89	Mono―and Tetraalkyne Modified Ligands and Their Eu ³⁺ Complexes – Utilizing "Click― Chemistry to Expand the Scope of Conjugation Chemistry. European Journal of Organic Chemistry, 2011, 2011, 6532-6543.	2.4	13
94	Gold(III) Complexes Catalyze Deoximations/Transoximations at Neutral pH. Angewandte Chemie - International Edition, 2011, 50, 3275-3279.	13.8	26
95	Increasing the Efficacy of Bioorthogonal Click Reactions for Bioconjugation: A Comparative Study. Angewandte Chemie - International Edition, 2011, 50, 8051-8056.	13.8	370
96	Implanting Nitrogen into Hydrocarbon Molecules through CH and CC Bond Cleavages: A Direct Approach to Tetrazoles. Angewandte Chemie - International Edition, 2011, 50, 11487-11491.	13.8	91
97	Ironâ€Catalyzed CH and CC Bond Cleavage: A Direct Approach to Amides from Simple Hydrocarbons. Angewandte Chemie - International Edition, 2011, 50, 12595-12599.	13.8	124

#	Article	IF	CITATIONS
98	Convergent Assembly and Surface Modification of Multifunctional Dendrimers by Three Consecutive Click Reactions. Chemistry - A European Journal, 2011, 17, 839-846.	3.3	57
99	The First Wellâ€Defined Silver(I)â€Complexâ€Catalyzed Cycloaddition of Azides onto Terminal Alkynes at Room Temperature. Chemistry - A European Journal, 2011, 17, 14727-14730.	3.3	142
100	Click Chemistry for Rapid Labeling and Ligation of RNA. ChemBioChem, 2011, 12, 125-131.	2.6	166
101	Synthesis and in vitro evaluation of [18F]fluoroethyl triazole labelled [Tyr3]octreotate analogues using click chemistry. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3122-3127.	2.2	44
102	Novel purine-based fluoroaryl-1,2,3-triazoles as neuroprotecting agents: Synthesis, neuronal cell culture investigations, and CDK5 docking studies. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 3957-3961.	2.2	25
103	Synthesis of glycopolymers via click reactions. European Polymer Journal, 2011, 47, 435-446.	5.4	169
104	Design and synthesis of caged ceramide: UV-responsive ceramide releasing system based on UV-induced amide bond cleavage followed by O–N acyl transfer. Tetrahedron, 2011, 67, 3984-3990.	1.9	21
105	A facile synthesis of N–C linked 1,2,3-triazole-oligomers. Tetrahedron, 2011, 67, 5254-5260.	1.9	13
106	Highly controlling selectivity of copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) between sulfonyl azids and normal alkynes or propynoates. Tetrahedron, 2011, 67, 6294-6299.	1.9	108
107	Synthesis of modified triazole nucleosides possessing one or two base moieties via a click chemistry approach. Tetrahedron Letters, 2011, 52, 1673-1676.	1.4	23
108	Fixed-charge labels for simplified reaction analysis: 5-hydroxy-1,2,3-triazoles as byproducts of a copper(I)-catalyzed click reaction. Tetrahedron Letters, 2011, 52, 2750-2753.	1.4	15
109	ZnCl2-catalyzed hydrodefluorination of gem-difluoromethylene derivatives with lithium aluminum hydride. Tetrahedron Letters, 2011, 52, 3481-3484.	1.4	12
110	Copper(I) oxide and benzoic acid â€~on water': a highly practical and efficient catalytic system for copper(I)-catalyzed azide–alkyne cycloaddition. Tetrahedron Letters, 2011, 52, 3782-3785.	1.4	51
111	Some Organometallic Chemistry of Tetracyanoethene: CN-displacement and Cycloaddition Reactions with Alkynyl - Transition Metal Complexes and Related Chemistry. Australian Journal of Chemistry, 2011, 64, 77.	0.9	45
112	Synthesis of Farnesol Analogues Containing Triazoles in Place of Isoprenes through â€~Click Chemistry'. Synlett, 2012, 23, 2539-2548.	1.8	8
113	One-pot Approach to 4-Vinyl-1,2,3-Triazoles by Cycloaddition of Azides with Propargyl Alcohols Catalyzed by Cu(I)/Ru(III)/TFA. Current Organic Synthesis, 2012, 9, 898-902.	1.3	10
114	Imaging the Glycome in Living Systems. Methods in Enzymology, 2012, 505, 401-419.	1.0	8
	1.2 Pic[4 [1 (anthrocon 0 ulmothyl) 1 civ H (iv 1.2.2 triazol 4 ullahanyl) 1.2 hie[4.5 hie(mathyleulfanyl) 1.2 dithie		lothana

1,2-Bis{4-[1-(anthracen-9-ylmethyl)-1<i>H</i>-1,2,3-triazol-4-yl]phenyl}-1,2-bis[4,5-bis(methylsulfanyl)-1,3-dithiol-2-ylidene]ethane. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o3298-o3299.

#	Article	IF	CITATIONS
116	From molecular catalysts to nanostructured materials skeleton catalysts. Pure and Applied Chemistry, 2012, 84, 1771-1784.	1.9	28
117	A Citric Acid-Derived Ligand for Modular Functionalization of Metal Oxide Surfaces via "Click― Chemistry. Langmuir, 2012, 28, 1322-1329.	3.5	66
118	Enantioselective synthesis of C-linked spiroacetal-triazoles as privileged natural product-like scaffolds. Organic and Biomolecular Chemistry, 2012, 10, 5993.	2.8	5
119	RAFT Polymerization of Bio-Based 1-Vinyl-4-dianhydrohexitol-1,2,3-triazole Stereoisomers Obtained via Click Chemistry. Biomacromolecules, 2012, 13, 4138-4145.	5.4	34
120	Selective Formation of 1,4-Disubstituted Triazoles from Ruthenium-Catalyzed Cycloaddition of Terminal Alkynes and Organic Azides: Scope and Reaction Mechanism. Organometallics, 2012, 31, 4904-4915.	2.3	47
121	Pd(ii)-catalyzed cycloisomerisation of γ-alkynoic acids and one-pot tandem cycloisomerisation/CuAAC reactions in water. Green Chemistry, 2012, 14, 3190.	9.0	43
122	Design, Synthesis, and Testing of a Molecular Truck for Colonic Delivery of 5-Aminosalicylic Acid. ACS Medicinal Chemistry Letters, 2012, 3, 710-714.	2.8	7
123	Click synthesized dianthryl–TTFV: an efficient fluorescent turn-on probe for transition metal ions. Organic and Biomolecular Chemistry, 2012, 10, 2542.	2.8	17
124	Copper(i) acetate-catalyzed azide–alkyne cycloaddition for highly efficient preparation of 1-(pyridin-2-yl)-1,2,3-triazoles. Organic and Biomolecular Chemistry, 2012, 10, 2847.	2.8	37
125	Tandem synthesis of highly functionalized pyrazole derivatives from terminal alkynes, sulfonyl azides, diethyl azadicarboxylate, and sodium arylsulfinates. Molecular Diversity, 2012, 16, 651-657.	3.9	20
126	A catenane host system containing integrated triazole C–H hydrogen bond donors for anion recognition. Chemical Communications, 2012, 48, 8499.	4.1	36
127	Mechanistic Investigations of Copper(I)-Catalysed Alkyne–Azide Cycloaddition Reactions. Topics in Heterocyclic Chemistry, 2012, , 1-29.	0.2	27
130	A Photoswitchable [2]Rotaxane Array on Graphene Oxide. Asian Journal of Organic Chemistry, 2012, 1, 314-318.	2.7	17
131	Highly Active Dinuclear Copper Catalysts for Homogeneous Azide–Alkyne Cycloadditions. Advanced Synthesis and Catalysis, 2012, 354, 3445-3450.	4.3	63
133	Ironâ€Facilitated Oxidative Dehydrogenative CO Bond Formation by Propargylic CH Functionalization. Angewandte Chemie - International Edition, 2012, 51, 10823-10826.	13.8	52
134	Electroactive Tetrathiafulvalenylâ€1,2,3â€ŧriazoles by Click Chemistry: Cu―versus Ru atalyzed Azide–Alkyne Cycloaddition Isomers. Chemistry - A European Journal, 2012, 18, 16097-16103.	3.3	13
135	Facile Synthesis of 4,5â€Disubstituted 2 <i>H</i> â€1,2,3â€Triazoles by Catalystâ€free Cycloaddition between Substituted Vinyl Sulfones and Sodium Azide under Ambient Conditions. Chinese Journal of Chemistry, 2012, 30, 2786-2790.	4.9	2
136	(Iminophosphorane)copper(I) Complexes as Highly Efficient Catalysts for 1,3â€Dipolar Cycloaddition of Azides with Terminal and 1â€Iodoalkynes in Water: Oneâ€Pot Multiâ€Component Reaction from Alkynes and in situ Generated Azides. European Journal of Inorganic Chemistry, 2012, 2012, 5854-5863.	2.0	54

#	Article	IF	CITATIONS
137	Cooperative perfunctionalization and partial labeling of 6-azido-6-deoxy-α-cyclodextrin through copper(I)-catalyzed azide–alkyne cycloaddition. Tetrahedron Letters, 2012, 53, 5911-5915.	1.4	8
138	6-Hydroxymethyltriazolyl-6-deoxy-β-cyclodextrin: a highly water soluble and structurally well-defined β-cyclodextrin click cluster. Tetrahedron Letters, 2012, 53, 5791-5795.	1.4	5
139	Copper(i)-catalyzed intramolecular [2 + 2] cycloaddition of 1,6-enyne-derived ketenimine: an efficient construction of strained and bridged 7-substituted-3-heterobicyclo[3.1.1]heptan-6-one. Chemical Science, 2012, 3, 1975.	7.4	27
140	Synthetic diversification of natural products: semi-synthesis and evaluation of triazole jadomycins. Chemical Science, 2012, 3, 1640.	7.4	35
141	Expedient construction of small molecule macroarrays via sequential palladium- and copper-mediated reactions and their ex situ biological testing. Chemical Science, 2012, 3, 1555.	7.4	5
142	Unexpected Catalytic Reactions of Silyl-Protected Enol Diazoacetates with Nitrile Oxides That Form 5-Arylaminofuran-2(3 <i>H</i>)-one-4-carboxylates. Organic Letters, 2012, 14, 800-803.	4.6	35
143	Three-Component Assembly of Conjugated Enyne Scaffolds via <i>E</i> -Selective Olefination of Ynals. Organic Letters, 2012, 14, 3146-3149.	4.6	52
144	Ferrocenes Containing a Pendant Propargylic Chain Obtained via Addition of Propargyl Alcohol to μ-Vinyliminium Ligands in Diiron Complexes. Organometallics, 2012, 31, 2667-2674.	2.3	10
145	Rate Determination of Azide Click Reactions onto Alkyne Polymer Brush Scaffolds: A Comparison of Conventional and Catalyst-Free Cycloadditions for Tunable Surface Modification. Langmuir, 2012, 28, 14693-14702.	3.5	52
146	Peptidotriazoles with antimicrobial activity against bacterial and fungal plant pathogens. Peptides, 2012, 33, 9-17.	2.4	18
147	Development of a triazole-cure resin system for composites: Evaluation of alkyne curatives. Polymer, 2012, 53, 2548-2558.	3.8	22
148	Synthesis of ferrocene-labeled steroids via copper-catalyzed azide–alkyne cycloaddition. Reactivity difference between 2β-, 6β- and 16β-azido-androstanes. Steroids, 2012, 77, 738-744.	1.8	15
149	Synthesis and Computational Analysis of Densely Functionalized Triazoles Using o-Nitrophenylalkynes. Journal of Organic Chemistry, 2012, 77, 1101-1112.	3.2	19
150	Layer-by-Layer Click Deposition of Functional Polymer Coatings for Combating Marine Biofouling. Biomacromolecules, 2012, 13, 2769-2780.	5.4	98
151	Alkynylated Phenazines: Synthesis, Characterization, and Metal-Binding Properties of Their Bis-Triazolyl Cycloadducts. Journal of Organic Chemistry, 2012, 77, 7479-7486.	3.2	45
152	Indirect C–H Azidation of Heterocycles via Copper-Catalyzed Regioselective Fragmentation of Unsymmetrical λ ³ -lodanes. Journal of the American Chemical Society, 2012, 134, 15436-15442.	13.7	133
153	A novel oxidative transformation of alcohols to nitriles: an efficient utility of azides as a nitrogen source. Chemical Communications, 2012, 48, 5506.	4.1	65
154	Ethynyl-Capped Hyperbranched Conjugated Polytriazole: Click Polymerization, Clickable Modification, and Aggregation-Enhanced Emission. Macromolecules, 2012, 45, 7692-7703.	4.8	89

#	Article	IF	CITATIONS
155	Click Dendrimers and Triazole-Related Aspects: Catalysts, Mechanism, Synthesis, and Functions. A Bridge between Dendritic Architectures and Nanomaterials. Accounts of Chemical Research, 2012, 45, 630-640.	15.6	310
156	Photochemical generation of oxa-dibenzocyclooctyne (ODIBO) for metal-free click ligations. Organic and Biomolecular Chemistry, 2012, 10, 8200.	2.8	55
157	Aromatic Transition States in Nonpericyclic Reactions: Anionic 5-Endo Cyclizations Are Aborted Sigmatropic Shifts. Journal of the American Chemical Society, 2012, 134, 10584-10594.	13.7	78
158	Synthesis and evaluation of novel potent HCV NS5A inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4864-4868.	2.2	13
159	4-Organochalcogenoyl-1H-1,2,3-triazoles: synthesis and functionalization by a nickel-catalyzed Negishi cross-coupling reaction. Tetrahedron Letters, 2012, 53, 6495-6499.	1.4	22
161	Conjugation of Transferrin to Azideâ€Modified CdSe/ZnS Core–Shell Quantum Dots using Cyclooctyne Click Chemistry. Angewandte Chemie - International Edition, 2012, 51, 10523-10527.	13.8	87
162	Click Chemistry of Alkyne–Azide Cycloaddition using Nanostructured Copper Catalysts. ChemCatChem, 2012, 4, 1217-1229.	3.7	105
163	Copper atalyzed Huisgen and Oxidative Huisgen Coupling Reactions Controlled by Polysiloxane‧upported Amines (AFPs) for the Divergent Synthesis of Triazoles and Bistriazoles. Chemistry - A European Journal, 2012, 18, 14094-14099.	3.3	38
164	Click Synthesis and Redox Chemistry of Mono- and Heterobimetallic Triazolyl and Triazolium-Ferrocene and Cobalticinium Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 5071-5077.	2.0	17
165	Oneâ€Pot, Threeâ€Component Synthesis of 1,4,5â€Trisubstituted 1,2,3â€Triazoles Starting from Primary Alcohols. European Journal of Organic Chemistry, 2012, 2012, 5446-5449.	2.4	23
166	Discovery of a Robust and Efficient Homogeneous Silver(I) Catalyst for the Cycloaddition of Azides onto Terminal Alkynes. European Journal of Organic Chemistry, 2012, 2012, 5462-5470.	2.4	116
168	Poly(dopamine acrylamide)-co-poly(propargyl acrylamide)-modified titanium surfaces for â€ [~] click' functionalization. Polymer Chemistry, 2012, 3, 920.	3.9	54
169	Parallel solid-phase synthesis of diaryltriazoles. Beilstein Journal of Organic Chemistry, 2012, 8, 1027-1036.	2.2	12
170	Isoxazolodihydropyridinones: 1,3-Dipolar Cycloaddition of Nitrile Oxides onto 2,4-Dioxopiperidines. ACS Combinatorial Science, 2012, 14, 280-284.	3.8	15
171	Tetrathiafulvalene vinylogues as versatile building blocks for new organic materials. Pure and Applied Chemistry, 2012, 84, 1005-1025.	1.9	43
172	Beyond click chemistry: spontaneous C-triazolyl transfer from copper to rhenium and transformation into mesoionic C-triazolylidene carbene. Chemical Communications, 2012, 48, 7209.	4.1	37
173	Synthesis and structural characterisation of (aryl-BIAN)copper(i) complexes and their application as catalysts for the cycloaddition of azides and alkynes. Dalton Transactions, 2012, 41, 5144.	3.3	60
174	Thiol–Ene Click Chemistry: Computational and Kinetic Analysis of the Influence of Alkene Functionality. Journal of the American Chemical Society, 2012, 134, 13804-13817.	13.7	230

#	Article	IF	CITATIONS
175	"Click-Triazole―Coordination Chemistry: Exploiting 1,4-Disubstituted-1,2,3-Triazoles as Ligands. Topics in Heterocyclic Chemistry, 2012, , 31-83.	0.2	113
176	Copper catalysed azide–alkyne cycloaddition (CuAAC) in liquid ammonia. Organic and Biomolecular Chemistry, 2012, 10, 7965.	2.8	20
177	Synthesis of 5-halogenated 1,2,3-triazoles under stoichiometric Cu(I)-mediated azide–alkyne cycloaddition (CuAAC or ‰Click Chemistry'). Carbohydrate Research, 2012, 362, 79-83.	2.3	20
178	Selenium compounds in Click Chemistry: copper catalyzed 1,3-dipolar cycloaddition of azidomethyl arylselenides and alkynes. Tetrahedron, 2012, 68, 10419-10425.	1.9	28
179	Metal-free click polymerization of propiolates and azides: facile synthesis of functional poly(aroxycarbonyltriazole)s. Polymer Chemistry, 2012, 3, 1075.	3.9	93
180	Inhibition of NaV1.6 sodium channel currents by a novel series of 1,4-disubstituted-triazole derivatives obtained via copper-catalyzed click chemistry. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6401-6404.	2.2	21
181	Toward Permetalated Alkyne/Azide 3 + 2 or "Click―Cycloadducts. Organometallics, 2012, 31, 5231-5234.	2.3	41
182	Chemoselective Sequential "Click―Ligation Using Unsymmetrical Bisazides. Organic Letters, 2012, 14, 2590-2593.	4.6	61
183	Selective Transition State Stabilization via Hyperconjugative and Conjugative Assistance: Stereoelectronic Concept for Copper-Free Click Chemistry. Journal of Organic Chemistry, 2012, 77, 75-89.	3.2	107
184	Synthesis of 5-Iodo-1,4-disubstituted-1,2,3-triazoles Mediated by in Situ Generated Copper(I) Catalyst and Electrophilic Triiodide Ion. Journal of Organic Chemistry, 2012, 77, 6443-6455.	3.2	116
185	Photoinitiated Alkyne–Azide Click and Radical Cross-Linking Reactions for the Patterning of PEG Hydrogels. Biomacromolecules, 2012, 13, 889-895.	5.4	90
186	Heterogeneous azide–alkyne click chemistry: towards metal-free end products. Chemical Science, 2012, 3, 959-966.	7.4	124
187	Synthesis of 1,2,3-triazole-fused heterocycles viaPd-catalyzed cyclization of 5-iodotriazoles. Chemical Communications, 2012, 48, 55-57.	4.1	77
188	Acenes With a Click. Macromolecular Chemistry and Physics, 2012, 213, 1020-1032.	2.2	15
189	Naked and Selfâ€Clickable Propargylicâ€Decorated Singleâ€Chain Nanoparticle Precursors via Redoxâ€Initiated RAFT Polymerization. Macromolecular Rapid Communications, 2012, 33, 1262-1267.	3.9	60
190	Synthesis and Immunological Screening of Î²â€Łinked Mono―and Divalent Mannosides. European Journal of Organic Chemistry, 2012, 2012, 2957-2968.	2.4	11
191	Zinc, cobalt and copper coordination polymers with different structural motifs from picolyl-triazole hybrid ligands. CrystEngComm, 2012, 14, 961-971.	2.6	33
192	A multi-component CuAAC â€ [~] click' approach to an <i>exo</i> functionalised pyridyl-1,2,3-triazole macrocycle: synthesis, characterisation, Cu(I) and Ag(I) complexes. Supramolecular Chemistry, 2012, 24, 492-498.	1.2	14

#	Article	IF	CITATIONS
193	Evaluation of bicinchoninic acid as a ligand for copper(i)-catalyzed azide–alkyne bioconjugations. Organic and Biomolecular Chemistry, 2012, 10, 6629.	2.8	7
194	Click Functionalization of Gold Nanoparticles Using the Very Efficient Catalyst Copper(I) (Hexabenzyl)tris(2â€aminoethyl)―amine Bromide. Advanced Synthesis and Catalysis, 2012, 354, 1001-1011.	4.3	24
195	Environmental Friendly Azideâ€Alkyne Cycloaddition Reaction of Azides, Alkynes, and Organic Halides or Epoxides in Water: Efficient "Click" Synthesis of 1,2,3â€Triazole Derivatives by Cu Catalyst. Chinese Journal of Chemistry, 2012, 30, 644-650.	4.9	18
196	Synthesis of Functional Acetylene Derivatives from Calcium Carbide. ChemSusChem, 2012, 5, 625-628.	6.8	82
197	Copper(I)â€Catalyzed Azide–Alkyne Cycloadditions in Microflow: Catalyst Activity, Highâ€T Operation, and an Integrated Continuous Copper Scavenging Unit. ChemSusChem, 2012, 5, 1703-1707.	6.8	61
198	Copper(I)-Catalyzed Cascade Sulfonimidate to Sulfonamide Rearrangement: Synthesis of Imidazo[1,2- <i>a</i>][1,4]diazepin-7(6 <i>H</i>)-one. Journal of Organic Chemistry, 2012, 77, 6319-6326.	3.2	28
199	RuH ₂ (CO)(PPh ₃) ₃ Catalyzed Selective Formation of 1,4-Disubstituted Triazoles from Cycloaddition of Alkynes and Organic Azides. Journal of Organic Chemistry, 2012, 77, 5844-5849.	3.2	31
200	1,4-Dihydroxyanthraquinone-copper(II) nanoparticles immobilized on silica gel: a highly efficient, copper scavenger and recyclable heterogeneous nanocatalyst for a click approach to the three-component synthesis of 1,2,3-triazole derivatives in water. Journal of the Iranian Chemical Society, 2012, 9, 231-250.	2.2	28
201	Organocatalytic and metal-mediated asymmetric [3+2] cycloaddition reactions. Coordination Chemistry Reviews, 2012, 256, 938-952.	18.8	73
202	A novel click lysine zwitterionic stationary phase for hydrophilic interaction liquid chromatography. Journal of Chromatography A, 2012, 1223, 47-52.	3.7	42
203	Cul click catalysis with cooperative noninnocent pyridylphosphine ligands. Inorganica Chimica Acta, 2012, 380, 336-342.	2.4	51
204	Regioselective synthesis of 5-trifluoromethyl-1,2,3-triazoles via CF3-directed cyclization of 1-trifluoromethyl-1,3-dicarbonyl compounds with azides. Tetrahedron, 2012, 68, 614-618.	1.9	43
205	Synthesis of modified binol-phosphoramidites. Tetrahedron, 2012, 68, 464-480.	1.9	21
206	Concise synthesis of chiral 2(5H)-furanone derivatives possessing 1,2,3-triazole moiety via one-pot approach. Tetrahedron, 2012, 68, 2827-2843.	1.9	24
207	Thymidine- and AZT-linked 5-(1,3-dioxoalkyl)tetrazoles and 4-(1,3-dioxoalkyl)-1,2,3-triazoles. Tetrahedron Letters, 2012, 53, 514-518.	1.4	12
208	Synthesis of 1,2,3-triazolylpyranosides through click chemistry reaction. Tetrahedron Letters, 2012, 53, 1742-1747.	1.4	36
209	Synthesis and functionalization of nanoengineered materials using click chemistry. Progress in Polymer Science, 2012, 37, 985-1003.	24.7	97
210	The mechanism of copper-catalyzed azide–alkyne cycloaddition reaction: A quantum mechanical investigation. Journal of Molecular Graphics and Modelling, 2012, 34, 101-107.	2.4	20

#	Article	IF	CITATIONS
211	Cooperative Catalysis with Firstâ€Row Late Transition Metals. European Journal of Inorganic Chemistry, 2012, 2012, 363-375.	2.0	418
212	A Highly Efficient Friedel–Crafts Reaction of 3â€Hydroxyoxindoles and Aromatic Compounds to 3,3â€Diaryl and 3â€Alkylâ€3â€aryloxindoles Catalyzed by Hg(ClO ₄) ₂ â‹3 H _{ Chemistry - an Asian Journal, 2012, 7, 233-241.}	23. / sub>0	. 58
213	Azide-alkyne click polymerization: An update. Chinese Journal of Polymer Science (English Edition), 2012, 30, 1-15.	3.8	93
214	Ultrasound promoted efficient and green protocol for the expeditious synthesis of 1, 4 disubstituted 1, 2, 3-triazoles using Cu(II) doped clay as catalyst. Applied Clay Science, 2013, 80-81, 351-357.	5.2	31
215	Asymmetric Copper(I)-Catalyzed Azide–Alkyne Cycloaddition to Quaternary Oxindoles. Journal of the American Chemical Society, 2013, 135, 10994-10997.	13.7	151
216	Preparation of polystyrene-supported vinyl sulfone and its application in the solid-phase organic synthesis of 1-monosubstituted 1,2,3-triazoles. Reactive and Functional Polymers, 2013, 73, 224-227.	4.1	12
217	Synthesis of elongated cavitands via click reactions and their use as chemosensors. Tetrahedron, 2013, 69, 8186-8190.	1.9	11
218	A recyclable ruthenium(ii) complex supported on magnetic nanoparticles: a regioselective catalyst for alkyne–azide cycloaddition. Chemical Communications, 2013, 49, 6956.	4.1	60
219	l-Proline: an efficient N,O-bidentate ligand for copper-catalyzed aerobic oxidation of primary and secondary benzylic alcohols at room temperature. Chemical Communications, 2013, 49, 7908.	4.1	63
220	Recent advances in the Cu(i)-catalyzed azide–alkyne cycloaddition: focus on functionally substituted azides and alkynes. RSC Advances, 2013, 3, 16212.	3.6	125
221	Synthesis and Characterization of Time-resolved Fluorescence Probes for Evaluation of Competitive Binding to Melanocortin Receptors. Bioorganic and Medicinal Chemistry, 2013, 21, 5029-5038.	3.0	12
223	Synthesis of a Rotaxane Cu ^I Triazolide under Aqueous Conditions. Journal of the American Chemical Society, 2013, 135, 13318-13321.	13.7	97
224	Photo-click chemistry strategies for spatiotemporal control of metal-free ligation, labeling, and surface derivatization. Pure and Applied Chemistry, 2013, 85, 1499-1513.	1.9	42
225	Azido, Triazolyl, and Alkynyl Complexes of Gold(I): Syntheses, Structures, and Ligand Effects. Inorganic Chemistry, 2013, 52, 9659-9668.	4.0	24
226	Is click chemistry attractive for separation sciences?. Journal of Separation Science, 2013, 36, 2049-2062.	2.5	36
227	TTFV-Based Molecular Tweezers and Macrocycles as Receptors for Fullerenes. Organic Letters, 2013, 15, 4532-4535.	4.6	33
228	Iridium-Catalyzed Cycloaddition of Azides and 1-Bromoalkynes at Room Temperature. Organic Letters, 2013, 15, 4698-4701.	4.6	97
229	Easy preparation of 1,4,5-trisubstituted 5-(2-alkoxy-1,2-dioxoethyl)-1,2,3-triazoles by chemoselective trapping of copper(I)–carbon bond with alkoxalyl chloride. Tetrahedron Letters, 2013, 54, 6097-6100.	1.4	19

#	Article	IF	CITATIONS
230	Three-component assembly of 5-halo-1,2,3-triazoles via aerobic oxidative halogenation. Tetrahedron Letters, 2013, 54, 6057-6060.	1.4	16
231	Synthesis and anti-Trypanosoma cruzi activity of naphthoquinone-containing triazoles: Electrochemical studies on the effects of the quinoidal moiety. Bioorganic and Medicinal Chemistry, 2013, 21, 6337-6348.	3.0	49
232	Spectroelectrochemistry: A valuable tool for the study of organometallic-alkyne, -vinylidene, -cumulene, -alkynyl and related complexes. Electrochimica Acta, 2013, 110, 681-692.	5.2	29
233	Gold atalyzed Synthesis of Tetrazoles from Alkynes by CC Bond Cleavage. Angewandte Chemie - International Edition, 2013, 52, 13468-13471.	13.8	64
234	"Click―and Olefin Metathesis Chemistry in Water at Room Temperature Enabled by Biodegradable Micelles. Journal of Chemical Education, 2013, 90, 1514-1517.	2.3	27
235	Ferrocene-based poly(aroxycarbonyltriazole)s: synthesis by metal-free click polymerization and use as precursors to magnetic ceramics. Polymer Chemistry, 2013, 4, 5537.	3.9	37
236	Controllable synthesis of bis(1,2,3-triazole)s and 5-alkynyl-triazoles via temperature effect on copper-catalyzed Huisgen cycloaddition. Tetrahedron, 2013, 69, 9939-9946.	1.9	28
237	Discovery of Chemoselective and Biocompatible Reactions Using a Highâ€Throughput Immunoassay Screening. Angewandte Chemie - International Edition, 2013, 52, 12056-12060.	13.8	106
238	Copper-mediated trifluoromethylation of 5-iodotriazole with (trifluoromethyl)trimethylsilane promoted by silver carbonate. Journal of Fluorine Chemistry, 2013, 156, 170-176.	1.7	35
239	Multistep One-Pot Reactions Combining Biocatalysts and Chemical Catalysts for Asymmetric Synthesis. ACS Catalysis, 2013, 3, 2856-2864.	11.2	207
240	The Electrode as Organolithium Reagent: Catalyst-Free Covalent Attachment of Electrochemically Active Species to an Azide-Terminated Glassy Carbon Electrode Surface. Inorganic Chemistry, 2013, 52, 13674-13684.	4.0	10
241	Strainâ€Promoted Azide–Alkyne Cycloaddition with Ruthenium(II)–Azido Complexes. Chemistry - A European Journal, 2013, 19, 16682-16689.	3.3	39
242	Multicomponent Click Synthesis of New 1,2,3-Triazole Derivatives of Pyrimidine Nucleobases: Promising Acidic Corrosion Inhibitors for Steel. Molecules, 2013, 18, 15064-15079.	3.8	45
243	Sulfonoketenimides as key intermediates for the synthesis of 2-thioxo-2 \$\$H\$\$ H -1,3-thiazines and 2-arylimino-2 \$\$H\$\$ H -1,3-thiazines. Molecular Diversity, 2013, 17, 801-808.	3.9	12
244	Copper atalyzed Oneâ€Pot Synthesis of <i>N</i> â€&ulfonylalkanimidoyl Thiocyanates from Sulfonyl Azides, Alkynes, and KSCN. Helvetica Chimica Acta, 2013, 96, 2214-2217.	1.6	12
245	Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions. Science, 2013, 340, 457-460.	12.6	680
246	Thiolâ€Ene Click Reactions – Versatile Tools for the Modification of Unsaturated Amino Acids and Peptides. European Journal of Organic Chemistry, 2013, 2013, 7101-7109.	2.4	9
247	Preparation of 1,4,5â€Trisubstituted 5â€Acylâ€1,2,3â€triazoles by Selective Acylation between Copper(I)â€Carbon(<i>sp</i>) and Copper(I)â€Carbon(<i>sp</i> ²) Bonds with Acyl Chlorides. Advanced Synthesis and Catalysis, 2013, 355, 2564-2568.	4.3	24

#	Article	IF	CITATIONS
248	A Facile Route to Viologen Functional Macromolecules through Azide–Alkyne [3+2] Cycloaddition. Macromolecular Rapid Communications, 2013, 34, 1547-1553.	3.9	4
249	"Click―Star-Shaped and Dendritic PEGylated Gold Nanoparticle-Carborane Assemblies. Inorganic Chemistry, 2013, 52, 11146-11155.	4.0	34
250	Asymmetric Cross-Dehydrogenative Coupling Enabled by the Design and Application of Chiral Triazole-Containing Phosphoric Acids. Journal of the American Chemical Society, 2013, 135, 14044-14047.	13.7	188
251	1,5-Disubstituted 1,2,3-Triazolylation at C1, C2, C3, C4, and C6 of Pyranosides: A Metal-Free Route to Triazolylated Monosaccharides and Triazole-Linked Disaccharides. Journal of Organic Chemistry, 2013, 78, 9865-9875.	3.2	48
252	Tandem Reaction of 1-Copper(I) Alkynes for the Synthesis of 1,4,5-Trisubstituted 5-Chloro-1,2,3-triazoles. Journal of Organic Chemistry, 2013, 78, 10519-10523.	3.2	33
253	Copper(I) Acetateâ€Catalyzed Cycloaddition between Azomethine Imines and Propiolates under Additiveâ€Free Conditions. European Journal of Organic Chemistry, 2013, 2013, 6443-6448.	2.4	26
254	Total synthesis of high loading capacity PEG-based supports: evaluation and improvement of the process by use of ultrafiltration and PEG as a solvent. Green Chemistry, 2013, 15, 1016.	9.0	41
255	A facile synthesis of 5-amino-[1,2,3]triazolo[5,1-a]isoquinoline derivatives through copper-catalyzed cascade reactions. Organic and Biomolecular Chemistry, 2013, 11, 8171.	2.8	24
256	One-Pot Synthesis of 1- <i>(E)</i> -Phenylethenyl-1,2,3-Triazoles by Sequential Click-Elimination Reaction from 2-Azido-1-Phenyl-1-(Phenylseleno)Ethane. Phosphorus, Sulfur and Silicon and the Related Elements, 2013, 188, 1591-1598.	1.6	1
257	Copper atalyzed Synthesis of 2 <i>H</i> â€Thiopyran Derivatives from Alkynes, Sulfonyl Azides, Carbon Disulfide, and Malononitrile. Helvetica Chimica Acta, 2013, 96, 2141-2146.	1.6	8
258	Cationic and Neutral (Ar-BIAN)Copper(I) Complexes Containing Phosphane and Arsane Ancillary Ligands: Synthesis, Molecular Structure and Catalytic Behaviour in Cycloaddition Reactions of Azides and Alkynes. European Journal of Inorganic Chemistry, 2013, 2013, 1404-1417.	2.0	30
259	Copper-catalyzed aerobic alcohol oxidation under air in neat water by using a water-soluble ligand. RSC Advances, 2013, 3, 19255.	3.6	39
260	Cycloaddition reactions between dicyclohexylboron azide and alkynes. Dalton Transactions, 2013, 42, 4795.	3.3	19
261	lonic liquids from copper(ii) complexes with alkylimidazole-containing tripodal ligands. Dalton Transactions, 2013, 42, 10138.	3.3	20
262	Syntheses of Heterocycles via Alkyne Cycloadditions Catalyzed by Cyclopentadienylruthenium-Type Complexes. Heterocycles, 2013, 87, 2459.	0.7	21
263	Scratching the catalytic surface of mechanochemistry: a multi-component CuAAC reaction using a copper reaction vial. Green Chemistry, 2013, 15, 617.	9.0	130
264	"One-pot―fabrication of clickable monoliths for enzyme reactors. Chemical Communications, 2013, 49, 1407.	4.1	26
265	New Bis-thiazolium Analogues as Potential Antimalarial Agents: Design, Synthesis, and Biological Evaluation. Journal of Medicinal Chemistry, 2013, 56, 496-509.	6.4	17

#	Article	IF	CITATIONS
266	Transition Metal-Mediated Synthesis of Monocyclic Aromatic Heterocycles. Chemical Reviews, 2013, 113, 3084-3213.	47.7	886
267	A One-Pot Three-Component Radiochemical Reaction for Rapid Assembly of ¹²⁵ I-Labeled Molecular Probes. Journal of the American Chemical Society, 2013, 135, 703-709.	13.7	86
268	Low symmetry pyrazole-based tripodal tetraamineligands: metal complexes and ligand decomposition reactions. Dalton Transactions, 2013, 42, 2174-2185.	3.3	9
269	Application of 1,2,3-triazolylidenes as versatile NHC-type ligands: synthesis, properties, and application in catalysis and beyond. Chemical Communications, 2013, 49, 1145-1159.	4.1	345
270	Dendritic Molecular Nanobatteries and the Contribution of Click Chemistry. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 41-49.	3.7	6
271	Novel synthesis of 1,4,5-trisubstituted 1,2,3-triazoles via a one-pot three-component reaction of boronic acids, azide, and active methylene ketones. Tetrahedron, 2013, 69, 2352-2356.	1.9	44
272	The Clicked Pyridylâ€Triazole Ligand: From Homogeneous to Robust, Recyclable Heterogeneous Mono― and Polymetallic Palladium Catalysts for Efficient Suzuki–Miyaura, Sonogashira, and Heck Reactions. Advanced Synthesis and Catalysis, 2013, 355, 129-142.	4.3	66
273	"Click―Bisâ€Triazoles as Neutral CHâ‹â‹â‹Anionâ€Acceptor Organocatalysts. Chemistry - A European 2013, 19, 1581-1585.	loyrnal,	44
274	An Abnormal Nâ€Heterocyclic Carbene–Copper(I) Complex in Click Chemistry. Advanced Synthesis and Catalysis, 2013, 355, 2982-2991.	4.3	58
276	Demonstration of a sucrose-derived contrast agent for magnetic resonance imaging of the GI tract. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2061-2064.	2.2	4
277	Coupling biocatalysis and click chemistry: one-pot two-step convergent synthesis of enantioenriched 1,2,3-triazole-derived diols. Chemical Communications, 2013, 49, 2625-2627.	4.1	51
281	Selective Derivatization and Characterization of Bifunctional "Janus-Type―Cyclotetrasiloxanes. Organometallics, 2013, 32, 1732-1742.	2.3	17
282	How a simple "clicked―PEGylated 1,2,3-triazole ligand stabilizes gold nanoparticles for multiple usage. Chemical Communications, 2013, 49, 3218.	4.1	33
283	Synthesis and Characterization of the <i>O</i> â€Alkylation Products of Resorcinarene. European Journal of Organic Chemistry, 2013, 2013, 1591-1598.	2.4	11
284	Target Identification for Small Bioactive Molecules: Finding the Needle in the Haystack. Angewandte Chemie - International Edition, 2013, 52, 2744-2792.	13.8	393
285	Radicalâ€Functionalised Gel: A Buildingâ€Block Strategy for Magnetochiral Assembly. ChemPlusChem, 2013, 78, 149-156.	2.8	6
286	A facile "click―approach to functionalised metallosupramolecular architectures. Chemical Communications, 2013, 49, 3398.	4.1	73
287	Silverâ€Catalyzed Nitrogenation of Alkynes: A Direct Approach to Nitriles through CC Bond Cleavage. Angewandte Chemie - International Edition, 2013, 52, 6677-6680.	13.8	167

#	Article	IF	CITATIONS
288	Reaction mechanism of ruthenium-catalyzed azide–alkyne cycloaddition reaction: A DFT study. Journal of Organometallic Chemistry, 2013, 724, 167-176.	1.8	35
289	Are Cu(I)-mesoionic NHC carbenes associated with nitrogen additives the best Cu-carbene catalysts for the azide–alkyne click reaction in solution? A case study. Tetrahedron Letters, 2013, 54, 1808-1812.	1.4	79
290	Synthesis of <i>N</i> , <i>N′</i> â€Ðisulfonylamidines from Sulfonamides and Alkynes by a Two‣tep, Oneâ€ Reaction with Nonafluorobutanesulfonyl Azide. Advanced Synthesis and Catalysis, 2013, 355, 913-918.	Pot 4.3	11
291	Oneâ€Pot Procedure for the Introduction of Three Different Bonds onto Terminal Alkynes through <i>N</i> â€6ulfonylâ€1,2,3â€Triazole Intermediates. Angewandte Chemie - International Edition, 2013, 52, 3883-3886.	13.8	165
292	Application of In Situ-Generated Rh-Bound Trimethylenemethane Variants to the Synthesis of 3,4-Fused Pyrroles. Journal of the American Chemical Society, 2013, 135, 4696-4699.	13.7	187
293	Novel Process Windows for Enabling, Accelerating, and Uplifting Flow Chemistry. ChemSusChem, 2013, 6, 746-789.	6.8	521
294	Copper-Catalyzed Synthesis of Substituted Furans and Pyrroles by Heterocyclodehydration and Tandem Heterocyclodehydration–Hydration of 3-Yne-1,2-diols and 1-Amino-3-yn-2-ol Derivatives. Journal of Organic Chemistry, 2013, 78, 4919-4928.	3.2	50
295	Azide alkyne cycloaddition facilitated by hexanuclear rhenium chalcogenide cluster complexes. Dalton Transactions, 2013, 42, 8132.	3.3	29
296	Click To Bind: Metal Sensors. Chemistry - an Asian Journal, 2013, 8, 1354-1367.	3.3	68
297	Synthesis of Pyrroles by Click Reaction: Silver atalyzed Cycloaddition of Terminal Alkynes with Isocyanides. Angewandte Chemie - International Edition, 2013, 52, 6958-6961.	13.8	238
298	Providing polyurethane foams with functionality: a kinetic comparison of different "click―and coupling reaction pathways. Polymer Chemistry, 2013, 4, 1546-1556.	3.9	29
299	Copper-Catalyzed Huisgen 1,3-Dipolar Cycloaddition under Oxidative Conditions: Polymer-Assisted Assembly of 4-Acyl-1-Substituted-1,2,3-Triazoles. Journal of Organic Chemistry, 2013, 78, 6540-6549.	3.2	23
300	Ketenes and Other Cumulenes as Reactive Intermediates. Chemical Reviews, 2013, 113, 7287-7342.	47.7	253
301	Squish and CuAAC: Additive-Free Covalent Monolayers of Discrete Molecules in Seconds. Langmuir, 2013, 29, 5383-5387.	3.5	23
302	<i>fac-</i> Re(CO) ₃ Cl Complexes of [2-(4-R-1 <i>H</i> -1,2,3-Triazol-1-yl)methyl]pyridine Inverse "Click―Ligands: A Systematic Synthetic, Spectroscopic, and Computational Study. Organometallics, 2013, 32, 788-797.	2.3	60
303	Barnacle Cement as Surface Anchor for "Clicking―of Antifouling and Antimicrobial Polymer Brushes on Stainless Steel. Biomacromolecules, 2013, 14, 2041-2051.	5.4	94
304	Rhenium(I) complexes of readily functionalized bidentate pyridyl-1,2,3-triazole "click―ligands: A systematic synthetic, spectroscopic and computational study. Polyhedron, 2013, 52, 1391-1398.	2.2	65
305	â€~Click' Synthesis and Redox Properties of Triazolyl Cobalticinium Dendrimers. Inorganic Chemistry, 2013, 52, 6685-6693.	4.0	33

