Electrospinning: A fascinating fiber fabrication technique

Biotechnology Advances 28, 325-347 DOI: 10.1016/j.biotechadv.2010.01.004

Citation Report

#	Article	IF	CITATIONS
3	Improved Cellular Infiltration in Electrospun Fiber via Engineered Porosity. Tissue Engineering, 2007, 13, 2249-2257.	4.9	380
4	Editorial. Journal of Biomaterials Applications, 2009, 24, 5-5.	1.2	0
5	Heat and Solvent Resistant Electrospun Polybenzoxazole Nanofibers from Methoxy-Containing Polyaramide. Journal of Nanomaterials, 2010, 2010, 1-5.	1.5	17
6	Neuroengineering tools/applications for bidirectional interfaces, brain–computer interfaces, and neuroprosthetic implants – a review of recent progress. Frontiers in Neuroengineering, 2010, 3, 112.	4.8	57
7	Cellulose acetate nanofibers with photochromic property: Fabrication and characterization. Materials Letters, 2010, 64, 2427-2430.	1.3	53
8	Hybrid nanofibrous yarns based on N-carboxyethylchitosan and silver nanoparticles with antibacterial activity prepared by self-bundling electrospinning. Carbohydrate Research, 2010, 345, 2374-2380.	1.1	55
9	Preparation of Anti-Fouling Polyethersulfone Ultrafiltration Membrane by an External High Voltage Electric Enhancing Method. Separation Science and Technology, 2010, 45, 2280-2286.	1.3	3
10	Electrospinning of fibrous polymer scaffolds using positive voltage or negative voltage: a comparative study. Biomedical Materials (Bristol), 2010, 5, 054110.	1.7	51
11	Highly Porous Core–Shell Polymeric Fiber Network. Langmuir, 2011, 27, 10993-10999.	1.6	42
12	Shape reformable polymeric nanofibers entrapped with QDs as a scaffold for enzyme stabilization. Journal of Materials Chemistry, 2011, 21, 5215.	6.7	23
13	Electrospun silica/PLLA hybrid materials for skeletal regeneration. Soft Matter, 2011, 7, 10241.	1.2	64
14	Design, fabrication and characterization of PCL electrospun scaffolds—a review. Journal of Materials Chemistry, 2011, 21, 9419.	6.7	499
15	Preparation of Ultrafine Poly(<i>ε-Caprolactone</i>) Fibers Containing Silver Nanoparticles via Electrospinning Method. Advanced Materials Research, 0, 332-334, 1235-1238.	0.3	5
16	Preparation and Characteristics of Electrospinning PVA/PEG Composite Nanofibers. Advanced Materials Research, 0, 332-334, 1472-1476.	0.3	4
17	EDC-Crosslinked Electrospun Silk-Fibroin Fiber Mats. Advanced Materials Research, 0, 175-176, 170-175.	0.3	2
18	3D nanofibrous scaffolds for tissue engineering. Journal of Materials Chemistry, 2011, 21, 10243.	6.7	105
19	Electrospinning: designed architectures for energy conversion and storage devices. Energy and Environmental Science, 2011, 4, 4761.	15.6	654
20	Exploring the dark side of MTT viability assay of cells cultured onto electrospun PLGA-based composite nanofibrous scaffolding materials. Analyst, The, 2011, 136, 2897.	1.7	37

#	Article	IF	CITATIONS
21	Fabrication and Characterization of Chitosan-Ethylenediaminetetraacetic Acid/Polyvinyl Alcohol Blend Electrospun Nanofibers. Advanced Materials Research, 0, 194-196, 648-651.	0.3	7
22	Stimuli-responsive electrospun fibers and their applications. Chemical Society Reviews, 2011, 40, 2417.	18.7	184
23	Fabrication of one dimensional superfine polymer fibers by double-spinning. Journal of Materials Chemistry, 2011, 21, 13159.	6.7	51
24	Next Generation of Electrosprayed Fibers for Tissue Regeneration. Tissue Engineering - Part B: Reviews, 2011, 17, 125-142.	2.5	56
25	Preparation and the luminescent properties of Tb3 +-doped Gd2O3fluorescent nanofibers via electrospinning. Nanotechnology, 2011, 22, 035602.	1.3	30
26	Nanocosmetics and Nanomedicines. , 2011, , .		40
27	Novel nanofiber coatings prepared by electrospinning technique for headspace solid-phase microextraction of chlorobenzenes from environmental samples. Analytical Methods, 2011, 3, 1284.	1.3	55
28	Antimicrobial PLGA ultrafine fibers: Interaction with wound bacteria. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 108-118.	2.0	91
29	Freeze-gelled silk fibroin protein scaffolds for potential applications in soft tissue engineering. International Journal of Biological Macromolecules, 2011, 49, 260-267.	3.6	49
30	Cytocompatibility of electrospun nanoï¬ber tubular scaffolds for small diameter tissue engineering blood vessels. International Journal of Biological Macromolecules, 2011, 49, 281-288.	3.6	55
31	A novel globular protein electrospun fiber mat with the addition of polysilsesquioxane. International Journal of Biological Macromolecules, 2011, 49, 480-486.	3.6	26
32	A Synthetic Polypeptide Electrospun Biomaterial. ACS Applied Materials & Interfaces, 2011, 3, 2994-3001.	4.0	22
33	Incorporation of DNA into Electrospun Nanofibrous Scaffolds: Fundamental Characterization Studies and Gene Delivery. , 0, , .		1
34	Electrospinning of Continuous Nanofiber Bundles and Twisted Nanofiber Yarns. , 2011, , .		15
35	Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 95-100.	1.8	169
36	Fabrication of cellulase protein fibers through concentric electrospinning. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 1-5.	1.8	9
37	Sorption of polycyclic aromatic hydrocarbons on electrospun nanofibrous membranes: Sorption kinetics and mechanism. Journal of Hazardous Materials, 2011, 192, 1409-1417.	6.5	45
38	Solvent degradation of nylon-6 and its effect on fiber morphology of electrospun mats. Polymer Degradation and Stability, 2011, 96, 1984-1988.	2.7	20

#	Article	IF	CITATIONS
39	Effect of lactic acid on polymer crystallization chain conformation and fiber morphology in an electrospun nylon-6 mat. Polymer, 2011, 52, 4851-4856.	1.8	60
40	Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Materials Chemistry and Physics, 2011, 125, 606-611.	2.0	127
41	Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres. Materials Research Bulletin, 2011, 46, 569-575.	2.7	62
42	Poly(vinyl alcohol)–perfluorinated sulfonic acid nanofiber mats prepared via electrospinning as catalyst. Materials Letters, 2011, 65, 1719-1722.	1.3	19
43	Processing conditions and characterization of novel electrospun poly (3-hydroxybutyrate-co-hydroxyvalerate)/chitosan blend fibers. Materials Letters, 2011, 65, 2216-2219.	1.3	25
44	Effect of polymer molecular weight on the fiber morphology of electrospun mats. Journal of Colloid and Interface Science, 2011, 364, 107-111.	5.0	51
45	A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials, 2011, 32, 7118-7126.	5.7	175
46	Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity. Carbohydrate Polymers, 2011, 86, 1799-1806.	5.1	168
47	Electrospun Poly(Hydroxybutyrate-co-Hydroxyvalerate) Fibrous Membranes Consisting of Parallel-Aligned Fibers or Cross-Aligned Fibers: Characterization and Biological Evaluation. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 2475-2497.	1.9	13
48	Electrospinning of chitosan derivative nanofibers with structural stability in an aqueous environment. Physical Chemistry Chemical Physics, 2011, 13, 9969.	1.3	38
49	Antimicrobial fibers: therapeutic possibilities and recent advances. Future Medicinal Chemistry, 2011, 3, 1821-1847.	1.1	48
50	Synthesis and characterization of nanofiber webs of chitosan/poly(vinyl alcohol) blends incorporated with silver nanoparticles. Journal of Materials Science, 2011, 46, 6528-6537.	1.7	61
51	A smart bilayer scaffold of elastin-like recombinamer and collagen for soft tissue engineering. Journal of Materials Science: Materials in Medicine, 2011, 22, 1541-1554.	1.7	46
52	Preparation and characterization of PAN-based ultra-fine activated carbon fiber adsorbent. Journal of Porous Materials, 2011, 18, 379-387.	1.3	22
53	Immobilization of lipase onto cellulose ultrafine fiber membrane for oil hydrolysis in high performance bioreactor. Cellulose, 2011, 18, 1563-1571.	2.4	33
54	Dermal substitute-assisted healing: enhancing stem cell therapy with novel biomaterial design. Archives of Dermatological Research, 2011, 303, 301-315.	1.1	49
55	Electrospun scaffolds for bone tissue engineering. Musculoskeletal Surgery, 2011, 95, 69-80.	0.7	62
56	Fabrication and characterization of coaxial electrospun polyethylene glycol/polyvinylidene fluoride (Core/Sheath) composite non-woven mats. Macromolecular Research, 2011, 19, 370-378.	1.0	42

#	Article	IF	CITATIONS
57	Electrospinning of polylactide and its composites with carbon nanotubes. Polymer Composites, 2011, 32, 1280-1288.	2.3	46
58	Antimicrobial activity of chitosan nanofibers obtained by electrospinning. Polymer International, 2011, 60, 1663-1669.	1.6	51
59	Design of Plasma Surfaceâ€Activated, Electrospun Polylactide Nonâ€Wovens with Improved Cell Acceptance. Advanced Engineering Materials, 2011, 13, B165.	1.6	13
60	Preparation of Imprinted PVB/ <i>β</i> â€CD Nanofiber by Electrospinning Technique and Its Selective Binding Abilities for Naringin. Chinese Journal of Chemistry, 2011, 29, 1753-1758.	2.6	14
61	Fabrication of electrospun nonwoven mats of polyvinylidene fluoride/polyethylene glycol/fumed silica for use as energy storage materials. Journal of Applied Polymer Science, 2011, 121, 3596-3603.	1.3	37
62	Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydrate Polymers, 2011, 85, 325-333.	5.1	229
63	Preparation of cellulose-based nano-composite fibers by electrospinning and understanding the effect of processing parameters. Composites Part B: Engineering, 2011, 42, 1220-1225.	5.9	35
64	Gradient biomaterials for soft-to-hard interface tissue engineering. Acta Biomaterialia, 2011, 7, 1441-1451.	4.1	338
65	Melt electrospinning of biodegradable polyurethane scaffolds. Acta Biomaterialia, 2011, 7, 3277-3284.	4.1	87
66	Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Applied Energy, 2011, 88, 3133-3139.	5.1	151
67	Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for inÂvitro cartilage tissue engineering. Biomaterials, 2011, 32, 5773-5781.	5.7	184
68	Optical transition properties of Eu3+ in Eu(DBM)3phen mono-dispersed microspheres for microcavity laser application. Physica B: Condensed Matter, 2011, 406, 2745-2749.	1.3	16
69	Tungsten carbide nanofibers prepared by electrospinning with high electrocatalytic activity for oxygen reduction. International Journal of Hydrogen Energy, 2011, 36, 7398-7404.	3.8	68
70	Synthesis of SnO2/ZnO composite nanofibers by electrospinning method and study of its ethanol sensing properties. Applied Surface Science, 2011, 257, 7988-7992.	3.1	74
71	Microstructure and magnetic anisotropy of electrospun Cu1â^'xZnxFe2O4nanofibres: a local probe study. Journal Physics D: Applied Physics, 2011, 44, 445304.	1.3	2
72	Fabrication of Capsaicin Loaded Polyvinyl Alcohol Electrospun Nanofibers. Advanced Materials Research, 2011, 338, 42-45.	0.3	4
73	Gas-Electrospun Degradable PEG/PBT-HA: Potential Scaffold for Tissue Engineering. Advanced Materials Research, 2011, 284-286, 923-927.	0.3	1
74	Effects of Solution Parameters on Morphology and Diameter of Electrospun Polystyrene Nanofibers. Advanced Materials Research, 0, 194-196, 629-632.	0.3	3

#	Article	IF	CITATIONS
75	Impedance Characteristics of Electrospun Nylon-6/TiO ₂ Nanocomposite for Humidity Sensor. Key Engineering Materials, 0, 471-472, 542-547.	0.4	4
76	Surface Modification of Poly(L-lactic acid) Nanofiber with Oligo(D-lactic acid) Bioactive-Peptide Conjugates for Peripheral Nerve Regeneration. Polymers, 2011, 3, 820-832.	2.0	28
77	A Review on Composite Liposomal Technologies for Specialized Drug Delivery. Journal of Drug Delivery, 2011, 2011, 1-19.	2.5	165
78	Production of Nanofibers by Electrospinning Technology: Overview and Application in Cosmetics. , 2011, , 311-332.		17
79	Optimizing Process Variables to Control Fiber Diameter of Electrospun Polycaprolactone Nanofiber Using Factorial Design. Materials Research Society Symposia Proceedings, 2011, 1316, 1.	0.1	3
80	Characterization of Hydroxyapatite Synthesized from Sea Shells and Electrospin Coating of Hydroxyapatite for Biomedical Applications. Advanced Materials Research, 2012, 584, 435-439.	0.3	2
81	Electrospinning via mechanically single probe-tip drawing for massive production. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2012, 226, 27-30.	0.1	1
82	Preparation and Characterization of Aligned PLLA/PCL/HA Composite Fibrous Membranes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 946-951.	1.2	9
83	Thin-Layer Hydroxyapatite Deposition on a Nanofiber Surface Stimulates Mesenchymal Stem Cell Proliferation and Their Differentiation into Osteoblasts. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	27
84	Coaxial electrospinning of gelatin/polyvinyl alcohol composite nanofibers and evaluation of their material properties. , 2012, , .		1
85	An overview of the development and applications of nanoscale materials in the food industry. , 2012, , 3-39.		4
86	Producing PVP Nanofibers by Electrospinning in N ₂ . Advanced Materials Research, 0, 560-561, 701-708.	0.3	1
87	Effect of Electrospun Non-Woven Mats of Dibutyryl Chitin/Poly(Lactic Acid) Blends on Wound Healing in Hairless Mice. Molecules, 2012, 17, 2992-3007.	1.7	42
88	Polycaprolactone-Chitin Nanofibrous Mats as Potential Scaffolds for Tissue Engineering. Journal of Nanomaterials, 2012, 2012, 1-9.	1.5	11
89	Morphological Characterization of Nanofibers: Methods and Application in Practice. Journal of Nanomaterials, 2012, 2012, 1-14.	1.5	84
90	Preparation of Clutinous Rice Starch Nanofibers by Electrospinning. Advanced Materials Research, 0, 506, 230-233.	0.3	8
91	Fabrication of magnesium fluoridated hydroxyapatite nanoparticle-polycaprolactone nanocomposite via electrospinning. , 2012, , .		0
92	Electrospinning of Gelatin/PEO Blends: Influence of Process Parameters in the Nanofiber Properties. Macromolecular Symposia, 2012, 319, 230-234.	0.4	10

#	Article	IF	CITATIONS
93	Interfacial rheology: An overview of measuring techniques and its role in dispersions and electrospinning. Acta Pharmaceutica, 2012, 62, 123-140.	0.9	60
94	Proliferation of Genetically Modified Human Cells on Electrospun Nanofiber Scaffolds. Molecular Therapy - Nucleic Acids, 2012, 1, e59.	2.3	24
95	Nanocomposites for cartilage regeneration. , 2012, , 624-661.		1
96	Morphology and mechanical properties of MWNT/PMIA nanofibers by electrospinning. Textile Reseach Journal, 2012, 82, 1390-1395.	1.1	10
97	Electrospun Aligned Poly(L-lactide)/Poly(ϵ-caprolactone) /Poly(ethylene glycol) Blend Fibrous Membranes. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 466-472.	1.2	4
98	Electrospun fibers: fabrication, functionalities and potential food industry applications. , 2012, , 362-397.		15
99	Preparation and Electrospinning of Acidified-Oxidized Potato Starch. Advanced Materials Research, 2012, 535-537, 2340-2344.	0.3	2
100	Research on the Preparation of Food-Grade Sea Cucumber/Gelatin Nanofiber Membrane with Electrospinning Method. Advanced Materials Research, 2012, 427, 139-142.	0.3	2
101	Electrospun Composite Nanofibers and Polymer Composites. , 2012, , 301-349.		13
102	Surface Modification of Electrospun Nanofiber and Nanofibrous Membranes. , 2012, , 215-258.		0
103	Dispersion and release of embelin from electrospun, biodegradable, polymeric membranes. Polymer Journal, 2012, 44, 1105-1111.	1.3	12
104	Protein- and peptide-based electrospun nanofibers in medical biomaterials. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1242-1262.	1.7	182
105	Fabrication of Gd2O3 nanofibers by electrospinning technique using PVA as a structure directing template. Applied Surface Science, 2012, 261, 770-773.	3.1	13
106	Preparation and Characterization of Caffeic Acid-Grafted Electrospun Poly(<scp>l</scp> -Lactic Acid) Fiber Mats for Biomedical Applications. ACS Applied Materials & Interfaces, 2012, 4, 3031-3040.	4.0	34
107	Carbon nanofibers produced from modified electrospun PAN/hydroxyapatite precursors as scaffolds for bone tissue engineering. Materials Science and Engineering C, 2012, 32, 2562-2569.	3.8	52
108	Electrospun non-woven mats from stereocomplex between high molar mass poly(l-lactide) and poly(d-lactide)-block-poly(butylene succinate) copoly(ester urethane)s. European Polymer Journal, 2012, 48, 1965-1975.	2.6	13
109	Types and processing of structured functional nanofibers: core-shell, aligned, porous and gradient nanofibers. , 2012, , 22-37.		3
110	Mouse Retinal Progenitor Cell Dynamics on Electrospun Poly (<i>ïµ</i> -Caprolactone). Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1451-1465.	1.9	18

#	Article	IF	CITATIONS
111	Influence of Diameter on Surface Dispersive Free Energy of Polyethersulfone Nano-fibers. Journal of Adhesion Science and Technology, 2012, 26, 353-360.	1.4	3
112	Nanofibers: principles and manufacture. , 2012, , 3-21.		7
113	La0.67Sr0.33MnO3 nanofibers for in situ, real-time, and stable high temperature oxygen sensing. RSC Advances, 2012, 2, 3872.	1.7	19
114	Palladium Nanoshell Catalysts Synthesis on Highly Ordered Pyrolytic Graphite for Oxygen Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2012, 4, 2018-2024.	4.0	20
115	Nanofibers from Scalable Gas Jet Process. ACS Macro Letters, 2012, 1, 1032-1036.	2.3	71
116	Electrospun Fibers and Tissue Engineering. Journal of Biomedical Nanotechnology, 2012, 8, 1-9.	0.5	108
117	Electrospinning 3 <i>C</i> -SiC Mesoporous Fibers with High Purities and Well-Controlled Structures. Crystal Growth and Design, 2012, 12, 536-539.	1.4	39
118	Orientation and Structure of Single Electrospun Nanofibers of Poly(ethylene terephthalate) by Confocal Raman Spectroscopy. Macromolecules, 2012, 45, 1946-1953.	2.2	54
119	On a Novel Catalytic System Based on Electrospun Nanofibers and M-POSS. ACS Applied Materials & Interfaces, 2012, 4, 604-607.	4.0	31
120	Thermo-responsive nanofibers prepared from poly(N-isopropylacrylamide-co-N-methylol acrylamide). Polymer, 2012, 53, 2829-2838.	1.8	23
121	Enhancing the Production of Rhodobacter sphaeroides-Derived Physiologically Active Substances Using Carbonic Anhydrase-Immobilized Electrospun Nanofibers. Biomacromolecules, 2012, 13, 3780-3786.	2.6	28
122	Structural Evolution of Electrospun Composite Fibers from the Blend of Polyvinyl Alcohol and Polymer Nanoparticles. Langmuir, 2012, 28, 15418-15424.	1.6	47
123	Novel polyamide-based nanofibers prepared by electrospinning technique for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples. Analytica Chimica Acta, 2012, 716, 34-39.	2.6	63
124	Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity. Acta Biomaterialia, 2012, 8, 2549-2558.	4.1	51
125	Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: A review. Carbohydrate Polymers, 2012, 89, 723-739.	5.1	373
126	Electrospun zein nanofibers incorporating cyclodextrins. Carbohydrate Polymers, 2012, 90, 558-568.	5.1	129
127	Electrospun poly(lactic acid)/chitosan core–shell structure nanofibers from homogeneous solution. Carbohydrate Polymers, 2012, 90, 1445-1451.	5.1	85
128	Bimodal fiber diameter distributed graphene oxide/nylon-6 composite nanofibrous mats via electrospinning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 407, 121-125.	2.3	88

#	Article	IF	CITATIONS
129	Controlled electrochemical behavior of indium tin oxide electrode modified with Pd nanoparticles via electrospinning followed by calcination toward nitrite ions. Electrochimica Acta, 2012, 78, 200-204.	2.6	15
130	Hybrid Silica–PVA Nanofibers via Sol–Gel Electrospinning. Langmuir, 2012, 28, 5834-5844.	1.6	205
131	Tensile mechanical properties and hydraulic permeabilities of electrospun cellulose acetate fiber meshes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 2222-2230.	1.6	26
132	Fibrous biodegradable l-alanine-based scaffolds for vascular tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2012, 8, n/a-n/a.	1.3	22
133	Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers. Sensors and Actuators B: Chemical, 2012, 171-172, 580-587.	4.0	234
134	Fabrication and piezoresponse of electrospun ultra-fine Pb(Zr0.3, Ti0.7)O3 nanofibers. Microelectronic Engineering, 2012, 98, 371-373.	1.1	24
135	Centrifugal electrospinning of highly aligned polymer nanofibers over a large area. Journal of Materials Chemistry, 2012, 22, 18646.	6.7	96
136	Composite Nonwovens. Textile Progress, 2012, 44, 1-84.	1.3	54
137	Electrospun polymer nanofibers: The booming cutting edge technology. Reactive and Functional Polymers, 2012, 72, 915-930.	2.0	143
138	Electro-oxidation of methanol based on electrospun PdO–Co3O4 nanofiber modified electrode. International Journal of Hydrogen Energy, 2012, 37, 17947-17953.	3.8	22
139	Physical-chemical properties of cross-linked chitosan electrospun fiber mats. Polymer Testing, 2012, 31, 1062-1069.	2.3	52
140	Simple fabrication technique for multilayered stratified composite scaffolds suitable for interface tissue engineering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 557, 54-58.	2.6	42
141	Alginate based scaffolds for bone tissue engineering. Materials Science and Engineering C, 2012, 32, 2596-2603.	3.8	77
142	An Alternative Solvent System for Blend Electrospinning of Polycaprolactone/Chitosan Nanofibres. Macromolecular Symposia, 2012, 321-322, 71-75.	0.4	25
143	Uniaxially Aligned Nanofibrous Cylinders by Electrospinning. ACS Applied Materials & Interfaces, 2012, 4, 4817-4824.	4.0	59
144	Effect of nozzle polarity and connection on electrospinning of polyacrylonitrile nanofibers. Journal of the Textile Institute, 2012, 103, 1160-1168.	1.0	14
145	Manufacturing polymethyl methacrylate nanofibers as a support for enzyme immobilization. Fibers and Polymers, 2012, 13, 994-998.	1.1	11
146	Stable jet electrospinning for easy fabrication of aligned ultrafine fibers. Journal of Materials Chemistry, 2012, 22, 19634.	6.7	51

#	Article	IF	CITATIONS
147	Lignin-Based Electrospun Nanofibers Reinforced with Cellulose Nanocrystals. Biomacromolecules, 2012, 13, 918-926.	2.6	171
148	Fabrication of porous microtent structures toward an <i>in vitro</i> endothelium model. Journal of Micromechanics and Microengineering, 2012, 22, 085001.	1.5	3
149	Preparation and characterisation of NiO–Ce0.8Gd0.2O1.9 composite nanofibres via electrospinning. Micro and Nano Letters, 2012, 7, 1316-1319.	0.6	10
150	Enzyme Immobilization via Electrospinning. Topics in Catalysis, 2012, 55, 1057-1069.	1.3	55
151	Electrospun Nanofiber-Based Solid-Phase Microextraction Media. , 2012, , 533-540.		0
152	A Review of the Responses of Two- and Three-Dimensional Engineered Tissues to Electric Fields. Tissue Engineering - Part B: Reviews, 2012, 18, 167-180.	2.5	74
153	Poly(lactic acid)/Carbon Nanotube Fibers as Novel Platforms for Glucose Biosensors. Biosensors, 2012, 2, 70-82.	2.3	41
154	Electrospun hybrid nanofibers doped with nanoparticles or nanotubes for biomedical applications. Therapeutic Delivery, 2012, 3, 1155-1169.	1.2	46
155	In vitro osteoclast-like and osteoblast cells' response to electrospun calcium phosphate biphasic candidate scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2012, 23, 3029-3040.	1.7	19
156	Preparation of PCL/PVP/Ag Nanofiber Membranes by Electrospinning Method. Applied Mechanics and Materials, 0, 268-270, 580-583.	0.2	5
157	Effects of Electrospinning Setup and Process Parameters on Nanofiber Morphology Intended for the Modification of Quartz Crystal Microbalance Surfaces. Journal of Engineered Fibers and Fabrics, 2012, 7, 155892501200700.	0.5	32
158	Emulsion-coaxial electrospinning: designing novel architectures for sustained release of highly soluble low molecular weight drugs. Journal of Materials Chemistry, 2012, 22, 11347.	6.7	59
159	Single Step Isolation and Activation of Primary CD3 ⁺ T Lymphocytes Using Alcohol-Dispersed Electrospun Magnetic Nanofibers. Nano Letters, 2012, 12, 4018-4024.	4.5	11
160	Structuring and Molding of Electrospun Nanofibers: Effect of Electrical and Topographical Local Properties of Microâ€Patterned Collectors. Macromolecular Materials and Engineering, 2012, 297, 958-968.	1.7	27
161	Electrospinning of Prolamin Proteins in Acetic Acid: The Effects of Protein Conformation and Aggregation in Solution. Macromolecular Materials and Engineering, 2012, 297, 902-913.	1.7	60
162	Fabrication and characterization of electrospun silk fibroin/TiO ₂ nanofibrous mats for wound dressings. Polymers for Advanced Technologies, 2012, 23, 1066-1076.	1.6	40
163	Preparation, characterization, and properties of nanofibers based on poly(vinylidene fluoride) and polyhedral oligomeric silsesquioxane. Polymers for Advanced Technologies, 2012, 23, 1252-1257.	1.6	20
164	Nanofiber diameterâ€dependent MAPK activity in osteoblasts. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2921-2928.	2.1	27

#	Article	IF	CITATIONS
165	Simple Localization of Nanofiber Scaffolds via SUâ€8 Photoresist and Their Use for Parallel 3D Cellular Assays. Advanced Materials, 2012, 24, 2191-2195.	11.1	18
166	Micromechanical properties and ductile behavior of electrospun polystyrene nanofibers. Journal of Applied Polymer Science, 2012, 125, 1663-1673.	1.3	14
167	Artificial neural networks modeling of electrospinning of polyethylene oxide from aqueous acid acetic solution. Journal of Applied Polymer Science, 2012, 125, 1910-1921.	1.3	22
168	Electrospinning of cellulose nanofibers from ionic liquids: The effect of different cosolvents. Journal of Applied Polymer Science, 2012, 125, 1901-1909.	1.3	77
169	Preparation and characterization of electrospun polyurethane–polypyrrole nanofibers and films. Journal of Applied Polymer Science, 2012, 125, 4100-4108.	1.3	48
170	Correlations of <i>in vitro</i> and <i>in vivo</i> degradation tests on electrospun polyâ€< scp>DLâ€lactideâ€poly(ethylene glycol) fibers. Journal of Applied Polymer Science, 2012, 125, 2207-2215.	1.3	8
171	Preparation and photoluminescent characterization of poly(phenylene vinylene)/TiO ₂ nanoparticles composite nanofibers by oneâ€step electrospinning. Journal of Applied Polymer Science, 2012, 126, 1061-1068.	1.3	7
172	Silk fibroin based biomimetic artificial extracellular matrix for hepatic tissue engineering applications. Biomedical Materials (Bristol), 2012, 7, 045004.	1.7	52
173	Preparation and characterization of nickel-coated carbon nanofibers produced from the electropsinning of polyamideimide precursor. Macromolecular Research, 2012, 20, 503-507.	1.0	12
174	Preparation of gentamicin-loaded electrospun coating on titanium implants and a study of their properties in vitro. Archives of Orthopaedic and Trauma Surgery, 2012, 132, 897-903.	1.3	38
175	Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydrate Polymers, 2012, 87, 1295-1301.	5.1	90
176	Cellulose nanocrystals as a reinforcing material for electrospun poly(methyl methacrylate) fibers: Formation, properties and nanomechanical characterization. Carbohydrate Polymers, 2012, 87, 2488-2495.	5.1	199
177	Surface physical and chemical properties of atmospheric pressure plasma-treated polyamideimide fibrous mats using attenuated total reflection Fourier transform infrared imaging. Carbohydrate Polymers, 2012, 88, 562-567.	5.1	5
178	Fabrication of cadmium titanate nanofibers via electrospinning technique. Ceramics International, 2012, 38, 3361-3365.	2.3	17
179	Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin. Food Chemistry, 2012, 133, 641-649.	4.2	256
180	Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. International Journal of Pharmaceutics, 2012, 427, 379-384.	2.6	179
181	Contact angles of drops on curved superhydrophobic surfaces. Journal of Colloid and Interface Science, 2012, 367, 472-477.	5.0	39
182	Electrostatic field considerations related force effect on electrospinning. Journal of Electrostatics, 2012, 70, 149-151.	1.0	4

#	Article	IF	CITATIONS
183	Cartilage regeneration in SCID mice using a highly organized three-dimensional alginate scaffold. Biomaterials, 2012, 33, 120-127.	5.7	64
184	The differential effects of aligned electrospun PHBHHx fibers on adipogenic and osteogenic potential of MSCs through the regulation of PPARÎ ³ signaling. Biomaterials, 2012, 33, 485-493.	5.7	90
185	Hydrophilic-modified polyurethane nanofibre scaffolds for culture of hyperthermophiles. Materials Letters, 2012, 72, 88-91.	1.3	3
186	Electrospinning of Ion Jelly fibers. Materials Letters, 2012, 83, 161-164.	1.3	14
187	Electrospun nanofibrous membranes for high flux microfiltration. Journal of Membrane Science, 2012, 392-393, 167-174.	4.1	253
188	Electrospun PVdF–PVC nanofibrous polymer electrolytes for polymer lithium-ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 86-91.	1.7	69
189	Electrospinning preparation and optical transition properties of Eu(DBM)3Phen/PS fluorescent composite fibers. Optics Communications, 2012, 285, 1476-1480.	1.0	23
190	pH-controlled electrocatalysis of amino acid based on electrospun cobalt nanoparticles-loaded carbon nanofibers. Sensors and Actuators B: Chemical, 2012, 166-167, 357-364.	4.0	17
191	Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process. Sensors and Actuators B: Chemical, 2012, 166-167, 746-752.	4.0	150
192	Synthesis of novel solid–liquid phase change materials and electrospinning of ultrafine phase change fibers. Solar Energy Materials and Solar Cells, 2012, 96, 202-209.	3.0	40
193	Organic phase change materials and their textile applications: An overview. Thermochimica Acta, 2012, 540, 7-60.	1.2	543
194	Novel advances in the design of three-dimensional bio-scaffolds to control cell fate: translation from 2D to 3D. Trends in Biotechnology, 2012, 30, 331-341.	4.9	121
195	Preparation and characterization of aligned carbon nanotubes/polylactic acid composite fibers. Physica B: Condensed Matter, 2012, 407, 2451-2457.	1.3	17
196	Influence of solution and processing parameters towards the fabrication of electrospun zein fibers with sub-micron diameter. Journal of Food Engineering, 2012, 109, 645-651.	2.7	104
197	Optical properties and chemical bonding states with annealing conditions of ZnO nanofibers prepared by using the electrospinning method. Journal of the Korean Physical Society, 2012, 60, 1395-1398.	0.3	0
198	Polypyrrole/polyamide electrospunâ€based sorbent for microextraction in packed syringe of organophosphorous pesticides from aquatic samples. Journal of Separation Science, 2012, 35, 114-120.	1.3	64
199	Polydiphenylamine–polyethylene oxide blends as methanol sensing materials. Advances in Polymer Technology, 2012, 31, 401-413.	0.8	11
200	Preparation and properties of polyaniline electrospun fiber web. Journal of Applied Polymer Science, 2012, 124, 4033-4037.	1.3	8

#	Article	IF	CITATIONS
201	Electrospun PLA/PCL fibers with tubular nanoclay: Morphological and structural analysis. Journal of Applied Polymer Science, 2012, 124, 3930-3939.	1.3	55
202	Effects of processing parameters on morphology of electrospun polystyrene nanofibers. Korean Journal of Chemical Engineering, 2012, 29, 173-181.	1.2	49
203	On the electrospinning of PVDF: influence of the experimental conditions on the nanofiber properties. Polymer International, 2013, 62, 41-48.	1.6	128
204	Alimentary â€~green' proteins as electrospun scaffolds for skin regenerative engineering. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 994-1008.	1.3	39
205	Impact of synthetic talc on PLLA electrospun fibers. European Polymer Journal, 2013, 49, 2572-2583.	2.6	51
206	Organ Regeneration. Methods in Molecular Biology, 2013, , .	0.4	0
207	Laccase immobilization on chitosan/poly(vinyl alcohol) composite nanofibrous membranes for 2,4-dichlorophenol removal. Chemical Engineering Journal, 2013, 222, 321-329.	6.6	177
208	Collagen-based substrates with tunable strength for soft tissue engineering. Biomaterials Science, 2013, 1, 1193.	2.6	32
209	Spinnability of SPPESK and its application in esterification. Journal of Polymer Research, 2013, 20, 1.	1.2	4
210	Molecularly imprinted electrospun nanofibers for adsorption of nickel-5,10,15,20-tetraphenylporphine (NTPP) in organic media. Journal of Polymer Research, 2013, 20, 1.	1.2	15
211	Morphological optimization of electrospun polyacrylamide/MWCNTs nanocomposite nanofibers using Taguchi's experimental design. International Journal of Advanced Manufacturing Technology, 2013, 69, 139-146.	1.5	20
212	AgNPs/PVA and AgNPs/(PVA/PEI) hybrids: preparation, morphology and antibacterial activity. Journal Physics D: Applied Physics, 2013, 46, 345303.	1.3	11
213	Current approaches to electrospun nanofibers for tissue engineering. Biomedical Materials (Bristol), 2013, 8, 014102.	1.7	216
214	A theoretical analysis and prediction of pore size and pore size distribution in electrospun multilayer nanofibrous materials. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2107-2117.	2.1	57
215	Creating "hotels―for cells by electrospinning honeycomb-like polymeric structures. Materials Science and Engineering C, 2013, 33, 4384-4391.	3.8	13
216	Neomycin-loaded poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion exchange nanofibers for wound dressing materials. International Journal of Pharmaceutics, 2013, 448, 71-78.	2.6	72
217	Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. Journal of Materials Science, 2013, 48, 7125-7133.	1.7	116
218	Fabrication of Pt, Pt–Cu, and Pt–Sn nanofibers for direct ethanol protonic ceramic fuel cell application. Journal of Materials Science, 2013, 48, 4059-4072.	1.7	7

#	Article	IF	CITATIONS
219	Acetylcholinesterase Immobilization on Polyacrylamide/Functionalized Multi-walled Carbon Nanotube Nanocomposite Nanofibrous Membrane. Applied Biochemistry and Biotechnology, 2013, 170, 91-104.	1.4	12
220	Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application. International Journal of Biological Macromolecules, 2013, 56, 49-56.	3.6	117
221	Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs. Nanoscale, 2013, 5, 7528.	2.8	21
222	Electrospun poly(N-isopropylacrylamide)/poly(caprolactone)-based polyurethane nanofibers as drug carriers and temperature-controlled release. New Journal of Chemistry, 2013, 37, 2433.	1.4	27
223	Electrospun Upconversion Composite Fibers as Dual Drugs Delivery System with Individual Release Properties. Langmuir, 2013, 29, 9473-9482.	1.6	75
224	Electrohydrodynamic direct-writing. Nanoscale, 2013, 5, 12007.	2.8	202
225	A Smart Hyperthermia Nanofiber with Switchable Drug Release for Inducing Cancer Apoptosis. Advanced Functional Materials, 2013, 23, 5753-5761.	7.8	225
226	A novel method for manufacturing nanofibers. Fibers and Polymers, 2013, 14, 941-949.	1.1	44
227	SPI/PEO blended electrospun martrix for wound healing. Fibers and Polymers, 2013, 14, 965-969.	1.1	41
228	RGO/Nylon-6 composite mat with unique structural features and electrical properties obtained from electrospinning and hydrothermal process. Fibers and Polymers, 2013, 14, 970-975.	1.1	21
229	Development and Characterization of Propranolol Selective Molecular Imprinted Polymer Composite Electrospun Nanofiber Membrane. AAPS PharmSciTech, 2013, 14, 838-846.	1.5	17
230	Using electrospun poly(ethylene-oxide) nanofibers for improved retention and efficacy of bacteriolytic antibiotics. Biomedical Microdevices, 2013, 15, 887-893.	1.4	31
231	Electrospinning of cyclodextrin functionalized chitosan/PVA nanofibers as a drug delivery system. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1343-1351.	2.0	37
232	Cross-Linking Effect on Electrospun Hydroxyethyl Cellulose/Poly(Vinyl Alcohol) Nanofibrous Scaffolds. Procedia Engineering, 2013, 53, 689-695.	1.2	22
233	Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 2013, 16, 229-241.	8.3	645
234	The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. International Journal of Pharmaceutics, 2013, 456, 125-134.	2.6	225
235	A review on membrane fabrication: Structure, properties and performance relationship. Desalination, 2013, 326, 77-95.	4.0	823
236	Easy Fabrication of a Sensitive Non-Enzymatic Clucose Sensor Based on Electrospinning CuO-ZnO Nanocomposites. Integrated Ferroelectrics, 2013, 147, 47-58.	0.3	22

#	Article	IF	CITATIONS
237	Thermally crosslinkable poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA)/polyvinyl alcohol (PVA) ion-exchange fibers. Polymer Bulletin, 2013, 70, 1431-1444.	1.7	10
238	Microwave absorption properties of the Ni nanofibers fabricated by electrospinning. Applied Physics A: Materials Science and Processing, 2013, 113, 755-761.	1.1	31
240	Synthesis of microporous membranes and films on various substrates by novel electrospinning method. Science China Chemistry, 2013, 56, 459-464.	4.2	11
241	Nonenzymatic hydrogen peroxide sensor based on a glassy carbon electrode modified with electrospun PdO-NiO composite nanofibers. Mikrochimica Acta, 2013, 180, 1085-1091.	2.5	14
242	Food-grade electrospinning of proteins. Innovative Food Science and Emerging Technologies, 2013, 20, 269-275.	2.7	103
243	Synergistic effect of released dexamethasone and surface nanoroughness on mesenchymal stem cell differentiation. Biomaterials Science, 2013, 1, 1091.	2.6	17
244	Sensitive enzymatic glucose biosensor fabricated by electrospinning composite nanofibers and electrodepositing Prussian blue film. Journal of Electroanalytical Chemistry, 2013, 694, 1-5.	1.9	44
245	Preparation and characterization of electrospun PLA/nanocrystalline celluloseâ€based composites. Journal of Applied Polymer Science, 2013, 130, 3345-3354.	1.3	53
246	Note: A multifunctional electrospinning system for manufacturing diversified nanofibrous structures. Review of Scientific Instruments, 2013, 84, 086107.	0.6	8
247	A Nanopore–Nanofiber Mesh Biosensor To Control DNA Translocation. Journal of the American Chemical Society, 2013, 135, 16304-16307.	6.6	84
248	Synthesis, antimicrobial and release of chloroamphenicol loaded poly(l-lactic acid)/ZrO2 nanofibrous membranes. International Journal of Biological Macromolecules, 2013, 62, 494-499.	3.6	15
249	Scission of electrospun polymer fibres by ultrasonication. Polymer, 2013, 54, 4237-4252.	1.8	54
250	Helical peanut-shaped poly(vinyl pyrrolidone) ribbons generated by electrospinning. Polymer, 2013, 54, 6752-6759.	1.8	17
251	Fabrication, Characterization, and Evaluation in Drug Release Properties of Magnetoactive Poly(ethylene oxide)–Poly(<scp>l</scp> -lactide) Electrospun Membranes. Biomacromolecules, 2013, 14, 4436-4446.	2.6	37
252	Fast-scanning calorimetry of electrospun polyamide nanofibres: Melting behaviour and crystal structure. Polymer, 2013, 54, 6809-6817.	1.8	15
253	Polyhydroxyalkanoates from Palm Oil: Biodegradable Plastics. SpringerBriefs in Microbiology, 2013, , .	0.1	16
254	Electrospun polyethylene glycol/cellulose acetate phase change fibers with core–sheath structure for thermal energy storage. Renewable Energy, 2013, 60, 222-225.	4.3	71
255	Electrospun lithium metal oxide cathode materials for lithium-ion batteries. RSC Advances, 2013, 3, 25576.	1.7	65

#	Article	IF	CITATIONS
256	Morphology and performances of electrospun polyethylene glycol/poly (dl-lactide) phase change ultrafine fibers for thermal energy storage. Solar Energy Materials and Solar Cells, 2013, 117, 372-381.	3.0	70
257	Photocatalytic degradation of Rhodamine B using electrospun TiO2 and ZnO nanofibers: a comparative study. Journal of Materials Science, 2013, 48, 8386-8392.	1.7	39
258	Development of electrospun beaded fibers from Thai silk fibroin and gelatin for controlled release application. International Journal of Biological Macromolecules, 2013, 55, 176-184.	3.6	44
259	Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics. Frontiers of Materials Science, 2013, 7, 350-361.	1.1	61
260	Electrospun Fe2O3–Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. Journal of Hazardous Materials, 2013, 258-259, 116-123.	6.5	175
261	Studies on the electrocatalytic oxidation of dopamine at phosphotungstic acid–ZnO spun fiber-modified electrode. Sensors and Actuators B: Chemical, 2013, 185, 651-657.	4.0	19
262	Preoxidated polyacrylonitrile fiber mats supported copper catalyst for Mizoroki–Heck cross-coupling reactions. Applied Catalysis A: General, 2013, 468, 26-31.	2.2	10
264	Electrospinning of Polycaprolactone in Dichloromethane/Dimethylformamide Solvent System. Advanced Materials Research, 0, 849, 337-342.	0.3	7
265	Synthesis of porous Bi4Ti3O12 nanofibers by electrospinning and their enhanced visible-light-driven photocatalytic properties. Nanoscale, 2013, 5, 2028.	2.8	143
266	Cusps, spouts and microfiber synthesis with microfluidics. Soft Matter, 2013, 9, 3041.	1.2	11
267	Water–diesel secondary dispersion separation using superhydrophobic tubes of nanofibers. Separation and Purification Technology, 2013, 104, 81-88.	3.9	52
268	Electrospinning and additive manufacturing: converging technologies. Biomaterials Science, 2013, 1, 171-185.	2.6	207
269	A solid-state electrochemiluminescence sensing platform for detection of catechol based on novel luminescent composite nanofibers. Talanta, 2013, 107, 127-132.	2.9	29
270	Myconanotechnology in agriculture: a perspective. World Journal of Microbiology and Biotechnology, 2013, 29, 191-207.	1.7	106
271	Electrospun synthetic and natural nanofibers for regenerative medicine and stem cells. Biotechnology Journal, 2013, 8, 59-72.	1.8	91
272	Laminar Silk Scaffolds for Aligned Tissue Fabrication. Macromolecular Bioscience, 2013, 13, 48-58.	2.1	51
273	Ultrafine Solid State Polymerized PA66 Nanofibers Fabrication via Air-Sealed Centrifuge Electrospinning (ASCES). Advanced Materials Research, 0, 856, 290-293.	0.3	2
274	Molecular Orientation in Electrospun Fibers: From Mats to Single Fibers. Macromolecules, 2013, 46, 9473-9493.	2.2	236

#	Article	IF	CITATIONS
275	Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor. Journal of Hazardous Materials, 2013, 248-249, 254-260.	6.5	36
276	Electrospinning covalently cross-linking biocompatible hydrogelators. Polymer, 2013, 54, 363-371.	1.8	13
277	Core–shell structured electrospun biomimetic composite nanofibers of calcium lactate/nylon-6 for tissue engineering. Chemical Engineering Journal, 2013, 221, 90-98.	6.6	50
278	Modified electric fields to control the direction of electrospinning jets. Polymer, 2013, 54, 1397-1404.	1.8	24
279	Immobilization of lysozyme-CLEA onto electrospun chitosan nanofiber for effective antibacterial applications. International Journal of Biological Macromolecules, 2013, 54, 37-43.	3.6	112
280	Electrospun cellulose acetate nanofibers: The present status and gamut of biotechnological applications. Biotechnology Advances, 2013, 31, 421-437.	6.0	275
281	Highly Efficient Wettability Control via Three-Dimensional (3D) Suspension of Titania Nanoparticles in Polystyrene Nanofibers. ACS Applied Materials & Interfaces, 2013, 5, 1232-1239.	4.0	48
282	Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes. Biofabrication, 2013, 5, 025003.	3.7	30
283	The topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 401-411.	2.0	75
284	Models to study airway smooth muscle contraction inÂvivo, exÂvivo and inÂvitro: Implications in understanding asthma. Pulmonary Pharmacology and Therapeutics, 2013, 26, 24-36.	1.1	42
285	Preparation of lead-ion imprinted crosslinked electro-spun chitosan nanofiber mats and application in lead ions removal from aqueous solutions. European Polymer Journal, 2013, 49, 1487-1494.	2.6	66
286	Effect of hot-stretching on morphology and mechanical properties of electrospun PMIA nanofibers. Fibers and Polymers, 2013, 14, 405-408.	1.1	23
287	A bi-layer electrospun nanofiber membrane for plasmid DNA recovery from fermentation broths. Separation and Purification Technology, 2013, 112, 20-25.	3.9	14
288	Fabrication of mesenchymal stem cells-integrated vascular constructs mimicking multiple properties of the native blood vessels. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 769-783.	1.9	10
289	Multiple Targeted Drugs Carrying Biodegradable Membrane Barrier: Anti-Adhesion, Hemostasis, and Anti-Infection. Biomacromolecules, 2013, 14, 954-961.	2.6	48
290	Dendrigraft with citric acid on acrylonitrile/acrylic acid copolymer electrospun fibres. Polymer International, 2013, 62, 1767-1776.	1.6	3
291	Electrospun cellulose acetate nanofibers as thin layer chromatographic media for eco-friendly screening of steroids adulterated in traditional medicine and nutraceutical products. Talanta, 2013, 115, 208-213.	2.9	32
292	Enhanced orientation of PEO polymer chains induced by nanoclays in electrospun PEO/clay composite nanofibers. Colloid and Polymer Science, 2013, 291, 1541-1546.	1.0	34

IF ARTICLE CITATIONS # Enhanced performance of electrospun carbon fibers modified with carbon nanotubes: promising 293 30 1.3electrodes for enzymatic biofuel cells. Nanotechnology, 2013, 24, 245402. Electrospun core–shell nanofibers for drug encapsulation and sustained release. Polymer Engineering and Science, 2013, 53, 1770-1779. 294 1.5 64 Forming of Polymer Nanofibers by a Pressurised Gyration Process. Macromolecular Rapid 295 2.0 188 Communications, 2013, 34, 1134-1139. Fabrication and evaluation of cationic exchange nanofibers for controlled drug delivery systems. International Journal of Pharmaceutics, 2013, 450, 345-353.