#	Article	IF	CITATIONS
306	Moderating Strain without Sacrificing Reactivity: Design of Fast and Tunable Noncatalyzed Alkyne–Azide Cycloadditions via Stereoelectronically Controlled Transition State Stabilization. Journal of the American Chemical Society, 2013, 135, 1558-1569.	13.7	120
307	Selective Oxidation of Alcohols to Esters Using Heterogeneous Co ₃ O ₄ –N@C Catalysts under Mild Conditions. Journal of the American Chemical Society, 2013, 135, 10776-10782.	13.7	334
308	Potassium (1â€Organoâ€1 <i>H</i> â€1,2,3â€triazolâ€4â€yl)trifluoroborates from EthynyltrifluoroÂborate throug Regioselective Oneâ€Pot Cuâ€Catalyzed Azide–Alkyne Cycloaddition Reaction. European Journal of Organic Chemistry, 2013, 2013, 3992-3996.	h a 2.4	12
309	Nucleophile-Catalyzed Additions to Activated Triple Bonds. Protection of Lactams, Imides, and Nucleosides with MocVinyl and Related Groups. Journal of Organic Chemistry, 2013, 78, 5832-5842.	3.2	19
310	Thermo-responsive fluorescent vesicles assembled by fluorescein-functionalized pillar[5]arene. RSC Advances, 2013, 3, 368-371.	3.6	85
311	Reductively and hydrolytically dual degradable nanoparticles by "click―crosslinking of a multifunctional diblock copolymer. Polymer Chemistry, 2013, 4, 1657.	3.9	36
312	"Click-and-click―– hybridised 1,2,3-triazoles supported Cu(i) coordination polymers for azide–alkyne cycloaddition. Dalton Transactions, 2013, 42, 9437.	3.3	54
313	Synthesis and preliminary evaluation steroidal antiestrogen–geldanamycin conjugates. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3635-3639.	2.2	5
314	Synthesis of Cyclic Peptidotriazoles with Activity Against Phytopathogenic Bacteria. European Journal of Organic Chemistry, 2013, 2013, 4933-4943.	2.4	13
315	Three-component chemoenzymatic synthesis of amide ligated 1,2,3-triazoles. Tetrahedron Letters, 2013, 54, 4641-4644.	1.4	30
316	Parallel Copper Catalysis: Diastereoselective Synthesis of Polyfunctionalized Azetidin-2-imines. Organic Letters, 2013, 15, 2668-2671.	4.6	38
318	Ln[N(SiMe3)2]3-catalyzed cycloaddition of terminal alkynes to azides leading to 1,5-disubstituted 1,2,3-triazoles: new mechanistic features. Chemical Communications, 2013, 49, 5589.	4.1	105
319	Synthesis and photophysical properties of fluorescent 2,1,3-benzothiadiazole-triazole-linked glycoconjugates: selective chemosensors for Ni(II). Tetrahedron, 2013, 69, 201-206.	1.9	51
321	Monitoring DNA Hybridization and Thermal Dissociation at the Silica/Water Interface Using Resonantly Enhanced Second Harmonic Generation Spectroscopy. Analytical Chemistry, 2013, 85, 8031-8038.	6.5	23
322	Synthesis of clickâ€reactive HPMA copolymers using RAFT polymerization for drug delivery applications. Journal of Polymer Science Part A, 2013, 51, 5091-5099.	2.3	31
323	Gold(I) and Palladium(II) Complexes of 1,3,4-Trisubstituted 1,2,3-Triazol-5-ylidene "Click―Carbenes: Systematic Study of the Electronic and Steric Influence on Catalytic Activity. Organometallics, 2013, 32, 7065-7076.	2.3	68
324	Hybrid NS ligands supported Cu(i)/(ii) complexes for azide–alkyne cycloaddition reactions. Dalton Transactions, 2013, 42, 11319.	3.3	49
325	Click Reaction in Carbohydrate Chemistry: Recent Developments and Future Perspective. Current Organic Synthesis, 2013, 10, 90-135.	1.3	1

#	Article	IF	CITATIONS
326	Discovery of Chemoselective and Biocompatible Reactions Using a Highâ€Throughput Immunoassay Screening. Angewandte Chemie, 2013, 125, 12278-12282.	2.0	28
327	Advancements in the mechanistic understanding of the copper-catalyzed azide–alkyne cycloaddition. Beilstein Journal of Organic Chemistry, 2013, 9, 2715-2750.	2.2	191
329	Synthesis and Characterization of Linkerâ€Armed Fucoseâ€Based Glycomimetics. European Journal of Organic Chemistry, 2013, 2013, 5303-5314.	2.4	18
332	Cuprous oxide on charcoal-catalyzed ligand-free, synthesis of 1,4-disubstituted 1,2,3-triazoles via click chemistry. Arkivoc, 2013, 2013, 139-164.	0.5	9
333	Peptide Conjugation via CuAAC â€~Click' Chemistry. Molecules, 2013, 18, 13148-13174.	3.8	90
334	Microwave-assisted Cu(l)-catalyzed, three-component synthesis of 2-(4-((1-phenyl-1 <i>H</i> -1,2,3-triazol-4-yl)methoxy)phenyl)-1 <i>H</i> -benzo[<i>d</i>]imidazoles. Beilstein Journal of Organic Chemistry, 2014, 10, 1413-1420.	2.2	7
335	A Tractable and Efficient One-Pot Synthesis of 5'-Azido-5'-deoxyribonucleosides. Molecules, 2014, 19, 2434-2444.	3.8	7
336	Cycloaddition of 1,3-Butadiynes: Efficient Synthesis of Carbo- and Heterocycles. Molecules, 2014, 19, 13788-13802.	3.8	24
338	NATIVE/DERIVATIZED CYCLOFRUCTAN 6 BOUND TO RESINS VIA "CLICK―CHEMISTRY AS STATIONARY PHAS FOR ACHIRAL/CHIRAL SEPARATIONS. Journal of Liquid Chromatography and Related Technologies, 2014, 37, 2302-2326.	ES 1.0	5
339	New Y-shaped surfactants from renewable resources. Colloids and Surfaces B: Biointerfaces, 2014, 123, 981-985.	5.0	11
340	Aluminum Dimer Containing Bulky 1,2,3-Triazolate Ligand. Journal of Chemistry, 2014, 2014, 1-6.	1.9	0
341	¹⁸ F-Labeling Using Click Cycloadditions. BioMed Research International, 2014, 2014, 1-16.	1.9	43
342	Facile diverted synthesis of pyrrolidinyl triazoles using organotrifluoroborate: discovery of potential mPTP blockers. Organic and Biomolecular Chemistry, 2014, 12, 9674-9682.	2.8	16
343	Facile Preparation of Light Refractive Poly(aroxycarbonyltriazole)s by Metalâ€Free Click Polymerization. Macromolecular Chemistry and Physics, 2014, 215, 1036-1041.	2.2	22
345	(DHQD) ₂ PHAL ligand-accelerated Cu-catalyzed azide–alkyne cycloaddition reactions in water at room temperature. RSC Advances, 2014, 4, 64388-64392.	3.6	29
346	Synthesis of polyfluoroaryl-containing 1,2,3-triazoles by reaction of polyfluoroarenes, sodium azide and active methylene ketones/esters. Journal of Fluorine Chemistry, 2014, 168, 230-235.	1.7	5
347	Versatile Functionalization of the Micropatterned Hydrogel of Hyperbranched Poly(ether amine) Based on "Thiolâ€yne―Chemistry. Advanced Functional Materials, 2014, 24, 1679-1686.	14.9	42
348	Uncatalyzed Hydroamination of Electrophilic Organometallic Alkynes: Fundamental, Theoretical, and Applied Aspects. Chemistry - A European Journal, 2014, 20, 8076-8088.	3.3	9

#	ARTICLE	IF	CITATIONS
349	Synthesis of a glycosaminoglycan polymer mimetic using an <i>N</i> -alkyl- <i>N</i> , <i>N</i> -linked urea oligomer containing glucose pendant groups. Polymer International, 2014, 63, 127-135.	3.1	27
350	Solidâ€Phase Organic Synthesis of 1,4â€ <i>N</i> â€Vinyl―and 1,4â€ <i>N</i> â€Allylâ€Triazoles with the Sulfona Linker. Journal of Heterocyclic Chemistry, 2014, 51, 1862-1865.	ate 2.6	7
351	"Click―Assemblies and Redox Properties of Arene- and Gold-Nanoparticle-Cored Triazolylbiferrocene-Terminated Dendrimers. Organometallics, 2014, 33, 6953-6962.	2.3	16
352	Chemistry of 1,2,3-Triazolium Salts. Topics in Heterocyclic Chemistry, 2014, , 167-210.	0.2	14
353	Fourâ€Component, Oneâ€Pot Synthesis of 1,4â€Disubstituted 1,2,3â€Triazoles Bearing 1â€(2â€Phenylselenocyclohexyl) Group. Journal of Heterocyclic Chemistry, 2014, 51, E222.	2.6	3
354	PDMS ontaining Alternating Copolymers Obtained by Click Polymerization. Macromolecular Chemistry and Physics, 2014, 215, 1396-1406.	2.2	15
355	Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Frontiers in Chemistry, 2014, 2, 48.	3.6	319
357	Bioconjugation Reactions in Living Cells. , 2014, , 43-62.		3
358	One-pot three-component synthesis of substituted 2-(1,2,3-triazol-1-yl)pyrimidines from pyrimidin-2-yl sulfonates, sodium azide and active methylene ketones. Heterocyclic Communications, 2014, 20, 1-4.	1.2	3
359	Crystal structure of 4-(prop-2-ynyloxy)-2,2,6,6-tetramethylpiperidin-1-oxyl. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, 130-133.	0.2	4
360	Oneâ€Pot Synthesis of Triazoloquinazolinones <i>via</i> Copper―Catalyzed Tandem Click and Intramolecular CH Amidation. Advanced Synthesis and Catalysis, 2014, 356, 1329-1336.	4.3	35
361	Designing Cyclometalated Ruthenium(II) Complexes for Anodic Electropolymerization. Chemistry - A European Journal, 2014, 20, 2357-2366.	3.3	23
362	Reaction of Alkynes and Azides: Not Triazoles Through Copper–Acetylides but Oxazoles Through Copper–Nitrene Intermediates. Chemistry - A European Journal, 2014, 20, 3463-3474.	3.3	45
363	Direct Approaches to Nitriles via Highly Efficient Nitrogenation Strategy through C–H or C–C Bond Cleavage. Accounts of Chemical Research, 2014, 47, 1137-1145.	15.6	242
364	Direct access to 1,2,3-triazoles through organocatalytic 1,3-dipolar cycloaddition reaction of allyl ketones with azides. Green Chemistry, 2014, 16, 3003-3006.	9.0	93
365	Synthesis and catalytic alcohol oxidation and ketone transfer hydrogenation activity of donor-functionalized mesoionic triazolylidene ruthenium(<scp>ii</scp>) complexes. Dalton Transactions, 2014, 43, 4462-4473.	3.3	91
366	Rhodium(II)â€Catalyzed Intramolecular Annulation of 1â€Sulfonylâ€1,2,3â€Triazoles with Pyrrole and Indole Rings: Facile Synthesis of Nâ€Bridgehead Azepine Skeletons. Angewandte Chemie - International Edition, 2014, 53, 5142-5146.	13.8	168
367	A Highly Active and Magnetically Recoverable Tris(triazolyl)–Cu ^I Catalyst for Alkyne–Azide Cycloaddition Reactions. Chemistry - A European Journal, 2014, 20, 4047-4054.	3.3	73

#	Article	IF	CITATIONS
368	Efficient Atropodiastereoselective Access to 5,5′â€Bisâ€1,2,3â€triazoles: Studies on 1â€Clucosylated 5â€Hal 1,2,3â€Triazoles and Their 5â€6ubstituted Derivatives as Glycogen Phosphorylase Inhibitors. Chemistry - A European Journal, 2014, 20, 5423-5432.	ogeno 3.3	31
369	A Bis(Triazolecarboxamido) Ligand for Enantio―and Regioselective Molybdenumâ€Catalyzed Asymmetric Allylic Alkylation Reactions. Advanced Synthesis and Catalysis, 2014, 356, 711-717.	4.3	11
370	A Concomitant Allylic Azide Rearrangement/Intramolecular Azide–Alkyne Cycloaddition Sequence. Organic Letters, 2014, 16, 1844-1847.	4.6	45
371	Sulfonyl Acetylenes as Alkynylating Reagents Under Radical or Anionic Conditions. European Journal of Organic Chemistry, 2014, 2014, 1577-1588.	2.4	35
372	Click Chemistry in Materials Science. Advanced Functional Materials, 2014, 24, 2572-2590.	14.9	514
373	Iridiumâ€Catalyzed Intermolecular Azide–Alkyne Cycloaddition of Internal Thioalkynes under Mild Conditions. Angewandte Chemie - International Edition, 2014, 53, 1877-1880.	13.8	241
374	Linear poly(amide triazole)s derived from <scp>d</scp> -glucose. Journal of Polymer Science Part A, 2014, 52, 629-638.	2.3	18
375	Ce(OTf) ₃ -Catalyzed [3 + 2] Cycloaddition of Azides with Nitroolefins: Regioselective Synthesis of 1,5-Disubstituted 1,2,3-Triazoles. Journal of Organic Chemistry, 2014, 79, 4463-4469.	3.2	117
376	Catalysis by 1,2,3-triazole- and related transition-metal complexes. Coordination Chemistry Reviews, 2014, 272, 145-165.	18.8	148
377	Aerobic oxysulfonylation of alkynes in aqueous media: highly selective access to β-keto sulfones. Tetrahedron Letters, 2014, 55, 2845-2848.	1.4	62
378	Click Reaction Synthesis and Photophysical Studies of Dendritic Metalloporphyrins. European Journal of Organic Chemistry, 2014, 2014, 1766-1777.	2.4	19
379	Glycerol: a biorenewable solvent for base-free Cu(i)-catalyzed 1,3-dipolar cycloaddition of azides with terminal and 1-iodoalkynes. Highly efficient transformations and catalyst recycling. Green Chemistry, 2014, 16, 3515.	9.0	76
381	Click Chemistry Inspired Synthesis of Morpholine-Fused Triazoles. Journal of Organic Chemistry, 2014, 79, 5752-5762.	3.2	66
382	One-step synthesis of poly(triazole-ether-quinoxaline)s using click reaction: preparation and properties of magnetic nanocomposites with modified Fe3O4 for metal ions removal. Journal of Polymer Research, 2014, 21, 1.	2.4	11
383	Twoâ€Step Functionalization of Oligosaccharides Using Glycosyl Iodide and Trimethylene Oxide and Its Applications to Multivalent Glycoconjugates. Chemistry - A European Journal, 2014, 20, 6444-6454.	3.3	14
385	"Click―Chemistry Mildly Stabilizes Bifunctional Gold Nanoparticles for Sensing and Catalysis. Chemistry - A European Journal, 2014, 20, 8363-8369.	3.3	30
386	[bmim]BF4/[Cu(Im12)2]CuCl2 as a novel catalytic reaction medium for click cyclization. Comptes Rendus Chimie, 2014, 17, 570-576.	0.5	22
387	RECENT PROGRESS IN METAL ASSISTED MULTICOMPONENT SYNTHESES OF HETEROCYCLES. Heterocycles, 2014, 89, 869.	0.7	18

#	Article	IF	CITATIONS
388	Guanine–copper coordination polymers: crystal analysis and application as thin film precursors. Dalton Transactions, 2014, 43, 1744-1752.	3.3	15
389	ZINClick: A Database of 16 Million Novel, Patentable, and Readily Synthesizable 1,4-Disubstituted Triazoles. Journal of Chemical Information and Modeling, 2014, 54, 396-406.	5.4	22
390	Finding the Right (Bioorthogonal) Chemistry. ACS Chemical Biology, 2014, 9, 592-605.	3.4	589
391	The Literature of Heterocyclic Chemistry, Part XII, 2010–2011. Advances in Heterocyclic Chemistry, 2014, , 147-274.	1.7	18
392	Beyond click chemistry – supramolecular interactions of 1,2,3-triazoles. Chemical Society Reviews, 2014, 43, 2522.	38.1	669
393	Recoverable Cu/SiO ₂ composite-catalysed click synthesis of 1,2,3-triazoles in water media. New Journal of Chemistry, 2014, 38, 1410-1417.	2.8	71
394	Direct Observation of Reduction of Cu(II) to Cu(I) by Terminal Alkynes. Journal of the American Chemical Society, 2014, 136, 924-926.	13.7	136
395	Palladium-Catalyzed Amination of Unprotected Five-Membered Heterocyclic Bromides. Organic Letters, 2014, 16, 832-835.	4.6	62
396	Selective oxygenation of alkynes: a direct approach to diketones and vinyl acetate. Organic and Biomolecular Chemistry, 2014, 12, 9909-9913.	2.8	27
397	Unprecedented synthesis of aza-bridged benzodioxepine derivatives through a tandem Rh(<scp>ii</scp>)-catalyzed 1,3-rearrangement/[3+2] cycloaddition of carbonyltriazoles. Chemical Communications, 2014, 50, 15971-15974.	4.1	40
398	Rhodium(II)-Catalyzed Stereocontrolled Synthesis of 2-Tetrasubstituted Saturated Heterocycles from 1-Sulfonyl-1,2,3-triazoles. Organic Letters, 2014, 16, 5878-5881.	4.6	65
399	Multifunctional alkoxysilanes prepared by thiol–yne "click―chemistry: their luminescence properties and modification on a silicon surface. RSC Advances, 2014, 4, 62827-62834.	3.6	21
400	Pyridine-phosphinimine ligand-accelerated Cu(<scp>i</scp>)-catalyzed azide–alkyne cycloaddition for preparation of 1-(pyridin-2-yl)-1,2,3-triazole derivatives. Organic and Biomolecular Chemistry, 2014, 12, 5954.	2.8	24
401	Enantioposition-Selective Copper-Catalyzed Azide–Alkyne Cycloaddition for Construction of Chiral Biaryl Derivatives. Organic Letters, 2014, 16, 5866-5869.	4.6	73
402	Triazole-directed hydrogen-bonded structures of cationic iridium(<scp>iii</scp>) complexes. CrystEngComm, 2014, 16, 8531.	2.6	8
403	One-pot synthesis of 1-arylmethyl-4-[(E)-alk-1-enyl]-1H-1,2,3-triazoles via a cross-coupling/click reaction sequence. RSC Advances, 2014, 4, 2124-2128.	3.6	2
404	Fluorescent bowl-shaped nanoparticles from â€~clicked' porphyrin–polymer conjugates. Polymer Chemistry, 2014, 5, 4016-4021.	3.9	30
405	Investigation into the reactivity of 16-electron complexes Cp [#] Co(S ₂ C ₂ B ₁₀ H ₁₀) (Cp [#] =) Tj	ETQq11C).7 8 4314 rg <mark>8</mark>

#	Article	IF	CITATIONS
406	Raney Ni catalyzed azide-alkyne cycloaddition reaction. RSC Advances, 2014, 4, 46040-46048.	3.6	34
407	Enantiopure 1,4,5-Trisubstituted 1,2,3-Triazoles from Carbohydrates: Applications of Organoselenium Chemistry. Journal of Organic Chemistry, 2014, 79, 6895-6904.	3.2	28
408	Phase transfer agent assisted biphasic CuAAC reaction. RSC Advances, 2014, 4, 26516.	3.6	18
409	A simple copper-catalysed tandem cyclisation of ynamides leading to triazolo-1,2,4-benzothiadiazine-1,1-dioxides in PEG-400 medium. RSC Advances, 2014, 4, 28359-28367.	3.6	19
410	1,2,3-Triazolylidene ruthenium(<scp>ii</scp>)(η ⁶ -arene) complexes: synthesis, metallation and reactivity. Dalton Transactions, 2014, 43, 12842-12850.	3.3	39
411	Simple Plate-Based, Parallel Synthesis of Disulfide Fragments using the CuAAC Click Reaction. ACS Combinatorial Science, 2014, 16, 661-664.	3.8	11
412	Tetrathiafulvalene mono- and bis-1,2,3-triazole precursors by click chemistry: structural diversity and reactivity. Organic and Biomolecular Chemistry, 2014, 12, 3167.	2.8	11
413	Multicomponent azide–alkyne cycloaddition catalyzed by impregnated bimetallic nickel and copper on magnetite. RSC Advances, 2014, 4, 23943-23951.	3.6	26
414	1,2,3-Triazoles from carbonyl azides and alkynes: filling the gap. Chemical Communications, 2014, 50, 8978.	4.1	30
415	[{Cu(IPr)}2(μ-OH)][BF4]: synthesis and halide-free CuAAC catalysis. Chemical Communications, 2014, 50, 7154.	4.1	13
416	<i>p</i> -Toluenesulfonic Acid Mediated 1,3-Dipolar Cycloaddition of Nitroolefins with NaN ₃ for Synthesis of 4-Aryl- <i>NH</i> -1,2,3-triazoles. Organic Letters, 2014, 16, 5728-5731.	4.6	156
417	Stereoselective domino azidation and [3 + 2] cycloaddition: a facile route to chiral heterocyclic scaffolds from carbohydrate derived synthons. RSC Advances, 2014, 4, 4155-4162.	3.6	6
418	Copper-Catalyzed Three-Component Synthesis of 3-Aminopyrazoles and 4-Iminopyrimidines via β-Alkynyl- <i>N</i> -sulfonyl Ketenimine Intermediates. Organic Letters, 2014, 16, 4814-4817.	4.6	42
419	An efficient one-pot strategy for the highly regioselective metal-free synthesis of 1,4-disubstituted-1,2,3-triazoles. Chemical Communications, 2014, 50, 11926-11929.	4.1	74
420	Utility of tris(4-bromopyridyl) europium complexes as versatile intermediates in the divergent synthesis of emissive chiral probes. Dalton Transactions, 2014, 43, 5721-5730.	3.3	21
421	Alkyne–azide cycloaddition catalyzed by a dinuclear copper(I) complex. Tetrahedron Letters, 2014, 55, 6575-6576.	1.4	15
422	Bi(OTf) ₃ -Catalyzed Tandem Meyer–Schuster Rearrangement and 1,4-Addition to the Resulting Vinyl Ketone. Journal of Organic Chemistry, 2014, 79, 9854-9859.	3.2	22
423	Copper(<scp>ii</scp>) complexes supported by click generated mixed NN, NO, and NS 1,2,3-triazole based ligands and their catalytic activity in azide–alkyne cycloaddition. Dalton Transactions, 2014, 43, 7069-7077.	3.3	33

#	Article	IF	CITATIONS
424	Alkaline earth catalysis for the 100% atom-efficient three component assembly of imidazolidin-2-ones. Chemical Communications, 2014, 50, 12676-12679.	4.1	30
425	Metallodendrimers in three oxidation states with electronically interacting metals and stabilization of size-selected gold nanoparticles. Nature Communications, 2014, 5, 3489.	12.8	42
426	Conjugation of a Nonspecific Antiviral Sapogenin with a Specific HIV Fusion Inhibitor: A Promising Strategy for Discovering New Antiviral Therapeutics. Journal of Medicinal Chemistry, 2014, 57, 7342-7354.	6.4	36
427	Copper nanoparticle heterogeneous catalytic â€~click' cycloaddition confirmed by single-molecule spectroscopy. Nature Communications, 2014, 5, 4612.	12.8	121
428	Rutheniumâ€Catalyzed Cycloadditions of 1â€Haloalkynes with Nitrile Oxides and Organic Azides: Synthesis of 4â€Haloisoxazoles and 5â€Halotriazoles. Chemistry - A European Journal, 2014, 20, 11101-11110.	3.3	98
430	Regioselective Synthesis of βâ€Aryl Enaminones and 1,4,5―Trisubstituted 1,2,3â€Triazoles from Chalcones and Benzyl Azides. Advanced Synthesis and Catalysis, 2014, 356, 3347-3355.	4.3	43
431	Highly selective synthesis of 1-polyfluoroaryl-1,2,3-triazoles via a one-pot three-component reaction. Tetrahedron Letters, 2014, 55, 5033-5037.	1.4	21
432	Solidâ€Phase Synthesis of Cyclic Lipopeptidotriazoles. European Journal of Organic Chemistry, 2014, 2014, 4785-4794.	2.4	4
433	Microwave-Assisted or Cu–NHC-Catalyzed Cycloaddition of Azido-Disubstituted Alkynes: Bifurcation of Reaction Pathways. Journal of Organic Chemistry, 2014, 79, 9818-9825.	3.2	25
434	Triazole-containing monophosphate mRNA cap analogs as effective translation inhibitors. Rna, 2014, 20, 1539-1547.	3.5	17
435	Lewis Base Catalyzed Aerobic Oxidative Intermolecular Azide–Zwitterion Cycloaddition. Angewandte Chemie - International Edition, 2014, 53, 14186-14190.	13.8	106
436	Reactions of metallocarbenes derived from N-sulfonyl-1,2,3-triazoles. Chemical Society Reviews, 2014, 43, 5151.	38.1	529
437	Fluorescence sensor for Cu(<scp>ii</scp>) in the serum sample based on click chemistry. Analyst, The, 2014, 139, 656-659.	3.5	46
438	9.10 Organic Synthesis Using Microwave Heating. , 2014, , 234-286.		14
439	Are 1,4―and 1,5â€Disubstituted 1,2,3â€Triazoles Good Pharmacophoric Groups?. ChemMedChem, 2014, 9, 2497-2508.	3.2	118
440	Recent development of direct asymmetric functionalization of inert C–H bonds. RSC Advances, 2014, 4, 6173.	3.6	532
441	On the regioselectivity of the mononuclear copper-catalyzed cycloaddition of azide and alkynes (CuAAC). A quantum chemical topological study. Journal of Molecular Modeling, 2014, 20, 2187.	1.8	13
442	Copper and Silver Complexes of Tris(triazole)amine and Tris(benzimidazole)amine Ligands: Evidence that Catalysis of an Azide–Alkyne Cycloaddition ("Clickâ€) Reaction by a Silver Tris(triazole)amine Complex Arises from Copper Impurities. Inorganic Chemistry, 2014, 53, 6503-6511.	4.0	34

ARTICLE IF CITATIONS Preparation of Triazoloindoles via Tandem Copper Catalysis and Their Utility as α-Imino Rhodium 443 4.6 143 Carbene Precursors. Organic Letters, 2014, 16, 1244-1247. Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and<scp>d</scp>-homoandrostane. Tandem "click―reaction/Cu-catalyzed<scp>d</scp>-homo 444 2.8 rearrangement. Organic and Biomolecular Chemistry, 2014, 12, 3707-3720. Electroactive tetrathiafulvalene based pyridine-mono and -bis(1,2,3-triazoles) click ligands: synthesis, 445 2.6 16 crystal structures and coordination chemistry. CrystEngComm, 2014, 16, 6612. Covalent, sequence-specific attachment of long DNA molecules to a surface using DNA-templated click 446 chemistry. Chemical Communications, 2014, 50, 8131-8133. Silyl alkynylphosphine-boranes: key precursors of triazolylphosphines via tandem desilylation-Click 447 2.8 13 chemistry. Organic and Biomolecular Chemistry, 2014, 12, 3635. Systematic Investigations on 1,2,3-Triazole-Based Compounds Capable of Second Harmonic Generation. Crystal Growth and Design, 2014, 14, 1018-1031. 448 ⁶⁴Cu-Labeled Somatostatin Analogues Conjugated with Cross-Bridged Phosphonate-Based Chelators via Strain-Promoted Click Chemistry for PET Imaging: In silico through in Vivo Studies. 449 6.4 35 Journal of Medicinal Chemistry, 2014, 57, 6019-6029. Alkynyl Crown Ethers as a Scaffold for Hyperconjugative Assistance in Noncatalyzed Azide–Alkyne Click Reactions: Ion Sensing through Enhanced Transition-State Stabilization. Journal of Organic 3.2 Chemistry, 2014, 79, 6221-6232. A Metalâ€Free Threeâ€Component Reaction for the Regioselective Synthesis of 1,4,5â€Trisubstituted 451 13.8 152 1,2,3â€Triazoles. Angewandte Chemie - International Edition, 2014, 53, 10155-10159. Oxidative Esterification of Aldehydes Using Mesoionic 1,2,3-Triazolyl Carbene Organocatalysts. 4.6 Organic Letters, 2014, 16, 3676-3679. Polar Redâ€Emitting Rhodamine Dyes with Reactive Groups: Synthesis, Photophysical Properties, and 453 3.3 52 Twoâ€Color STED Nanoscopy Applications. Chemistry - A European Journal, 2014, 20, 146-157. Exploring Strainâ€Promoted 1,3â€Dipolar Cycloadditions of End Functionalized Polymers. Chemistry - A European Journal, 2014, 20, 8753-8760. Smart chemistry in polymeric nanomedicine. Chemical Society Reviews, 2014, 43, 6982-7012. 455 38.1 171 Development of a traceable linker containing a thiol-responsive amino acid for the enrichment and selective labelling of target proteins. Organic and Biomolecular Chemistry, 2014, 12, 3821. 2.8 Azides – Diazonium Ions – Triazenes: Versatile Nitrogen-rich Functional Groups. Australian Journal of 457 0.9 70 Chemistry, 2014, 67, 328. Comparison of the Reactivity of Carbohydrate Photoaffinity Probes with Different Photoreactive 58 Groups. ChemBioChem, 2014, 15, 1399-1403. Zn(<scp>ii</scp>)-coordination modulated ligand photophysical processes – the development of fluorescent indicators for imaging biological Žn(<scp>ii</scp>) ions. RSC Advances, 2014, 4, 459 3.6 99 20398-20440. Dinuclear ruthenium complexes containing a new ditopic phthalazin-bis(triazole) ligand that 2.8 promotes metal–metal interactions. New Journal of Chemistry, 2014, 38, 1980-1987.

#	Article	IF	CITATIONS
461	Following the Azideâ€Alkyne Cycloaddition at the Silica/Solvent Interface with Sum Frequency Generation. ChemPhysChem, 2014, 15, 2247-2251.	2.1	8
462	DFT/TDDFT insights into the chemistry, biochemistry and photophysics of copper coordination compounds. RSC Advances, 2014, 4, 32504-32529.	3.6	33
463	A Metalâ€Free Threeâ€Component Reaction for the Regioselective Synthesis of 1,4,5â€Trisubstituted 1,2,3â€Triazoles. Angewandte Chemie, 2014, 126, 10319-10323.	2.0	40
464	Synthesis and cytotoxic evaluation of novel ester-triazole-linked triterpenoid–AZT conjugates. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5190-5194.	2.2	44
465	One-Step Synthesis of Nitrogen-Containing Medium-Sized Rings via α-Imino Diazo Intermediates. Organic Letters, 2014, 16, 3232-3235.	4.6	98
466	SAR studies on hydropentalene derivatives—Important core units of biologically active tetramic acid macrolactams and ptychanolides. Bioorganic and Medicinal Chemistry, 2014, 22, 3252-3261.	3.0	5
467	Determination of polyethylene glycol end group functionalities by combination of selective reactions and characterization by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Analytica Chimica Acta, 2014, 816, 28-40.	5.4	17
468	Use of Ring-Expanded Diamino- and Diamidocarbene Ligands in Copper Catalyzed Azide–Alkyne "Click― Reactions. Organometallics, 2014, 33, 5882-5887.	2.3	29
470	Sequential "Click―– "Photo-Click―Cross-Linker for Catalyst-Free Ligation of Azide-Tagged Substrates. Journal of Organic Chemistry, 2014, 79, 2702-2708.	3.2	51
471	Fluorogenic tagging of peptides via Cys residues using thiol-specific vinyl sulfone affinity tags. Tetrahedron, 2014, 70, 5961-5965.	1.9	9
472	Design, synthesis and antiproliferative activity of functionalized flavone-triazole-tetrahydropyran conjugates against human cancer cell lines. European Journal of Medicinal Chemistry, 2014, 82, 552-564.	5.5	34
473	Kinugasa reaction: an â€~ugly duckling' of β-lactam chemistry. Tetrahedron, 2014, 70, 7817-7844.	1.9	71
474	Polysubstituted ferrocenes from [3Â+Â2] cycloaddition of alkynes with diiron bridging C3 ligands: Vinyliminium, bis-alkylidene and enimine. Journal of Organometallic Chemistry, 2014, 751, 336-342.	1.8	5
475	Synthesis of Bioactive Heterocyclic Systems Promoted by Silica-Supported Catalysts. , 2014, , 14-61.		0
476	Synthesis of 1,4-Disubstituted-1,2,3-trizazoles via Click Reaction in Micro Flow Reactor. Heterocycles, 2014, 88, 1511.	0.7	6
478	Effect of copper(I) on the conformation of the thiacalixarene platform in azide-alkyne cycloaddition. Russian Chemical Bulletin, 2015, 64, 2114-2124.	1.5	3
479	Sequentially Palladium-Catalyzed Processes in One-Pot Syntheses of Heterocycles. Applied Sciences (Switzerland), 2015, 5, 1803-1836.	2.5	35
480	Azide Chemistry – An Inorganic Perspective, Part II ^[‡] [3+2]â€Cycloaddition Reactions of Metal Azides and Related Systems. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1599-1678.	1.2	66

#	Article	IF	CITATIONS
481	Azido‣ubstituted BODIPY Dyes for the Production of Fluorescent Carbon Nanotubes. Chemistry - A European Journal, 2015, 21, 15349-15353.	3.3	17
482	Influence of the Multivalency of Ultrashort Argâ€Trpâ€Based Antimicrobial Peptides (AMP) on Their Antibacterial Activity. ChemMedChem, 2015, 10, 1564-1569.	3.2	15
483	Synthesis of Building Blocks for Carbopeptoids and Their Triazole Isoster Assembly. European Journal of Organic Chemistry, 2015, 2015, 5572-5584.	2.4	8
484	A Triazole Organocatalyst with Spiropyrrolidine Framework and its Application to the Catalytic Asymmetric Addition of Nitromethane to α,βâ€Unsaturated Aldehydes. Advanced Synthesis and Catalysis, 2015, 357, 3831-3835.	4.3	12
486	Spontaneous Reconstitution of Functional Transmembrane Proteins During Bioorthogonal Phospholipid Membrane Synthesis. Angewandte Chemie - International Edition, 2015, 54, 12738-12742.	13.8	30
487	Grafting of Copper(I)–NHC Species on MCMâ€41: Homogeneous versus Heterogeneous Catalysis. ChemCatChem, 2015, 7, 2501-2507.	3.7	12
488	A Triazolylâ€Pyridineâ€Supported Cu ^I Dimer: Tunable Luminescence and Fabrication of Composite Fibers. ChemPlusChem, 2015, 80, 1235-1240.	2.8	22
489	Metalâ€Free Intramolecular Alkyneâ€Azide Cycloaddition To Construct the PyrazÂolo[4,3â€ <i>f</i>][1,2,3]triazolo[5,1â€ <i>c</i>][1,4]oxazepine Ring System. European Journal of Organic Chemistry, 2015, 2015, 5663-5670.	2.4	22
490	Rhodium(II)â€Catalyzed Annulation of Azavinyl Carbenes Through Ringâ€Expansion of 1,3,5â€Trioxane: Rapid Access to Nineâ€Membered 1,3,5,7â€Trioxazonines. Chemistry - an Asian Journal, 2015, 10, 2624-2630.	3.3	20
492	Effects of Thickness and Grafting Density on the Activity of Polymerâ€Brushâ€Immobilized Tris(triazolyl) Copper(I) Catalysts. ChemCatChem, 2015, 7, 856-864.	3.7	9
493	A Porphyrin Coordination Cage Assembled from Four Silver(I) Triazolylâ€Pyridine Complexes. Chemistry - A European Journal, 2015, 21, 15339-15348.	3.3	26
495	PEG Clickâ€Triazole Palladacycle: An Efficient Precatalyst for Palladiumâ€Catalyzed Suzukiâ€Miyaura and Copperâ€free Sonogashira Reactions in Neat Water. Chinese Journal of Chemistry, 2015, 33, 705-710.	4.9	15
496	A Fluxional Copper Acetylide Cluster in CuAAC Catalysis. Angewandte Chemie - International Edition, 2015, 54, 7431-7435.	13.8	72
497	Recent Developments in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and Beyond. Advanced Synthesis and Catalysis, 2015, 357, 2583-2614.	4.3	263
498	Copper(I)â€Catalyzed Threeâ€Component Coupling of <i>N</i> â€Tosylhydrazones, Alkynes and Azides: Synthesis of Trisubstituted 1,2,3â€Triazoles. Advanced Synthesis and Catalysis, 2015, 357, 2277-2286.	4.3	62
499	An Elegant Synthesis of a New Class of Journal of Heterocyclic Chemistry, 2015, 52, 1876-1882.	2.6	2
500	Antiproliferative Activity of Polyether Antibiotic – <i>Cinchona</i> Alkaloid Conjugates Obtained <i>via</i> Click Chemistry. Chemical Biology and Drug Design, 2015, 86, 911-917.	3.2	28
501	Synthesis of alpha-tetrasubstituted triazoles by copper-catalyzed silyl deprotection/azide cycloaddition. Beilstein Journal of Organic Chemistry, 2015, 11, 1425-1433.	2.2	4

#	Article	IF	CITATIONS
502	Quarternization of 3-azido-1-propyne oligomers obtained by copper(I)-catalyzed azide–alkyne cycloaddition polymerization. Beilstein Journal of Organic Chemistry, 2015, 11, 1037-1042.	2.2	6
503	Specific Synthesis of 1,5-Disubstituted-1,2,3-triazolines Catalyzed by Surface Modified Activated Carbon with MsOH. Current Organic Synthesis, 2015, 13, 111-115.	1.3	0
504	Covalent attachment of diphosphine ligands to glassy carbon electrodes via Cu-catalyzed alkyne-azide cycloaddition. Metallation with Ni(<scp>ii</scp>). Dalton Transactions, 2015, 44, 12225-12233.	3.3	14
505	Bioactive saccharide-conjugated polypeptide micelles for acid-triggered doxorubicin delivery. Journal of Materials Chemistry B, 2015, 3, 5220-5231.	5.8	13
506	Cu/Pd-Catalyzed, Three-Component Click Reaction of Azide, Alkyne, and Aryl Halide: One-Pot Strategy toward Trisubstituted Triazoles. Organic Letters, 2015, 17, 2860-2863.	4.6	79
507	Reversible Addition-Fragmentation Chain Transfer Polymerization from Surfaces. Advances in Polymer Science, 2015, , 77-106.	0.8	8
508	Fluorinated Anions Promoted "on Water―Activity of Di- and Tetranuclear Copper(I) Catalysts for Functional Triazole Synthesis. Organometallics, 2015, 34, 3047-3054.	2.3	21
509	Lanthanum loaded CuO nanoparticles: synthesis and characterization of a recyclable catalyst for the synthesis of 1,4-disubstituted 1,2,3-triazoles and propargylamines. RSC Advances, 2015, 5, 56507-56517.	3.6	46
510	â€~Click chemistry' in the synthesis of new amphiphilic 1,3-alternate thiacalixarenes. Mendeleev Communications, 2015, 25, 177-179.	1.6	26
511	First noscapine glycoconjugates inspired by click chemistry. RSC Advances, 2015, 5, 51779-51789.	3.6	23
512	Synthesis and bioactivity of MSH4 oligomers prepared by an A2+ B2 strategy. Tetrahedron Letters, 2015, 56, 3060-3065.	1.4	4
513	Site-specific conjugation of 8-ethynyl-BODIPY to a protein by [2 + 3] cycloaddition. Organic and Biomolecular Chemistry, 2015, 13, 6728-6736.	2.8	13
514	Recent Advances in Click Chemistry Applied to Dendrimer Synthesis. Molecules, 2015, 20, 9263-9294.	3.8	112
515	Multifaceted Strategy for the Synthesis of Diverse 2,2'-Bithiophene Derivatives. Molecules, 2015, 20, 4565-4593.	3.8	15
516	Synthesis and anticancer evaluation of complex unsaturated isosteviol-derived triazole conjugates. Future Medicinal Chemistry, 2015, 7, 2419-2428.	2.3	13
517	Copper-Catalyzed Radical [2 + 2 + 1] Annulation of Benzene-Linked 1, <i>n</i> -Enynes with Azide: Fused Pyrroline Compounds. Organic Letters, 2015, 17, 6038-6041.	4.6	77
518	Copper-catalysed regioselective azidation of arenes by C–H activation directed by pyridine. RSC Advances, 2015, 5, 100223-100227.	3.6	22
519	The recent developments and applications of the traceless-Staudinger reaction in chemical biology study. RSC Advances, 2015, 5, 107192-107199.	3.6	30