CITATION REPORT

298 Electrospun soy protein isolate-based fiber fortified with anthocyanin-rich red raspberry (Rubus) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 58

299	Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release. Carbohydrate Polymers, 2013, 98, 17-25.	5.1	77
300	Carbon Nanomaterials for Implant Dentistry and Bone Tissue Engineering. , 2013, , 359-388.		0
301	Electrospinning Tubular Scaffolds with Tissue-Like Mechanical Properties and Biomimetic Surface Features. Methods in Molecular Biology, 2013, 1001, 153-165.	0.4	1
302	Electro-spinning/netting: A strategy for the fabrication of three-dimensional polymer nano-fiber/nets. Progress in Materials Science, 2013, 58, 1173-1243.	16.0	440
303	Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. Journal of Membrane Science, 2013, 428, 104-115.	4.1	301
304	Incorporation of silver-loaded ZnO rods into electrospun nylon-6 spider-web-like nanofibrous mat using hydrothermal process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 49-55.	2.3	15
305	Nanocomposite of silk fibroin nanofiber and montmorillonite: Fabrication and morphology. International Journal of Biological Macromolecules, 2013, 57, 124-128.	3.6	24
306	Electrospun Proficient Polymer Based Nano Fibers with Ceramic Particles. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1027-1030.	0.8	3
307	Physical characteristics of poly (vinyl alcohol) solutions in relation to electrospun nanofiber formation. European Polymer Journal, 2013, 49, 290-298.	2.6	55
308	Preparation and performance evaluations of electrospun poly(εâ€caprolactone), poly(lactic acid), and their hybrid (50/50) nanofibrous mats containing thymol as an herbal drug for effective wound healing. Journal of Applied Polymer Science, 2013, 129, 756-766.	1.3	148
309	A Fast Process for Imprinting Micro and Nano Patterns on Electrospun Fiber Meshes at Physiological Temperatures. Small, 2013, 9, 3405-3409.	5.2	42
310	Antibacterial multilayer films fabricated by LBL immobilizing lysozyme and HTCC on nanofibrous mats. International Journal of Biological Macromolecules, 2013, 53, 26-31.	3.6	57
311	Electrospun PET supported-ionic liquid-stabilized CdS catalyst for the photodegradation of Rhodamine B under visible light. Materials Letters, 2013, 91, 96-99.	1.3	8

#	Article	IF	CITATIONS
312	Tailored fibro-porous structure of electrospun polyurethane membranes, their size-dependent properties and trans-membrane glucose diffusion. Journal of Membrane Science, 2013, 427, 207-217.	4.1	67
313	Electrospun silk-elastin-like fibre mats for tissue engineering applications. Biomedical Materials (Bristol), 2013, 8, 065009.	1.7	67
314	Novel Hydrogen Peroxide Biosensor Based on Hemoglobin Combined with Electrospinning Composite Nanofibers. Analytical Letters, 2013, 46, 818-830.	1.0	5
315	Advances in fabrication of TiO2 nanofiber/nanowire arrays toward the cellular response in biomedical implantations: a review. Journal of Materials Science, 2013, 48, 8337-8353.	1.7	41
316	Curcumin-Loaded Biodegradable Electrospun Fibers: Preparation, Characterization, and Differences in Fiber Morphology. International Journal of Polymer Analysis and Characterization, 2013, 18, 534-544.	0.9	7
317	Study on Taylor Cone and Trajectory of Spinning Jet by Altering the Properties of Negative Electrode. Advanced Materials Research, 2013, 796, 317-322.	0.3	0
318	Tunable Thermoâ€Responsive Poly(<i>N</i> â€vinylcaprolactam) Cellulose Nanofibers: Synthesis, Characterization, and Fabrication. Macromolecular Materials and Engineering, 2013, 298, 447-453.	1.7	32
319	Effect of sideâ€chain length on the electrospinning of perfluorosulfonic acid ionomers. Journal of Polymer Science Part A, 2013, 51, 118-128.	2.5	30
320	Evaluation of Electro-Spun Tubular Scaffolds to Create an Anastomosis Using the CAM Assay. , 2013, , .		0
321	Composite Electrospun Nanofibers for Influencing Stem Cell Fate. Methods in Molecular Biology, 2013, 1058, 25-40.	0.4	5
322	<i>In Vitro</i> Biocompatibility of Electrospun Chitosan/Collagen Scaffold. Journal of Nanomaterials, 2013, 2013, 1-8.	1.5	10
323	Producing Polymer Fibers by Electrospinning in Supercritical Fluids. Journal of Chemistry, 2013, 2013, 1-6.	0.9	3
324	A multi-phase flow model for electrospinning process. Thermal Science, 2013, 17, 1299-1304.	0.5	4
325	A Belt-Like Superfine Film Fabricated by Bubble-Electrospinning. Advanced Materials Research, 0, 843, 82-85.	0.3	1
326	Preparation of PVB/ β-CD/Silica Nanofibers Using Electrospinning Techniques. Advanced Materials Research, 0, 734-737, 2187-2190.	0.3	0
327	Fabrication of Conductive Polypyrrole Nanofibers by Electrospinning. Journal of Nanomaterials, 2013, 2013, 1-6.	1.5	24
328	A belt-like superfine film fabricated by the bubble-electrospinning. Thermal Science, 2013, 17, 1508-1510.	0.5	12
329	Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials, 2013, 6, 1285-1309.	1.3	1,018

#	Article	IF	CITATIONS
330	Basalt Fabric-Electrospun Nanofiber-Based Composite Laminates. Applied Mechanics and Materials, 0, 465-466, 852-856.	0.2	0
331	A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications. Journal of Nanomaterials, 2013, 2013, 1-22.	1.5	480
332	Trends and Developments in the Manufacturing of Polymer Nanofibrils with the Electrospinning Technique. Applied Mechanics and Materials, 0, 446-447, 1298-1303.	0.2	0
333	Preparation and Characterization of Electrospun PVDF/PMMA Composite Fibrous Membranes-Based Separator for Lithium-Ion Batteries. Advanced Materials Research, 2013, 750-752, 1914-1918.	0.3	7
334	Investigation of Gas Sensing Materials SnO ₂ /In ₂ O ₃ Composite Nanofibers Treated by Oxygen Plasma. Key Engineering Materials, 0, 543, 180-183.	0.4	0
335	Activated Carbon Nanofibers as High Capacity Anodes for Lithium-Ion Batteries. ECS Journal of Solid State Science and Technology, 2013, 2, M3074-M3077.	0.9	26
336	Preparation of a Novel Chitosan-Based Composite Nanofibers by Electrospinning. Advanced Materials Research, 2013, 850-851, 136-139.	0.3	0
337	Droplet-Like Beads in the Surface of Nanofibers by Bubble-Electrospinning. Advanced Materials Research, 0, 843, 78-81.	0.3	0
338	Biofabrication of Tissue Scaffolds. , 2013, , .		34
339	Fibrous star poly(ε-caprolactone) melt-electrospun scaffolds for wound healing applications. Journal of Bioactive and Compatible Polymers, 2013, 28, 492-507.	0.8	35
340	Effect of optimization parameters on the diameter of PVP fibers fabricated by electrospinning technique. , 2013, , .		1
341	Optimization of electrospun TiO ₂ nanofibers photoanode film for dyeâ€sensitized solar cells through interfacial preâ€treatment, controllable calcination, and surface postâ€treatment. Surface and Interface Analysis, 2013, 45, 1878-1883.	0.8	11
342	Influence of micro and submicro poly(lactic-glycolic acid) fibers on sensory neural cell locomotion and neurite growth. , 2013, 101, 1200-1208.		23
343	Electrohydrodynamic printing under applied pole-type nozzle configuration. Applied Physics Letters, 2013, 102, 024101.	1.5	17
344	Preparation and surface modification of electrospun aligned poly(butylene carbonate) nanofibers. Journal of Applied Polymer Science, 2013, 130, 411-418.	1.3	7
345	A Study on Electrospun Nanofibrous Mats for Local Antibiotic Delivery. Advanced Materials Research, 0, 829, 510-514.	0.3	4
346	Stabilization Process of PAN Nanofibers. , 2013, , 125-139.		0
347	Effects of different ionic liquids on the electrospinning of a polyacrylonitrile polymer solution. Journal of Applied Polymer Science, 2013, 130, 2359-2368.	1.3	28

		CITATION REPO	RT	
#	Article	IF	-	CITATIONS
348	Nanotechnology for Water and Wastewater Treatment. Water Intelligence Online, 0, 12, .	C	.3	10
349	Electrospun fiber membranes enable proliferation of genetically modified cells. International Journa of Nanomedicine, 2013, 8, 855.	3	.3	53
350	Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration. International Journal of Nanomedicine, 2014, 9, 4709.	3	.3	30
351	Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells. International Journal of Nanomedicine, 2014, 9 4135.	, 3	.3	37
352	Abdominal closure reinforcement by using polypropylene mesh functionalized with poly-Ô•caprolactone nanofibers and growth factors for prevention of incisional hernia formation. International Journal of Nanomedicine, 2014, 9, 3263.	3	.3	53
353	Electrospun vancomycin-loaded coating on titanium implants for the prevention of implant-associated infections. International Journal of Nanomedicine, 2014, 9, 3027.	3	.3	59
354	Preparation of Pharmaceutical Nanobeads and Nanofibers via Electrospinning Method. Journal of Molecular Pharmaceutics & Organic Process Research, 2014, 02, .	2	.0	3
355	Optimization of electrospinning process of poly(vinyl alcohol) via response surface methodology (RSM) based on the central composite design. Current Chemistry Letters, 2014, 3, 175-182.	C	.5	23
356	Electrospinning: How to Produce Nanofibers Using Most Inexpensive Technique? An Insight into th Real Challenges of Electrospinning Such Nanofibers and Its Application Areas. International Journal of Biomedical and Advance Research, 2014, 5, 401.	e O	.1	14
357	Types and properties of non-mulberry silk biomaterials for tissue engineering applications. , 2014, , 275-298.			6
358	Nanotopographical surfaces for stem cell fate control: Engineering mechanobiology from the bottom. Nano Today, 2014, 9, 759-784.	6	.2	220
359	High definition fibrous poly(2-ethyl-2-oxazoline) scaffolds through melt electrospinning writing. Polymer, 2014, 55, 5017-5023.	1	.8	104
360	PREPARATION AND CHARACTERIZATION OF SILVER NANOPARTICLES/CARBON NANOFIBERS VIA ELECTROSPINNING WITH RESEARCH ON THEIR CATALYTIC PROPERTIES. Nano, 2014, 09, 1450041	. 0	.5	3
361	Hybrid Carbon Silica Nanofibers through Sol–Gel Electrospinning. Langmuir, 2014, 30, 15504-15	513. 1	.6	39
362	Preparation and characterization of gatifloxacin-loaded alginate/poly (vinyl alcohol) electrospun nanofibers. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1-6.	1	.9	30
363	Electrohydrodynamic deformation of thin liquid films near surfaces with topography. Physics of Fluids, 2014, 26, 122110.	1	.6	11
364	Multicomponent Nanofibers via Electrospinning of Polymers and Colloidal Dispersions for Environmental and Optical Applications. Nanostructure Science and Technology, 2014, , 403-431.	0	.1	2
365	Long-range surface plasmon resonance immunosensor based on water-stable electrospun poly(acr	ylic) Tj ETQq1 1 Q	.784314 .0	↓rgBT /Ove

#	Article	IF	CITATIONS
366	Converting of Bulk Polymers Into Nanosized Materials With Controlled Nanomorphology. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 777-793.	1.8	20
367	Effect of Fiber Patterns on the Fracture of Implant/Cement Interfaces. Procedia Engineering, 2014, 90, 32-38.	1.2	2
368	Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications. Journal of Nanomaterials, 2014, 2014, 1-13.	1.5	101
369	Soluplus Graft Copolymer: Potential Novel Carrier Polymer in Electrospinning of Nanofibrous Drug Delivery Systems for Wound Therapy. BioMed Research International, 2014, 2014, 1-7.	0.9	46
370	Regulating surface wettability of PEO/PLLA composite electrospun nanofibrous membrane for liquid phase filtration. , 2014, , .		0
372	Fabrication and characterisation of chitosan/poly vinyl alcohol nanofibres via electrospinning. Materials Research Innovations, 2014, 18, S6-331-S6-335.	1.0	12
373	Nanotopographic Biomaterials for Isolation of Circulating Tumor Cells. Journal of Nanotechnology in Engineering and Medicine, 2014, 5, .	0.8	1
374	Automated electrospinning system. , 2014, , .		0
376	Comparative Studies of Electrospinning and Solution Blow Spinning Processes for the Production of Nanofibrous Poly(L-Lactic Acid) Materials for Biomedical Engineering. Polish Journal of Chemical Technology, 2014, 16, 43-50.	0.3	44
377	Fabrication of free-standing PEDOT:PSS nanofiber mats using electrospinning. , 2014, , .		3
378	The preliminary studies of a structure and electrospinning of new polyurethanes based on synthetic atactic poly[(R, S)-3-hydroxybutyrate]. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2014, 62, 55-60.	0.8	1
379	Water Resistance and Barrier Properties Improvement of Paperboard by Poly(Lactic Acid) Electrospraying. Packaging Technology and Science, 2014, 27, 341-352.	1.3	13
380	The flow rate sensitivity to voltage across four electrospray modes. Applied Physics Letters, 2014, 104, .	1.5	19
381	Preparation of Multilayered Polymeric Structures Using a Novel Fourâ€Needle Coaxial Electrohydrodynamic Device. Macromolecular Rapid Communications, 2014, 35, 618-623.	2.0	70
382	Novel routes to epoxy functionalization of PHA-based electrospun scaffolds as ways to improve cell adhesion. Journal of Polymer Science Part A, 2014, 52, 816-824.	2.5	19
383	Fabrication of Tubular Scaffolds with Controllable Fiber Orientations Using Electrospinning for Tissue Engineering. Macromolecular Materials and Engineering, 2014, 299, 1425-1429.	1.7	6
384	Indium phosphide nanofibers prepared by electrospinning method: Synthesis and characterization. Crystal Research and Technology, 2014, 49, 303-308.	0.6	8
385	Electrospinning of highly aligned and covalently crossâ€linked hydrogel microfibers. Journal of Applied Polymer Science, 2014, 131, .	1.3	6

#	Article	IF	CITATIONS
386	Microtechnologies in the Fabrication of Fibers for Tissue Engineering. RSC Nanoscience and Nanotechnology, 2014, , 1-18.	0.2	8
387	Predicting the electrospinnability of polymer solutions with electromechanical simulation. Journal of Applied Polymer Science, 2014, 131, .	1.3	1
388	Manufacturing of bioreactive nanofibers for bioremediation. Biotechnology and Bioengineering, 2014, 111, 1483-1493.	1.7	21
390	Preparation of electrospun EDTA/PVDF blend nonwoven mats and their use in removing heavy metal ions from electropolishing electrolyte. Fibers and Polymers, 2014, 15, 2265-2271.	1.1	7
391	Structural characteristics of thermosensitive chitosan glutamate hydrogels in variety of physiological environments. Journal of Molecular Structure, 2014, 1074, 629-635.	1.8	13
392	Polyurethane Composite Membranes. Materials Science Forum, 2014, 775-776, 3-8.	0.3	0
393	Preparation and characterisation of electrospun silica nanofibres. Materials Research Innovations, 2014, 18, S6-510-S6-514.	1.0	11
394	Smart Biomaterials. NIMS Monographs, 2014, , .	0.1	57
395	Rheology and pressurised gyration of starch and starch-loaded poly(ethylene oxide). Carbohydrate Polymers, 2014, 114, 279-287.	5.1	28
396	Effect of Process Parameters on Poly(butylene adipate co-terephthalate) Nanofibers Development by Electrospinning Technique. Advanced Materials Research, 2014, 894, 360-363.	0.3	3
397	Electrospun photonics topography for organic photovoltaics. Materials Research Society Symposia Proceedings, 2014, 1671, 1.	0.1	2
398	Effect of Relative Humidity on the Morphology of Electrospun Gelatin Aqueous Solutions. Advanced Materials Research, 0, 941-944, 1225-1228.	0.3	3
399	Histological evaluation of wound healing performance of electrospun poly(vinyl alcohol)/sodium alginate as wound dressing in vivo. Bio-Medical Materials and Engineering, 2014, 24, 1527-1536.	0.4	36
400	Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomaterialia, 2014, 10, 11-25.	4.1	611
401	Gas diffusion electrode based on electrospun Pani/CNF nanofibers hybrid for proton exchange membrane fuel cells (PEMFC) applications. Applied Surface Science, 2014, 295, 144-149.	3.1	22
402	Structural characterization of electrospun micro/nanofibrous scaffolds by liquid extrusion porosimetry: A comparison with other techniques. Materials Science and Engineering C, 2014, 41, 335-342.	3.8	24
403	Composite polysaccharide fibers prepared by electrospinning and coating. Carbohydrate Polymers, 2014, 102, 950-955.	5.1	45
404	Antimicrobial polymer nanostructures: Synthetic route, mechanism of action and perspective. Advances in Colloid and Interface Science, 2014, 203, 37-50.	7.0	93

#	Article	IF	CITATIONS
406	Coreâ€shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol. Biopolymers, 2014, 101, 336-346.	1.2	41
407	Nanofibrillar Poly(vinylidene fluoride): Preparation and Functional Properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 23-32.	1.8	17
408	Electric field analysis of spinneret design for multihole electrospinning system. Journal of Materials Science, 2014, 49, 1964-1972.	1.7	31
409	Fabrication of nanofibers by a modified air-jet electrospinning method. Iranian Polymer Journal (English Edition), 2014, 23, 13-25.	1.3	13
410	Ammonia sensing properties of (SnO2–ZnO)/polypyrrole coaxial nanocables. Journal of Materials Science, 2014, 49, 685-690.	1.7	22
411	Facile synthesis of porous InNbO4 nanofibers by electrospinning and their enhanced visible-light-driven photocatalytic properties. Journal of Alloys and Compounds, 2014, 592, 301-305.	2.8	18
412	Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor. Materials Science and Engineering C, 2014, 35, 401-410.	3.8	86
413	Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydrate Polymers, 2014, 99, 584-592.	5.1	144
414	Electrospun Nanofibers as Dressings for Chronic Wound Care: Advances, Challenges, and Future Prospects. Macromolecular Bioscience, 2014, 14, 772-792.	2.1	455
415	Electrospinning of PAN nanofibers incorporating SBA-15-type ordered mesoporous silica particles. European Polymer Journal, 2014, 54, 71-78.	2.6	15
416	Characteristic assessment of stabilized polyacrylonitrile nanowebs for the production of activated carbon nano-sorbents. Chinese Journal of Polymer Science (English Edition), 2014, 32, 449-457.	2.0	13
417	Electrospun oxime-grafted-polyacrylonitrile nanofiber membrane and its application to the adsorption of dyes. Journal of Polymer Research, 2014, 21, 1.	1.2	28
418	Investigation of gas sensing materials tin oxide nanofibers treated by oxygen plasma. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	18
419	A simple one-step fabrication of short polymer nanofibers via electrospinning. Journal of Materials Science, 2014, 49, 3519-3528.	1.7	15
420	Effect of filler content on morphology and physical–chemical characteristics of poly(vinylidene) Tj ETQq0 0 0 r	gB <u>T</u> ./Overl	oc <u>k</u> 10 Tf 50
421	A novel 3-D graphite structure from thermally stabilized electrospun MWCNTs/PAN nanofibril composite fabrics. International Journal of Advanced Manufacturing Technology, 2014, 70, 1731-1738.	1.5	5
422	Antimicrobial activity of electrospun polyurethane nanofibers containing composite materials. Korean Journal of Chemical Engineering, 2014, 31, 855-860.	1.2	9
423	Mechanical properties and in vitro degradation of PLGA suture manufactured via electrospinning.	1.1	39 _

423	Fibers and Polymers, 2014, 15, 71-77.
-----	---------------------------------------

#	Article	IF	CITATIONS
424	Lyotropic self-assembly in electrospun biocidal polyurethane nanofibers regulates antimicrobial efficacy. Polymer, 2014, 55, 495-504.	1.8	22
425	Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids, 2014, 39, 19-26.	5.6	302
426	Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Applied Surface Science, 2014, 296, 221-230.	3.1	218
427	Polypropylene fibers fabricated via a needleless meltâ€electrospinning device for marine oilâ€spill cleanup. Journal of Applied Polymer Science, 2014, 131, .	1.3	44
428	Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2014, 102, 1304-1315.	1.6	154
429	Fluorinated hyperbranched polyurethane electrospun nanofibrous membrane: Fluorine-enriching surface and superhydrophobic state with high adhesion to water. Journal of Colloid and Interface Science, 2014, 421, 49-55.	5.0	33
430	Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release, 2014, 185, 12-21.	4.8	995
432	Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity. Carbohydrate Polymers, 2014, 111, 530-537.	5.1	164
433	A novel method for a highâ€strength electrospun metaâ€aramid nanofiber by microwave treatment. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 807-814.	2.4	20
434	Green Processing Mediated Novel Polyelectrolyte Nanofibers and Their Antimicrobial Evaluation. Macromolecular Materials and Engineering, 2014, 299, 283-289.	1.7	25
435	Predicting poly(vinyl pyrrolidone)'s solubility parameter and systematic investigation of the parameters of electrospinning with response surface methodology. Journal of Applied Polymer Science, 2014, 131, .	1.3	25
436	Poly(l-lactide) and poly(butylene succinate) immiscible blends: From electrospinning to biologically active materials. Materials Science and Engineering C, 2014, 41, 119-126.	3.8	64
437	Biodegradable polymers for electrospinning: Towards biomedical applications. Materials Science and Engineering C, 2014, 45, 659-670.	3.8	318
438	Fabrication of novel La2O2CN2 one-dimensional nanostructures via facile electrospinning combined with cyanamidation technique. Chemical Engineering Journal, 2014, 250, 148-156.	6.6	9
439	Polymeric foams with functional nanocomposite cells. RSC Advances, 2014, 4, 19177-19182.	1.7	7
440	Experimental verification of theoretical prediction of fiber to fiber contacts in electrospun multilayer nano-microfibrous assemblies: Effect of fiber diameter and network porosity. Journal of Industrial Textiles, 2014, 43, 483-495.	1.1	14
441	Natural polymer biomaterials: advanced applications. , 2014, , 32-70.		22
442	Performance evaluation of modified rotating-jet electrospinning method by investigating the effect of collector size on the nanofibers alignment. Iranian Polymer Journal (English Edition), 2014, 23, 569-580.	1.3	7

#	Article	IF	CITATIONS
443	A highly thermal-resistant electrospun-based polyetherimide nanofibers coating for solid-phase microextraction. Analytical and Bioanalytical Chemistry, 2014, 406, 2141-2149.	1.9	28
444	Electrospinning of polyhydroxyalkanoate fibrous scaffolds: effects on electrospinning parameters on structure and properties. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 370-393.	1.9	51
445	Fabrication and characterization of superparamagnetic poly(vinyl pyrrolidone)/poly(L-lactide)/Fe3O4 electrospun membranes. Journal of Magnetism and Magnetic Materials, 2014, 352, 30-35.	1.0	19
446	Drug release profile in core–shell nanofibrous structures: A study on Peppas equation and artificial neural network modeling. Computer Methods and Programs in Biomedicine, 2014, 113, 92-100.	2.6	42
447	Co-delivery of Dexamethasone and Green Tea Polyphenols Using Electrospun Ultrafine Fibers for Effective Treatment of Keloid. Pharmaceutical Research, 2014, 31, 1632-1643.	1.7	33
448	Fabrication of multifunctional TiO2–fly ash/polyurethane nanocomposite membrane via electrospinning. Ceramics International, 2014, 40, 3023-3029.	2.3	66
449	Recent progress of membrane distillation using electrospun nanofibrous membrane. Journal of Membrane Science, 2014, 453, 435-462.	4.1	318
450	Advanced synthetic polymer biomaterials derived from organic sources. , 2014, , 71-99.		8
451	Melt electrospinning of poly(ε-caprolactone) scaffolds: Phenomenological observations associated with collection and direct writing. Materials Science and Engineering C, 2014, 45, 698-708.	3.8	139
452	Wettability of Electrospun Films of Microphase-Separated Block Copolymers with 3,3,3-Trifluoropropyl Substituted Siloxane Segments. Journal of Physical Chemistry C, 2014, 118, 26671-26682.	1.5	31
453	Design and development of papain–urea loaded PVA nanofibers for wound debridement. RSC Advances, 2014, 4, 60209-60215.	1.7	33
454	Self-sustained electro-spun polysulfone nano-fibrous membranes and their surface modification by interfacial polymerization for micro- and ultra-filtration. Separation and Purification Technology, 2014, 138, 118-129.	3.9	59
455	The effect of diameter on the thermal properties of the modeled shape-stabilized phase change nanofibers (PCNs). Journal of Thermal Analysis and Calorimetry, 2014, 118, 1619-1629.	2.0	21
456	Advances in nanofibrous scaffolds for biomedical applications: From electrospinning to self-assembly. Nano Today, 2014, 9, 722-742.	6.2	109
457	Protein–polymer co-induced exfoliated layered silicate structure based nanofibrous mats and their cytotoxicity. RSC Advances, 2014, 4, 8867.	1.7	15
458	Nanofibrous electroactive scaffolds from a chitosan-grafted-aniline tetramer by electrospinning for tissue engineering. RSC Advances, 2014, 4, 13652.	1.7	67
459	Kinetics-bolstered catalytic study of a high performance lipase-immobilized nanofiber membrane bioreactor. RSC Advances, 2014, 4, 6151.	1.7	11
460	Electrospun nanofibers prepared using polystyrene (PS) with polymeric additives for the determination of nicotine in cigarette mainstream smoke. Analytical Methods, 2014, 6, 5120-5126.	1.3	14

#	Article	IF	Citations
461	Multifunctional scaffolds for bone regeneration. , 2014, , 95-117.		6
462	Fabrication of carbon nanofibers with Si nanoparticle-stuffed cylindrical multi-channels via coaxial electrospinning and their anodic performance. RSC Advances, 2014, 4, 47389-47395.	1.7	18
463	Uniaxially aligned electrospun cellulose acetate nanofibers for thin layer chromatographic screening of hydroquinone and retinoic acid adulterated in cosmetics. Journal of Chromatography A, 2014, 1367, 141-147.	1.8	17
464	Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds. Trends in Biotechnology, 2014, 32, 564-570.	4.9	143
465	Electrospun curcumin-loaded zein membrane for iron(III) ions sensing. Sensors and Actuators B: Chemical, 2014, 202, 935-940.	4.0	51
466	Nanocarbon-based electrochemical systems for sensing, electrocatalysis, and energy storage. Nano Today, 2014, 9, 405-432.	6.2	93
467	Poly(ε-caprolactone) Nanowebs Functionalized with α- and γ-Cyclodextrins. Biomacromolecules, 2014, 15, 4122-4133.	2.6	56
468	Construction of one-dimensional nanostructures on graphene for efficient energy conversion and storage. Energy and Environmental Science, 2014, 7, 2559.	15.6	168
469	Large-scale fabrication of highly aligned poly(m-phenylene isophthalamide) nanofibers with robust mechanical strength. RSC Advances, 2014, 4, 45760-45767.	1.7	36
470	Bioinspired nanoarchitectonics as emerging drug delivery systems. New Journal of Chemistry, 2014, 38, 5149-5163.	1.4	128
471	New strategy to achieve La ₂ O ₂ CN ₂ :Eu ³⁺ novel luminescent one-dimensional nanostructures. CrystEngComm, 2014, 16, 5409-5417.	1.3	12
472	Polymer–Polymer and Single Polymer Composites Involving Nanofibrillar Poly(vinylidene Fluoride): Manufacturing and Mechanical Properties. Journal of Macromolecular Science - Physics, 2014, 53, 1168-1181.	0.4	12
473	Polycaprolactone(PCL)/Gelati(Ge)-Based Electrospun Nanofibers for Tissue Engineering and Drug Delivery Application. Applied Mechanics and Materials, 0, 554, 57-61.	0.2	9
474	Encapsulation of plai oil/2-hydroxypropyl- β -cyclodextrin inclusion complexes in polyvinylpyrrolidone (PVP) electrospun nanofibers for topical application. Pharmaceutical Development and Technology, 2014, 19, 430-437.	1.1	31
475	Formation, Stability, and Mechanical Properties of Bovine Serum Albumin Stabilized Air Bubbles Produced Using Coaxial Electrohydrodynamic Atomization. Langmuir, 2014, 30, 6694-6703.	1.6	31
476	Electrospun PLGA Fibers Incorporated with Functionalized Biomolecules for Cardiac Tissue Engineering. Tissue Engineering - Part A, 2014, 20, 1896-1907.	1.6	91
478	Electrospun silk sericin nanofibers for biomedical applications. , 2014, , 125-156.		11
479	Novel antibacterial electrospun mats based on poly(d,l-lactide) nanofibers and zinc oxide nanoparticles. Journal of Materials Science, 2014, 49, 8373-8385.	1.7	69

#	Article	IF	CITATIONS
480	Electrospinning system with tunable collector for fabricating threeâ€dimensional nanofibrous structures. Micro and Nano Letters, 2014, 9, 24-27.	0.6	8
481	Electrospun polyamide–polyethylene glycol nanofibers for headspace solidâ€phase microextration. Journal of Separation Science, 2014, 37, 1880-1886.	1.3	24
482	Electrospun fibrous membranes for efficient heavy metal removal. Journal of Applied Polymer Science, 2014, 131, .	1.3	76
483	Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale, 2014, 6, 9477-9493.	2.8	305
484	Characterization of a bioactive fiber scaffold with entrapped HUVECs in coaxial electrospun core-shell fiber. Biomatter, 2014, 4, e28238.	2.6	16
485	Engineering of biomimetic nanofibrous matrices for drug delivery and tissue engineering. Journal of Materials Chemistry B, 2014, 2, 7828-7848.	2.9	78
486	Electrospinning of aniline pentamer-graft-gelatin/PLLA nanofibers for bone tissue engineering. Acta Biomaterialia, 2014, 10, 5074-5080.	4.1	89
487	Fabrication of shish–kebab structured poly(ε-caprolactone) electrospun nanofibers that mimic collagen fibrils: Effect of solvents and matrigel functionalization. Polymer, 2014, 55, 5396-5406.	1.8	28
488	Antibacterials loaded electrospun composite nanofibers: release profile and sustained antibacterial efficacy. Polymer Chemistry, 2014, 5, 1965-1975.	1.9	62
489	Quantum Dot-Sensitized Solar Cells. Green Energy and Technology, 2014, , 89-136.	0.4	8
490	Introduction to silk biomaterials. , 2014, , 3-40.		16
491	Preparation and characterization of kefiran electrospun nanofibers. International Journal of Biological Macromolecules, 2014, 70, 50-56.	3.6	45
492	Bioactive electrospun fish sarcoplasmic proteins as a drug delivery system. Colloids and Surfaces B: Biointerfaces, 2014, 122, 158-165.	2.5	36
493	Hybrid multi-scale basalt fiber-epoxy composite laminate reinforced with Electrospun polyurethane nanofibers containing carbon nanotubes. Fibers and Polymers, 2014, 15, 1295-1302.	1.1	29
494	Preparation of electrospun polyurethane filter media and their collection mechanisms for ultrafine particles. Journal of the Air and Waste Management Association, 2014, 64, 322-329.	0.9	39
495	The effect of elastic biodegradable polyurethane electrospun nanofibers on the differentiation of mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2014, 122, 414-422.	2.5	56
496	Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering. Biomaterials, 2014, 35, 8540-8552.	5.7	85
497	Electrospun styrene–butadiene–styrene elastomer copolymers for tissue engineering applications: Effect of butadiene/styrene ratio, block structure, hydrogenation and carbon nanotube loading on physical properties and cytotoxicity. Composites Part B: Engineering, 2014, 67, 30- <u>38</u> .	5.9	52

#	Article	IF	CITATIONS
498	Mg-doped fluorapatite nanoparticles-poly(ε-caprolactone) electrospun nanocomposite: Microstructure and mechanical properties. Superlattices and Microstructures, 2014, 75, 208-221.	1.4	11
499	3-dimensional (3D) fabricated polymer based drug delivery systems. Journal of Controlled Release, 2014, 193, 27-34.	4.8	116
500	Reprint of "Food-grade electrospinning of proteins". Innovative Food Science and Emerging Technologies, 2014, 24, 138-144.	2.7	57
501	Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. Journal of Materials Chemistry A, 2014, 2, 6578-6588.	5.2	175
502	Engineering strategies to mimic the glioblastoma microenvironment. Advanced Drug Delivery Reviews, 2014, 79-80, 172-183.	6.6	118
503	Synthesis of soy protein–lignin nanofibers by solution electrospinning. Reactive and Functional Polymers, 2014, 85, 221-227.	2.0	58
504	The influences of collector diameter, spinneret rotational speed, voltage, and polymer concentration on the degree of nanofibers alignment generated by electrocentrifugal spinning method : Modeling and optimization by response surface methodology. Korean Journal of Chemical Engineering, 2014, 31, 1695-1706.	1.2	15
505	Study of electrospun polycarbosilane (PCS) nanofibrous web by needle-less technique. Fashion and Textiles, 2014, 1, .	1.3	3
506	Elaboration and Characterization of Coaxial Electrospun Poly(ε aprolactone)/Gelatin Nanofibers for Biomedical Applications. Advances in Polymer Technology, 2014, 33, .	0.8	9
507	Recent Progress on the Fabrication of Ultrafine Polyamide-6 Based Nanofibers Via Electrospinning: A Topical Review. Nano-Micro Letters, 2014, 6, 89-107.	14.4	39
508	Analysis of composite nanofibrous layers by confocal Raman microscopy. Polymer, 2014, 55, 5036-5042.	1.8	5
509	From macro to micro: structural biomimetic materials by electrospinning. RSC Advances, 2014, 4, 39704-39724.	1.7	55
510	Electrospinning of nylon-6,6 solutions into nanofibers: Rheology and morphology relationships. Chinese Journal of Polymer Science (English Edition), 2014, 32, 793-804.	2.0	60
511	Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes. Journal of Thermal Analysis and Calorimetry, 2014, 117, 123-130.	2.0	14
512	Resolving the Electrospinnability Zones and Diameter Prediction for the Electrospinning of the Gelatin/Water/Acetic Acid System. Langmuir, 2014, 30, 7198-7205.	1.6	28
513	Unique electrospun fiber properties obtained by blending elastin-like peptides and highly-ionized peptides. Polymer, 2014, 55, 2163-2169.	1.8	7
514	Atmospheric Pressure Non-Equilibrium Plasma Treatment to Improve the Electrospinnability of Poly(<scp>L</scp> -Lactic Acid) Polymeric Solution. Plasma Processes and Polymers, 2014, 11, 247-255.	1.6	36
515	Silica nanofiber with hierarchical pore structure templated by a polymer blend nanofiber and surfactant micelle. Materials Research Bulletin, 2014, 50, 108-112.	2.7	13

#	Article	IF	CITATIONS
516	Electrospinning of chitosan/sericin/PVA nanofibers incorporated with in situ synthesis of nano silver. Carbohydrate Polymers, 2014, 113, 231-239.	5.1	126
517	Controlling the porosity of collagen, gelatin and elastin biomaterials by ultrashort laser pulses. Applied Surface Science, 2014, 292, 367-377.	3.1	24
518	Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in Food Science and Technology, 2014, 39, 18-39.	7.8	385
519	Theoretical selection of solvent for production of electrospun PMMA fibers with wrinkled surfaces. RSC Advances, 2014, 4, 27914.	1.7	15
520	New Stereocomplex PLA-Based Fibers: Effect of POSS on Polymer Functionalization and Properties. Macromolecules, 2014, 47, 4718-4727.	2.2	61
521	Electrospun sulfur fibers as a template for micrometer-sized copper sulfide tubes. Materials Letters, 2014, 136, 26-29.	1.3	5
522	Application of electrospraying as a one-step method for the fabrication of triamcinolone acetonide-PLGA nanofibers and nanobeads. Colloids and Surfaces B: Biointerfaces, 2014, 123, 219-224.	2.5	46
523	The impact of 1-butyl-3-methylimidazolium chloride on electrospinning process of SAN polymer solutions and electrospun fiber morphology. Journal of Electrostatics, 2014, 72, 433-436.	1.0	14
524	Electrospinning of biomimetic scaffolds for tissue-engineered vascular grafts: threading the path. Expert Review of Cardiovascular Therapy, 2014, 12, 815-832.	0.6	40
525	Advanced centrifugal electrospinning setup. Materials Letters, 2014, 136, 150-152.	1.3	35
526	Analysis of Porous Electrospun Fibers from Poly(<scp>l</scp> -lactic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 347 Tc Engineering, 2014, 2, 1976-1982.	l (acid)/Po 3.2	ly(3-hydroxy 63
527	Al-doping induced formation of oxygen-vacancy for enhancing gas-sensing properties of SnO2 NTs by electrospinning. Sensors and Actuators B: Chemical, 2014, 198, 62-69.	4.0	107
528	Interaction of Schwann cells with laminin encapsulated PLCL core–shell nanofibers for nerve tissue engineering. European Polymer Journal, 2014, 50, 30-38.	2.6	76
529	Superhydrophobic surfaces of electrospun block copolymer fibers with low content of fluorosilicones. Applied Surface Science, 2014, 307, 566-575.	3.1	14
530	Generation of poly(N-vinylpyrrolidone) nanofibres using pressurised gyration. Materials Science and Engineering C, 2014, 39, 168-176.	3.8	42
531	Electrospun chitosan–gelatin–polyvinyl alcohol hybrid nanofibrous mats: Production and characterization. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 1975-1981.	2.7	31
532	Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol. Food Research International, 2014, 62, 424-431.	2.9	131
533	The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies. Biomacromolecules, 2014, 15, 2327-2346.	2.6	417

#	Article	IF	CITATIONS
534	Development and bioevaluation of nanofibers with blood-derived growth factors for dermal wound healing. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 64-74.	2.0	69
535	A Mathematical Programming Approach for the Optimal Synthesis of Nanofibers through an Electrospinning Process. ACS Sustainable Chemistry and Engineering, 2014, 2, 454-464.	3.2	10
536	Utilization of a biphasic oil/aqueous cellulose nanofiber membrane bioreactor with immobilized lipase for continuous hydrolysis of olive oil. Cellulose, 2014, 21, 407-416.	2.4	25
537	Preparation, characterization, and evaluation of LiNi0.4Co0.6O2 nanofibers for supercapacitor applications. Journal of Solid State Electrochemistry, 2014, 18, 2387-2392.	1.2	13
538	Luminescent composite polymer fibers: In situ synthesis of silver nanoclusters in electrospun polymer fibers and application. Materials Science and Engineering C, 2014, 42, 333-340.	3.8	17
539	Fabrication of electrospun poly (3-hydroxybutyrate)/poly (ε-caprolactone)/silica hybrid fibermats with and without calcium addition. European Polymer Journal, 2014, 55, 222-234.	2.6	51
540	A Mathematical Programming Approach for the Optimal Synthesis of Nanofibers through Electrospinning Process. Computer Aided Chemical Engineering, 2014, , 1747-1752.	0.3	1
541	A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration. Biofabrication, 2014, 6, 035015.	3.7	53
542	Cotton-wool-like bioactive glasses for bone regeneration. Acta Biomaterialia, 2014, 10, 3733-3746.	4.1	95
543	Light-induced wettability changes on polymer surfaces. Polymer, 2014, 55, 3436-3453.	1.8	88
544	Immobilization of 3-hydroxybenzoate 6-hydroxylase onto functionalized electrospun polycaprolactone ultrafine fibers: A novel heterogeneous catalyst. Reactive and Functional Polymers, 2014, 82, 41-46.	2.0	13
545	Characterization of a co-electrospun scaffold of HLC/CS/PLA for vascular tissue engineering. Bio-Medical Materials and Engineering, 2014, 24, 1999-2005.	0.4	15
546	2 Solid-Phase Microextraction and Related Techniques. , 2014, , 29-87.		1
547	Evaluation of 3D hybrid microfiber/nanofiber scaffolds for bone tissue engineering. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2014, 62, 551-556.	0.8	6
548	Comparison of Polymer Materials Containing Sulfur to Conventional Rubber Vulcanizates in Terms of Their Ability to the Surface Modifi cation of Iron. , 2014, , 35-52.		1
549	Raft-polymerization Of Styrene—kinetics And Mechanism. , 2014, , 21-48.		0
550	Chapter 10: The Convergence of Biomimetic Nanofibers and Cells for Functional Tissue Formation. Frontiers in Nanobiomedical Research, 2014, , 435-471.	0.1	0
551	Electrospinning Process: A Comprehensive Review and Update. , 2014, , 1-108.		0