#	Article	IF	CITATIONS
520	Anion-Directed Solid-State Structures of Copper(I) and Silver(I) Adducts of Ruthenium Ethyne-1,2-diyl Compounds. Organometallics, 2015, 34, 2632-2646.	2.3	5
521	Synthesis and characterization of heterocyclic functionalized polymers by click reaction: Preparation of magnetic nanocomposites and studies on their thermal, mechanical, photophysical and metal ions removal properties. Chinese Journal of Polymer Science (English Edition), 2015, 33, 301-317.	3.8	12
522	Regioselective Synthesis of 1,5-Disubstituted 1,2,3-Triazoles by Reusable AlCl3 Immobilized on Î ³ -Al2O3. Synthetic Communications, 2015, 45, 967-974.	2.1	7
523	Copper-Catalyzed Enantioselective Propargylic Etherification of Propargylic Esters with Alcohols. Journal of the American Chemical Society, 2015, 137, 2472-2475.	13.7	159
524	One-pot synthesis of hydrazono-sulfonamide adducts using Cu(BTC) MOF catalyst and their remarkable AIEE properties: unprecedented copper(<scp>ii</scp>)-catalyzed generation of ketenimine. RSC Advances, 2015, 5, 20003-20010.	3.6	18
525	Rationalizing the Catalytic Activity of Copper in the Cycloaddition of Azide and Alkynes (CuAAC) with the Topology of â^‡ ² i(<i></i>) and â^‡â^‡ ² i(<i></i>). Journal of Physical Chemistry B, 2015, 119, 1243-1258.	2.6	28
526	Luminescent [Cu4I4] aggregates and [Cu3I3]-cyclic coordination polymers supported by quinolyl-triazoles. Dalton Transactions, 2015, 44, 6075-6081.	3.3	29
527	Anion Receptors Based on Halogen Bonding with Halo-1,2,3-triazoliums. Journal of Organic Chemistry, 2015, 80, 3139-3150.	3.2	97
528	Synthesis of carbocyclic nucleoside analogs with five-membered heterocyclic nucleobases. Tetrahedron Letters, 2015, 56, 3587-3590.	1.4	7
529	Cycloaddition reactions of (C6F5)2BN3 with dialkyl acetylenedicarboxylates. Dalton Transactions, 2015, 44, 5045-5048.	3.3	6
530	Theoretical Study of Mechanism and Stereoselectivity of Catalytic Kinugasa Reaction. Journal of Organic Chemistry, 2015, 80, 2649-2660.	3.2	48
531	Greatly enhanced thermoâ€oxidative stability of polybenzoxazine thermoset by incorporation of <i>mâ€</i> carborane. Journal of Polymer Science Part A, 2015, 53, 973-980.	2.3	34
532	Mechanism of Samarium-Catalyzed 1,5-Regioselective Azide–Alkyne [3 + 2]-Cycloaddition: A Quantum Mechanical Investigation. Journal of Physical Chemistry A, 2015, 119, 1359-1368.	2.5	14
533	Thermal and environmental stability of poly(4-ethynyl-p-xylylene-co-p-xylylene) thin films. Chinese Chemical Letters, 2015, 26, 459-463.	9.0	3
534	Dinuclear Copper Intermediates in Copper(I)â€Catalyzed Azide–Alkyne Cycloaddition Directly Observed by Electrospray Ionization Mass Spectrometry. Angewandte Chemie, 2015, 127, 3108-3111.	2.0	25
536	Multicomponent Syntheses based upon Copperâ€Catalyzed Alkyneâ€Azide Cycloaddition. Advanced Synthesis and Catalysis, 2015, 357, 617-666.	4.3	145
537	Cu- or Fe-catalyzed C–H/C–C bond nitrogenation reactions for the direct synthesis of N-containing compounds. Organic Chemistry Frontiers, 2015, 2, 403-415.	4.5	68
538	Dinuclear Copper Intermediates in Copper(I) atalyzed Azide–Alkyne Cycloaddition Directly Observed by Electrospray Ionization Mass Spectrometry. Angewandte Chemie - International Edition, 2015, 54, 3065-3068.	13.8	98

#	Article	IF	CITATIONS
539	Stereoselective Organocatalytic Addition of Nucleophiles to Isoquinolinium and 3,4-dihydroisoquinolinium Ions: A Simple Approach for the Synthesis of Isoquinoline Alkaloids. Catalysis Letters, 2015, 145, 398-419.	2.6	23
540	A simple access to transition metal cyclopropenylidene complexes. Chemical Communications, 2015, 51, 4778-4781.	4.1	39
541	α-Conotoxin Dendrimers Have Enhanced Potency and Selectivity for Homomeric Nicotinic Acetylcholine Receptors. Journal of the American Chemical Society, 2015, 137, 3209-3212.	13.7	32
542	Regioselective Iodoazidation of Alkynes: Synthesis of α,α-Diazidoketones. Organic Letters, 2015, 17, 1336-1339.	4.6	43
543	Catalytically-Active Palladium Nanoparticles Stabilized by Triazolylbiferrocenyl-Containing Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 437-446.	3.7	7
544	Ruthenium(0) complexes with triazolylidene spectator ligands: Oxidative activation for (de)hydrogenation catalysis. Journal of Organometallic Chemistry, 2015, 793, 256-262.	1.8	23
545	Regioselective annulation of nitrosopyridine with alkynes: straightforward synthesis of N-oxide-imidazopyridines. Chemical Communications, 2015, 51, 6119-6122.	4.1	23
546	Using click chemistry toward novel 1,2,3-triazole-linked dopamine D3 receptor ligands. Bioorganic and Medicinal Chemistry, 2015, 23, 4000-4012.	3.0	29
547	Synthesis of novel N-glycoside derivatives via CuSCN-catalyzed reactions and their SGLT2 inhibition activities. Tetrahedron, 2015, 71, 4909-4919.	1.9	12
548	Copper-catalysed azide–alkyne cycloadditions (CuAAC): an update. Organic and Biomolecular Chemistry, 2015, 13, 9528-9550.	2.8	436
549	A combination of trimethylsilyl chloride and hydrous natural montmorillonite clay: an efficient solid acid catalyst for the azidation of benzylic and allylic alcohols with trimethylsilyl azide. RSC Advances, 2015, 5, 15736-15739.	3.6	14
550	New glycosylated conjugate copolymer N-acetyl-β-d-glucosaminyl-pluronic: Synthesis, self-assembly and biological assays. Colloids and Surfaces B: Biointerfaces, 2015, 133, 323-330.	5.0	2
551	Direct azidation of allylic/benzylic alcohols and ethers followed byÂthe click reaction: one-pot synthesis of 1,2,3-triazoles and 1,2,3-triazole moiety embedded macrocycles. Tetrahedron, 2015, 71, 7026-7045.	1.9	4
552	Copper-catalyzed carbon–carbon bond cleavage of primary propargyl alcohols: β-carbon elimination of hemiaminal intermediates. Catalysis Science and Technology, 2015, 5, 3931-3934.	4.1	17
553	Preparation of reactive fibre interfaces using multifunctional cellulose derivatives. Carbohydrate Polymers, 2015, 132, 261-273.	10.2	11
554	Au-iClick mirrors the mechanism of copper catalyzed azide–alkyne cycloaddition (CuAAC). Dalton Transactions, 2015, 44, 14747-14752.	3.3	41
555	Copper-catalyzed direct transformation of simple alkynes to alkenyl nitriles via aerobic oxidative N-incorporation. Chemical Science, 2015, 6, 6355-6360.	7.4	29
556	Coumarin heterocyclic derivatives: chemical synthesis and biological activity. Natural Product Reports, 2015, 32, 1472-1507.	10.3	359

#	Article	IF	CITATIONS
557	Nano-copper catalysed highly regioselective synthesis of 2,4-disubstituted pyrroles from terminal alkynes and isocyanides. Chemical Communications, 2015, 51, 13646-13649.	4.1	46
558	A-21·Cul as a catalyst for Huisgen's reaction: about iodination as a side-reaction. Tetrahedron Letters, 2015, 56, 4339-4344.	1.4	9
559	Highly efficient synthesis of polyfluorinated dendrons suitable for click chemistry. RSC Advances, 2015, 5, 36762-36765.	3.6	2
560	Three naphthalenedisulfonate polymers with imidazole-containing ligands: Synthesis, structure and heterogeneously catalytic performance in reactions of enamination of Î ² -dicarbonyl compounds. Inorganica Chimica Acta, 2015, 430, 253-260.	2.4	10
561	Enantioselective Synthesis of (+)-Petromyroxol, Enabled by Rhodium-Catalyzed Denitrogenation and Rearrangement of a 1-Sulfonyl-1,2,3-Triazole. Journal of Organic Chemistry, 2015, 80, 4771-4775.	3.2	30
562	Five Cu(<scp>i</scp>) and Zn(<scp>ii</scp>) clusters and coordination polymers of 2-pyridyl-1,2,3-triazoles: synthesis, structures and luminescence properties. CrystEngComm, 2015, 17, 3305-3311.	2.6	34
564	Mechanistic Basis for Regioselection and Regiodivergence in Nickel-Catalyzed Reductive Couplings. Accounts of Chemical Research, 2015, 48, 1736-1745.	15.6	144
565	Parts per Million Level, Green, and Magnetically-recoverable Triazole Ligand-stabilized Au and Pd Nanoparticle Catalysts. RSC Advances, 2015, 5, 44018-44021.	3.6	9
566	A layered double hydroxide, a synthetically useful heterogeneous catalyst for azideâ^'alkyne cycloadditions in a continuous-flow reactor. Applied Catalysis A: General, 2015, 501, 63-73.	4.3	22
567	Design Strategies and Applications of Circulating Cell-Mediated Drug Delivery Systems. ACS Biomaterials Science and Engineering, 2015, 1, 201-217.	5.2	146
568	Metal-free [3+2] cycloaddition of azides with Tf ₂ CH ₂ for the regioselective preparation of elusive 4-(trifluoromethylsulfonyl)-1,2,3-triazoles. Chemical Communications, 2015, 51, 6992-6995.	4.1	25
569	Photophysical Properties and Synthesis of New Dye–Cyclooctyne Conjugates for Multicolor and Advanced Microscopy. Bioconjugate Chemistry, 2015, 26, 718-724.	3.6	4
570	Copper malonamide complexes and their use in azide–alkyne cycloaddition reactions. Dalton Transactions, 2015, 44, 10253-10258.	3.3	6
571	Water in N-Heterocyclic Carbene-Assisted Catalysis. Chemical Reviews, 2015, 115, 4607-4692.	47.7	216
572	In Situ Construction of Three Anion-Dependent Cu(I) Coordination Networks as Promising Heterogeneous Catalysts for Azide–Alkyne "Click―Reactions. Inorganic Chemistry, 2015, 54, 4737-4743.	4.0	111
573	Postsynthetic Modification of an Alkyne-Tagged Zirconium Metal–Organic Framework via a "Click― Reaction. Inorganic Chemistry, 2015, 54, 5139-5141.	4.0	51
574	Phase-Vanishing Method with Acetylene Evolution and Its Utilization in Several Organic Syntheses. Organic Letters, 2015, 17, 2354-2357.	4.6	46
575	Biomolecular Assemblies Combining Two Orthogonal Copperâ€Mediated Ligations in a Oneâ€Pot Reaction. Chemistry - A European Journal, 2015, 21, 6022-6026.	3.3	4

#	Article	IF	CITATIONS
576	Synthesis and Applications of Azolylpurine and Azolylpurine Nucleoside Derivatives. European Journal of Organic Chemistry, 2015, 2015, 3629-3649.	2.4	25
577	Copper loaded cross-linked poly(ionic liquid): robust heterogeneous catalyst in ppm amount. RSC Advances, 2015, 5, 29609-29617.	3.6	26
578	New click-chemistry methods for 1,2,3-triazoles synthesis: recent advances and applications. Tetrahedron Letters, 2015, 56, 2853-2859.	1.4	177
579	Reaction mechanisms of transition-metal-catalyzed azide–alkyne cycloaddition "click―reactions: A DFT investigation. Computational and Theoretical Chemistry, 2015, 1073, 131-138.	2.5	9
580	Metal free synthesis of morpholine fused [5,1-c] triazolyl glycoconjugates via glycosyl azido alcohols. RSC Advances, 2015, 5, 86840-86848.	3.6	21
581	Thermally controlled silicone functionalization using selective Huisgen reactions. European Polymer Journal, 2015, 69, 429-437.	5.4	8
582	Oximinoalkylamines as ligands for Cu-assisted azide–acetylene cycloaddition. Tetrahedron Letters, 2015, 56, 6335-6339.	1.4	25
583	Copper(I)-Y Zeolite-Catalyzed Regio- and Stereoselective [2 + 2 + 2] Cyclotrimerization Cascade: An Atom- and Step-Economical Synthesis of Pyrimido[1,6- <i>a</i>]quinoline. Journal of Organic Chemistry, 2015, 80, 10299-10308.	3.2	30
584	Bright fluorogenic squaraines with tuned cell entry for selective imaging of plasma membrane vs. endoplasmic reticulum. Chemical Communications, 2015, 51, 17136-17139.	4.1	72
585	Silver Migration Facilitates Isocyanide-Alkyne [3 + 2] Cycloaddition Reactions: Combined Experimental and Theoretical Study. ACS Catalysis, 2015, 5, 6640-6647.	11.2	66
586	Assembly of photoluminescent [Cu _n I _n] (n = 4, 6 and 8) clusters by clickable hybrid [N,S] ligands. Inorganic Chemistry Frontiers, 2015, 2, 1011-1018.	6.0	25
588	Highly-efficient and versatile fluorous-tagged Cu(i)-catalyzed azide–alkyne cycloaddition ligand for preparing bioconjugates. Chemical Communications, 2015, 51, 17072-17075.	4.1	8
589	Ratiometric Fluorescence Azide–Alkyne Cycloaddition for Live Mammalian Cell Imaging. Analytical Chemistry, 2015, 87, 11332-11336.	6.5	14
590	Synthesis of highly diversified 1,2,3-triazole derivatives via domino [3 + 2] azide cycloaddition and denitration reaction sequence. RSC Advances, 2015, 5, 93447-93451.	3.6	20
591	1,2,3-Triazole-based analogue of benznidazole displays remarkable activity against Trypanosoma cruzi. Bioorganic and Medicinal Chemistry, 2015, 23, 6815-6826.	3.0	26
592	Linear scaffolds for multivalent targeting of melanocortin receptors. Organic and Biomolecular Chemistry, 2015, 13, 11507-11517.	2.8	6
593	Biological evaluation of 1,2,3â€ŧriazoleâ€based polymers for potential applications as hard tissue material. Journal of Polymer Science Part A, 2015, 53, 1843-1847.	2.3	8
594	Nanocomposites via a direct graphene-promoted "click―reaction. Polymer, 2015, 79, 21-28.	3.8	23

#	Article	IF	CITATIONS
595	Stimuli-responsive hydrogels prepared by simultaneous "click chemistry―and metal–ligand coordination. RSC Advances, 2015, 5, 18242-18251.	3.6	17
596	Synthesis of 5â€Fluorotriazoles by Silverâ€Mediated Fluorination of 5â€lodotriazoles. European Journal of Organic Chemistry, 2015, 2015, 4114-4118.	2.4	26
597	Allyl-Assisted, Cu(I)-Catalyzed Azide–Alkyne Cycloaddition/Allylation Reaction: Assembly of the [1,2,3]Triazolo-4,5,6,7-tetrahydropyridine Core Structure. Journal of Organic Chemistry, 2015, 80, 11003-11012.	3.2	16
598	Star-shaped triphenylene discotic liquid crystalline oligomers and their hydrogen-bonded supramolecular complexes with simple acids. Journal of Materials Chemistry C, 2015, 3, 11735-11746.	5.5	32
599	Bioorthogonal phase-directed copper-catalyzed azide–alkyne cycloaddition (PDCuAAC) coupling of selectively cross-linked superoxide dismutase dimers produces a fully active bis-dimer. Organic and Biomolecular Chemistry, 2015, 13, 10244-10249.	2.8	1
600	Palladium/copper tandem catalysis for carbon–carbon triple bond cleavage of diaryl acetylenes. Tetrahedron Letters, 2015, 56, 5449-5452.	1.4	6
601	Metal Free Azide–Alkyne Click Reaction: Role of Substituents and Heavy Atom Tunneling. Journal of Physical Chemistry B, 2015, 119, 11540-11547.	2.6	23
602	Adaptive N-Mesoionic Ligands Anchored to a Triazolylidene for Ruthenium-Mediated (De)Hydrogenation Catalysis. Organometallics, 2015, 34, 4076-4084.	2.3	45
603	Direct C–H azidation of calix[4]arene as a novel method to access meta substituted derivatives. Tetrahedron Letters, 2015, 56, 5357-5361.	1.4	8
604	A metal free aqueous route to 1,5-disubstituted 1,2,3-triazolylated monofuranosides and difuranosides. Tetrahedron Letters, 2015, 56, 5521-5524.	1.4	15
605	Some reactions of azides with diynyl-bis(phosphine)ruthenium-cyclopentadienyl complexes. Journal of Organometallic Chemistry, 2015, 797, 185-193.	1.8	1
606	â€~Click' ligand for â€~click' chemistry: (1-(4-methoxybenzyl)-1-H-1,2,3-triazol-4-yl)methanol (MBHTM) accelerated copper-catalyzed [3+2] azide–alkyne cycloaddition (CuAAC) at low catalyst loading. Tetrahedron Letters, 2015, 56, 5864-5869.	1.4	23
607	Mechanism of Copper(I)-Catalyzed 5-Iodo-1,2,3-triazole Formation from Azide and Terminal Alkyne. Journal of Organic Chemistry, 2015, 80, 9542-9551.	3.2	41
608	Copper Nanoparticles in Click Chemistry. Accounts of Chemical Research, 2015, 48, 2516-2528.	15.6	230
609	Silver(I) oxide nanoparticles as a catalyst in the azide–alkyne cycloaddition. Tetrahedron Letters, 2015, 56, 5727-5730.	1.4	33
610	Chemoselective Alkylation for Diversity-Oriented Synthesis of 1,3,4-Benzotriazepin-2-ones and Pyrrolo[1,2][1,3,4]benzotriazepin-6-ones, Potential Turn Surrogates. Organic Letters, 2015, 17, 6046-6049.	4.6	15
611	The Janus Face of the X Ligand in the Copper-Catalyzed Azide–Alkyne Cycloaddition. Journal of the American Chemical Society, 2015, 137, 15696-15698.	13.7	70
612	Pressureâ€Accelerated Azide–Alkyne Cycloaddition: Micro Capillary versus Autoclave Reactor Performance. ChemSusChem, 2015, 8, 504-512.	6.8	19

#	Article	IF	CITATIONS
613	Allele-Specific Chemical Genetics: Concept, Strategies, and Applications. ACS Chemical Biology, 2015, 10, 343-363.	3.4	27
614	Binuclear Cu(I) complex of (N′1E,N′2E)-N′1,N′2-bis(phenyl(pyridin-2-yl)methylene)oxalohydrazide: Syr crystal structure and catalytic activity for the synthesis of 1,2,3-triazoles. Journal of Molecular Catalysis A, 2015, 398, 158-163.	nthesis, 4.8	13
615	Trigonal scaffolds for multivalent targeting of melanocortin receptors. Organic and Biomolecular Chemistry, 2015, 13, 1778-1791.	2.8	13
616	DFT study the interaction of βâ€cyclodextrin with benzyl azide and phenyl acetylene in synthesis of 1,2,3â€triazoles. Journal of Physical Organic Chemistry, 2015, 28, 25-30.	1.9	3
617	Copper(0) Nanoparticles in Click Chemistry: Synthesis of 3,5-Disubstituted Isoxazoles. Journal of Heterocyclic Chemistry, 2015, 52, 1823-1833.	2.6	16
618	Experimental measure of metal–alkynyl electronic structure interactions by photoelectron spectroscopy: (η5-C5H5)Ru(CO)2C CMe and [(η5-C5H5)Ru(CO)2]2(μ-C C). Polyhedron, 2015, 86, 141-150.	2.2	4
619	Synthesis and cytotoxic evaluation of novel amide–triazole-linked triterpenoid–AZT conjugates. Tetrahedron Letters, 2015, 56, 218-224.	1.4	32
620	Cu(<scp>i</scp>)-catalyzed microwave-assisted synthesis of 1,2,3-triazole linked with 4-thiazolidinones: a one-pot sequential approach. RSC Advances, 2015, 5, 1628-1639.	3.6	10
621	Substituent effects on the electronic properties of complexes with dipyridophenazine and triazole ligands: Electronically connected and disconnected ligands. Coordination Chemistry Reviews, 2015, 282-283, 33-49.	18.8	26
622	A recyclable and reusable supported Cu(I) catalyzed azide-alkyne click polymerization. Scientific Reports, 2014, 4, 5107.	3.3	48
623	Enantioselective Copperâ€Catalyzed Azide–Alkyne Click Cycloaddition to Desymmetrization of Maleimideâ€Based Bis(alkynes). Chemistry - A European Journal, 2015, 21, 554-558.	3.3	76
624	Intramolecular annulation of aromatic rings with N-sulfonyl 1,2,3-triazoles: divergent synthesis of 3-methylene-2,3-dihydrobenzofurans and 3-methylene-2,3-dihydroindoles. Chemical Communications, 2015, 51, 133-136.	4.1	63
625	Conjugating folate on superparamagnetic Fe3O4@Au nanoparticles using click chemistry. Journal of Solid State Chemistry, 2015, 222, 37-43.	2.9	15
626	Visible-light initiated copper(<scp>i</scp>)-catalysed oxidative C–N coupling of anilines with terminal alkynes: one-step synthesis of α-ketoamides. Green Chemistry, 2015, 17, 1113-1119.	9.0	129
627	Synthesis and click chemistry of a new class of biodegradable polylactide towards tunable thermo-responsive biomaterials. Polymer Chemistry, 2015, 6, 1275-1285.	3.9	22
628	A metal–organic framework as a highly efficient and reusable catalyst for the solvent-free 1,3-dipolar cycloaddition of organic azides to alkynes. Inorganic Chemistry Frontiers, 2015, 2, 42-46.	6.0	33
629	Cu(l)â€Catalyzed Efficient Synthesis of 2′â€Triazoloâ€nucleoside Conjugates. Journal of Heterocyclic Chemistry, 2015, 52, 701-710.	2.6	10
630	Synthesis, structure, stability and antimicrobial activity of a ruthenium(II) helicate derived from a bis-bidentate "click―pyridyl-1,2,3-triazole ligand. Inorganica Chimica Acta, 2015, 425, 1-6.	2.4	47

ARTICLE IF CITATIONS # 1,2,3-Triazolylidene ruthenium(<scp>ii</scp>)-cyclometalated complexes and olefin selective 631 3.3 24 hydrogenation catalysis. Dalton Transactions, 2015, 44, 2712-2723. Synthesis of 4-amidomethyl-1-glucosyl-1,2,3-triazoles and evaluation as glycogen phosphorylase inhibitors. Carbohydrate Research, 2015, 402, 245-251. 2.3 19 Evaluation of novel fluorescence probes for conjugation purposes using the traceless Staudinger 633 3.7 14 Ligation. Dyes and Pigments, 2015, 113, 263-273. Dinuclear thiazolylidene copper complex as highly active catalyst for azid–alkyne cycloadditions. 634 Beilstein Journal of Organic Chemistry, 2016, 12, 1566-1572. Copper-catalyzed [3 + 2] cycloaddition of (phenylethynyl)di-<i>p</i>-tolylstibane with organic azides. 635 2.2 15 Beilstein Journal of Organic Chemistry, 2016, 12, 1309-1313. Multicomponent Synthesis and Evaluation of New 1,2,3-Triazole Derivatives of Dihydropyrimidinones as Acidic Corrosion Inhibitors for Steel. Molecules, 2016, 21, 250. 3.8 Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction 637 3.8 84 (CuAAC). Molecules, 2016, 21, 1174. Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers. 3.8 16 Molecules, 2016, 21, 1230. 639 Palladium-Catalyzed C–H Arylation of 1,2,3-Triazoles. Molecules, 2016, 21, 1268. 3.8 8 Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions. 640 3.8 Molecules, 2016, 21, 1697. Neue Ans \tilde{A} ^T/₂e f \tilde{A} ¹/₄r die Synthese von Metallcarbenen. Angewandte Chemie, 2016, 128, 9280-9313. 641 2.0 62 New Approaches to the Synthesis of Metal Carbenes. Angewandte Chemie - International Edition, 2016, 55, 9134-9166. 13.8 279 Calcium Carbide: A Unique Reagent for Organic Synthesis and Nanotechnology. Chemistry - an Asian 643 3.3 126 Journal, 2016, 11, 965-976. A New Versatile Waterâ \in Soluble Iniferter Platform for the Preparation of Molecularly Imprinted Nanoparticles by Photopolymerisation in Aqueous Media. Chemistry - A European Journal, 2016, 22, 644 3.3 10150-10154. Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions. Angewandte Chemie -645 13.8 130 International Edition, 2016, 55, 3091-3095. Highlights from the 51st EUCHEM conference on stereochemistry, Bürgenstock, Switzerland, May 646 2016. Chemical Communications, 2016, 52, 9173-9177. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. Chemical Record, 2016, 16, 647 5.8 74 1501-1517. NMR and DFT Study of the Copper(I) atalyzed Cycloaddition Reaction: H/D Scrambling of Alkynes and 648 Variable Reaction Order of the Catalyst. ChemCatChem, 2016, 8, 1804-1808.

#	Article	IF	CITATIONS
649	Dual Chemical Modification of a Polytheonamide Mimic: Rational Design and Synthesis of Ionâ€Channelâ€Forming 48â€mer Peptides with Potent Cytotoxicity. Chemistry - A European Journal, 2016, 22, 3370-3377.	3.3	13
650	Triazolylâ€Based Molecular Gels as Ligands for Autocatalytic â€~Click' Reactions. Chemistry - A European Journal, 2016, 22, 8676-8684.	3.3	27
651	C–H arylations of 1,2,3-triazoles by reusable heterogeneous palladium catalysts in biomass-derived γ-valerolactone. Chemical Communications, 2016, 52, 9777-9780.	4.1	101
653	Interface Engineering in Twoâ€Dimensional Heterostructures: Towards an Advanced Catalyst for Ullmann Couplings. Angewandte Chemie - International Edition, 2016, 55, 1704-1709.	13.8	65
654	Thermally Induced Silane Dehydrocoupling on Silicon Nanostructures. Angewandte Chemie - International Edition, 2016, 55, 6423-6427.	13.8	28
655	Isolation and Structures of 1,2,3â€Triazoleâ€Derived Mesoionic BiscarbÂenes with Bulky Aromatic Groups. European Journal of Organic Chemistry, 2016, 2016, 1651-1654.	2.4	30
656	Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions. Angewandte Chemie, 2016, 128, 3143-3147.	2.0	23
657	Thermally Induced Silane Dehydrocoupling on Silicon Nanostructures. Angewandte Chemie, 2016, 128, 6533-6537.	2.0	13
658	Headgroup engineering in mechanosensitive membrane probes. Chemical Communications, 2016, 52, 14450-14453.	4.1	46
659	Syntheses of O-antigen polysaccharide fragments of nitrogen-fixing rhizobacteria of the genus Azospirillum. Russian Chemical Bulletin, 2016, 65, 1448-1463.	1.5	2
660	From Cluster to Polymer: Ligand Cone Angle Controlled Syntheses and Structures of Copper(I) Alkynyl Complexes. Angewandte Chemie, 2016, 128, 10468-10472.	2.0	22
661	Impact of Ligand and Silane on the Regioselectivity in Catalytic Aldehyde–Alkyne Reductive Couplings: A Theoretical Study. Organometallics, 2016, 35, 1114-1124.	2.3	23
662	Anticancer Evaluation of Tris(triazolyl)triazine Derivatives Generated via Click Chemistry. Australian Journal of Chemistry, 2016, 69, 905.	0.9	25
663	NMR and mass spectral analysis of step-growth polymers from azide alkyne cycloaddition and regioselectivity afforded by copper(I) and ruthenium(II) catalysts. Journal of Macromolecular Science - Pure and Applied Chemistry, 2016, 53, 413-423.	2.2	2
664	A simple and efficient synthesis of organosilicon compounds containing 1,2,3-triazole moieties catalyzed by ZSM-5 zeolite-supported Cu–Co bimetallic oxides. Monatshefte Für Chemie, 2016, 147, 1951-1961.	1.8	15
665	1-Sulfonyl-1,2,3-triazoles as promising reagents in the synthesis of nitrogen-containing linear and heterocyclic structures (microreview). Chemistry of Heterocyclic Compounds, 2016, 52, 216-218.	1.2	2
666	Rh- and Cu-Cocatalyzed Aerobic Oxidative Approach to Quinazolines via [4 + 2] C–H Annulation with Alkyl Azides. Organic Letters, 2016, 18, 2150-2153.	4.6	83
667	An N-sulfanylethylanilide-based traceable linker for enrichment and selective labelling of target proteins. Chemical Communications, 2016, 52, 6911-6913.	4.1	8

#	Article	IF	CITATIONS
668	Copper-loaded hypercrosslinked polymer decorated with pendant amine groups: a green and retrievable catalytic system for quick [3 + 2] Huisgen cycloaddition in water. RSC Advances, 2016, 6, 42522-42531.	3.6	29
669	Quantum dots modified with quaternized poly(dimethylaminoethyl methacrylate) for selective recognition and killing of bacteria over mammalian cells. Analyst, The, 2016, 141, 3328-3336.	3.5	4
670	Ethynyl benziodoxolones: functional terminators for cell-penetrating poly(disulfide)s. Polymer Chemistry, 2016, 7, 3465-3470.	3.9	18
671	Synthesis of substituted tetrahydroisoquinolines by lithiation then electrophilic quench. Organic and Biomolecular Chemistry, 2016, 14, 4908-4917.	2.8	19
672	Post-Synthesis Modification of the Aurivillius Phase Bi2SrTa2O9viaIn SituMicrowave-Assisted "Click Reaction― Inorganic Chemistry, 2016, 55, 9790-9797.	4.0	9
673	Extent of the Oxidative Side Reactions to Peptides and Proteins During the CuAAC Reaction. Bioconjugate Chemistry, 2016, 27, 2315-2322.	3.6	71
674	Synthesis of 2,3â€Ðisubstituted Quinolines via Ketenimine or Carbodiimide Intermediates. Chemistry - A European Journal, 2016, 22, 15144-15150.	3.3	20
675	Chimeric RNA Oligonucleotides Incorporating Triazole-Linked Trinucleotides: Synthesis and Function as mRNA in Cell-Free Translation Reactions. Journal of Organic Chemistry, 2016, 81, 8967-8976.	3.2	9
676	Combination of photoinduced copper(<scp>i</scp>) catalyzed click chemistry and photosol–gel reaction for the synthesis of hybrid materials. Polymer Chemistry, 2016, 7, 7383-7390.	3.9	7
677	Synthesis and reactions of 2-azido-1,3-di(benzyloxy)imidazolium hexafluoridophosphate. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2016, 71, 997-1003.	0.7	4
678	Chemodivergent synthesis of multi-substituted/fused pyrroles via copper-catalyzed carbene cascade reaction of propargyl α-iminodiazoacetates. Chemical Communications, 2016, 52, 12470-12473.	4.1	50
679	Harnessing the Dual Properties of Thiolâ€Grafted Cellulose Paper for Click Reactions: A Powerful Reducing Agent and Adsorbent for Cu. Angewandte Chemie, 2016, 128, 13747-13750.	2.0	4
680	Heterogeneous Photocatalytic Click Chemistry. Journal of the American Chemical Society, 2016, 138, 13127-13130.	13.7	82
681	Cofactor-specific covalent anchoring of cytochrome b562on a single-walled carbon nanotube by click chemistry. RSC Advances, 2016, 6, 65936-65940.	3.6	9
682	Synthesis and Evaluation of 1,8â€Ðisubstitutedâ€Cyclam/Naphthalimide Conjugates as Probes for Metal Ions. ChemistryOpen, 2016, 5, 375-385.	1.9	18
683	Reassigning Sense Codon AGA to Encode Noncanonical Amino Acids in <i>Escherichia coli</i> . ChemBioChem, 2016, 17, 2234-2239.	2.6	9
684	Harnessing the Dual Properties of Thiolâ€Grafted Cellulose Paper for Click Reactions: A Powerful Reducing Agent and Adsorbent for Cu. Angewandte Chemie - International Edition, 2016, 55, 13549-13552.	13.8	27
685	1H-1,2,3-Triazolyl-substituted 1,3,4-oxadiazole derivatives containing structural features of ibuprofen/naproxen: Their synthesis and antibacterial evaluation. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 5212-5217.	2.2	39

#	Article	IF	CITATIONS
686	Electrochemical assessment of phenol and triazoles derived from phenol (BPT) on API 5L X52 steel immersed in 1 M HCl. RSC Advances, 2016, 6, 72885-72896.	3.6	15
687	Two Triazole-Based Phosphine Ligands Prepared via Temperature-Mediated Li/H Exchange: Cu ^I and Au ^I Complexes and Structural Studies. Inorganic Chemistry, 2016, 55, 8514-8526.	4.0	39
688	Sequential Copper-Catalyzed Alkyne–Azide Cycloaddition and Thiol-Maleimide Addition for the Synthesis of Photo- and/or Electroactive Fullerodendrimers and Cysteine-Functionalized Fullerene Derivatives. Journal of Organic Chemistry, 2016, 81, 8222-8233.	3.2	13
689	From Cluster to Polymer: Ligand Cone Angle Controlled Syntheses and Structures of Copper(I) Alkynyl Complexes. Angewandte Chemie - International Edition, 2016, 55, 10312-10316.	13.8	75
690	Copper nanoparticles supported on CeO2 as an efficient catalyst for click reactions of azides with alkynes. Catalysis Communications, 2016, 85, 13-16.	3.3	34
691	A Divergent Synthesis of <scp>l</scp> â€ <i>arabino</i> ―and <scp>d</scp> â€ <i>xylo</i> onfigured Cyclophellitol Epoxides and Aziridines. European Journal of Organic Chemistry, 2016, 2016, 4787-4794.	2.4	19
692	Copper(I)-Catalyzed Three-Component Click/Alkynylation: One-Pot Synthesis of 5-Alkynyl-1,2,3-triazoles. Organic Letters, 2016, 18, 4158-4161.	4.6	78
693	CuAAC Click Reactions in the Gas Phase: Unveiling the Reactivity of Bisâ€Copper Intermediates. Chemistry - A European Journal, 2016, 22, 18690-18694.	3.3	14
694	Dual Role of Acetate in Copper(II) Acetate Catalyzed Dehydrogenation of Chelating Aromatic Secondary Amines: A Kinetic Case Study of Copperâ€Catalyzed Oxidation Reactions. European Journal of Inorganic Chemistry, 2016, 2016, 3728-3743.	2.0	18
695	Copper(<scp>i</scp>)-catalysed oxidative C–N coupling of 2-aminopyridine with terminal alkynes featuring a Cî€,C bond cleavage promoted by visible light. Chemical Communications, 2016, 52, 11756-11759.	4.1	63
696	Bonding and Catalytic Application of Ruthenium N-Heterocyclic Carbene Complexes Featuring Triazole, Triazolylidene, and Imidazolylidene Ligands. Organometallics, 2016, 35, 2980-2986.	2.3	46
697	Welche Katalysatormetalle sind harmlos, welche giftig? Vergleich der ToxizitÃæn von Niâ€, Cuâ€, Feâ€, Pdâ€, Ptâ€, Rh―und Auâ€Salzen. Angewandte Chemie, 2016, 128, 12334-12347.	2.0	59
698	Which Metals are Green for Catalysis? Comparison of the Toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au Salts. Angewandte Chemie - International Edition, 2016, 55, 12150-12162.	13.8	354
699	Organometallic–Peptide Bioconjugates: Synthetic Strategies and Medicinal Applications. Chemical Reviews, 2016, 116, 11797-11839.	47.7	169
700	Getting a grip on glycans: A current overview of the metabolic oligosaccharide engineering toolbox. Carbohydrate Research, 2016, 435, 121-141.	2.3	48
701	Potentially antibreast cancer enamidines via azide–alkyne–amine coupling and their molecular docking studies. RSC Advances, 2016, 6, 90597-90606.	3.6	17
702	Copper (II) Oxide Nanoparticles as an Efficient Catalyst in the Azide–AlkyneCycloaddition. ChemistrySelect, 2016, 1, 4607-4612.	1.5	17
703	Wellâ€Defined Poly(ethylene glycol) Hydrogels with Enhanced Mechanical Performance Prepared by Thermally Induced Copperâ€Catalyzed Azide–Alkyne Cycloaddition. Macromolecular Materials and Engineering, 2016, 301, 1374-1382.	3.6	15

#	Article	IF	CITATIONS
704	Copper-catalyzed oxidative molecular transformation of amidines for synthesis of nitrogen heterocycles. Tetrahedron Letters, 2016, 57, 3678-3683.	1.4	10
705	Chemical Synthesis of Glycosaminoglycans. Chemical Reviews, 2016, 116, 8193-8255.	47.7	198
707	Design, synthesis and biological evaluation of N-methyl-N-[(1,2,3-triazol-4-yl)alkyl]propargylamines as novel monoamine oxidase B inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 4835-4854.	3.0	23
708	Cu(II)-Catalyzed Oxidative Formation of 5,5′-Bistriazoles. Journal of Organic Chemistry, 2016, 81, 12091-12105.	3.2	32
709	Regioselective Arylative Ringâ€Closing Reaction of 2â€Alkynylphenyl Derivatives: Formation of Arylated Benzoxazinâ€2â€ones, Benzoxazinâ€2â€amines and 2,3â€Disubstituted Indoles. European Journal of Organic Chemistry, 2016, 2016, 5990-6000.	2.4	14
710	Structure–Property Relationships in Clickâ€Derived Donor–Triazole–Acceptor Materials. Chemistry - A European Journal, 2016, 22, 18887-18898.	3.3	22
711	Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chemical Reviews, 2016, 116, 14726-14768.	47.7	286
712	Mechanisms for the formation of five-membered rings in ethene addition reactions with azomethine ylide and allyl anion. Chemistry of Heterocyclic Compounds, 2016, 52, 700-710.	1.2	2
713	Cobalt-catalyzed amination of triazoles with dioxazol-5-ones through triazole-directed ortho C H activation. Tetrahedron, 2016, 72, 8004-8008.	1.9	30
714	Synthesis and application of water-soluble, photoswitchable cyanine dyes for bioorthogonal labeling of cell-surface carbohydrates. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2016, 71, 347-354.	1.4	12
715	Copper-Catalyzed <i>anti</i> -Markovnikov Hydroindolation of Terminal Alkynes: Regioselective Synthesis of Bis(indolyl)alkanes. Journal of Organic Chemistry, 2016, 81, 11664-11670.	3.2	26
716	Key Nonâ€Metal Ingredients for Cuâ€catalyzed "Click―Reactions in Glycerol: Nanoparticles as Efficient Forwarders. Chemistry - A European Journal, 2016, 22, 18247-18253.	3.3	21
717	Efficient synthesis of novel 1,2,3-triazole-linked quinoxaline scaffold via copper-catalyzed click reactions. RSC Advances, 2016, 6, 105433-105441.	3.6	15
718	A sensitive fluorescence biosensor for alkaline phosphatase activity based on the Cu(II)-dependent DNAzyme. Analytica Chimica Acta, 2016, 948, 98-103.	5.4	19
719	A DFT Study and Microkinetic Simulation of Propylene Partial Oxidation on CuO (111) and CuO (100) Surfaces. Journal of Physical Chemistry C, 2016, 120, 27430-27442.	3.1	31
720	Copper-γ-cyclodextrin complexes immobilized on hexagonal boron nitride as an efficient catalyst in the multicomponent synthesis of 1,2,3-triazoles. Journal of Catalysis, 2016, 344, 286-292.	6.2	20
721	Synthesis of Heterotelechelic α,ω-Dye-Labeled Polymer and Energy Transfer between the Chain Ends. Macromolecules, 2016, 49, 8274-8281.	4.8	11
722	A trifunctional linker suitable for conducting three orthogonal click chemistries in one pot. Organic and Biomolecular Chemistry, 2016, 14, 10576-10580.	2.8	30

ARTICLE IF CITATIONS CuO nanostructures of variable shapes as an efficient catalyst for [3 + 2] cycloaddition of azides with 723 3.6 18 terminal alkyne. RSC Advances, 2016, 6, 102733-102743. Click Chemistry and Radiochemistry: The First 10 Years. Bioconjugate Chemistry, 2016, 27, 2791-2807. 724 3.6 197 725 Tetrazine ligation for chemical proteomics. Proteome Science, 2016, 15, 15. 1.7 33 Copper(I)â€Catalyzed Interrupted Click Reaction: Synthesis of Diverse 5â€Heteroâ€Functionalized Triazoles. 13.8 200 Angewandte Chemie - International Edition, 2016, 55, 649-653. Rhodium atalyzed Intramolecular Câ[^]H Bond Activation with Triazoles: Preparation of Stereodefined 727 3.3 26 Pyrrolidines and Other Related Cyclic Compounds. Chemistry - A European Journal, 2016, 22, 890-895. Copper(<scp>i</scp>)â€"Y zeolite catalyzed N-sulfonylketenimine mediated annulation of hydroxynaphthoquinones: syntheses of naphtho[2,1-b]furan-2,5-diones and benzo[de]chromene-2,6-diones. Chemical Communications, 2016, 52, 8436-8439. 729 4.1 Affinity Induced Surface Functionalization of Liposomes Using Cu-Free Click Chemistry. Bioconjugate 730 3.6 12 Chemistry, 2016, 27, 1673-1680. 1,2,3-Triazole-Functionalized Polysulfone Synthesis through Microwave-Assisted Copper-Catalyzed Click Chemistry: A Highly Proton Conducting High Temperature Membrane. ACS Applied Materials & amp; Interfaces, 2016, 8, 16897-16906. 8.0 49 Catalytic Cyclization of 2.3-Dibromopropionates with Benzyl Azides to Afford 732 1-Benzyl-1,2,3-triazole-4-carboxylate: The Use of a Nontoxic Bismuth Catalyst. Heterocycles, 2016, 92, 0.7 10 423. "Click-fluors†triazole-linked saccharide sensors. Organic Chemistry Frontiers, 2016, 3, 918-928. 4.5 Cu/Pd-Catalyzed Synthesis of Fully Decorated Polycyclic Triazoles: Introducing C–H Functionalization 734 11.2 53 to Multicomponent Multicatalytic Reactions ((MC) < sup>2 < /sup>R). ACS Catalysis, 2016, 6, 4946-4952. Design and Applications of an Efficient Amphiphilic "Click―Cu^I Catalyst in Water. ACS 11.2 59 Catalysis, 2016, 6, 5424-5431. Direct access to stabilized Cu^l using cuttlebone as a natural-reducing support for 736 3.6 37 efficient CuAAC click reactions in water. RSC Advances, 2016, 6, 63613-63623. Synthesis and catalytic applications of 1,2,3-triazolylidene gold(<scp>i</scp>) complexes in silver-free 3.3 oxazoline syntheses and $Ca\in$ "H bond activation. Dalton Transactions, 2016, 45, 14591-14602. Versatile bonding and coordination modes of ditriazolylidene ligands in rhodium(<scp>iii</scp>) and 738 3.3 20 iridium(<scp>iii</scp>) complexes. Dalton Transactions, 2016, 45, 15859-15871. Synthesis and cytotoxic evaluation of novel indenoisoquinoline-substituted triazole hybrids. 2.2 Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3652-3657. Triterpene sapogenin–polyarginine conjugates exhibit promising antibacterial activity against 740 3.05 Gram-positive strains. Bioorganic and Medicinal Chemistry, 2016, 24, 2999-3005. First synthesis of both 1-aryl-4-[(E)-alk-1-enyl]-1H-1,2,3-triazoles and 1-aryl-4-[(Z)-1-(trimethylsilýl)alk-1-enyl]-1H-1,2,3-triazoles: assembly of ï€-extended 1,2,3-triazoles using a 741 cross-coupling/click reaction sequence. Tetrahedron, 2016, 72, 4205-4213.

#	Article	IF	CITATIONS
742	From Mono to Tris-1,2,3-triazole-Stabilized Gold Nanoparticles and Their Compared Catalytic Efficiency in 4-Nitrophenol Reduction. Inorganic Chemistry, 2016, 55, 6776-6780.	4.0	33
743	Preparation of 3-azoindoles and 3-hydrazonoindolin-2-imines as well as their applications as NNO pincer ligands for boron. Organic and Biomolecular Chemistry, 2016, 14, 7114-7118.	2.8	9
744	Chemo- and Regioselective Direct Functional Group Installation through Catalytic Hydroxy Group Selective Conjugate Addition of Amino Alcohols to α,β-Unsaturated Sulfonyl Compounds. Organic Letters, 2016, 18, 3350-3353.	4.6	30
745	Interface Engineering in Twoâ€Dimensional Heterostructures: Towards an Advanced Catalyst for Ullmann Couplings. Angewandte Chemie, 2016, 128, 1736-1741.	2.0	1
746	Immobilized copper(II) on nitrogenâ€rich polymerâ€entrapped Fe ₃ O ₄ nanoparticles: a highly loaded and magnetically recoverable catalyst for aqueous click chemistry. Applied Organometallic Chemistry, 2016, 30, 73-80.	3.5	28
747	Synthesis, characterization, X-ray crystallography analysis, and catalytic activity of bis(2-pyridylmethyl)amine copper complexes containing coupled pendent olefinic arms in atom transfer radical addition (ATRA) reactions. Polyhedron, 2016, 114, 256-267.	2.2	11
748	Synthesis of N-2-aryl-substituted 1,2,3-triazoles mediated by magnetic and recoverable CuFe2O4 nanoparticles. Research on Chemical Intermediates, 2016, 42, 6231-6243.	2.7	10
749	A binuclear Cu(<scp>i</scp>) complex as a novel catalyst towards the direct synthesis of N-2-aryl-substituted-1,2,3-triazoles from chalcones. RSC Advances, 2016, 6, 15518-15524.	3.6	10
750	Cube-octameric silsesquioxane-mediated cargo copper Schiff base for efficient click reaction in aqueous media. Journal of Molecular Catalysis A, 2016, 414, 47-54.	4.8	59
751	Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chemical Reviews, 2016, 116, 3086-3240.	47.7	642
752	Wheel-shaped copper containing polyoxotungstate as an efficient catalyst in the three-component synthesis of 1,2,3-triazoles. RSC Advances, 2016, 6, 13609-13613.	3.6	8
753	Synthesis and catalytic applications of C ₃ -symmetric tris(triazolyl)methanol ligands and derivatives. Chemical Communications, 2016, 52, 1997-2010.	4.1	35
754	CuAAC: An Efficient Click Chemistry Reaction on Solid Phase. ACS Combinatorial Science, 2016, 18, 1-14.	3.8	178
755	Hybrid 1,2,3-Triazole Supported Cull Complexes: Tuning Assembly and Weak Interaction-Driven Crystal Growth. Australian Journal of Chemistry, 2016, 69, 372.	0.9	11
756	Ultrasound responsive block copolymer micelle of poly(ethylene glycol)–poly(propylene glycol) obtained through click reaction. Ultrasonics Sonochemistry, 2016, 30, 9-17.	8.2	42
757	Synthesis and bioactivity of novel triazole incorporated benzothiazinone derivatives as antitubercular and antioxidant agent. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 561-569.	2.2	91
758	Synthesis of the copper chelator TGTA and evaluation of its ability to protect biomolecules from copper induced degradation during copper catalyzed azide–alkyne bioconjugation reactions. Organic and Biomolecular Chemistry, 2016, 14, 849-852.	2.8	10
759	A photo-induced nitroxide trapping method to prepare α,ï‰-heterotelechelic polymers. Polymer Chemistry, 2016, 7, 2511-2520.	3.9	5

#	Article	IF	CITATIONS
760	1,2,3-Triazole tethered acetophenones: Synthesis, bioevaluation and molecular docking study. Chinese Chemical Letters, 2016, 27, 1058-1063.	9.0	27
761	Copper/Nafionâ€Catalyzed Hydroarylation Process Involving Ketenimine Intermediates: A Novel and Synthetic Approach to 4â€Sulfonamidoquinolineâ€2â€ones and Derivatives Thereof. Advanced Synthesis and Catalysis, 2016, 358, 50-55.	4.3	21
762	Chemoselective Sequential Click Ligations Directed by Enhanced Reactivity of an Aromatic Ynamine. Organic Letters, 2016, 18, 1694-1697.	4.6	25
763	Ag-catalyzed azide alkyne cycloaddition: a DFT approach. Dalton Transactions, 2016, 45, 5752-5764.	3.3	21
764	Zidovudine insertion in tailor-made propylene and ethylene oxide copolymers. Reactive and Functional Polymers, 2016, 101, 1-8.	4.1	5
765	Comproportionation Synthesis of Copper(I) Alkynyl Complexes Encapsulating Polyoxomolybdate Templates: Bowl-Shaped Cu ₃₃ and Peanut-Shaped Cu ₆₂ Nanoclusters. Journal of the American Chemical Society, 2016, 138, 2909-2912.	13.7	62
766	Synthesis, biological evaluation and molecular docking of novel coumarin incorporated triazoles as antitubercular, antioxidant and antimicrobial agents. Medicinal Chemistry Research, 2016, 25, 790-804.	2.4	61
767	Copper-catalyzed oxidative carbon–heteroatom bond formation: a recent update. Chemical Society Reviews, 2016, 45, 4504-4523.	38.1	155
768	Aryl Nitriles from Alkynes Using <i>tert</i> -Butyl Nitrite: Metal-Free Approach to C≡C Bond Cleavage. Organic Letters, 2016, 18, 860-863.	4.6	72
769	Novel Cu(0)–Fe3O4@SiO2/NH2cel as an Efficient and Sustainable Magnetic Catalyst for the Synthesis of 1,4-Disubstituted-1,2,3-triazoles and 2-Substituted-Benzothiazoles via One-Pot Strategy in Aqueous Media. Catalysis Letters, 2016, 146, 629-644.	2.6	33
770	Magnetically recoverable Cu ⁰ /Fe ₃ O ₄ catalyzed highly regioselective synthesis of 2,3,4-trisubstituted pyrroles from unactivated terminal alkynes and isocyanides. Chemical Communications, 2016, 52, 4675-4678.	4.1	24
771	Linking of Alcohols with Vinyl Azides. Organic Letters, 2016, 18, 992-995.	4.6	27
772	Synthesis and characterization of a novel polyoxometalate–Cu(II) hybrid catalyst for efficient synthesis of triazols. Polyhedron, 2016, 115, 61-66.	2.2	13
773	Metal-catalyzed azide-alkyne "click―reactions: Mechanistic overview and recent trends. Coordination Chemistry Reviews, 2016, 316, 1-20.	18.8	271
774	Ruthenium photoredox-triggered phospholipid membrane formation. Organic and Biomolecular Chemistry, 2016, 14, 5555-5558.	2.8	23
775	Preparation of well-defined fibrous hydrogels via electrospinning and in situ "click chemistry― RSC Advances, 2016, 6, 27871-27878.	3.6	7
776	Maleimide-functionalized poly(2-ethyl-2-oxazoline): synthesis and reactivity. Polymer Chemistry, 2016, 7, 2419-2426.	3.9	10
777	Synthesis and Evaluation of Novel Quinazolinone-1,2,3-Triazoles as Inhibitors of Lipoxygenase. Journal of Chemical Research, 2016, 40, 188-191.	1.3	13

#	Article	IF	CITATIONS
778	N–H and S–H insertions over Cu(I)-zeolites as heterogeneous catalysts. Journal of Molecular Catalysis A, 2016, 417, 10-18.	4.8	20
779	Transition-Metal-Catalyzed Bioorthogonal Cycloaddition Reactions. Topics in Current Chemistry, 2016, 374, 2.	5.8	18
780	Efficient synthesis of polyoxazoline-silica hybrid nanoparticles by using the "grafting-onto―approach. Polymer Chemistry, 2016, 7, 1271-1280.	3.9	27
781	When CuAAC 'Click Chemistry' goes heterogeneous. Catalysis Science and Technology, 2016, 6, 923-957.	4.1	132
782	An efficient and recyclable thiourea-supported copper(<scp>i</scp>) chloride catalyst for azide–alkyne cycloaddition reactions. Green Chemistry, 2016, 18, 2534-2541.	9.0	55
783	A simple and versatile design concept for fluorophore derivatives with intramolecular photostabilization. Nature Communications, 2016, 7, 10144.	12.8	106
784	Porphyrin-based mixed-valent Ag(<scp>i</scp>)/Ag(<scp>ii</scp>) and Cu(<scp>i</scp>)/Cu(<scp>ii</scp>) networks as efficient heterogeneous catalysts for the azide–alkyne "click―reaction and promising oxidation of ethylbenzene. Chemical Communications, 2016, 52, 1373-1376.	4.1	43
785	Kinetics of bulk photo-initiated copper(<scp>i</scp>)-catalyzed azide–alkyne cycloaddition (CuAAC) polymerizations. Polymer Chemistry, 2016, 7, 603-612.	3.9	52
786	Heterothiometallic clusters as robust and efficient copper(I) catalysts for azide–alkyne [3 + 2] cycloadditions. Catalysis Communications, 2016, 73, 103-108.	3.3	10
787	Efficient conversion of primary azides to aldehydes catalyzed by active site variants of myoglobin. Chemical Science, 2016, 7, 234-239.	7.4	40
788	Controlled Radical Polymerization at and from Solid Surfaces. Advances in Polymer Science, 2016, , .	0.8	5
789	"Click―reaction: An alternative tool for new architectures of porphyrin based derivatives. Coordination Chemistry Reviews, 2016, 306, 1-42.	18.8	76
790	Triazolylidene Metal Complexes Tagged with a Bodipy Chromophore: Synthesis and Monitoring of Ligand Exchange Reactions. Organometallics, 2017, 36, 1469-1478.	2.3	20
791	Computational investigations on structural and electronic properties of Cul nanoparticles immobilized on modified poly(styrene- <i>co</i> -maleic anhydride), leading to an unexpected but efficient catalyzed synthesis of 1,4-dihydropyridine via Hantzsch pyridine synthesis. Canadian Journal of Chemistry, 2017, 95, 530-536.	1.1	23
792	Invention of stimulusâ€responsive peptideâ€bondâ€cleaving residue (Spr) and its application to chemical biology tools. Journal of Peptide Science, 2017, 23, 505-513.	1.4	5
793	Transient Catalytic Activity of a Triazoleâ€based Gelator Regulated by Molecular Gel Assembly/Disassembly. ChemistrySelect, 2017, 2, 854-862.	1.5	10
794	Heterogeneous cobalt catalysts for selective oxygenation of alcohols to aldehydes, esters and nitriles. RSC Advances, 2017, 7, 1498-1503.	3.6	36
795	Hydrotrope promoted in situ azidonation followed by copper catalyzed regioselective synthesis of β-hydroxytriazoles. Research on Chemical Intermediates, 2017, 43, 4175-4187.	2.7	4

#	Article	IF	CITATIONS
796	The αâ€Thioglycoligase Derived from a GH89 αâ€ <i>N</i> â€Acetylglucosaminidase Synthesises αâ€ <i>N</i> â€Acetylglucosamineâ€Based Glycosides of Biomedical Interest. Advanced Synthesis and Catalysis, 2017, 359, 663-676.	4.3	15
797	Integration of CuAAC Polymerization and Controlled Radical Polymerization into Electron Transfer Mediated "Clickâ€Radical―Concurrent Polymerization. Macromolecular Rapid Communications, 2017, 38, 1600733.	3.9	15
798	Click chemistry approach for the regioselective synthesis of iso-indoline-1,3-dione-linked 1,4 and 1,5 coumarinyl 1,2,3-triazoles and their photophysical properties. Synthetic Communications, 2017, 47, 722-733.	2.1	13
799	Determining the Origin of Rateâ€Independent Chemoselectivity in CuAAC Reactions: An Alkyneâ€Specific Shift in Rateâ€Determining Step. Angewandte Chemie, 2017, 129, 3362-3366.	2.0	11
800	The application of self-assembled nanostructures in peptide-based subunit vaccine development. European Polymer Journal, 2017, 93, 670-681.	5.4	57
801	Functional organic click-materials: application in phosphorescent organic light emitting diodes. RSC Advances, 2017, 7, 12150-12160.	3.6	9
802	Determining the Origin of Rateâ€Independent Chemoselectivity in CuAAC Reactions: An Alkyneâ€Specific Shift in Rateâ€Determining Step. Angewandte Chemie - International Edition, 2017, 56, 3314-3318.	13.8	32
803	Catch-and-Release of Target Cells Using Aptamer-Conjugated Electroactive Zwitterionic Oligopeptide SAM. Scientific Reports, 2017, 7, 43375.	3.3	8
806	Electrochemically mediated atom transfer radical polymerization (eATRP). Progress in Polymer Science, 2017, 69, 47-78.	24.7	295
807	Thermal and Photoinduced Copper-Promoted C–Se Bond Formation: Synthesis of 2-Alkyl-1,2-benzisoselenazol-3(2 <i>H</i>)-ones and Evaluation against <i>Mycobacterium tuberculosis</i> . Journal of Organic Chemistry, 2017, 82, 3844-3854.	3.2	45
808	Multifunctional Dendrimer Formation Using Thiolactone Chemistry. Macromolecular Chemistry and Physics, 2017, 218, 1600575.	2.2	15
809	Hydrophilic–hydrophobic phase transition of photoresponsive linear and macrocyclic poly(2-isopropyl-2-oxazoline)s. RSC Advances, 2017, 7, 10074-10080.	3.6	17
810	Surface Immobilization of Molecular Electrocatalysts for Energy Conversion. Chemistry - A European Journal, 2017, 23, 7626-7641.	3.3	159
811	Synthesis of fully-substituted 1,2,3-triazoles via copper(<scp>i</scp>)-catalyzed three-component coupling of sulfoximines, alkynes and azides. Organic Chemistry Frontiers, 2017, 4, 938-942.	4.5	29
812	Regioselective Zn(OAc) ₂ -catalyzed azide–alkyne cycloaddition in water: the green click-chemistry. Organic Chemistry Frontiers, 2017, 4, 978-985.	4.5	44
813	Influence of side chain characteristics on the aggregation-induced emission (AIE) properties ofÂtetrasubstituted tetraphenylethylene (TPE). RSC Advances, 2017, 7, 14279-14282.	3.6	10
814	Rapidly accessible "click―rotaxanes utilizing a single amide hydrogen bond templating motif. Organic and Biomolecular Chemistry, 2017, 15, 2797-2803.	2.8	15
815	Synthesis and Characterisation of Chiral Triazoleâ€Based Halogenâ€Bond Donors: Halogen Bonds in the Solid State and in Solution. Chemistry - A European Journal, 2017, 23, 7337-7344.	3.3	52

#	Article	IF	CITATIONS
816	Efficient siRNA–peptide conjugation for specific targeted delivery into tumor cells. Chemical Communications, 2017, 53, 2870-2873.	4.1	16
817	Cu(I)@Fe 3 O 4 nanoparticles supported on imidazoliumâ€based ionic liquidâ€grafted cellulose: Green and efficient nanocatalyst for multicomponent synthesis of N â€sulfonylamidines and N â€sulfonylacrylamidines. Applied Organometallic Chemistry, 2017, 31, e3788.	3.5	19
818	Dicopper Cu(I)Cu(I) and Cu(I)Cu(II) Complexes in Copper-Catalyzed Azide–Alkyne Cycloaddition. Journal of the American Chemical Society, 2017, 139, 5378-5386.	13.7	108
819	Recyclable Acid–Base Bifunctional Core–Shell–Shell Nanosphere Catalyzed Synthesis of 5â€Arylâ€l <i>H</i> â€l,2,3â€triazoles through the "Oneâ€Pot―Cyclization of Aldehydes, Nitromethane, and Sodium Azide. ChemCatChem, 2017, 9, 3131-3137.	3.7	25
820	Synthesis and hybridization properties of oligonucleotide analogues with novel acyclic triazole internucleotide linkages. Bioorganic Chemistry, 2017, 72, 161-167.	4.1	3
821	Cul nanoparticles on modified poly(styrene-co-maleic anhydride) as an effective catalyst in regioselective synthesis of 1,2,3-triazoles via click reaction: a joint experimental and computational study. Journal of Coordination Chemistry, 2017, 70, 1815-1834.	2.2	21
822	Exposure to air boosts CuAAC reactions catalyzed by PEG-stabilized Cu nanoparticles. Chemical Communications, 2017, 53, 5384-5387.	4.1	29
823	Unclicking the Click: Metalâ€Assisted Mechanochemical Cycloreversion of Triazoles Is Possible. Angewandte Chemie - International Edition, 2017, 56, 7745-7749.	13.8	21
824	Aqueous 1,3-dipolar cycloadditions promoted by copper nanoparticles in polydiacetylene micelles. Green Chemistry, 2017, 19, 3112-3115.	9.0	37
825	Facile solid-phase ruthenium assisted azide-alkyne cycloaddition (RuAAC) utilizing the Cpâ^—RuCl(COD)-catalyst. Tetrahedron Letters, 2017, 58, 2272-2275.	1.4	9
826	Synthesis of Mono- and Binuclear Cu(II) Complexes Bearing Unsymmetrical Bipyridine–Pyrazole–Amine Ligand and Their Applications in Azide–Alkyne Cycloaddition. Organometallics, 2017, 36, 2116-2125.	2.3	23
827	Copper(I)-Catalyzed Interrupted Click Reaction with TMSCF ₃ : Synthesis of 5-Trifluoromethyl 1,2,3-Triazoles. Organic Letters, 2017, 19, 2881-2884.	4.6	65
828	Self-assembly of poly(vinylidene fluoride)-block-poly(2-(dimethylamino)ethylmethacrylate) block copolymers prepared by CuAAC click coupling. Polymer Chemistry, 2017, 8, 5203-5211.	3.9	29
829	DNA-Wrapped Single-Walled Carbon Nanotube Assemblies. Industrial & Engineering Chemistry Research, 2017, 56, 5302-5308.	3.7	11
830	Chalcone: A Privileged Structure in Medicinal Chemistry. Chemical Reviews, 2017, 117, 7762-7810.	47.7	938
831	Transmetalation of Alkylzirconocenes in Copperâ€Catalyzed Alkyl–Alkynyl Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2017, 359, 2425-2433.	4.3	10
832	From 1-Sulfonyl-4-aryl-1,2,3-triazoles to 1-Allenyl-5-aryl-1,2,3-triazoles. Journal of Organic Chemistry, 2017, 82, 5294-5300.	3.2	18
833	Unclicking the Click: Metalâ€Assisted Mechanochemical Cycloreversion of Triazoles Is Possible. Angewandte Chemie, 2017, 129, 7853-7857.	2.0	2

#	Article	IF	CITATIONS
834	Tungsten(VI)–Copper(I)–Sulfur Cluster-Supported Metal–Organic Frameworks Bridged by <i>in Situ</i> Click-Formed Tetrazolate Ligands. Inorganic Chemistry, 2017, 56, 5669-5679.	4.0	33
835	An efficient Cu-catalyzed azide–alkyne cycloaddition (CuAAC) reaction in aqueous medium with a zwitterionic ligand, betaine. Catalysis Science and Technology, 2017, 7, 2450-2456.	4.1	28
836	Synthesis and anticancer activity of novel aza-artemisinin derivatives. Bioorganic and Medicinal Chemistry, 2017, 25, 3671-3676.	3.0	32
837	Strategy for Conditional Orthogonal Sequential CuAAC Reactions Using a Protected Aromatic Ynamine. Journal of Organic Chemistry, 2017, 82, 5461-5468.	3.2	17
838	Copper-Catalyzed Transformation of Hydrazones into Halogenated Azabutadienes, Versatile Building Blocks for Organic Synthesis. ACS Catalysis, 2017, 7, 205-209.	11.2	42
839	Azidoperfluoroalkanes: Synthesis and Application in Copper(I) atalyzed Azide–Alkyne Cycloaddition. Angewandte Chemie - International Edition, 2017, 56, 346-349.	13.8	54
840	Highly sensitive and selective detection of mercury (II) based on a zirconium metal-organic framework in aqueous media. Journal of Solid State Chemistry, 2017, 253, 277-281.	2.9	57
841	Synthesis of tetrafluoroethylene- and tetrafluoroethyl-containing azides and their 1,3-dipolar cycloaddition as synthetic application. Organic and Biomolecular Chemistry, 2017, 15, 4962-4965.	2.8	26
842	Methods Utilizing First-Row Transition Metals in Natural Product Total Synthesis. Chemical Reviews, 2017, 117, 11680-11752.	47.7	176
843	A flow strategy for the rapid, safe and scalable synthesis of N-H 1, 2, 3-triazoles via acetic acid mediated cycloaddition between nitroalkene and NaN3. Tetrahedron, 2017, 73, 3959-3965.	1.9	21
844	Acyclic Nucleoside Phosphonates Containing 9â€Deazahypoxanthine and a Fiveâ€Membered Heterocycle as Selective Inhibitors of Plasmodial 6â€Oxopurine Phosphoribosyltransferases. ChemMedChem, 2017, 12, 1133-1141.	3.2	18
845	Copper(I)-catalysed regioselective synthesis of pyrazolo[5,1-c]-1,2,4-triazoles: A DFT mechanistic study. Tetrahedron, 2017, 73, 4653-4662.	1.9	5
846	Scalable and practical synthesis of clickable Cu-chelating azides. Chemical Communications, 2017, 53, 7890-7893.	4.1	12
847	Synthesis, characterization, and pharmacological studies of ferrocene-1H-1,2,3-triazole hybrids. Journal of Molecular Structure, 2017, 1146, 536-545.	3.6	41
848	Chemical synthesis of biomimetic hydrogels for tissue engineering. Polymer International, 2017, 66, 1787-1799.	3.1	16
849	Assembly of [2]Rotaxanes in Water. European Journal of Organic Chemistry, 2017, 2017, 4091-4103.	2.4	8
850	Copper-Catalyzed Cross-Dehydrogenative <i>N</i> ² -Coupling of <i>NH</i> -1,2,3-Triazoles with <i>N</i> , <i>N</i> -Dialkylamides: <i>N</i> -Amidoalkylation of <i>NH</i> -1,2,3-Triazoles. Journal of Organic Chemistry, 2017, 82, 6163-6171.	3.2	41
851	Diversity-oriented synthesis of heterocycles and macrocycles by controlled reactions of oxetanes with α-iminocarbenes. Chemical Science, 2017, 8, 5713-5720.	7.4	41

#	Article	IF	CITATIONS
852	Copper(<scp>ii</scp>) catalyzed iodine-promoted oxidative cyclization of 2-amino-1,3,5-triazines and chalcones: synthesis of aroylimidazo[1,2-a][1,3,5]triazines. Organic and Biomolecular Chemistry, 2017, 15, 5564-5570.	2.8	16
853	Base-mediated formal [3+2] cycloaddition of β,γ-alkenyl esters and p-TsN3 for the synthesis of pyrazoles. Science Bulletin, 2017, 62, 493-496.	9.0	18
854	Copper(I) atalyzed Oneâ€Pot Sequential [3+2]/[8+2] Annulations for the (<i>Z</i>)â€Selective Construction of Heterocyclic Diazabicyclo[5.3.0]decatrienes. Advanced Synthesis and Catalysis, 2017, 359, 1854-1859.	4.3	20
855	Synthesis and structure of 3,4,5-triazidopyridine-2,6-dicarbonitrile possessing the record positive heat of formation. Mendeleev Communications, 2017, 27, 116-118.	1.6	3
856	Real-time HPLC-MS reaction progress monitoring using an automated analytical platform. Reaction Chemistry and Engineering, 2017, 2, 309-314.	3.7	57
857	Electroactive polymer/carbon nanotube hybrid materials for energy storage synthesized via a "grafting to―approach. RSC Advances, 2017, 7, 17301-17310.	3.6	30
858	"Anti-Michael addition―of Grignard reagents to sulfonylacetylenes: synthesis of alkynes. Organic and Biomolecular Chemistry, 2017, 15, 3901-3908.	2.8	8
859	Bench-Stable 5-Stannyl Triazoles by a Copper(I)-Catalyzed Interrupted Click Reaction: Bridge to Trifluoromethyltriazoles and Trifluoromethylthiotriazoles. Organic Letters, 2017, 19, 2098-2101.	4.6	62
860	Influence of a Single Catenane on the Solid-State Properties of Mechanically Linked Polymers. ACS Macro Letters, 2017, 6, 468-472.	4.8	15
861	Is Single-Molecule Fluorescence Spectroscopy Ready To Join the Organic Chemistry Toolkit? A Test Case Involving Click Chemistry. Journal of Organic Chemistry, 2017, 82, 5011-5019.	3.2	13
863	Synthesis of 5-organostibano-1 H -1,2,3-triazoles by Cu-catalyzed azide-alkyne cycloaddition and their application in the acyl-induced deantimonation for the preparation of fully substituted 5-acyl-1,2,3-triazoles. Tetrahedron, 2017, 73, 2614-2622.	1.9	14
864	Structure and photoluminescence of cubane-like [Cu4l4] cluster-based 1D coordination polymer assembled with bis(triazole)pyridine ligand. Journal of Organometallic Chemistry, 2017, 849-850, 137-141.	1.8	8
865	Synthesis, in vitro antiproliferative activity and kinase profile of new benzimidazole and benzotriazole derivatives. Bioorganic Chemistry, 2017, 72, 1-10.	4.1	19
866	"Click―access to multilayer functionalized Au surface: A terpyridine patterning example. Materials Science and Engineering C, 2017, 75, 1343-1350.	7.3	5
867	Tuneable reversible redox of cobalt(<scp>iii</scp>) carbazole complexes. Dalton Transactions, 2017, 46, 4696-4710.	3.3	18
868	A UVâ€Cleavable Bottlebrush Polymer with <i>o</i> â€Nitrobenzyl‣inked Side Chains. Macromolecular Rapid Communications, 2017, 38, 1700007.	3.9	9
869	Chemical modification of functionalized polyhydroxyalkanoates via "Click―chemistry: A proof of concept. International Journal of Biological Macromolecules, 2017, 95, 796-808.	7.5	9
870	From the molecule to the mole: improving heterogeneous copper catalyzed click chemistry using single molecule spectroscopy. Chemical Communications, 2017, 53, 328-331.	4.1	13

#	Article	IF	CITATIONS
871	A revised mechanism for the $\hat{l}\pm$ -ketoacid hydroxylamine amide forming ligations. Organic and Biomolecular Chemistry, 2017, 15, 416-425.	2.8	8
872	Twoâ€inâ€One: λâ€Orthogonal Photochemistry on a Radical Photoinitiating System. Macromolecular Rapid Communications, 2017, 38, 1600598.	3.9	16
873	Copolymer Nanofilters with Charge-Patterned Domains for Enhanced Electrolyte Transport. Chemistry of Materials, 2017, 29, 762-772.	6.7	15
874	Azidoperfluoroalkanes: Synthesis and Application in Copper(I)â€Catalyzed Azide–Alkyne Cycloaddition. Angewandte Chemie, 2017, 129, 352-355.	2.0	12
875	Efficient and Regioselectivityâ€Tunable Metalâ€Free Polycycloaddition of Activated Azide and Alkynes. Macromolecular Rapid Communications, 2017, 38, 1600620.	3.9	16
876	Catalytic Promiscuity of <i>O</i> -GlcNAc Transferase Enables Unexpected Metabolic Engineering of Cytoplasmic Proteins with 2-Azido-2-deoxy-glucose. ACS Chemical Biology, 2017, 12, 206-213.	3.4	34
877	One-Pot Three-Component Synthesis of Enamine-Functionalized 1,2,3-Triazoles via Cu-Catalytic Azide–Alkyne Click (CuAAC) and Cu-Catalyzed Vinyl Nitrene Transfer Sequence. Organic Letters, 2017, 19, 10-13.	4.6	69
878	<i>De novo</i> vesicle formation and growth: an integrative approach to artificial cells. Chemical Science, 2017, 8, 7912-7922.	7.4	44
879	A general method of Suzuki–Miyaura cross-coupling of 4- and 5-halo-1,2,3-triazoles in water. Organic and Biomolecular Chemistry, 2017, 15, 9575-9578.	2.8	14
880	Carbohydrate-Functionalized 1,2,3-Triazolylidene Complexes for Application in Base-Free Alcohol and Amine Oxidation. Inorganic Chemistry, 2017, 56, 12410-12420.	4.0	29
881	Redox synthesis and high catalytic efficiency of transition-metal nanoparticle–graphene oxide nanocomposites. Journal of Materials Chemistry A, 2017, 5, 21947-21954.	10.3	20
882	Twisted Cycloalkynes and Remote Activation of "Click―Reactivity. CheM, 2017, 3, 629-640.	11.7	33
883	Application of Vinyl Azides in Chemical Synthesis: A Recent Update. Journal of Organic Chemistry, 2017, 82, 11981-11989.	3.2	106
884	Synthesis and Regioselective Nâ€2 Functionalization of 4â€Fluoroâ€5â€arylâ€1,2,3â€N <i>H</i> â€ŧriazoles. Europ Journal of Organic Chemistry, 2017, 2017, 6851-6860.	pean 2.4	29
885	5,5′-Bistriazoles as axially chiral, multidentate ligands: synthesis, configurational stability and catalytic application of their scandium(<scp>iii</scp>) complexes. Catalysis Science and Technology, 2017, 7, 4830-4841.	4.1	14
886	Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coordination Chemistry Reviews, 2017, 353, 1-57.	18.8	136
887	Synthesis of bicyclic tripeptides inspired by the ABC-ring system of vancomycin through ruthenium-based cyclization chemistries. Tetrahedron Letters, 2017, 58, 4542-4546.	1.4	12
888	Use of ligand-assisted click reactions for the rapid synthesis of novel 1,2,3-triazole pharmacophore-based 1,2,4-triazines and their benzo-fused analogues. Tetrahedron, 2017, 73, 5872-5882.	1.9	17

#	Article	IF	CITATIONS
889	A platform for high-throughput screening of DNA-encoded catalyst libraries in organic solvents. Chemical Science, 2017, 8, 7072-7076.	7.4	30
890	Prevention of aerobic oxidation of copper nanoparticles by anti-galvanic alloying: gold versus silver. Chemical Communications, 2017, 53, 11134-11137.	4.1	17
891	Construction of Four Copper Coordination Polymers Derived from a Tetra-Pyridyl-Functionalized Calix[4]arene: Synthesis, Structural Diversity, and Catalytic Applications in the A ³ (Aldehyde, Alkyne, and Amine) Coupling Reaction. Crystal Growth and Design, 2017, 17, 5441-5448.	3.0	15
892	Simple ZnEt ₂ as a catalyst in carbodiimide hydroalkynylation: structural and mechanistic studies. Dalton Transactions, 2017, 46, 12923-12934.	3.3	6
893	CuAAC-Based Click Chemistry in Self-Healing Polymers. Accounts of Chemical Research, 2017, 50, 2610-2620.	15.6	137
894	Rhodium-Catalyzed Azide–Alkyne Cycloaddition of Internal Ynamides: Regioselective Assembly of 5-Amino-Triazoles under Mild Conditions. ACS Catalysis, 2017, 7, 7529-7534.	11.2	69
895	Batch and Continuous-Flow Huisgen 1,3-Dipolar Cycloadditions with an Amphiphilic Resin-Supported Triazine-Based Polyethyleneamine Dendrimer Copper Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 10722-10734.	6.7	65
896	Efficient synthesis of novel <i>β</i> -sitosterol scaffolds containing 1,2,3-triazole via copper(l)-catalyzed click reaction under microwave irradiation. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 717-724.	0.7	3
897	Exploring Structural Parameters for Pretargeting Radioligand Optimization. Journal of Medicinal Chemistry, 2017, 60, 8201-8217.	6.4	52
898	Flow-IEG enables programmable thermodynamic properties in sequence-defined unimolecular macromolecules. Polymer Chemistry, 2017, 8, 5786-5794.	3.9	23
899	Silver-Catalyzed Cascade 1,6-Addition/Cyclization of <i>para</i> -Quinone Methides with Propargyl Malonates: An Approach to Spiro[4.5]deca-6,9-dien-8-ones. Journal of Organic Chemistry, 2017, 82, 8743-8751.	3.2	52
900	B(C6F5)3-catalyzed synthesis of benzylic azides. Synthetic Communications, 2017, 47, 1771-1776.	2.1	1
901	Adapting the Glaser Reaction for Bioconjugation: Robust Access to Structurally Simple, Rigid Linkers. Angewandte Chemie - International Edition, 2017, 56, 10438-10442.	13.8	21
902	An efficient (NHC) Copper (I)-catalyst for azide–alkyne cycloaddition reactions for the synthesis of 1,2,3-trisubstituted triazoles: Click chemistry. Inorganica Chimica Acta, 2017, 467, 21-32.	2.4	26
903	Adapting the Glaser Reaction for Bioconjugation: Robust Access to Structurally Simple, Rigid Linkers. Angewandte Chemie, 2017, 129, 10574-10578.	2.0	6
904	A straightforward and sustainable synthesis of 1,4-disubstituted 1,2,3-triazoles via visible-light-promoted copper-catalyzed azide–alkyne cycloaddition (CuAAC). RSC Advances, 2017, 7, 33967-33973.	3.6	22
905	New Fluorescent Nanoparticles for Ultrasensitive Detection of Nucleic Acids by Optical Methods. ChemBioChem, 2017, 18, 1599-1603.	2.6	3
906	Silver-Catalyzed Tandem C≡C Bond Hydroazidation/Radical Addition/Cyclization of Biphenyl Acetylene: One-Pot Synthesis of 6-Methyl Sulfonylated Phenanthridines. Organic Letters, 2017, 19, 4026-4029.	4.6	48

#	Article	IF	CITATIONS
907	Trifluoroacetic Anhydride Promoted Copper(I)â€Catalyzed Interrupted Click Reaction: From 1,2,3â€Triazoles to 3â€Trifluoromethylâ€&ubstituted 1,2,4â€Triazinones. Angewandte Chemie, 2017, 129, 10612-10616.	2.0	5
908	Mechanistic applications of click chemistry for pharmaceutical drug discovery and drug delivery. Drug Discovery Today, 2017, 22, 1604-1619.	6.4	70
909	Ruthenium atalyzed Azide–Thioalkyne Cycloadditions in Aqueous Media: A Mild, Orthogonal, and Biocompatible Chemical Ligation. Angewandte Chemie, 2017, 129, 10906-10910.	2.0	32
910	Rutheniumâ€Catalyzed Azide–Thioalkyne Cycloadditions in Aqueous Media: A Mild, Orthogonal, and Biocompatible Chemical Ligation. Angewandte Chemie - International Edition, 2017, 56, 10766-10770.	13.8	99
911	DFT studies on the mechanism of Ag ₂ CO ₃ â€catalyzed hydroazidation of unactivated terminal alkynes with TMSâ€N ₃ : An insight into the silver(I) activation mode. Journal of Computational Chemistry, 2017, 38, 2289-2297.	3.3	8
912	Herstellung fester polyfunktioneller Alkinylzinkpivalate mit verbesserter Luft―und Feuchtigkeitsstabilitä Angewandte Chemie, 2017, 129, 9364-9368.	2.0	9
913	Oneâ€Pot Synthesis of 4â€Arylâ€ <i><scp>NH</scp></i> â€1,2,3â€Triazoles through Threeâ€Component Reactior Aldehydes, Nitroalkanes and <scp>NaN₃</scp> . Chinese Journal of Chemistry, 2017, 35, 1808-1812.	n of 4.9	30
914	Copper-Catalyzed Oxidative Cross-Dehydrogenative Coupling/Oxidative Cycloaddition: Synthesis of 4-Acyl-1,2,3-Triazoles. Journal of Organic Chemistry, 2017, 82, 9198-9203.	3.2	42
915	An in vitro tag-and-modify protein sample generation method for single-molecule fluorescence resonance energy transfer. Journal of Biological Chemistry, 2017, 292, 15636-15648.	3.4	4
916	Cyclisation To Form Small, Medium and Large Rings by Use of Catalysed and Uncatalysed Azide–Alkyne Cycloadditions (AACs). European Journal of Organic Chemistry, 2017, 2017, 4678-4694.	2.4	20
917	Et ₂ NHâ€Mediated 1,3â€Dipolar Cycloaddition: Synthesis of 1â€(2â€(Organylselanyl)pyridinâ€3â€yl)â€1 <i>H</i> â€1,2,3â€triazoleâ€4â€carboxylate Derivatives. ChemistrySe 6645-6649.	lacs, 2017	7,2,
918	Copper(II)-assisted hydrolysis of cyclic ureas: Transformation of 1-(pyridin-2-yl)-2,3,7,8-tetrahydro-1H-imidazo[2,1-b][1,3,5]triazepin-5(6H)-ones into N1-[1-(pyridin-2-yl)imidazolidin-2-ylidene]-ethane-1,2-diamine ligands. Inorganica Chimica Acta, 2017, 467, 287-296.	2.4	4
919	Dual roles of substituted thiourea as reductant and ligand in CuAAC reaction. Tetrahedron Letters, 2017, 58, 3717-3721.	1.4	20
920	Nickel-Catalyzed Azide–Alkyne Cycloaddition To Access 1,5-Disubstituted 1,2,3-Triazoles in Air and Water. Journal of the American Chemical Society, 2017, 139, 12121-12124.	13.7	127
921	Excited state dynamics and conformations of a Cu(<scp>ii</scp>)-phthalocyanine-perylenebisimide dyad. Physical Chemistry Chemical Physics, 2017, 19, 22169-22176.	2.8	5
922	Temperatureâ€Mediated Template Release: Facile Growth of Copper(l) Mixed Ethynediide/Isopropylethynide Nanoclusters. Angewandte Chemie, 2017, 129, 16446-16450.	2.0	7
923	Synthesis of Diverse 11- and 12-Membered Macrolactones from a Common Linear Substrate Using a Single Biocatalyst. ACS Central Science, 2017, 3, 1304-1310.	11.3	21
924	Water-soluble and UV traceable isatoic anhydride-based reagents for bioconjugation. Organic and Biomolecular Chemistry, 2017, 15, 9599-9602.	2.8	9

#	Article	IF	CITATIONS
925	Exploring the regioselectivity in the cycloaddition of azides to alkynes catalyzed by dinuclear copper clusters (Cu2AAC reaction) using the topologies of â^‡2 Ï•(r) and â^‡â^‡2 Ï•(r). Journal of Molecular Modeling, 2017, 23, 337.	1.8	6
926	Temperatureâ€Mediated Template Release: Facile Growth of Copper(I) Mixed Ethynediide/Isopropylethynide Nanoclusters. Angewandte Chemie - International Edition, 2017, 56, 16228-16232.	13.8	34
927	Iridium-Catalyzed Highly Regioselective Azide–Ynamide Cycloaddition to Access 5-Amido Fully Substituted 1,2,3-Triazoles under Mild, Air, Aqueous, and Bioorthogonal Conditions. Organic Letters, 2017, 19, 6200-6203.	4.6	66
928	Click Chemistry: Mechanistic Insights into the Role of Amines Using Single-Molecule Spectroscopy. ACS Catalysis, 2017, 7, 8487-8492.	11.2	12
929	A one-pot, copper-catalyzed azidation/click reaction of aryl and heteroaryl bromides in an environmentally friendly deep eutectic solvent. Tetrahedron, 2017, 73, 7024-7029.	1.9	28
930	<i>>50th Anniversary Perspective</i> : Polymer Functionalization. Macromolecules, 2017, 50, 5215-5252.	4.8	318
931	Synthesis of 2,3′-spirobi[indolin]-2-ones enabled by a tandem nucleophilic benzylation/C(sp ²)–N cross-coupling reaction sequence. Organic and Biomolecular Chemistry, 2017, 15, 5887-5892.	2.8	9
932	Conformational study and stereodynamics of ortho-substituted ortho-terphenyl and its derivatives. Journal of Molecular Structure, 2017, 1147, 495-501.	3.6	1
933	Charge-transfer states in triazole linked donor–acceptor materials: strong effects of chemical modification and solvation. Physical Chemistry Chemical Physics, 2017, 19, 18055-18067.	2.8	19
934	Preparation of Solid Polyfunctional Alkynylzinc Pivalates with Enhanced Air and Moisture Stability for Organic Synthesis. Angewandte Chemie - International Edition, 2017, 56, 9236-9239.	13.8	26
935	Trifluoroacetic Anhydride Promoted Copper(I)â€Catalyzed Interrupted Click Reaction: From 1,2,3â€Triazoles to 3â€Trifluoromethylâ€Substituted 1,2,4â€Triazinones. Angewandte Chemie - International Edition, 2017, 56, 10476-10480.	13.8	60
936	Mechanism of CuAAC reaction: In acetic acid and aprotic conditions. Journal of Molecular Catalysis A, 2017, 426, 150-157.	4.8	12
937	A microwave-assisted new synthesis of sulfonylidene–sulfonamide via reactions of <i>N</i> -sulfonylketenimine and sodium arylsulfinates. Journal of Sulfur Chemistry, 2017, 38, 76-82.	2.0	4
938	Design, Synthesis, and Molecular Docking Studies of Pyrazine Containing 1,2,3â€Triazole Derivatives. Journal of Heterocyclic Chemistry, 2017, 54, 1492-1505.	2.6	3
939	Halogen bonding rotaxanes for nitrate recognition in aqueous media. Organic and Biomolecular Chemistry, 2017, 15, 153-159.	2.8	21
940	One-pot synthesis of electro-active polymer gels via Cu(0)-mediated radical polymerization and click chemistry. Polymer Chemistry, 2017, 8, 441-450.	3.9	17
941	Thermoresponsive Polymer Brushes on Organic Microspheres for Biomolecular Separation and Immobilization. Macromolecular Chemistry and Physics, 2017, 218, 1600432.	2.2	7
942	Enhanced proton conductivity at low humidity of proton exchange membranes with triazole moieties in the side chains. Journal of Membrane Science, 2017, 523, 480-486.	8.2	43