#		IF	CITATIONS
π	Microablation of collagen-based substrates for soft tissue engineering. Biomedical Materials	1.7	CHATIONS
552	(Bristol), 2014, 9, 011002.	1.7	14
553	The incorporation of carbon black particle into electrospun nanofiber. , 2014, , .		0
554	Functions and Requirements of Synthetic Scaffolds in Tissue Engineering. , 2014, , 63-102.		1
555	Chapter 5: Nanofibrous Scaffolds for Tissue Engineering Applications: State-of-the-Art and Future Trends. Frontiers in Nanobiomedical Research, 2014, , 163-203.	0.1	0
556	Effects of parameters on the fabrication of poly(caprolactone) electrospun membrane using electrospinning technique. , 2014, , .		1
557	Polycaprolactone nanofibrous materials as an efficient dry eye test strip. , 2014, , .		0
558	Development and Characterization of Amorphous Nanofiber Drug Dispersions Prepared Using Pressurized Gyration. Molecular Pharmaceutics, 2015, 12, 3851-3861.	2.3	35
559	Thermal and morphological characterization of poly(vinyl alcohol) based phenylboronic acid hybrid nanofibers: the effect of experimental parameters on the nanofiber diameter. Polymer Science - Series A, 2015, 57, 845-850.	0.4	0
560	Effect of Molecular Weight on Morphological Structure of Electrospun PVA Nanofibre. Advanced Materials Research, 0, 1134, 203-208.	0.3	3
561	Preparation of Nanoporous Fibers of BaTiO ₃ via Electrospinning of BaTiO ₃ /PVC and Thermal Treatment Effects. Ferroelectrics, 2015, 482, 1-10.	0.3	3
562	Recent progress in electrospun nanofibers: Reinforcement effect and mechanical performance. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1171-1212.	2.4	66
563	Coupling Infusion and Gyration for the Nanoscale Assembly of Functional Polymer Nanofibers Integrated with Genetically Engineered Proteins. Macromolecular Rapid Communications, 2015, 36, 1322-1328.	2.0	50
564	A Study on Biological Application of Ag and Co/Ag Nanoparticles Cytotoxicity and Genotoxicity. , 2015, , 161-176.		0
565	Electrospun Nanostructures as Biodegradable Composite Materials for Biomedical Applications. , 2015, , 49-72.		0
566	Fabrication of Polymeric and Composite Membranes. , 2015, , 538-595.		1
567	Electrospinning: A Practical Approach for Membrane Fabrication. , 2015, , 45-74.		0
568	Progress in Preparation of Phenolic Fibers by Electrospinning. Materials Science Forum, 2015, 815, 638-642.	0.3	1
569	Fabrication and characterization of polycaprolactone cross- linked and highly-aligned 3-D artificial scaffolds for bone tissue regeneration via electrospinning technology. IOP Conference Series: Materials Science and Engineering, 2015, 98, 012024.	0.3	19

#	Article	IF	CITATIONS
570	Preparation of Methacrylic Acid Copolymer S Nano-fibers Using a Solvent-Based Electrospinning Method and Their Application in Pharmaceutical Formulations. Chemical and Pharmaceutical Bulletin, 2015, 63, 81-87.	0.6	7
572	Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films. Scientific Reports, 2015, 5, 9974.	1.6	26
573	Preparation and characterizations of EGDE crosslinked chitosan electrospun membranes. Clinical Hemorheology and Microcirculation, 2015, 60, 39-50.	0.9	12
574	The Effect of Rotating Collector Design on Tensile Properties and Morphology of Electrospun Polycaprolactone Fibres. MATEC Web of Conferences, 2015, 27, 02002.	0.1	12
575	Ti doped carbon nanofiber catalyst for acetalization reaction. Fibers and Polymers, 2015, 16, 1276-1280.	1.1	0
576	Hierarchical Selfâ€Assembly in Monoaxially Electrospun P3HT/PCBM Nanofibers. Macromolecular Materials and Engineering, 2015, 300, 320-327.	1.7	12
577	Electrospinnability of poly(butylene succinate): Effects of solvents and organic salt on the fiber size and morphology. Journal of Applied Polymer Science, 2015, 132, .	1.3	24
578	Electrospun protective selfâ€healing coatings for light alloys: A better understanding of the intrinsic potential of the technology. Journal of Applied Polymer Science, 2015, 132, .	1.3	10
579	Cartilage Tissue Engineering: Recent Advances and Perspectives from Gene Regulation/Therapy. Advanced Healthcare Materials, 2015, 4, 948-968.	3.9	36
580	Electrical Stimulation of Human Mesenchymal Stem Cells on Conductive Nanofibers Enhances their Differentiation toward Osteogenic Outcomes. Macromolecular Rapid Communications, 2015, 36, 1884-1890.	2.0	50
581	Laser Processing of Electrospun PCL Fiber Mats for Tissue Engineering. International Journal of Artificial Organs, 2015, 38, 607-614.	0.7	7
582	Synthesis of CaTiO ₃ Nanofibers with Controllable Drugâ€Release Kinetics. European Journal of Inorganic Chemistry, 2015, 2015, 4532-4538.	1.0	11
584	Investigation on jet stability, fiber diameter, and tensile properties of electrospun polyacrylonitrile nanofibrous yarns. Journal of Applied Polymer Science, 2015, 132, .	1.3	33
585	Electrospinning of gelatin fibers using solutions with low acetic acid concentration: Effect of solvent composition on both diameter of electrospun fibers and cytotoxicity. Journal of Applied Polymer Science, 2015, 132, .	1.3	90
586	Engineering Nanoscale Stem Cell Niche: Direct Stem Cell Behavior at Cell–Matrix Interface. Advanced Healthcare Materials, 2015, 4, 1900-1914.	3.9	37
587	A Novel Scheme to Obtain Y ₂ O ₂ S:Er ³⁺ Upconversion Luminescent Hollow Nanofibers via Precursor Templating. Journal of the American Ceramic Society, 2015, 98, 2817-2822.	1.9	10
588	Efficient wound odor removal by βâ€cyclodextrin functionalized poly (εâ€caprolactone) nanofibers. Journal of Applied Polymer Science, 2015, 132, .	1.3	43
589	3D Printing of Scaffolds for Tissue Regeneration Applications. Advanced Healthcare Materials, 2015, 4, 1742-1762.	3.9	692

#	Article	IF	CITATIONS
590	<i>In Vitro</i> Culture of BMSCs on VEGF-SF-CS Three-Dimensional Scaffolds for Bone Tissue Engineering. Journal of Hard Tissue Biology, 2015, 24, 123-133.	0.2	4
591	Emerging product formation. , 2015, , 293-317.		12
592	Electrospinning of Gelatin/Poly (Vinyl Pyrrolidone) Blends from Water/Acetic Acid Solutions. Materials Research, 2015, 18, 509-518.	0.6	59
593	Nanofibers for drug delivery – incorporation and release of model molecules, influence of molecular weight and polymer structure. Beilstein Journal of Nanotechnology, 2015, 6, 1939-1945.	1.5	66
594	Development of Electrospun Lignin-based Fibrous Materials for Filtration Applications. BioResources, 2015, 11, .	0.5	6
595	Study on Morphology and Size Distribution of Electrospun NiO-GDC Composite Nanofibers. Journal of Engineered Fibers and Fabrics, 2015, 10, 155892501501000.	0.5	10
596	Fabrication of Hierarchical and Biomimetic Fibrous Structures to Support the Regeneration of Tendon Tissues. , 2015, , 259-280.		5
597	Morphology, Structure and Properties of Electrospun Multi-Walled Carbon Nanotube/Polysulfonamide Composite Nanofibers. Journal of Engineered Fibers and Fabrics, 2015, 10, 155892501501000.	0.5	3
598	The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design. International Journal of Molecular Sciences, 2015, 16, 12925-12942.	1.8	96
599	Smart Dressings Based on Nanostructured Fibers Containing Natural Origin Antimicrobial, Anti-Inflammatory, and Regenerative Compounds. Materials, 2015, 8, 5154-5193.	1.3	160
600	Nanocircuits for a Bio-Implantable System in EEG Signal Acquisitions. , 2015, , .		1
601	Chitosan as a Biomaterial â \in " Structure, Properties, and Electrospun Nanofibers. , 0, , .		53
602	Nanofibrous scaffolds supporting optimal central nervous system regeneration: an evidence-based review. Journal of Neurorestoratology, 2015, , 123.	1.1	1
603	Nanostructured Polylactic Acid/Candeia Essential Oil Mats Obtained by Electrospinning. Journal of Nanomaterials, 2015, 2015, 1-9.	1.5	40
604	Nanocellulosic Materials in Tissue Engineering Applications. , 0, , .		4
605	Fabrication and Evaluation of Polycaprolactone/Gelatin-Based Electrospun Nanofibers with Antibacterial Properties. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	53
606	Antibacterial Activity and Cytocompatibility of PLGA/CuO Hybrid Nanofiber Scaffolds Prepared by Electrospinning. Journal of Nanomaterials, 2015, 2015, 1-10.	1.5	55
607	Preparation and Characterization of Novel Electrospinnable PBT/POSS Hybrid Systems Starting from c-PBT. Journal of Nanomaterials, 2015, 2015, 1-8.	1.5	0

#	Article	IF	CITATIONS
608	Electrospinning of Nanofibers and Their Applications for Energy Devices. Journal of Nanomaterials, 2015, 2015, 1-20.	1.5	159
609	Electro Spun- Nanofibrous Mats: A Modern Wound Dressing Matrix with a Potential of Drug Delivery and Therapeutics. Journal of Engineered Fibers and Fabrics, 2015, 10, 155892501501000.	0.5	17
610	OPTIMIZATION OF ELECROSPINNING OF PVDF SCAFFOLDS FABRICATION USING RESPONSE SURFACE METHOD. Jurnal Teknologi (Sciences and Engineering), 2015, 75, .	0.3	1
611	Zein-Based Nanofibres for Drug Delivery: Classes and Current Applications. Current Pharmaceutical Design, 2015, 21, 3199-3207.	0.9	28
612	Parallel nanomanufacturing via electrohydrodynamic jetting from microfabricated externally-fed emitter arrays. Nanotechnology, 2015, 26, 225301.	1.3	59
613	Application of Cellulosic Nanofibers in Food Science Using Electrospinning and Its Potential Risk. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 269-284.	5.9	186
614	Amorphous formulations for dissolution and bioavailability enhancement of poorly soluble APIs. Powder Technology, 2015, 285, 2-15.	2.1	131
615	Investigation of Effect of Electrospinning Parameters on the Morphology of Polyacrylonitrile/Polymethylmethacrylate Nanofibers: A Box–Behnken-Based Study. Journal of Macromolecular Science - Physics, 2015, 54, 975-991.	0.4	7
616	Polymer Nanofibers Reinforced with Cellulose Nanocrystals. , 2015, , 323-341.		1
617	Preparation and comparison of spray dried and electrospun bioresorbable drug delivery systems. European Polymer Journal, 2015, 68, 671-679.	2.6	32
618	Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Materials Science and Engineering C, 2015, 54, 101-111.	3.8	134
619	Electrospun polycaprolactone nanofibers as a potential oromucosal delivery system for poorly water-soluble drugs. European Journal of Pharmaceutical Sciences, 2015, 75, 101-113.	1.9	139
620	Formation of uniform PVDF fibers under ultrasound exposure in presence of anionic surfactant. Journal of Electrostatics, 2015, 76, 39-47.	1.0	4
621	Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocolloids, 2015, 51, 227-240.	5.6	380
622	Partially oxidized polyacrylonitrile nanofibrous membrane as aÂthermally stable separator for lithium ion batteries. Polymer, 2015, 68, 335-343.	1.8	53
623	Understanding the electrochemical superiority of 0.6Li[Li 1/3 Mn 2/3]O 2 -0.4Li[Ni 1/3 Co 1/3 Mn 1/3]O 2 nanofibers as cathode material for lithium ion batteries. Electrochimica Acta, 2015, 173, 672-679.	2.6	18
624	Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications. Materials Science and Engineering C, 2015, 55, 8-13.	3.8	50
625	Effect of electric field on gas-assisted melt differential electrospinning with hollow disc electrode. Journal of Polymer Engineering, 2015, 35, 61-70.	0.6	13

#	Article	IF	CITATIONS
626	Strong Confinement Effects on Homocrystallization by Stereocomplex Crystals in Electrospun Polylactide Fibers. Journal of Physical Chemistry B, 2015, 119, 15530-15535.	1.2	15
627	Electric actuating and optical waveguiding poly(DL-lactic acid) nanofibers. , 2015, , .		1
628	Thermal Properties of Electrospun Polyacrylonitrile-Graft-Antarctic Krill Protein. AATCC Journal of Research, 2015, 2, 14-19.	0.3	2
629	Rapid in situ endothelialization of a small diameter vascular graft with catalytic nitric oxide generation and promoted endothelial cell adhesion. Journal of Materials Chemistry B, 2015, 3, 9212-9222.	2.9	39
630	Magnetically Self-Assembled Colloidal Three-Dimensional Structures as Cell Growth Scaffold. Langmuir, 2015, 31, 9576-9581.	1.6	3
631	Molecular dynamics in electrospun amorphous plasticized polylactide fibers. Polymer, 2015, 73, 68-78.	1.8	31
632	A Novel Approach to 3D-Printed Fabrics and Garments. 3D Printing and Additive Manufacturing, 2015, 2, 145-149.	1.4	28
633	UiO-66 MOF and Poly(vinyl cinnamate) Nanofiber Composite Membranes Synthesized by a Facile Three-Stage Process. Industrial & Engineering Chemistry Research, 2015, 54, 12386-12392.	1.8	49
634	Optimization of the parameters involved in fabrication of solid state polymerized polyamide (SSP PA66) nanofibers via an enhanced electro-centrifuge spinning. Journal of Industrial Textiles, 2015, 45, 368-386.	1.1	5
635	Preparation and Characterization of Electrospun TiO ₂ Nanofibers via Electrospinning. Integrated Ferroelectrics, 2015, 165, 131-137.	0.3	11
636	Bone-tissue engineering: complex tunable structural and biological responses to injury, drug delivery, and cell-based therapies. Drug Metabolism Reviews, 2015, 47, 431-454.	1.5	28
637	Manipulation of <i>in vitro</i> collagen matrix architecture for scaffolds of improved physiological relevance. Physical Biology, 2015, 12, 061002.	0.8	52
638	Copper (II) ions adsorption from aqueous solutions using electrospun chitosan/peo nanofibres: Effects of process variables and process optimization. Journal of Water Process Engineering, 2015, 7, 295-305.	2.6	31
639	Preparation of Co/SiO ₂ -Al ₂ O ₃ Fiber Catalyst by Electrospinning for Fischer-Tropsch Synthesis. Key Engineering Materials, 2015, 659, 221-225.	0.4	2
640	A Novel Melt Electrospinning System for Studying Cell Substrate Interactions. , 2015, , .		5
641	Synthesis of Fibrous Complex Structures: Designing Microstructure to Deliver Targeted Macroscale Response. Applied Mechanics Reviews, 2015, 67, .	4.5	101
642	Blends of shellac as nanofiber formulations for wound healing. Journal of Bioactive and Compatible Polymers, 2015, 30, 472-489.	0.8	12
643	Nanomaterials for Functional Textiles and Fibers. Nanoscale Research Letters, 2015, 10, 501.	3.1	219
#	Article	IF	CITATIONS
-----	--	------	-----------
644	Raman spectroscopy based method for the evaluation of compositional consistency of nanofibrous layers. Analytical Methods, 2015, 7, 9900-9905.	1.3	15
645	Property Research of Silk Fibroin Nanofibers by Electrospinning Dissolved in CaCl ₂ -Formid Acid. Advanced Materials Research, 0, 1120-1121, 331-336.	0.3	0
647	High concentration honey chitosan electrospun nanofibers: Biocompatibility and antibacterial effects. Carbohydrate Polymers, 2015, 122, 135-143.	5.1	112
648	A Technique to Fabricate La ₂ O ₂ CN ₂ :Tb ³⁺ Nanofibers and Nanoribbons with the Same Morphologies as the Precursors. European Journal of Inorganic Chemistry, 2015, 2015, 389-396.	1.0	12
649	Facile fabrication of porous Cr-doped SrTiO ₃ nanotubes by electrospinning and their enhanced visible-light-driven photocatalytic properties. Journal of Materials Chemistry A, 2015, 3, 3935-3943.	5.2	62
650	Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science, 2015, 46, 86-110.	11.8	811
651	The Effect of Selected Electrospinning Parameters on Molecular Structure of Polycaprolactone Nanofibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 365-377.	1.8	25
652	Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy, 2015, 14, 226-235.	8.2	287
653	Chemically reduced electrospun polyacrilonitrile–carbon nanotube nanofibers hydrogels as electrode material for bioelectrochemical applications. Carbon, 2015, 87, 233-238.	5.4	25
654	Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Materials Science and Engineering C, 2015, 50, 74-84.	3.8	86
655	Hierarchical polymeric scaffolds support the growth of MC3T3-E1 cells. Journal of Materials Science: Materials in Medicine, 2015, 26, 116.	1.7	24
656	Rotary jet-spinning of hematite fibers. Textile Reseach Journal, 2015, 85, 316-324.	1.1	16
657	Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. International Journal of Pharmaceutics, 2015, 484, 57-74.	2.6	182
658	The Potential of NanoCellulose in the Packaging Field: A Review. Packaging Technology and Science, 2015, 28, 475-508.	1.3	191
659	Melt Electrospinning of Small Molecules. Macromolecular Materials and Engineering, 2015, 300, 259-276.	1.7	19
660	Preparation and magnetic properties of lanthanum- and cobalt-codoped M-type strontium ferrite nanofibres. Journal of Experimental Nanoscience, 2015, 10, 249-257.	1.3	7
661	A new approach to the synthesis of titania nano-powders enriched with very high contents of carbon nanotubes by electro-spinning. Materials Chemistry and Physics, 2015, 153, 338-345.	2.0	13
662	Processing silk hydrogel and its applications in biomedical materials. Biotechnology Progress, 2015, 31, 630-640.	1.3	54

		CITATION RE	PORT	
#	Article		IF	CITATIONS
663	Fabrication and Upconversion Luminescent Properties of Er ³⁺ â€Doped and Er ³⁺ /Yb ³⁺ Codoped La ₂ O ₂ CN _{2Nanofibers. Journal of the American Ceramic Society, 2015, 98, 1215-1222.}	>	1.9	15
664	Advances in Skin Regeneration: Application of Electrospun Scaffolds. Advanced Healthcare Mate 2015, 4, 1114-1133.	rials,	3.9	217
665	Photoprotection of folic acid upon encapsulation in food-grade amaranth (Amaranthus) Tj ETQq Technology, 2015, 62, 970-975.	0 0 rgBT /Overlo	ock 10 Tf 2.5	50 667 Td (h 88
666	Mechanical characterization of electrospun gelatin scaffolds cross-linked by glucose. Journal of Materials Science: Materials in Medicine, 2015, 26, 5375.		1.7	38
667	Repetitive Gly-Leu-Lys-Gly-Glu-Asn-Arg-Gly-Asp Peptide Derived from Collagen and Fibronectin for Improving Cell–Scaffold Interaction. Applied Biochemistry and Biotechnology, 2015, 175, 248	9-2500.	1.4	6
668	Dye immobilization in halochromic nanofibers through blend electrospinning of a dye-containing copolymer and polyamide-6. Polymer Chemistry, 2015, 6, 2685-2694.		1.9	45
669	Shish-Kebab-Structured Poly(ε-Caprolactone) Nanofibers Hierarchically Decorated with Chitosan–Poly(ε-Caprolactone) Copolymers for Bone Tissue Engineering. ACS Applied Materia Interfaces, 2015, 7, 6955-6965.	als &	4.0	126
670	Electrospun nickel loaded porous carbon nanofibers for simultaneous determination of adenine guanine. Electrochimica Acta, 2015, 174, 191-198.	and	2.6	25
671	Enhancing the mechanical properties of electrospun polyester mats by heat treatment. EXPRESS Polymer Letters, 2015, 9, 49-65.		1.1	50
672	Combined application of multinozzle air-jet electrospinning and airflow twisting for the efficient preparation of continuous twisted nanofiber yarn. Fibers and Polymers, 2015, 16, 1319-1326.		1.1	19
673	Poly(ethylene terephthalate)/carbon black composite fibers prepared by electrospinning. Chines Journal of Polymer Science (English Edition), 2015, 33, 1234-1244.	2	2.0	13
674	Nanocomposites of graphene/polymers: a review. RSC Advances, 2015, 5, 68014-68051.		1.7	216
675	Recent developments in molecularly imprinted polymer nanofibers and their applications. Analyt Methods, 2015, 7, 7406-7415.	ical	1.3	28
676	Laccase wiring on free-standing electrospun carbon nanofibres using a mediator plug. Chemical Communications, 2015, 51, 14574-14577.		2.2	13
677	The effect of gadolinium doping on the structural, magnetic and photoluminescence properties electrospun bismuth ferrite nanofibers. Ceramics International, 2015, 41, 13361-13365.	of	2.3	26
678	Electrospun Carbon Fibers: Promising Electrode Material for Abiotic and Enzymatic Catalysis. Jou of Physical Chemistry C, 2015, 119, 16724-16733.	rnal	1.5	13
679	Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications. International Journal of Biological Macromolecules, 2015, 81, 31-40.		3.6	39
680	Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC b Physico-chemical properties and morphology. Materials Science and Engineering C, 2015, 56, 51	locks: 1-517.	3.8	36

ARTICLE IF CITATIONS Engineering highly stretchable lignin-based electrospun nanofibers for potential biomedical 681 2.9 156 applications. Journal of Materials Chemistry B, 2015, 3, 6194-6204. Development of electrospun-fiber embedded microfluidic devices using microfabrication-free processes. , 2015, , . Hybrid Membranes of PLLA/Collagen for Bone Tissue Engineering: A Comparative Study of Scaffold 683 Production Techniques for Optimal Mechanical Properties and Osteoinduction Ability. Materials, 1.3 22 2015, 8, 408-423. Making nanofibres of mucoadhesive polymer blends for vaginal therapies. European Polymer Journal, 684 2015, 70, 186-196. Electro-spinning of cellulose acetate nanofibers: microwave synthesize of calcium ferrite 685 nanoparticles and CA–Ag–CaFe2O4 nanocomposites. Journal of Materials Science: Materials in 1.1 19 Electronics, 2015, 26, 8358-8366. Preparation and characterization of KGM-g-St/BA fibers and core/shell PCL/KGM-g-St/BA fibers. RSC 1.7 Advances, 2015, 5, 24975-24983. Melt Electrohydrodynamic Direct-Writing Micro/Nano Fiber with Restriction of Heated Sheath Gas. 687 0.4 1 Key Engineering Materials, 2015, 645-646, 45-51. Synthesis and bioactivity of gelatin/multiwalled carbon nanotubes/hydroxyapatite nanofibrous 1.7 26 scaffolds towards bone tissue engineering. RSC Advances, 2015, 5, 53550-53558. Synthesis of SnO2–ZnO heterostructured nanofibers for enhanced ethanol gas-sensing performance. 689 4.0 141 Sensors and Actuators B: Chemical, 2015, 221, 88-95. Fundamental Study of Electrospun Pyrene–Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution. ACS Applied Materials & amp; Interfaces, 2015, 7, 13189-13197. Bone–tendon interface. , 2015, , 345-361. 691 5 Effect of ionic liquids on the morphology and mesophase formation of electrospun polylactide 1.8 nanofibers. Polymer, 2015, 65, 55-62. Synthesis of calixamide nanofibers by electrospinning and toxic anion binding to the fiber structures. 693 1.0 20 Tétrahedron, 2015, 71, 3404-3410. Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocolloids, 2015, 49, 42-52. 694 5.6 Electrospun nanofibrous cellulose diacetate nitrate membrane for protein separation. Journal of 695 40 4.1 Membrane Science, 2015, 489, 204-211. Fabrication of photoâ€crossâ€linked polyethyleneimineâ€based barriers for CO₂ capture. Polymers for Advanced Technologies, 2015, 26, 1053-1058. MEH-PPV:PVP composite microstructures by an electrospinning technique: Structural and optical 697 1.32 properties. Materials Letters, 2015, 150, 73-75. A systematic study of maghemite/PMMA nano-fibrous composite via an electrospinning process: 698 Synthesis and characterization. Measurement: Journal of the International Measurement Confederation, 2015, 70, 179-187.

#	Article	IF	CITATIONS
699	An electrospun micro/nanofibrous mesh based nontoxic sensor for optical detection of high humidity. Analytical Methods, 2015, 7, 3676-3679.	1.3	3
700	A novel Bi-processing technique for metal matrix nanocomposites. International Journal of Advanced Manufacturing Technology, 2015, 78, 907-915.	1.5	5
701	Influence of copper oxide on the formation of polyurethane nanofibers via electrospinning. Fibers and Polymers, 2015, 16, 621-628.	1.1	14
702	Effects of process and ambient parameters on diameter and morphology of electrospun polyacrylonitrile nanofibers. Polymer Science - Series A, 2015, 57, 155-167.	0.4	15
703	Fabrication and In Vitro/In Vivo Performance of Mucoadhesive Electrospun Nanofiber Mats Containing α-Mangostin. AAPS PharmSciTech, 2015, 16, 1140-1152.	1.5	33
704	Electrospun TiO ₂ nanofibers incorporated with graphene nanoflakes for energy conversion. Proceedings of SPIE, 2015, , .	0.8	0
705	Electrospun Cellulose Composite Nanofibers. , 2015, , 191-227.		8
706	Preparation of Polyvinylidene Fluoride (PVDF) Triboelectric Nanogenerators with Different Polymer. Materials Science Forum, 0, 814, 91-95.	0.3	0
707	Electrospinning for High Performance Sensors. Nanoscience and Technology, 2015, , .	1.5	30
708	Supercritical fluids applications in nanomedicine. Journal of Supercritical Fluids, 2015, 101, 193-214.	1.6	108
709	Reactive and â€~clickable' electrospun polymeric nanofibers. Polymer Chemistry, 2015, 6, 3372-3381.	1.9	34
710	Hybrid encapsulation structures based on \hat{l}^2 -carotene-loaded nanoliposomes within electrospun fibers. Colloids and Surfaces B: Biointerfaces, 2015, 134, 475-482.	2.5	88
711	Protease-degradable electrospun fibrous hydrogels. Nature Communications, 2015, 6, 6639.	5.8	126
713	Synthesis of polyurethane containing carbon–carbon double bonds to prepare functionalizable ultrafine fibers <i>via</i> electrospinning. Polymer Chemistry, 2015, 6, 3858-3864.	1.9	4
714	Blending and Morphology Control To Turn Hydrophobic SEBS Electrospun Mats Superhydrophilic. Langmuir, 2015, 31, 5495-5503.	1.6	37
715	4-Vinylbenzene Boronic Acid–Hydroxy Apatite/Polyvinyl Alcohol Based Nanofiber Scaffold Synthesized by UV-Activated Reactive Electrospinning. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 727-732.	1.8	6
716	Hemocompatibility of Poly(vinyl alcohol)–Gelatin Core–Shell Electrospun Nanofibers: A Scaffold for Modulating Platelet Deposition and Activation. ACS Applied Materials & Interfaces, 2015, 7, 8302-8312.	4.0	52
717	Delivery of dexamethasone from electrospun PCL–PEO binary fibers and their effects on inflammation regulation. RSC Advances, 2015, 5, 34166-34172.	1.7	17

ARTICLE IF CITATIONS # The influence of anisotropic nano- to micro-topography on <i>in vitro</i> and <i>in vivo</i> 718 1.7 52 osteogenesis. Nanomedicine, 2015, 10, 693-711. Removal of oil from water using magnetic bicomponent composite nanofibers fabricated by 123 electrospinning. Composites Part B: Engineering, 2015, 77, 311-318. "Clickable―Polymeric Nanofibers through Hydrophilic–Hydrophobic Balance: Fabrication of Robust 720 2.6 33 Biomolecular Immobilization Platforms. Biomacromolecules, 2015, 16, 1590-1597. A feasibility study on semi industrial nozzleless electrospinning of cellulose nanofiber. International 3.1 Journal of Industrial Chemistry, 2015, 6, 193-211. Electrospun tailored ZnO nanostructures – role of chloride ions. RSC Advances, 2015, 5, 85363-85372. 722 1.7 21 Parameters affecting carbon nanofiber electrodes for measurement of cathodic current in electrochemical sensors: an investigation using artificial neural network. RSC Advances, 2015, 5, 1.7 37 81243-81252. Optimization of solvents for the encapsulation of a phase change material in polymeric matrices by electro-hydrodynamic processing of interest in temperature buffering food applications. European Polymer Journal, 2015, 72, 23-33. 724 2.6 33 Melt electrospinning of poly(lactic acid) and polycaprolactone microfibers by using a hand-operated 2.8 Wimshurst generator. Nanoscale, 2015, 7, 16611-16615. Synthesis and characterization of electrospun superconducting (La,Sr)CuO₄nanowires 726 0.8 18 and nanoribbons. Materials Research Express, 2015, 2, 095022. Optimizing the activity of immobilized phytase on starch blended polyacrylamide 727 1.1 nanofibers-nanomembranes by response surface methodology. Fibers and Polymers, 2015, 16, 1048-1056. In situ precision electrospinning as an effective delivery technique for cyanoacrylate medical glue 728 2.8 48 with high efficiency and low toxicity. Nanoscale, 2015, 7, 19468-19475. Fabrication of cationized gelatin nanofibers by electrospinning for tissue regeneration. RSC 729 Advances, 2015, 5, 89521-89530. Performance of hydrophilic glass fiber media to separate dispersed water drops from ultra low 730 3.9 17 sulfur diesel supplemented by vibrations. Separation and Purification Technology, 2015, 156, 665-672. Preparation and Characterization of Ultrarapidly Dissolving Orodispersible Films for Treating and Preventing Iodine Deficiency in the Pediatric Population. Journal of Agricultural and Food Chemistry, 2015, 63, 9831-9838. 2.4 Electrospun fish gelatin fibrous scaffolds with improved bio-interactions due to carboxylated 732 1.7 18 nanodiamond loading. RSC Advances, 2015, 5, 95467-95477. Electrospinning and characterization of poly (vinyl alcohol)–sericin nanofibers as a potential for 1.0 tissue engineering applications. Journal of the Textile Institute, 0, , 1-9. Bioactive Glass-Biopolymer Composites., 2015, , 1-26. 734 0 Application of Nanoparticles in Manufacturing., 2015, , 1-53.

#	Article	IF	CITATIONS
736	Electrospinning and rheological behavior of poly (vinyl alcohol)/collagen blended solutions. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 840-846.	0.4	10
737	In-situ crosslinked nanofiber mats of chitosan/poly(vinyl alcohol) blend: Fabrication, characterization and MTT assay with cancerous bone cells. Fibers and Polymers, 2015, 16, 1853-1860.	1.1	10
738	Cu-Al-O nanofibers fabricated by electrospinning and their ozone sensing properties at room temperature. Journal Wuhan University of Technology, Materials Science Edition, 2015, 30, 463-466.	0.4	1
739	Expanding Two-Dimensional Electrospun Nanofiber Membranes in the Third Dimension By a Modified Gas-Foaming Technique. ACS Biomaterials Science and Engineering, 2015, 1, 991-1001.	2.6	112
740	Design and development of Co ₃ O ₄ /NiO composite nanofibers for the application of highly sensitive and selective non-enzymatic glucose sensors. RSC Advances, 2015, 5, 76538-76547.	1.7	37
741	Encapsulation of polyphenols into pHEMA e-spun fibers and determination of their antioxidant activities. International Journal of Pharmaceutics, 2015, 494, 278-287.	2.6	29
742	Core–shell PVA/gelatin electrospun nanofibers promote human umbilical vein endothelial cell and smooth muscle cell proliferation and migration. Acta Biomaterialia, 2015, 27, 77-87.	4.1	67
743	Directed self-assembly of graphene oxide on an electrospun polymer fiber template. Carbon, 2015, 95, 888-894.	5.4	11
744	Polyacrylonitrile-based electrospun fibers. , 2015, , .		1
745	Bioactive protein-based nanofibers interact with intestinal biological components resulting in transepithelial permeation of a therapeutic protein. International Journal of Pharmaceutics, 2015, 495, 58-66.	2.6	33
746	Electrospun Poly(vinyl alcohol)/Phase Change Material Fibers: Morphology, Heat Properties, and Stability. Industrial & Engineering Chemistry Research, 2015, 54, 8706-8712.	1.8	70
747	Developing chitosan-based composite nanofibers for supporting metal catalysts. Polymer, 2015, 75, 168-177.	1.8	28
748	Surface modification of electrospun poly(methyl methacrylate) (PMMA) nanofibers for the development of <i>in vitro</i> respiratory epithelium model. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 1297-1311.	1.9	22
749	One-Step Fabrication of Electrospun Photo-Cross-Linkable Polymer Nanofibers Incorporating Multiwall Carbon Nanotubes and Enzyme for Biosensing. Journal of the Electrochemical Society, 2015, 162, B275-B281.	1.3	27
750	The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth. Materials Science and Engineering C, 2015, 48, 620-631.	3.8	65
751	Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors. Materials Science and Engineering C, 2015, 48, 673-678.	3.8	60
752	Anisotropic poly (glycerol sebacate)-poly (<i>ïµ</i> -caprolactone) electrospun fibers promote endothelial cell guidance. Biofabrication, 2015, 7, 015001.	3.7	95
753	Influence of Process Factors on Diameter of Core (γ-Fe ₂ O ₃)/Shell (Polyvinyl) Tj ETQq1 i Polymeric Materials and Polymeric Biomaterials, 2015, 64, 15-24.	1 0.78431 1.8	4 rgBT /Ove 14

#	Article	IF	CITATIONS
754	Fabrication (Ferrofluid/Polyvinyl Alcohol) Magnetic Nanofibers via Co-Axial Electrospinning. Journal of Dispersion Science and Technology, 2015, 36, 28-31.	1.3	11
755	Preparation of ZnO:(Al, La)/polyacrylonitrile (PAN) nonwovens with low infrared emissivity via electrospinning. Materials Letters, 2015, 143, 120-123.	1.3	37
756	Bioactive thermoresponsive polyblend nanofiber formulations for wound healing. Materials Science and Engineering C, 2015, 48, 126-137.	3.8	41
757	Gelatin–GAG electrospun nanofibrous scaffold for skin tissue engineering: Fabrication and modeling of process parameters. Materials Science and Engineering C, 2015, 48, 704-712.	3.8	61
758	Control of Spatial Organization of Electrospun Fibers in a Carbon Felt for Enhanced Bioelectrode Performance. ChemPlusChem, 2015, 80, 494-502.	1.3	8
759	Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. Journal of Functional Foods, 2015, 12, 332-341.	1.6	114
760	Optimizing parameters on alignment of PCL/PGA nanofibrous scaffold: An artificial neural networks approach. International Journal of Biological Macromolecules, 2015, 81, 1089-1097.	3.6	27
761	Electrospun zinc oxide nanofibers for direct selective electrochemical detection of biological compounds. RSC Advances, 2015, 5, 7222-7231.	1.7	8
762	Antibacterial Activity and Inhibition of Adherence of Streptococcus mutans by Propolis Electrospun Fibers. AAPS PharmSciTech, 2015, 16, 182-191.	1.5	42
763	A Review: Potential Usage of Cellulose Nanofibers (CNF) for Enzyme Immobilization via Covalent Interactions. Applied Biochemistry and Biotechnology, 2015, 175, 1817-1842.	1.4	100
764	Opportunities for Multicomponent Hybrid Hydrogels in Biomedical Applications. Biomacromolecules, 2015, 16, 28-42.	2.6	148
765	Functionalized electrospun regenerated cellulose fibers for immobilizing pyranose 2-oxidase. Reactive and Functional Polymers, 2015, 86, 47-51.	2.0	8
766	Formation of hydrophilic nanofibers from nanoemulsions through electrospinning. International Journal of Pharmaceutics, 2015, 478, 172-179.	2.6	42
767	Improvement of hydrophilic properties of electrospun polyamide-imide fibrous mats by atmospheric-pressure plasma treatment. Journal of Physics and Chemistry of Solids, 2015, 78, 53-58.	1.9	12
768	An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 762-771.	2.1	100
769	Thermal regulation finishes for textiles. , 2015, , 17-98.		11
770	Polymeric nanofibers: targeted gastro-retentive drug delivery systems. Journal of Drug Targeting, 2015, 23, 109-124.	2.1	67
771	An electrochemical sensor based on graphene/polyaniline/polystyrene nanoporous fibers modified electrode for simultaneous determination of lead and cadmium. Sensors and Actuators B: Chemical, 2015, 207, 526-534.	4.0	284

#	Article	IF	CITATIONS
772	Gelatin nanofibers prepared by spiral-electrospinning and cross-linked by vapor and liquid-phase glutaraldehyde. Materials Letters, 2015, 140, 1-4.	1.3	64
773	Electrospun polymeric coatings on aluminum alloy as a straightforward approach for corrosion protection. Journal of Applied Polymer Science, 2015, 132, .	1.3	25
774	Fabrication of gelatin/chitosan nanofibrous scaffold: process optimization and empirical modeling. Polymer International, 2015, 64, 571-580.	1.6	38
775	Properties of Poly (ethylene oxide)/ whey Protein Isolate Nanofibers Prepared by Electrospinning. Food Biophysics, 2015, 10, 134-144.	1.4	65
776	Tissue-Engineered Cartilage: The Crossroads of Biomaterials, Cells and Stimulating Factors. Macromolecular Bioscience, 2015, 15, 153-182.	2.1	81
777	Investigation of gas sensing properties of SnO2/In2O3 composite hetero-nanofibers treated by oxygen plasma. Sensors and Actuators B: Chemical, 2015, 206, 753-763.	4.0	51
778	Synthesis of carbon nanospheres using fallen willow leaves and adsorption of Rhodamine B and heavy metals by them. Environmental Science and Pollution Research, 2015, 22, 1408-1419.	2.7	43
779	Preparation, characterization, and kinetic study of end opened carbon nanotubes incorporated polyacrylonitrile electrospun nanofibers for the adsorption of pyrene from aqueous solution. Chemical Engineering Journal, 2015, 259, 348-356.	6.6	37
780	Chitosan–hyaluronic acid hydrogel coated poly(caprolactone) multiscale bilayer scaffold for ligament regeneration. Chemical Engineering Journal, 2015, 260, 478-485.	6.6	79
781	Triamcinolone acetonide–Eudragit®RS100 nanofibers and nanobeads: Morphological and physicochemical characterization. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 362-369.	1.9	25
782	Recent trends in nanomaterials immobilised enzymes for biofuel production. Critical Reviews in Biotechnology, 2016, 36, 108-119.	5.1	171
783	Methylprednisolone acetate–Eudragit®RS100 electrospuns: Preparation and physicochemical characterization. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 497-503.	1.9	23
784	Factors Affecting Spinnability of Oil Palm Mesocarp Fiber Cellulose Solution for the Production of Microfiber. BioResources, 2016, 12, .	0.5	12
785	Microbial Interactions with Nanostructures and their Importance for the Development of Electrospun Nanofibrous Materials used in Regenerative Medicine and Filtration. Journal of Microbial & Biochemical Technology, 2016, 8, .	0.2	14
786	Micro/nanofiber-based scaffolds for soft tissue engineering applications. , 2016, , 201-229.		2
787	Energy harvesting and storage textiles. , 2016, , 357-396.		13
788	The Effect of Processing Parameters on Formation of Lignosulfonate Fibers Produced using Electrospinning Technology. BioResources, 2016, 11, .	0.5	13
789	Tailoring of Architecture and Intrinsic Structure of Electrospun Nanofibers by Process Parameters for Tissue Engineering Applications. , 2016, , .		1

#	Article	IF	CITATIONS
790	Fibrous Materials. , 2016, , 267-278.		5
791	Aqueous-Based Coaxial Electrospinning of Genetically Engineered Silk Elastin Core-Shell Nanofibers. Materials, 2016, 9, 221.	1.3	23
792	Electrospinning and Electrospraying Techniques for Designing Antimicrobial Polymeric Biocomposite Mats. , 0, , .		2
793	Nano- and microstructured materials for in vitro studies of the physiology of vascular cells. Beilstein Journal of Nanotechnology, 2016, 7, 1620-1641.	1.5	38
794	Biomedical Applications of Antibacterial Nanofiber Mats Made of Electrospinning with Wire Electrodes. Applied Sciences (Switzerland), 2016, 6, 46.	1.3	19
795	EFFECT OF POLYVINYLPYRROLIDONE AND FABRICATION PARAMETERS ON ELECTROSPUN TITANIUM OXIDE NANOFIBRES' DIAMETER. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	2
796	A Study of Bubble Electrospinning of Ethylcellulose Ultrafine Fibres. Polymers and Polymer Composites, 2016, 24, 265-272.	1.0	4
797	Electrospun Polyurethane/Loess Powder Hybrids and Their Absorption of Volatile Organic Compounds. Advances in Materials Science and Engineering, 2016, 2016, 1-8.	1.0	10
798	Monitoring of Glucose in Beer Brewing by a Carbon Nanotubes Based Nylon Nanofibrous Biosensor. Journal of Nanomaterials, 2016, 2016, 1-11.	1.5	16
799	Surface Modification of Electrospun PVDF/PAN Nanofibrous Layers by Low Vacuum Plasma Treatment. International Journal of Polymer Science, 2016, 2016, 1-9.	1.2	37
800	Development of a Doxycycline Hydrochloride-Loaded Electrospun Nanofibrous Membrane for GTR/GBR Applications. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	8
801	Free-Standing Porous Carbon Nanofiber Networks from Electrospinning Polyimide for Supercapacitors. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	9
802	Two Different Approaches for Oral Administration of Voriconazole Loaded Formulations: Electrospun Fibers versus β-Cyclodextrin Complexes. International Journal of Molecular Sciences, 2016, 17, 282.	1.8	47
803	Electrospun Graphene Oxide-Based Nanofibres. , 0, , .		9
804	Nanofibers in Cosmetics. , 0, , .		6
805	Nanotechnology-based coating techniques for smart textiles. , 2016, , 243-268.		23
806	Optimized Nanostructured TiO2 Photocatalysts. Frontiers in Materials, 2016, 3, .	1.2	22
807	Poly(ε-caprolactone) Scaffolds Fabricated by Melt Electrospinning for Bone Tissue Engineering. Materials, 2016, 9, 232.	1.3	55

	CHAIL	IN REPORT	
#	Article	IF	CITATIONS
808	Antimicrobial Approaches for Textiles: From Research to Market. Materials, 2016, 9, 498.	1.3	264
809	Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites. Materials, 2016, 9, 991.	1.3	132
810	Evaluation of Electrospun PCL-PIBMD Meshes Modified with Plasmid Complexes in Vitro and in Vivo. Polymers, 2016, 8, 58.	2.0	14
811	Ultrasensitive, Label Free, Chemiresistive Nanobiosensor Using Multiwalled Carbon Nanotubes Embedded Electrospun SU-8 Nanofibers. Sensors, 2016, 16, 1354.	2.1	20
812	Estimation of the Core-Shell Formation Efficiency of Electrospun Collagen/Polylactic Acid Nanofibers. Kobunshi Ronbunshu, 2016, 73, 366-369.	0.2	1
813	Synthesis and characterization of silver nanoparticles integrated in polyvinyl alcohol nanofibers for bionanotechnological applications. Turkish Journal of Biology, 2016, 40, 643-651.	2.1	18
814	Novel Natural Polymer/Medicinal Plant Extract Electrospun Nanofiber for Cosmeceutical Application. , 0, , .		3
815	Electrospinning in Tissue Engineering. , 0, , .		6
816	INCORPORATION AND RELEASE KINETICS OF ALPHA-BISABOLOL FROM PCL AND CHITOSAN/GUAR GUM MEMBRANES. Brazilian Journal of Chemical Engineering, 2016, 33, 453-467.	0.7	13
817	Controlling Electrospinning Jet Using Microscopic Model for Ideal Tissue Engineering Scaffolds. International Journal of Chemoinformatics and Chemical Engineering, 2016, 5, 1-16.	0.1	0
818	Superhydrophobic, Hybrid, Electrospun Cellulose Acetate Nanofibrous Mats for Oil/Water Separation by Tailored Surface Modification. ACS Applied Materials & Interfaces, 2016, 8, 19747-19754.	4.0	138
819	Controlling the Diameter of Electrospun Yttriaâ€ S tabilized Zirconia Nanofibers. Journal of the American Ceramic Society, 2016, 99, 3146-3150.	1.9	32
820	Synthesis of the New-Type Vascular Endothelial Growth Factor–Silk Fibroin–Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation. Journal of Craniofacial Surgery, 2016, 27, 509-515.	0.3	11
821	In vivo evaluation of gelatin/hyaluronic acid nanofiber as Burn-wound healing and its comparison with ChitoHeal gel. Fibers and Polymers, 2016, 17, 820-826.	1.1	39
822	Synthesis, Characterization, and Electrospinning of Calcium-Containing Polyurethane Urea. Advances in Polymer Technology, 2016, 35, 326-334.	0.8	3
823	Electrospun poly(vinyl alcohol) composite nanofibers with halloysite nanotubes for the sustained release of sodium <scp>d</scp> â€pantothenate. Journal of Applied Polymer Science, 2016, 133, .	1.3	11
824	Oneâ€Pot Route to Gold Nanoparticles Embedded in Electrospun Carbon Fibers as an Efficient Catalyst Material for Hybrid Alkaline Glucose Biofuel Cells. ChemElectroChem, 2016, 3, 629-637.	1.7	24
825	Utilization of Electrospun Polystyrene Membranes as a Preliminary Step for Rapid Diagnosis. Macromolecular Materials and Engineering, 2016, 301, 827-835.	1.7	7