#	Article	IF	CITATIONS
943	1,2,3,-Triazole-Based Catalysts: From Metal- to Supramolecular Organic Catalysis. Chemical Record, 2017, 17, 485-498.	5.8	40
944	Catalyst-free synthesis of fused 1,2,3-triazole and isoindoline derivatives via an intramolecular azide–alkene cascade reaction. Green Chemistry, 2017, 19, 656-659.	9.0	36
945	Click synthesis, Hg 2+ sensor and Intramolecular fluorescence resonance energy transfer in novel BODIPY dendrons. Sensors and Actuators B: Chemical, 2017, 239, 226-234.	7.8	48
946	1 <i>H</i> â€1,2,3â€Triazole: From Structure to Function and Catalysis. Journal of Heterocyclic Chemistry, 2017, 54, 1677-1699.	2.6	30
947	Click chemistry for improving properties of bioresorbable polymers for medical applications. , 2017, , 303-329.		5
949	Fragment-Based Lead Discovery. Annual Reports in Medicinal Chemistry, 2017, , 371-439.	0.9	14
950	Synthesis and antibacterial activity of 1-N-(β-d-glucopyranosyl)-4-((1-substituted-1H-1,2,3-triazol-4-yl)ethoxymethyl)-1,2,3-triazoles. Arabian Journal of Chemistry, 2017, 10, S3508-S3514.	4.9	10
951	Solvent-free copper-catalyzed click chemistry for the synthesis of <i>N</i> -heterocyclic hybrids based on quinoline and 1,2,3-triazole. Beilstein Journal of Organic Chemistry, 2017, 13, 2352-2363.	2.2	40
952	Synthesis, effect of substituents on the regiochemistry and equilibrium studies of tetrazolo[1,5- <i>a</i>]pyrimidine/2-azidopyrimidines. Beilstein Journal of Organic Chemistry, 2017, 13, 2396-2407.	2.2	14
953	Binuclear Copper(I) Borohydride Complex Containing Bridging Bis(diphenylphosphino) Methane Ligands: Polymorphic Structures of [(µ2-dppm)2Cu2(η2-BH4)2] Dichloromethane Solvate. Crystals, 2017, 7, 318.	2.2	13
954	Lignocellulosic Micro- and Nanomaterials as Copper Frames for the Evaluation of the Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. Journal of Nanomaterials, 2017, 2017, 1-6.	2.7	8
955	Expanding the Scope of Cu(I) Catalyzed "Click Chemistry―with Abnormal NHCs: Three-Fold Click to Tris-Triazoles. Catalysts, 2017, 7, 262.	3.5	16
956	Efficient multicomponent synthesis of 1,2,3-triazoles catalyzed by Cu(II) supported on PEI@Fe\$_{3}\$O\$_{4}\$ MNPs in a water/PEG\$_{300}\$ system. Turkish Journal of Chemistry, 2017, 41, 294-307.	1.2	13
957	The Hydrophobic Effect Applied to Organic Synthesis: Recent Synthetic Chemistry "in Water― Chemistry - A European Journal, 2018, 24, 6672-6695.	3.3	275
958	Five-Coordinate Platinum(II) Compounds Containing Sugar Ligands: Synthesis, Characterization, Cytotoxic Activity, and Interaction with Biological Macromolecules. Inorganic Chemistry, 2018, 57, 3133-3143.	4.0	28
959	Thermoâ€Responsive Actuation of a DNA Origami Flexor. Advanced Functional Materials, 2018, 28, 1706410.	14.9	71
960	Highâ€Throughput Kinetic Analysis for Targetâ€Directed Covalent Ligand Discovery. Angewandte Chemie - International Edition, 2018, 57, 5257-5261.	13.8	59
961	Synthesis and Applications of Compartmentalised Molecular Polymer Brushes. Angewandte Chemie - International Edition, 2018, 57, 6982-6994.	13.8	127

#	Article	IF	CITATIONS
962	Highâ€Throughput Kinetic Analysis for Targetâ€Directed Covalent Ligand Discovery. Angewandte Chemie, 2018, 130, 5355-5359.	2.0	5
963	Postsynthetic Modification of Metal–Organic Frameworks through Nitrile Oxide–Alkyne Cycloaddition. Inorganic Chemistry, 2018, 57, 3348-3359.	4.0	23
964	Copperâ€Catalyzed Click Synthesis of Novel 1,2,3â€Triazoleâ€Linked Pyrimidines. ChemistrySelect, 2018, 3, 2594-2598.	1.5	5
965	[3+2] Cycloaddition of ruthenium azido complex with ethyl propiolate and related reactions. Journal of Organometallic Chemistry, 2018, 860, 72-77.	1.8	11
966	Chirality-controlled spontaneous twisting of crystals due to thermal topochemical reaction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2896-2901.	7.1	77
967	NHC-copper complexes immobilized on magnetic nanoparticles: Synthesis and catalytic activity in the CuAAC reactions. Journal of Catalysis, 2018, 362, 46-54.	6.2	21
968	Copper Mediated Threeâ€Component Reactions of Alkynes, Azides, and Propargylic Carbonates: Synthesis of 5â€Allenylâ€1,2,3â€Triazoles. Advanced Synthesis and Catalysis, 2018, 360, 2435-2439.	4.3	14
969	Facile Solvent―and Metalâ€Free Synthesis of Polymers Including Triazole by Click Reaction. ChemistrySelect, 2018, 3, 4124-4128.	1.5	1
970	Cu ^I â€Mediated Degradation of Polysaccharides Leads to Fragments with Narrow Polydispersities. European Journal of Organic Chemistry, 2018, 2018, 1449-1454.	2.4	3
971	Click chemistry approaches to expand the repertoire of PEG-based fluorinated surfactants for droplet microfluidics. RSC Advances, 2018, 8, 12960-12974.	3.6	16
972	Catalytic oxidation of benzyl alcohols by new Cu(II) complexes of 1,3-oxazolidine based ligand obtained from a solvent free reaction. Inorganica Chimica Acta, 2018, 478, 77-87.	2.4	36
973	Metal-free, highly regioselective sulfonylation of NH-1,2,3-triazoles with sodium sulfinates and thiosulfonates. Tetrahedron Letters, 2018, 59, 2014-2017.	1.4	24
974	Orthogonal Clickable Iron Oxide Nanoparticle Platform for Targeting, Imaging, and Onâ€Đemand Release. Chemistry - A European Journal, 2018, 24, 8624-8631.	3.3	13
975	Turning Off Transcription with Bacterial RNA Polymerase through CuAAC Click Reactions of DNA Containing 5â€Ethynyluracil. Chemistry - A European Journal, 2018, 24, 8311-8314.	3.3	20
976	Understanding the mechanism and regioselectivity of the copper(<scp>i</scp>) catalyzed [3 + 2] cycloaddition reaction between azide and alkyne: a systematic DFT study. RSC Advances, 2018, 8, 7670-7678.	3.6	67
977	A new high performance novolac-based polytriazole resin. High Performance Polymers, 2018, 30, 109-115.	1.8	6
978	Synthesis and biological evaluation of chalcone-triazole hybrid derivatives as 15-LOX inhibitors. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2018, 73, 77-83.	0.7	4
979	Synthesis and leishmanicidal activity of eugenol derivatives bearing 1,2,3-triazole functionalities. European Journal of Medicinal Chemistry, 2018, 146, 274-286.	5.5	49

#	Article	IF	CITATIONS
980	Copper-catalyzed decarboxylative regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles. Chemical Communications, 2018, 54, 2627-2630.	4.1	23
981	Ionic liquid syntheses <i>via</i> click chemistry: expeditious routes toward versatile functional materials. Chemical Communications, 2018, 54, 2944-2961.	4.1	52
982	Truncated concave octahedral Cu ₂ O nanocrystals with { <i>hkk</i> } high-index facets for enhanced activity and stability in heterogeneous catalytic azide–alkyne cycloaddition. Green Chemistry, 2018, 20, 832-837.	9.0	31
983	Glycosylated α-Azido Amino Acids: Versatile Intermediates in the Synthesis of Neoglycoconjugates. Synlett, 2018, 29, 904-907.	1.8	3
984	Building Rhodamine-BODIPY fluorescent platform using Click reaction: Naked-eye visible and multi-channel chemodosimeter for detection of Fe3+ and Hg2+. Sensors and Actuators B: Chemical, 2018, 260, 666-675.	7.8	57
985	Synthesis and characterization of porphyrin–DNA constructs for the self-assembly of modular energy transfer arrays. Journal of Materials Chemistry C, 2018, 6, 2452-2459.	5.5	19
986	Achieving Skeletal Diversity in Peptide Macrocycles through The Use of Heterocyclic Grafts. Chemistry - A European Journal, 2018, 24, 7074-7082.	3.3	19
987	Development of methodologies for the regioselective synthesis of four series of regioisomer isoxazoles from β-enamino diketones. RSC Advances, 2018, 8, 4773-4778.	3.6	16
988	Pt ^{II} Phosphors with Click-Derived 1,2,3-Triazole-Containing Tridentate Chelates. Organometallics, 2018, 37, 145-155.	2.3	31
989	A divergent synthesis to generate targeted libraries of inhibitors for endo-N-acetylglucosaminidases. Canadian Journal of Chemistry, 2018, 96, 248-254.	1.1	0
990	Investigation of Strain-Promoted Azide–Alkyne Cycloadditions in Aqueous Solutions by Capillary Electrophoresis. Journal of Organic Chemistry, 2018, 83, 604-613.	3.2	9
991	Practical Considerations, Challenges, and Limitations of Bioconjugation via Azide–Alkyne Cycloaddition. Bioconjugate Chemistry, 2018, 29, 686-701.	3.6	190
992	Synthesis of a heterogeneous Cu(OAc) ₂ -anchored SBA-15 catalyst and its application in the CuAAC reaction. New Journal of Chemistry, 2018, 42, 1612-1616.	2.8	12
993	Chemoselective triazole-phosphonamidate conjugates suitable for photorelease. Chemical Communications, 2018, 54, 763-766.	4.1	15
994	5′-Vitamin B ₁₂ derivatives suitable for bioconjugation <i>via</i> the amide bond. Organic and Biomolecular Chemistry, 2018, 16, 936-943.	2.8	4
995	Highly Stable Copper(I)-Based Metal–Organic Framework Assembled with Resorcin[4]arene and Polyoxometalate for Efficient Heterogeneous Catalysis of Azide–Alkyne "Click―Reaction. ACS Applied Materials & Interfaces, 2018, 10, 2628-2636.	8.0	88
996	Fabrication of AIE-active fluorescent polymeric nanoparticles with red emission through a facile catalyst-free amino-yne click polymerization. Dyes and Pigments, 2018, 151, 123-129.	3.7	20
997	Light Harvesting for Rapid and Selective Reactions: Click Chemistry with Strain-Loadable Alkenes. CheM, 2018, 4, 124-137.	11.7	47

#	Article	IF	Citations
998	Rhodium(I) atalyzed Azideâ€Alkyne Cycloaddition (RhAAC) of Internal Alkynylphosphonates with High Regioselectivities under Mild Conditions. Advanced Synthesis and Catalysis, 2018, 360, 2429-2434.	4.3	37
999	Copper(<scp>ii</scp>)-benzotriazole coordination compounds in click chemistry: a diagnostic reactivity study. Dalton Transactions, 2018, 47, 10491-10508.	3.3	16
1000	Site-Directed Immobilization of Bone Morphogenetic Protein 2 to Solid Surfaces by Click Chemistry. Journal of Visualized Experiments, 2018, , .	0.3	5
1001	Computational investigations of click-derived 1,2,3-triazoles as keystone ligands for complexation with transition metals: a review. RSC Advances, 2018, 8, 12232-12259.	3.6	33
1002	Copper(I)-Catalyzed Synthesis of 1,4-Disubstituted 1,2,3-Triazoles from Azidoformates and Aryl Terminal Alkynes. Journal of Organic Chemistry, 2018, 83, 4805-4811.	3.2	21
1003	Electrolytic copper as cheap and effective catalyst for one-pot triazole synthesis. Scientific Reports, 2018, 8, 4496.	3.3	4
1004	CTAB promoted CuI catalyzed green and economical synthesis of 1,4-disubstituted-1,2,3-triazoles. Synthetic Communications, 2018, 48, 1206-1212.	2.1	14
1005	Functionalization of polyfluorene-wrapped carbon nanotubes <i>via</i> copper-mediated azide–alkyne cycloaddition. Polymer Chemistry, 2018, 9, 2873-2879.	3.9	23
1006	Copper-Catalyzed Synthesis of Tetrasubstituted Enynylboronates via Chemo-, Regio-, and Stereoselective Borylalkynylation. Organic Letters, 2018, 20, 2104-2107.	4.6	29
1007	De Novo Ring-Forming Consecutive Four-Component Syntheses of 4-Pyrazolyl-1,2,3-triazoles from (Triisopropylsilyl)butadiyne as a C4 Building Block. Journal of Organic Chemistry, 2018, 83, 4851-4858.	3.2	14
1008	Copper(II) Nitrate Catalyzed Azide–Alkyne Cycloaddition Reaction: Study the Effect of Counter Ion, Role of Ligands and Catalyst Structure. Catalysis Letters, 2018, 148, 1315-1323.	2.6	8
1009	Carbon nanotube–copper ferrite-catalyzed aqueous 1,3-dipolar cycloaddition of <i>in situ</i> -generated organic azides with alkynes. Chemical Communications, 2018, 54, 3644-3647.	4.1	27
1010	Glycidyl Triazolyl Polymers: Poly(ethylene glycol) Derivatives Functionalized by Azide–Alkyne Cycloaddition Reaction. Macromolecular Rapid Communications, 2018, 39, e1700825.	3.9	15
1011	Copper-polymer nanocomposite: An efficient catalyst for green Huisgen click synthesis. Tetrahedron Letters, 2018, 59, 1583-1586.	1.4	19
1012	Smart N-Heterocyclic Carbene Ligands in Catalysis. Chemical Reviews, 2018, 118, 9988-10031.	47.7	759
1013	Large-scale separation of single-walled carbon nanotubes by electronic type using click chemistry. Applied Surface Science, 2018, 429, 278-283.	6.1	12
1014	Claycop/hydrazine: A new and highly efficient recyclable/reusable catalytic system for 1,4â€disubstitutedâ€1,2,3â€triazole synthesis under solventâ€free conditions. Applied Organometallic Chemistry, 2018, 32, e3931.	3.5	13
1015	Metal-based nanoparticles dispersed in glycerol: An efficient approach for catalysis. Catalysis Today, 2018, 310, 98-106.	4.4	26

#	Article	IF	CITATIONS
1016	Synthesis, characterization and computational study of Cul nanoparticles immobilized on modified poly (styreneâ€coâ€maleic anhydride) as a green, efficient and recyclable heterogeneous catalyst in the synthesis of 1,4â€disubstituted 1,2,3â€triazoles via click reaction. Applied Organometallic Chemistry, 2018, 32, e3913.	3.5	24
1017	Self-catalytic stabilized Ag-Cu nanoparticles with tailored SERS response for plasmonic photocatalysis. Applied Surface Science, 2018, 434, 265-272.	6.1	50
1018	Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green Chemistry, 2018, 20, 86-107.	9.0	107
1019	Copper(I)–N-Heterocyclic Carbene Complexes as Efficient Catalysts for the Synthesis of 1,4-Disubstituted 1,2,3-Sulfonyltriazoles in Air. Organometallics, 2018, 37, 679-683.	2.3	12
1020	An expedient â€~click' approach for the synthetic evaluation of esterâ€ŧriazoleâ€ŧethered organosilica conjugates. Applied Organometallic Chemistry, 2018, 32, e4028.	3.5	2
1021	Diversified polyoxovanadate derivatives obtained by copper(<scp>i</scp>)-catalysed azide–alkyne cycloaddition reaction: their synthesis and structural characterization. Dalton Transactions, 2018, 47, 577-584.	3.3	20
1022	A Trifunctional Linker for Purified 3D Assembled Peptide Structure Arrays. Small Methods, 2018, 2, 1700205.	8.6	5
1023	Functional metal complexes from CuAAC "click―bidentate and tridentate pyridyl-1,2,3-triazole ligands. Dalton Transactions, 2018, 47, 997-1002.	3.3	43
1024	An efficient synthesis of 4,5-disubstituted-2H-1,2,3-triazoles from nitroallylic derivatives via a cycloaddition–denitration process. New Journal of Chemistry, 2018, 42, 980-987.	2.8	28
1025	Honey mediated green synthesis of graphene based NiO2/Cu2O nanocomposite (Gr@NiO2/Cu2O NCs): Catalyst for the synthesis of functionalized Schiff-base derivatives. Journal of Alloys and Compounds, 2018, 738, 56-71.	5.5	20
1026	Silica based click-dibenzo-18-crown-6-ether high performance liquid chromatography stationary phase and its application in separation of fullerenes. Talanta, 2018, 178, 195-201.	5.5	15
1027	Synthesis, Characterization and Recyclable Cerium Loaded CuO Nanocatalyst for the Synthesis of 1, 4- Disubstituted 1, 2, 3-Triazoles and Propargylamines. Silicon, 2018, 10, 1095-1101.	3.3	5
1028	Synthese und Anwendung von kompartimentierten molekularen Polymerbürsten. Angewandte Chemie, 2018, 130, 7100-7113.	2.0	12
1029	Further enhancement of the clickability of doubly sterically-hindered aryl azides by <i>para</i> -amino substitution. Chemical Communications, 2018, 54, 13499-13502.	4.1	18
1030	A copper-catalyzed three component reaction of aryl acetylene, sulfonyl azide and enaminone to form iminolactone <i>via</i> 6l€ electrocyclization. Chemical Communications, 2018, 54, 13953-13956.	4.1	18
1031	Progress on Detection of Metals Ions by Functional Nucleic Acids Biosensor. Chinese Journal of Analytical Chemistry, 2018, 46, 995-1004.	1.7	11
1032	Step II: Target Validation. , 2018, , 33-76.		0
1033	Recent Progress on Grafting-onto Synthesis of Molecular Brushes by Reversible Deactivation Radical Polymerization and CuAAC Coupling Reaction. ACS Symposium Series, 2018, , 263-280.	0.5	3

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
1034	Aminoazole-Based Diversity-Oriented Synthesis of Heterocycles. Frontiers in Chemistry, 2018, 6, 527.	3.6	53
1035	Decoration of Coiled-Coil Peptides with <i>N</i> -Cysteine Peptide Thioesters As Cyclic Peptide Precursors Using Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) Click Reaction. Organic Letters, 2018, 20, 7493-7497.	4.6	5
1036	Facile Synthesis of 1,5-Diaryl-4-pyridyl-1,2,3-triaozle Derivatives. Chemical Research in Chinese Universities, 2018, 34, 923-928.	2.6	1
1037	In Situ Generation of Copper Nanoparticles by Rongalite and Their Use as Catalyst for Click Chemistry in Water. ChemistrySelect, 2018, 3, 13759-13764.	1.5	18
1038	Facile Synthesis of N-Phenyl Benzamidine Derivatives, Their Skin Protecting, and Anti-Aging Activity. Russian Journal of General Chemistry, 2018, 88, 2425-2431.	0.8	5
1039	Copper(I)-catalyzed tandem reaction: synthesis of 1,4-disubstituted 1,2,3-triazoles from alkyl diacyl peroxides, azidotrimethylsilane, and alkynes. Beilstein Journal of Organic Chemistry, 2018, 14, 2916-2922.	2.2	9
1040	Aqueous bile salt accelerated cascade synthesis of 1,2,3-triazoles from arylboronic acids. Tetrahedron Letters, 2018, 59, 4031-4035.	1.4	20
1041	Copper-catalyzed three-component reaction for the synthesis of fluoroalkoxyl imidates. Tetrahedron, 2018, 74, 6631-6634.	1.9	4
1042	Closing the Loop: Triazolylpyridine Coordination Drives the Selfâ€Assembly of Metallomacrocycles with Tunable Topologies for Smallâ€Molecule and Guanineâ€Quadruplex Recognition. Chemistry - A European Journal, 2018, 24, 18718-18734.	3.3	11
1043	A Direct P ₂ O ₅ â€Mediated Synthesis of Diverse Sulfurâ€Containing Triazoles <i>via</i> Alkylation of <i>NH</i> â€1,2,3â€triazoles with Dimethyl Sulfoxide. ChemistrySelect, 2018, 3, 10277-10280.	1.5	6
1044	A flow platform for degradation-free CuAAC bioconjugation. Nature Communications, 2018, 9, 4021.	12.8	30
1045	Ultrasound Assisted High-Throughput Synthesis of 1,2,3-Triazoles Libraries: A New Strategy for "Click― Copper-Catalyzed Azide-Alkyne Cycloaddition Using Copper(I/II) as a Catalyst. Catalysis Letters, 2018, 148, 3797-3810.	2.6	21
1046	Biomolecular Assemblies: Moving from Observation to Predictive Design. Chemical Reviews, 2018, 118, 11519-11574.	47.7	71
1047	Fishing with copper acetylides: Selective alkynylation of heteronucleophiles. Tetrahedron, 2018, 74, 6727-6736.	1.9	8
1048	To Loop or Not to Loop: Influence of Hinge Flexibility on Selfâ€Assembly Outcomes for Acridineâ€Based Triazolylpyridine Chelates with Zinc(II), Iron(II), and Copper(II). Chemistry - A European Journal, 2018, 24, 17318-17326.	3.3	1
1049	Opportunities for Lipid-Based Probes in the Field of Immunology. Current Topics in Microbiology and Immunology, 2018, 420, 283-319.	1.1	4
1050	Fluorescent probes for G-protein-coupled receptor drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 933-947.	5.0	37
1051	Synthesis of New Derivatives of 1,2,3â€Triazoleâ€Linked Phthalazineâ€1,4â€dione in Water: Experimental Aspec and Molecular Docking Calculations. ChemistrySelect, 2018, 3, 11042-11047.	ts 1.5	6

#	Article	IF	CITATIONS
1052	Synthesis of 1,4â€Disubstituted 1,2,3â€Triazoles via 1,3â€Dipolar Cycloaddition/C–N Coupling of Propargyl Alcohols/amines and Aryl Azides. Journal of Heterocyclic Chemistry, 2018, 55, 2683-2692.	2.6	2
1053	Chiral Guanidine/Copper Catalyzed Asymmetric Azideâ€Alkyne Cycloaddition/[2+2] Cascade Reaction. Angewandte Chemie, 2018, 130, 17094-17098.	2.0	6
1054	Chiral Guanidine/Copper Catalyzed Asymmetric Azideâ€Alkyne Cycloaddition/[2+2] Cascade Reaction. Angewandte Chemie - International Edition, 2018, 57, 16852-16856.	13.8	44
1055	On Water Cu@g ₃ N ₄ Catalyzed Synthesis of NHâ€1,2,3â€Triazoles via [2+3] Cycloadditions of Nitroolefins/Alkynes and Sodium Azide. ChemCatChem, 2018, 10, 5468-5474.	3.7	44
1056	Metalâ€Free Regioselective Chloroazidation of Internal Alkynes. Chemistry - A European Journal, 2018, 25, 981-984.	3.3	5
1057	Mechanism of the Visible-Light-Mediated Copper-Catalyzed Coupling Reaction of Phenols and Alkynes. Journal of the American Chemical Society, 2018, 140, 15099-15113.	13.7	50
1058	Synthesis of 1,3-Diynes via Cadiot–Chodkiewicz Coupling of Volatile, in Situ Generated Bromoalkynes. Organic Letters, 2018, 20, 6845-6849.	4.6	14
1059	Polypropylene-based graft copolymers via CuAAC click chemistry. EXPRESS Polymer Letters, 2018, 12, 418-428.	2.1	24
1060	Exploration of Antifungal Potential of Carbohydrateâ€Tethered Triazoles as CYP450 Inhibitors. ChemistrySelect, 2018, 3, 10762-10767.	1.5	5
1061	Salophen Copper(II) Complexâ€Assisted Click Reactions for Fast Synthesis of 1,2,3â€Triazoles Based on Naphthaleneâ€1,4â€dione Scaffold, Antibacterial Evaluation, and Molecular Docking Studies. Chemistry and Biodiversity, 2019, 16, e1800410.	2.1	11
1062	Regiodivergent Rhodium(I)-Catalyzed Azide–Alkyne Cycloaddition (RhAAC) To Access Either Fully Substituted Sulfonyl-1,2,3-triazoles under Mild Conditions. Organic Letters, 2018, 20, 6705-6709.	4.6	48
1063	Fast and pHâ€Independent Elimination of <i>trans</i> yclooctene by Using Aminoethylâ€Functionalized Tetrazines. Chemistry - A European Journal, 2018, 24, 18075-18081.	3.3	26
1064	Synthesis of Tetrahydrothiophene 1,1-Dioxides Fused to Oxazolidin-2-one and Morpholin-2-one Fragments. Russian Journal of Organic Chemistry, 2018, 54, 1061-1070.	0.8	3
1065	Catalyst-free synthesis of 4-acyl- <i>NH</i> -1,2,3-triazoles by water-mediated cycloaddition reactions of enaminones and tosyl azide. Beilstein Journal of Organic Chemistry, 2018, 14, 2348-2353.	2.2	37
1066	Overcoming Drug Resistance by Targeting Cancer Bioenergetics with an Activatable Prodrug. CheM, 2018, 4, 2370-2383.	11.7	85
1067	Alkyl Propiolates Participated [3+2] Annulation for the Switchable Synthesis of 1,5―and 1,4â€Disubstituted 1,2,3â€Triazoles Containing Ester Side Chain. ChemCatChem, 2018, 10, 5007-5011.	3.7	23
1068	Sustainable organophosphorus-catalysed Staudinger reduction. Green Chemistry, 2018, 20, 4418-4422.	9.0	26
1069	Copper catalyzed photoredox synthesis of α-keto esters, quinoxaline, and naphthoquinone: controlled oxidation of terminal alkynes to glyoxals. Chemical Science, 2018, 9, 7318-7326.	7.4	57

		CITATION REPORT	
#	Article	IF	CITATIONS
1070	Click Chemistry for Radionanomedicine Platform. Biological and Medical Physics Series, 2018, , 231-250.	0.4	0
1071	Peptide-based approaches to identify and characterize proteins that recognize histone post-translational modifications. Chinese Chemical Letters, 2018, 29, 1051-1057.	9.0	11
1072	Synthesis, Photochemical, Electrochemical and Cytotoxic Studies on Azobenzene Cored Dendrimer Decorated with Chalcone Motif. ChemistrySelect, 2018, 3, 5455-5460.	1.5	2
1073	Synthesis and Antibacterial Evaluation of 1,2,3â€Triazoleâ€based Quinazolines Using Click Chemistry in the Presence of Salophen Schiff Base Ligand. Journal of Heterocyclic Chemistry, 2018, 55, 1651-1657.	2.6	4
1075	Theoretical investigation of Banert cascade reaction. Royal Society Open Science, 2018, 5, 171075.	2.4	7
1076	Versatile Micropatterns of Nâ€Heterocyclic Carbenes on Gold Surfaces: Increased Thermal and Pattern Stability with Enhanced Conductivity. Angewandte Chemie - International Edition, 2018, 57, 11465-11469.	13.8	72
1077	Synthesis of novel carborane-containing terminal alkynes. Russian Chemical Bulletin, 2018, 67, 500-503.	1.5	2
1078	Copperâ€Free Synthesis of Glycidyl Triazolyl Polymers. Macromolecular Chemistry and Physics, 2018, 219, 1800147.	2.2	4
1079	A facile synthesis of diverse 5-arylated triazoles <i>via</i> a Cu-catalyzed oxidative interrupted click reaction with arylboronic acids in air. Organic Chemistry Frontiers, 2018, 5, 2463-2467.	4.5	21
1080	Vielseitige Mikrostrukturen aus Nâ€heterocyclischen Carbenen auf GoldoberflĤhen: ErhĶhte thermische und StrukturstabilitĤmit erhĶhter LeitfĤigkeit. Angewandte Chemie, 2018, 130, 11637-11641.	2.0	24
1081	Rhodium-catalyzed highly diastereoselective intramolecular [4 + 2] cycloaddition of 1,3-disubstituted allene-1,3-dienes. Organic Chemistry Frontiers, 2018, 5, 2680-2684.	4.5	13
1082	Exploiting Coupling of Boronic Acids with Triols for a pH-Dependent "Click-Declick―Chemistry. Journal of Organic Chemistry, 2018, 83, 9756-9773.	3.2	19
1083	Cobaltocene Reduction of Cu and Ag Salts and Catalytic Behavior of the Nanoparticles Formed. ACS Catalysis, 2018, 8, 8100-8106.	11.2	25
1084	Integration of genetic and metabolic features related to sialic acid metabolism distinguishes human breast cell subtypes. PLoS ONE, 2018, 13, e0195812.	2.5	24
1085	Preparation and Reactions of Mono- and Bis-Pivaloyloxyzinc Acetylides. Organic Letters, 2018, 20, 4601-4605.	4.6	16
1086	Improving Kinetics of "Click-Crosslinking―for Self-Healing Nanocomposites by Graphene-Supported Cu-Nanoparticles. Polymers, 2018, 10, 17.	4.5	12
1087	Catalyst Activation, Chemoselectivity, and Reaction Rate Controlled by the Counterion in the Cu(I)-Catalyzed Cycloaddition between Azide and Terminal or 1-Iodoalkynes. ACS Catalysis, 2018, 8, 7889-7897.	11.2	27
1088	Ultrasound Promoted Stepâ€Growth Polymerization and Polymer Crosslinking Via Copper Catalyzed Azide–Alkyne "Click―Reaction. Angewandte Chemie, 2018, 130, 11378-11382.	2.0	11

CITATION REPORT ARTICLE IF CITATIONS Ultrasound Promoted Stepâ€Growth Polymerization and Polymer Crosslinking Via Copper Catalyzed 13.8 54 Azide–Alkyne "Click―Reaction. Angewandte Chemie - International Edition, 2018, 57, 11208-11212. Chemoselective Organoclick–Click Sequence. Synthesis, 2018, 50, 4254-4262. 2.3 Copper(I)-Catalyzed Three-Component Click/Persulfuration Cascade: Regioselective Synthesis of 63 4.6 Triazole Disulfides. Organic Letters, 2018, 20, 2956-2959. Modern Trends of Organic Chemistry in Russian Universities. Russian Journal of Organic Chemistry, 0.8 2018, 54, 157-371. Intramolecular Copperâ€Containing Hyperbranched Polytriazole Assemblies for Labelâ€Free Cellular Bioimaging and Redoxâ€Triggered Copper Complex Delivery. Macromolecular Rapid Communications, 3.9 13 2018, 39, e1800171. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. 5.5 European Journal of Medicinal Chemistry, 2018, 154, 172-181. Towards click chemistry: Multicomponent reactions via combinations of name reactions. 1.9 50 Tetrahedron, 2018, 74, 3391-3457. Novel synthesis of 5-iodo-1,2,3-triazoles using an aqueous iodination system under air. Tetrahedron 9 1.4 Letters, 2018, 59, 3563-3566. Decoration of polyfluorene-wrapped carbon nanotube thin films <i>via</i> 3.9 20 azide–alkyne cýcloaddition. Polymer Chemistry, 2018, 9, 4460-4467. Theoretical Study of Propylene Epoxidation over Cu₂O(111) Surface: Activity of O^{2–}, O[–], and O₂[–] Species. Journal of Physical Chemistry C, 2018, 122, 21500-21513. 3.1 34 Click functionalization of thin films fabricated by roll-to-roll printing of thermoplastic/thermoset 0 2.1 core-shell colloids. Colloid and Polymer Science, 2018, 296, 1679-1687. Chemistry, 2018, 32, e4425. TBAI or Klâ€Promoted Oxidative Coupling of Enamines and <i>N</i>â€Tosylhydrazine: An Unconventional Method toward 1,5†and 1,4,5â€Substituted 1,2,3â€Triazoles. Advanced Synthesis and Catalysis, 2018, 360, 4.3 29 3117-3123. Synergistic Effect of Copper and Ruthenium on Regioselectivity in the Alkyne–Azide Click Reaction of Internal Alkynes. Organic Process Research and Development, 2018, 22, 880-887. 2.7

1103Selenium.[¨]é-Acid Catalyzed Oxidative Functionalization of Alkynes: Facile Access to Ynones and
Multisubstituted Oxazoles. ACS Catalysis, 2018, 8, 6745-6750.11.2611104Facile and highly diastereo and regioselective synthesis of novel octahydroacridine-isoxazole and
2019, 23, 183-193.3.951105Synthesis of glycoconjugate mimics by †click chemistry'. Carbohydrate Research, 2019, 484, 107775.2.36

1106Uniform and Easy-To-Prepare Glycopolymer-Brush Interface for Rapid Protein (Anti-)Adhesion Sensing.8.014ACS Applied Materials & amp; Interfaces, 2019, 11, 32366-32372.14

1089

1090

1091

1093

1094

1095

1096

1097

1099

#	Article	IF	CITATIONS
1107	Novel vinyl-modified RGD conjugated silica nanoparticles based on photo click chemistry for <i>in vivo</i> prostate cancer targeted fluorescence imaging. RSC Advances, 2019, 9, 25318-25325.	3.6	9
1108	Synthesis of Strong Cation Exchange Macroporous Polymer Cluster for Convective Protein Chromatography. Macromolecular Materials and Engineering, 2019, 304, 1900311.	3.6	4
1109	Copperâ€Catalyzed N â€Arylation of Polysubstituted Pyridines Synthesized by the Novel Reaction of N â€Sulfonyl Ketenimine and Malononitrileâ€Trichloroacetonitrile Adduct. Journal of Heterocyclic Chemistry, 2019, 56, 2604-2611.	2.6	5
1110	Highly Efficient [3Â+Â2] Cycloaddition: Click Synthesis of Novel 1 H â€indolâ€3â€ylâ€benzo[d]imidazole Bisâ€triazoles. Journal of Heterocyclic Chemistry, 2019, 56, 2651-2658.	2.6	0
1111	Clicking Azides and Alkynes with Poly(pyrazolyl)borate-Copper(I) Catalysts: An Experimental and Computational Study. Catalysts, 2019, 9, 687.	3.5	8
1112	Sonochemically Synthesized Spin-Canted CuFe ₂ O ₄ Nanoparticles for Heterogeneous Green Catalytic Click Chemistry. ACS Omega, 2019, 4, 13845-13852.	3.5	39
1113	Catalyst-free facile synthesis of polycyclic indole/pyrrole substituted-1,2,3-triazoles. Organic and Biomolecular Chemistry, 2019, 17, 8153-8165.	2.8	6
1114	High-index faceted metal oxide micro-/nanostructures: a review on their characterization, synthesis and applications. Nanoscale, 2019, 11, 15739-15762.	5.6	74
1115	Synthesis of Tris-Heterocycles via a Cascade IMCR/Aza Diels-Alder + CuAAC Strategy. Frontiers in Chemistry, 2019, 7, 546.	3.6	12
1116	Polyoxometalate-Bridged Cu(I)- and Ag(I)-Thiacalix[4]arene Dimers for Heterogeneous Catalytic Oxidative Desulfurization and Azide–Alkyne "Click―Reaction. Inorganic Chemistry, 2019, 58, 11010-11019	. ^{4.0}	30
1117	Synthesis, characterization and catalytic activity of novel ruthenium complexes bearing NNN click based ligands. Dalton Transactions, 2019, 48, 13580-13588.	3.3	15
1118	Synthesis of Unsymmetrical Derivatives of Pentacene for Materials Applications. Accounts of Chemical Research, 2019, 52, 2056-2069.	15.6	48
1119	Synthesis of New 7,8-Dioxa[6]helicenes with Triazole Rings as Potential Molecular Tweezers. Synlett, 2019, 30, 1546-1550.	1.8	2
1120	Intramolecular Copper(I) atalyzed Interrupted Click–Acylation Domino Reaction. Angewandte Chemie - International Edition, 2019, 58, 13438-13442.	13.8	37
1121	Intramolecular Copper(I)â€Catalyzed Interrupted Click–Acylation Domino Reaction. Angewandte Chemie, 2019, 131, 13572-13576.	2.0	9
1122	Copper-catalyzed radical cascade reaction of isocyanate and ethers. Tetrahedron Letters, 2019, 60, 2084-2087.	1.4	2
1123	Kinetic analysis of bioorthogonal reaction mechanisms using Raman microscopy. Faraday Discussions, 2019, 220, 71-85.	3.2	3
1124	Membrane Fusion through the Generation of Triazole Ceramide via Click Chemistry at the Membrane Surface. Asian Journal of Organic Chemistry, 2019, 8, 1713-1717.	2.7	3

#	Article	IF	CITATIONS
1125	Stereoselective synthesis of 2,5-disubstituted pyrrolidines <i>via</i> gold-catalysed anti-Markovnikov hydroamination-initiated tandem reactions. Chemical Communications, 2019, 55, 9923-9926.	4.1	12
1126	Intramolecular azavinyl carbene-triggered rearrangement of furans. Chemical Science, 2019, 10, 8583-8588.	7.4	13
1127	Unravel the surface active sites on Cu/MgLaO solid base catalyst by DRIFT spectroscopy and adsorption techniques for the synthesis of triazoles by click reaction. Molecular Catalysis, 2019, 476, 110523.	2.0	0
1128	Selective Derivatization of Hexahistidine-Tagged Recombinant Proteins. Advances in Experimental Medicine and Biology, 2019, 1140, 237-250.	1.6	0
1129	One-pot sequential diprop-2-ynylation and cycloaddition: An efficient synthesis of novel N,N-bis(1,2,3-triazol-4-yl) methylarylamines starting from primary amines. Synthetic Communications, 2019, 49, 2760-2766.	2.1	2
1130	Capping Strategies for Covalent Template-Directed Synthesis of Linear Oligomers Using CuAAC. Journal of the American Chemical Society, 2019, 141, 10862-10875.	13.7	19
1131	Organocatalyzed preparation of 1,4,5-trisubstituted-glycosyl-1,2,3-triazole derivatives. Glycoconjugate Journal, 2019, 36, 439-450.	2.7	3
1132	Duplexâ€forming Oligonucleotide of Triazoleâ€linked RNA. Chemistry - an Asian Journal, 2019, 14, 3380-3385.	3.3	6
1133	Metal-Free C–N or C–C Bond Cleavages of α-Azido Ketones: An Oxidative-Amidation Strategy for the Synthesis of α-Ketothioamides and Amides. Journal of Organic Chemistry, 2019, 84, 14883-14891.	3.2	27
1134	Copper Aluminate Spinel in Click Chemistry: An Efficient Heterogeneous Nanocatalyst for the Highly Regioselective Synthesis of Triazoles in Water. Synlett, 2019, 30, 2136-2142.	1.8	17
1135	Syntheses of o-iodobenzyl alcohols‒BODIPY structures as potential precursors of bimodal tags for positron emission tomography and optical imaging. Tetrahedron, 2019, 75, 130765.	1.9	9
1136	Synthesis and characterization of active cuprous oxide particles and their catalytic application in 1,2,3â€triazole synthesis via alkyneâ€azide cycloaddition reaction in water. Journal of Heterocyclic Chemistry, 2019, 56, 3277-3288.	2.6	3
1137	Copper-Catalyzed Asymmetric Propargylation of Indolizines. Organic Letters, 2019, 21, 8553-8557.	4.6	28
1138	Synthesis of Triazole Click Ligands for Suzuki-Miyaura Cross-Coupling of Aryl Chlorides. Russian Journal of Organic Chemistry, 2019, 55, 1416-1422.	0.8	1
1139	Palladium(II), Rhodium(I), and Iridium(I) Complexes Containing O -Functionalized 1,2,3-Triazol-5-ylidene Ligands. European Journal of Inorganic Chemistry, 2019, 2019, 4263-4272.	2.0	8
1140	Site-Specific Modification of Proteins through N-Terminal Azide Labeling and a Chelation-Assisted CuAAC Reaction. Bioconjugate Chemistry, 2019, 30, 2427-2434.	3.6	16
1141	Solvent-free Suzuki and Stille cross-coupling reactions of 4- and 5-halo-1,2,3-triazoles. Mendeleev Communications, 2019, 29, 147-149.	1.6	20
1142	Semi-synthesis of β-keto-1,2,3-triazole derivatives from ethinylestradiol and evaluation of the cytotoxic activity. Heliyon, 2019, 5, e02408.	3.2	10

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
1143	Double-click enables synthesis of chemical libraries for drug discovery. Nature, 2019, 574, 42-43.	27.8	4
1144	Porphyrinoid–Fullerene Hybrids as Candidates in Artificial Photosynthetic Schemes. Journal of Carbon Research, 2019, 5, 57.	2.7	17
1145	A versatile catalyst-free perfluoroaryl azide–aldehyde–amine conjugation reaction. Materials Chemistry Frontiers, 2019, 3, 251-256.	5.9	14
1146	Rh-catalyzed intramolecular cyclization of 1-sulfonyl-1,2,3-triazole and sulfinate. Concise preparation of sulfonylated unsaturated piperidines. Tetrahedron Letters, 2019, 60, 815-819.	1.4	8
1147	Vitamin B ₁₂ transports modified RNA into <i>E. coli</i> and <i>S.</i> Typhimurium cells. Chemical Communications, 2019, 55, 763-766.	4.1	28
1148	The application of click chemistry for targeting quadruplex nucleic acids. Chemical Communications, 2019, 55, 731-750.	4.1	33
1149	Arylhydrazone ligands as Cu-protectors and -catalysis promoters in the azide–alkyne cycloaddition reaction. Dalton Transactions, 2019, 48, 1774-1785.	3.3	24
1150	Copper complexes of arylselenolate-based ligands: synthesis and catalytic activity in azide–alkyne cycloaddition reactions. New Journal of Chemistry, 2019, 43, 2381-2388.	2.8	15
1151	Recent Developments in Metalâ€Catalyzed Bioâ€orthogonal Reactions for Biomolecule Tagging. ChemBioChem, 2019, 20, 1498-1507.	2.6	12
1152	Controlling the Kinetics of Self-Reproducing Micelles by Catalyst Compartmentalization in a Biphasic System. Journal of Organic Chemistry, 2019, 84, 2741-2755.	3.2	17
1153	Theoretical investigation on acetylene cyclotrimerization catalysed by TiO ₂ and Ti. Journal of Physical Organic Chemistry, 2019, 32, e3934.	1.9	5
1154	Double Cu atalyzed Direct Csp ³ â^'H Azidation/CuAAC Reaction: A Direct Approach towards Demanding Triazole Conjugates. Chemistry - A European Journal, 2019, 25, 4077-4086.	3.3	20
1155	2â€Azidoethaneâ€1â€sulfonylfluoride (ASF): A Versatile <i>Bis</i> â€clickable Reagent for SuFEx and CuAAC Click Reactions. European Journal of Organic Chemistry, 2019, 2019, 1763-1769.	2.4	23
1156	Design, Synthesis and Fungicidal Activities of Novel 1,2,3â€Triazole Functionalized Strobilurins. ChemistrySelect, 2019, 4, 1015-1018.	1.5	12
1157	Designing chiral amido-oxazolines as new chelating ligands devoted to direct Cu-catalyzed oxidation of allylic C H bonds in cyclic olefins. Tetrahedron, 2019, 75, 862-867.	1.9	15
1158	Modification of polyhydroxyalkanoates: Evaluation of the effectiveness of novel copper(II) catalysts in click chemistry. International Journal of Biological Macromolecules, 2019, 128, 376-384.	7.5	2
1159	Facile synthesis of 1,5-disubstituted 1,2,3-triazoles by the regiospecific alkylation of a ruthenium triazolato complex. Dalton Transactions, 2019, 48, 2028-2037.	3.3	10
1160	Click chemistry at the microscale. Analyst, The, 2019, 144, 1492-1512.	3.5	19

#	Article	IF	CITATIONS
1161	A multifunctional toolkit for target-directed cancer therapy. Chemical Communications, 2019, 55, 802-805.	4.1	1
1162	Beyond copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition: Synthesis and mechanism insights. Tetrahedron, 2019, 75, 3697-3712.	1.9	42
1163	Copper(I)-Catalyzed Click Chemistry as a Tool for the Functionalization of Nanomaterials and the Preparation of Electrochemical (Bio)Sensors. Sensors, 2019, 19, 2379.	3.8	27
1164	Synthesis of ruthenium triazolato complexes by the [3 + 2] cycloaddition of a ruthenium azido complex with acetylacetylenes. Inorganica Chimica Acta, 2019, 494, 232-238.	2.4	7
1165	Synthesis of 1,4,5-trisubstituted triazoles by [3+2] cycloaddition of a ruthenium azido complex with ynoate esters. Journal of Organometallic Chemistry, 2019, 896, 146-153.	1.8	6
1166	Strategies for the Diversity-Oriented Synthesis of Macrocycles. Chemical Reviews, 2019, 119, 10288-10317.	47.7	129
1167	Catalystâ€Free Oneâ€Pot Regioselective Synthesis of Spiropyrrolizines Using 1,3â€Dipolar Cycloaddition Reaction. ChemistrySelect, 2019, 4, 7200-7203.	1.5	5
1168	Multicatalysis Combining 3D-Printed Devices and Magnetic Nanoparticles in One-Pot Reactions: Steps Forward in Compartmentation and Recyclability of Catalysts. ACS Applied Materials & Interfaces, 2019, 11, 25283-25294.	8.0	30
1169	Rhodium(ii)-catalyzed divergent intramolecular tandem cyclization of N- or O-tethered cyclohexa-2,5-dienones with 1-sulfonyl-1,2,3-triazole: synthesis of cyclopropa[cd]indole and benzofuran derivatives. Organic Chemistry Frontiers, 2019, 6, 2884-2891.	4.5	19
1170	Easy installation of 1,2,3-triazoles or iodo-1,2,3-triazoles onto indole-fused oxazinones via CuAAC-based MCR in the presence of 18-crown-6. Synthetic Communications, 2019, 49, 2168-2179.	2.1	5
1171	The emerging applications of click chemistry reactions in the modification of industrial polymers. Polymer Chemistry, 2019, 10, 3806-3821.	3.9	80
1172	A simple route towards the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles from primary amines and 1,3-dicarbonyl compounds under metal-free conditions. Organic and Biomolecular Chemistry, 2019, 17, 6148-6152.	2.8	15
1173	Effect of Resonance on the Clickability of Alkenyl Azides in the Strain-promoted Cycloaddition with Dibenzo-fused Cyclooctynes. Chemistry Letters, 2019, 48, 1038-1041.	1.3	15
1174	Bioconjugated arylpalladium complexes on solid supports for a convenient last-step synthesis of ¹¹ C-labelled tracers for positron emission tomography. Chemical Communications, 2019, 55, 7587-7590.	4.1	9
1175	Palladium atalyzed Annulation of Aryltriazoles and Arylisoxazoles with Alkynes. Advanced Synthesis and Catalysis, 2019, 361, 4386-4392.	4.3	4
1176	Alkyne–Azide Click Polymerization Catalyzed by Magnetically Recyclable Fe ₃ O ₄ /SiO ₂ /Cu ₂ O Nanoparticles. Macromolecular Chemistry and Physics, 2019, 220, 1900064.	2.2	5
1177	Interfacial Junctions Control Electrolyte Transport through Charge-Patterned Membranes. ACS Nano, 2019, 13, 7655-7664.	14.6	13
1178	Recyclable Cu nanoparticle catalyzed azide-alkyne click polymerization. Science China Chemistry, 2019, 62, 1017-1022.	8.2	10

#	Article	IF	CITATIONS
1179	Sulfated tungstate a heterogeneous acid catalyst for synthesis of 4-aryl- <i>NH</i> -1,2,3-triazoles by 1,3-dipolar cycloaddition of nitroolefins with NaN ₃ . Synthetic Communications, 2019, 49, 1947-1956.	2.1	12
1180	Design and Synthesis of Biocompatible, Hemocompatible, and Highly Selective Antimicrobial Cationic Peptidopolysaccharides via Click Chemistry. Biomacromolecules, 2019, 20, 2230-2240.	5.4	69
1181	Multi-component syntheses of diverse 5-fluoroalkyl-1,2,3-triazoles facilitated by air oxidation and copper catalysis. Green Chemistry, 2019, 21, 3407-3412.	9.0	18
1182	Polymer–Doxorubicin Prodrug with Biocompatibility, pH Response, and Main Chain Breakability Prepared by Catalyst-Free Click Reaction. ACS Biomaterials Science and Engineering, 2019, 5, 2307-2315.	5.2	29
1183	Synthesis, characterization, and comparison of two new copper(II) complexes containing Schiff-base and diazo ligands as new catalysts in CuAAC reaction. Inorganica Chimica Acta, 2019, 492, 213-220.	2.4	16
1184	Nitrogen-doped graphene stabilized copper nanoparticles for Huisgen [3+2] cycloaddition "click― chemistry. Chemical Communications, 2019, 55, 6249-6252.	4.1	23
1185	Rhodium-Catalyzed Nitrene/Alkyne Metathesis: An Enantioselective Process for the Synthesis of <i>N</i> -Heterocycles. Organic Letters, 2019, 21, 3328-3331.	4.6	19
1186	Sequence information transfer using covalent template-directed synthesis. Chemical Science, 2019, 10, 5258-5266.	7.4	32
1187	Theoretical Study of the Addition of Cu–Carbenes to Acetylenes to Form Chiral Allenes. Journal of the American Chemical Society, 2019, 141, 5772-5780.	13.7	35
1188	Enantioselective Copper Catalyzed Alkyne–Azide Cycloaddition by Dynamic Kinetic Resolution. Journal of the American Chemical Society, 2019, 141, 5135-5138.	13.7	64
1189	Covalent Surface Functionalization of Calcium Phosphate Nanoparticles with Fluorescent Dyes by Copperâ€Catalysed and by Strainâ€Promoted Azideâ€Alkyne Click Chemistry. ChemNanoMat, 2019, 5, 436-446.	2.8	19
1191	Transition metal- and oxidant-free sulfonylation of 1-sulfonyl-1H-1,2,3-triazoles to enols for the synthesis of sulfonate derivatives. Synthetic Communications, 2019, 49, 959-972.	2.1	4
1192	Regioselective Synthesis,ÂMolecular Descriptors ofÂ(1,5â€Ðisubstituted) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 26 ChemistrySelect, 2019, 4, 3486-3494.	67 Td (1,2 1.5	,3â€Triazoly 10
1193	Supramolecular topology design of silver(<scp>i</scp>) and copper(<scp>ii</scp>) coordination polymers through a new semi-rigid sulfonyl ligand with different anion templates. Dalton Transactions, 2019, 48, 6730-6737.	3.3	7
1194	Bio-based Catalysts from Biomass Issued after Decontamination of Effluents Rich in Copper—an Innovative Approach towards Greener Copper-based Catalysis. Catalysts, 2019, 9, 214.	3.5	16
1195	Additive Effects on Copperâ€Catalyzed Tandem Reactions. Asian Journal of Organic Chemistry, 2019, 8, 755-766.	2.7	8
1196	The use of chitosan-based metal catalysts in organic transformations. Coordination Chemistry Reviews, 2019, 388, 126-171.	18.8	112
1197	Regiospecific Cleavage of S–N Bonds in Sulfonyl Azides: Sulfonyl Donors. Journal of Organic Chemistry, 2019, 84, 3919-3926.	3.2	15

#	Article	IF	CITATIONS
1198	Mechanistic investigation and further optimization of the aqueous Glaserâ 'Hay bioconjugation. Organic and Biomolecular Chemistry, 2019, 17, 3396-3402.	2.8	6
1199	Rhodium(II)â€Catalyzed Intramolecular Transannulation of 4â€Methoxycyclohexaâ€2,5â€dienone Tethered 1â€Sulfonylâ€1,2,3â€triazoles: Synthesis of Azaspiro[5.5]undecane Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 3430-3435.	4.3	14
1200	Evaluation of dicopper azacryptand complexes in aqueous CuAAC reactions and their tolerance toward biological thiols. Dalton Transactions, 2019, 48, 9751-9758.	3.3	9
1201	Atomically Defined Monocarborane Copper(I) Acetylides with Structural and Luminescence Properties Tuned by Ligand Sterics. Chemistry - A European Journal, 2019, 25, 8754-8759.	3.3	18
1202	Allylic azides: synthesis, reactivity, and the Winstein rearrangement. Organic and Biomolecular Chemistry, 2019, 17, 4406-4429.	2.8	50
1203	Click chemistry-assisted antibodies immobilization for immunosensing of CXCL7 chemokine in serum. Journal of Electroanalytical Chemistry, 2019, 837, 246-253.	3.8	16
1204	Site-selective nitrenoid insertions utilizing postfunctionalized bifunctional rhodium(<scp>ii</scp>) catalysts. Chemical Science, 2019, 10, 3324-3329.	7.4	26
1205	Application of Cu(Hdmg) 2 as a simple and costâ€effective catalyst for the convenient oneâ€pot reductive acetylation of aromatic nitro compounds. Journal of the Chinese Chemical Society, 2019, 66, 928-933.	1.4	16
1206	Expedient synthesis of a symmetric cycloheptyne-Co ₂ (CO) ₆ complex for orthogonal Huisgen cycloadditions. Organic Chemistry Frontiers, 2019, 6, 1114-1117.	4.5	4
1207	A facile preparation of functional cycloalkynes <i>via</i> an azide-to-cycloalkyne switching approach. Chemical Communications, 2019, 55, 3556-3559.	4.1	16
1208	Broadening the scope of sortagging. RSC Advances, 2019, 9, 4700-4721.	3.6	39
1209	Synthesis and Solution Self-Assembly Properties of Cyclic Rod–Coil Diblock Copolymers. ACS Macro Letters, 2019, 8, 1564-1569.	4.8	15
1210	Development of Chemical Biology Tools Focusing on Peptide/Amide Bond Cleavage Reaction. Chemical and Pharmaceutical Bulletin, 2019, 67, 1171-1178.	1.3	5
1211	Calix[4]arene-based polyoxometalate organic–inorganic hybrid and coordination polymer as heterogeneous catalysts for azide–alkyne cycloaddition and Knoevenagel condensation reaction. New Journal of Chemistry, 2019, 43, 15871-15878.	2.8	17
1212	Copper(<scp>ii</scp>) accelerated azide–alkyne cycloaddition reaction using mercaptopyridine-based triazole ligands. New Journal of Chemistry, 2019, 43, 16538-16545.	2.8	11
1213	The azide–alkyne cycloaddition catalysed by transition metal oxide nanoparticles. New Journal of Chemistry, 2019, 43, 18049-18061.	2.8	3
1214	Cu–NHC azide complex: synthesis and reactivity. Chemical Communications, 2019, 55, 12068-12071.	4.1	9
1215	Selective assembly of <i>N</i> 1- and <i>N</i> 2-alkylated 1,2,3-triazoles <i>via</i> copper-catalyzed decarboxylative cycloaddition of alkynyl carboxylic acids with ethers and azidotrimethylsilane.	4.5	16

#	Article	IF	CITATIONS
1216	Designing Microparticle-Impregnated Polyelectrolyte Composite: The Combination of ATRP, Fast Azidation, and Click Reaction Using a Single-Catalyst, Single-Pot Strategy. International Journal of Molecular Sciences, 2019, 20, 5582.	4.1	6
1217	Lectin PLL3, a Novel Monomeric Member of the Seven-Bladed β-Propeller Lectin Family. Molecules, 2019, 24, 4540.	3.8	2
1218	Cap control: cyclic <i>versus</i> linear oligomerisation in covalent template-directed synthesis. RSC Advances, 2019, 9, 29566-29569.	3.6	10
1219	Disclosure of Some Obscure Mechanistic Aspects of the Copper-Catalyzed Click Reactions Involving N ₂ Elimination Promoted by the Use of Electron-Deficient Azides from a DFT Perspective. Organometallics, 2019, 38, 256-267.	2.3	10
1220	One-Step Anchoring of Tannic Acid-Scaffolded Bifunctional Coatings of Antifouling and Antimicrobial Polymer Brushes. ACS Sustainable Chemistry and Engineering, 2019, 7, 1786-1795.	6.7	25
1221	Iridium atalyzed Hydroxylâ€Enabled Cycloaddition of Azides and Alkynes. Advanced Synthesis and Catalysis, 2019, 361, 989-994.	4.3	31
1222	Direct synthesis of tetrazine functionalities on polymer backbones. Journal of Polymer Science Part A, 2019, 57, 673-680.	2.3	14
1223	Azido-Adamantyl Tin Sulfide Clusters for Bioconjugation. Organometallics, 2019, 38, 329-335.	2.3	14
1224	Physical, chemical, and synthetic virology: Reprogramming viruses as controllable nanodevices. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1545.	6.1	18
1225	Nickel cobaltite nanoparticles: preparation, characterization, and catalytic activity. Ionics, 2019, 25, 2887-2892.	2.4	0
1226	ZINClick v.18: Expanding Chemical Space of 1,2,3-Triazoles. Journal of Chemical Information and Modeling, 2019, 59, 1697-1702.	5.4	7
1227	Rhodium(I)â€Catalyzed Regioselective Azideâ€internal Alkynyl Trifluoromethyl Sulfide Cycloaddition and Azideâ€internal Thioalkyne Cycloaddition under Mild Conditions. Advanced Synthesis and Catalysis, 2019, 361, 469-475.	4.3	31
1228	Evaluation of 1,2,3â€Triazoles as Amide Bioisosteres In Cystic Fibrosis Transmembrane Conductance Regulator Modulators VXâ€770 and VXâ€809. Chemistry - A European Journal, 2019, 25, 3662-3674.	3.3	20
1229	Bimetallic Nanocatalysts in Glycerol for Applications in Controlled Synthesis. A Structure–Reactivity Relationship Study. ACS Applied Nano Materials, 2019, 2, 1033-1044.	5.0	18
1230	Terminal Acetylenic Iminium Salts: Cycloaddition Reactions with Azides Leading to 1,2,3â€Triazoles and Bicyclic 1,2,3â€Triazolium Salts. European Journal of Organic Chemistry, 2019, 2019, 1562-1570.	2.4	9
1232	Efficient synthesis of organosoluble 6-azido-6-deoxy-2,3-O-trimethylsilyl cellulose for click reactions. Carbohydrate Polymers, 2019, 206, 174-178.	10.2	5
1233	Novel synthesis of 1,5-disubstituted-1,2,3-triazolines catalysed by Zepto magnetic microspheres under the influence of a rotating magnetic field. Canadian Journal of Chemistry, 2019, 97, 163-168.	1.1	2
1234	Synthesis and Biological Evaluation of New Ibuprofenâ€1,3,4â€oxadiazoleâ€1,2,3â€triazole Hybrids. Journal of Heterocyclic Chemistry, 2019, 56, 296-305.	2.6	16

#	Article	IF	CITATIONS
1235	Copper nanoparticles synthesis in hybrid mesoporous thin films: Controlling oxidation state and catalytic performance through pore chemistry. Applied Surface Science, 2019, 471, 862-868.	6.1	11
1236	Mechanistic Study in Click Reactions by Using (<i>N</i> -Heterocyclic carbene)Copper(I) Complexes: Anionic Effects. Organometallics, 2019, 38, 223-230.	2.3	20
1237	Copper-catalyzed decarboxylation/cycloaddition cascade of alkynyl carboxylic acids with azide. Tetrahedron, 2019, 75, 253-259.	1.9	16
1238	Targeting Base Excision Repair Glycosylases with DNA Containing Transition State Mimics Prepared via Click Chemistry. ACS Chemical Biology, 2019, 14, 27-36.	3.4	2
1239	The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromolecular Rapid Communications, 2020, 41, e1900359.	3.9	146
1240	Direct Arylations via C–H Bond Functionalization of 1,2,3â€Triazoles by a Reusable Pd/C Catalyst Under Solventâ€Free Conditions. European Journal of Organic Chemistry, 2020, 2020, 3229-3234.	2.4	19
1241	Sonochemical Decoration of Graphene Oxide with Magnetic Fe3O4@CuO Nanocomposite for Efficient Click Synthesis of Coumarin-Sugar Based Bioconjugates and Their Cytotoxic Activity. Catalysis Letters, 2020, 150, 1142-1154.	2.6	20
1242	Laser-induced plasmonic heating in copper nanowire fabric as a photothermal catalytic reactor. Chemical Engineering Journal, 2020, 379, 122285.	12.7	26
1243	Direct introduction of hydroxyl groups in polystyrene chain ends prepared by atom-transfer radical polymerization. Polymer Journal, 2020, 52, 57-64.	2.7	6
1244	Ruthenium [NNN] and [NCN]-type pincer complexes with phosphine coligands: synthesis, structures and catalytic applications. Transition Metal Chemistry, 2020, 45, 99-110.	1.4	5
1245	Structure-activity relationships for binding of 4-substituted triazole-phenols to macrophage migration inhibitory factor (MIF). European Journal of Medicinal Chemistry, 2020, 186, 111849.	5.5	13
1246	Ag-catalyzed azide-alkyne cycloaddition: copper free approaches for synthesis of 1,4-disubstituted 1,2,3-triazoles. Catalysis Reviews - Science and Engineering, 2020, 62, 96-117.	12.9	31
1247	Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: Structuring Matter Made to Order. Advanced Functional Materials, 2020, 30, 1907625.	14.9	34
1248	Photoredox Oxo-C(sp ³)–H Bond Functionalization via in Situ Cu(I)-Acetylide Catalysis. Organic Letters, 2020, 22, 832-836.	4.6	27
1250	Sodium 4â€aminoâ€5â€hydroxyâ€7â€sulfonaphthaleneâ€2â€sulfonate an efficient ligand for click reaction in wa Synthesis of 1,2,3â€triazole pharmacophore linkedâ€quinazolinone scaffold. Journal of Heterocyclic Chemistry, 2020, 57, 859-866.	ater: 2.6	0
1251	Cu ^{II} â€Catalyzed Oxidative Formation of 5â€Alkynyltriazoles. Chemistry - an Asian Journal, 2020, 15, 380-390.	3.3	4
1252	Synthesis and electropolymerization of a multifunctional naphthalimide clicked carbazole derivative. Polymer International, 2020, 69, 265-273.	3.1	5
1253	Practical oneâ€pot synthesis of 5â€alkynylâ€1,2,3â€triazoles via heterogeneous copper(l)â€catalyzed tandem threeâ€component click/alkynylation reaction. Applied Organometallic Chemistry, 2020, 34, e5319.	3.5	5

#	Article	IF	CITATIONS
1254	Thermodynamics and Kinetics of Click Reaction between Benzyl Azide and Different Alkynes by Microcalorimetry. Organic Process Research and Development, 2020, 24, 163-171.	2.7	2
1255	Three thiacalix[4]arene-based Cu(<scp>i</scp>) coordination polymers: catalytic activities for azide–alkyne cycloaddition reactions and luminescence properties. Dalton Transactions, 2020, 49, 3715-3722.	3.3	6
1256	Cu(ii), Ir(i) and CuO nanocatalyzed mild synthesis of luminescent symmetrical and unsymmetrical bis(triazolylmethyl)quinoxalines: biocompatibility, cytotoxicity, live cell imaging and biomolecular interaction. New Journal of Chemistry, 2020, 44, 920-931.	2.8	10
1257	Core–shell PdCu bimetallic colloidal nanoparticles in Sonogashira cross-coupling reaction: mechanistic insights into the catalyst mode of action. Nanoscale, 2020, 12, 1171-1179.	5.6	18
1258	Organic Azide and Auxiliary-Ligand-Free Complexes of Coinage Metals Supported by N-Heterocyclic Carbenes. Inorganic Chemistry, 2020, 59, 2188-2199.	4.0	9
1259	Selfâ€Assembly in Water with N‧ubstituted Imines. Angewandte Chemie - International Edition, 2020, 59, 18350-18367.	13.8	55
1260	Regioselective Synthesis of Halotriazoles and their Utility in Metal Catalyzed Coupling Reactions. European Journal of Organic Chemistry, 2020, 2020, 6870-6886.	2.4	8
1261	1,2,3- Triazoles: general and key synthetic strategies. Arkivoc, 2020, 2020, 219-271.	0.5	12
1262	Metabolic labeling of glycerophospholipids via clickable analogs derivatized at the lipid headgroup. Chemistry and Physics of Lipids, 2020, 232, 104971.	3.2	20
1263	Regioselective <i>N</i> ¹ - and <i>N</i> ² -heterocycloalkylation of <i>N</i> ¹ -sulfonyl-1,2,3-triazoles. Organic Chemistry Frontiers, 2020, 7, 3727-3733.	4.5	9
1264	Synthesis of Triazoleâ€Containing rctt Tetra―C â€Naphthylâ€Calix [4]resorcinarene and 1,1â€Dinaphthylmethane Derivatives. ChemistrySelect, 2020, 5, 12168-12175.	1.5	2
1265	The Bestmannâ€Ohira Reagent and Related Diazo Compounds for the Synthesis of Azaheterocycles. Chemical Record, 2020, 20, 1394-1408.	5.8	13
1266	Competitive CuAAC Reaction between Hydrophobic and Hydrophilic Alkynes with Azides in Water. ChemistrySelect, 2020, 5, 12371-12376.	1.5	3
1267	A bile acid-based pyridino-triazole ligand for Cu(I)-stabilization and its application in Cu(I) catalyzed click reactions. Tetrahedron Letters, 2020, 61, 152509.	1.4	5
1268	lsonitriles as supporting and non-innocent ligands in metal catalysis. Chemical Society Reviews, 2020, 49, 7730-7752.	38.1	28
1269	Understanding the solubilization of Ca acetylide with a new computational model for ionic pairs. Chemical Science, 2020, 11, 13102-13112.	7.4	12
1270	Diversiform Nanostructures Constructed from Tetraphenylethene and Pyrene-Based Acid/Base Controllable Molecular Switching Amphiphilic [2]Rotaxanes with Tunable Aggregation-Induced Static Excimers. ACS Applied Materials & Interfaces, 2020, 12, 45222-45234.	8.0	19
1271	Triazole formation of phosphinyl alkynes with azides through transient protection of phosphine by copper. Chemical Communications, 2020, 56, 14003-14006.	4.1	10

#	Article	IF	CITATIONS
1272	Design and antibacterial activity assessment of "green―synthesized 1,4-disubstituted 1,2,3-triazoles via an Fe3O4/silicalite-1/PVA/Cu(i) nanocomposite catalyzed three component reaction. New Journal of Chemistry, 2020, 44, 12619-12632.	2.8	6
1273	Nanobody click chemistry for convenient site-specific fluorescent labelling, single step immunocytochemistry and delivery into living cells by photoporation and live cell imaging. New Biotechnology, 2020, 59, 33-43.	4.4	13
1274	Selective azide–alkyne cycloaddition reactions of azidoalkylated calixarenes. Organic Chemistry Frontiers, 2020, 7, 2432-2441.	4.5	13
1275	Reversible Protein Conjugation on Live Cell Surfaces by Specific Recognition between Coiled-Coil Motifs of Natural Amino Acid Sequences. Biomacromolecules, 2020, 21, 3539-3546.	5.4	1
1278	Synthesis of Polyheterocyclic Dimers Containing Restricted and Constrained Peptidomimetics via IMCR-Based Domino/Double CuAAC Click Strategy. Molecules, 2020, 25, 5246.	3.8	6
1279	Using bio-orthogonally catalyzed lethality strategy to generate mitochondria-targeting anti-tumor metallodrugs <i>in vitro</i> and <i>in vivo</i> . National Science Review, 2021, 8, nwaa286.	9.5	30
1280	Gold-like Thiolate-Protected Ultrasmall Cubic Copper Nanocluster-Based Metal–Organic Framework as a Selective Catalyst for Stepwise Synthesis of Unsymmetric Bistriazole by Click Reaction. ACS Applied Materials & Interfaces, 2020, 12, 56004-56016.	8.0	12
1282	Coinage metal metallacycles involving a fluorinated 3,5-diarylpyrazolate. New Journal of Chemistry, 2020, 44, 14814-14822.	2.8	7
1283	Therapeutic Significance of 1,4-Dihydropyridine Compounds as Potential Anticancer Agents. , 0, , .		2
1284	Mechanistic study in azide-alkyne cycloaddition (CuAAC) catalyzed by bifunctional trinuclear copper(I) pyrazolate complex: Shift in rate-determining step. Journal of Catalysis, 2020, 390, 37-45.	6.2	23
1285	Alkynylated and Dendronized 5-Aza-7-deazaguanine Nucleosides: Cross-Coupling with Tripropargylamine and Linear Alkynes, Click Functionalization, and Fluorescence of Pyrene Adducts. Journal of Organic Chemistry, 2020, 85, 10525-10538.	3.2	2
1286	Tailorâ€Made Polydiacetylene Micelles for the Catalysis of 1,3â€Dipolar Cycloadditions in Water. Advanced Synthesis and Catalysis, 2020, 362, 4425-4431.	4.3	16
1287	DFT Studies on Copper-Catalyzed Dearomatization of Pyridine. ACS Catalysis, 2020, 10, 9585-9593.	11.2	12
1288	Efficient and simple synthesis of novel 1,2,3-triazolyl-linked benzimidazolone, molecular docking and evaluation of their antimicrobial activity. Synthetic Communications, 2020, 50, 3490-3506.	2.1	11
1289	Evolutionarily conserved sequence motif analysis guides development of chemically defined hydrogels for therapeutic vascularization. Science Advances, 2020, 6, eaaz5894.	10.3	17
1290	Tetrazine metallation boosts rate and regioselectivity of inverse electron demand Diels–Alder (iEDDA) addition of dienophiles. Chemical Communications, 2020, 56, 12033-12036.	4.1	14
1291	Synthesis of Novel Triazole Incorporated Thiazolone Motifs Having Promising Antityrosinase Activity through Green Nanocatalyst Culâ€Fe ₃ O ₄ @SiO ₂ (TMSâ€EDTA). Applied Organometallic Chemistry, 2020, 34, e5962.	3.5	16
1292	Deciphering the Mechanism of Silver Catalysis of "Click―Chemistry in Water by Combining Experimental and MEDT Studies. Catalysts, 2020, 10, 956.	3.5	18

#	Article	IF	CITATIONS
1293	Anion–cation synergistic metal-free catalytic oxidative homocoupling of benzylamines by triazolium iodide salts. Organic and Biomolecular Chemistry, 2020, 18, 7379-7387.	2.8	4
1294	One-pot synthesis of 3-substituted-4H-[1,2,3] triazolo[5,1-c][1,4]oxazin-6(7H)-ones from propargyl alcohols, chloroacetyl chloride, and sodium azide. Journal of Chemical Research, 2020, , 174751982094835.	1.3	1
1295	A click-based modular approach to introduction of peroxides onto molecules and nanostructures. RSC Advances, 2020, 10, 44408-44429.	3.6	4
1296	Synthesis of Dendritic Glycoclusters and Their Applications for Supramolecular Gelation and Catalysis. Journal of Organic Chemistry, 2020, 85, 16136-16156.	3.2	19
1297	5-lodo-1H-1,2,3-triazoles as Versatile Building Blocks. Synthesis, 2020, 52, 1874-1896.	2.3	15
1298	An efficient and regiospecific synthesis of 1,5-diaryl-4-benzothiazolyl-1,2,3-triazoles by organocatalytic 1,3-dipolar cycloaddition reactions. Synthetic Communications, 2020, 50, 1863-1870.	2.1	2
1299	Synthesis, characterization, and biological evaluation of new heterocyclic systems 1, 2, 3-triazole-isoxazoline from eugenol by the mixed condensation reactions. Synthetic Communications, 2020, 50, 2052-2065.	2.1	28
1300	Synthesis and antiproliferative activity of new chlorin e6 glycoconjugates. Mendeleev Communications, 2020, 30, 159-161.	1.6	10
1301	Practical synthesis of 13 Câ€labeled conjugates by [13 C]COâ€carbonylation of supported arylbipyridylpalladium complexes and alkyne–azide cycloadditions. Applied Organometallic Chemistry, 2020, 34, e5779.	3.5	2
1302	Recent Progress of Cu-Catalyzed Azide-Alkyne Cycloaddition Reactions (CuAAC) in Sustainable Solvents: Glycerol, Deep Eutectic Solvents, and Aqueous Media. Molecules, 2020, 25, 2015.	3.8	52
1303	Di- <i>tert</i> -butyl Ethynylimidodicarbonate as a General Synthon for the β-Aminoethylation of Organic Electrophiles: Application to the Formal Synthesis of Pyrrolidinoindoline Alkaloids (±)-CPC-1 and (±)-Alline. Journal of Organic Chemistry, 2020, 85, 8447-8461.	3.2	7
1304	Exploring the Effects of Various Polymeric Backbones on the Performance of a Hydroxyaromatic 1,2,3-Triazole Anion Sensor. Sensors, 2020, 20, 2973.	3.8	3
1305	A Doxorubicin-Glucuronide Prodrug Released from Nanogels Activated by High-Intensity Focused Ultrasound Liberated Î ² -Glucuronidase. Pharmaceutics, 2020, 12, 536.	4.5	6
1306	Direct synthesis of heterocycles via MCRs, using a name reaction. , 2020, , 15-138.		0
1307	Functionalization of a Single Câ^'F Bond of Trifluoromethylarenes Assisted by an <i>ortho</i> â€Silyl Group Using a Tritylâ€Based Allâ€inâ€One Reagent with Ytterbium Triflate Catalyst. Chemistry - A European Journal, 2020, 26, 6136-6140.	3.3	31
1308	Synthesis of Metallopolymers and Direct Visualization of the Single Polymer Chain. Journal of the American Chemical Society, 2020, 142, 6196-6205.	13.7	38
1309	Selbstorganisation in Wasser mit Nâ€substituierten Aminen. Angewandte Chemie, 2020, 132, 18506-18524.	2.0	6
1310	A click tyrosine zwitterionic stationary phases for hydrophilic interaction liquid chromatography. Journal of Chromatography A, 2020, 1621, 461045.	3.7	11

#	Article	IF	CITATIONS
1311	Development of a Turn-On Fluorescent Traceable Linker Employing <i>N</i> -Sulfanylethylcoumarinyl Amide for the Enrichment and Visualization of Target Proteins. Chemical and Pharmaceutical Bulletin, 2020, 68, 216-219.	1.3	2
1312	On the scope of SuFEx as a bioorthogonal click process. New Journal of Chemistry, 2020, 44, 4678-4680.	2.8	12
1313	Uniform and simultaneous orthogonal functionalization of a metal–organic framework material. Molecular Systems Design and Engineering, 2020, 5, 804-808.	3.4	2
1314	Synthesis of Bis(trimethylsilyl)acetylene (BTMSA) by Direct Reaction of CaC 2 with N â€(trimethylsilyl)imidazole. ChemistrySelect, 2020, 5, 3644-3646.	1.5	4
1315	Highly selective hydrosilylation of equilibrating allylic azides. Chemical Communications, 2020, 56, 5038-5041.	4.1	5
1316	Cyclic (Alkyl)- and (Aryl)-(amino)carbene Coinage Metal Complexes and Their Applications. Chemical Reviews, 2020, 120, 4141-4168.	47.7	196
1317	Copper-Catalyzed Asymmetric Reaction of Alkenyl Diynes with Styrenes by Formal [3 + 2] Cycloaddition via Cu-Containing All-Carbon 1,3-Dipoles: Access to Chiral Pyrrole-Fused Bridged [2.2.1] Skeletons. Journal of the American Chemical Society, 2020, 142, 7618-7626.	13.7	83
1318	Nâ€Heterocyclic Carbene Copper(I) Rotaxanes Mediate Sequential Click Ligations with All Reagents Premixed. Angewandte Chemie - International Edition, 2020, 59, 11278-11282.	13.8	20
1319	Synthesis of Potent Cytotoxic Epidithiodiketopiperazines Designed for Derivatization. Journal of Organic Chemistry, 2020, 85, 4648-4662.	3.2	12
1320	Facile Synthesis of Amphiphilic Bottlebrush Block Copolymers Bearing Pyridine Pendants via Click Reaction from Protected Alkyne Side Groups. Macromolecules, 2020, 53, 2209-2219.	4.8	11
1321	Copper-catalyzed cascade three-component azide–alkyne cycloaddition/condensation/transesterification: easy access to 3-triazolylcoumarins. New Journal of Chemistry, 2020, 44, 12266-12273.	2.8	7
1322	Transitionâ€Metalâ€Free Annulation of Enamines and Tosyl Azide toward Nâ€Heterocycle Fused and 5â€Aminoâ€1,2,3â€Triazoles. European Journal of Organic Chemistry, 2020, 2020, 5606-5609.	2.4	10
1323	General Aggregation-Induced Emission Probes for Amyloid Inhibitors with Dual Inhibition Capacity against Amyloid β-Protein and α-Synuclein. ACS Applied Materials & Interfaces, 2020, 12, 31182-31194.	8.0	33
1324	Copper-Catalyzed Intramolecular C–H Alkoxylation of Diaryltriazoles: Synthesis of Tricyclic Triazole Benzoxazines. Organic Letters, 2020, 22, 5320-5325.	4.6	22
1325	Double cross-linked supramolecular hydrogels with tunable properties based on host–guest interactions. Soft Matter, 2020, 16, 6733-6742.	2.7	21
1326	Efficient modification of PAMAM G1 dendrimer surface with β-cyclodextrin units by CuAAC: impact on the water solubility and cytotoxicity. RSC Advances, 2020, 10, 25557-25566.	3.6	11
1327	Dimerization of α-Conotoxins as a Strategy to Enhance the Inhibition of the Human α7 and α9α10 Nicotinic Acetylcholine Receptors. Journal of Medicinal Chemistry, 2020, 63, 2974-2985.	6.4	18
1329	â€~Click' conjugated porous polymer nanofilm with a large domain size created by a liquid/liquid interfacial protocol. Chemical Communications, 2020, 56, 3677-3680.	4.1	5

#	Article	IF	CITATIONS
1330	Towards tetrazine-based near-infrared fluorogenic dyes: Is there a wavelength limit?. Dyes and Pigments, 2020, 177, 108313.	3.7	25
1331	Design of electrochemical immunosensors using electro-click chemistry. Application to the detection of IL-1Î ² cytokine in saliva. Bioelectrochemistry, 2020, 133, 107484.	4.6	33
1332	Synthesis, Characterisation and Crystal structure of a New Cu(II)-carboxamide Complex and CuO nanoparticles as New Catalysts in the CuAAC reaction and Investigation of their Antibacterial activity. Inorganica Chimica Acta, 2020, 506, 119514.	2.4	14
1333	Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. Journal of Controlled Release, 2020, 320, 180-200.	9.9	170
1334	Chan‣amâ€ŧype Azidation and Oneâ€Pot CuAAC under Cu I â€Zeolite Catalysis. ChemCatChem, 2020, 12, 2060-2065.	3.7	13
1335	Divergent Mechanisms of the Banert Cascade with Propargyl Azides. Journal of Organic Chemistry, 2020, 85, 3174-3181.	3.2	7
1336	Access to tetracyclic aromatics with bridgehead metals via metalla-click reactions. Science Advances, 2020, 6, eaay2535.	10.3	19
1337	Copper-Catalyzed Decarboxylative Cycloaddition of Propiolic Acids, Azides, and Arylboronic Acids: Construction of Fully Substituted 1,2,3-Triazoles. Journal of Organic Chemistry, 2020, 85, 3576-3586.	3.2	20
1338	Oneâ€pot synthesis and biological evaluation of novel 4â€[3â€fluoroâ€4â€(morpholinâ€4â€yl)]phenylâ€1 <i>H</i> â€1,2,3â€triazole derivatives as potent antibacterial anticancer agents. Journal of Heterocyclic Chemistry, 2020, 57, 1655-1665.	and	44
1339	Enantioselective Cu(I)-Catalyzed Cycloaddition of Prochiral Diazides with Terminal or 1-lodoalkynes. Organic Letters, 2020, 22, 1270-1274.	4.6	23
1340	Nâ€Heterocyclic Carbene Copper(I) Rotaxanes Mediate Sequential Click Ligations with All Reagents Premixed. Angewandte Chemie, 2020, 132, 11374-11378.	2.0	13
1341	Reaction Mechanisms on [3 + 2] Cycloaddition of Azides with Metal Carbyne Complexes: Significant Effects of Aromaticity, Substituent, and Metal Center. Inorganic Chemistry, 2020, 59, 7318-7324.	4.0	7
1342	Triazole-based, optically-pure metallosupramolecules; highly potent and selective anticancer compounds. Chemical Communications, 2020, 56, 6392-6395.	4.1	11
1343	A ferrocene functionalized Schiff base containing Cu(<scp>ii</scp>) complex: synthesis, characterization and parts-per-million level catalysis for azide alkyne cycloaddition. Dalton Transactions, 2020, 49, 6578-6586.	3.3	17
1344	Synthesis of well-defined heteroglycopolymers <i>via</i> combining sequential click reactions and PPM: the effects of linker and heterogeneity on Con A binding. Polymer Chemistry, 2020, 11, 3054-3065.	3.9	5
1345	Modular Medical Imaging Agents Based on Azide–Alkyne Huisgen Cycloadditions: Synthesis and Preâ€Clinical Evaluation of ¹⁸ F‣abeled PSMAâ€Tracers for Prostate Cancer Imaging. Chemistry - A European Journal, 2020, 26, 10871-10881.	3.3	13
1346	Synthesis of hybrid perillylâ€4 H â€pyrans. Cytotoxicity evaluation against hepatocellular carcinoma HepG2 / C3A cell line. Journal of Heterocyclic Chemistry, 2020, 57, 2597-2614.	2.6	8
1347	A systematic review on silica-, carbon-, and magnetic materials-supported copper species as efficient heterogeneous nanocatalysts in "click―reactions. Beilstein Journal of Organic Chemistry, 2020, 16, 551-586.	2.2	36