#	Article	IF	CITATIONS
826	Pigmented Silk Nanofibrous Composite for Skeletal Muscle Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1222-1232.	3.9	81
827	Directional selfâ€assembly by electrospun wet fibers. Journal of Applied Polymer Science, 2016, 133, .	1.3	1
828	Electrospun nanofibres in agriculture and the food industry: a review. Journal of the Science of Food and Agriculture, 2016, 96, 4663-4678.	1.7	128
829	Fabrication of Electrospun Polymer Fibers with Nonspherical Crossâ€Sections Using a Nanopressing Technique. Macromolecular Rapid Communications, 2016, 37, 239-245.	2.0	4
830	Synthesis of mesoporous functional hematite nanofibrous photoanodes by electrospinning. Polymers for Advanced Technologies, 2016, 27, 358-365.	1.6	27
831	Preparation and characterization of electrospun poly(ε-caprolactone)/poly(vinyl pyrrolidone) nanofiber composites containing silver particles. Polymer Composites, 2016, 37, 2847-2854.	2.3	34
832	Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process. Applied Surface Science, 2016, 387, 82-88.	3.1	50
833	Development of an encapsulated phase change material via emulsion and coaxial electrospinning. Journal of Applied Polymer Science, 2016, 133, .	1.3	22
834	Continuous aligned poly(<i>metaâ€</i> phenylene isophthalamide) fibers via stable jet electrospinning. Journal of Applied Polymer Science, 2016, 133, .	1.3	6
835	Polymer Bioprocessing to Fabricate 3D Scaffolds for Tissue Engineering. International Polymer Processing, 2016, 31, 587-597.	0.3	6
836	Electrospinning optimization and characterization of Chitosan/Alginate/Polyvinyl alcohol nanofibers. AIP Conference Proceedings, 2016, , .	0.3	7
837	Preparation of PVA/Chitosan/TiO2 nanofibers using electrospinning method. AIP Conference Proceedings, 2016, , .	0.3	8
838	Vibration energy harvesting using electrospun nanofibrous PVdF-TrFE. , 2016, , .		3
839	Spiral formation at microscale by μ-pyro-electrospinning. AIP Conference Proceedings, 2016, , .	0.3	Ο
840	Preparation and characterization of electrospun polyvinyl alcoholstyrylpyridinium/β-cyclodextrin composite nanofibers: Release behavior and potential use for wound dressing. Fibers and Polymers, 2016, 17, 1835-1841.	1.1	17
841	Electrospun fibers. , 2016, , 114-122.		2
842	Nanofacture: Senior Design Experience in Nanotechnology. , 2016, , .		0
843	The Morphology of Electrospun Titanium Dioxide Nanofibers and Its Influencing Factors. MATEC Web of Conferences, 2016, 47, 01020.	0.1	8

#	Article	IF	CITATIONS
844	Application of polyvinyl alcohol nanofiber membrane for smoke filtration. AIP Conference Proceedings, 2016, , .	0.3	13
845	A new strain sensor based on electrospinning and thin film technologies. , 2016, , .		5
846	Preparation of Polyvinyl Acetate (PVAc) and PVAc–Ag–Fe3O4 Composite Nanofibers by Electro-spinning Method. Journal of Cluster Science, 2016, 27, 1317-1333.	1.7	12
847	Structural, dielectric, and electrical properties of lithium niobate microfibers. Journal of Advanced Ceramics, 2016, 5, 84-92.	8.9	40
848	A bird's eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: Current stateâ€ofâ€ŧheâ€art, emerging directions and future trends. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2181-2200.	1.7	93
849	Regulation of biphasic drug release behavior by graphene oxide in polyvinyl pyrrolidone/poly(lµ-caprolactone) core/sheath nanofiber mats. Colloids and Surfaces B: Biointerfaces, 2016, 146, 63-69.	2.5	48
850	Fabrication of electrospun nanofiber catalysts and ammonia borane hydrogen release efficiency. International Journal of Hydrogen Energy, 2016, 41, 15433-15442.	3.8	26
851	Optimization of elecrospinning process of zein using central composite design. Fibers and Polymers, 2016, 17, 769-777.	1.1	41
852	Hybrid Electrospun Polycaprolactone Mats Consisting of Nanofibers and Microbeads for Extended Release of Dexamethasone. Pharmaceutical Research, 2016, 33, 1509-1516.	1.7	22
853	Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. Reactive and Functional Polymers, 2016, 104, 38-44.	2.0	36
854	Multireactive Poly(2-oxazoline) Nanofibers through Electrospinning with Crosslinking on the Fly. ACS Macro Letters, 2016, 5, 676-681.	2.3	41
855	Controlled release from thermo-sensitive PNVCL- co -MAA electrospun nanofibers: The effects of hydrophilicity/hydrophobicity of a drug. Materials Science and Engineering C, 2016, 67, 581-589.	3.8	48
856	Electrospun materials for solar energy conversion: innovations and trends. Journal of Materials Chemistry C, 2016, 4, 10173-10197.	2.7	37
857	Spiral formation at the microscale by μ-pyro-electrospinning. Soft Matter, 2016, 12, 5542-5550.	1.2	28
858	Investigating the particle to fibre transition threshold during electrohydrodynamic atomization of a polymer solution. Materials Science and Engineering C, 2016, 65, 240-250.	3.8	60
859	Electrospun nanowire arrays for electronics and optoelectronics. Science China Materials, 2016, 59, 200-216.	3.5	32
860	Electrospinnability of bionanocomposites with high nanocrystal loadings: The effect of nanocrystal surface characteristics. Carbohydrate Polymers, 2016, 147, 464-472.	5.1	23
861	Preparation of porous CeO 2 /CuO/Al 2 O 3 fibers via electro-blown spinning method. Materials Letters, 2016, 164, 460-463.	1.3	8

#	Article	IF	CITATIONS
862	Cellulose acetate electrospun nanofibrous membrane: fabrication, characterization, drug loading and antibacterial properties. Bulletin of Materials Science, 2016, 39, 337-343.	0.8	25
863	An electrochemically functional layer of hydrogenase extract on an electrode of large and tunable specific surface area. Journal of Materials Chemistry A, 2016, 4, 6487-6494.	5.2	19
864	Ultrafine lauric–myristic acid eutectic/poly (meta-phenylene isophthalamide) form-stable phase change fibers for thermal energy storage by electrospinning. Applied Energy, 2016, 173, 168-176.	5.1	35
865	Core–sheath structured electrospun nanofibrous membranes for oil–water separation. RSC Advances, 2016, 6, 41861-41870.	1.7	62
866	Biosensor based on electrospun blended chitosan-poly (vinyl alcohol) nanofibrous enzymatically sensitized membranes for pirimiphos-methyl detection in olive oil. Talanta, 2016, 155, 258-264.	2.9	62
867	An System of Pd NPs/PAN Composite Fiber Catalyst Adhere to the Aluminum Reactor and Its Catalytic Application in Suzuki Reaction. Journal of Inorganic and Organometallic Polymers and Materials, 2016, 26, 914-920.	1.9	9
868	Nanostructured electrode materials for lithium-ion and sodium-ion batteries via electrospinning. Science China Materials, 2016, 59, 287-321.	3.5	124
869	Supercapacitors utilizing electrodes derived from polyacrylonitrile fibers incorporating tetramethylammonium oxalate as a porogen. Carbon, 2016, 106, 20-27.	5.4	38
870	Antimicrobial activity of poly(vinyl alcohol)-poly(acrylic acid) electrospun nanofibers. Colloids and Surfaces B: Biointerfaces, 2016, 146, 144-151.	2.5	47
871	Polymerization of Hydrogel Network on Microfiber Surface: Synthesis of Hybrid Water-Absorbing Matrices for Biomedical Applications. ACS Biomaterials Science and Engineering, 2016, 2, 887-892.	2.6	18
872	Graphene nanoplatelets loaded polyurethane and phenolic resin fibres by combination of pressure and gyration. Composites Science and Technology, 2016, 129, 173-182.	3.8	28
873	Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering. Journal of Materials Chemistry B, 2016, 4, 3670-3684.	2.9	58
874	Natural and Synthetic Polymers for Designing Composite Materials. , 2016, , 233-286.		22
875	Modeling electrospun nanofibers: An overview from theoretical, empirical, and numerical approaches. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 901-915.	1.8	26
876	Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites. ACS Applied Materials & amp; Interfaces, 2016, 8, 12576-12582.	4.0	62
877	Cellular behavior of L929 and MG-63 cells cultured on electrospun nanofibers of chitosan with different degrees of phosphorylation. Progress in Biomaterials, 2016, 5, 93-100.	1.8	14
878	Nano-size Polymers. , 2016, , .		16
879	Fabrication of Superconducting YBCO Nanoparticles by Electrospinning. Procedia Engineering, 2016, 148, 243-248.	1.2	15

#	Article	IF	CITATIONS
880	Electrospinning: Current Status and Future Trends. , 2016, , 89-154.		18
881	Moisture-sensitive properties of multi-walled carbon nanotubes/polyvinyl alcohol nanofibers prepared by electrospinning electrostatically modified method. Materials Letters, 2016, 185, 278-281.	1.3	16
882	A new approach for flavor and aroma encapsulation. , 2016, , 623-661.		6
883	A comprehensive review: electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Advances, 2016, 6, 85495-85514.	1.7	255
884	From Polymer Blends to Nano-size Materials with Controlled Nanomorphology. , 2016, , 179-200.		0
885	Development of Imide-Type Polymer Fibers Containing Metal Nanoparticles. , 2016, , 297-314.		0
886	Electrospun Nanofiber Membrane for Biosensors. , 2016, , 660-663.		0
887	Poly(<i>N</i> â€isopropylacrylamide)/polyurethane core–sheath nanofibres by coaxial electrospinning for drug controlled release. Micro and Nano Letters, 2016, 11, 260-263.	0.6	8
888	Spinning of polyacrylamidoximes by solution blowing technique: Synthesis and characterization. Fibers and Polymers, 2016, 17, 1456-1463.	1.1	1
889	Controlled synthesis of porous Co3O4 nanofibers by spiral electrospinning and their application for for formaldehyde oxidation. RSC Advances, 2016, 6, 102127-102133.	1.7	18
890	Tenofovir Containing Thiolated Chitosan Core/Shell Nanofibers: <i>In Vitro</i> and <i>in Vivo</i> Evaluations. Molecular Pharmaceutics, 2016, 13, 4129-4140.	2.3	37
891	Fabrication and characterization of metal stent coating with drug-loaded nanofiber film for gallstone dissolution. Journal of Biomaterials Applications, 2016, 31, 784-796.	1.2	14
892	HMDSO-plasma coated electrospun fibers of poly(cyclodextrin)s for antifungal dressings. International Journal of Pharmaceutics, 2016, 513, 518-527.	2.6	17
893	Preparation of electrospun LA-PA/PET/Ag form-stable phase change composite fibers with improved thermal energy storage and retrieval rates via electrospinning and followed by UV irradiation photoreduction method. Fibers and Polymers, 2016, 17, 1198-1205.	1.1	18
894	Advances in electrospun skin substitutes. Progress in Materials Science, 2016, 84, 314-334.	16.0	129
895	Top-Down Approach for the Preparation of Highly Porous PLLA Microcylinders. ACS Biomaterials Science and Engineering, 2016, 2, 2099-2107.	2.6	9
896	A structurally self-assembled peptide nano-architecture by one-step electrospinning. Journal of Materials Chemistry B, 2016, 4, 5475-5485.	2.9	17
897	Effect of fiber diameter on surface morphology, mechanical property, and cell behavior of electrospun poly(ε-caprolactone) mat. Fibers and Polymers, 2016, 17, 1033-1042.	1.1	95

#	Article	IF	CITATIONS
898	YBCO ceramic nanofibers obtained by the new technique of solution blow spinning. Ceramics International, 2016, 42, 16230-16234.	2.3	41
899	Application of Chitosan/PVA Nano fiber as a potential wound dressing for streptozotocin-induced diabetic rats. International Journal of Biological Macromolecules, 2016, 92, 1162-1168.	3.6	96
900	The investigation of the production method influence on the structure and properties of the ferroelectric nonwoven materials based on vinylidene fluoride – tetrafluoroethylene copolymer. Materials Chemistry and Physics, 2016, 182, 338-346.	2.0	45
901	Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydrate Polymers, 2016, 153, 492-500.	5.1	124
902	Remote-controlled delivery of CO via photoactive CO-releasing materials on a fiber optical device. Dalton Transactions, 2016, 45, 13222-13233.	1.6	34
904	Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods. Biomaterials, 2016, 106, 24-45.	5.7	111
905	Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering. Journal of Applied Polymer Science, 2016, 133, .	1.3	98
906	Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning. Journal of Food Engineering, 2016, 191, 115-123.	2.7	108
907	Fabrication of Thermal Intelligent Core/Shell Nanofibers by the Solution Coaxial Electrospinning Process. Advances in Polymer Technology, 2016, 35, .	0.8	37
908	Diamond nanoparticles into poly (lactic acid) electrospun fibers: Cytocompatible and bioactive scaffolds with enhanced wettability and cell adhesion. Materials Letters, 2016, 183, 420-424.	1.3	16
909	Electrospinning applications from diagnosis to treatment of diabetes. RSC Advances, 2016, 6, 83638-83655.	1.7	49
910	Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes. RSC Advances, 2016, 6, 85802-85810.	1.7	68
911	A novel electrospun Microtube Array Membrane (MTAM) based low cost conceptual tubular Microbial Fuel Cell (MFC). European Polymer Journal, 2016, 83, 138-147.	2.6	11
912	Pectin based composite nanofabrics incorporated with layered silicate and their cytotoxicity. International Journal of Biological Macromolecules, 2016, 93, 123-130.	3.6	14
913	Mapping the influence of electrospinning parameters on the morphology transition of short and continuous nanofibers. Fibers and Polymers, 2016, 17, 1238-1244.	1.1	5
914	Confinement of thermoresponsive microgels into fibres via colloidal electrospinning: experimental and statistical analysis. RSC Advances, 2016, 6, 76370-76380.	1.7	11
915	The effect of ionic liquids on the conductivity of electrospun polyacrylonitrile membranes. Journal of Electrostatics, 2016, 83, 63-68.	1.0	7
916	Preparation of PCL/Clay and PVA/Clay Electrospun Fibers for Cadmium (Cd+2), Chromium (Cr+3), Copper (Cu+2) and Lead (Pb+2) Removal from Water. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	22

#	Article	IF	CITATIONS
917	Coaxial electrospinning of polycaprolactone@chitosan: Characterization and silver nanoparticles incorporation for antibacterial activity. Reactive and Functional Polymers, 2016, 107, 87-92.	2.0	50
918	Polycaprolactone–chitosan nanofibers influence cell morphology to induce early osteogenic differentiation. Biomaterials Science, 2016, 4, 1584-1595.	2.6	54
919	New Trends in Bioactive Classes: The Importance of Mesostructure. , 2016, , 95-130.		0
920	Fabrication and Characterization of Poly(Vinyl Alcohol)/Chitosan Blend Electrospun Nanofibrous Membrane. Key Engineering Materials, 0, 701, 265-269.	0.4	1
921	Passive and Interactive Dressing Materials. , 2016, , 93-144.		5
922	Development of a bio-based sorbent media for the removal of nickel ions from aqueous solutions. Journal of Environmental Chemical Engineering, 2016, 4, 3159-3169.	3.3	36
923	Large-scale alignment quantum rods film for high efficiency wide color gamut LED display. , 2016, , .		0
924	Anisotropic Materials for Skeletalâ€Muscleâ€Tissue Engineering. Advanced Materials, 2016, 28, 10588-10612.	11.1	221
926	Polyvinylidene fluoride (PVDF) membrane for oil rejection from oily wastewater: A performance review. Journal of Water Process Engineering, 2016, 14, 41-59.	2.6	106
927	Exploring Process Technologies to Fabricate Fibrous Scaffolds and Bio-Textiles for Biomedical Applications. Advances in Science and Technology, 2016, 100, 31-37.	0.2	2
928	Structures and mechanical properties of plied and twisted polyacrylonitrile nanofiber yarns fabricated by a multi-needle electrospinning device. Fibers and Polymers, 2016, 17, 1627-1633.	1.1	21
929	Self-assembly of keratin peptides: Its implication on the performance of electrospun PVA nanofibers. Scientific Reports, 2016, 6, 36558.	1.6	20
930	Multimaterial and Multiscale Rapid Prototyping of Patient-Specific Scaffold. Advances in Science and Technology, 0, , .	0.2	2
931	Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold. RSC Advances, 2016, 6, 110557-110565.	1.7	122
932	Towards a novel bioelectrocatalytic platform based on "wiring―of pyrroloquinoline quinone-dependent glucose dehydrogenase with an electrospun conductive polymeric fiber architecture. Scientific Reports, 2016, 6, 19858.	1.6	9
933	Effect of a Primary Aromatic Amine on Properties and Structure of HDPE. , 2016, , 25-38.		0
934	Critical Conversion of Crosslinked Epoxyamine Polymers. , 2016, , 39-54.		0
935	Deformation Electromagnetic Anisotropy of Various Physical States of Highly Cross-Linked Polymers. , 2016, , 55-64.		0

#	Article	IF	CITATIONS
936	Carbonized Electrospun Nanofiber Sheets for Thermophones. ACS Applied Materials & Interfaces, 2016, 8, 31192-31201.	4.0	10
937	Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration. RSC Advances, 2016, 6, 105988-105995.	1.7	53
938	Fabrication and formation mechanism of closed-loop fibers by electrospinning with a tip collector. Chinese Physics B, 2016, 25, 078106.	0.7	2
939	Electrospinning as a Novel Delivery Vehicle for Bioactive Compounds in Food Nanotechnology. Contemporary Food Engineering, 2016, , 259-292.	0.2	1
940	A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers embedded in an elastomer under high loading for a self-powered sensor system. Nano Energy, 2016, 30, 434-442.	8.2	134
941	Electrospun Fibers for Drug Delivery after Spinal Cord Injury and the Effects of Drug Incorporation on Fiber Properties. Cells Tissues Organs, 2016, 202, 116-135.	1.3	43
942	Drug delivery techniques for buccal route: formulation strategies and recent advances in dosage form design. Journal of Pharmaceutical Investigation, 2016, 46, 593-613.	2.7	27
943	Immobilization and delivery of biologically active Lipoxin A 4 using electrospinning technology. International Journal of Pharmaceutics, 2016, 515, 254-261.	2.6	7
944	Prospects and challenges of perovskite type transparent conductive oxides in photovoltaic applications. Part II – Synthesis and deposition. Solar Energy, 2016, 139, 309-317.	2.9	4
945	Stimuli-sensitive thiolated hyaluronic acid based nanofibers: synthesis, preclinical safety and <i>in vitro</i> anti-HIV activity. Nanomedicine, 2016, 11, 2935-2958.	1.7	38
946	Stable nisin food-grade electrospun fibers. Journal of Food Science and Technology, 2016, 53, 3787-3794.	1.4	29
947	Synthesis and characterisation of ceramic core/shell nanofibres via single stage coâ€axial electrospinning. Micro and Nano Letters, 2016, 11, 707-711.	0.6	3
948	In vitro cytotoxicity and antibacterial activity of silver-coated electrospun polycaprolactone/gelatine nanofibrous scaffolds. 3 Biotech, 2016, 6, 211.	1.1	30
949	Changes in composition and properties of tool electrode during electrospark alloying with Al–Sn alloy. Surface Engineering and Applied Electrochemistry, 2016, 52, 157-161.	0.3	1
950	Numerical simulation of electrified jets: An application to electrospinning. AIP Conference Proceedings, 2016, , .	0.3	0
951	Electrospun plasmaâ€modified chitosan/poly(ethylene terephthalate)/ferrocenylâ€substituted <i>N</i> â€acetylâ€2â€pyrazoline fibers for phosphate anion sensing. Journal of Applied Polymer Science, 2016, 133, .	1.3	2
952	Acanthus ebracteatus Vahl. extract-loaded cellulose acetate ultrafine fibers as a topical carrier for controlled-release applications. Polymer Bulletin, 2016, 73, 3319-3331.	1.7	8
953	Raman spectroscopy analysis of biodegradable electrospun nanofibers prepared from polymer blends. Monatshefte Für Chemie, 2016, 147, 919-923.	0.9	12

		REPORT	
#	Article	IF	CITATIONS
954	Preparation and low-temperature gas-sensing properties of SnO2 ultra-fine fibers fabricated by a centrifugal spinning process. Journal of Sol-Gel Science and Technology, 2016, 78, 353-364.	1.1	15
955	Rapid production of bioactive hydroxyapatite fibers via electroblowing. Journal of the European Ceramic Society, 2016, 36, 3219-3224.	2.8	29
956	Effect of electrospinning on the ionic conductivity of polyacrylonitrile/polymethyl methacrylate nanofibrous membranes: optimization based on the response surface method. Iranian Polymer Journal (English Edition), 2016, 25, 525-537.	1.3	11
957	Producing a poly(<i>N</i> , <i>N</i> -dimethylaminoethyl methacrylate) nonwoven by using the blowing out method. Textile Reseach Journal, 2016, 86, 1837-1846.	1.1	9
958	Bioactive Applications for Electrospun Fibers. Polymer Reviews, 2016, 56, 631-667.	5.3	58
959	Fabrication of patterned polymer-antibiotic composite fibers via electrohydrodynamic (EHD) printing. Journal of Drug Delivery Science and Technology, 2016, 35, 114-123.	1.4	43
960	Portable and low cost fluorescence set-up for in-situ screening of Ochratoxin A. Talanta, 2016, 159, 395-400.	2.9	10
961	Pulsed Electric Fields on Poly- <scp>l</scp> -(lactic acid) Melt Electrospun Fibers. Industrial & Engineering Chemistry Research, 2016, 55, 7116-7123.	1.8	25
962	Bioactive Glass-Biopolymer Composites for Applications in Tissue Engineering. , 2016, , 325-356.		7
963	Electrospun carbon-based nanostructured electrodes for advanced energy storage – A review. Energy Storage Materials, 2016, 5, 58-92.	9.5	178
964	Textile cell-free scaffolds for in situ tissue engineering applications. Journal of Materials Science: Materials in Medicine, 2016, 27, 63.	1.7	29
965	Electrospun elastic acrylonitrile butadiene copolymer fibers. Polymer, 2016, 97, 440-448.	1.8	22
966	Tuneable nanoparticle-nanofiber composite substrate for improved cellular adhesion. Colloids and Surfaces B: Biointerfaces, 2016, 145, 830-838.	2.5	6
967	Fabrication of Aligned Nanofiber Polymer Yarn Networks for Anisotropic Soft Tissue Scaffolds. ACS Applied Materials & Interfaces, 2016, 8, 16950-16960.	4.0	102
968	Recreating complex pathophysiologies in vitro with extracellular matrix surrogates for anticancer therapeutics screening. Drug Discovery Today, 2016, 21, 1521-1531.	3.2	28
969	Fabrication of polyamide-6 fiber of high SO3H content surface through electrospinning. Polymer, 2016, 98, 11-19.	1.8	8
970	Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings. Journal of Materials Chemistry B, 2016, 4, 4801-4812.	2.9	166
971	Twoâ€Phase Electrospinning to Incorporate Polyelectrolyte Complexes and Growth Factors into Electrospun Chitosan Nanofibers. Macromolecular Bioscience, 2016, 16, 371-380.	2.1	19

#	Article	IF	CITATIONS
972	Novel Double‣ayered Conduit Containing Highly Bioactive Glass Fibers for Potential Nerve Guide Application. International Journal of Applied Glass Science, 2016, 7, 183-194.	1.0	17
973	A review of key challenges of electrospun scaffolds for tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 715-738.	1.3	395
974	Experimental design as a tool for the manufacturing of filtering media based on electrospun polyacrylonitrile/ \$\$upbeta \$\$ β -cyclodextrin fibers. International Journal on Interactive Design and Manufacturing, 2016, 10, 153-164.	1.3	6
975	Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing. Journal of Biomaterials Applications, 2016, 30, 686-698.	1.2	91
976	A transparent bending-insensitive pressure sensor. Nature Nanotechnology, 2016, 11, 472-478.	15.6	680
977	Electrospun fibers for oil–water separation. RSC Advances, 2016, 6, 12868-12884.	1.7	173
978	Chemical filtration of Cr (VI) with electrospun chitosan nanofiber membranes. Carbohydrate Polymers, 2016, 140, 299-307.	5.1	75
979	Electrospinning and crosslinking of COL/PVA Nanofiber-microsphere Containing Salicylic Acid for Drug Delivery. Journal of Bionic Engineering, 2016, 13, 143-149.	2.7	90
980	Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine, 2016, 11, 715-737.	1.7	147
981	Preparation and Properties Research onÂElectrostatic Spinning Acetate/Chitosan Composite Fiber. Lecture Notes in Electrical Engineering, 2016, , 801-808.	0.3	0
982	Electrospinning of doped and undoped-polyaniline/poly(vinylidene fluoride) blends. Synthetic Metals, 2016, 213, 34-41.	2.1	38
983	Design of oxygen sensing nanomaterial: synthesis, encapsulation of phenylacetylide substituted Pd(<scp>ii</scp>) and Pt(<scp>ii</scp>) meso-tetraphenylporphyrins into poly(1-trimethylsilyl-1-propyne) nanofibers and influence of silver nanoparticles. RSC Advances, 2016, 6 9967-9977	1.7	27
984	Electrospun Polystyrene Nanofiber as an Adsorbent for Solid-Phase Extraction of Disulfine Blue from Aqueous Samples. Arabian Journal for Science and Engineering, 2016, 41, 2487-2492.	1.1	8
985	Halochromic properties of sulfonphthaleine dyes in a textile environment: The influence of substituents. Dyes and Pigments, 2016, 124, 249-257.	2.0	49
986	Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: Slow release and high solubility. Food Chemistry, 2016, 197, 864-871.	4.2	115
987	Materials and Deposition Processes for Multifunctionality. , 2016, , 19-51.		15
988	Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives. Journal of Colloid and Interface Science, 2016, 465, 259-270.	5.0	127
989	Differentiation potential of SHEDs using biomimetic periosteum containing dexamethasone. Materials Science and Engineering C, 2016, 58, 1036-1045.	3.8	19

#	Article	IF	CITATIONS
990	Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues. Annals of Biomedical Engineering, 2016, 44, 667-679.	1.3	42
991	Online stretching of directly electrospun nanofiber yarns. RSC Advances, 2016, 6, 30564-30569.	1.7	25
992	Controlled Release of Ciprofloxacin from Core–Shell Nanofibers with Monolithic or Blended Core. Molecular Pharmaceutics, 2016, 13, 1393-1404.	2.3	82
993	Thermally exfoliated graphene oxide reinforced fluorinated pentablock poly(<scp>l</scp> â€lactideâ€ <i>co</i> â€luâ€caprolactone) electrospun scaffolds: Insight into antimicrobial activity and biodegradation. Journal of Applied Polymer Science, 2016, 133, .	1.3	8
994	Facile fabrication of aloe vera containing PCL nanofibers for barrier membrane application. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 692-708.	1.9	44
995	Utilizing stem cells for three-dimensional neural tissue engineering. Biomaterials Science, 2016, 4, 768-784.	2.6	60
996	Enhancement in the photocatalytic activity of TiO 2 nanofibers hybridized with g-C 3 N 4 via electrospinning. Solid State Sciences, 2016, 55, 1-7.	1.5	25
997	Development of Suberin Fatty Acids and Chloramphenicol-Loaded Antimicrobial Electrospun Nanofibrous Mats Intended for Wound Therapy. Journal of Pharmaceutical Sciences, 2016, 105, 1239-1247.	1.6	22
998	Electrochemical properties of PVA–GO/PEDOT nanofibers prepared using electrospinning and electropolymerization techniques. RSC Advances, 2016, 6, 17720-17727.	1.7	43
999	The influence of sonication of poly(ethylene oxide) solutions to the quality of resulting electrospun nanofibrous mats. Polymer Degradation and Stability, 2016, 126, 101-106.	2.7	10
1000	Segmental dynamics, morphology and thermomechanical properties of electrospun poly(Îμ-caprolactone) nanofibers in the presence of an interacting filler. RSC Advances, 2016, 6, 21376-21386.	1.7	18
1001	Studies of magnetic alginate-based electrospun matrices crosslinked with different methods for potential hyperthermia treatment. Materials Science and Engineering C, 2016, 62, 338-349.	3.8	19
1002	Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. LWT - Food Science and Technology, 2016, 69, 438-446.	2.5	83
1003	Fabrication and Evaluation of Nanostructured Herbal Oil/Hydroxypropyl-1²-Cyclodextrin/Polyvinylpyrrolidone Mats for Denture Stomatitis Prevention and Treatment. AAPS PharmSciTech, 2016, 17, 1441-1449.	1.5	19
1004	Preparation and pharmaceutical evaluation of acetaminophen nano-fiber tablets: Application of a solvent-based electrospinning method for tableting. Biomedicine and Pharmacotherapy, 2016, 78, 14-22.	2.5	22
1005	Preparation and characterization of biodegradable nano hydroxyapatite–bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications. Cellulose, 2016, 23, 1263-1282.	2.4	65
1006	Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Acta Biomaterialia, 2016, 36, 231-240.	4.1	35
1007	Manufacturing and characterization of encapsulated microfibers with different molecular weight poly(<i>îµ</i> -caprolactone) (PCL) resins using a melt electrospinning technique. Materials Research Express, 2016, 3, 025301.	0.8	5

# 1008	ARTICLE Improved thermostable polyvinyl alcohol electrospun nanofibers with entangled naringinase used in a novel mini-packed bed reactor. Bioresource Technology, 2016, 213, 208-215.	IF 4.8	CITATIONS 20
1009	Regeneration techniques for bone-to-tendon and muscle-to-tendon interfaces reconstruction. British Medical Bulletin, 2016, 117, 25-37.	2.7	52
1010	Aligned Electrospun Polyvinyl Pyrrolidone/Poly ε-Caprolactone Blend Nanofiber Mats for Tissue Engineering. International Journal of Nanoscience, 2016, 15, 1650005.	0.4	11
1011	Active Release of Nitric Oxide-Releasing Dendrimers from Electrospun Polyurethane Fibers. ACS Biomaterials Science and Engineering, 2016, 2, 426-437.	2.6	42
1012	Design of biodegradable polyurethanes and the interactions of the polymers and their degradation by-products within inÂvitro and inÂvivo environments. , 2016, , 75-114.		17
1013	Electrospun fibrous polyurethane scaffolds in tissue engineering. , 2016, , 543-559.		15
1014	Characterisation of morphological, antimicrobial and leaching properties of in situ prepared polyurethane nanofibres doped with silver behenate. RSC Advances, 2016, 6, 23816-23826.	1.7	4
1015	Non-mulberry silk fibroin grafted poly(ε-caprolactone) nanofibrous scaffolds mineralized by electrodeposition: an optimal delivery system for growth factors to enhance bone regeneration. RSC Advances, 2016, 6, 26835-26855.	1.7	18
1016	Bio-safe processing of polylactic-co-caprolactone and polylactic acid blends to fabricate fibrous porous scaffolds for in vitro mesenchymal stem cells adhesion and proliferation. Materials Science and Engineering C, 2016, 63, 512-521.	3.8	19
1017	Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Materials Science and Engineering C, 2016, 59, 203-212.	3.8	171
1018	Electrospun nanofibrous materials: a versatile medium for effective oil/water separation. Materials Today, 2016, 19, 403-414.	8.3	369
1019	Regulating micro-structure and biomineralization of electrospun PVP-based hybridized carbon nanofibers containing bioglass nanoparticles via aging time. RSC Advances, 2016, 6, 3870-3881.	1.7	17
1020	Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications. Analytical and Bioanalytical Chemistry, 2016, 408, 1307-1326.	1.9	30
1021	Electrospun nanofiber mats for ultrafast release of ondansetron. Reactive and Functional Polymers, 2016, 99, 65-72.	2.0	39
1022	Polyacrylonitrile (PAN)/crown ether composite nanofibers for the selective adsorption of cations. RSC Advances, 2016, 6, 3608-3616.	1.7	45
1023	Electrospun cellulose acetate composites containing supported metal nanoparticles for antifungal membranes. Science of the Total Environment, 2016, 563-564, 912-920.	3.9	32
1024	Electrospun Mo-doped BiVO4 photoanode on a transparent conductive substrate for solar water oxidation. Catalysis Communications, 2016, 75, 18-22.	1.6	21
1025	Bicomponent electrospun scaffolds to design extracellular matrix tissue analogs. Expert Review of Medical Devices, 2016, 13, 83-102.	1.4	50

#	Article	IF	CITATIONS
1026	Three-dimensional multilayered fibrous constructs for wound healing applications. Biomaterials Science, 2016, 4, 319-330.	2.6	20
1027	Electrospun polyvinyl alcohol-polyvinyl pyrrolidone nanofibrous membranes for interactive wound dressing application. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 247-262.	1.9	33
1028	A portable electrospinning apparatus based on a small solar cell and a hand generator: design, performance and application. Nanoscale, 2016, 8, 209-213.	2.8	41
1029	Chitin, Chitosan, and Silk Fibroin Electrospun Nanofibrous Scaffolds: A Prospective Approach for Regenerative Medicine. Springer Series on Polymer and Composite Materials, 2016, , 151-189.	0.5	8
1030	Potential of electrospun core–shell structured gelatin–chitosan nanofibers for biomedical applications. Carbohydrate Polymers, 2016, 136, 1098-1107.	5.1	102
1031	Thermo-responsive electrospun nanofibers doped with 1,10-phenanthroline-based fluorescent sensor for metal ion detection. Journal of Materials Science, 2016, 51, 1620-1631.	1.7	26
1032	Nanoparticles and nanofibers for topical drug delivery. Journal of Controlled Release, 2016, 240, 77-92.	4.8	401
1033	Advances in preparation, modification, and application of polypropylene membrane. Journal of Polymer Engineering, 2016, 36, 329-362.	0.6	133
1034	Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration. Materials Science and Engineering C, 2016, 58, 278-285.	3.8	69
1036	The Differentiation of Human Endometrial Stem Cells into Neuron-Like Cells on Electrospun PAN-Derived Carbon Nanofibers with Random and Aligned Topographies. Molecular Neurobiology, 2016, 53, 4798-4808.	1.9	52
1037	Development of gelatin/zein fibrous membranes for hemostatic application. Textile Reseach Journal, 2016, 86, 1023-1031.	1.1	13
1038	The enhanced gas-sensing and photocatalytic performance of hollow and hollow core–shell SnO2-based nanofibers induced by the Kirkendall effect. Ceramics International, 2016, 42, 1817-1826.	2.3	24
1039	Preparation of electrospun nanofibers from solutions of different gelatin types using a benign solvent mixture composed of water/PBS/ethanol. Polymers for Advanced Technologies, 2016, 27, 382-392.	1.6	10
1040	Sugar and Surfactant-Assisted Synthesis of Mg(OH)2 Nano-flower and PVA Nanocomposites. Journal of Cluster Science, 2016, 27, 299-314.	1.7	11
1041	Melt electrospinning process optimization of polylactic acid nanofibers. Journal of Industrial Textiles, 2016, 45, 626-634.	1.1	21
1042	Oriented nanofibrous membranes for tissue engineering applications: Electrospinning with secondary field control. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 58, 188-198.	1.5	17
1043	Potential of inherent RGD containing silk fibroin–poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering. Cell and Tissue Research, 2016, 363, 525-540.	1.5	44
1044	Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control, 2016, 59, 366-376.	2.8	378

#	Article	IF	CITATIONS
1045	Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties. Journal of Industrial Textiles, 2016, 46, 562-577.	1.1	54
1046	Fundamentals of electrospinning and processing technologies. Particulate Science and Technology, 2016, 34, 72-82.	1.1	86
1047	An update on clinical applications of electrospun nanofibers for skin bioengineering. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1350-1364.	1.9	71
1048	Composites of electrospunâ€fibers and hydrogels: A potential solution to current challenges in biological and biomedical field. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 640-656.	1.6	79
1049	New route for development of electromagnetic shielding based on cellulosic nanofibers. Journal of Industrial Textiles, 2017, 46, 1598-1615.	1.1	16
1050	Design and optimization of a novel bioâ€loom to weave meltâ€spun absorbable polymers for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 1342-1351.	1.6	11
1051	Polyurethane/hydroxypropyl cellulose electrospun nanofiber mats as potential transdermal drug delivery system: characterization studies and <i>in vitro</i> assays. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 655-664.	1.9	79
1052	Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technology, 2017, 35, 139-162.	1.7	147
1053	Development and antiultraviolet properties of epoxidized styrene–butadiene–styrene nanofibers loaded with nanometer titania dioxide. Journal of Industrial Textiles, 2017, 46, 1715-1724.	1.1	9
1054	Investigating processing techniques for bovine gelatin electrospun scaffolds for bone tissue regeneration. , 2017, 105, 1131-1140.		24
1055	Optimisation of electrospinning parameter for Poly(L-lactic) acid (PLLA) electrospun nanofiber. MATEC Web of Conferences, 2017, 87, 02012.	0.1	3
1056	Macroporous materials: microfluidic fabrication, functionalization and applications. Chemical Society Reviews, 2017, 46, 855-914.	18.7	126
1057	Nucleic acid scavenging microfiber mesh inhibits trauma-induced inflammation and thrombosis. Biomaterials, 2017, 120, 94-102.	5.7	52
1058	Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering. Tissue Engineering - Part B: Reviews, 2017, 23, 451-461.	2.5	115
1059	PEGylated poly(ester amide) elastomer scaffolds for soft tissue engineering. Polymers for Advanced Technologies, 2017, 28, 1097-1106.	1.6	14
1060	Biomaterials Based Strategies for Engineering Tumor Microenvironment. Advanced Structured Materials, 2017, , 301-361.	0.3	0
1061	Heterogeneous electrospun polycaprolactone/polyethylene glycol membranes with improved wettability, biocompatibility, and mineralization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520, 105-113.	2.3	50
1062	Enhanced Low-Temperature Response of PPy-WO ₃ Hybrid Nanocomposite Based Gas Sensor Deposited by Electrospinning Method For Selective and Sensitive Acetone Detection. IEEE Sensors Journal, 2017, 17, 2322-2328.	2.4	28

#	Article	IF	CITATIONS
1063	The Effect of halloysite on structure and properties of polycaprolactone/gelatin nanofibers. Polymer Engineering and Science, 2017, 57, 506-512.	1.5	15
1064	High stability under extreme condition of the poly(vinyl alcohol) nanofibers crosslinked by glutaraldehyde in organic medium. Polymer Degradation and Stability, 2017, 137, 229-237.	2.7	24
1065	Adapted dexamethasone delivery polyethylene oxide and poly(É›-caprolactone) construct promote mesenchymal stem cells chondrogenesis. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1640-1648.	1.9	14
1066	Determination of optical parameters of zinc oxide nanofibre deposited by electrospinning technique. Journal of Taibah University for Science, 2017, 11, 1245-1258.	1.1	39
1067	Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. European Polymer Journal, 2017, 88, 161-170.	2.6	109
1068	Fenugreek Incorporated Silk Fibroin Nanofibers—A Potential Antioxidant Scaffold for Enhanced Wound Healing. ACS Applied Materials & Interfaces, 2017, 9, 5916-5926.	4.0	197
1069	The effect of nozzle-exit-channel shape on resultant fiber diameter in melt-electrospinning. Materials Research Express, 2017, 4, 015302.	0.8	8
1070	Syringeless Electrospinning toward Versatile Fabrication of Nanofiber Web. Scientific Reports, 2017, 7, 41424.	1.6	60
1071	Electrospinnability of Poly Lactic-co-glycolic Acid (PLGA): the Role of Solvent Type and Solvent Composition. Pharmaceutical Research, 2017, 34, 738-749.	1.7	38
1072	Effect of non-Newtonian rheology on electrified jets of polymer nanofibers in electrospinning process based on bead–spring model. International Journal of Advanced Manufacturing Technology, 2017, 91, 3535-3550.	1.5	12
1073	Effect of collector design on the morphological properties of polycaprolactone electrospun fibers. Materials Letters, 2017, 193, 154-157.	1.3	64
1074	Poly(lactic acid)/poly(vinyl pyrrolidone) membranes produced by solution blow spinning: Structure, thermal, spectroscopic, and microbial barrier properties. Journal of Applied Polymer Science, 2017, 134,	1.3	26
1075	Uniform highâ€molecularâ€weight polylactide nanofibers electrospun from a solution below its entanglement concentration. Journal of Applied Polymer Science, 2017, 134, .	1.3	5
1076	Fabrication of electrospun antioxidant nanofibers by rutinâ€pluronic solid dispersions for enhanced solubility. Journal of Applied Polymer Science, 2017, 134, .	1.3	14
1077	Promoting Endothelialization of Polymeric Cardiovascular Biomaterials. Macromolecular Chemistry and Physics, 2017, 218, 1600574.	1.1	43
1078	Electrospun alginate nanofibres impregnated with silver nanoparticles: Preparation, morphology and antibacterial properties. Carbohydrate Polymers, 2017, 165, 304-312.	5.1	114
1079	An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. Materials Science and Engineering C, 2017, 75, 433-444.	3.8	134
1080	Parameter Optimization for the Electrospinning of La _{1–x} Sr _x Co _{1–y} Fe _y O _{3–} <i>_{î´} Fibers for IT‧OFC Electrodes. Fuel Cells, 2017, 17, 415-422.</i>	< <u>/i</u> あ	14