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1348	Structure and Function of the Bacterial Protein Toxin Phenomycin. Structure, 2020, 28, 5	528-539.e9.	3.3	2
1349	Chemo- and regioselective click reactions through nickel-catalyzed azide–alkyne cyclo Organic and Biomolecular Chemistry, 2020, 18, 3374-3381.	addition.	2.8	26
1350	Polymer Colloids from Step-Growth Thiol-X Polymerizations. Polymer Reviews, 2021, 61,	54-79.	10.9	7
1351	Fusion peptide engineered "statically-versatile―titanium implant simultaneously enl anti-infection, vascularization and osseointegration. Biomaterials, 2021, 264, 120446.	nancing	11.4	52
1352	Seven‣tep Synthesis of Allâ€Nitrogenated Sugar Derivatives Using Sequential Overma Angewandte Chemie - International Edition, 2021, 60, 5193-5198.	an Rearrangements.	13.8	8
1353	Sevenâ€6tep Synthesis of Allâ€Nitrogenated Sugar Derivatives Using Sequential Overma Angewandte Chemie, 2021, 133, 5253-5258.	in Rearrangements.	2.0	0
1354	Regiodivergent synthesis of pyrazino-indolines <i>vs.</i> triazocines <i>via</i> α-imino addition to imidazolidines. Chemical Science, 2021, 12, 1479-1485.	carbenes	7.4	17
1355	Synthesis and Encapsulation of Uniform Starâ€Shaped Blockâ€Macromolecules. Macron Communications, 2021, 42, 2000467.	nolecular Rapid	3.9	3
1356	One-pot, two-step synthesis of 7-methylene-1,5-piperazine-fused 1,2,3-triazoles. Synthet Communications, 2021, 51, 563-569.	ic	2.1	4
1357	Microwave-assisted C N formation reactions. , 2021, , 51-203.			0
1358	New 1-(Spiro[chroman-2,1′-cycloalkan]-4-yl)-1H-1,2,3-Triazoles: Synthesis, QTAIM/ME DNA/HSA-binding assays. Journal of Molecular Liquids, 2021, 324, 114729.	P analyses, and	4.9	19
1359	Copper catalysts for photo- and electro-catalytic hydrogen production. Inorganic Chemis Frontiers, 2021, 8, 1015-1029.	try	6.0	21
1360	Axially chiral bis-1,2,3-Triazol-4-ylidene–Ag(I)-MIC and, bis-Au(I)-MIC complexes of (R)-E (-)-Menthol scaffold: Synthesis, structure, and characterizations. Journal of Organometal Chemistry, 2021, 932, 121626.	3INOL and lic	1.8	4
1361	Highly efficient synthesis of silicaâ€coated magnetic nanoparticles modified with iminod applied to synthesis of 1,2,3â€triazoles. Applied Organometallic Chemistry, 2021, 35, e6		3.5	12
1362	Triazolization of Enolizable Ketones with Primary Amines: A General Strategy toward Mul 1,2,3â€Triazoles. Chemical Record, 2021, 21, 376-385.	tifunctional	5.8	17
1363	Synthesis of 2′-(1,2,3-triazoyl)-acetophenones: molecular docking and inhibition of <i>vitro</i> monoamine oxidase activity. New Journal of Chemistry, 2021, 45, 714-724.	•in	2.8	4
1364	1,2,3-Triazole based poly(ionic liquids) as solid dielectric materials. Polymer, 2021, 212, 2	123144.	3.8	7
1365	Understanding the regioselectivity of the copper(I)- and ruthenium(II)- catalyzed [3 + 2] of azido derivative of ribose with terminal alkyne: a theoretical study. Theoretical Chemis Accounts, 2021, 140, 1.	cycloadditions try	1.4	3

#	Article	IF	CITATIONS
1366	A [3+2] cycloaddition-1,2-acyl migration-hydrolysis cascade for regioselective synthesis of 1,2,3-triazoles in water. Chemical Communications, 2021, 57, 7970-7973.	4.1	7
1367	DFT and AFIR study on the copper(<scp>i</scp>)-catalyzed mechanism of 5-enamine-trisubstituted-1,2,3-triazole synthesis <i>via</i> C–N cross-coupling and the origin of ring-opening of 2 <i>H</i> -azirines. RSC Advances, 2021, 11, 2744-2755.	3.6	4
1368	A tris(benzyltriazolemethyl)amine-based cage as a CuAAC ligand tolerant to exogeneous bulky nucleophiles. Chemical Communications, 2021, 57, 2281-2284.	4.1	12
1369	1,2,3-Triazoles as leaving groups in S _N Ar–Arbuzov reactions: synthesis of C6-phosphonated purine derivatives. Beilstein Journal of Organic Chemistry, 2021, 17, 193-202.	2.2	6
1370	Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chemical Biology, 2021, 2, 94-150.	4.1	35
1371	On-Nanoparticle Gating Units Render an Ordinary Catalyst Substrate- and Site-Selective. Journal of the American Chemical Society, 2021, 143, 1807-1815.	13.7	13
1372	A Hitchhiker's Guide to Click-Chemistry with Nucleic Acids. Chemical Reviews, 2021, 121, 7122-7154.	47.7	182
1373	Mechanisms and Substituent Effects of Metal-Free Bioorthogonal Reactions. Chemical Reviews, 2021, 121, 6850-6914.	47.7	62
1374	Synthesis, Characterization and Applications of Glycopolymers. , 2021, , 180-208.		1
1375	Synthesis and biological evaluation of selective phosphonate-bearing 1,2,3-triazole-linked sialyltransferase inhibitors. RSC Medicinal Chemistry, 2021, 12, 1680-1689.	3.9	3
1376	Prolinamide plays a key role in promoting copper-catalyzed cycloaddition of azides and alkynes in aqueous media <i>via</i> unprecedented metallacycle intermediates. Organic Chemistry Frontiers, 2021, 8, 2434-2441.	4.5	5
1377	SPAAC iClick: progress towards a bioorthogonal reaction in-corporating metal ions. Dalton Transactions, 2021, 50, 12681-12691.	3.3	11
1378	Organic reactions in aqueous media catalyzed by nickel. Green Chemistry, 2021, 23, 6273-6300.	9.0	24
1379	Synthesis of Silsesquioxanes with Substituted Triazole Ring Functionalities and Their Coordination Ability. Molecules, 2021, 26, 439.	3.8	4
1380	The Catalytic Activity of Carbon-Supported Cu(I)-Phosphine Complexes for the Microwave-Assisted Synthesis of 1,2,3-Triazoles. Catalysts, 2021, 11, 185.	3.5	17
1381	Copper-catalyzed tandem annulation of 2-alkynoyl-2â€2-iodo-1,1â€2-biphenyls with isocyanoacetates: a rapid access to pyrrole-fused tetracyclic skeletons. Organic Chemistry Frontiers, 2021, 8, 2456-2460.	4.5	13
1382	Transition-metal-free and facile synthesis of 3-alkynylpyrrole-2,4-dicarboxylates from methylene isocyanides and propiolaldehyde. New Journal of Chemistry, 2021, 45, 16430-16433.	2.8	3
1383	Intercepting the Banert cascade with nucleophilic fluorine: direct access to α-fluorinated <i>N</i> H-1,2,3-triazoles. Chemical Communications, 2021, 57, 5024-5027.	4.1	3

#	Article	IF	CITATIONS
1384	Advances in greener processes for triazole synthesis via azide-alkyne cycloaddition reactions. , 2021, , 297-353.		0
1385	Development of Inorganic Click (iClick) and Related Cycloaddition Chemistry. , 2021, , 1086-1100.		0
1387	Photocatalytic functionalizations of alkynes. Chemical Communications, 2021, 57, 11285-11300.	4.1	33
1388	Assembling triazolated calix[4]semitubes by means of copper(<scp>i</scp>)-catalyzed azide–alkyne cycloaddition. Organic Chemistry Frontiers, 2021, 8, 3853-3866.	4.5	6
1389	Insight into the Mechanism of the CuAAC Reaction by Capturing the Crucial Au ₄ Cu ₄ –΀-Alkyne Intermediate. Journal of the American Chemical Society, 2021, 143, 1768-1772.	13.7	45
1390	Metal-free syntheses of <i>N</i> -functionalized and <i>NH</i> -1,2,3-triazoles: an update on recent developments. Chemical Communications, 2021, 57, 1568-1590.	4.1	42
1391	Spin Labeling of RNA Using "Click―Chemistry for Coarse-grained Structure Determination via Pulsed Electron-electron Double Resonance Spectroscopy. Bio-protocol, 2021, 11, e4004.	0.4	1
1392	Synthesis and [*C]CO-labelling of (C,N) gem-dimethylbenzylamine–palladium complexes for potential applications in positron emission tomography. Dalton Transactions, 2021, 50, 10608-10614.	3.3	2
1393	Bioactive 1,2,3â€Triazoles: An Account on their Synthesis, Structural Diversity and Biological Applications. Chemical Record, 2021, 21, 2782-2807.	5.8	41
1394	Click Modification of a Metal–Organic Framework for Two-Photon Photodynamic Therapy with Near-Infrared Excitation. ACS Applied Materials & Interfaces, 2021, 13, 9739-9747.	8.0	25
1395	Copper-catalyzed one-pot synthesis of amide linked 1,2,3-triazoles bearing aryloxy skeletons. Tetrahedron Letters, 2021, 65, 152765.	1.4	6
1396	Ultrafast transient absorption spectroscopy of the photodecarbonylation of photo-oxadibenzocyclooctyne (photo-ODIBO). Journal of Chemical Physics, 2021, 154, 074302.	3.0	1
1397	Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomedical Materials (Bristol), 2021, 16, 022003.	3.3	36
1398	An experimental and mechanism study on the regioselective click reaction toward the synthesis of thiazolidinone-triazole. Heliyon, 2021, 7, e06113.	3.2	9
1399	Liquid-Phase Peak Force Infrared Microscopy for Chemical Nanoimaging and Spectroscopy. Analytical Chemistry, 2021, 93, 3567-3575.	6.5	17
1400	Oneâ€Pot Synthesis of 5â€Aminoâ€1,2,3â€triazole Derivatives via Dipolar Azideâ^'Nitrile Cycloaddition and Dimroth Rearrangement under Solventâ€Free Conditions. European Journal of Organic Chemistry, 2021, 2021, 1378-1384.	2.4	12
1401	The Chemical Synthesis of Insulin: An Enduring Challenge. Chemical Reviews, 2021, 121, 4531-4560.	47.7	36
1402	Robust and Versatile Cu(I) metal frameworks as potential catalysts for azide-alkyne cycloaddition reactions: Review. Molecular Catalysis, 2021, 504, 111432.	2.0	27

#	Article	IF	CITATIONS
1403	Conversions of sulfone-containing vinyl azides to vinyl triazoles and enamides. Tetrahedron, 2021, 83, 131933.	1.9	2
1404	Development of a Novel Threeâ€step Sonogashira Cross Coupling/Deacetonation/Cycloaddition Protocol for the Synthesis of 4â€arylâ€1,2,3â€triazoles Using 2â€methylâ€3â€butynâ€2â€ol as a Versatile Acetyl Surrogate. Asian Journal of Organic Chemistry, 2021, 10, 1153-1160.	e 2<i>6</i>7	5
1405	Discrete Benzotriazoleâ€Copper(II) Complexes in Chelated and Nonâ€Chelated Coordination Modes: Structural Analysis and Catalytic Application in Click and A 3 Coupling Reactions. European Journal of Inorganic Chemistry, 2021, 2021, 1763-1769.	2.0	8
1406	Vitamin B ₁₂ Derivatives Suitably Tailored for the Synthesis of Photolabile Conjugates. Organic Letters, 2021, 23, 4940-4944.	4.6	7
1407	Domino Construction of Benzoxazole-Derived Sulfonamides <i>via</i> Metal-Free Denitrogenation of 5-lodo-1,2,3-triazoles in the Presence of SO ₂ and Amines. Journal of Organic Chemistry, 2021, 86, 5639-5650.	3.2	13
1408	Enantioselective Nickel-Catalyzed Alkyne–Azide Cycloaddition by Dynamic Kinetic Resolution. Journal of the American Chemical Society, 2021, 143, 5308-5313.	13.7	27
1410	Microwave Irradiated Targeted Synthesis of Pyrrolobenzodiazepine Embrace 1,2,3-Triazole by Click Chemistry Synthetic Aspect and Evaluation of Anticancer and Antimicrobial Activity. Polycyclic Aromatic Compounds, 2022, 42, 4752-4768.	2.6	12
1411	Coumarin-triazole hybrids: Design, microwave-assisted synthesis, crystal and molecular structure, theoretical and computational studies and screening for their anticancer potentials against PC-3 and DU-145. Journal of Molecular Structure, 2021, 1230, 129899.	3.6	17
1412	Bioorthogonal Retro-Cope Elimination Reaction of <i>N</i> , <i>N</i> -Dialkylhydroxylamines and Strained Alkynes. Journal of the American Chemical Society, 2021, 143, 5616-5621.	13.7	15
1413	Mechanistic Insight into the Light-Triggered CuAAC Reaction: Does Any of the Photocatalyst Go?. Journal of Organic Chemistry, 2021, 86, 5832-5844.	3.2	10
1414	Design of Nitroso-Modified Naphthylene-Based Fluorophores as Photoactivatable Bioorthogonal Turn-On Probes. Organic Letters, 2021, 23, 3782-3787.	4.6	4
1415	Simultaneous ultrasound- and microwave-assisted one-pot â€~click' synthesis of 3-formyl-indole clubbed 1,2,3-triazole derivatives and their biological evaluation. Molecular Diversity, 2022, 26, 963-979.	3.9	15
1416	Maximizing Conversion of Surface Click Reactions for Versatile Molecular Modification on Metal Oxide Nanowires. Langmuir, 2021, 37, 5172-5179.	3.5	3
1417	Copper immobilized on biomimetic assembled calcium carbonate/carboxymethylcellulose hybrid: a highly active recoverable catalyst for CuAAC reactions. Research on Chemical Intermediates, 2021, 47, 3883-3898.	2.7	3
1418	Design and Synthesis of New 5-aryl-4-Arylethynyl-1H-1,2,3-triazoles with Valuable Photophysical and Biological Properties. Molecules, 2021, 26, 2801.	3.8	7
1419	Selenium-catalyzed Functionalization of Alkynes. Chemistry Letters, 2021, 50, 1104-1113.	1.3	19
1420	Anchoring Cu nanoparticles on functionalized multiâ€walled carbon nanotube for regioselective synthesis of 1,2,3â€triazoles via click reaction. Applied Organometallic Chemistry, 2021, 35, e6281.	3.5	9
1421	Remote ether groups-directed regioselective and chemoselective cycloaddition of azides and alkynes. Chinese Chemical Letters, 2021, 32, 4019-4023.	9.0	11

#	Article	IF	Citations
1422	Bioorthogonal Azide–Thioalkyne Cycloaddition Catalyzed by Photoactivatable Ruthenium(II) Complexes. Angewandte Chemie - International Edition, 2021, 60, 16059-16066.	13.8	27
1423	Bioorthogonal Hydroamination of Push–Pullâ€Activated Linear Alkynes. Angewandte Chemie - International Edition, 2021, 60, 16947-16952.	13.8	7
1424	Bioorthogonal Hydroamination of Push–Pullâ€Activated Linear Alkynes. Angewandte Chemie, 2021, 133, 17084-17089.	2.0	3
1425	Semisynthetic Triazoles as an Approach in the Discovery of Novel Lead Compounds. Current Organic Chemistry, 2021, 25, 1097-1179.	1.6	1
1426	Bioorthogonal Azide–Thioalkyne Cycloaddition Catalyzed by Photoactivatable Ruthenium(II) Complexes. Angewandte Chemie, 2021, 133, 16195-16202.	2.0	0
1427	Breast Cancer Targeting of a Drug Delivery System through Postsynthetic Modification of Curcumin@N ₃ -bio-MOF-100 via Click Chemistry. Inorganic Chemistry, 2021, 60, 11739-11744.	4.0	57
1428	Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chemical Reviews, 2021, 121, 7638-7956.	47.7	197
1430	Synthesis and Characterization of a "Clickable―PBR28 TSPO-Selective Ligand Derivative Suitable for the Functionalization of Biodegradable Polymer Nanoparticles. Nanomaterials, 2021, 11, 1693.	4.1	2
1431	One-pot four-component tandem synthesis of novel sulfonamide-1, 2, 3-triazoles catalyzed by reusable copper (II)-adsorbed on mesoporous silica under ultrasound irradiation. Tetrahedron, 2021, 90, 132215.	1.9	10
1432	Syntheses, single crystal X-ray structure, Hirshfeld surface analyses, DFT computations and Monte Carlo simulations of New Eugenol derivatives bearing 1,2,3-triazole moiety. Journal of Molecular Structure, 2021, 1234, 130189.	3.6	19
1433	Palladium and Copper: Advantageous Nanocatalysts for Multi-Step Transformations. Nanomaterials, 2021, 11, 1891.	4.1	6
1434	Asymmetric Three-Component Propargyloxylation for Direct Assembly of Polyfunctionalized Chiral Succinate Derivatives. CCS Chemistry, 2021, 3, 1903-1912.	7.8	15
1435	Free radical polymerization of acrylates bearing acetylene for preparation of clickable polymers. Polymer, 2021, 228, 123906.	3.8	6
1436	Unusual Effect of Impurities on the Spectral Characterization of 1,2,3-Triazoles Synthesized by the Cu-Catalyzed Azide–Alkyne Click Reaction. Journal of Organic Chemistry, 2021, 86, 11456-11463.	3.2	7
1437	Highly Efficient and Stable Atomically Dispersed Cu Catalyst for Azideâ€Alkyne Cycloaddition Reaction. ChemCatChem, 2021, 13, 3960-3966.	3.7	9
1438	One-pot ultrasonic synthesis of [Cl(Nâ^©N')Cu(μCl)2Cu(Nâ^©N')Cl] dimer, DFT, XRD/HSA-interactions, Solvatochromism and TC/DTG/DSC analysis. Journal of Molecular Structure, 2021, 1236, 130371.	spectral,	5
1439	Recent advancement in copper-catalyzed asymmetric reactions of alkynes. Tetrahedron, 2021, 93, 132238.	1.9	18
1440	Metals as "Click―catalysts for alkyne-azide cycloaddition reactions: An overview. Journal of Organometallic Chemistry, 2021, 944, 121846.	1.8	33

#	Article	IF	CITATIONS
1441	Chemoadaptive Polymeric Assemblies by Integrated Chemical Feedback in Self-Assembled Synthetic Protocells. ACS Central Science, 2021, 7, 1543-1550.	11.3	15
1442	Boraiminolithium: An Iminoborane-Transfer Reagent. Journal of the American Chemical Society, 2021, 143, 13483-13488.	13.7	16
1443	Tris â€isocyanide copper(I) complex enabling copper azideâ€alkyne cycloaddition in neat conditions. Applied Organometallic Chemistry, 2021, 35, e6401.	3.5	7
1444	A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. International Journal of Biological Macromolecules, 2021, 186, 1003-1166.	7.5	30
1445	A "Clickable―Electrodeposited Polymer Films Based on 3â€Ethynylthiophene for the Covalent Immobilization of Proteins. Application to a Labelâ€free Electrochemical Immunosensor for Escherichia Coli and Staphylococcus Aureus Determination. Electroanalysis, 2021, 33, 2469-2475.	2.9	5
1446	Thermoresponsive Fluorescence Switches Based on Au@pNIPAM Nanoparticles. Langmuir, 2021, 37, 10971-10978.	3.5	1
1447	Copper atalyzed Decarboxylative Cycloaddition of Alkynyl Carboxylic Acids and Sodium Azide with Epoxides and Ethers. ChemistrySelect, 2021, 6, 9632-9636.	1.5	3
1448	(Hetero)arylazo-1,2,3-triazoles: "Clicked―Photoswitches for Versatile Functionalization and Electronic Decoupling. Journal of the American Chemical Society, 2021, 143, 14502-14510.	13.7	25
1449	Selective Synthesis of 2-(1,2,3-Triazoyl) Quinazolinones through Copper-Catalyzed Multicomponent Reaction. Catalysts, 2021, 11, 1170.	3.5	1
1450	A novel anthracene functionalized dibenzoxanthene fluorophore for copper (II) sensing. Optical Materials, 2021, 119, 111370.	3.6	5
1451	A Click Reaction Enabled by Phosphorusâ€Oxygen Bond for Synthesis of Triazoles. ChemistrySelect, 2021, 6, 9317-9322.	1.5	3
1452	Metallacycle Expansion and Annulation: Access to <scp>Tetrazoloâ€Fused</scp> Osmacycles by Reaction of Cyclic Osmium Carbyne with Sodium Azide. Chinese Journal of Chemistry, 2021, 39, 3435-3442.	4.9	13
1453	In situ activation of therapeutics through bioorthogonal catalysis. Advanced Drug Delivery Reviews, 2021, 176, 113893.	13.7	58
1454	Molecules, the Ultimate Nanomotor: Linking Chemical Reaction Intermediates to their Molecular Diffusivity. ACS Nano, 2021, 15, 14947-14953.	14.6	15
1455	Copperâ€Catalyzed Fourâ€Component Cascade Reaction for the Construction of Triazoles Bearing βâ€Hydroxy Chalcogenides. Advanced Synthesis and Catalysis, 2022, 364, 165-171.	4.3	9
1456	vvComplexation of copper ion-containing immobilized ionic liquid in designed hierarchical-functionalized layered double hydroxide nanoreactor for azide–alkyne cycloaddition reaction. Inorganic Chemistry Communication, 2021, 132, 108858.	3.9	6
1457	Functional polymers for lithium metal batteries. Progress in Polymer Science, 2021, 122, 101453.	24.7	39
1458	Recent progress in preparation of microcapsules with tailored structures for bio-medical applications. Journal of Molecular Structure, 2022, 1248, 131366.	3.6	10

#	ARTICLE Deciphering the mechanism of action of antitubercular compounds with metabolomics.	IF	Citations
1459	Computational and Structural Biotechnology Journal, 2021, 19, 4284-4299.	4.1	3
1460	Chemical trigger-enabled bioconjugation reaction. Organic and Biomolecular Chemistry, 2021, 19, 8343-8351.	2.8	2
1461	Photocatalytic decarboxylative amidosulfonation enables direct transformation of carboxylic acids to sulfonamides. Chemical Science, 2021, 12, 6429-6436.	7.4	39
1462	Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chemical Communications, 2021, 57, 4212-4229.	4.1	25
1463	Functionalized resorcin[4]arene-based coordination polymers as heterogeneous catalysts for click reactions. New Journal of Chemistry, 2021, 45, 3181-3187.	2.8	3
1464	Defect engineering: an effective tool for enhancing the catalytic performance of copper-MOFs for the click reaction and the A ³ coupling. Catalysis Science and Technology, 2021, 11, 2396-2402.	4.1	20
1465	Three-component coupling reaction for the synthesis of fully substituted triazoles: reactivity control of Cu-acetylide toward alkyl azides and diazo compounds. Organic Chemistry Frontiers, 2021, 8, 6095-6107.	4.5	2
1466	Research Advances on Benzotriazole-based Organic Photovoltaic Materials. Acta Chimica Sinica, 2021, 79, 820.	1.4	10
1467	Indium-mediated annulation of 2-azidoaryl aldehydes with propargyl bromides to [1,2,3]triazolo[1,5- <i>a</i>]quinolines. Organic and Biomolecular Chemistry, 2021, 19, 6346-6352.	2.8	11
1470	FN3 Protein Conjugates for Cancer Diagnosis and Imaging Studies. Methods in Molecular Biology, 2019, 2033, 301-313.	0.9	2
1471	Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions. Springer Theses, 2014, , .	0.1	4
1472	Two-Dimensional Macromolecular Architectures Constructed at Interfaces by Soft Solution Processes. , 2018, , 478-485.		1
1473	Facile Fabrication of the Cu-N-C Catalyst with Atomically Dispersed Unsaturated Cu-N2 Active Sites for Highly Efficient and Selective Glaser–Hay Coupling. ACS Applied Materials & Interfaces, 2020, 12, 27210-27218.	8.0	47
1474	Asymmetric C–H Bond Insertion Reactions. RSC Catalysis Series, 2015, , 1-66.	0.1	8
1475	Overview of Click Polymerization. RSC Polymer Chemistry Series, 2018, , 1-35.	0.2	6
1476	Aerobic dehydrogenation of amines to nitriles catalyzed by triazolylidene ruthenium complexes with O ₂ as terminal oxidant. Dalton Transactions, 2020, 49, 1981-1991.	3.3	16
1477	An Expeditious Route for the Synthesis of Oxazepine Triazolo-β-Lactams through Intramolecular Metal-Free [3+2] Azide–Alkyne Cycloaddition. Australian Journal of Chemistry, 2020, 73, 654.	0.9	3
1478	Synthesis and validation of [18F]mBPET-1, a fluorine-18 labelled mTOR inhibitor derivative based on a benzofuran backbone. EJNMMI Radiopharmacy and Chemistry, 2020, 5, 3.	3.9	2

#	Article	IF	CITATIONS
1479	Potential Triazole-based Molecules for the Treatment of Neglected Diseases. Current Medicinal Chemistry, 2019, 26, 4403-4434.	2.4	13
1480	Synthesis of Heterocyclic Triterpene Derivatives with Biological Activities via Click Reaction. Current Organic Chemistry, 2020, 23, 2969-2974.	1.6	2
1481	Review on Synthesis of Bio-active Coumarin-fused Heterocyclic Molecules. Current Organic Chemistry, 2020, 24, 2566-2587.	1.6	18
1482	Novel [6]-gingerol Triazole Derivatives and their Antiproliferative Potential against Tumor Cells. Current Topics in Medicinal Chemistry, 2020, 20, 161-169.	2.1	8
1483	APPLICATIONS OF "CLICK―CHEMISTRY IN SYNTHESIS OF TOPOLOGICAL POLYMERS. Acta Polymerica Sinica, 2013, 013, 300-319.	0.0	1
1484	Synthesis and Application of 1,2,3-Triazole Allyl Acetates: Expedient Access to Pyridine Derivatives. Heterocycles, 2017, 94, 1289.	0.7	2
1485	Synthesis of Diverse 3-Azido-5-(azidomethyl)benzene Derivatives via Formal C–H Azidation and Functional Group-Selective Transformations. Heterocycles, 2019, 99, 1053.	0.7	4
1486	On-Water Selectivity Switch in Microdroplets in the 1,2,3-Triazole Synthesis from Bromoethenesulfonyl Fluoride. Journal of the American Chemical Society, 2021, 143, 18374-18379.	13.7	17
1487	Supramolecular Catalyst Functions in Catalytic Amount: Cucurbit[7]uril Accelerates Click Reaction in Water. ChemistrySelect, 2021, 6, 10739-10745.	1.5	3
1488	An Efficient Method for Covalent Surface Functionalization of Ultrasmall Metallic Nanoparticles by Surface Azidation Followed by Copper atalyzed Azideâ€Alkyne Cycloaddition (Click Chemistry). ChemNanoMat, 2021, 7, 1330-1339.	2.8	13
1489	Copper-catalyzed ultrasonic-promoted coupling of acetylene analogs, dialkyl azo dicarboxylate, and benzazoles to assemble tricyclic fused-ring [1,2,3]triazolo[3,4-b][1,3]benzazole analogs. Letters in Organic Chemistry, 2021, 18, .	0.5	0
1490	Regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles catalyzed by cooperative s-block bimetallics. Chem Catalysis, 2021, 1, 1308-1321.	6.1	7
1491	Recent Advancement in the Copper Mediated Synthesis of Heterocyclic Amides as Important Pharmaceutical and Agrochemicals. ChemistrySelect, 2021, 6, 10274-10322.	1.5	11
1492	Amphiphilic micro―and nanogels: Combining properties from internal hydrogel networks, solid particles, and micellar aggregates. Journal of Polymer Science, 2021, 59, 2665-2703.	3.8	24
1493	Efficient one-pot synthesis of polysubstituted 6-[(1H-1,2,3-triazol-1-yl)methyl]uracils through the "click" protocol. , 2011, , .		0
1494	Synthesis of Site-Specifically Modified Long-mer RNAs. , 2014, , 477-496.		1
1496	Strategies for Virus–Enzyme Coupling. , 2015, , 45-104.		0
1497	Strategies for Virus–Enzyme Coupling. , 2015, , 65-124.		0

#	Article	IF	CITATIONS
1499	Merrifield resin-linked polyazole-based sorbent for heavy metal ions extraction from water. Functional Materials, 2018, 25, 619-624.	0.1	4
1501	Ionic Liquid Catalyzed Efficient Regioselective Synthesis of 1,4-Disubstituted 1,2,3-Triazoles Under Metal and Solvent Free Conditions. Current Organocatalysis, 2021, 8, 223-227.	0.5	0
1502	Copper oxide nanoparticles decorated on nitrogen doped carbon hollow and their catalytic activities in synthesis of propargylamines and reduction of nitroarenes. Reaction Kinetics, Mechanisms and Catalysis, 2021, 134, 793-810.	1.7	3
1503	Click reaction in the synthesis of dendrimer drug-delivery systems. Current Medicinal Chemistry, 2021, 28, .	2.4	5
1505	Three-Component Reactions of α-CF ₃ Carbonyls, NaN ₃ , and Amines for the Synthesis of <i>NH</i> -1,2,3-Triazoles. Journal of Organic Chemistry, 2021, 86, 17197-17212.	3.2	20
1506	Benzothiazole-[1,2,3]triazolo[5,1-a]isoindoles: Synthesis, anticancer activity, bioavailability and in silico studies against Gama-Tubulin protein. Journal of Molecular Structure, 2022, 1250, 131722.	3.6	24
1507	Click chemistry: A tool for green chemical organic synthesis. , 2020, , 13-48.		4
1508	Development of Triazoles and Triazolium Salts Based on AZT and Their Anti-Viral Activity against HIV-1. Molecules, 2021, 26, 6720.	3.8	4
1510	A DFT Study on the Binuclear Copper(I)â€Catalyzed Synthesis Mechanism of 1,2,3â€Triazolo[1,5]Pyrimidines via Interrupted Click and Ketenimine Rearrangement. ChemPhysChem, 2021, 23, e202100751.	2.1	1
1511	Azide–Alkyne "Click―Reaction in Water Using Parts-Per-Million Amine-Functionalized Azoaromatic Cu(I) Complex as Catalyst: Effect of the Amine Side Arm. Inorganic Chemistry, 2021, 60, 17537-17554.	4.0	14
1512	A Genetically Encoded Picolyl Azide for Improved Live Cell Copper Click Labeling. Frontiers in Chemistry, 2021, 9, 768535.	3.6	4
1513	Glassesâ€shaped triblock copolymer prepared by combination of atom transfer radical polymerization and ring opening polymerization. Journal of Polymer Science, 2022, 60, 258.	3.8	0
1514	Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities. Biomacromolecules, 2022, 23, 619-640.	5.4	36
1515	Synthesis, characterization, electrochemistry and in vitro cytotoxicity of a new "Triazole-Maltol― ligand and its platinum(II) complex. Inorganica Chimica Acta, 2022, 532, 120756.	2.4	2
1516	Copper-catalyzed <i>in situ</i> oxidative-coupling for one-pot synthesis of 5-aryl-1,4-disubstituted 1,2,3-triazoles under mild conditions. RSC Advances, 2021, 11, 38108-38114.	3.6	6
1517	"Click―Cucurbit[7]uril Hosts on Self-Assembled Monolayers: Quantitative Supramolecular Complexation with Ferrocene Guests. Journal of Physical Chemistry C, 2022, 126, 1661-1671.	3.1	5
1518	Scientific and Technological Prospecting of 1H-1,2,3-Triazoles. Current Organic Chemistry, 2022, 26, .	1.6	0
1519	Generation, regeneration, and recovery of Cu catalytic system by changing the polarity of electrodes. Green Chemistry, 2022, 24, 1132-1140.	9.0	15

		CITATION F	Report	
# 1520	ARTICLE Synthetic applications of click chemistry in thermosetting block and graft polymers. , 20	022, , 931-952.	IF	Citations 3
1521	Facile synthesis of N2-substituted-1,2,3-triazole from aryl ethynylene and azide via a one strategy. Tetrahedron, 2022, 108, 132670.	e-pot two-step	1.9	3
1522	Binding Interactions in Copper, Silver and Gold π omplexes. Chemistry - A European	Journal, 2022, 28, .	3.3	15
1523	Molecular Diffusivity of Click Reaction Components: The Diffusion Enhancement Questi the American Chemical Society, 2022, 144, 1380-1388.	on. Journal of	13.7	16
1524	Tetranuclear and trinuclear copper(<scp>i</scp>) pyrazolates as catalysts in copper me azide–alkyne cycloadditions (CuAAC). Dalton Transactions, 2021, 51, 375-383.	diated	3.3	12
1525	Cycloaddition of <i>N</i> -sulfonyl and <i>N</i> -sulfamoyl azides with alkynes in aqueou the selective synthesis of 1,2,3-triazoles. Green Chemistry, 2022, 24, 911-915.	us media for	9.0	3
1526	Pd(II)â€Mediated Câ^'H Activation for Cysteine Bioconjugation. Chemistry - A European	Journal, 2022, 28, .	3.3	9
1527	Harnessing aggregation-induced emission property of indolizine derivative as a fluoroge for endoplasmic reticulum. Dyes and Pigments, 2022, 200, 110118.	nic bioprobe	3.7	5
1528	Mechanochromic cyclodextrins. Chemical Communications, 2022, 58, 3067-3070.		4.1	7
1529	Copper-Catalyzed Azide–Alkyne Cycloaddition of Hydrazoic Acid Formed <i>In SituAzide Affords 4-Monosubstituted-1,2,3-Triazoles. Journal of Organic Chemistry, 2022, 8</i>		3.2	20
1530	Spin Labeling of Long RNAs Via Click Reaction and Enzymatic Ligation. Methods in Mole 2022, 2439, 205-221.	cular Biology,	0.9	1
1531	Ru ^{II} complexes of 1,2,3-triazole appended tertiary phosphines,			

#	Article		CITATIONS
1538	Recent Advances in the Functionalization of Terminal and Internal Alkynes. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	23
1539	Threeâ€Component Coupling of αâ€Trifluoromethyl Carbonyls, Azides and Amines for the Regioselective Synthesis of 1,4,5â€Trisubstituted 1,2,3â€Triazoles. Advanced Synthesis and Catalysis, 2022, 364, 1402-1408.	4.3	14
1540	Tunable Synthesis of 1,2,3â€Triazoles and Enamines through Deacylative Azideâ€Alkene Cycloaddition. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
1541	Enantioselective Rh-Catalyzed Azide-Internal-Alkyne Cycloaddition for the Construction of Axially Chiral 1,2,3-Triazoles. Journal of the American Chemical Society, 2022, 144, 6981-6991.	13.7	36
1542	Concerted Cycloaddition Mechanism in the CuAAC Reaction Catalyzed by 1,8-Naphthyridine Dicopper Complexes. ACS Catalysis, 2022, 12, 4744-4753.	11.2	13
1543	Reactivity of trifluoromethyl-tetrazolo[1,5-a]pyrimidines in click chemistry and hydrogenation. Journal of Fluorine Chemistry, 2022, 257-258, 109973.	1.7	0
1544	Photocatalytic activity of an Anderson-type polyoxometalate with mixed copper(I)/copper(II) ions for visible-light enhancing heterogeneous catalysis. Journal of Solid State Chemistry, 2022, 310, 123052.	2.9	6
1545	Synthesis of Substituted Aryl Incorporated Oxazolo[4,5-b]Pyridine-Triazole Derivatives: Anticancer Evaluation and Molecular Docking Studies. Polycyclic Aromatic Compounds, 2023, 43, 915-932.	2.6	2
1546	Base-Induced Highly Regioselective Synthesis of <i>N</i> ² -Substituted 1,2,3-Triazoles under Mild Conditions in Air. Organic Letters, 2022, 24, 132-136.	4.6	7
1547	Aminoâ€Acidâ€Anthraquinone Click Chemistry Conjugates Selectively Target Human Telomeric Gâ€Quadruplexes. ChemMedChem, 2022, 17, .	3.2	1
1548	Chemistry of Compounds Based on 1,2,3-Triazolylidene-Type Mesoionic Carbenes. Jacs Au, 2022, 2, 22-57.	7.9	47
1550	Efficient Green Chemistry Approach for the Synthesis of 1,2,3-Triazoles Using Click Chemistry through Cycloaddition Reaction: Synthesis and Cytotoxic Study. Polycyclic Aromatic Compounds, 2023, 43, 686-698.	2.6	6
1551	Synthesis of a glucose conjugate of pristimerin and evaluation of its anticancer activity. Chinese Chemical Letters, 2022, , .	9.0	0
1552	New Calix[4]arene—Fluoresceine Conjugate by Click Approach—Synthesis and Preparation of Photocatalytically Active Solid Lipid Nanoparticles. Molecules, 2022, 27, 2436.	3.8	6
1553	Greenâ€Light Activatable BODIPY and Coumarin 5'â€Caps for Oligonucleotide Photocaging. Chemistry - A European Journal, 2022, 28, .	3.3	7
1556	On-Surface Azide–Alkyne Cycloaddition Reaction: Does It Click with Ruthenium Catalysts?. Langmuir, 2022, 38, 5532-5541.	3.5	7
1557	Engineered protein–iron oxide hybrid biomaterial for MRI-traceable drug encapsulation. Molecular Systems Design and Engineering, 2022, 7, 915-932.	3.4	4
1558	A synthesis of fuctionalized 2-amino-3-cyano pyrroles from terminal alkynes, sulfonyl azides and phenacylmalononitriles. Organic and Biomolecular Chemistry, 2022, 20, 4352-4360.	2.8	3

#	Article	IF	CITATIONS
1559	Functionalization of Water-Soluble Conjugated Polymers for Bioapplications. ACS Applied Materials & Interfaces, 2022, 14, 20506-20519.	8.0	24
1560	Conceptual design and cost-efficient environmentally Benign synthesis of beta-lactams. ChemistrySelect, 2022, .	1.5	0
1561	Rh(III)â€Catalyzed Oneâ€Step Synthesis of <i>ortho</i> â€Alkynylated Perylene Imide Dyes: Optical and Electrochemical Properties of New Derivatives. Chemistry - A European Journal, 2022, 28, .	3.3	3
1562	Synthesis of Bis(indolyl)methane/Dihydropyrimidinone Tethered Bisâ€Amidic Triazole Hybrid Compounds via Oneâ€Pot Sequential Six/Seven Component Ugiâ€Click Reaction. ChemistrySelect, 2022, 7, .	1.5	1
1563	Baseâ€Mediated Generation of Ketenimines from Ynamides: Addition of Hydrazones to Give Acetimidohydrazides**. European Journal of Organic Chemistry, 2022, 2022, .	2.4	0
1564	Copper-based metal–organic frameworks for biomedical applications. Advances in Colloid and Interface Science, 2022, 305, 102686.	14.7	79
1565	Chemical Proteomics Reveals Off-Targets of the Anandamide Reuptake Inhibitor WOBE437. ACS Chemical Biology, 2022, 17, 1174-1183.	3.4	5
1566	Cerium(<scp>III</scp>) triflate–catalyzed cycloaddition reaction in aqueous conditions to substituted naphthotriazolediones. Journal of the Chinese Chemical Society, 0, , .	1.4	2
1567	Seeking Citius—Photochemical Access of Reactive Intermediates for Faster Bioorthogonal Reactions. ChemBioChem, 0, , .	2.6	2
1568	Synthesis of ionic liquid modified Cu-doped layered double hydroxide magnetic as a novel nanocatalyst for azide-alkyne cycloaddition reactions. Inorganic Chemistry Communication, 2022, 141, 109566.	3.9	2
1569	Copper supported silica-based nanocatalysts for CuAAC and cross-coupling reactions. Reaction Chemistry and Engineering, 2022, 7, 1891-1920.	3.7	2
1570	Principle and applications of peak force infrared microscopy. Chemical Society Reviews, 2022, 51, 5268-5286.	38.1	9
1571	Click chemistryâ€based synthesis of new benzenesulfonamide derivatives bearing triazole ring as selective carbonic anhydrase II inhibitors. Drug Development Research, 2022, 83, 1281-1291.	2.9	7
1572	Bacteria (<i>E. coli</i>) take up ultrasmall gold nanoparticles (2Ânm) as shown by different optical microscopic techniques (CLSM, SIM, STORM). Nano Select, 2022, 3, 1407-1420.	3.7	12
1573	Copper Supported Imidazolylpyridine Modified SPION as an Efficient Catalyst for Eco-friendly, One-Pot and Green Synthesis of Novel (3-Cyanothiophen-2-yl)-N-(arylsulfonyl)acetimidamide Derivatives. Current Organic Synthesis, 2022, 19, .	1.3	0
1574	Proving Cooperativity of a Catalytic Reaction by Means of Nanoscale Geometry: The Case of Click Reaction. Journal of the American Chemical Society, 2022, 144, 11238-11245.	13.7	1
1575	4â€(Dimethylamino)Pyridinium Azide in Protic Ionic Liquid Media as a Stable Equivalent of Hydrazoic Acid. Advanced Synthesis and Catalysis, 2022, 364, 2403-2415.	4.3	6
1576	An Efficient Synthesis of Novel Triazolo-pyrimidine Derivatives using Copper Catalyzed Click Chemistry (CuAAC) Approach. Asian Journal of Organic & Medicinal Chemistry, 2022, 7, 153-158.	0.0	0

#	Article	IF	CITATIONS
1577	Silylene coordinated coinage metal complexes: An itinerary of their utilities. Advances in Inorganic Chemistry, 2022, , .	1.0	1
1578	Computational insights into the inverse electron-demand Diels–Alder reaction of norbornenes with 1,2,4,5-tetrazines: norbornene substituents' effects on the reaction rate. Organic and Biomolecular Chemistry, 2022, 20, 6400-6412.	2.8	3
1579	Copper(II) phthalocyanine as an efficient and versatile catalyst for click reactions at room temperature. Journal of the Iranian Chemical Society, 2022, 19, 4359-4375.	2.2	4
1580	Practical Coprecipitation Approach for High-Aspect Ratio Cupric Oxide Nanoparticles: A Sustainable Catalytic Platform for Huisgen and Fluorogenic Click Chemistry. Industrial & Engineering Chemistry Research, 2022, 61, 9552-9566.	3.7	6
1581	Borane/Gold(I)â€Catalyzed Câ^'H Functionalization Reactions and Cycloaddition Reactions of Amines and αâ€Alkynylenones. Angewandte Chemie, 2022, 134, .	2.0	3
1582	Borane/Gold(I)â€Catalyzed Câ^'H Functionalization Reactions and Cycloaddition Reactions of Amines and αâ€Alkynylenones. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
1583	The 1,3â€Dipolar Cycloaddition: From Conception to Quantum Chemical Design. Chemistry - an Asian Journal, 2022, 17, .	3.3	13
1584	Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) by Functionalized NHC-Based Polynuclear Catalysts: Scope and Mechanistic Insights. Organometallics, 2022, 41, 2154-2169.	2.3	16
1585	An Efficient Access to 5â€(1,2,3â€Triazolâ€1â€yl)isoxazoles – Previously Unknown Structural Type of Triazoleâ€isoxazole Hybrid Molecule. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	4
1586	Design, Synthesis, and Biological Activity of New CB2 Receptor Ligands: from Orthosteric and Allosteric Modulators to Dualsteric/Bitopic Ligands. Journal of Medicinal Chemistry, 2022, 65, 9918-9938.	6.4	15
1587	Brush-Modified Hydrogels: Preparations, Properties, and Applications. Chemistry of Materials, 2022, 34, 6210-6231.	6.7	10
1588	Cu(I) Mediated Azidation of Halobenzenes, and Cu Catalysed Selective Azide Reduction to Corresponding Amines. Advanced Synthesis and Catalysis, 2022, 364, 2957-2971.	4.3	9
1589	Transitionâ€metalâ€catalyzed Heteroannulation Reactions in Aqueous Medium. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	3
1590	Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: A review. Arabian Journal of Chemistry, 2022, 15, 104095.	4.9	3
1591	Topochemical Cycloaddition Reaction between an Azide and an Internal Alkyne. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
1592	Dual Roles of Azide: Dearomative Dimerization of Furfuryl Azides. Journal of Organic Chemistry, 2022, 87, 10185-10198.	3.2	1
1593	Partâ€perâ€million catalysis of azideâ€alkyne cycloaddition reaction in water using a new ferromagnetic μ _{1,1} â€N ₃ bridged dinuclear Cu(II) complex. Applied Organometallic Chemistry, 2022, 36, .	3.5	2
1594	Topochemical Cycloaddition Reaction between an Azide and an Internal Alkyne. Angewandte Chemie, 0,	2.0	2

#	Article	IF	CITATIONS
1595	Synthesis of N-Methylene Linker Containing Phthalimide Bearing-1 <i>H</i> -1,2,3-Triazole by Click Chemistry Approach: Anticancer Activity in Human Cells. Polycyclic Aromatic Compounds, 2023, 43, 5354-5374.	2.6	1
1596	1,2,3-Triazole and Its Analogues: New Surrogates for Diazo Compounds. Chemical Reviews, 2022, 122, 13108-13205.	47.7	71
1597	Optimization of Covalent MKK7 Inhibitors <i>via</i> Crude Nanomole-Scale Libraries. Journal of Medicinal Chemistry, 2022, 65, 10341-10356.	6.4	6
1598	Synthesis and characterization of low temperature curable phthalonitrile containing propargyl- novolacs through click-chemistry approach. Journal of Polymer Research, 2022, 29, .	2.4	1
1599	Structurally-unique polymeric materials obtained through catalytic post-polymerization protocols. Materials Today Chemistry, 2022, 26, 101073.	3.5	2
1600	A mesoporous metal–organic framework used to sustainably release copper(<scp>ii</scp>) into reducing aqueous media to promote the CuAAC click reaction. RSC Advances, 2022, 12, 26825-26833.	3.6	3
1601	Last-step ¹⁸ F-fluorination of supported 2-(aryl-di- <i>tert</i> -butylsilyl)- <i>N</i> -methyl-imidazole conjugates for applications in positron emission tomography. Chemical Communications, 2022, 58, 9140-9143.	4.1	1
1602	Synthesis, biological evaluation, and bioinformatics analysis of indole analogs on AChE and GST activities. Medicinal Chemistry Research, 2022, 31, 2119-2131.	2.4	3
1603	The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angewandte Chemie - International Edition, 2023, 62, .	13.8	19
1604	Selective Synthesis of 5â€Alkynyl Trisubstituted 1,2,3â€triazoles from Azides and Alkynes <i>via</i> Photoexcited Copper(I)acetylides. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	3
1605	Triple-Click Chemistry of Selenium Dihalides: Catalytic Regioselective and Highly Efficient Synthesis of Bis-1,2,3-Triazole Derivatives of 9-Selenabicyclo[3.3.1]nonane. Catalysts, 2022, 12, 1032.	3.5	4
1606	Mechanistic Aspects on [3+2] Cycloaddition (32CA) Reactions of Azides to Nitroolefins: A Computational and Kinetic Study. Chemistry - A European Journal, 2022, 28, .	3.3	0
1607	The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angewandte Chemie, 2023, 135, .	2.0	0
1609	lon recognition by 1,2,3â€ŧriazole moieties synthesized via "click chemistry― Applied Organometallic Chemistry, 2023, 37, .	3.5	13
1610	Click Chemistry Complexes as A platform For Biological Application: A review. , 2022, 1, 121-140.		0
1611	Selective Transformations of Aromatic Trifluoromethyl Groups through the Activation of Hydrosilanes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 898-910.	0.1	0
1613	Microwave accelerated green approach for tailored 1,2,3–triazoles via CuAAC. Sustainable Chemistry and Pharmacy, 2022, 30, 100824.	3.3	5
1614	Supramolecular template-directed synthesis of triazole oligomers. Chemical Science, 2022, 13, 13085-13093.	7.4	2

#	Article	IF	Citations
1615	Effect of backbone flexibility on covalent template-directed synthesis of linear oligomers. Organic and Biomolecular Chemistry, 2022, 20, 8285-8292.	2.8	4
1616	Vinylogous Winstein Rearrangement: Unexpected Isomerization of an Azide-Substituted Cyclohexadiene–Fe(CO) ₃ Complex. Organometallics, 2022, 41, 2997-3003.	2.3	0
1617	Copper-Cluster-Based MOF as a Heterogeneous Catalyst for CO ₂ Chemical Fixation and Azide–Alkyne Cycloaddition. Crystal Growth and Design, 2022, 22, 6531-6538.	3.0	14
1618	Development of Naturally Inspired Peptide and Protein Chemistry. Chemical and Pharmaceutical Bulletin, 2022, 70, 748-764.	1.3	1
1619	Molecular structure, spectral and theoretical study of new type bile acid–sterol conjugates linked via 1,2,3-triazole ring. Journal of Molecular Structure, 2023, 1273, 134313.	3.6	2
1620	Transition metal nanoparticles as nanocatalysts for Suzuki, Heck and Sonogashira cross-coupling reactions. Coordination Chemistry Reviews, 2023, 476, 214928.	18.8	28
1622	Small bioactive molecules designed to be probes as baits "fishing out" cellular targets: Finding the fish in the proteome sea. Chinese Journal of Analytical Chemistry, 2023, 51, 100196.	1.7	0
1623	Mechanochemical Approach towards Multi-Functionalized 1,2,3-Triazoles and Anti-Seizure Drug Rufinamide Analogs Using Copper Beads. Molecules, 2022, 27, 7784.	3.8	5
1624	Transition-metal-free azide insertion of <i>N</i> -triftosylhydrazones using a non-metallic azide source. Chemical Communications, 2022, 58, 13783-13786.	4.1	3
1625	Investigation of 1,4-Substituted 1,2,3-Triazole Derivatives as Antiarrhythmics: Synthesis, Structure, and Properties. Pharmaceuticals, 2022, 15, 1443.	3.8	Ο
1626	Ultrasmall Cu ^I Nanoparticles Stabilized on Surface of HPMC: An Efficient Catalyst for Fast and Organic Solventâ€Free Tandem Click Chemistry in Water. ChemSusChem, 2023, 16, .	6.8	2
1627	A Copperâ€Catalyzed Interrupted Domino Reaction for the Synthesis of Fused Triazolyl Benzothiadiazineâ€Iâ€oxides. Chemistry - A European Journal, 2023, 29, .	3.3	4
1628	Click Chemistry of Selenium Dihalides: Novel Bicyclic Organoselenium Compounds Based on Selenenylation/Bis-Functionalization Reactions and Evaluation of Glutathione Peroxidase-like Activity. International Journal of Molecular Sciences, 2022, 23, 15629.	4.1	4
1629	Site‣elective Câ~'H Allylation of Alkanes: Facile Access to Allylic Quaternary sp ³ â€Carbon Centers. Angewandte Chemie, 2023, 135, .	2.0	2
1630	Bioâ€Orthogonal Chemistry in Cell Engineering. Advanced NanoBiomed Research, 2023, 3, .	3.6	2
1631	Arylformylacetonitriles in Multicomponent Reactions Leading to Heterocycles. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1
1632	Lithiationâ€Functionalisation of Triazoles Bearing Electronâ€Withdrawing <i>N</i> â€Substituents: Challenges and Solutions**. European Journal of Organic Chemistry, 2023, 26, .	2.4	0
1633	New Azido Coumarins as Potential Agents for Fluorescent Labeling and Their "Click―Chemistry Reactions for the Conjugation with closo-Dodecaborate Anion. Molecules, 2022, 27, 8575.	3.8	3

	CITATION REI	CITATION REPORT	
#	Article	IF	CITATIONS
1634	Chemoselective carbene insertion into the Na [^] H bonds of NH3A·H2O. Nature Communications, 2022, 13, .	12.8	10
1635	Copper Complexes with Diazoolefin Ligands and their Photochemical Conversion into Alkenylidene Complexes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
1636	Zincâ€ <i>bis</i> (imino)pyridine Complexes as Catalysts for Azideâ€Alkyne Cycloaddition in Water. ChemistrySelect, 2022, 7, .	1.5	5
1637	Synthesis of 2,4â€dihydrochromeno[3,4― <i>d</i>][1,2,3]triazoles and 5â€(2 <i>H</i> â€chromenâ€3â€yl)â€1 â€tetrazoles via regioselective 1,3â€dipolar cycloaddition of 2 <i>H</i> â€chromeneâ€3â€carbonitriles with NaN ₃ . ChemistrySelect, 2022, 7, .	<i>H</i> 1.5	1
1638	Mechanosynthesis of Triazolylâ€bis(indolyl)methane Pharmacophores via Gold Catalysis: A Prelude to Molecular Electronic Properties and Biological Potency. ChemMedChem, 0, , .	3.2	3
1639	Synthesis and Reactivity of a Terminal 1-Alkynyl Triazene. Journal of Organic Chemistry, 2022, 87, 16882-16886.	3.2	3
1640	Site‣elective Câ^'H Allylation of Alkanes: Facile Access to Allylic Quaternary sp ³ â€Carbon Centers. Angewandte Chemie - International Edition, 2023, 62, .	13.8	11
1641	Copper Complexes with Diazoolefin Ligands and their Photochemical Conversion into Alkenylidene Complexes. Angewandte Chemie, 0, , .	2.0	0
1642	Dye-labeled aromatic azides for multi-photon grafting. Monatshefte Für Chemie, 0, , .	1.8	1
1643	Synthesis, Selective Cytotoxic Activity against Human Breast Cancer MCF7 Cell Line and Molecular Docking of Some Chalcone-Dihydropyrimidone Hybrids. , 2022, 1, 3-21.		2
1644	Electronic Oxide–Support Strong Interactions in the Graphdiyne-Supported Cuprous Oxide Nanocluster Catalyst. Journal of the American Chemical Society, 2023, 145, 1803-1810.	13.7	27
1645	Tris(4-azidophenyl)methanol – a novel and multifunctional thiol protecting group. RSC Advances, 2023, 13, 2483-2486.	3.6	1
1646	1,3‣ulfinate Migration Triggered by αâ€Imino Carbene and Divergent Zwitterion Cyclization: Synthesis of Cyclopropane, Dihydropyrrole and Azepane Ring Systems. European Journal of Organic Chemistry, 0, , .	2.4	3
1648	Computational Studies of CuAAC Reaction Mechanism with Diimine and Phosphorus Ligands for Synthesis of 1,4-Disubstituted 1,2,3-Triazoles. New Journal of Chemistry, 0, , .	2.8	3
1649	Destabilizing Predictive Copper atalyzed Click Reactions by Remote Interactions with a Zincâ€Porphyrin Backbone. Helvetica Chimica Acta, 2023, 106, .	1.6	2
1650	Synthesis and Anti-Proliferative Evaluation of Arctigenin Analogues with C-9′ Derivatisation. International Journal of Molecular Sciences, 2023, 24, 1167.	4.1	0
1651	Copper-Based Metal–Organic Frameworks (MOFs) as an Emerging Catalytic Framework for Click Chemistry. Catalysts, 2023, 13, 130.	3.5	23
1652	Sustainable synthesis of structures containing quinoxaline-pseudopeptide-triazole pharmacophores <i>via</i> a one-pot six-component reaction. New Journal of Chemistry, 2023, 47, 3234-3241.	2.8	1

#	Article	IF	CITATIONS
1653	Recent Advances in the Construction of Nitrogen-Containing Heterocycles via Trapping Organocopper(I) Intermediates. Acta Chimica Sinica, 2023, 81, 42.	1.4	4
1654	Cell-binding peptides on the material surface guide stem cell fate of adhesion, proliferation and differentiation. Journal of Materials Chemistry B, 2023, 11, 1389-1415.	5.8	9
1655	A combination of surface-initiated controlled radical polymerization (SET-LRP) and click-chemistry for the chemical modification and fluorescent labeling of cellulose nanofibrils: STED super-resolution imaging of a single fibril and a single fibril embedded in a composite. Cellulose, 2023, 30, 2929-2950.	4.9	1
1656	Continuous Flow Synthesis of <i>N</i> -Sulfonyl-1,2,3-triazoles for Tandem Relay Cu/Rh Dual Catalysis. Journal of Organic Chemistry, 2023, 88, 1200-1214.	3.2	2
1657	A novel benzimidazole based ionic liquid-tagged Schiff base copper catalyst: Synthesis, characterization and application toward the synthesis of 1,4-disubstituted 1,2,3-triazoles. Inorganica Chimica Acta, 2023, 549, 121405.	2.4	1
1658	Bioconjugated materials in the development of subunit vaccines. Comprehensive Analytical Chemistry, 2023, , 59-103.	1.3	0
1659	Enantioselective Recognition of L-Lysine by ICT Effect with a Novel Binaphthyl-Based Complex. Micromachines, 2023, 14, 500.	2.9	3
1660	Nâ€Heterocyclic Imineâ€Supported Bimetallic Cu(II) Catalyst for Azideâ€Alkyne Cycloaddition: Solventâ€free, Reductantâ€free, ppmâ€level Catalysis to Access 1,4â€Disubstituted Triazoles. Chemistry - an Asian Journal, 2023, 18, .	3.3	5
1661	Improving nanoparticle superlattice stability with deformable polymer gels. Journal of Chemical Physics, 2023, 158, .	3.0	1
1662	A heterogeneous Cu-catalyst immobilized on poly(3-carboxythiophene)-modified multi-walled carbon nanotubes for click reaction. Journal of Chemical Sciences, 2023, 135, .	1.5	4
1663	Câ^'F Transformations of Benzotrifluorides by the Activation of <i>Ortho</i> â€Hydrosilyl Group. Chemical Record, 2023, 23, .	5.8	6
1664	Heteroleptic Copper Complexes as Catalysts for the CuAAC Reaction: Counter-Ion Influence in Catalyst Efficiency. Catalysts, 2023, 13, 386.	3.5	2
1665	Electrochemically Generated Copper(I) atalyzed Click Chemistry: Triazole Synthesis and Insights into Their Photophysical Properties. European Journal of Organic Chemistry, 2023, 26, .	2.4	6
1666	Synthesis of a Water-Soluble Tridentate (Dimethylamino)ethyl Cu(I)/Cu(II)-Ligand. Synthesis, 0, , .	2.3	0
1667	Decarboxylative Triazolation Enables Direct Construction of Triazoles from Carboxylic Acids. Jacs Au, 2023, 3, 813-822.	7.9	5
1668	Hierarchical integration of DNA nanostructures and NanoGold onto a microchip facilitates covalent chemistry-mediated purification of circulating tumor cells in head and neck squamous cell carcinoma. Nano Today, 2023, 49, 101786.	11.9	3
1669	Propargylamine: an important moiety in drug discovery. Future Medicinal Chemistry, 2023, 15, 211-224.	2.3	5
1670	Click-Functionalization of Silanized Carbon Nanotubes: From Inorganic Heterostructures to Biosensing Nanohybrids. Molecules, 2023, 28, 2161.	3.8	0

#	Article	IF	CITATIONS
1671	Facile, Singleâ€6tep Synthesis of a Series of Dâ€Ring Ethisterones Substituted with 1,4â€1,2,3â€Triazoles: Preliminary Evaluation of Cytotoxic Activities. ChemMedChem, 2023, 18, .	3.2	0
1672	Copper(<scp>i</scp>)-catalyzed multicomponent interrupted click reaction: modular synthesis of triazole sulfides from elemental sulfur. Organic Chemistry Frontiers, 2023, 10, 1890-1896.	4.5	6
1673	Synthesis of arylâ€functionalized, 1,5â€disubstituted 1,2,3â€ŧriazoles and derivatives by arylation of zwitterionic ruthenium triazolato complexes. Journal of the Chinese Chemical Society, 0, , .	1.4	0
1674	Copper-Catalyzed Cascade Multicomponent Reaction of Azides, Alkynes, and Selenium: Synthesis of Ditriazolyl Diselenides. Journal of Organic Chemistry, 2023, 88, 4528-4535.	3.2	3
1675	High Regioselective Synthesis of <i>N</i> ² -Substituted-1,2,3-triazole via <i>N</i> -Sulfonyl-1,2,3-triazole Coupling with Alcohol Catalyzed by <i>in-situ</i> Generated Sulfonic Acid. Chinese Journal of Organic Chemistry, 2023, 43, 1168.	1.3	2
1676	Hydroazidation of phenacylideneoxindoles: Synthesis of 3-substituted 3-azido-1,3-dihydro-2H-indol-2-ones via anti-electron addition. Tetrahedron Letters, 2023, 120, 154447.	1.4	0
1677	Recent Advances in Metal Free Synthesis of N-unsubstituted 1,2,3-Triazoles. Current Organic Synthesis, 2023, 20, .	1.3	0
1678	Design and Synthesis of New Triazoleâ€Benzimidazole Derivatives as Potential PRMT5 Inhibitors. ChemistrySelect, 2023, 8, .	1.5	3
1679	Probing kinetic and mechanistic features of bulk azide–alkyne cycloaddition. Physical Chemistry Chemical Physics, 2023, 25, 10671-10677.	2.8	3
1680	Processes of 1,3-Dipolar cycloaddition in nucleoside, nucleotide and bio conjugation and its importance in medicinal chemistry. , 2023, 15, 35-44.		0
1681	Local reactivity descriptors of the important atoms in chelotropic reactions provide insight into their global variants along the reaction path. International Journal of Quantum Chemistry, 2023, 123, .	2.0	2
1682	Investigation of the effect of chelating nitrogenous bases on click reactions on poly[(methyl) Tj ETQq1 1 0.7843	14 ₃ rgBT /O	verlock 10
1684	Copper(<scp>i</scp>)-catalyzed click chemistry in deep eutectic solvent for the syntheses of β- <scp>d</scp> -glucopyranosyltriazoles. RSC Advances, 2023, 13, 10424-10432.	3.6	2
1685	Regiodivergent Synthesis of Oxadiazocines via Dirhodium-Catalyzed Reactivity of Oxazolidines and $\hat{l}\pm$ -Imino Carbenes. Synlett, 0, , .	1.8	1
1686	Differentiating the Allyl and Propargyl Groups on αâ€Quaternary Carboxylic Acids via Chiral Bifunctional Sulfide atalyzed Kinetic Resolution. Advanced Synthesis and Catalysis, 2023, 365, 1496-1504.	4.3	3
1687	Synthesis of atropisomeric phosphino-triazoles and their corresponding gold(I) complexes. Organic Chemistry Frontiers, 0, , .	4.5	0
1688	The certainty of a few good reactions. CheM, 2023, 9, 2063-2077.	11.7	3
1689	Single-Molecule Tracking of Reagent Diffusion during Chemical Reactions. Journal of the American Chemical Society, 2023, 145, 10512-10521.	13.7	5

#	Article	IF	CITATIONS
1690	Asymmetric rhodium-catalyzed click cycloaddition to access C–N axially chiral <i>N</i> -triazolyl indoles. Chemical Science, 2023, 14, 5182-5187.	7.4	5
1691	Copper(I)-catalyzed interrupted click/radical relay: A four-component modular synthesis of triazole sulfones. Chinese Chemical Letters, 2024, 35, 108478.	9.0	3
1692	Catalytic Enantioselective Azide–Alkyne Cycloaddition Chemistry Opens Up New Prospects for Chiral Triazole Syntheses. ACS Catalysis, 2023, 13, 6301-6311.	11.2	5
1693	Advances in C—N ₃ Retention Reactions Involving Organic Azides. Chinese Journal of Organic Chemistry, 2023, 43, 1365.	1.3	1
1694	Click chemistry for 3D bioprinting. Materials Horizons, 2023, 10, 2727-2763.	12.2	6
1695	Heterogeneous Copper-catalyst Anchored on Chitosan Schiff Base-modified Carbon Nanotubes for Click Reaction. Letters in Organic Chemistry, 2023, 20, .	0.5	0
1696	Bioorthogonal reactions and AlEgen-based metabolically engineered theranostic systems. CheM, 2023, 9, 2078-2094.	11.7	8
1697	Stereoselective Approach to Hydroxyalkyl-1,2,3-triazoles Containing Cyclooctane Core and Their Use for CuAAC Catalysis. Catalysts, 2023, 13, 835.	3.5	1
1698	Synthesis of Dense 1,2,3-Triazole Oligomers Consisting Preferentially of 1,5-Disubstituted Units via Ruthenium(II)-Catalyzed Azide–Alkyne Cycloaddition. Polymers, 2023, 15, 2199.	4.5	1
1699	Mechanochemical Desymmetrization of Unbiased Bis―and Trisâ€alkynes to Access 3,5â€Isoxazolesâ€Alkyne Adducts and Unsymmetrical Bisâ€3,5â€Isoxazoles**. European Journal of Organic Chemistry, 2023, 26, .	2.4	0
1700	Substrate-derived Sortase A inhibitors: targeting an essential virulence factor of Gram-positive pathogenic bacteria. Chemical Science, 2023, 14, 6975-6985.	7.4	4
1701	Energetic Polymer Possessing Furazan, 1,2,3-Triazole, and Nitramine Subunits. International Journal of Molecular Sciences, 2023, 24, 9645.	4.1	1
1702	Dinitrogen Binding and Functionalization from a Low-Coordinate Alkynyliron Complex. Inorganic Chemistry, 2023, 62, 9335-9342.	4.0	3
1703	Click-Reaktionen. , 2023, , 847-857.		0
1704	1,2,3-Triazolyl bisphosphine with pyridyl functionality: synthesis, copper(<scp>i</scp>) chemistry and application in click catalysis. New Journal of Chemistry, 2023, 47, 13538-13546.	2.8	0
1705	Iron-catalyzed direct decarboxylative azidation. Chem Catalysis, 2023, 3, 100661.	6.1	0
1706	Design and Synthesis of 1,2,3-Triazole Incorporated Isoflavone Derivatives as Anticancer Agents. Polycyclic Aromatic Compounds, 0, , 1-16.	2.6	1
1707	Interrupted Click Reaction with CuCF ₂ CF ₃ Reagent: Synthesis of 5-Pentafluoroethyl 1,2,3-Triazoles. Organic Letters, 2023, 25, 4945-4949.	4.6	5

#	Article	IF	CITATIONS
1708	Allosteric Inhibitors of Macrophage Migration Inhibitory Factor (MIF) Interfere with Apoptosis-Inducing Factor (AIF) Co-Localization to Prevent Parthanatos. Journal of Medicinal Chemistry, 0, , .	6.4	0
1709	OligoHydrogelArray (OHA) for Parallelized Solidâ€Phase Extraction of Oligonucleotides. Advanced Materials Interfaces, 2023, 10, .	3.7	0
1710	N-Acyl-1,2,3-triazoles – key intermediates in denitrogenative transformations. Chemical Communications, 0, , .	4.1	2
1711	An expeditious synthesis and histo–toxicological study of 1,2,3â€ŧriazoles catalyzed by a novel Fe ₃ O ₄ @SiO ₂ â€Prâ€Thiosemicarbazideâ€Cu(II) as a magnetically separable catalyst. Applied Organometallic Chemistry, 2023, 37, .	e3.5	3
1712	Synthesis of Cyclopenta[<i>b</i>]indoles via Rhodiumâ€Catalyzed Cascade Migrationâ€Annulation of 1â€Sulfonylâ€1,2,3â€triazoles and Indoles. Advanced Synthesis and Catalysis, 2023, 365, 1623-1628.	4.3	3
1713	Triple Action of an Attractive Deep Eutectic Solvent in the Synthesis of Aryl Nitriles and Substituted Triazoles Using a Magnetically Reusable Fe ₃ O ₄ @SiO ₂ @PrNCu Catalyst. ChemistrySelect, 2023, 8, .	1.5	0
1714	Improved Synthesis and Coordination Behavior of 1H-1,2,3-Triazole-4,5-dithiolates (tazdt2â^) with Nill, Pdll, Ptll and Colll. Chemistry, 2023, 5, 1271-1287.	2.2	0
1715	New copper(<scp>i</scp>) complexes of bulky 5-substituted-2-iminopyrrolyl ligands as catalysts for azide–alkyne cycloaddition. Dalton Transactions, 2023, 52, 8003-8019.	3.3	2
1716	Organosilane as a versatile compound: Silica-Based nanoparticles for detection of methyl parathion and inhibition of acetylcholinesterase (AChE) in Alzheimer's disease. Environmental Nanotechnology, Monitoring and Management, 2023, 20, 100831.	2.9	0
1717	Arenes participate in 1,3-dipolar cycloaddition with in situ-generated diazoalkenes. Nature Chemistry, 2023, 15, 764-772.	13.6	6
1718	Aza-Wolff rearrangement of <i>N</i> -fluoroalkyl triazoles to ketenimines. Organic Chemistry Frontiers, 2023, 10, 3201-3206.	4.5	1
1719	Applications of Click Chemistry in the Development of Electrochemical Sensors. International Journal of Electrochemical Science, 2015, 10, 6324-6337.	1.3	14
1720	Microwave-Assisted Synthesis of Methylenebis(phenyl-1H-1,2,3-triazol-5-yl-1,3-thiazolidinones) as Potential Anticancer Agents. Russian Journal of General Chemistry, 2023, 93, 1201-1209.	0.8	0
1721	Functionalized Layered Double Hydroxide-Zeolitic Imidazolate Nanoreactor with Active Sites of Multi-source Copper (II) as an Efficient Nanocatalyst for Huisgen and Pechmann Reactions. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 3282-3292.	3.7	1
1722	Isocyanide Cu(I) complexes with unexpected μ ₂ â€bridging pseudohalides: Synthesis, characterization and catalytic activity towards CuAAC. Applied Organometallic Chemistry, 2023, 37, .	3.5	0
1723	Catalyst-Controlled Direct Oxysulfonylation of Alkenes by Using Sulfonylazides as the Sulfonyl Radical. Organic Letters, 2023, 25, 5454-5458.	4.6	2
1724	Highly active higher coordinated copper(<scp>i</scp>)–N-heterocyclic chalcogenone catalysed click chemistry. New Journal of Chemistry, 0, , .	2.8	0
1725	Understanding the Fate of the Banert Cascade of Propargylic Azides: Sigmatropic versus Prototropic Pathway. Journal of Organic Chemistry, 2023, 88, 9750-9759.	3.2	0

#	Article	IF	CITATIONS
1726	Application of modified copper-doped Fe3O4@CuMgAl-LDH nanoreactor with imidazolium ionic liquid as a reusable catalyst for synthesis of tetrazoles from aryl halides. Inorganic Chemistry Communication, 2023, 155, 111044.	3.9	0
1727	A Highly Sterically Congested Bisâ€Zincâ€Porphyrin Containing a Single Butaâ€1,3â€diyne Linkage: From a Serendipitous Finding to Supramolecular Encapsulation. European Journal of Organic Chemistry, 0, , .	2.4	0
1728	Click-derived multifunctional metal complexes for diverse applications. Chemical Society Reviews, 2023, 52, 5051-5087.	38.1	4
1729	Theoretical Study on Cooperation Catalysis of Chiral Guanidine/ Copper(I) in Asymmetric Azide–Alkyne Cycloaddition/[2 + 2] Cascade Reaction. Journal of Organic Chemistry, 2023, 88, 9973-9986.	3.2	0
1730	Immobilization strategies for carbon electrode materials. , 2023, , 121-151.		0
1731	Cooperative and Orthogonal Switching in the Solid State Enabled by Metalâ€Organic Framework Confinement Leading to a Thermoâ€Photochromic Platform. Angewandte Chemie, 2023, 135, .	2.0	1
1732	Kinetics of Polycycloaddition of Flexible α-Azide-ω-Alkynes Having Different Spacer Length. Polymers, 2023, 15, 3109.	4.5	0
1733	Cooperative and Orthogonal Switching in the Solid State Enabled by Metalâ€Organic Framework Confinement Leading to a Thermoâ€Photochromic Platform. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
1734	Conjugation of antimicrobial peptides to enhance therapeutic efficacy. European Journal of Medicinal Chemistry, 2023, 259, 115680.	5.5	5
1735	Nanogels: Synthesis, properties, and recent biomedical applications. Progress in Materials Science, 2023, 139, 101167.	32.8	8
1736	Mechanistic insights of the copper(I)-catalysed reaction between chlorohydrazones and terminal alkynes. New Journal of Chemistry, 0, , .	2.8	0
1737	Tetracopper(<scp>i</scp>) thiolate- and amido-(SNS) complexes and copper-catalyzed azide–alkyne cycloaddition in water. Dalton Transactions, 2023, 52, 11768-11772.	3.3	1
1738	Catalyst Design through Grafting of Diazonium Salts—A Critical Review on Catalyst Stability. International Journal of Molecular Sciences, 2023, 24, 12575.	4.1	1
1739	In Silico Molecular Docking and In Vitro Antibacterial and Antifungal Study of Newly Synthesized Triazole Containing Heterocyclic Framework via Copper-Catalyzed Click Reaction. Russian Journal of General Chemistry, 2023, 93, 1547-1559.	0.8	1
1740	Copper and Silver Catalysis in the (3 + 2) Cycloaddition of Neutral Three-Atom Components with Terminal Alkynes. Journal of the American Chemical Society, 2023, 145, 19018-19029.	13.7	1
1741	Azide-Assisted Growth of Copper Nanostructures and Their Application as a Carbon Supported Catalyst in Two-Step Three-Component Azide–Alkyne Cycloadditions. Langmuir, 0, , .	3.5	0
1742	Desymmetrization of meso-dibromocycloalkenes by copper-catalyzed asymmetric borylative coupling with alkynes. Chem Catalysis, 2023, , 100730.	6.1	0
1743	Towards Anticancer and Antibacterial Agents: Design and Synthesis of 1,2,3-Triazol-quinobenzothiazine Derivatives. International Journal of Molecular Sciences, 2023, 24, 13250.	4.1	0

#	Article	IF	CITATIONS
1744	Synthesis of Epichlorohydrin-Based Click-Dendrons with Different Functional Groups. Current Organic Chemistry, 2023, 27, .	1.6	0
1745	Design, synthesis and biological evaluation of triazole, sulfonamide and sulfonyl urea derivatives of N-acylhomoserine lactone as quorum sensing inhibitors. Journal of Molecular Structure, 2024, 1295, 136547.	3.6	1
1746	Recent Advances in Functionalization Strategies for Biosensor Interfaces, Especially the Emerging Electro-Click: A Review. Chemosensors, 2023, 11, 481.	3.6	0
1747	Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. Journal of Controlled Release, 2023, 363, 290-348.	9.9	10
1748	Design and Synthesis of Novel 1â€{(1â€Phenylâ€1 <i>H</i> â€1,2,3â€triazolâ€4â€yl)methyl)pyridinâ€2(1 <i>H</i> Derivatives. ChemistrySelect, 2023, 8, .)â€one	0
1749	Polymers for the future. Russian Chemical Reviews, 2022, 91, .	6.5	13
1750	High-yielding synthesis of cyclometallated iridium complexes with hydrogen bond-rich ligands. Chemical Communications, 2023, 59, 12727-12730.	4.1	0
1751	N2 modified cap analogues as translation inhibitors and substrates for preparation of therapeutic mRNA. European Biophysics Journal, 0, , .	2.2	1
1752	Divergent Proteome Reactivity Influences Arm-Selective Activation of the Unfolded Protein Response by Pharmacological Endoplasmic Reticulum Proteostasis Regulators. ACS Chemical Biology, 2023, 18, 1719-1729.	3.4	0
1753	Multicomponent cyclization with azides to synthesize N-heterocycles. Organic and Biomolecular Chemistry, 2023, 21, 8054-8074.	2.8	0
1754	Isostructural Nanocluster Manipulation Reveals Pivotal Role of One Surface Atom in Click Chemistry. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
1755	Antibody biopolymer conjugate. ChemistrySelect, 2023, .	1.5	0
1756	Cross-coupling by a noncanonical mechanism involving the addition of aryl halide to Cu(II). Science, 2023, 381, 1079-1085.	12.6	11
1757	Azideâ€Alkyne Cycloaddition Reaction Catalyzed by Cu(II) Complexes: Studies on the effect of Different Ligand Systems. ChemistrySelect, 2023, 8, .	1.5	0
1758	Designing of Smartly Functionalized Theranostic Nanomedicines. , 2023, , 27-47.		0
1759	Development of Essential Oil Delivery Systems by â€ [~] Click Chemistry' Methods: Possible Ways to Manage Duchenne Muscular Dystrophy. Materials, 2023, 16, 6537.	2.9	1
1760	Click Chemistry and Radiochemistry: An Update. Bioconjugate Chemistry, 2023, 34, 1925-1950.	3.6	5
1761	Synthesis of Novel Methylsulfonylacrylimidamide <i>via</i> Click Chemistry Approach, Computational Analysis and α―Glucosidase Inhibition Activity. ChemistrySelect, 2023, 8, .	1.5	0

#	Article	IF	CITATIONS
1762	Ultra-high-throughput mapping of the chemical space of asymmetric catalysis enables accelerated reaction discovery. Nature Communications, 2023, 14, .	12.8	1
1763	Towards Incorporation in Larger Architectures: A Polymeric Halogen Bondâ€Based Iridium Sensor. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	0
1764	Isostructural Nanocluster Manipulation Reveals Pivotal Role of One Surface Atom in Click Chemistry. Angewandte Chemie, 2023, 135, .	2.0	0
1765	Fe3O4@Zein nanocomposites decorated with copper(II) as an efficient, durable, and biocompatible reusable catalyst for click synthesis of novel fluorescent 1,4-disubstituted-1,2,3-triazoles in water. Sustainable Chemistry and Pharmacy, 2023, 36, 101256.	3.3	2
1766	Designing bioorthogonal reactions for biomedical applications. Research, 0, , .	5.7	1
1767	Greener photocatalytic route to azide-alkyne cycloaddition reactions: Role of hole/oxygen in air. Tetrahedron, 2023, 149, 133703.	1.9	0
1768	Synthesis of 7α-Methoxy-7-(4-phenyl-1H-1,2,3-triazol-1-yl)acetamino-3′-arylthio-cephalosporic Acid Derivatives from 7-Aminocephalosporic Acid. Molecules, 2023, 28, 7338.	3.8	0
1769	Elucidating the role of temperature and water on the π-complexation strength of copper(I) ion-containing ionic liquids using inverse gas chromatography. Analytica Chimica Acta, 2024, 1287, 342021.	5.4	1
1770	1,2â€Bis(triazolyl)tetraphenyldigermanes: Synthesis, Structure and Properties. Chemistry - an Asian Journal, 2023, 18, .	3.3	0
1771	Heavy metal ion detection with Nano-Engineered Materials: Scaling down for precision. Microchemical Journal, 2024, 196, 109672.	4.5	0
1772	Three novel 1,2,3-triazole-fused compounds: Syntheses, structural and spectroscopic characterizations with molecular modeling. Journal of Molecular Structure, 2024, 1299, 137207.	3.6	0
1773	Photoisomerization of Alkenes via Energy Transfer Enabled by Cuâ€Acetylide Complexes. European Journal of Organic Chemistry, 2023, 26, .	2.4	0
1774	Synthetic Access to 1,3-Butadiynes via Electro-redox Cuprous-Catalyzed Dehydrogenative Csp–Csp Homocoupling of Terminal Acetylenes. Synthesis, 2024, 56, 777-786.	2.3	0
1775	Quantified instant conjugation of peptides on a nanogold surface for tunable ice recrystallization inhibition. Nanoscale, 0, , .	5.6	0
1776	Modulating Aryl Azide Photolysis: Synthesis of a Roomâ€Temperature Phosphorescent Carboline in Cucurbit[7]uril Host. Small, 0, , .	10.0	2
1777	Oligodentate Aminotriazole Ligands for CuAAC and Copperâ€Mediated Monooxygenation of Phenols: Influence of Denticity, Chain Length and <i>N</i> â€Alkylation on Catalytic Activity. ChemCatChem, 0, , .	3.7	0
1778	Copper-Catalyzed Three-Component Tandem Reaction of Alkynes, α-Diazo Esters, and TMSN ₃ to Access N-Substituted 1,2,3-Triazoles. Journal of Organic Chemistry, 0, , .	3.2	0
1779	Threeâ€Component Reactions of 2,2,2â€Trifluoroethyl Ketones, Aryl Azides and Aqueous Ammonia for the Synthesis of 4â€Cyanoâ€1,2,3â€ŧriazoles. European Journal of Organic Chemistry, 0, , .	2.4	0

#	Article	IF	CITATIONS
1780	Highly crystalline and fluorescent BODIPY-labelled phenyl-triazole-coumarins as n-type semiconducting materials for OFET devices. Heliyon, 2024, 10, e23517.	3.2	0
1781	Novel Cu(<scp>ii</scp>) acidic deep eutectic solvent as an efficient and green multifunctional catalytic solvent system in base-free conditions to synthesize 1,4-disubstituted 1,2,3-triazoles. RSC Advances, 2023, 13, 36403-36415.	3.6	0
1782	Computational studies on CuAAC reaction mechanism with [CuX(PPh3)]; X = I, Br, Cl for the synthesis of 4- and 5-halo-1,2,3-triazoles. Reaction Kinetics, Mechanisms and Catalysis, 0, , .	1.7	0
1783	Understanding the Retroâ \in Cope Elimination Reaction of Linear Alkynes. , 0, , .		0
1784	Design, Synthesis, and Evaluation of Cephamycin-Based Antisporulation Agents targeting <i>Clostridioides difficile</i> . Journal of Medicinal Chemistry, 0, , .	6.4	0
1785	Ligand Control of Copper-Mediated Cycloadditions of Acetylene to Azides: Chemo- and Regio-Selective Formation of Deutero- and Iodo-Substituted 1,2,3-Triazoles. Journal of Organic Chemistry, 2024, 89, 825-834.	3.2	1
1786	Synthesis and pharmacological evaluation of novel coumarin based triazolyl glycoconjugates as potential antibacterial and anti-proliferative agents. Medicinal Chemistry Research, 0, , .	2.4	0
1787	Synthesis, characterization and molecular docking studies of novel Schiff bases bearing 1-(o-tolyl)-4-(phenoxymethyl)-(1H)1,2,3-triazole derivatives. International Journal of Chemistry and Technology, 2023, 7, 171-179.	0.6	0
1788	Triazole Moieties as Potent Drug Molecules: Synthetic Approaches and Application as Promising Candidates as Anticancer Agents (A Review). Russian Journal of Bioorganic Chemistry, 2023, 49, S13-S30.	1.0	0
1789	Cu-Catalyzed Azide–Alkyne–Thiol Reaction Forms Ubiquitous Background in Chemical Proteomic Studies. Journal of the American Chemical Society, 2024, 146, 2151-2159.	13.7	0
1790	Copper Dispersed Covalent Organic Framework for Azide–Alkyne Cycloaddition and Fast Synthesis of Rufinamide in Water. Small, 0, , .	10.0	0
1791	Enzyme-Instructed CBT-Cys-like Click Cyclization Reactions for Bioimaging. , 2024, 2, 98-116.		0
1792	In situ derivatisation of solid contact poly(3,4-ethylenedioxythiophene) transducers for ion-selective electrodes through "click―chemistry. Sensors and Actuators B: Chemical, 2024, 405, 135339.	7.8	0
1793	Tumor associated carbonic anhydrase inhibitors: Rational approaches, design strategies, structure activity relationship and mechanistic insights. European Journal of Medicinal Chemistry Reports, 2024, 10, 100131.	1.4	0
1794	Ligandâ€Protected Au ₅₂ Cu ₇₂ (SR) ₅₅ Nanoclusters Supported onto SBAâ€15 by Electrostatic Attraction as Efficient and Stable Catalysts for Click Reaction. European Journal of Inorganic Chemistry, 2024, 27, .	2.0	0
1795	Cul/DMAPâ€Catalyzed Oxidative Alkynylation of 7â€Azaindoles: Synthetic Scope and Mechanistic Studies. Chemistry - an Asian Journal, 2024, 19, .	3.3	0
1796	Intrinsic Burst-Blinking Nanographenes for Super-Resolution Bioimaging. Journal of the American Chemical Society, 2024, 146, 5195-5203.	13.7	0
1797	Clay based heterogeneous catalysts for carbon–nitrogen bond formation: a review. RSC Advances, 2024, 14, 4810-4834.	3.6	0

#	Article	IF	CITATIONS
1798	Design, synthesis, and anticancer evaluation of alkynylated pyrrole derivatives. Chemical Biology and Drug Design, 2024, 103, .	3.2	0
1799	Atroposelective Synthesis of Axially Chiral Diaryl Ethers by Copper-Catalyzed Enantioselective Alkyne–Azide Cycloaddition. ACS Catalysis, 2024, 14, 3475-3481.	11.2	0
1800	Each Interruption is an Opportunity: Novel Synthetic Strategies Explored Through Interrupted Click Reactions. Chemistry - A European Journal, 2024, 30, .	3.3	0
1801	Simultaneous hydroxido-, nitrato-, and phenoxido-bridged binuclear copper Schiff base complex for green catalytic click chemistry: Synthesis, structure, Hirshfeld surface analysis, theoretical study and photoluminescence spectra. Inorganica Chimica Acta, 2024, 565, 121999.	2.4	0
1802	Clicking in harmony: exploring the bio-orthogonal overlap in click chemistry. RSC Advances, 2024, 14, 7383-7413.	3.6	0
1803	From small to largeâ \in "The application of in situ polymerization within tumor cells. Aggregate, 0, , .	9.9	0
1805	Copper-catalyzed atroposelective synthesis of C–O axially chiral compounds enabled by chiral 1,8-naphthyridine based ligands. Chemical Science, 2024, 15, 5993-6001.	7.4	0
1806	Metal-Free Click-Chemistry: A Powerful Tool for Fabricating Hydrogels for Biomedical Applications. Bioconiugate Chemistry, 2024, 35, 433-452.	3.6	0