#	Article	IF	CITATIONS
1081	Prediction of the hydroxypropyl cellulose—poly(vinyl alcohol) ratio in aqueous solution containing papaverine hydrochloride in terms of drug loaded electrospun fiber formation. Journal of Pharmaceutical and Biomedical Analysis, 2017, 138, 357-362.	1.4	16
1082	Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing. Food Hydrocolloids, 2017, 69, 273-285.	5.6	58
1083	Reinforcement of electroactive characteristics in polyvinylidene fluoride electrospun nanofibers by intercalation of multi-walled carbon nanotubes. Journal of Polymer Research, 2017, 24, 1.	1.2	15
1084	Designing and fabrication of curcumin loaded PCL/PVA multi-layer nanofibrous electrospun structures as active wound dressing. Progress in Biomaterials, 2017, 6, 39-48.	1.8	87
1085	Production of electrospun gelatin nanofibers: an optimization study by using Taguchi's methodology. Materials Research Express, 2017, 4, 015023.	0.8	9
1086	Thermoresponsive polymer-modified microfibers for cell separations. Acta Biomaterialia, 2017, 53, 81-92.	4.1	40
1087	Liquid crystals in micron-scale droplets, shells and fibers. Journal of Physics Condensed Matter, 2017, 29, 133003.	0.7	140
1088	A solvent degradation approach to expose nanoparticles by decreasing nanofibers' diameter. Polymer Degradation and Stability, 2017, 138, 126-132.	2.7	0
1089	Near-Field Electrospinning: Progress and Applications. Journal of Physical Chemistry C, 2017, 121, 8663-8678.	1.5	166
1090	Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. , 2017, , 281-311.		27
1090 1091	Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. , 2017, , 281-311. Electrospun Micro/Nanofibers as Controlled Release Systems for Pheromones of Bactrocera oleae and Prays oleae. Journal of Chemical Ecology, 2017, 43, 254-262.	0.9	27 29
1090 1091 1092	Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. , 2017, , 281-311. Electrospun Micro/Nanofibers as Controlled Release Systems for Pheromones of Bactrocera oleae and Prays oleae. Journal of Chemical Ecology, 2017, 43, 254-262. A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization. Acta Biomaterialia, 2017, 54, 107-116.	0.9	27 29 62
1090 1091 1092 1093	 Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. , 2017, , 281-311. Electrospun Micro/Nanofibers as Controlled Release Systems for Pheromones of Bactrocera oleae and Prays oleae. Journal of Chemical Ecology, 2017, 43, 254-262. A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization. Acta Biomaterialia, 2017, 54, 107-116. PEO–CMC blend nanofibers fabrication by electrospinning for soft tissue engineering applications. Materials Letters, 2017, 195, 10-13. 	0.9 4.1 1.3	27 29 62 60
1090 1091 1092 1093 1094	 Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. , 2017, , 281-311. Electrospun Micro/Nanofibers as Controlled Release Systems for Pheromones of Bactrocera oleae and Prays oleae. Journal of Chemical Ecology, 2017, 43, 254-262. A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization. Acta Biomaterialia, 2017, 54, 107-116. PEO–CMC blend nanofibers fabrication by electrospinning for soft tissue engineering applications. Materials Letters, 2017, 195, 10-13. Antimicrobial and Immunomodulatory Surfaceâ€Functionalized Electrospun Membranes for Bone Regeneration. Advanced Healthcare Materials, 2017, 6, 1601345. 	0.9 4.1 1.3 3.9	27 29 62 60 66
1090 1091 1092 1093 1094 1095	Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. , 2017, , 281-311. Electrospun Micro/Nanofibers as Controlled Release Systems for Pheromones of Bactrocera oleae and Prays oleae. Journal of Chemical Ecology, 2017, 43, 254-262. A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization. Acta Biomaterialia, 2017, 54, 107-116. PEO–CMC blend nanofibers fabrication by electrospinning for soft tissue engineering applications. Materials Letters, 2017, 195, 10-13. Antimicrobial and Immunomodulatory Surfaceâ€Functionalized Electrospun Membranes for Bone Regeneration. Advanced Healthcare Materials, 2017, 6, 1601345. The development of polymeric biomaterials inspired by the extracellular matrix. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1051-1069.	0.9 4.1 1.3 3.9 1.9	27 29 62 60 66 19
1090 1091 1092 1093 1094 1095	Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. , 2017, , 281-311. Electrospun Micro/Nanofibers as Controlled Release Systems for Pheromones of Bactrocera oleae and Prays oleae. Journal of Chemical Ecology, 2017, 43, 254-262. A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization. Acta Biomaterialia, 2017, 54, 107-116. PEO–CMC blend nanofibers fabrication by electrospinning for soft tissue engineering applications. Materials Letters, 2017, 195, 10-13. Antimicrobial and Immunomodulatory Surfaceâ€Functionalized Electrospun Membranes for Bone Regeneration. Advanced Healthcare Materials, 2017, 6, 1601345. The development of polymeric biomaterials inspired by the extracellular matrix. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1051-1069. The role of cellulose nanocrystals incorporation route in waterborne polyurethane for preparation of electrospun nanocomposites mats. Carbohydrate Polymers, 2017, 166, 146-155.	0.9 4.1 1.3 3.9 1.9 5.1	27 29 62 60 66 19 24
1090 1091 1092 1093 1094 1095 1096	Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. , 2017, , 281-311. Electrospun Micro/Nanofibers as Controlled Release Systems for Pheromones of Bactrocera oleae and Prays oleae. Journal of Chemical Ecology, 2017, 43, 254-262. A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization. Acta Biomaterialia, 2017, 54, 107-116. PEOâć ^{er} CMC blend nanofibers fabrication by electrospinning for soft tissue engineering applications. Materials Letters, 2017, 195, 10-13. Antimicrobial and Immunomodulatory SurfaceâćFunctionalized Electrospun Membranes for Bone Regeneration. Advanced Healthcare Materials, 2017, 6, 1601345. The development of polymeric biomaterials inspired by the extracellular matrix. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1051-1069. The role of cellulose nanocrystals incorporation route in waterborne polyurethane for preparation of electrospun nanocomposites mats. Carbohydrate Polymers, 2017, 166, 146-155. Effect of different solvent systems on PHBV/PEO electrospun fibers. RSC Advances, 2017, 7, 4000-4010.	0.9 4.1 1.3 3.9 1.9 5.1 1.7	27 29 62 60 66 19 24 52

#	Article	IF	CITATIONS
1099	Preparation and properties of antibacterial, biocompatible core–shell fibers produced by coaxial electrospinning. Journal of Applied Polymer Science, 2017, 134, .	1.3	23
1100	Multilevelâ€layerâ€structured polyamide 6/poly(trimethylene terephthalate) nanofibrous membranes for lowâ€pressure air filtration. Journal of Applied Polymer Science, 2017, 134, .	1.3	23
1101	Systematic mechanical evaluation of electrospun gelatin meshes. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 412-419.	1.5	30
1102	Regulation of enzyme activity and stability through positional interaction with polyurethane nanofibers. Biochemical Engineering Journal, 2017, 121, 147-155.	1.8	13
1103	Development of Oromucosal Dosage Forms by Combining Electrospinning and Inkjet Printing. Molecular Pharmaceutics, 2017, 14, 808-820.	2.3	31
1104	Electrospun PVDF/MWCNT/OMMT hybrid nanocomposites: preparation and characterization. Iranian Polymer Journal (English Edition), 2017, 26, 331-339.	1.3	22
1105	Dual-Functional Grafted Electrospun Polymer Microfiber Scaffold Hosted Palladium Nanoparticles for Catalyzing Redox Reactions. Macromolecular Chemistry and Physics, 2017, 218, 1600555.	1.1	10
1106	Effects of Ca/P molar ratios on regulating biological functions of hybridized carbon nanofibers containing bioactive glass nanoparticles. Biomedical Materials (Bristol), 2017, 12, 025019.	1.7	10
1107	Incorporation of PLLA micro-fillers for mechanical reinforcement of calcium-phosphate cement. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71, 286-294.	1.5	31
1108	Electrospinning-based (bio)sensors for food and agricultural applications: A review. TrAC - Trends in Analytical Chemistry, 2017, 91, 91-103.	5.8	204
1109	A study on magnetic field of electospinning jet bending instability and magnetic field-assisted alignment mechanism. Journal of the Textile Institute, 2017, 108, 2147-2153.	1.0	6
1110	Fabrication and characterization of silver nanoparticle-incorporated bilayer electrospun–melt-blown micro/nanofibrous membrane. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 514-520.	1.8	14
1111	Draw‧pinning of Kilometer‣ong and Highly Stretchable Polymer Submicrometer Fibers. Advanced Science, 2017, 4, 1600480.	5.6	8
1112	Functionalization of electrospun polymeric wound dressings with antimicrobial peptides. Colloids and Surfaces B: Biointerfaces, 2017, 156, 133-148.	2.5	122
1113	Effect of different mineralization processes on in vitro and in vivo bone regeneration and osteoblast-macrophage cross-talk in co-culture system using dual growth factor mediated non-mulberry silk fibroin grafted poly (Đ"-caprolactone) nanofibrous scaffold. Colloids and Surfaces B: Biointerfaces, 2017, 156, 270-281.	2.5	9
1114	Electrospun Nanofibrous Membranes for Water Purification. Polymer Reviews, 2017, 57, 467-504.	5.3	137
1115	Functionalized graphene oxide-reinforced electrospun carbon nanofibers as ultrathin supercapacitor electrode. Journal of Energy Chemistry, 2017, 26, 790-798.	7.1	33
1116	Electrospun ultrathin PBAT/nHAp fibers influenced the in vitro and in vivo osteogenesis and improved the mechanical properties of neoformed bone. Colloids and Surfaces B: Biointerfaces, 2017, 155, 544-552.	2.5	61

#	ARTICLE	IF	Citations
1117	Manufacturing functionalized mono-crystalline diamond containing electrospun fibers reinforced epoxy composites with improved mechanical characteristics. Diamond and Related Materials, 2017, 76, 90-96.	1.8	8
1118	Synthesis, microstructure and magnetic properties of Fe ₂ CoAl nanofibers. Functional Materials Letters, 2017, 10, 1750035.	0.7	4
1119	Single step fabrication of antimicrobial fibre mats from a bioengineered protein-based polymer. Biomedical Materials (Bristol), 2017, 12, 045011.	1.7	17
1120	Oil/water separation techniques: a review of recent progresses and future directions. Journal of Materials Chemistry A, 2017, 5, 16025-16058.	5.2	859
1121	A comparative study of the mechanical, shape-memory, and degradation properties of poly(lactic acid) nanofiber and cellulose nanocrystal reinforced poly(mannitol sebacate) nanocomposites. RSC Advances, 2017, 7, 21869-21882.	1.7	25
1122	A review of photochromism in textiles and its measurement. Textile Progress, 2017, 49, 53-136.	1.3	47
1123	PAN/ZnO composite electrospun fibers for UV shielding applications. , 2017, , .		1
1124	Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation. Journal of Materials Chemistry A, 2017, 5, 497-502.	5.2	332
1125	Solvent-free electrospinning: opportunities and challenges. Polymer Chemistry, 2017, 8, 333-352.	1.9	65
1126	Antimicrobial Fibers and Fabrics Obtained by Electro/Melt Spinning. , 2017, , 155-177.		0
1127	Electrospun Nanofibers Membranes for Effective Air Filtration. Macromolecular Materials and Engineering, 2017, 302, 1600353.	1.7	418
1128	Basil seed mucilage as a new source for electrospinning: Production and physicochemical characterization. International Journal of Biological Macromolecules, 2017, 95, 689-695.	3.6	84
1129	Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Applied Surface Science, 2017, 423, 641-674.	3.1	152
1130	Uniform hydrophobic electrospun nanofibrous layer composed of polysulfone and sodium dodecyl sulfate for improved desalination performance. Separation and Purification Technology, 2017, 186, 352-365.	3.9	25
1131	Filtering membranes based on electrospun expanded polystyrene/ \hat{l}^2 -cyclodextrin fibers. , 2017, , .		0
1132	Electrospinning preparation and properties of Tb (TTA)3(TPPO)2/PANI/PVP electrical-luminescence bifunctional nanofibers. Materials Letters, 2017, 208, 3-6.	1.3	5
1133	The fabrication of iron oxide nanoparticleâ€nanofiber composites by electrospinning and their applications in tissue engineering. Biotechnology Journal, 2017, 12, 1600693.	1.8	38
1134	Fabrication of electrospun PVDF nanofibers with higher content of polar Î ² phase and smaller diameter by adding a small amount of dioctadecyl dimethyl ammonium chloride. Chinese Journal of Polymer Science (English Edition), 2017, 35, 992-1000.	2.0	23

#	Article	IF	CITATIONS
1135	A ₂ B-Miktoarm Glycopolymer Fibers and Their Interactions with Tenocytes. Bioconjugate Chemistry, 2017, 28, 1955-1964.	1.8	17
1136	The preparation of continuous CeO2/CuO/Al2O3 ultrafine fibers by electro-blowing spinning (EBS) and its photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2017, 28, 12580-12590.	1.1	11
1137	Tunable Enhancement of a Graphene/Polyaniline/Poly(ethylene oxide) Composite Electrospun Nanofiber Gas Sensor. Journal of Analysis and Testing, 2017, 1, 1.	2.5	10
1138	Microscopy Study of Morphology of Electrospun Fiber-MOF Composites with Secondary Growth. MRS Advances, 2017, 2, 2457-2463.	0.5	12
1140	Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices. Sensors and Actuators B: Chemical, 2017, 252, 697-705.	4.0	104
1141	Preparation and electrochemical properties of Si0.8Sb/C nanofiber composite anode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2281-2289.	1.2	7
1142	Polymer sutures for simultaneous wound healing and drug delivery – A review. International Journal of Pharmaceutics, 2017, 524, 454-466.	2.6	86
1143	Innovative Electrospinning Method of Depositing Functionally Graded and Aligned Multidirectional Polymer Nanofibers. Polymer-Plastics Technology and Engineering, 2017, 56, 1772-1779.	1.9	3
1144	BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique. Ceramics International, 2017, 43, 7663-7667.	2.3	20
1145	Long-term viable bioaerosol sampling using a temperature- and humidity-controlled filtration apparatus, a laboratory investigation using culturable <i>E. coli</i> Aerosol Science and Technology, 2017, 51, 576-586.	1.5	12
1146	Electrochemical characteristics of La 0.6 Sr 0.4 Co 1â^'y Fe y O 3 (y=0.2–1.0) fiber cathodes. Ceramics International, 2017, 43, 8715-8720.	2.3	17
1147	Ganoderma lucidum polysaccharide loaded sodium alginate micro-particles prepared via electrospraying in controlled deposition environments. International Journal of Pharmaceutics, 2017, 524, 148-158.	2.6	47
1148	Structurally stable hollow mesoporous graphitized carbon nanofibers embedded with NiMoO 4 nanoparticles for high performance asymmetric supercapacitors. Electrochimica Acta, 2017, 238, 337-348.	2.6	78
1149	Impact of microencapsulation within electrosprayed proteins on the formulation of green tea extract-enriched biscuits. LWT - Food Science and Technology, 2017, 81, 77-86.	2.5	64
1150	Surface modification of PCL-diopside fibrous membrane via gelatin immobilization for bone tissue engineering. Materials Chemistry and Physics, 2017, 194, 356-366.	2.0	28
1151	A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2017, 231, 597-616.	1.0	47
1152	Melt Electrospinning Writing Process Guided by a "Printability Number― Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2017, 139, .	1.3	45
1153	Characterization and Multi-Response Morphological Optimization for Preparation of Defect-Free Electrospun Nanofibers Using the Taguchi Method. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 2017, 30, 61-75.	0.5	2

#	Article	IF	CITATIONS
1154	Healing efficiency of polystyrene electrospun nanofibers with Grubbs' catalyst in thermosetting composite. Journal of Composite Materials, 2017, 51, 3003-3016.	1.2	9
1155	Electrospun nanofibers for wound healing. Materials Science and Engineering C, 2017, 76, 1413-1423.	3.8	352
1156	Electrospinning of graphene-oxide onto screen printed electrodes for heavy metal biosensor. Sensors and Actuators B: Chemical, 2017, 247, 366-373.	4.0	39
1157	Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers. Composites Part B: Engineering, 2017, 121, 58-67.	5.9	49
1158	Effects of porosity gradient of multilayered electrospun nanofibre mats on air filtration efficiency. Journal of the Textile Institute, 2017, 108, 1563-1571.	1.0	23
1159	Synthesis and characterization of PLGA/collagen composite scaffolds as skin substitute produced by electrospinning through two different approaches. Journal of Materials Science: Materials in Medicine, 2017, 28, 14.	1.7	31
1160	Influence of graphene oxide doping on the morphology and the magnetic properties of Ni 0.8 Gd 0.2 Fe 2 O 4 nanofibers prepared by electrospinning. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 658-662.	0.9	11
1161	Indomethacin electrospun nanofibers for colonic drug delivery: In vitro dissolution studies. Colloids and Surfaces B: Biointerfaces, 2017, 152, 29-35.	2.5	39
1162	Modification and characterization of electrospun poly (vinylidene fluoride)/poly (acrylonitrile) blend separator membranes. Composites Part B: Engineering, 2017, 112, 31-37.	5.9	45
1163	Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation. Separation and Purification Technology, 2017, 177, 71-85.	3.9	147
1164	Manufacturing nanofibrous bundles and the roller drafting effects on the bundle properties. Journal of the Textile Institute, 2017, 108, 1556-1562.	1.0	1
1165	Controlled synthesis of metallic iron nanoparticles and their magnetic hyperthermia performance in polyaniline composite nanofibers. Nanotechnology, 2017, 28, 055601.	1.3	10
1166	<i>In vitro</i> evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 257-270.	1.9	37
1167	Process parameters in the manufacture of ceramic ZnO nanofibers made by electrospinning. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	6
1168	Dehydrogenation properties of ammonia borane–polyacrylamide nanofiber hydrogen storage composites. Journal of Materials Science, 2017, 52, 4894-4902.	1.7	12
1169	How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review. Analytica Chimica Acta, 2017, 959, 15-42.	2.6	133
1170	Electrospun Nanofibers of Curdlan (βâ€1,3 Glucan) Blend as a Potential Skin Scaffold Material. Macromolecular Materials and Engineering, 2017, 302, 1600417.	1.7	41
1171	Electrospinning TPU/poly o-phenetidine (POEA) fibers: influence of POEA on fiber morphology. Polymer Bulletin, 2017, 74, 2905-2919.	1.7	4

#	Article	IF	CITATIONS
1172	Cu Microbelt Network Embedded in Colorless Polyimide Substrate: Flexible Heater Platform with High Optical Transparency and Superior Mechanical Stability. ACS Applied Materials & Interfaces, 2017, 9, 39650-39656.	4.0	29
1173	Plasma treatments of dressings for wound healing: a review. Biophysical Reviews, 2017, 9, 895-917.	1.5	22
1174	Highly Porous Poly(high internal phase emulsion) Membranes with "Open-Cell―Structure and CO ₂ -Switchable Wettability Used for Controlled Oil/Water Separation. Langmuir, 2017, 33, 11936-11944.	1.6	72
1175	Mechanically robust, multifunctional and nanofibrous membranes for tuberculosis elimination. RSC Advances, 2017, 7, 46906-46915.	1.7	1
1176	Fabrication and Characterization of Griffithsin-modified Fiber Scaffolds for Prevention of Sexually Transmitted Infections. Journal of Visualized Experiments, 2017, , .	0.2	2
1177	Influence of solution properties and pH on the fabrication of electrospun lentil flour/HPMC blend nanofibers. Food Research International, 2017, 102, 616-624.	2.9	29
1178	Polypyrrole Actuator Based on Electrospun Microribbons. ACS Applied Materials & Interfaces, 2017, 9, 38068-38075.	4.0	40
1179	Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chemical Reviews, 2017, 117, 12764-12850.	23.0	582
1180	Monomer: Design of ZnO Nanostructures (Nanobush and Nanowire) and Their Room-Temperature Ethanol Vapor Sensing Signatures. ACS Applied Materials & Interfaces, 2017, 9, 38135-38145.	4.0	56
1181	Fibrous polymeric buccal film formulation, engineering and bio-interface assessment. European Polymer Journal, 2017, 97, 147-157.	2.6	15
1182	Multichanneled Nerve Guidance Conduit with Spatial Gradients of Neurotrophic Factors and Oriented Nanotopography for Repairing the Peripheral Nervous System. ACS Applied Materials & Interfaces, 2017, 9, 37623-37636.	4.0	92
1183	Thermoresponsive and Active Functional Fiber Mats for Cultured Cell Recovery. Biomacromolecules, 2017, 18, 3714-3725.	2.6	5
1184	Silk scaffolds in bone tissue engineering: An overview. Acta Biomaterialia, 2017, 63, 1-17.	4.1	236
1185	Fabrication of polyurethane and thermoplastic polyurethane nanofiber by controlling the electrospinning parameters. Materials Research Express, 2017, 4, 105308.	0.8	8
1186	Direct Writing Electrospinning of Scaffolds with Multidimensional Fiber Architecture for Hierarchical Tissue Engineering. ACS Applied Materials & Interfaces, 2017, 9, 38187-38200.	4.0	97
1187	Electrospun Collagen Nanofibers and Their Applications in Skin Tissue Engineering. Tissue Engineering and Regenerative Medicine, 2017, 14, 699-718.	1.6	142
1188	TiO ₂ immobilised on biopolymer nanofibers for the removal of bisphenol A and diclofenac from water. Ecological Chemistry and Engineering S, 2017, 24, 417-429.	0.3	10
1189	Towards the development of multifunctional hybrid fibrillary gels: production and optimization by colloidal electrospinning. RSC Advances, 2017, 7, 48972-48979.	1.7	14

ARTICLE IF CITATIONS Durable electrospun microtubes for encapsulation of bacteria in atrazine bioremediation. Journal of 1190 2.6 9 Water Process Engineering, 2017, 19, 205-211. Preparation and characterization of electrospun PLA/PU bilayer nanofibrous membranes for 1191 0.3 controlled drug release applications. Integrated Ferroelectrics, 2017, 179, 104-119. Diels–Alder "Clickable―Biodegradable Nanofibers: Benign Tailoring of Scaffolds for Biomolecular 1192 1.8 22 Immobilization and Cell Growth. Bioconjugate Chemistry, 2017, 28, 2420-2428. An Effective Cell Coculture Platform Based on the Electrospun Microtube Array Membrane for Nerve Regeneration. Cells Tissues Organs, 2017, 204, 179-190. Nanofibrous polysaccharide hydroxyapatite composites with biocompatibility against human 1194 5.1 21 osteoblasts. Carbohydrate Polymers, 2017, 177, 388-396. Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review. Journal of Controlled Release, 2017, 266, 57-74. 4.8 Coaxial poly(lactic acid) electrospun composite membranes incorporating cellulose and chitin 1196 4.1 35 nanocrystals. Journal of Membrane Science, 2017, 544, 261-271. Self-Powered Electrospinning System Driven by a Triboelectric Nanogenerator. ACS Nano, 2017, 11, 7.3 163 10439-10445. Enhancement the Efficiency of ZnOnanofiber mats antibacterial Using Novel PVA/Ag nanoparticles. 1198 1.8 11 Energy Procedia, 2017, 119, 615-621. Tailoring Biodegradation of Fine Grained AZ31 Alloy Implants by Nanofibrous Coatings. Materials 1199 Today: Proceedings, 2017, 4, 6697-6703. Fabrication of cellulose acetate/polybenzoxazine cross-linked electrospun nanofibrous membrane for 1200 5.151 water treatment. Carbohydrate Polymers, 2017, 177, 378-387. Room temperature ethanol sensing properties of ZnO nanorods prepared using an electrospinning technique. Journal of Materials Chemistry C, 2017, 5, 10869-10880. Atmospheric Pressure Plasma Jet Treatment of Poly-Îu-caprolactone Polymer Solutions To Improve 1202 4.0 24 Electrospinning. ACS Applied Materials & amp; Interfaces, 2017, 9, 33080-33090. Optimization of Chitosan/PVA Concentration in Fabricating Nanofibers Membrane and its Prospect as 1203 0.3 Air Filtration. Materials Science Forum, 0, 901, 20-25. Electromagnetic functionalized micro-ribbons and ropes for strain sensors via UV-assisted 1204 1.3 8 solvent-free electrospinning. Journal Physics D: Applied Physics, 2017, 50, 395601. Tissue Engineered Skin and Wound Healing: Current Strategies and Future Directions. Current Pharmaceutical Design, 2017, 23, 3455-3482. La2O2CN2:Yb3+/Tm3+ nanofibers and nanobelts: novel fabrication technique, structure and 1206 upconversion luminescence. Journal of Materials Science: Materials in Electronics, 2017, 28, 1.1 2 16282-16291. Carvacrol encapsulation in starch or PCL based matrices by electrospinning. Journal of Food Engineering, 2017, 214, 245-256.

#	Article	IF	Citations
1208	Wet-spinning fabrication of shear-patterned alginate hydrogel microfibers and the guidance of cell alignment. International Journal of Energy Production and Management, 2017, 4, 299-307.	1.9	31
1209	Chitosan: Application in tissue engineering and skin grafting. Journal of Polymer Research, 2017, 24, 1.	1.2	71
1210	Recent advances in nanoparticle-mediated drug delivery. Journal of Drug Delivery Science and Technology, 2017, 41, 260-268.	1.4	127
1211	Preparation of Polymeric Mats Through Electrospinning for Technological Uses. , 2017, , 83-128.		1
1212	The effect of poly (lactic-co-glycolic) acid composition on the mechanical properties of electrospun fibrous mats. International Journal of Pharmaceutics, 2017, 529, 371-380.	2.6	10
1213	Surface enhanced Raman spectroscopy in nanofibers mats of SiO2-TiO2-Ag. Results in Physics, 2017, 7, 2520-2527.	2.0	24
1214	<i>50th Anniversary Perspective</i> : Advanced Polymer Fibers: High Performance and Ultrafine. Macromolecules, 2017, 50, 5627-5642.	2.2	104
1215	Electrospun poly(ethylene oxide)/chitosan nanofibers with cellulose nanocrystals as support for cell culture of 3T3 fibroblasts. Cellulose, 2017, 24, 3353-3365.	2.4	33
1216	Effects of plasma treatment on biocompatibility of poly[(L-lactide)- <i>co</i> -(<i>ïµ</i> -caprolactone)] and poly[(L-lactide)- <i>co</i> -glycolide] electrospun nanofibrous membranes. Polymer International, 2017, 66, 1640-1650.	1.6	17
1217	Effect of Blend Ratio on Morphology and Swelling Properties of PVA/Chitosan Nanofibers. Materials Science Forum, 0, 901, 79-84.	0.3	8
1218	Modeling of downstream heating in melt electrospinning of polymers. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1393-1405.	2.4	13
1219	Colorimetric Nanofibers as Optical Sensors. Advanced Functional Materials, 2017, 27, 1702646.	7.8	96
1220	Recent advances in biomaterials for the treatment of diabetic foot ulcers. Biomaterials Science, 2017, 5, 1962-1975.	2.6	70
1221	Composite nanofibrous microfiltration water filter. Journal of Applied Polymer Science, 2017, 134, 45557.	1.3	7
1222	Cellulose Acetate Modified Titanium Dioxide (TiO2) Nanoparticles Electrospun Composite Membranes: Fabrication and Characterization. Journal of the Institution of Engineers (India): Series E, 2017, 98, 91-101.	0.5	15
1223	Evaluation of electrospinning parameters on the tensile strength and suture retention strength of polycaprolactone nanofibrous scaffolds through surface response methodology. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 369-378.	1.5	41
1224	Investigation of the effects of starch on the physical and biological properties of polyacrylamide (PAAm)/starch nanofibers. Progress in Biomaterials, 2017, 6, 85-96.	1.8	12
1225	Improved survival of cardiac cells on surface modified electrospun nanofibers. Polymer Science - Series A, 2017, 59, 515-523.	0.4	8

#	ARTICLE	IF	Citations
1226	Defining the role of nanonetting in the electrical behaviour of composite nanofiber/nets. RSC Advances, 2017, 7, 38812-38818.	1.7	8
1227	Rotary jet spinning review – a potential high yield future for polymer nanofibers. Nanocomposites, 2017, 3, 97-121.	2.2	87
1229	An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics. Journal of Materials Chemistry C, 2017, 5, 12657-12673.	2.7	141
1230	Alignment of Multiple Electrospun Piezoelectric Fiber Bundles Across Serrated Gaps at an Incline: A Method to Generate Textile Strain Sensors. Scientific Reports, 2017, 7, 15436.	1.6	17
1231	Colloidal Bio-nanoparticles in Polymer Fibers: Current Trends and Future Prospects. , 2017, , 279-294.		1
1232	Functional Nonwoven Materials Obtained by Electrospinning from a Polymer Melt. Fibre Chemistry, 2017, 49, 173-182.	0.0	7
1233	Porosity characterization of biodegradable porous poly (L-lactic acid) electrospun nanofibers. Materials Research Express, 2017, 4, 125002.	0.8	6
1234	The Influence of Polymer Solution on the Properties of Electrospun 3D Nanostructures. IOP Conference Series: Materials Science and Engineering, 2017, 209, 012092.	0.3	65
1235	Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water. Reactive and Functional Polymers, 2017, 121, 67-75.	2.0	52
1236	Recent advances on electrospun scaffolds as matrices for tissue-engineered heart valves. Materials Today Chemistry, 2017, 5, 11-23.	1.7	33
1237	Waterborne Electrospinning of Poly(<i>N</i> -isopropylacrylamide) by Control of Environmental Parameters. ACS Applied Materials & Interfaces, 2017, 9, 24100-24110.	4.0	29
1238	Mesporous 3C-SiC Hollow Fibers. Scientific Reports, 2017, 7, 1893.	1.6	10
1239	Electrospun polymeric nanofibers: New horizons in drug delivery. European Journal of Pharmaceutical Sciences, 2017, 107, 148-167.	1.9	225
1240	The preparation, properties and applications of electrospun co-polyamide 6,12 membranes modified by cellulose nanocrystals. Materials and Design, 2017, 132, 314-323.	3.3	35
1241	Comparative Study of Polymer Dissolution Techniques for Electrospinning. Procedia Manufacturing, 2017, 10, 652-661.	1.9	12
1242	Exploring Polymer Nanofiber Mechanics: A review of the methods for determining their properties. IEEE Nanotechnology Magazine, 2017, 11, 16-28.	0.9	8
1243	A design of experiments approach to identify the influencing parameters that determine poly-D,L-lactic acid (PDLLA) electrospun scaffold morphologies. Biomedical Materials (Bristol), 2017, 12, 055009.	1.7	27
1244	Functional electrospun fibers for the treatment of human skin wounds. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119, 283-299.	2.0	132

#	Article	IF	Citations
1245	User input in iterative design for prevention product development: leveraging interdisciplinary methods to optimize effectiveness. Drug Delivery and Translational Research, 2017, 7, 761-770.	3.0	9
1246	Polyaniline based microtubes as building-blocks for artificial muscle applications. Sensors and Actuators B: Chemical, 2017, 253, 576-583.	4.0	18
1247	Fabrication of PMMA/zeolite nanofibrous membrane through electrospinning and its adsorption behavior. Journal of Applied Polymer Science, 2017, 134, .	1.3	24
1248	Use of electrospinning to directly fabricate three-dimensional nanofiber stacks of cellulose acetate under high relative humidity condition. Cellulose, 2017, 24, 219-229.	2.4	31
1249	Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials, 2017, 115, 115-127.	5.7	430
1250	Nanocellulose in packaging: Advances in barrier layer technologies. Industrial Crops and Products, 2017, 95, 574-582.	2.5	268
1251	Development of electroactive nanofibers based on thermoplastic polyurethane and poly(<i>o</i> â€ethoxyaniline) for biological applications. Journal of Biomedical Materials Research - Part A, 2017, 105, 601-607.	2.1	6
1252	Role of non-mulberry silk fibroin in deposition and regulation of extracellular matrix towards accelerated wound healing. Acta Biomaterialia, 2017, 48, 157-174.	4.1	174
1253	3D scaffolds coated with nanofibers displaying bactericidal activity for bone tissue applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 432-442.	1.8	7
1254	Morphology of electrospun poly(ethylene oxide) ultra-fine fibres with incorporated MoO3 nanoparticles. Materials and Design, 2017, 113, 76-83.	3.3	11
1255	Nanostructured poly (lactic acid) electrospun fiber with high loadings of TiO2 nanoparticles: Insights into bactericidal activity and cell viability. Materials Science and Engineering C, 2017, 71, 381-385.	3.8	50
1256	Electrospun composite nanofiber mats of Cellulose@Organically modified montmorillonite for heavy metal ion removal: Design, characterization, evaluation of absorption performance. Composites Part A: Applied Science and Manufacturing, 2017, 92, 10-16.	3.8	87
1257	Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials, 2017, 114, 121-143.	5.7	287
1258	Multi-layered nanofibrous mucoadhesive films for buccal and sublingual administration of drug-delivery and vaccination nanoparticles - important step towards effective mucosal vaccines. Journal of Controlled Release, 2017, 249, 183-195.	4.8	96
1259	Electrochemical Detection of Cardiac Biomarkers Utilizing Electrospun Multiwalled Carbon Nanotubes Embedded SUâ€8 Nanofibers. Electroanalysis, 2017, 29, 380-386.	1.5	22
1260	Poly(ethylene glycol) Hydrogels with Tailorable Surface and Mechanical Properties for Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2017, 3, 1494-1498.	2.6	22
1261	In-situ synthesis of AgNPs in the natural/synthetic hybrid nanofibrous scaffolds: Fabrication, characterization and antimicrobial activities. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 66-76.	1.5	42
1262	Effect of polyvinylidene fluoride electrospun fiber orientation on neural stem cell differentiation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 2376-2393.	1.6	66

#	Article	IF	CITATIONS
1263	On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide. Materials Science and Engineering C, 2017, 70, 121-131.	3.8	83
1264	Gelatin/chondroitin sulfate nanofibrous scaffolds for stimulation of wound healing: <i>Inâ€vitro</i> and <i>inâ€vivo</i> study. Journal of Biomedical Materials Research - Part A, 2017, 105, 2020-2034.	2.1	52
1265	Aqueous electrospinning of poly(2-ethyl-2-oxazoline): Mapping the parameter space. European Polymer Journal, 2017, 88, 724-732.	2.6	22
1266	Processing and production of bioresorbable polymer scaffolds for tissue engineering. , 2017, , 181-203.		20
1267	Reinforcement of electrospun poly(ε aprolactone) scaffold using diopside nanopowder to promote biological and physical properties. Journal of Applied Polymer Science, 2017, 134, .	1.3	25
1268	Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering. Materials Science and Engineering C, 2017, 71, 240-251.	3.8	64
1269	Gold nanoparticles assembly on electrospun poly(vinyl alcohol)/poly(ethyleneimine)/glucose oxidase nanofibers for ultrasensitive electrochemical glucose biosensing. Sensors and Actuators B: Chemical, 2017, 238, 392-401.	4.0	86
1270	Recent advances in multiaxial electrospinning for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112, 1-17.	2.0	211
1271	Polymers against Microorganisms. , 2017, , .		10
1272	Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers. International Materials Reviews, 2017, 62, 367-391.	9.4	62
1273	Electrospinning: Polymer Nanofibre Adsorbent Applications for Metal Ion Removal. Journal of Polymers and the Environment, 2017, 25, 1175-1189.	2.4	65
1274	Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting. European Polymer Journal, 2017, 86, 154-161.	2.6	41
1275	Effect of parameters on the quality of coreâ€shell fibrous scaffold for retinal differentiation of conjunctiva mesenchymal stem cells. Journal of Biomedical Materials Research - Part A, 2017, 105, 189-197.	2.1	23
1276	Mass and controlled fabrication of aligned PVP fibers for matrix type antibiotic drug delivery systems. Chemical Engineering Journal, 2017, 307, 661-669.	6.6	72
1277	Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. International Journal of Pharmaceutics, 2017, 523, 441-453.	2.6	209
1278	Fabrication and Characterization of New Composite Tio2 Carbon Nanofiber Anodic Catalyst Support for Direct Methanol Fuel Cell via Electrospinning Method. Nanoscale Research Letters, 2017, 12, 613.	3.1	19
1280	Fabrication of nanofiber mats with microstructure gradient by cone electrospinning. Nanomaterials and Nanotechnology, 2017, 7, 184798041774847.	1.2	13
1281	Preparation and Characterization of Levofloxacin-Loaded Nanofibers as Potential Wound Dressings. Acta Marisiensis - Seria Medica, 2017, 63, 66-69.	0.3	17

#	Article	IF	CITATIONS
1282	Production of electrospun chitosan for biomedical applications. , 2017, , 211-237.		5
1283	Electrospun Polymeric Smart Materials for Tissue Engineering Applications. , 2017, , 251-282.		2
1284	Functional electrospun cellulosic nanofiber mats for antibacterial bandages. Fibers and Polymers, 2017, 18, 2379-2386.	1.1	13
1285	Electrospun Cellulose and Nanocellulose Composites as a Biomaterial. , 2017, , 57-107.		3
1286	Solution electrospinning of nanofibers. , 2017, , 73-108.		15
1287	Membrane Technology for Human Health. , 2017, 14, 43-59.		0
1288	Antibacterial Electrospun Poly(vinyl alcohol)/Enzymatic Synthesized Poly(catechol) Nanofibrous Midlayer Membrane for Ultrafiltration. ACS Applied Materials & Interfaces, 2017, 9, 33107-33118.	4.0	50
1289	A novel method to understand tumor cell invasion: integrating extracellular matrix mimicking layers in microfluidic chips by "selective curingâ€ŧ Biomedical Microdevices, 2017, 19, 92.	1.4	20
1290	Comparative study of electrospinning systems using 3-D computer models. , 2017, , .		0
1291	Three-dimensional computer models of electrospinning systems. Open Physics, 2017, 15, 777-789.	0.8	9
1292	Influence of the molecular weight of polymer, solvents and operational condition in the electrospinning of polycaprolactone. Revista Facultad De IngenierÃa, 2017, , 35-45.	0.5	14
1293	Needleless Electrospinning Using a Flat Wheel Spinneret. Journal of Engineered Fibers and Fabrics, 2017, 12, 155892501701200.	0.5	4
1294	Electrospinning, Functionalization and quaternization of Polyvinylbenzylchloride (PVBC) Electrospun Nanofibers. Journal of Organic & Inorganic Chemistry, 2017, 02, .	0.0	1
1295	Evaluation of poly(lactide-co-glycolide)/hydroxyapatite nanofibres for reconstruction of critical-sized segmental bone defects in a canine model. Veterinarni Medicina, 2017, 62, 325-332.	0.2	3
1296	Core/shell nanofiber characterization by Raman scanning microscopy. Biomedical Optics Express, 2017, 8, 1025.	1.5	22
1297	Highly reflective nanofiber films based on electrospinning and their application on color uniformity and luminous efficacy improvement of white light-emitting diodes. Optics Express, 2017, 25, 20598.	1.7	33
1298	Nanocapsule formation by electrospinning. , 2017, , 264-319.		9
1299	Nanoencapsulation of Enzymes, Bioactive Peptides, and Biological Molecules. , 2017, , 297-332.		1
#	Article	IF	CITATIONS
------	--	-----	-----------
1300	5.17 Three-Dimensional Bioengineered Cancer Models. , 2017, , 303-328.		2
1301	<i>Effects of Epidermal Growth Factor-Loaded Radially Oriented Nano-patterned Patch on Chronic Tympanic Membrane Perforation</i> . , 2017, , .		0
1302	1.16 Electrospinning for Membrane Fabrication: Strategies and Applications. , 2017, , 418-444.		26
1303	Electrospun scaffolds for vascular tissue engineering. , 2017, , 261-287.		3
1304	Artificial Auricular Cartilage Using Silk Fibroin and Polyvinyl Alcohol Hydrogel. International Journal of Molecular Sciences, 2017, 18, 1707.	1.8	63
1305	Optimization of Polymer-ECM Composite Scaffolds for Tissue Engineering: Effect of Cells and Culture Conditions on Polymeric Nanofiber Mats. Journal of Functional Biomaterials, 2017, 8, 1.	1.8	40
1306	Electrospun PVA/Bentonite Nanocomposites Mats for Drug Delivery. Materials, 2017, 10, 1448.	1.3	25
1307	On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles. Nanomaterials, 2017, 7, 4.	1.9	51
1308	Electrospun Nanofibres Containing Antimicrobial Plant Extracts. Nanomaterials, 2017, 7, 42.	1.9	129
1309	Development of Poly(lactic acid)/Chitosan Fibers Loaded with Essential Oil for Antimicrobial Applications. Nanomaterials, 2017, 7, 194.	1.9	64
1310	Feedback System Control Optimized Electrospinning for Fabrication of an Excellent Superhydrophobic Surface. Nanomaterials, 2017, 7, 319.	1.9	11
1311	Controlled Morphing of Microbubbles to Beaded Nanofibers via Electrically Forced Thin Film Stretching. Polymers, 2017, 9, 265.	2.0	11
1312	Fabrication of Electrospun Polylactic Acid/Cinnamaldehyde∬²-Cyclodextrin Fibers as an Antimicrobial Wound Dressing. Polymers, 2017, 9, 464.	2.0	59
1313	Electrospun nanofibers for filtration applications. , 2017, , 449-466.		36
1314	The Use of Finite Element Analyses to Design and Fabricate Three-Dimensional Scaffolds for Skeletal Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 2017, 5, 30.	2.0	36
1315	Melt electrospinning in tissue engineering. , 2017, , 87-100.		5
1316	Electrospun Nanofibers in Drug Delivery. , 2017, , 189-215.		11
1317	An Introduction to Nanoencapsulation Techniques for the Food Bioactive Ingredients. , 2017, , 1-62.		12

#	Article	IF	CITATIONS
1318	Collagen-Based Scaffolds for Bone Tissue Engineering Applications. , 2017, , 187-224.		4
1319	Impact of Acetic Acid on the Survival of <i>L. plantarum</i> upon Microencapsulation by Coaxial Electrospraying. Journal of Healthcare Engineering, 2017, 2017, 1-6.	1.1	18
1320	A Comparison of Tissue Engineering Scaffolds Incorporated with Manuka Honey of Varying UMF. BioMed Research International, 2017, 2017, 1-12.	0.9	39
1321	Production of polymeric nanofibers with different conditions of the electrospinning process. Revista Materia, 2017, 22, .	0.1	7
1322	Electrospinning of Core-Shell Fibers for Drug Release Systems. Journal of Self-Assembly and Molecular Electronics (SAME), 2017, 5, 17-30.	0.0	8
1323	Electrospun biomaterials for dermal regeneration. , 2017, , 179-231.		5
1324	SPINNABILITY, MORPHOLOGY AND MECHANICAL PROPERTIES OF GELATINS WITH DIFFERENT BLOOM INDEX. Brazilian Journal of Chemical Engineering, 2017, 34, 253-261.	0.7	4
1325	The Influence of Process Parameters on the Characteristics of Electrospun 3D Nanostructures. IOP Conference Series: Materials Science and Engineering, 2017, 209, 012074.	0.3	3
1326	Electrospun Fibers of Cyclodextrins and Poly(cyclodextrins). Molecules, 2017, 22, 230.	1.7	43
1327	Rice Straw Extracted Cellulose Biocompatible Nanofiber. International Journal of Chemoinformatics and Chemical Engineering, 2017, 6, 1-20.	0.1	Ο
1328	Fabrication and Properties of Rubber Nanofiber from Electrospinning. , 2017, , .		5
1330	Electrospun polymeric dressings functionalized with antimicrobial peptides and collagen type I for enhanced wound healing. IOP Conference Series: Materials Science and Engineering, 2017, 254, 062004.	0.3	10
1331	A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 2018, 11, 1165-1188.	2.3	1,136
1332	Enhanced photostability and sensing performance of graphene quantum dots encapsulated in electrospun polyacrylonitrile nanofibrous filtering membranes. Sensors and Actuators B: Chemical, 2018, 262, 902-912.	4.0	29
1333	Pullulan-alginate fibers produced using free surface electrospinning. International Journal of Biological Macromolecules, 2018, 112, 809-817.	3.6	60
1334	Enhanced oil removal from water in oil stable emulsions using electrospun nanocomposite fiber mats. RSC Advances, 2018, 8, 7641-7650.	1.7	28
1335	Development of PVA/gelatin nanofibrous scaffolds for Tissue Engineering via electrospinning. Materials Research Express, 2018, 5, 035401.	0.8	23
1336	Targeted Gastrointestinal Delivery of Nutraceuticals with Polysaccharideâ€Based Coatings. Macromolecular Bioscience, 2018, 18, e1700363.	2.1	17

		CITATION REPORT		
#	Article		IF	CITATIONS
1337	Process study, development and degradation behavior of different size scale electrospu poly(caprolactone) and poly(lactic acid) fibers. Journal of Polymer Research, 2018, 25, 1	n 	1.2	14
1338	Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffold antibacterial materials for tissue engineering applications. Carbohydrate Polymers, 2018	s as 8, 191, 127-135.	5.1	52
1339	Thrombinâ€Loaded Poly(butylene succinate)â€Based Electrospun Membranes for Rapid Application. Macromolecular Materials and Engineering, 2018, 303, 1700395.	Hemostatic	1.7	27
1340	Bioactive Polysaccharide Materials for Modern Wound Healing. Springer Briefs in Molec 2018, , .	ular Science,	0.1	6
1341	Novel SA@Ca ²⁺ /RCSPs core–shell structure nanofibers by electrospinni dressings. RSC Advances, 2018, 8, 15558-15566.	ng for wound	1.7	33
1342	Emerging Techniques in the Preparation of Wound Care Products. Springer Briefs in Mo Science, 2018, , 25-38.	lecular	0.1	1
1343	A Collagen-Hyaluronic Acid Matrix for Stem Cell Culture. , 2018, , 89-117.			0
1344	Zeolitic imidazole Framework-8 (ZIF-8) fibers by gas-phase conversion of electroblown z aluminum doped zinc oxide fibers. Microporous and Mesoporous Materials, 2018, 267,	inc oxide and 212-220.	2.2	16
1345	Oneâ€step facile process to obtain insoluble polysaccharides fibrous mats from electros waterâ€soluble PMDA/cyclodextrin polymer. Journal of Applied Polymer Science, 2018,	spinning of 135, 46490.	1.3	9
1346	3D functional scaffolds for skin tissue engineering. , 2018, , 345-365.			36
1347	Electrospun polyvinyl alcohol/gelatin/chondroitin sulfate nanofibrous scaffold: Fabricati vitro evaluation. International Journal of Biological Macromolecules, 2018, 114, 1248-1	on and in 256.	3.6	40
1348	Photo-degradation of electrospun composite mats based on poly(D,L-lactide) submicro zinc oxide nanoparticles. Polymer Degradation and Stability, 2018, 152, 95-104.	n fibers and	2.7	13
1349	Fabrication of polymeric nanofibrous mats with controllable structure and enhanced we behavior using one-step electrospinning. Polymer, 2018, 143, 271-280.	tting?	1.8	32
1350	Polymer-free electrospinning of tannic acid and cross-linking in water for hybrid supram nanofibres. Nanoscale, 2018, 10, 9164-9173.	olecular	2.8	40
1351	Catalytic carpets: Pt@MIL-101@electrospun PCL, a surprisingly active and robust hydro catalyst. Journal of Catalysis, 2018, 360, 81-88.	genation	3.1	21
1352	Plasma Modification of Poly Lactic Acid Solutions to Generate High Quality Electrospun Nanofibers. Scientific Reports, 2018, 8, 2241.	PLA	1.6	40
1353	Urea impedimetric biosensing using electrospun nanofibers modified with zinc oxide na Applied Surface Science, 2018, 443, 18-23.	noparticles.	3.1	68
1354	Oil-in-water emulsion impregnated electrospun poly(ethylene terephthalate) fiber mat a for optical fiber cleaning. Journal of Colloid and Interface Science, 2018, 520, 64-69.	is a novel tool	5.0	5

#	Article	IF	CITATIONS
1355	Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomaterialia, 2018, 73, 217-227.	4.1	88
1356	Nanostructured electrospun nonwovens of poly(ε-caprolactone)/quaternized chitosan for potential biomedical applications. Carbohydrate Polymers, 2018, 186, 110-121.	5.1	68
1357	"Click―chemistry in polymeric scaffolds: Bioactive materials for tissue engineering. Journal of Controlled Release, 2018, 273, 160-179.	4.8	172
1358	Development of Cotton Candy Method for High Productivity Polypropylene Fibers Webs. Fibers and Polymers, 2018, 19, 135-146.	1.1	4
1359	The combined effect of formulation and pH on properties of polyethylene oxide composite fiber containing egg albumen protein. International Journal of Biological Macromolecules, 2018, 112, 996-1004.	3.6	17
1360	Removal of aniline from air and water by polymers of intrinsic microporosity (PIM-1) electrospun ultrafine fibers. Journal of Colloid and Interface Science, 2018, 516, 317-324.	5.0	49
1361	Design of copolymer PLA-PCL electrospun matrix for biomedical applications. Reactive and Functional Polymers, 2018, 124, 77-89.	2.0	65
1362	Development of cress seed mucilage/PVA nanofibers as a novel carrier for vitamin A delivery. Food Hydrocolloids, 2018, 81, 31-38.	5.6	93
1363	Mechanical Properties and the Characterization of Polyacrylonitrile/Carbon Nanotube Composite Nanofiber. Arabian Journal for Science and Engineering, 2018, 43, 4697-4702.	1.7	30
1364	Recent Advances in Cell Electrospining of Natural and Synthetic Nanofibers for Regenerative Medicine. Drug Research, 2018, 68, 425-435.	0.7	35
1365	Mesoporous Poly(divinylbenzene) Fibers Based On Crosslinked Nanoparticles. Macromolecular Chemistry and Physics, 2018, 219, 1700471.	1.1	1
1366	Scalable fabrication of sulfated silk fibroin nanofibrous membranes for efficient lipase adsorption and recovery. International Journal of Biological Macromolecules, 2018, 111, 738-745.	3.6	10
1367	WSe2/rGO hybrid structure: A stable and efficient catalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 2601-2609.	3.8	35
1368	Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2018, 10, 5880-5891.	4.0	137
1370	Multifactorial modeling and optimization of solution and electrospinning parameters to generate superfine polystyrene nanofibers. Advances in Polymer Technology, 2018, 37, 2743-2755.	0.8	20
1371	Biomedical Applications of Recombinant Silkâ€Based Materials. Advanced Materials, 2018, 30, e1704636.	11.1	216
1372	Recent Advances in Electrospun Poly(ε-caprolactone)-Based Materials and Their Biomedical Applications. , 2018, , 77-130.		0
1373	A multifunctional material based on co-electrospinning for developing biosensors with optical oxygen transduction. Analytica Chimica Acta, 2018, 1015, 66-73.	2.6	17

#	Article	IF	CITATIONS
1374	Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds. Scientific Reports, 2018, 8, 1245.	1.6	116
1375	Hybrid functional microfibers for textile electronics and biosensors. Journal of Semiconductors, 2018, 39, 011009.	2.0	4
1376	Engineering 3D Hydrogels for Personalized In Vitro Human Tissue Models. Advanced Healthcare Materials, 2018, 7, 1701165.	3.9	96
1377	Method of suppressing jitter instability during electrospinning: Insulator auxiliary method. Ferroelectrics, 2018, 522, 88-97.	0.3	1
1378	A Comparative Study on Immobilization of Fructosyltransferase in Biodegradable Polymers by Electrospinning. Applied Biochemistry and Biotechnology, 2018, 185, 847-862.	1.4	21
1379	Oriented Nanofibrous Polymer Scaffolds Containing Protein‣oaded Porous Silicon Generated by Spray Nebulization. Advanced Materials, 2018, 30, e1706785.	11.1	38
1380	Efficient second harmonic generation by <i>para</i> -nitroaniline embedded in electro-spun polymeric nanofibres. Journal Physics D: Applied Physics, 2018, 51, 105106.	1.3	12
1381	Characterization and mechanical properties of cellulose acetate/carbon nanotube composite nanofibers. Advances in Polymer Technology, 2018, 37, 2446-2451.	0.8	41
1382	Effect of polymer concentration, needle diameter and annealing temperature on TiO2-PVP composite nanofibers synthesized by electrospinning technique. Ceramics International, 2018, 44, 5266-5272.	2.3	47
1383	Investigation of dielectric properties of free standing electrospun nonwoven mat. Journal of Applied Polymer Science, 2018, 135, 46121.	1.3	24
1384	3D printing technologies for 3D scaffold engineering. , 2018, , 203-234.		15
1385	Preparation of origanum minutiflorum oil-loaded core–shell structured chitosan nanofibers with tunable properties. Polymer Bulletin, 2018, 75, 4129-4144.	1.7	13
1386	From nano to micro to macro: Electrospun hierarchically structured polymeric fibers for biomedical applications. Progress in Polymer Science, 2018, 81, 80-113.	11.8	256
1387	Poly(ether sulfone) Nanofibers Impregnated with β-Cyclodextrin for Increased Micropollutant Removal from Water. ACS Sustainable Chemistry and Engineering, 2018, 6, 2942-2953.	3.2	37
1388	Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine. Journal of Materials Science: Materials in Medicine, 2018, 29, 8.	1.7	42
1389	Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocolloids, 2018, 79, 158-169.	5.6	93
1390	A novel polystyrene/epoxy ultraâ€fine hybrid fabric by electrospinning. Polymers for Advanced Technologies, 2018, 29, 517-527.	1.6	8
1391	Development of a PCL-silica nanoparticles composite membrane for Guided Bone Regeneration. Materials Science and Engineering C, 2018, 85, 154-161.	3.8	91

#	Article	IF	Citations
1392	Solution electrospinning with a pulsed electric field. Journal of Applied Polymer Science, 2018, 135, 46130.	1.3	8
1393	Preferred domain orientation in block copolymer fibers after solvent annealing. Molecular Systems Design and Engineering, 2018, 3, 357-363.	1.7	8
1394	Biomimetic electrospun coatings increase the <i>in vivo</i> sensitivity of implantable glucose biosensors. Journal of Biomedical Materials Research - Part A, 2018, 106, 1072-1081.	2.1	27
1395	Carbon nanofibers obtained from electrospinning process. Materials Research Express, 2018, 5, 025602.	0.8	8
1396	PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. European Polymer Journal, 2018, 99, 445-455.	2.6	85
1397	Pore engineering towards highly efficient electrospun nanofibrous membranes for aerosol particle removal. Science of the Total Environment, 2018, 625, 706-715.	3.9	63
1398	Combined Influence of Gelatin Fibre Topography and Growth Factors on Cultured Dorsal Root Ganglia Neurons. Anatomical Record, 2018, 301, 1668-1677.	0.8	7
1399	Electrospun fibers from blends of pea (Pisum sativum) protein and pullulan. Food Hydrocolloids, 2018, 83, 173-181.	5.6	49
1400	Investigation of plasmaâ€induced chemistry in organic solutions for enhanced electrospun PLA nanofibers. Plasma Processes and Polymers, 2018, 15, 1700226.	1.6	42
1401	The Use of Electrospinning Technique on Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, 1058, 247-263.	0.8	19
1402	Native collagen hydrogel nanofibres with anisotropic structure using core-shell electrospinning. Scientific Reports, 2018, 8, 6248.	1.6	78
1403	Synthesis of Manganese Oxide Embedded Carbon Nanofibers as Effective Biomimetic Enzymes for Sensitive Detection of Superoxide Anions Released from Living Cells. Macromolecular Materials and Engineering, 2018, 303, 1800079.	1.7	14
1404	Recent studies on electrospinning preparation of patterned, core–shell, and aligned scaffolds. Journal of Applied Polymer Science, 2018, 135, 46570.	1.3	22
1405	Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, 2018, , .	0.8	2
1406	Potential of silk sericin based nanofibrous mats for wound dressing applications. Materials Science and Engineering C, 2018, 90, 420-432.	3.8	97
1407	Fabrication of regenerated wool keratin/polycaprolactone nanofiber membranes for cell culture. International Journal of Biological Macromolecules, 2018, 114, 1168-1173.	3.6	38
1408	Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohydrate Polymers, 2018, 193, 316-325.	5.1	51
1409	Synthesis and applications of nanoporous perovskite metal oxides. Chemical Science, 2018, 9, 3623-3637.	3.7	129

#	Article	IF	CITATIONS
1410	An electrospun nanofiber matrix based on organo-clay for biosensors: PVA/PAMAM-Montmorillonite. Applied Surface Science, 2018, 444, 542-551.	3.1	50
1411	Efficiency Enhancement of Perovskite Solar Cells via Electrospun CuO Nanowires as Buffer Layers. ACS Applied Materials & Interfaces, 2018, 10, 11289-11296.	4.0	30
1412	Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nature Protocols, 2018, 13, 681-704.	5.5	466
1413	Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds. Biomedical Materials (Bristol), 2018, 13, 044107.	1.7	50
1414	Tailored electrospun nanofibrous polycaprolactone/gelatin scaffolds into an acid hydrolytic solvent system. European Polymer Journal, 2018, 101, 273-281.	2.6	31
1415	The effect of electrical stimulation on cortical cells in 3D nanofibrous scaffolds. RSC Advances, 2018, 8, 11027-11035.	1.7	22
1416	The method of overcoming the edge effect of the collection plate in the electrostatic spinning process: Auxiliary plate method. Ferroelectrics, 2018, 522, 98-107.	0.3	6
1417	The Preparation and Characterization of Ultrafine Fatty Acid Ester/Poly(meta-phenylene) Tj ETQq1 1 0.784314 rgB Polymers, 2018, 19, 498-506.	T /Overloo 1.1	ck 10 Tf 50 9
1418	Dual-responsive drug delivery systems prepared by blend electrospinning. International Journal of Pharmaceutics, 2018, 543, 1-7.	2.6	34
1419	Encapsulation of D-limonene in Alyssum homolocarpum seed gum nanocapsules by emulsion electrospraying: Morphology characterization and stability assessment. Bioactive Carbohydrates and Dietary Fibre, 2018, 16, 43-52.	1.5	28
1420	Design parameters for electrospun biodegradable vascular grafts. Journal of Industrial Textiles, 2018, 47, 2205-2227.	1.1	29
1421	Electrospun nanofibre materials to filter air pollutants – A review. Journal of Industrial Textiles, 2018, 47, 2253-2280.	1.1	138
1422	<i>In vitro</i> evaluation of gelatin and chitosan electrospun fibres as an artificial guide in peripheral nerve repair: a comparative study. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e679-e694.	1.3	17
1424	Electrospun nanofibres to mimic natural hierarchical structure of tissues: application in musculoskeletal regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e604-e619.	1.3	29
1425	Surface and proton conductivity properties of electrospun poly(vinyl butyral)/polyaniline nanofibers. Advances in Polymer Technology, 2018, 37, 1774-1781.	0.8	20
1426	Morphological and physicochemical evaluation of the propranolol HCl–Eudragit [®] RS100 electrosprayed nanoformulations. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 749-756.	1.9	14
1427	Design of electrospun nanofibrous mats for osteogenic differentiation of mesenchymal stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2505-2520.	1.7	60
1428	An authenticated theoretical modeling of electrified fluid jet in core–shell nanofibers production. Journal of Industrial Textiles, 2018, 47, 1791-1811.	1.1	7

#	Article	IF	CITATIONS
1429	Comparison of silk fibroin electrospun scaffolds with poloxamer and honey additives for burn wound applications. Journal of Bioactive and Compatible Polymers, 2018, 33, 79-94.	0.8	25
1430	Comparisons between silk fibroin nonwoven electrospun fabrics using aqueous and formic acid solutions. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 462-467.	1.8	14
1431	Semiconducting nanofibers in photoelectrochemistry. Materials Science in Semiconductor Processing, 2018, 73, 13-21.	1.9	18
1432	Fabrication and Characterization of Electrospun PVA/Mica Fibrous Nanocomposite Mats. Polymer-Plastics Technology and Engineering, 2018, 57, 320-326.	1.9	7
1433	Combined effects of 3D bone marrow stem cell-seeded wet-electrospun poly lactic acid scaffolds on full-thickness skin wound healing. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 905-912.	1.8	22
1434	Production and Characterization of Antimicrobial Electrospun Nanofibers Containing Polyurethane, Zirconium Oxide and Zeolite. BioNanoScience, 2018, 8, 154-165.	1.5	9
1435	Antioxidant electrospun zein nanofibrous web encapsulating quercetin/cyclodextrin inclusion complex. Journal of Materials Science, 2018, 53, 1527-1539.	1.7	70
1436	A novel electrospun hydroxypropyl methylcellulose/polyethylene oxide blend nanofibers: Morphology and physicochemical properties. Carbohydrate Polymers, 2018, 181, 234-246.	5.1	89
1437	Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Progress in Polymer Science, 2018, 77, 69-94.	11.8	582
1438	Recent development in electrospun polymer fiber and their composites with shape memory property: a review. Pigment and Resin Technology, 2018, 47, 47-54.	0.5	27
1439	Robust and durable superhydrophobic electrospun nanofibrous mats via a simple Cu nanocluster immobilization for oil-water contamination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 173-183.	2.3	34
1440	Catechin loaded PLGA submicron-sized fibers reduce levels of reactive oxygen species induced by MWCNT in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 122, 78-86.	2.0	14
1441	Photocatalytic activity of ZnO nanoparticle encapsulated poly(acrylonitrile) nanofibers. Materials Chemistry and Physics, 2018, 204, 195-206.	2.0	38
1442	Gelatin — Oxidized carboxymethyl cellulose blend based tubular electrospun scaffold for vascular tissue engineering. International Journal of Biological Macromolecules, 2018, 107, 1922-1935.	3.6	51
1443	Designer fibers from 2D to 3D – Simultaneous and controlled engineering of morphology, shape and size. Chemical Engineering Journal, 2018, 334, 89-98.	6.6	42
1444	Fabrication and characterization of novel nanofibers from cress seed mucilage for food applications. Journal of Applied Polymer Science, 2018, 135, 45811.	1.3	35
1445	Facile modification of electrospun fibrous structures with antifouling zwitterionic hydrogels. Biomedical Materials (Bristol), 2018, 13, 015021.	1.7	5
1446	Preparation of amidoximeâ€modified polyacrylonitrile nanofibrous adsorbents for the extraction of copper(II) and lead(II) ions and dye from aqueous media. Journal of Applied Polymer Science, 2018, 135, 45697.	1.3	19

#	Article	IF	CITATIONS
1447	High conductivity electrospun carbon/graphene composite nanofiber yarns. Polymer Engineering and Science, 2018, 58, 903-912.	1.5	7
1448	Carbonized electrospun polyvinylpyrrolidone/metal hybrid nanofiber composites for electrochemical applications. Journal of Applied Polymer Science, 2018, 135, 45639.	1.3	12
1449	Amorphous Electrically Actuating Submicron Fiber Waveguides. Macromolecular Materials and Engineering, 2018, 303, 1700302.	1.7	11
1450	Preparation of glutinous rice starch/polyvinyl alcohol copolymer electrospun fibers for using as a drug delivery carrier. Asian Journal of Pharmaceutical Sciences, 2018, 13, 239-247.	4.3	55
1451	AgNPs incorporated on deacetylated electrospun cellulose nanofibers and their effect on the antimicrobial activity. Polymers for Advanced Technologies, 2018, 29, 394-400.	1.6	33
1452	Nanofiber-based Matrimid organogel membranes for battery separator. Journal of Membrane Science, 2018, 546, 158-164.	4.1	29
1453	Ultrafine fibers of zein and anthocyanins as natural pH indicator. Journal of the Science of Food and Agriculture, 2018, 98, 2735-2741.	1.7	88
1454	Continuous Meltâ€Drawing of Highly Aligned Flexible and Stretchable Semiconducting Microfibers for Organic Electronics. Advanced Functional Materials, 2018, 28, 1705584.	7.8	39
1455	Electrospun polymeric short microfibers with surface-selective functionalization. Colloid and Polymer Science, 2018, 296, 239-244.	1.0	1
1456	Preparation and characterization of antibacterial electrospun chitosan/poly (vinyl alcohol)/graphene oxide composite nanofibrous membrane. Applied Surface Science, 2018, 435, 832-840.	3.1	141
1457	Rheological Properties of Poly(lactic acid) Solutions Added with Metal Oxide Nanoparticles for Electrospinning. Journal of Polymers and the Environment, 2018, 26, 2555-2565.	2.4	14
1458	The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber. International Journal of Food Microbiology, 2018, 266, 69-78.	2.1	165
1459	"Dialdehyde Cellulose―Nanofibers by Electrospinning as Polyvinyl Alcohol Blends: Manufacture and Product Characterization. Journal of Wood Chemistry and Technology, 2018, 38, 96-110.	0.9	13
1460	<i>In vitro</i> and <i>in vivo</i> biological characterization of poly(lactic acid) fiber scaffolds synthesized by air jet spinning. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2435-2446.	1.6	25
1461	Degradation and early in vitro activity of healthy hepatocytes onto bicomponent electrospun fibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67, 961-966.	1.8	5
1462	Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy, 2018, 44, 248-255.	8.2	216
1463	Conjugate electrospinning-fabricated nanofiber yarns simultaneously endowed with bifunctionality of magnetism and enhanced fluorescence. Journal of Materials Science, 2018, 53, 2290-2302.	1.7	27
1464	Cyclodextrin-based oral dissolving films formulation of taste-masked meloxicam. Pharmaceutical Development and Technology, 2018, 23, 530-539.	1.1	29

#	Article	IF	CITATIONS
1465	Composite pullulan-whey protein nanofibers made by electrospinning: Impact of process parameters on fiber morphology and physical properties. Food Hydrocolloids, 2018, 77, 726-735.	5.6	143
1466	Facile fabrication of flexible SiO2/PANI nanofibers for ammonia gas sensing at room temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 532-539.	2.3	43
1467	Highly flexible, mechanically stable, and sensitive NO2 gas sensors based on reduced graphene oxide nanofibrous mesh fabric for flexible electronics. Sensors and Actuators B: Chemical, 2018, 257, 846-852.	4.0	77
1468	Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 123, 42-49.	2.0	103
1469	Annealing impact on the structural and optical properties of electrospun SnO2 nanofibers for TCOs. Ceramics International, 2018, 44, 4586-4591.	2.3	5
1470	Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Materials Science and Engineering C, 2018, 92, 1075-1091.	3.8	83
1471	Multilayered electrospun nanofibrous scaffolds for tailored controlled release of embelin. Soft Materials, 2018, 16, 51-61.	0.8	6
1472	Nanofibrous nonwovens based on dendriticâ€linearâ€dendritic poly(ethylene glycol) hybrids. Journal of Applied Polymer Science, 2018, 135, 45949.	1.3	6
1473	Production and characterization of electrospun fish sarcoplasmic protein based nanofibers. Journal of Food Engineering, 2018, 222, 54-62.	2.7	18
1474	From small molecules to polymer fibers: Photopolymerization with electrospinning on the fly. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 101-107.	2.0	12
1475	Influence of humidity, temperature, and annealing on microstructure and tensile properties of electrospun polyacrylonitrile nanofibers. Polymer Engineering and Science, 2018, 58, 998-1009.	1.5	29
1476	Immobilization of horseradish peroxidase on electrospun poly(vinyl alcohol)–polyacrylamide blend nanofiber membrane and its use in the conversion of phenol. Polymer Bulletin, 2018, 75, 1843-1865.	1.7	43
1477	Protease immobilization on cellulose monoacetate/chitosan-blended nanofibers. Journal of Industrial Textiles, 2018, 47, 2092-2111.	1.1	26
1478	Biomimetic implants for pelvic floor repair. Neurourology and Urodynamics, 2018, 37, 566-580.	0.8	27
1479	Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Advanced Drug Delivery Reviews, 2018, 123, 33-64.	6.6	339
1480	Fabrication of polycaprolactone electrospun fibers with different hierarchical structures mimicking collagen fibrils for tissue engineering scaffolds. Applied Surface Science, 2018, 427, 311-325.	3.1	42
1481	Effect of pH along with other variables on physical properties of collagen nanofibers. , 2018, , .		0
1482	Investigation of Conical Spinneret in Generating More Dense and Compact Electrospun Nanofibers. Polymers, 2018, 10, 12.	2.0	15

#	Article	IF	CITATIONS
1483	Characterization of 3D electrospinning on inkjet printed conductive pattern on paper. Micro and Nano Systems Letters, 2018, 6, .	1.7	2
1485	Preparation and evaluation of poly(ester-urethane) urea/gelatin nanofibers based on different crosslinking strategies for potential applications in vascular tissue engineering. RSC Advances, 2018, 8, 35917-35927.	1.7	7
1486	Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. RSC Advances, 2018, 8, 37915-37938.	1.7	61
1487	Removal of cadmium using electrospun nanofibers. IOP Conference Series: Materials Science and Engineering, 2018, 440, 012012.	0.3	2
1488	Study of Electrospun fiber diameter using ANSOFT and ANSYS. Materials Today: Proceedings, 2018, 5, 21529-21537.	0.9	2
1489	Photochromic Nanofibers. , 0, , .		1
1490	Semiconducting Electrospun Nanofibers for Energy Conversion. , 2018, , .		0
1491	Surface Modification of PLA Nanofibers for Coating with Calcium Phosphate. Transactions of the Materials Research Society of Japan, 2018, 43, 271-274.	0.2	4
1492	Enhancing Multiple Jets in Electrospinning: The Role of Auxiliary Electrode. Nanomaterials, 2018, 8, 768.	1.9	5
1493	Coated electrospun alginate-containing fibers as novel delivery systems for regenerative purposes. International Journal of Nanomedicine, 2018, Volume 13, 6531-6550.	3.3	26
1494	One- and two-dimensional electrodynamic steering of electrospun polymer nanofibers. Applied Physics Letters, 2018, 113, .	1.5	10
1495	Design, Fabrication, and Function of Silkâ€Based Nanomaterials. Advanced Functional Materials, 2018, 28, 1805305.	7.8	120
1496	Titania-Based Hybrid Materials with ZnO, ZrO2 and MoS2: A Review. Materials, 2018, 11, 2295.	1.3	49
1497	Introduction of Stimuli-Responsive Wetting/Dewetting Smart Surfaces and Interfaces. Biologically-inspired Systems, 2018, , 1-33.	0.4	0
1498	Cross-linked electrospun gelatin nanofibers for cell-based assays. , 2018, 2018, 6088-6091.		9
1500	Electrospinningâ€onâ€Electrode Assembly for Air athodes in Microbial Fuel Cells. Advanced Materials Interfaces, 2018, 5, 1801107.	1.9	7
1501	Bubble Melt Electrospinning for Production of Polymer Microfibers. Polymers, 2018, 10, 1246.	2.0	16
1502	A Novel Semi-bionanofibers through Introducing Tragacanth Gum into PET Attaining Rapid Wetting and Degradation. Fibers and Polymers, 2018, 19, 2088-2096.	1.1	9

#	Article	IF	CITATIONS
1503	Electrospun Produced 3D Matrices for Covering of Vascular Stents: Paclitaxel Release Depending on Fiber Structure and Composition of the External Environment. Materials, 2018, 11, 2176.	1.3	27
1504	Fabrication of a polyvinylidene fluoride cactus-like nanofiber through one-step electrospinning. RSC Advances, 2018, 8, 42353-42360.	1.7	49
1505	Fabrication and Characterization of Electrospun Nanofibers for the Modified Release of the Chronobiotic Hormone Melatonin. Current Drug Delivery, 2018, 16, 79-85.	0.8	33
1506	EMERGING NOVEL NANOPHARMACEUTICALS FOR DRUG DELIVERY. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 35.	0.3	12
1507	Hybrid-type complementary inverters using semiconducting single walled carbon nanotube networks and In-Ga-Zn-O nanofibers. Applied Physics Letters, 2018, 113, .	1.5	7
1508	An openwork like structures of polylactide – manufacturing and properties. E3S Web of Conferences, 2018, 44, 00165.	0.2	2
1509	Electrospun Alginate Fibers: Mixing of Two Different Poly(ethylene oxide) Grades to Improve Fiber Functional Properties. Nanomaterials, 2018, 8, 971.	1.9	25
1510	Electrospinning of polyethylene terephthalate (PET) nanofibers: optimization study using taguchi design of experiment. IOP Conference Series: Materials Science and Engineering, 0, 454, 012130.	0.3	21
1511	Understanding the impact of crosslinked PCL/PEG/GelMA electrospun nanofibers on bactericidal activity. PLoS ONE, 2018, 13, e0209386.	1.1	26
1512	Magnetic Nanofiber Layers as a Functional Surface for Biomolecule Immobilization and Oneâ€Use †Sensing inâ€aâ€Drop' Applications. ChemistrySelect, 2018, 3, 13553-13560.	0.7	6
1513	Distribution of Silver (Ag) Nanoparticle in PVA/Ag Nanofiber Fabricated by Electrospinning Method. Journal of Physics: Conference Series, 2018, 1093, 012045.	0.3	1
1514	Effects of Solvent Type and Process Parameters on Electrospinnability of Zein through Orthogonal Experimental Design. Medziagotyra, 2018, 24, .	0.1	0
1515	Flexible Delivery Patch Systems based on Thermoresponsive Hydrogels and Submicronic Fiber Heaters. Scientific Reports, 2018, 8, 17555.	1.6	24
1516	Fabrication and characterization of a PVDF/PLA membrane made by electrospinning as a flexible temperature sensor. , 2018, , .		1
1517	Preparação de membranas de PHB por eletrofiação e caracterização para aplicações em engenharia tecidual. Revista Materia, 2018, 23, .	0.1	1
1518	Novel method for producing electrospun composite nanofibre yarns. Proceedings of the Estonian Academy of Sciences, 2018, 67, 169.	0.9	3
1519	Factors affecting the co-axial electrospraying of core–shell-structured poly(d,l-lactide-co-glycolide) microparticles. Japanese Journal of Applied Physics, 2018, 57, 116702.	0.8	4
1520	Multilevel structural stereocomplex polylactic acid/collagen membranes by pattern electrospinning for tissue engineering. Polymer, 2018, 156, 250-260.	1.8	35

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1521	Electrospun conductive mats from PANi-ionic liquid blends. Journal of Electrostatics, 20)18, 96, 40-44.	1.0	10
1523	Magnetorheological characterization and electrospinnability of ultrasound-treated poly solutions containing magnetic nanoparticles. Colloid and Polymer Science, 2018, 296,	/mer 1849-1855.	1.0	4
1524	Preparation of SiC Fibers from Indonesian Natural Resource Prepared by Electrospinnin Conference Series: Materials Science and Engineering, 2018, 367, 012011.	g Method. IOP	0.3	0
1525	Design of electrospun fibrous patches for myocardium regeneration. , 2018, , 221-250			3
1526	Fabrication and characterization of electrospun nanofibers from <i>Moringa stenopeta protein. Materials Research Express, 2018, 5, 125015.</i>	ıla seed	0.8	21
1527	Review on Fabrication of Structurally Colored Fibers by Electrospinning. Fibers, 2018, ϵ	o, 70.	1.8	16
1528	Nano-Fiber Filters for Automotive Applications. , 2018, , .			3
1529	Novel Biomimetic Microphysiological Systems for Tissue Regeneration and Disease Mo in Experimental Medicine and Biology, 2018, 1077, 87-113.	deling. Advances	0.8	3
1530	Investigation on the Biodegradability and Antibacterial Properties of Nanohybrid Suture Silver Incorporated PGA-PLGA Nanofibers. Fibers and Polymers, 2018, 19, 2056-2065.	e Based on	1.1	17
1531	Impact of setup orientation on blend electrospinning of poly-ε-caprolactone-gelatin sc vascular tissue engineering. International Journal of Artificial Organs, 2018, 41, 801-81	affolds for 0.	0.7	19
1532	Light Electrospun Polyvinylpyrrolidone Blanket for Low Frequencies Sound Absorption. Journal of Polymer Science (English Edition), 2018, 36, 1368-1374.	Chinese	2.0	22
1533	Cellular Response to Surface Morphology: Electrospinning and Computational Modelin Bioengineering and Biotechnology, 2018, 6, 155.	g. Frontiers in	2.0	65
1534	Poly(vinyl pyrrolidone) sub-microfibers produced by solution blow spinning. Journal of I Research, 2018, 25, 1.	⁹ olymer	1.2	19
1535	One-Step Fabrication of Three-Dimensional Fibrous Collagen-Based Macrostructure wit Uptake Capability by Coaxial Electrospinning. Nanomaterials, 2018, 8, 803.	h High Water	1.9	3
1536	Morphological and Mechanical Characterization of Electrospun Polylactic Acid and Mic Cellulose. BioResources, 2018, 13, .	rocrystalline	0.5	9
1537	Introduction to electrofluidodynamic techniques. Part I. , 2018, , 1-17.			1
1538	Carbon-Based Nanofibers: Fullerenes, Diamond, and Carbon Nanostructures. , 2018, , 1	l-14.		0
1539	Fabrication of Nanofibers: Electrospinning and Non-Electrospinning Techniques. , 2018	s, , 1-34.		5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1540	Electrospun Polymer Nanocomposites. Springer Series in Materials Science, 2018, , 19	9-229.	0.4	3
1541	The effect of ionic liquids on the mechanical properties of electrospun polyacrylonitrile Polymer Testing, 2018, 71, 335-343.	membranes.	2.3	5
1542	Processing Nanocomposites Based on Engineering Polymers: Polyamides and Polyimid Series in Materials Science, 2018, , 27-73.	es. Springer	0.4	0
1543	High performance electronic devices based on nanofibers <i>via</i> a crosslinking web Nanoscale, 2018, 10, 19427-19434.	ding process.	2.8	15
1544	Effects of binary solvent mixtures on the electrospinning behavior of poly (vinyl alcoho Research Express, 2018, 5, 115407.	l). Materials	0.8	19
1545	Preparation of Quasi-Three-Dimensional Porous Ag and Ag-NiO Nanofibrous Mats for S Sensors, 2018, 18, 2862.	ERS Application.	2.1	16
1546	Hydrogels. Gels Horizons: From Science To Smart Materials, 2018, , .		0.3	36
1547	Photoluminescent electrospun europium complex Eu(TTA)3phen embedded polymer b Optical Materials, 2018, 85, 483-490.	lends nanofibers.	1.7	49
1548	Influence of shell compositions of solution blown PVP/PCL core–shell fibers on drug cell growth. RSC Advances, 2018, 8, 32470-32480.	release and	1.7	21
1549	Mathematical Modeling of the Relation between Electrospun Nanofibers Characteristic Process Parameters. , 0, , .	ts and the		2
1550	Development of New Nanostructured Electrodes for Electrochemical Conversion: Ener from the Environment. , 0, , .	gy and Fuels		0
1551	Fabrication of nanofiber coated with l-arginine via electrospinning technique: a novel n counter oxidative stress under crosstalk of co-cultured fibroblasts and satellite cells. Communication and Adhesion, 2018, 24, 19-32.	anomatrix to ell	1.0	9
1552	Electrospinning of Functional Nanofibers for Regenerative Medicine: From Bench to Co Scale. , 0, , .	ommercial		1
1553	Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials. Journal of Nanotechnology, 2018, 9, 2128-2170.	Beilstein	1.5	48
1554	Overview of Electrospinned Chitosan Nanofiber Composites for Wound Dressings. , 0,	, .		8
1555	Immobilization of Cationic Titanium Dioxide (TiO2+) on Electrospun Nanofibrous Mat: Characterization, and Potential Environmental Application. Fibers and Polymers, 2018,	Synthesis, 19, 1715-1725.	1.1	25
1556	Controlling the Morphology and Conductivity of Thiophene Nanofibers using Electrosp Flexible devices. , 2018, , .	vinning for		0
1557	Electrostatic focusing of electrospun Polymer(PEO) nanofibers. Journal of Electrostatic 21-29.	is, 2018, 94,	1.0	13

#	Article	IF	Citations
1558	Polypyrrole increases branching and neurite extension by Neuro2A cells on PBAT ultrathin fibers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1753-1763.	1.7	19
1559	Amine modified electrospun PIM-1 ultrafine fibers for an efficient removal of methyl orange from an aqueous system. Applied Surface Science, 2018, 453, 220-229.	3.1	52
1560	Hybridizing CNT/PMMA/PVDF towards high-performance piezoelectric nanofibers. Journal Physics D: Applied Physics, 2018, 51, 265305.	1.3	15
1561	Electrospun \hat{I}^3 -Fe2O3 nanofibers as bioelectrochemical sensors for simultaneous determination of small biomolecules. Analytica Chimica Acta, 2018, 1026, 125-132.	2.6	26
1562	History and Structure of Carbon Fibers. Springer Series in Materials Science, 2018, , 1-30.	0.4	2
1563	Beta-glucan-loaded nanofiber dressing improves wound healing in diabetic mice. European Journal of Pharmaceutical Sciences, 2018, 121, 269-280.	1.9	56
1564	Insight Studies on Metal-Organic Framework Nanofibrous Membrane Adsorption and Activation for Heavy Metal Ions Removal from Aqueous Solution. ACS Applied Materials & Interfaces, 2018, 10, 18619-18629.	4.0	347
1565	Using an industrial braiding machine to upscale the production and modulate the design of electrospun medical yarns. Polymer Testing, 2018, 69, 188-198.	2.3	12
1566	Eco-friendly technology for preparation, characterization and promotion of honey bee propolis extract loaded cellulose acetate nanofibers in medical domains. Cellulose, 2018, 25, 5195-5204.	2.4	60
1567	VOCs Air Pollutant Cleaning with Polyacrylonitrile/Fly Ash Nanocomposite Electrospun Nanofibrous Membranes. IOP Conference Series: Materials Science and Engineering, 2018, 301, 012036.	0.3	3
1568	Development of Superhydrophobic Microfibers for Bandage Coatings. Fibers and Polymers, 2018, 19, 1207-1218.	1.1	5
1569	Synthesis and Characterization of Polycaprolactone-Based Polyurethanes for the Fabrication of Elastic Guided Bone Regeneration Membrane. BioMed Research International, 2018, 2018, 1-13.	0.9	27
1570	Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. , 2018, , 701-735.		17
1571	Polyester@MXene nanofibers-based yarn electrodes. Journal of Power Sources, 2018, 396, 683-690.	4.0	147
1572	Multifunctional Electrospun Nanofibers for Enhancing Localized Cancer Treatment. Small, 2018, 14, e1801183.	5.2	52
1573	Use of nanostructured materials in hard tissue engineering. , 2018, , 257-295.		0
1574	<i>Alyssum lepidium</i> mucilage as a new source for electrospinning: production and physicochemical characterisation. IET Nanobiotechnology, 2018, 12, 259-263.	1.9	11
1575	Scaffolds for Pelvic Floor Prolapse: Logical Pathways. International Journal of Biomaterials, 2018, 2018, 1-6.	1.1	7

#	Article	IF	Citations
1576	Impact of Electro-Magneto Concave Collector on the Characterizations of Electrospun Nanofibers. Journal of Electronic Materials, 2018, 47, 4772-4779.	1.0	7
1577	Optimization of Chitosan-Gelatin Nanofibers Production: Investigating the Effect of Solution Properties and Working Parameters on Fibers Diameter. BioNanoScience, 2018, 8, 778-789.	1.5	17
1578	Polymeric nanofibers for controlled drug delivery applications. , 2018, , 147-175.		11
1579	Silk-based matrices for bone tissue engineering applications. , 2018, , 439-472.		0
1580	Reinforcing Mechanical Strength of Electrospun Chitosan Nanofibrous Scaffold Using Cellulose Nanofibers. Journal of Nano Research, 2018, 52, 71-79.	0.8	3
1581	Electrospun nanofiber scaffolds. , 2018, , 509-573.		24
1582	A polarization method for quickly distinguishing the morphology of electro-spun ultrafine fibers. Chinese Chemical Letters, 2018, 29, 1317-1320.	4.8	7
1583	Action of ginger essential oil (Zingiber officinale) encapsulated in proteins ultrafine fibers on the antimicrobial control in situ. International Journal of Biological Macromolecules, 2018, 118, 107-115.	3.6	110
1584	Au-decorated SWNT/PVDF electrospun films with enhanced infrared stealth performance. Materials Letters, 2018, 230, 279-282.	1.3	16
1585	Effects of Jet Path on Electrospun Polystyrene Fibers. Polymers, 2018, 10, 842.	2.0	14
1586	High-resolution Patterning Using Two Modes of Electrohydrodynamic Jet: Drop on Demand and Near-field Electrospinning. Journal of Visualized Experiments, 2018, , .	0.2	5
1587	A comparative study of aligned and random electrospun mats of thermoplastic polyurethane and conductive additives based on polypyrrole. Polymer Testing, 2018, 70, 486-497.	2.3	13
1588	Self-Assembled AgNP-Containing Nanocomposites Constructed by Electrospinning as Efficient Dye Photocatalyst Materials for Wastewater Treatment. Nanomaterials, 2018, 8, 35.	1.9	126
1589	High performance electrospinning fiberous membranes for infrared stealth camouflage. Infrared Physics and Technology, 2018, 93, 130-135.	1.3	15
1590	An Experimental Approach to the Synthesis and Optimisation of a â€~Green' Nanofibre. Nanomaterials, 2018, 8, 383.	1.9	29
1591	Detection of alkyl amine vapors using PPy-ZnO hybrid nanocomposite sensor array and artificial neural network. Sensors and Actuators A: Physical, 2018, 280, 228-237.	2.0	18
1592	Surface modification of metallic bone implants—Polymer and polymer-assisted coating for bone in-growth. , 2018, , 299-321.		8
1593	Prospects of nonmulberry silk protein sericin-based nanofibrous matrices for wound healing $\hat{a} \in$ "In vitro and in vivo investigations. Acta Biomaterialia, 2018, 78, 137-150.	4.1	63

#	Article	IF	CITATIONS
1594	Recent advances in the research of MLi2Ti6O14 (M = 2Na, Sr, Ba, Pb) anode materials for Li-ion batteries. Journal of Power Sources, 2018, 399, 26-41.	4.0	125
1595	Fabrication of Hydrophobic Nanocomposites Coating Using Electrospinning Technique For Various Substrate. Journal of Physics: Conference Series, 2018, 1032, 012033.	0.3	6
1596	Advances in Nanofibers for Antimicrobial Drug Delivery. , 2018, , 1-42.		4
1597	Polymer Based Nanofibers: Preparation, Fabrication, and Applications. , 2018, , 1-47.		10
1598	The quest for mechanically and biologically functional soft biomaterials via soft network composites. Advanced Drug Delivery Reviews, 2018, 132, 214-234.	6.6	35
1599	Production and Characterization of Whey Protein Concentrate (WPC) Based Nano-Fibers. Materials Science Forum, 2018, 923, 47-50.	0.3	2
1600	Role of Amorphous State in Drug Delivery. , 2018, , 105-154.		1
1601	Affecting parameters on fabrication of β-D-galactosidase immobilized chitosan/poly (vinyl alcohol) electrospun nanofibers. Carbohydrate Polymers, 2018, 200, 137-143.	5.1	47
1602	Effect of solvent composition of electrospun PLGA fibers on paclitaxel release. Materials Technology, 2018, 33, 716-722.	1.5	6
1603	Engineering Musculoskeletal Tissue Interfaces. Frontiers in Materials, 2018, 5, .	1.2	37
1604	Parameters Dependence of Fibers Diameter and Pores Area in Electrospinning. Advanced Engineering Forum, 0, 26, 67-73.	0.3	1
1605	Textile technologies for 3D scaffold engineering. , 2018, , 175-201.		7
1606	Hydrogel fibrous scaffolds for accelerated wound healing. , 2018, , 251-274.		1
1607	A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts, 2018, 8, 92.	1.6	626
1608	Multifunctional Surface Modification of Mulberry Silk Fabric via PNIPAAm/Chitosan/PEO Nanofibers Coating and Cross-Linking Technology. Coatings, 2018, 8, 68.	1.2	6
1609	Functional Stimuli-Responsive Gels: Hydrogels and Microgels. Gels, 2018, 4, 54.	2.1	144
1610	Ultrasensitive biosensor based on polyvinylpyrrolidone/chitosan/reduced graphene oxide electrospun nanofibers for 17α – Ethinylestradiol electrochemical detection. Applied Surface Science, 2018, 458, 431-437.	3.1	69
1611	Electrospinning of Chitosan-Based Solutions for Tissue Engineering and Regenerative Medicine. International Journal of Molecular Sciences, 2018, 19, 407.	1.8	236

#	Article	IF	CITATIONS
1612	Doxorubicin Release Controlled by Induced Phase Separation and Use of a Co-Solvent. Materials, 2018, 11, 681.	1.3	16
1613	Characterization and Microstructure of Linear Electrode-Electrospun Graphene-Filled Polyvinyl Alcohol Nanofiber Films. Materials, 2018, 11, 1033.	1.3	7
1614	Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review. Membranes, 2018, 8, 15.	1.4	94
1615	Polymer-Based Electrospun Nanofibers for Biomedical Applications. Nanomaterials, 2018, 8, 259.	1.9	171
1616	Polycaprolactone/metal oxide nanocomposites. , 2018, , 223-263.		3
1617	Electrospun Polyacrylonitrile/β-Cyclodextrin Composite Membranes for Simultaneous Air Filtration and Adsorption of Volatile Organic Compounds. ACS Applied Nano Materials, 2018, 1, 4268-4277.	2.4	53
1618	Controlled Release of DEET Loaded on Fibrous Mats from Electrospun PMDA/Cyclodextrin Polymer. Molecules, 2018, 23, 1694.	1.7	19
1619	Blend electrospinning, coaxial electrospinning, and emulsion electrospinning techniques. , 2018, , 325-347.		42
1620	A Review on Biopolymer-Based Fibers via Electrospinning and Solution Blowing and Their Applications. Fibers, 2018, 6, 45.	1.8	112
1621	Anisotropic cytocompatible electrospun scaffold for tendon tissue engineering elicits limited inflammatory response in vitro. Journal of Biomaterials Applications, 2018, 33, 127-139.	1.2	11
1622	Combined Approach To Remove and Fast Detect Heavy Metals in Water Based on PES–TiO ₂ Electrospun Mats and Porphyrin Chemosensors. ACS Omega, 2018, 3, 7182-7190.	1.6	19
1623	Medical Waste Treatment via Waste Electrospinning of PS. Fibers and Polymers, 2018, 19, 767-774.	1.1	13
1624	Acetaminophen loaded nanofibers as a potential contact layer for pain management in Burn wounds. Materials Research Express, 2018, 5, 085017.	0.8	21
1625	Fabrication and Characterization of Poly(L-lactic Acid) Fiber Mats Using Centrifugal Spinning. Fibers and Polymers, 2018, 19, 1271-1277.	1.1	12
1626	Development of pH indicator from PLA/PEO ultrafine fibers containing pigment of microalgae origin. International Journal of Biological Macromolecules, 2018, 118, 1855-1862.	3.6	61
1627	Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohydrate Polymers, 2018, 199, 628-640.	5.1	101
1628	Custom-built electrostatics and supplementary bonding in the design of reinforced Collagen-g-P(methyl methacrylate-co-ethyl acrylate)/ nylon 66 core-shell fibers. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 19-29.	1.5	14
1629	Towards the development of electrospun mats from poly(ε-caprolactone)/poly(ester amide)s miscible blends. Polymer, 2018, 150, 343-359.	1.8	4

#	Article	IF	CITATIONS
1630	Developments in Pressurized Gyration for the Mass Production of Polymeric Fibers. Macromolecular Materials and Engineering, 2018, 303, 1800218.	1.7	111
1631	Electrospun chitosan/poly(ethylene oxide) nanofibers applied for the removal of glycerol impurities from biodiesel production by biosorption. Journal of Molecular Liquids, 2018, 268, 365-370.	2.3	15
1632	Highly flexible method for fabrication of poly (Glycidyl Methacrylate) grafted polyolefin nanofiber. Radiation Physics and Chemistry, 2018, 151, 283-291.	1.4	14
1633	Antibacterial biocompatible PCL nanofibers modified by COOH-anhydride plasma polymers and gentamicin immobilization. Materials and Design, 2018, 153, 60-70.	3.3	54
1634	Electrospun polymeric nanofibres as wound dressings: A review. Colloids and Surfaces B: Biointerfaces, 2018, 169, 60-71.	2.5	272
1635	Advances in Melt Electrospinning Technique. , 2018, , 1-32.		4
1636	Nanofiber technology in the ex vivo expansion of cord blood-derived hematopoietic stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1707-1718.	1.7	18
1637	Mass Production of Functional Amine–Conjugated PAN Nanofiber Mat via Syringeless Electrospinning and CVD. Macromolecular Materials and Engineering, 2018, 303, 1700565.	1.7	12
1638	Cefazolin-loaded polycaprolactone fibers produced via different electrospinning methods: Characterization, drug release and antibacterial effect. European Journal of Pharmaceutical Sciences,	1.9	45
	2018, 124, 26-36.		
1639	2018, 124, 26-36. A simple and green method for the production of nanostructured materials from poly(vinyl) Tj ETQq1 1 0.78431	4 rgBT /Ov	verlock 10 Tf
1639 1640	2018, 124, 26-36. A simple and green method for the production of nanostructured materials from poly(vinyl) Tj ETQq1 1 0.78431 Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application. Journal of Materials Science: Materials in Medicine, 2018, 29, 137.	4 rgBT /Ov 1.7	verlock 10 Tf 13
1639 1640 1641	 2018, 124, 26-36. A simple and green method for the production of nanostructured materials from poly(vinyl) Tj ETQq1 1 0.78431 Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application. Journal of Materials Science: Materials in Medicine, 2018, 29, 137. Biopolymers for the Nano-microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing. , 2018, , 447-479. 	4 rgBT /Ov 2.0	verlock 10 T 30 9
1639 1640 1641 1642	 2018, 124, 26-36. A simple and green method for the production of nanostructured materials from poly(vinyl) Tj ETQq1 1 0.78431 Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application. Journal of Materials Science: Materials in Medicine, 2018, 29, 137. Biopolymers for the Nano-microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing. , 2018, , 447-479. 3D-Printing of Microfibrous Porous Scaffolds Based on Hybrid Approaches for Bone Tissue Engineering. Polymers, 2018, 10, 807. 	4 rgBT /0v 1.7 2.0	verlock 10 TF 30 9 56
1639 1640 1641 1642 1643	2018, 124, 26-36. A simple and green method for the production of nanostructured materials from poly(vinyl) Tj ETQq1 1 0.78431 Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application. Journal of Materials Science: Materials in Medicine, 2018, 29, 137. Biopolymers for the Nano-microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing., 2018, , 447-479. 3D-Printing of Microfibrous Porous Scaffolds Based on Hybrid Approaches for Bone Tissue Engineering. Polymers, 2018, 10, 807. Research on the electrospun foaming process to fabricate threeâ€dimensional tissue engineering scaffolds. Journal of Applied Polymer Science, 2018, 135, 46898.	4 rgBT /0v 1.7 2.0 1.3	verlock 10 TF 30 9 56 21
1639 1640 1641 1642 1643	 2018, 124, 26-36. A simple and green method for the production of nanostructured materials from poly(vinyl) Tj ETQq1 1 0.78431 Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application. Journal of Materials Science: Materials in Medicine, 2018, 29, 137. Biopolymers for the Nano-microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing. , 2018, , 447-479. 3D-Printing of Microfibrous Porous Scaffolds Based on Hybrid Approaches for Bone Tissue Engineering. Polymers, 2018, 10, 807. Research on the electrospun foaming process to fabricate threeâ€dimensional tissue engineering scaffolds. Journal of Applied Polymer Science, 2018, 135, 46898. GO nanosheets localization by morphological study on PLA-GO electrospun nanocomposite nanofibers. Journal of Polymer Research, 2018, 25, 1. 	4 rgBT /0 1.7 2.0 1.3 1.2	verlock 10 TF 30 9 56 21 16
1639 1640 1641 1642 1643 1644	 2018, 124, 26-36. A simple and green method for the production of nanostructured materials from poly(vinyl) TJ ETQq1 1 0.78431 Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application. Journal of Materials Science: Materials in Medicine, 2018, 29, 137. Biopolymers for the Nano-microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing., 2018, , 447-479. 3D-Printing of Microfibrous Porous Scaffolds Based on Hybrid Approaches for Bone Tissue Engineering. Polymers, 2018, 10, 807. Research on the electrospun foaming process to fabricate threeâ€dimensional tissue engineering scaffolds. Journal of Applied Polymer Science, 2018, 135, 46898. GO nanosheets localization by morphological study on PLA-GO electrospun nanocomposite nanofibers. Journal of Polymer Research, 2018, 25, 1. Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Advances in Polymer Technology, 2018, 37, 1917-1928. 	4 rgBT /0 1.7 2.0 1.3 1.2 0.8	verlock 10 T 30 9 56 21 16 148
1639 1640 1641 1642 1643 1644 1645	 2018, 124, 26-36. A simple and green method for the production of nanostructured materials from poly(vinyl) Tj ETQq1 1 0.78431 Electrospun polylactic acid-chitosan composite: a bio-based alternative for inorganic composites for advanced application. Journal of Materials Science: Materials in Medicine, 2018, 29, 137. Biopolymers for the Nano-microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing. , 2018, , 447-479. 3D-Printing of Microfibrous Porous Scaffolds Based on Hybrid Approaches for Bone Tissue Engineering. Polymers, 2018, 10, 807. Research on the electrospun foaming process to fabricate threeâ€dimensional tissue engineering scaffolds. Journal of Applied Polymer Science, 2018, 135, 46898. GO nanosheets localization by morphological study on PLA-GO electrospun nanocomposite nanofibers. Journal of Polymer Research, 2018, 25, 1. Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery. Advances in Polymer Technology, 2018, 37, 1917-1928. Tailoring the gelatin/chitosan electrospun scaffold for application in skin tissue engineering: an in vitro study. Progress in Biomaterials, 2018, 7, 207-218. 	4 rgBT /0 1.7 2.0 1.3 1.2 0.8 1.8	verlock 10 T 30 9 56 21 16 148 72

#	Article	IF	CITATIONS
1648	Electrospinning of Hydrogels for Biomedical Applications. Gels Horizons: From Science To Smart Materials, 2018, , 219-258.	0.3	6
1649	Cyclodextrin-Based Nanofibers and Membranes: Fabrication, Properties and Applications. , 2018, , .		2
1650	Electrospun CuO-Nanoparticles-Modified Polycaprolactone @Polypyrrole Fibers: An Application to Sensing Glucose in Saliva. Nanomaterials, 2018, 8, 133.	1.9	36
1651	Incorporation of antimicrobial peptides on electrospun nanofibres for biomedical applications. RSC Advances, 2018, 8, 28013-28023.	1.7	41
1652	Modelling and Optimization of Polycaprolactone Ultrafine-Fibres Electrospinning Process Using Response Surface Methodology. Materials, 2018, 11, 441.	1.3	15
1653	Multi-Jet Electrospinning with Auxiliary Electrode: The Influence of Solution Properties. Polymers, 2018, 10, 572.	2.0	28
1654	Self-Cleaning Properties of Electrospun PVA/TiO2 and PVA/ZnO Nanofibers Composites. Nanomaterials, 2018, 8, 644.	1.9	56
1655	Aligned fibrous PVDF-TrFE scaffolds with Schwann cells support neurite extension and myelination <i>in vitro</i> . Journal of Neural Engineering, 2018, 15, 056010.	1.8	51
1656	Molecularly imprinted electrospun nanofibers for adsorption of 2,4-dinitrotoluene in water. Analyst, The, 2018, 143, 3465-3471.	1.7	16
1657	Phase separation events induce the coexistence of distinct nanofeatures in electrospun fibres of poly(ethyl cyanoacrylate) and polycaprolactone. Materials Today Communications, 2018, 16, 135-141.	0.9	10
1658	Fabrication and biocompatibility of agarose acetate nanofibrous membrane by electrospinning. Carbohydrate Polymers, 2018, 197, 237-245.	5.1	22
1659	Melt-electrospinning as a method to improve the dissolution and physical stability of a poorly water-soluble drug. European Journal of Pharmaceutical Sciences, 2018, 121, 260-268.	1.9	10
1660	6.7 Electrospun Polymer Nanofibers and Their Composites. , 2018, , 162-200.		12
1661	Electrospun Polymeric Nanofibers in Food Packaging. , 2018, , 387-417.		10
1662	Plasma-treated electrospun nanofibers as a template for the electrostatic assembly of silver nanoparticles. New Journal of Chemistry, 2018, 42, 11185-11191.	1.4	18
1663	Nanoencapsulation by electrospinning to improve stability and water solubility of carotenoids extracted from tomato peels. Food Chemistry, 2018, 268, 86-93.	4.2	95
1664	Recent Trends in the Fabrication of Starch Nanofibers: Electrospinning and Non-electrospinning Routes and Their Applications in Biotechnology. Applied Biochemistry and Biotechnology, 2019, 187, 47-74.	1.4	58
1665	Scaffolds for peripheral nerve repair and reconstruction. Experimental Neurology, 2019, 319, 112761.	2.0	106

		CITATION RE	PORT	
# 1666	ARTICLE Thermal and irradiation resistance of folic acid encapsulated in zein ultrafine fibers or na	inocapsules	IF 2.9	CITATIONS
1667	Industrial applications of X-Ray Photoelectron Spectroscopy (XPS) in India. Journal of Ele Spectroscopy and Related Phenomena, 2019, 231, 11-42.	24, 137-146. ectron	0.8	1
1668	Surface modification to control the water wettability of electrospun mats. International Reviews, 2019, 64, 249-287.	Materials	9.4	71
1669	Polymeric and metal oxide structured nanofibrous composites fabricated by electrospin efficient hydrogen evolution catalyst. Journal of Colloid and Interface Science, 2019, 53	ning as highly 3, 82-94.	5.0	22
1670	Regenerative Medicine Approaches for Tissue Engineered Heart Valves. , 2019, , 1041-1	058.		6
1671	Hierarchical electrospun nanofibers treated by solvent vapor annealing as air filtration n high-efficiency PM2.5 capture. Science China Materials, 2019, 62, 423-436.	nat for	3.5	136
1672	Superhydrophobic PCL/PS composite nanofibrous membranes prepared through solutio spinning with an airbrush for oil adsorption. Polymer Engineering and Science, 2019, 59	n blow , E171.	1.5	19
1673	Electrospun Nanofibers for Diverse Applications. , 2019, , 275-286.			0
1674	Aging Time of Soluble Potato Starch Solutions for Ultrafine Fibers Formation by Electros Starch/Staerke, 2019, 71, 1800089.	pinning.	1.1	20
1675	Nanoencapsulation of carotenoids extracted from tomato peels into zein fibers by elect Journal of the Science of Food and Agriculture, 2019, 99, 759-766.	rospinning.	1.7	53
1676	Immobilization of Saccharomyces cerevisiae on nylon-6 nanofibrous membranes for gra fermentation. LWT - Food Science and Technology, 2019, 110, 360-364.	pe juice	2.5	13
1677	A review on nanofiber fabrication with the effect of high-speed centrifugal force field. Jo Engineered Fibers and Fabrics, 2019, 14, 155892501986751.	urnal of	0.5	21
1678	Electrospun Nanofibers for Label-Free Sensor Applications. Sensors, 2019, 19, 3587.		2.1	60
1679	The Role of Relative Humidity on Physical Characteristics of Poly Vinyl Alcohol- <i>Aloe v Membrane by Using Electrospinning Methods. Materials Science Forum, 2019, 966, 157</i>	era Fiber ⁷⁻ 162.	0.3	3
1680	Electrospinning of poly(ethylene oxide) solutions - Quantitative relations between mear diameter, concentration, molecular weight, and viscosity. AIP Conference Proceedings, 2	ı nanofibre 2019, , .	0.3	1
1681	Development of electrospun PVdF polymer membrane as separator for supercapacitor a Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 2294	pplications. 2308.	1.2	15
1682	Fabrication and characterisation of novel nanofiltration polymeric membrane. Materials Communications, 2019, 20, 100580.	Today	0.9	11
1683	Effects of rosiglitazone/PHBV drug delivery system on postoperative fibrosis in rabbit gl. filtration surgery model. Drug Delivery, 2019, 26, 812-819.	aucoma	2.5	9

#	Article	IF	CITATIONS
1684	A Review on Porous Polymeric Membrane Preparation. Part II: Production Techniques with Polyethylene, Polydimethylsiloxane, Polypropylene, Polyimide, and Polytetrafluoroethylene. Polymers, 2019, 11, 1310.	2.0	119
1685	Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Applied Materials Today, 2019, 17, 1-35.	2.3	296
1686	Electrospun oral formulations for combined photo-chemotherapy of colon cancer. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110411.	2.5	17
1687	Electrospun flexible nanofibrous membranes for oil/water separation. Journal of Materials Chemistry A, 2019, 7, 20075-20102.	5.2	177
1688	Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization. RSC Advances, 2019, 9, 25712-25729.	1.7	156
1689	In Vivo Evaluation of the Anti-Inflammatory Activity of Electrospun Micro/Nanofibrous Patches Loaded with Pinus halepensis Bark Extract on Hairless Mice Skin. Materials, 2019, 12, 2596.	1.3	15
1690	Design And Implementation of The Control System In The Electrospinning Machine Of The Nanocomposites For The Medical Use. , 2019, , .		0
1691	Biodegradable Polymer Nanofibers Applied in Slow Release Systems for Agri-Food Applications. , 2019, , 291-316.		3
1692	Biomaterial approaches for cardiovascular tissue engineering. Emergent Materials, 2019, 2, 193-207.	3.2	29
1693	Sensors from Electrospun Nanostructures. , 0, , .		1
1693 1694	Sensors from Electrospun Nanostructures. , 0, , . Block copolymer-based porous carbons for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 23476-23488.	5.2	1
1693 1694 1695	Sensors from Electrospun Nanostructures., 0, , . Block copolymer-based porous carbons for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 23476-23488. Enhanced performance of Aloe vera incorporated chitosan-polyethylene oxide electrospun wound scaffold produced using novel Spirograph based collector assembly. International Journal of Biological Macromolecules, 2019, 140, 808-824.	5.2 3.6	1 74 30
1693 1694 1695 1696	Sensors from Electrospun Nanostructures. , 0, , . Block copolymer-based porous carbons for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 23476-23488. Enhanced performance of Aloe vera incorporated chitosan-polyethylene oxide electrospun wound scaffold produced using novel Spirograph based collector assembly. International Journal of Biological Macromolecules, 2019, 140, 808-824. Immobilized carbon-doped TiO ₂ in polyamide fibers for the degradation of methylene blue. Journal of Asian Ceramic Societies, 2019, 7, 321-330.	5.2 3.6 1.0	1 74 30 30
1693 1694 1695 1696	Sensors from Electrospun Nanostructures. , 0, , . Block copolymer-based porous carbons for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 23476-23488. Enhanced performance of Aloe vera incorporated chitosan-polyethylene oxide electrospun wound scaffold produced using novel Spirograph based collector assembly. International Journal of Biological Macromolecules, 2019, 140, 808-824. Immobilized carbon-doped TiO ₂ in polyamide fibers for the degradation of methylene blue. Journal of Asian Ceramic Societies, 2019, 7, 321-330. Fibritary. , 2019, , .	5.2 3.6 1.0	1 74 30 30
 1693 1694 1695 1696 1697 1698 	Sensors from Electrospun Nanostructures., 0, , . Block copolymer-based porous carbons for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 23476-23488. Enhanced performance of Aloe vera incorporated chitosan-polyethylene oxide electrospun wound scaffold produced using novel Spirograph based collector assembly. International Journal of Biological Macromolecules, 2019, 140, 808-824. Immobilized carbon-doped TiO ₂ in polyamide fibers for the degradation of methylene blue. Journal of Asian Ceramic Societies, 2019, 7, 321-330. Fibritary., 2019, , . Solid drug particles encapsulated bead-on-string nanofibers: the control of bead number and its corresponding release profile. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1454-1469.	5.2 3.6 1.0 1.9	1 74 30 30 0 14
1693 1694 1695 1696 1697 1698	Sensors from Electrospun Nanostructures., 0, , . Block copolymer-based porous carbons for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 23476-23488. Enhanced performance of Aloe vera incorporated chitosan-polyethylene oxide electrospun wound scaffold produced using novel Spirograph based collector assembly. International Journal of Biological Macromolecules, 2019, 140, 808-824. Immobilized carbon-doped TiO ₂ in polyamide fibers for the degradation of methylene blue. Journal of Asian Ceramic Societies, 2019, 7, 321-330. Fibritary., 2019, ,. Solid drug particles encapsulated bead-on-string nanofibers: the control of bead number and its corresponding release profile. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1454-1469. Engineering optimisation of commercial facemask formulations capable of improving skin moisturisation. International Journal of Commercial facemask formulations capable of improving skin	5.2 3.6 1.0 1.9	1 74 30 30 30 14 8
 1693 1694 1695 1696 1697 1698 1699 1700 	Sensors from Electrospun Nanostructures., 0, , . Block copolymer-based porous carbons for supercapacitors. Journal of Materials Chemistry A, 2019, 7, 23476-23488. Enhanced performance of Aloe vera incorporated chitosan-polyethylene oxide electrospun wound scaffold produced using novel Spirograph based collector assembly. International Journal of Biological Macromolecules, 2019, 140, 808-824. Immobilized carbon-doped TiO ₂ in polyamide fibers for the degradation of methylene blue. Journal of Asian Ceramic Societies, 2019, 7, 321-330. Fibritary., 2019, , . Solid drug particles encapsulated bead-on-string nanofibers: the control of bead number and its corresponding release profile. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1454-1469. Engineering optimisation of commercial facemask formulations capable of improving skin molsturisation. International Journal of Cosmetic Science, 2019, 41, 462-471. Novel PNIPAm-based electrospun nanoi-bres used directly as a drug carrier for ã€ceon-offã€-switchable drug release. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110347.	5.2 3.6 1.0 1.9 1.2 2.5	1 74 30 30 30 14 8 21

#	Article	IF	CITATIONS
1702	A Review on Porous Polymeric Membrane Preparation. Part I: Production Techniques with Polysulfone and Poly (Vinylidene Fluoride). Polymers, 2019, 11, 1160.	2.0	224
1703	<p>Mucoadhesive electrospun nanofibers for drug delivery systems: applications of polymers and the parameters' roles</p> . International Journal of Nanomedicine, 2019, Volume 14, 5271-5285.	3.3	46
1704	Fabrications of small diameter compliance bypass conduit using electrospinning of clinical grade polyurethane. Vascular, 2019, 27, 636-647.	0.4	8
1705	Anisotropic delafossite-type CuFeO ₂ thin films deposited by electrospinning with rotating collector. Journal of the Ceramic Society of Japan, 2019, 127, 498-503.	0.5	8
1706	Designing Solutions for Electrospinning of Poly(ionic liquid)s. Macromolecules, 2019, 52, 5223-5230.	2.2	24
1707	Study on ionic liquid/cellulose/coagulator phase diagram and its application in green spinning process. Journal of Molecular Liquids, 2019, 289, 111127.	2.3	20
1708	Recent advances in pelvic floor repair. F1000Research, 2019, 8, 778.	0.8	23
1709	Strategies to Tune Electrospun Scaffold Porosity for Effective Cell Response in Tissue Engineering. Journal of Functional Biomaterials, 2019, 10, 30.	1.8	103
1710	Dielectric and calorimetric signatures of chain orientation in strong and tough ultrafine electrospun polyacrylonitrile. Polymer, 2019, 178, 121638.	1.8	4
1711	A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers. Materials Science and Engineering C, 2019, 104, 109705.	3.8	19
1712	Facile Control of Liquid-Rope Coiling With Tunable Electric Field Configuration. Physical Review Applied, 2019, 12, .	1.5	4
1713	Evolution of Bioengineered Lung Models: Recent Advances and Challenges in Tissue Mimicry for Studying the Role of Mechanical Forces in Cell Biology. Advanced Functional Materials, 2019, 29, 1903114.	7.8	40
1714	A cost effective and facile approach to prepare beadless polycarbonate nanofibers with ultrafine fiber morphology. Polymer Engineering and Science, 2019, 59, 1799-1809.	1.5	2
1715	A Broad Family of Carbon Nanomaterials: Classification, Properties, Synthesis, and Emerging Applications. , 2019, , 451-490.		2
1716	Water Resistant Self-Extinguishing Low Frequency Soundproofing Polyvinylpyrrolidone Based Electrospun Blankets. Polymers, 2019, 11, 1205.	2.0	23
1717	Antimicrobial Peptideâ€Based Electrospun Fibers for Wound Healing Applications. Macromolecular Bioscience, 2019, 19, e1800488.	2.1	61
1718	Manufacturing and Assessment of Electrospun PVP/TEOS Microfibres for Adsorptive Heat Transformers. Coatings, 2019, 9, 443.	1.2	15
1719	The Key Role of Modifications in Biointerfaces toward Rendering Antibacterial and Antifouling Properties in Polymeric Membranes for Water Remediation: A Critical Assessment. Advanced Sustainable Systems, 2019, 3, 1900017.	2.7	41

#	Article	lF	Citations
1720	Advances in Nanofibers for Antimicrobial Drug Delivery. , 2019, , 733-774.		1
1721	The use of electrospun curcumin-loaded poly(L-lactic acid) fiber mats as wound dressing materials. Journal of Drug Delivery Science and Technology, 2019, 53, 101121.	1.4	47
1722	Structural and optical properties of synthesized poly(methyl methacrylate) (PMMA) and lanthanide \$\$upbeta \$\$-diketonate complexes incorporated electrospun PMMA nanofibres for optical devices. Bulletin of Materials Science, 2019, 42, 1.	0.8	15
1723	New surgical meshes with patterned nanofiber mats. RSC Advances, 2019, 9, 17679-17690.	1.7	10
1724	Encapsulation of tomato peel extract into nanofibers and its application in model food. Journal of Food Processing and Preservation, 2019, 43, e14090.	0.9	8
1725	Core-shell nanofibers as drug delivery systems. Acta Pharmaceutica, 2019, 69, 131-153.	0.9	50
1726	Preparation of Palladium Nanoparticles Decorated Polyethyleneimine/Polycaprolactone Composite Fibers Constructed by Electrospinning with Highly Efficient and Recyclable Catalytic Performances. Catalysts, 2019, 9, 559.	1.6	78
1727	Platelet lysate loaded electrospun scaffolds: Effect of nanofiber types on wound healing. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 247-257.	2.0	31
1728	Controlling the Multiscale Network Structure of Fibers To Stimulate Wound Matrix Rebuilding by Fibroblast Differentiation. ACS Applied Materials & Interfaces, 2019, 11, 28377-28386.	4.0	24
1729	Conductive Bicomponent Fibers Containing Polyaniline Produced via Side-by-Side Electrospinning. Polymers, 2019, 11, 954.	2.0	38
1730	A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering, 2019, 175, 107074.	5.9	132
1731	Electrospun Membranes Based on Schizophyllan-PVOH and <i>Hamamelis Virginiana</i> Extract: Antimicrobial Activity Against Microorganisms of Medical Importance. IEEE Transactions on Nanobioscience, 2019, 18, 522-527.	2.2	7
1732	Scaffolds for ligament tissue engineering. , 2019, , 299-327.		2
1733	Electrospinning of pyrazole-isothiazole derivatives: nanofibers from small molecules. RSC Advances, 2019, 9, 20565-20572.	1.7	16
1734	Antibacterial bi-layered polyvinyl alcohol (PVA)-chitosan blend nanofibrous mat loaded with Azadirachta indica (neem) extract. International Journal of Biological Macromolecules, 2019, 138, 13-20.	3.6	73
1735	Fluid Viscosity and Corresponding Effects on Fluid flow, Velocity Magnitude and Electric Field Distribution in Electrohydrodynamic Jetting Journal of Physics: Conference Series, 2019, 1322, 012008.	0.3	1
1736	Fabrication on bioinspired surfaces. , 2019, , 99-146.		15
1737	Polymer Template Synthesis of Flexible BaTiO ₃ Crystal Nanofibers. Advanced Functional Materials, 2019, 29, 1907919.	7.8	129

#	Article	IF	CITATIONS
1738	Microstructure Transitions and Dry-Wet Spinnability of Silk Fibroin Protein from Waste Silk Quilt. Polymers, 2019, 11, 1622.	2.0	26
1739	Polyvinyl Alcohol (PVA)–Azadirachta indica (Neem) Nanofibrous Mat for Biomedical Application: Formation and Characterization. Journal of Polymers and the Environment, 2019, 27, 2933-2942.	2.4	23
1740	A supercritical CO2 assisted electrohydrodynamic process used to produce microparticles and microfibers of a model polymer. Journal of CO2 Utilization, 2019, 33, 532-540.	3.3	31
1741	Experimental and theoretical investigation of the fluid behavior during polymeric fiber formation with and without pressure. Applied Physics Reviews, 2019, 6, 041401.	5.5	94
1743	Piezoelastic PVDF/TPU Nanofibrous Composite Membrane: Fabrication and Characterization. Polymers, 2019, 11, 1634.	2.0	26
1744	In Situ Modified Nitrogen-Enriched ZIF-67 Incorporated ZIF-7 Nanofiber: An Unusual Electrocatalyst for Water Oxidation. Inorganic Chemistry, 2019, 58, 13826-13835.	1.9	33
1745	Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers, 2019, 11, 1667.	2.0	776
1746	Current Available Cellular and Tissue-Based Products for Treatment of Skin Defects. Advances in Skin and Wound Care, 2019, 32, 19-25.	0.5	16
1747	Crosslinking of Electrospun Fibres from Unsaturated Polyesters by Bis-Triazolinediones (TAD). Polymers, 2019, 11, 1808.	2.0	7
1748	Micro- and nanostructured piezoelectric polymers. Frontiers of Nanoscience, 2019, , 35-65.	0.3	3
1749	Tailoring structural, morphological and mechanical characteristics of mono-crystalline diamond-reinforced polyacrylonitrile based electrospun fibers. Iranian Polymer Journal (English) Tj ETQq0 0 0 rgB1	/0.verlock	10 Tf 50 33
1750	Electrospun Polymer Nanofibers as Seed Coatings for Crop Protection. ACS Sustainable Chemistry and Engineering, 2019, 7, 19848-19856.	3.2	46
1751	The emerging field of pancreatic tissue engineering: A systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. Journal of Tissue Engineering, 2019, 10, 204173141988470.	2.3	47
1752	Emulsion electrospinning of bicomponent poly (vinyl pyrrolidone)/gelatin nanofibers with thyme essential oil. Materials Research Express, 2019, 6, 125013.	0.8	22
1753	Ag-AgCl Nanoparticles Fixation on Electrospun PVA Fibres: Technological Concept and Progress. Scientific Reports, 2019, 9, 15520.	1.6	10
1754	Recent progress in polyester–urethanes. , 2019, , 409-423.		0
1755	Electrospun nanofibers for the fabrication of engineered vascular grafts. Journal of Biological Engineering, 2019, 13, 83.	2.0	35
1756	Photothermal-responsive tungsten bronze/recycled cellulose triacetate porous fiber membranes for efficient light-driven interfacial water evaporation. Solar Energy, 2019, 194, 391-399.	2.9	40

#	Article	IF	CITATIONS
1757	Electrospun Core–Shell Nanofibrous Membranes with Nanocellulose-Stabilized Carbon Nanotubes for Use as High-Performance Flexible Supercapacitor Electrodes with Enhanced Water Resistance, Thermal Stability, and Mechanical Toughness. ACS Applied Materials & Interfaces, 2019, 11, 44624-44635.	4.0	164
1758	Fabrication of perfect CMCS/PVA nanofibers for keeping food fresh via an in situ mixing electrospinning. Materials Research Express, 2019, 6, 125001.	0.8	19
1759	Highly porous 3D sponge-like shape memory polymer for tissue engineering application with remote actuation potential. Composites Science and Technology, 2019, 184, 107874.	3.8	18
1760	A new electrospun chitosan/phosphorylated nanocellulose biosorbent for the removal of cadmium ions from aqueous solutions. Journal of Environmental Chemical Engineering, 2019, 7, 103477.	3.3	64
1761	The Application of a Novel Infrared Temperature Measurement System in HVDC Converter Valve Equipment Connector Overheat Failure Prevention. Procedia Computer Science, 2019, 154, 267-273.	1.2	3
1762	Electrospun Ionic Nanofiber Membrane-Based Fast and Highly Sensitive Capacitive Pressure Sensor. IEEE Access, 2019, 7, 139984-139993.	2.6	8
1763	Enhanced Performance of Electrospun Nanofibrous TiO2/g-C3N4 Photocatalyst in Photocatalytic Degradation of Methylene Blue. Catalysts, 2019, 9, 880.	1.6	22
1764	Bioâ€Based Nanofibers Involved in Wastewater Treatment. Macromolecular Materials and Engineering, 2019, 304, 1900345.	1.7	28
1765	Size-Controllable Melt-Electrospun Polycaprolactone (PCL) Fibers with a Sodium Chloride Additive. Polymers, 2019, 11, 1768.	2.0	16
1766	Doxycycline-Eluting Core-Shell Type Nanofiber-Covered Trachea Stent for Inhibition of Cellular Metalloproteinase and Its Related Fibrotic Stenosis. Pharmaceutics, 2019, 11, 421.	2.0	4
1767	Effect of sterilization methods on electrospun cellulose acetate butyrate nanofibers for SH-SY5Y cultivation. Reactive and Functional Polymers, 2019, 143, 104339.	2.0	6
1768	Silk Fibroin Scaffold-Based 3D Co-Culture Model for Modulation of Chondrogenesis without Hypertrophy via Reciprocal Cross-talk and Paracrine Signaling. ACS Biomaterials Science and Engineering, 2019, 5, 5240-5254.	2.6	12
1769	Cross-linking Effect in Bovine Gelatin and PCL Scaffolds Prepared by Sequential Electrospinning and Co-electrospinning for Potential Use as Vascular Grafts. , 2019, , .		1
1770	Ultrasensitive Detection of Volatile Organic Compounds by a Freestanding Aligned Ag/CdSe–CdS/PMMA Texture with Double-Side UV–Ozone Treatment. ACS Applied Materials & Interfaces, 2019, 11, 34454-34462.	4.0	7
1771	Electrospinning Preparation of NC/GAP/Submicron-HNS Energetic Composite Fiber and its Properties. ACS Omega, 2019, 4, 14261-14271.	1.6	19
1772	Magneto-mechanical actuation of magnetic responsive fibrous scaffolds boosts tenogenesis of human adipose stem cells. Nanoscale, 2019, 11, 18255-18271.	2.8	68
1773	Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS Applied Bio Materials, 2019, 2, 5460-5491.	2.3	93
1774	Electrospinning as a Versatile Method of Composite Thin Films Fabrication for Selected Applications. Solid State Phenomena, 0, 293, 35-49.	0.3	7

#	Article	IF	CITATIONS
1775	Fabrication of Electrospun Probiotic Functionalized Nanocomposite Scaffolds for Infection Control and Dermal Burn Healing in a Mice Model. ACS Biomaterials Science and Engineering, 2019, 5, 6109-6116.	2.6	29
1776	Designing Multifunctional Polyethylene-Polyimide Composite Separators for Rechargeable Lithium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A3132-A3138.	1.3	17
1777	Capturing cancer cells using hyaluronic acid-immobilized electrospun random or aligned PLA nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123978.	2.3	24
1778	Development and Applications of MOFs Derivative One-Dimensional Nanofibers via Electrospinning:A Mini-Review. Nanomaterials, 2019, 9, 1306.	1.9	38
1779	Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol(PVA)/Chitosan(CS)/Graphene(Gr) nanofibrous membranes. Journal of Materials Research and Technology, 2019, 8, 5124-5132.	2.6	45
1780	Atomic layer deposition of TiO2 thin films on electrospun poly (butylene adipate-co-terephthalate) fibers: Freestanding TiO2 nanostructures via polymer carbonization. Materials Today: Proceedings, 2019, 14, 656-662.	0.9	3
1781	Hybrid Fabrication of Biomimetic Meniscus Scaffold by 3D Printing and Parallel Electrospinning. Procedia Manufacturing, 2019, 34, 528-534.	1.9	16
1782	An aligned porous electrospun fibrous scaffold with embedded asiatic acid for accelerating diabetic wound healing. Journal of Materials Chemistry B, 2019, 7, 6125-6138.	2.9	46
1783	A method for suppressing unstable whip of jet in electrospinning. Integrated Ferroelectrics, 2019, 200, 152-160.	0.3	2
1784	Preparation of Ag Doped Keratin/PA6 Nanofiber Membrane with Enhanced Air Filtration and Antimicrobial Properties. Polymers, 2019, 11, 1511.	2.0	31
1785	Nano-fibre Integrated Microcapsules: A Nano-in-Micro Platform for 3D Cell Culture. Scientific Reports, 2019, 9, 13951.	1.6	9
1786	Comparison of Traditional and Ultrasound-Enhanced Electrospinning in Fabricating Nanofibrous Drug Delivery Systems. Pharmaceutics, 2019, 11, 495.	2.0	20
1787	Synthesis and mechanical characterization of a non-woven nanofiber by the electrospinning technique. DYNA (Colombia), 2019, 86, 64-72.	0.2	0
1788	A review on fabrication of nanofibers via electrospinning and their applications. SN Applied Sciences, 2019, 1, 1.	1.5	173
1789	The effect of 10,12-pentacosadiynoic acid on the morphology and characteristics of electrospun PDA/PU nanofibers. Fashion and Textiles, 2019, 6, .	1.3	8
1790	Quasi-Dynamic Dissolution of Electrospun Polymeric Nanofibers Loaded with Piroxicam. Pharmaceutics, 2019, 11, 491.	2.0	6
1791	A flexible capacitive sensor based on the electrospun PVDF nanofiber membrane with carbon nanotubes. Sensors and Actuators A: Physical, 2019, 299, 111579.	2.0	94
1792	Morphology and Conductivity Evaluation of Electrospun Polyacrylic Acid (PAA) Microfiber. Materials Today: Proceedings, 2019, 17, 574-583.	0.9	17

#	Article	IF	Citations
1793	Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle. Scientific Reports, 2019, 9, 14297.	1.6	36
1794	Precision Printing of Customized Cylindrical Capsules with Multifunctional Layers for Oral Drug Delivery. ACS Applied Materials & Interfaces, 2019, 11, 39179-39191.	4.0	19
1795	A novel-charged fibrous media characterized by higher efficiency and lower pressure drop. Aerosol Science and Technology, 2019, 53, 1441-1452.	1.5	5
1796	Biomimetic polycaprolactone-chitosan nanofibrous substrate influenced cell cycle and ECM secretion affect cellular uptake of nanoclusters. Bioactive Materials, 2019, 4, 79-86.	8.6	21
1797	A spectroscopic and thermal investigation into the relationship between composition, secondary structure and physical characteristics of electrospun zein nanofibers. Materials Science and Engineering C, 2019, 98, 409-418.	3.8	33
1798	Electrospun Janus nanofibers for white-light emission through efficient spatial isolation to control two-step energy transfer. Journal of Materials Chemistry C, 2019, 7, 1065-1071.	2.7	40
1799	Biological activity of human mesenchymal stromal cells on polymeric electrospun scaffolds. Biomaterials Science, 2019, 7, 1088-1100.	2.6	20
1800	Electrospinning of highly aligned fibers for drug delivery applications. Journal of Materials Chemistry B, 2019, 7, 224-232.	2.9	55
1801	Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials, 2019, 9, 144.	1.9	62
1802	Design and development of TiO2-FeO nanoparticle-immobilized nanofibrous mat for photocatalytic degradation of hazardous water pollutants. Journal of Materials Science: Materials in Electronics, 2019, 30, 4842-4854.	1.1	20
1803	A Parallel Bicomponent TPU/PI Membrane with Mechanical Strength Enhanced Isotropic Interfaces Used as Polymer Electrolyte for Lithium-Ion Battery. Polymers, 2019, 11, 185.	2.0	45
1804	An electrospun hygroscopic and electron-conductive core-shell silica@carbon nanofiber for microporous layer in proton-exchange membrane fuel cell. Journal of Solid State Electrochemistry, 2019, 23, 971-984.	1.2	15
1805	Hybrid Additive Microfabrication Scaffold Incorporated with Highly Aligned Nanofibers for Musculoskeletal Tissues. Tissue Engineering and Regenerative Medicine, 2019, 16, 29-38.	1.6	30
1806	Encapsulation of Thymol in Biodegradable Nanofiber via Coaxial Eletrospinning and Applications in Fruit Preservation. Journal of Agricultural and Food Chemistry, 2019, 67, 1736-1741.	2.4	88
1807	Tailored synthesis of amorphous SiCNO mesoporous fibers through combining a facile electrospinning process and microwave-assisted pyrolysis. Ceramics International, 2019, 45, 8640-8645.	2.3	9
1808	Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. Materials Science and Engineering C, 2019, 99, 479-490.	3.8	89
1809	Processing, Characterization and Application of Micro and Nanocellulose Based Environmentally Friendly Polymer Composites. , 2019, , 1-35.		5
1810	Introduction and Historical Overview. , 2019, , 3-20.		4

#	Article	IF	CITATIONS
1811	Electrospinning. , 2019, , 21-52.		34
1812	Electrospun Nanofibers for Air Filtration. , 2019, , 365-389.		35
1813	Electronetting. , 2019, , 249-282.		4
1814	Near-Field Electrospinning. , 2019, , 283-319.		9
1815	Melt Electrospinning. , 2019, , 339-361.		3
1816	<p>Enhanced bone regeneration of the silk fibroin electrospun scaffolds through the modification of the graphene oxide functionalized by BMP-2 peptide</p> . International Journal of Nanomedicine, 2019, Volume 14, 733-751.	3.3	83
1817	Nitrogen-Doped Titanium Dioxide Thin Films Formation on the Surface of PLLA Electrospun Microfibers Scaffold by Reactive Magnetron Sputtering Method. Plasma Chemistry and Plasma Processing, 2019, 39, 503-517.	1,1	10
1818	Plant-Based Meat Analogues. , 2019, , 103-126.		150
1819	Performance of Void-Free Electrospun SPEEK/Cloisite as a Function of Degree of Dispersion State on Nanocomposite Proton Exchange Membrane for Direct Methanol Fuel Cell Application. Membranes, 2019, 9, 7.	1.4	10
1820	Multilayered hierarchical polymer composites for high energydensity capacitors. Journal of Materials Chemistry A, 2019, 7, 2965-2980.	5.2	153
1821	Optimizing the electrospinning conditions of polysulfone membranes for water microfiltration applications. Polymer International, 2019, 68, 1610-1617.	1.6	12
1822	Fabrication and Characterization of Electrospun Silk Fibroin/Gelatin Scaffolds Crosslinked With Clutaraldehyde Vapor. Frontiers in Materials, 2019, 6, .	1.2	67
1823	Fabrication and characterization of biopolymer fibers for 3D oriented microvascular structures. Journal of Micromechanics and Microengineering, 2019, 29, 083003.	1.5	9
1824	Crystalline phase transformation of electrospinning TiO2 nanofibres carried out by high temperature annealing. Journal of Molecular Structure, 2019, 1194, 163-170.	1.8	17
1825	Electrospun bilayer nanomembrane with hierarchical placement of bead-on-string and fibers for low resistance respiratory air filtration. Separation and Purification Technology, 2019, 224, 247-254.	3.9	62
1826	Sustainable Lignin for Carbon Fibers: Principles, Techniques, and Applications. , 2019, , .		16
1827	Morphology, Modification and Characterisation of Electrospun Polymer Nanofiber Adsorbent Material Used in Metal Ion Removal. Journal of Polymers and the Environment, 2019, 27, 1843-1860.	2.4	44
1828	Melt-Processing of Lignin. , 2019, , 281-324.		1

#	Article	IF	CITATIONS
1829	Highly aligned and geometrically structured poly(glycerol sebacate)-polyethylene oxide composite fiber matrices towards bioscaffolding applications. Biomedical Microdevices, 2019, 21, 53.	1.4	7
1830	Electrospun ceramic nanofibers as 1D solid electrolytes for lithium batteries. Electrochemistry Communications, 2019, 104, 106483.	2.3	46
1831	Bijel-templated implantable biomaterials for enhancing tissue integration and vascularization. Acta Biomaterialia, 2019, 94, 173-182.	4.1	27
1832	Recent Advances and Applications of Semiconductor Photocatalytic Technology. Applied Sciences (Switzerland), 2019, 9, 2489.	1.3	266
1833	Nanostructures of gelatin for encapsulation of food ingredients. , 2019, , 189-216.		1
1834	Nanostructures of silk fibroin for encapsulation of food ingredients. , 2019, , 305-331.		2
1835	Electrospun Ultrafine Fibers from Black Bean Protein Concentrates and Polyvinyl Alcohol. Food Biophysics, 2019, 14, 446-455.	1.4	15
1836	Green synthesis of nickel oxide particles and its integration into polyurethane scaffold matrix ornamented with groundnut oil for bone tissue engineering. International Journal of Polymer Analysis and Characterization, 2019, 24, 571-583.	0.9	10
1837	Electrospraying technique under pressurized carbon dioxide for hollow particle production. Reactive and Functional Polymers, 2019, 142, 44-52.	2.0	4
1838	Surface Micro―and Nanoengineering: Applications of Layerâ€by‣ayer Technology as a Versatile Tool to Control Cellular Behavior. Small, 2019, 15, e1901228.	5.2	42
1839	Hydrophilic and Insoluble Electrospun Cellulose Acetate Fiber-Based Biosensing Platform for 25-Hydroxy Vitamin-D ₃ Detection. ACS Applied Polymer Materials, 2019, 1, 1613-1623.	2.0	40
1840	Solution Formulation and Rheology for Fabricating Extracellular Matrix-Derived Fibers Using Low-Voltage Electrospinning Patterning. ACS Biomaterials Science and Engineering, 2019, 5, 3676-3684.	2.6	14
1841	A comprehensive review of recent developments in 3D printing technique for ceramic membrane fabrication for water purification. RSC Advances, 2019, 9, 16869-16883.	1.7	81
1842	Radicals and Ions Formed in Plasma-Treated Organic Solvents: A Mechanistic Investigation to Rationalize the Enhancement of Electrospinnability of Polycaprolactone. Frontiers in Chemistry, 2019, 7, 344.	1.8	4
1843	Fabrication Techniques of Group 15 Ternary Chalcohalide Nanomaterials. , 2019, , 337-384.		4
1844	Heat transfer enhancement in chilldown process with electrospun nanofiber coating. Cryogenics, 2019, 101, 75-78.	0.9	8
1845	An Electrospun Preparation of the NC/GAP/Nano-LLM-105 Nanofiber and Its Properties. Nanomaterials, 2019, 9, 854.	1.9	40
1846	Electrospun Polycaprolactone/Graphene/Baghdadite Composite Nanofibres with Improved Mechanical and Biological Properties. Fibers and Polymers, 2019, 20, 982-990.	1.1	14

#	Article	IF	CITATIONS
1847	Innovative pH sensors developed from ultrafine fibers containing açaÃ-(Euterpe oleracea) extract. Food Chemistry, 2019, 294, 397-404.	4.2	48
1848	Mechanical and biological evaluations of novel electrospun PLLA composite scaffolds doped with oxide ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 229-237.	1.5	21
1849	Study on Nanofibrous Catalysts Prepared by Electrospinning for Methane Partial Oxidation. Catalysts, 2019, 9, 479.	1.6	8
1850	Fabrication of Three-Dimensional Fluffy Nanofibrous Scaffolds for Tissue Engineering via Electrospinning and CO ₂ Escaping Foaming. Industrial & Engineering Chemistry Research, 2019, 58, 9412-9421.	1.8	24
1851	Avocado Oil Incorporated in Ultrafine Zein Fibers by Electrospinning. Food Biophysics, 2019, 14, 383-392.	1.4	14
1852	Preparation of hydrophilic polycaprolactone/modified ZIF-8 nanofibers as a wound dressing using hydrophilic surface modifying macromolecules. Materials Science and Engineering C, 2019, 103, 109767.	3.8	48
1853	Carica papaya loaded poly (vinyl alcohol)-gelatin nanofibrous scaffold for potential application in wound dressing. Materials Science and Engineering C, 2019, 103, 109834.	3.8	57
1854	Determination of Electrospinning Parameters' Strength in Poly(D,L)-lactide-co-glycolide Micro/Nanofiber Diameter Tailoring. Journal of Nanomaterials, 2019, 2019, 1-8.	1.5	17
1855	Interpenetrating‣yncretic Microâ€Nano Hierarchy Fibers for Effective Fine Particle Capture. Advanced Engineering Materials, 2019, 21, 1801361.	1.6	3
1856	Fabrication and Characterization of a 3D Printed, MicroElectrodes Platform With Functionalized Electrospun Nano-Scaffolds and Spin Coated 3D Insulation Towards Multi- Functional Biosystems. Journal of Microelectromechanical Systems, 2019, 28, 606-618.	1.7	17
1857	Cold plasma treated thyme essential oil/silk fibroin nanofibers against Salmonella Typhimurium in poultry meat. Food Packaging and Shelf Life, 2019, 21, 100337.	3.3	65
1858	Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1308-1355.	1.9	93
1859	Preparation, characterization, and antibacterial effect of doxycycline loaded kefiran nanofibers. Journal of Drug Delivery Science and Technology, 2019, 52, 979-985.	1.4	29
1860	Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances. Biomaterials, 2019, 216, 119267.	5.7	323
1861	Optically transparent nanocomposite films based on poly(vinylidene fluoride) and single walled carbon nanotube: Role of process parameters on polymorphic changes. Polymer Crystallization, 2019, 2, e10074.	0.5	2
1862	Elastic, hydrophilic and biodegradable poly (1, 8-octanediol-co-citric acid)/polylactic acid nanofibrous membranes for potential wound dressing applications. Polymer Degradation and Stability, 2019, 166, 163-173.	2.7	30
1863	Wearable and Flexible Textile Electrodes for Biopotential Signal Monitoring: A review. Electronics (Switzerland), 2019, 8, 479.	1.8	183
1864	Electro-catalytic Activity of Carbon Nanofibers Supported Palladium Nanoparticles for Direct Alcohol Fuel Cells in Alkaline Medium. Electrocatalysis, 2019, 10, 420-428.	1.5	8

#	Article	IF	CITATIONS
1865	Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydrate Polymers, 2019, 219, 113-120.	5.1	196
1866	Electrospun nanofiber mats from aqueous starch-pullulan dispersions: Optimizing dispersion properties for electrospinning. International Journal of Biological Macromolecules, 2019, 133, 1168-1174.	3.6	33
1867	Advances in portable electrospinning devices for <i>in situ</i> delivery of personalized wound care. Nanoscale, 2019, 11, 19166-19178.	2.8	97
1868	Melt Electrospinning Designs for Nanofiber Fabrication for Different Applications. International Journal of Molecular Sciences, 2019, 20, 2455.	1.8	39
1869	A Broad Family of Carbon Nanomaterials: Classification, Properties, Synthesis, and Emerging Applications. , 2019, , 1-40.		5
1870	Nanoencapsulation of Hydrophobic Food Flavor Ingredients and Their Cyclodextrin Inclusion Complexes. Food and Bioprocess Technology, 2019, 12, 1157-1173.	2.6	29
1871	Unexpectedly high oil cleanup capacity of electrospun poly (vinylidene fluoride) fiber webs induced by spindle porous bowl like beads. Soft Materials, 2019, 17, 410-417.	0.8	25
1872	The dosage effects of dexamethasone on osteogenic activity andbiocompatibility of poly(lactic-co-glycolic acid)/hydroxyapatite nanofibers. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 1823-1832.	1.9	15
1873	Fabrication of Designable and Suspended Microfibers via Low-Voltage 3D Micropatterning. ACS Applied Materials & Ma	4.0	21
1874	Engineering Biomimetic Gelatin Based Nanostructures as Synthetic Substrates for Cell Culture. Applied Sciences (Switzerland), 2019, 9, 1583.	1.3	6
1875	Promoting Neurite Growth and Schwann Cell Migration by the Harnessing Decellularized Nerve Matrix onto Nanofibrous Guidance. ACS Applied Materials & Interfaces, 2019, 11, 17167-17176.	4.0	42
1876	Effect of Solution Composition Variables on Electrospun Alginate Nanofibers: Response Surface Analysis. Polymers, 2019, 11, 692.	2.0	47
1877	Photo-crosslinking of chitosan/poly(ethylene oxide) electrospun nanofibers. Carbohydrate Polymers, 2019, 217, 144-151.	5.1	63
1878	The synthesis and characterization of zinc-containing electrospun chitosan/gelatin derivatives with antibacterial properties. International Journal of Biological Macromolecules, 2019, 133, 538-544.	3.6	28
1879	Development and characterization of rapid dissolving ornidazole loaded PVP electrospun fibers. Pharmaceutical Development and Technology, 2019, 24, 864-873.	1.1	36
1880	Fabrication of fluffy shish-kebab structured nanofibers by electrospinning, CO2 escaping foaming and controlled crystallization for biomimetic tissue engineering scaffolds. Chemical Engineering Journal, 2019, 372, 785-795.	6.6	43
1881	Desktop Electrospinning. , 2019, , .		19
1882	Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Materials Science and Engineering C, 2019, 103, 109712.	3.8	63

ARTICLE

IF CITATIONS

Morphology of Electrospun Non-Woven Membranes of Poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 742 Td, (fluoridg-co-hexaflu 1883 Bioactive glass nanofibers for tissue engineering., 2019, , 329-356. 1884 Carbon nanomaterials for implant dentistry and bone tissue engineering., 2019, , 429-468. 1885 5 Nanocomposite electrospun micro/nanofibers for biomedical applications. , 2019, , 89-126. 1886 Organic–inorganic micro/nanofiber composites for biomedical applications., 2019, , 21-55. 1887 6 Electrospun Microbial-Encapsulated Composite-Based Plasticized Seed Coat for Rhizosphere 1888 Stabilization and Sustainable Production of Canola (<i>Brassica napus</i>L). Journal of Agricultural 2.4 29 and Food Chemistry, 2019, 67, 5085-5095. Mechanical and Biochemical Stimulation of 3D Multilayered Scaffolds for Tendon Tissue Engineering. 1889 2.6 66 ACS Biomaterials Science and Engineering, 2019, 5, 2953-2964. Albendazole Electrospun Nanofiber Films: In-vitro and Ex-vivo Assessment. BioNanoScience, 2019, 9, 1.5 625-636. Bioreabsorbable polymers for tissue engineering: PLA, PGA, and their copolymers., 2019, , 83-116. 1891 13 Electrospun Nanofibers: Recent Applications in Drug Delivery and Cancer Therapy. Nanomaterials, 1892 1.9 2019, 9, 656. Nanomaterials in Advanced, High-Performance Aerogel Composites: A Review. Polymers, 2019, 11, 726. 1893 2.0 108 Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications. ACS 1894 2.6 Biomaterials Science and Engineering, 2019, 5, 2054-2078. <p>Promoting tendon to bone integration using graphene oxide-doped electrospun poly(lactic-co-glycolic acid) nanofibrous membrane&[t;]p>. International Journal of Nanomedicine, 1895 3.3 41 2019, Volume 14, 1835-1847. Micropatterned fibrous scaffolds for biomedical application. Journal of Industrial and Engineering

1896 Chemistry, 2019, 80, 729-738. Clopidogrel eluting electrospun polyurethane/polyethylene glycol thromboresistant, 1897 1.2 26 hemocompatible nanofibrous scaffolds. Journal of Biomaterials Applications, 2019, 33, 1327-1347. Acids â€~generally recognized as safe' affect morphology and biocompatibility of electrospun 1898 5.1 29 chitosan/polyethýlene oxide nanofibers. Carbohydrate Polymers, 2019, 215, 253-262. Selective Cell Adhesion on Peptideâ€"Polymer Electrospun Fiber Mats. ACS Omega, 2019, 4, 4376-4383. 1899 1.6 4 Tunable drug release from blend poly(vinyl pyrrolidone)-ethyl cellulose nanofibers. International 1900 54 Journal of Pharmaceutics, 2019, 562, 172-179.

#	Article	IF	Citations
1901	Maneuvering the ordered mesoporosity of electrospun silica nanofibers for water harvesting. Microporous and Mesoporous Materials, 2019, 281, 23-31.	2.2	16
1902	Carbon dioxide plasma treated PVDF electrospun membrane for the removal of crystal violet dyes and iron oxide nanoparticles from water. Nano Structures Nano Objects, 2019, 18, 100268.	1.9	41
1903	Electrospun cobalt-ZIF micro-fibers for efficient water oxidation under unique pH conditions. Catalysis Science and Technology, 2019, 9, 1847-1856.	2.1	43
1904	A comprehensive review of electrospinning block copolymers. Soft Matter, 2019, 15, 2490-2510.	1.2	52
1905	Current Trends in Biomaterials and Bio-manufacturing. , 2019, , 1-34.		30
1906	Chemiresistive DNA hybridization sensor with electrospun nanofibers: A method to minimize inter-device variability. Biosensors and Bioelectronics, 2019, 133, 24-31.	5.3	32
1907	Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. Journal of Controlled Release, 2019, 302, 19-41.	4.8	254
1908	In-situ fabricated anisotropic halide perovskite nanocrystals in polyvinylalcohol nanofibers: Shape tuning and polarized emission. Nano Research, 2019, 12, 1411-1416.	5.8	54
1909	Preparation of hydrophobic nanofibers by electrospinning of PMMA dissolved in 2-propanol and water. MATEC Web of Conferences, 2019, 264, 03004.	0.1	4
1910	Pamidronate-encapsulated electrospun polycaprolactone as a potential bone regenerative scaffold. Journal of Bioactive and Compatible Polymers, 2019, 34, 131-149.	0.8	6
1911	Physical Properties and In Vitro Biocompatible Evaluation of Silicone-Modified Polyurethane Nanofibers and Films. Nanomaterials, 2019, 9, 367.	1.9	8
1912	Wearable and Stretchable Triboelectric Nanogenerator Based on Crumpled Nanofibrous Membranes. ACS Applied Materials & Interfaces, 2019, 11, 12452-12459.	4.0	104
1913	Design of polyurethane fibers: Relation between the spinning technique and the resulting fiber topology. Journal of Applied Polymer Science, 2019, 136, 47706.	1.3	13
1914	Influences on mechanical properties of chitosan nanofibrous membranes induced by incorporating graphene oxide nanosheets. Materials Research Express, 2019, 6, 075404.	0.8	10
1915	Single-needle electrospinning of PVA hollow nanofibers for core–shell structures. SN Applied Sciences, 2019, 1, 1.	1.5	19
1916	Design of Hybrid Electrospun Nanofibers Comprising a Xerogel Functionalized with a Fluorescent Dye for Application as Optical Detection Device. Journal of Physical Chemistry C, 2019, 123, 10586-10597.	1.5	5
1917	Highly responsive and selective formaldehyde sensor based on La3+-doped barium stannate microtubes prepared by electrospinning. Journal of Materials Research, 2019, 34, 2067-2077.	1.2	24
1918	Diclofenac release from polycaprolactone 3D matrices produced by electrospinning: influence of fiber structure and composition of the surrounding medium. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 27-33.	1.8	3

#	Article	IF	CITATIONS
1919	Multifunctional Smart Textronics with Blow‧pun Nonwoven Fabrics. Advanced Functional Materials, 2019, 29, 1900025.	7.8	71
1920	Manufacturing Technologies. , 2019, , 137-196.		11
1921	Production of polymer–bioactive glass nanocomposites for bone repair and substitution. , 2019, , 373-396.		2
1922	Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material. Food Hydrocolloids, 2019, 95, 245-255.	5.6	71
1923	Electrospun NiMn2O4 and NiCo2O4 spinel oxides supported on carbon nanofibers as electrocatalysts for the oxygen evolution reaction in an anion exchange membrane-based electrolysis cell. International Journal of Hydrogen Energy, 2019, 44, 20987-20996.	3.8	46
1924	Tough, hybrid chondroitin sulfate nanofibers as a promising scaffold for skin tissue engineering. International Journal of Biological Macromolecules, 2019, 132, 63-75.	3.6	45
1925	Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. Materials Science and Engineering C, 2019, 101, 306-322.	3.8	133
1926	Direct Electrospinning of Cellulose Acetate onto Polyurethane Sheet and Effect of Its Saponification on Mechanical Properties. Journal of Wood Chemistry and Technology, 2019, 39, 282-295.	0.9	4
1927	Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration in vitro and in vivo. Carbohydrate Polymers, 2019, 216, 1-16.	5.1	67
1928	A new prototype melt-electrospinning device for the production of biobased thermoplastic sub-microfibers and nanofibers. Biomaterials Research, 2019, 23, 10.	3.2	45
1929	Electrospinning under lateral electrostatic control in ambient atmosphere. Journal of Electrostatics, 2019, 98, 75-81.	1.0	5
1930	Electrospun Nanometer to Micrometer Scale Biomimetic Synthetic Membrane Scaffolds in Drug Delivery and Tissue Engineering: A Review. Applied Sciences (Switzerland), 2019, 9, 910.	1.3	7
1931	Dynamic creep properties of a novel nanofiber hernia mesh in abdominal wall repair. Hernia: the Journal of Hernias and Abdominal Wall Surgery, 2019, 23, 1009-1015.	0.9	9
1932	Solution blow spinning control of morphology and production rate of complex superconducting YBa2Cu3O7â°x nanowires. Journal of Materials Science: Materials in Electronics, 2019, 30, 9045-9050.	1.1	19
1933	Silk-Laponite® fibrous membranes for bone tissue engineering. Applied Clay Science, 2019, 174, 90-99.	2.6	46
1934	Alternative current electroluminescence and flexible light emitting devices. Journal of Materials Chemistry C, 2019, 7, 5553-5572.	2.7	54
1935	Black plaster composite fiber prepared by upward electrospinning. Journal of Applied Polymer Science, 2019, 136, 47662.	1.3	5
1936	Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Materials, 2019, 17, 181-189.	0.8	71

#	Article	IF	CITATIONS
1937	Electrospun polymeric nanocarbon nanomats for tissue engineering. , 2019, , 91-122.		4
1938	Silver modified polyarylonitrile-activated carbon composite fibers via electrospinning process. AIP Conference Proceedings, 2019, , .	0.3	0
1939	Polymer membranes for biofouling mitigation: a review. Polymer-Plastics Technology and Materials, 2019, 58, 1829-1854.	0.6	5
1941	Nanofibers for Biomedical and Healthcare Applications. Macromolecular Bioscience, 2019, 19, e1800256.	2.1	187
1942	Central composite design (CCD)-Response surface methodology (RSM) of effective electrospinning parameters on PVP-B-Hf hybrid nanofibrous composites for synthesis of HfB2-based composite nanofibers. Composites Part B: Engineering, 2019, 166, 527-541.	5.9	150
1943	Electrospun Nanofibers for Carbon Dioxide Capture. , 2019, , 619-640.		4
1944	Electrospun Nanofibers for Biosensing Applications. , 2019, , 253-267.		11
1945	Bio-functional electrospun nanomaterials: From topology design to biological applications. Progress in Polymer Science, 2019, 91, 1-28.	11.8	92
1946	Influence of halloysite nanotubes on poly(lactic acid) melt-blown nonwovens compatibilized by dual-monomer melt-grafted poly(lactic acid). Textile Reseach Journal, 2019, 89, 4173-4185.	1.1	17
1947	Amine Functionalized Electrospun Cellulose Nanofibers for Fluoride Adsorption from Drinking Water. Journal of Polymers and the Environment, 2019, 27, 816-826.	2.4	34
1949	A Broad Family of Carbon Nanomaterials: Classification, Properties, Synthesis, and Emerging Applications. , 2019, , 1-40.		12
1950	Nanomaterials With Different Dimensions for Electrocatalysis. , 2019, , 435-464.		10
1951	A conductive film of chitosan-polycaprolcatone-polypyrrole with potential in heart patch application. Polymer Testing, 2019, 75, 254-261.	2.3	33
1952	A hybrid platform for three-dimensional printing of bone scaffold by combining thermal-extrusion and electrospinning methods. Microsystem Technologies, 0, , 1.	1.2	0
1953	Functionalization of Silk Fibroin Electrospun Scaffolds via BMSC Affinity Peptide Grafting through Oxidative Self-Polymerization of Dopamine for Bone Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 8878-8895.	4.0	96
1954	Nano/microfibers of EVA copolymer obtained by solution blow spinning: Processing, solution properties, and pheromone release application. Journal of Applied Polymer Science, 2019, 136, 47647.	1.3	9
1955	Electrospinning of whey and soy protein mixed with maltodextrin – Influence of protein type and ratio on the production and morphology of fibers. Food Hydrocolloids, 2019, 93, 206-214.	5.6	80
1956	A novel approach for tailored medicines: Direct writing of Janus fibers. Journal of Drug Delivery Science and Technology, 2019, 50, 372-379.	1.4	22
ARTICLE IF CITATIONS 7. Natural nanofibers and applications., 2019, , 157-188. 1957 3 Electrospinning production of PVA/CS/HEMA/nHA bionanocomposite. International Journal of Nano 0.1 and Biomaterials, 2019, 8, 93. Evaluation and development of antibacterial fabrics using Pongamia pinnata extracts. Research 1959 0.6 4 Journal of Textile and Apparel, 2019, 23, 257-268. PVA/CA based electrospun nanofibers: Influence of processing parameters in the fiber diameter. IOP 1960 0.3 Conference Series: Materials Science and Engineering, 2019, 634, 012040. Measurement of antibacterial properties of foil-backed electrospun nanofibers. Fashion and Textiles, 1961 1.34 2019, 6, . Preparation of Polyamide 6/CeO₂ Composite Nanofibers through Electrospinning for Biomedical Applications. International Journal of Polymer Science, 2019, 2019, 1-7. 1962 1.2 Dynamics of an Ellipse-Shaped Meniscus on a Substrate-Supported Drop under an Electric Field. Fluids, 1963 0.8 2 2019, 4, 200. BIODEGRADABLE COMPOSITIONS OF ULTRATHIN POLY-3-HYDROXYBUTYRATE FIBERS WITH MNCL2†"TETRAPHENYLPORPHYRIN COMPLEXES. DYNAMICS, STRUCTURE, AND PROPERTIES. 1964 Nanotechnologies in Russia, 2019, 14, 132-143. 1965 Production of food bioactive-loaded nanoparticles by electrospraying., 2019, , 107-149. 5 Radially patterned polycaprolactone nanofibers as an active wound dressing agent. Archives of 0.4 Plastic Surgery, 2019, 46, 399-404. Sustainable Bioresource, Silk at the Nanoscale for Biomedical Applications., 2019, 125-145. 1967 2 Evaluation of a poly(lactic-acid) scaffold filled with poly(lactide-co-glycolide)/hydroxyapatite nanofibres for reconstruction of a segmental bone defect in a canine model. Veterinarni Medicina, 1968 2019, 64, 531-538. Design of Biologically Active Surfaces Based on Functionalized Polysulfones by Electrospinning. 1969 0.2 3 Proceedings (mdpi), 2019, 41, 35. Collagen as a potential biopolymer for the production of porous matrices (scaffolds) with application in tissue engineering. , 2019, , 217-244. Preparation and Characterization of Electrospun Pectin-Based Films and Their Application in 1971 1.3 35 Sustainable Aroma Barrier Multilayer Packaging. Applied Sciences (Switzerland), 2019, 9, 5136. Biomedical applications of composite resorbable fibers., 2019, , 127-155. Advanced Recombinant and Regenerated Silk Materials for Medicine and Tissue Engineering. 1974 0.7 2 Nanotechnologies in Russia, 2019, 14, 290-310. The Auxiliary Electrode Can Improve the Electric Field Distribution of the Roller Electrostatic Spinning. IOP Conference Series: Earth and Environmental Science, 2019, 358, 052077.

		CITATION RE	EPORT	
#	ARTICLE Study on the preparation of Nylon 6 nanofibers by electrospinning on particle removal.	. IOP	IF	CITATIONS
1976	Conference Series: Earth and Environmental Science, 2019, 373, 012021.		0.2	0
1977	High-voltage applications of the triboelectric nanogenerator—Opportunities brought energy technology. MRS Energy & Sustainability, 2019, 6, 1.	by the unique	1.3	22
1978	An overview of specialized equipment for nanoencapsulation of food ingredients. , 201	.9, , 1-30.		3
1979	Production of food bioactive-loaded nanofibers by electrospinning. , 2019, , 31-105.			4
1980	A Simple Homemade Electrospinning for Nanoscale Fibres Production. E3S Web of Cor 125, 12001.	nferences, 2019,	0.2	1
1981	Characterization of Poly(Ethylene Oxide) Nanofibers—Mutual Relations between Mea Electrospun Nanofibers and Solution Characteristics. Processes, 2019, 7, 948.	an Diameter of	1.3	28
1982	Formation of fibrous structure and influential factors in melt electrospinning. , 2019, ,	21-90.		3
1983	Effect of Electrospinning Process on Total Antioxidant Activity of Electrospun Nanofibe Containing Grape Seed Extract. Open Chemistry, 2019, 17, 912-918.	trs	1.0	20
1984	Fabricating Fibers of a Porous-Polystyrene Shell and Particle-Loaded Core. Molecules, 2	019, 24, 4142.	1.7	8
1985	Trend of nanofibers in dental regeneration: perspectives and challenges. , 2019, , 463-4	484.		1
1986	Three-dimensional (3D) printing based on controlled melt electrospinning in polymeric materials. , 2019, , 159-172.	biomedical		1
1987	The synthesis of nanofiber membranes from acrylonitrile butadiene styrene (ABS) wast electrospinning for use as air filtration media. RSC Advances, 2019, 9, 30741-30751.	e using	1.7	37
1988	11. Electrospun biocomposite fibers for wound healing applications. , 2019, , 265-320.			1
1989	Formation of Carbon Fibres From Polymer Poly(vinyl alcohol)/Acetylene Black using Ele Method. IOP Conference Series: Materials Science and Engineering, 2019, 543, 01203	ctrospinning 0.	0.3	15
1990	Beyond Percolation Threshold Loading of Polyacrylonitrile Electrospun Nanofibers with Nitride Nanotubes for Use in High-Temperature Composites. ACS Applied Nano Materia 7585-7592.	Boron als, 2019, 2,	2.4	5
1991	Physical and Antibacterial Properties of Peppermint Essential Oil Loaded Poly (ε-caprol Electrospun Fiber Mats for Wound Healing. Frontiers in Bioengineering and Biotechnol 346.	actone) (PCL) ogy, 2019, 7,	2.0	79
1992	Nanostructured and Photochromic Material for Environmental Detection of Metal lons 2019, 24, 4243.	. Molecules,	1.7	13
1993	Effect of Wall Structures on Mechanical Properties of Small Caliber PHBHHx Vascular C and Polymers, 2019, 20, 2261-2267.	Grafts. Fibers	1.1	7

#	Article	IF	CITATIONS
1994	Mueller Matrix Measurement of Electrospun Fiber Scaffolds for Tissue Engineering. Polymers, 2019, 11, 2062.	2.0	15
1995	Electrospinning and Drug Delivery. , 2019, , .		9
1996	Electrohydrodynamic Processes and Their Affecting Parameters. , 0, , .		2
1997	Electric field analysis of auxiliary electrode in needle-free electrostatic spinning. Ferroelectrics, 2019, 548, 60-71.	0.3	6
1998	Electrospinning: An Efficient Biopolymer-Based Micro- and Nanofibers Fabrication Technique. ACS Symposium Series, 2019, , 209-241.	0.5	18
1999	Core–Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers, 2019, 11, 2008.	2.0	68
2001	Fabrication of functionalized electrospun carbon nanofibers for enhancing lead-ion adsorption from aqueous solutions. Scientific Reports, 2019, 9, 19467.	1.6	44
2002	Halochromic composite nanofibrous mat for wound healing monitoring. Materials Research Express, 2019, 6, 1250c3.	0.8	30
2003	Antimicrobial fibers obtained by electrospinning. , 2019, , 53-76.		1
2004	Silk scaffolds with gradient pore structure and improved cell infiltration performance. Materials Science and Engineering C, 2019, 94, 179-189.	3.8	51
2005	Recent research trends. , 2019, , 159-208.		0
2006	Preparation of gentamicin sulfate eluting fiber mats by emulsion and by suspension electrospinning. Materials Science and Engineering C, 2019, 94, 86-93.	3.8	33
2007	Fabrication of gallic acid loaded Hydroxypropyl methylcellulose nanofibers by electrospinning technique as active packaging material. Carbohydrate Polymers, 2019, 208, 241-250.	5.1	109
2008	Electrospun styrene-butadiene copolymer fibers as potential reinforcement in epoxy composites: Modeling of rheological and visco elastic data. Composites Part B: Engineering, 2019, 160, 384-393.	5.9	14
2009	Antibacterial activity of quaternized chitosan modified nanofiber membrane. International Journal of Biological Macromolecules, 2019, 126, 569-577.	3.6	125
2010	A Review on Graphene-Based Electrospun Conductive Nanofibers, Supercapacitors, Anodes, and Cathodes for Lithium-Ion Batteries. Critical Reviews in Solid State and Materials Sciences, 2019, 44, 427-443.	6.8	28
2011	Effect of crosslinking stage on photocrosslinking of benzophenone functionalized poly(2-ethyl-2-oxazoline) nanofibers obtained by aqueous electrospinning. European Polymer Journal, 2019, 112, 24-30.	2.6	32
2012	Promoting effect of nano hydroxyapatite and vitamin D3 on the osteogenic differentiation of human adipose-derived stem cells in polycaprolactone/gelatin scaffold for bone tissue engineering. Materials Science and Engineering C. 2019. 97. 141-155.	3.8	40

#	Article	IF	CITATIONS
2013	Extraction of nanofibers from polymer blends: A brief review. Polymers for Advanced Technologies, 2019, 30, 813-822.	1.6	7
2014	Cellulose and/or lignin in fiber-aligned electrospun PET mats: the influence on materials end-properties. Cellulose, 2019, 26, 617-630.	2.4	9
2015	Novel nanocomposite polyethersulfone- antimony tin oxide membrane with enhanced thermal, electrical and antifouling properties. Polymer, 2019, 163, 48-56.	1.8	43
2016	Biomedical Applications of Electrospun Nanofibers: Drug and Nanoparticle Delivery. Pharmaceutics, 2019, 11, 5.	2.0	188
2017	Development of superhydrophobic electrospun fibrous membrane of polymers of intrinsic microporosity (PIM-2). European Polymer Journal, 2019, 112, 87-94.	2.6	17
2018	Multi-point enzyme immobilization, surface chemistry, and novel platforms: a paradigm shift in biocatalyst design. Critical Reviews in Biotechnology, 2019, 39, 202-219.	5.1	199
2019	Nanolayer coextrusion: An efficient and environmentally friendly micro/nanofiber fabrication technique. Materials Science and Engineering C, 2019, 95, 292-301.	3.8	15
2020	Effect of flow rate on wetting and optical properties of electrospun poly(vinyl acetate) micro-fibers. Colloid and Polymer Science, 2019, 297, 77-83.	1.0	33
2021	Nanoscale Materials in Water Purification. , 2019, , 231-246.		4
2022	Electrospinning: A Versatile Fabrication Technique for Nanofibrous Membranes for Use in Desalination. , 2019, , 247-273.		20
2023	Electrospun Nanofibrous Filtration Membranes for Heavy Metals and Dye Removal. , 2019, , 275-288.		23
2024	Fabrication of starch - Nanocellulose composite fibers by electrospinning. Food Hydrocolloids, 2019, 90, 90-98.	5.6	50
2025	Electrospun vanadium oxide based submicron diameter fiber catalysts. Part II: Effect of chemical formulation and dopants. Catalysis Today, 2019, 325, 144-150.	2.2	6
2026	Nanofibers for Water and Wastewater Treatment: Recent Advances and Developments. Energy, Environment, and Sustainability, 2019, , 431-468.	0.6	8
2027	Development and characterization of methylprednisolone loaded delayed release nanofibers. Journal of Drug Delivery Science and Technology, 2019, 49, 58-65.	1.4	29
2028	Influence of process variables on the yield and diameter of zein-poly(Nâ€ʻisopropylacrylamide) fiber blends obtained by electrospinning. Journal of Molecular Liquids, 2019, 292, 109971.	2.3	13
2029	A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. International Journal of Biological Macromolecules, 2019, 124, 591-626.	3.6	51
2030	Electrospun nanofibrous membranes for solidâ€phase extraction of estriol from aqueous solution. Journal of Applied Polymer Science, 2019, 136, 47189.	1.3	6

ARTICLE IF CITATIONS Modification of dual-component fibrous materials with carbon nanotubes and 2031 3.3 20 methyltrichlorosilane. Materials and Design, 2019, 162, 219-228. Homogeneity and penetration depth of atmospheric pressure plasma polymerization onto electrospun 3.1 nanofibrous mats. Applied Surface Science, 2019, 471, 835-841. Uncertainties in thermal-optical measurements of black carbon: Insights from source and ambient 2033 3.9 16 samples. Science of the Total Environment, 2019, 656, 239-249. Stabilization of chitosan based electrospun nanofibers through a simple and safe method. Materials 2034 Science and Engineering C, 2019, 98, 369-380. Study of electrospun fish gelatin nanofilms from benign organic acids as solvents. Food Packaging 2035 3.3 24 and Śhelf Life, 2019, 19, 66-75. Maskless Arrayed Nanofiber Mats by Bipolar Pyroelectrospinning. ACS Applied Materials & amp; Interfaces, 2019, 11, 3382-3387. 4.0 Nanostructured poly(lactic acid)/soy protein/HPMC films by electrospinning for potential 2037 2.6 74 applications in food industry. European Polymer Journal, 2019, 112, 477-486. Use of electrospinning technique to produce nanofibres for food industries: A perspective from 7.8 79 regulations to characterisations. Trends in Food Science and Technology, 2019, 85, 92-106. Development of A New Delivery System Based on Drug-Loadable Electrospun Nanofibers for Psoriasis 2040 2.0 24 Treatment. Pharmaceutics, 2019, 11, 14. Fabrication and characterization of centrifugally spun poly(acrylic acid) nanofibers. Journal of 2041 1.3 Applied Polymer Science, 2019, 136, 47480. Developing porous fibers by electrocentrifuge spinning system. Journal of Applied Polymer Science, 2042 1.3 0 2019, 136, 47513. Citronella oilâ€loaded electrospun micro/nanofibrous matrices as sustained repellency systems for the 2043 1.7 Asian tiger mosquito <i>Aedes albopictus</i>. Pest Management Science, 2019, 75, 2142-2147. A newly emerging trend of chitosan-based sensing platform for the organophosphate pesticide 2044 7.8 80 detection using Acetylcholinesterase- a review. Trends in Food Science and Technology, 2019, 85, 78-91. 2045 Nitric Oxide Therapy for Diabetic Wound Healing. Advanced Healthcare Materials, 2019, 8, e1801210. Poly(3,4â€ethylenedioxythiophene) Polymer Composite Bioelectrodes with Designed Chemical and 2046 Topographical Cues to Manipulate the Behavior of PC12 Neuronal Cells. Advanced Materials 1.9 34 Interfaces, 2019, 6, 1801576. Non Monotonous Effects of Noncovalently Functionalized Graphene Addition on the Structure and Sound Absorption Properties of Polyvinylpyrrolidone (1300 kDa) Electrospun Mats. Materials, 2019, 12, 2047 108. Fabrication and Characterization of Core-Shell Electrospun Fibrous Mats Containing Medicinal Herbs 2048 2.262 for Wound Healing and Skin Tissue Engineering. Marine Drugs, 2019, 17, 27. Magnetically modified electrospun nanotextile exhibiting peroxidase-like activity. Journal of 2049 Magnetism and Magnetic Materials, 2019, 473, 335-340.

		CITATION RE	PORT	
#	ARTICLE	401-423	IF	CITATIONS
2050	Recent progress on textile-based thooelectric hanogenerators. Nano Energy, 2019, 55,	401-423.	8.2	184
2051	Fe3O4 anodes for lithium batteries: Production techniques and general applications. C Chimie, 2019, 22, 96-102.	omptes Rendus	0.2	17
2052	Electrospun hydrogels composites for bone tissue engineering. , 2019, , 39-70.			5
2053	Electrospun cellulose acetate nanofibers for airborne nanoparticle filtration. Textile Res Journal, 2019, 89, 3137-3149.	each	1.1	16
2054	New generation of bioreactors that advance extracellular matrix modelling and tissue e Biotechnology Letters, 2019, 41, 1-25.	ngineering.	1.1	77
2055	Molecular bionics – engineering biomaterials at the molecular level using biological p Biomaterials, 2019, 192, 26-50.	rinciples.	5.7	35
2056	Colorimetric point-of-care detection of cholesterol using chitosan nanofibers. Sensors a Actuators B: Chemical, 2019, 281, 72-79.	and	4.0	36
2057	Bio-Based Covered Stents: The Potential of Biologically Derived Membranes. Tissue Eng B: Reviews, 2019, 25, 135-151.	ineering - Part	2.5	10
2058	Electrospinning of native and anionic corn starch fibers with different amylose content Research International, 2019, 116, 1318-1326.	s. Food	2.9	42
2059	Nanoengineered biomaterials for intestine regeneration. , 2019, , 363-378.			6
2060	Electrospun vanadium oxide based submicron diameter fiber catalysts. Part I: Preparation and propane ODH application. Catalysis Today, 2019, 325, 131-143.	on procedure	2.2	16
2061	Behavior of valvular interstitial cells on trilayered nanofibrous substrate mimicking mor of heart valve leaflet. Acta Biomaterialia, 2019, 85, 142-156.	phologies	4.1	23
2062	Effect of needle characteristic on fibrous PEO produced by electrospinning. Resolution Discovery, 2019, 4, 7-11.	and	0.9	20
2063	Biomedical applications of chitosan electrospun nanofibers as a green polymer – Rev Carbohydrate Polymers, 2019, 207, 588-600.	iew.	5.1	286
2064	Preparation and Electrochemical Properties of the Spongelike Melamine Formaldehyde Engineering Chemistry Research, 2019, 58, 632-642.	Poly(vinyl) Tj ETQq0 0 0 rg	gBT /Overlo 1.8	ock 10 Tf 50 7
2065	Fabrication of α-alumina fibers by sol-gel and electrospinning of aluminum nitrate prec solutions. Results in Physics, 2019, 12, 193-204.	ursor	2.0	37
2066	Electrospun Fibrous Architectures for Drug Delivery, Tissue Engineering and Cancer The Advanced Functional Materials, 2019, 29, 1802852.	ару.	7.8	179
2067	Electrospinning production of nanofibrous membranes. Environmental Chemistry Lette 767-800.	rs, 2019, 17,	8.3	103

#	Article	IF	Citations
2068	Incorporation of MnO2 into boron-enriched electrospun carbon nanofiber for electrochemical supercapacitors. Journal of Alloys and Compounds, 2019, 780, 428-434.	2.8	16
2069	Food-grade gliadin microstructures obtained by electrohydrodynamic processing. Food Research International, 2019, 116, 1366-1373.	2.9	42
2070	Porous and nonporous silk fibroin (SF) membranes wrapping for Achilles tendon (AT) repair: Which one is a better choice?. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 733-740.	1.6	8
2071	Nanoengineered biomaterials for tendon/ligament regeneration. , 2019, , 73-93.		6
2072	Porous polydimethylsiloxane membranes loaded with low-temperature crystallized TiO2 NPs for detachable antibacterial films. Journal of Materials Science, 2019, 54, 1665-1676.	1.7	12
2073	Fabrication of low-cost and high-performance coal fly ash nanofibrous membranes via electrospinning for the control of harmful substances. Fuel, 2019, 237, 236-244.	3.4	35
2074	Electrospun nanofibrous thermoplastic polyurethane/poly(glycerol sebacate) hybrid scaffolds for vocal fold tissue engineering applications. Materials Science and Engineering C, 2019, 94, 740-749.	3.8	64
2075	A novel approach to enhance the spinnability of collagen fibers by graft polymerization. Materials Science and Engineering C, 2019, 94, 108-116.	3.8	26
2076	Lecithin doped electrospun poly(lactic acid)-thermoplastic polyurethane fibers for hepatocyte viability improvement. Colloids and Surfaces B: Biointerfaces, 2019, 175, 264-271.	2.5	31
2077	Trends on enzyme immobilization researches based on bibliometric analysis. Process Biochemistry, 2019, 76, 95-110.	1.8	95
2078	Coaxial electrospraying of biopolymers as a strategy to improve protection of bioactive food ingredients. Innovative Food Science and Emerging Technologies, 2019, 51, 2-11.	2.7	57
2079	Preparation and optimization of multifunctional electrospun polyurethane/chitosan nanofibers for air pollution control applications. International Journal of Environmental Science and Technology, 2019, 16, 681-694.	1.8	51
2080	Magnetic Actuator Device Assisted Modulation of Cellular Behavior and Tuning of Drug Release on Silk Platform. ACS Biomaterials Science and Engineering, 2019, 5, 92-105.	2.6	27
2081	Fabrication of PVDF nanofibrous hydrophobic composite membranes reinforced with fabric substrates via electrospinning for membrane distillation desalination. Journal of Environmental Sciences, 2019, 75, 277-288.	3.2	62
2082	Green Composites From Sustainable Cellulose Nanofibrils. , 2020, , 81-94.		7
2083	Biomaterializing the promise of cardiac tissue engineering. Biotechnology Advances, 2020, 42, 107353.	6.0	66
2084	Processed Tissue–Derived Extracellular Matrices: Tailored Platforms Empowering Diverse Therapeutic Applications. Advanced Functional Materials, 2020, 30, 1900386.	7.8	29
2085	Influence of Modified Cationic Starch in a Mixed Poly(Vinyl Alcohol)/Cationic Starch Solution on the Electrospinning Process and Web Structure. Autex Research Journal, 2020, 20, 69-72.	0.6	3

#	Article	IF	Citations
2086	The use of polymeric meshes for pelvic organ prolapse: Current concepts, challenges, and future perspectives. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 771-789.	1.6	21
2087	Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application. Journal of the Australian Ceramic Society, 2020, 56, 533-543.	1.1	41
2088	Electrospun polyimide nanofibrous membranes for absorption of oil spills. Journal of Industrial Textiles, 2020, 50, 584-595.	1.1	5
2089	Development of highly porous, Electrostatic force assisted nanofiber fabrication for biological applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 477-504.	1.8	15
2090	Colouration of polymeric electrospun nanofibrous mats – a mini review. Journal of the Textile Institute, 2020, 111, 765-774.	1.0	7
2091	A nanofiber-based filter composed of electrospun PA-66/TiO ₂ nanofibers for removal of cement dust. International Journal of Environmental Analytical Chemistry, 2020, 100, 1737-1752.	1.8	1
2092	Porous poly(L–lactic acid)/chitosan nanofibres for copper ion adsorption. Carbohydrate Polymers, 2020, 227, 115343.	5.1	87
2093	Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment. Chinese Chemical Letters, 2020, 31, 992-995.	4.8	118
2094	Sustainable progress into batchwise coloration of polyurethane nanofibers by using ultrasonic energy. Journal of the Textile Institute, 2020, 111, 723-733.	1.0	6
2095	Electrospun nanofibers. , 2020, , 311-339.		3
2096	Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers. Carbohydrate Polymers, 2020, 228, 115419.	5.1	129
2097	Gelatin-polytrimethylene carbonate blend based electrospun tubular construct as a potential vascular biomaterial. Materials Science and Engineering C, 2020, 106, 110178.	3.8	21
2098	Review: applications, effects and the prospects for electrospun nanofibrous mats in membrane separation. Journal of Materials Science, 2020, 55, 893-924.	1.7	51
2099	Stretchable and transparent supercapacitors based on extremely long MnO2/Au nanofiber networks. Chemical Engineering Journal, 2020, 382, 122798.	6.6	39
2100	Adsorption of Ce3+ and Nd3+ by diglycolic acid functionalised electrospun polystyrene nanofiber from aqueous solution. Separation and Purification Technology, 2020, 233, 116059.	3.9	34
2101	Controlled stimulationâ€burst targeted release by pHâ€sensitive HPMCAS/theophylline composite nanofibers fabricated through electrospinning. Journal of Applied Polymer Science, 2020, 137, 48383.	1.3	6
2102	Crosslinked starch nanofibers with high mechanical strength and excellent water resistance for biomedical applications. Biomedical Materials (Bristol), 2020, 15, 025007.	1.7	17
2103	Polycaprolactoneâ€chitosanâ€polypyrrole conductive biocomposite nanofibrous scaffold for biomedical applications. Polymer Composites, 2020, 41, 645-652.	2.3	16

#	Article	IF	CITATIONS
2104	Scalable fabrication of bimetal modified polyacrylonitrile (PAN) nanofibrous membranes for photocatalytic degradation of dyes. Journal of Colloid and Interface Science, 2020, 559, 134-142.	5.0	26
2105	Core-sheath nanostructured chitosan-based nonwovens as a potential drug delivery system for periodontitis treatment. International Journal of Biological Macromolecules, 2020, 142, 521-534.	3.6	53
2106	Additive Manufacturing of Precision Biomaterials. Advanced Materials, 2020, 32, e1901994.	11.1	105
2107	Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. Journal of Applied Polymer Science, 2020, 137, 48294.	1.3	19
2108	Fabrication of extracellular matrix-coated conductive polypyrrole-poly(l-lactide) fiber-films and their synergistic effect with (nerve growth factor)/(epidermal growth factor) on neurites growth. Chinese Chemical Letters, 2020, 31, 1141-1146.	4.8	6
2109	Progress in the use of electrospun nanofiber electrodes for solid oxide fuel cells: a review. Reviews in Chemical Engineering, 2020, 36, 879-931.	2.3	11
2110	Proceeding toward the development of poly(É›-caprolactone)/cellulose microfibrils electrospun biocomposites using a novel ternary solvent system. Journal of the Textile Institute, 2020, 111, 249-259.	1.0	11
2111	Mechanically robust polyurea nanofibers processed through electrospinning technique. Materials Today Communications, 2020, 22, 100771.	0.9	7
2112	Single nozzle electrospinning of encapsulated epoxy and mercaptan in PAN for self-healing application. Polymer, 2020, 186, 122007.	1.8	19
2113	Anion sensing properties of electrospun nanofibers incorporating a thiourea-based chromoionophore in methanol. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117656.	2.0	4
2114	A novel method for producing bi-component thermo-regulating alginate fiber from phase change material microemulsion. Textile Reseach Journal, 2020, 90, 1038-1044.	1.1	7
2115	Hierarchical porous nanofibers of carbon@nickel oxide nanoparticles derived from polymer/block copolymer system. Chinese Chemical Letters, 2020, 31, 2202-2206.	4.8	2
2116	Development of herb based (Nigella sativa) eri silk nanofibrous mat for biomedical applications. Materials Today: Proceedings, 2020, 22, 585-588.	0.9	6
2117	Breath Acetone Sensors as Non-Invasive Health Monitoring Systems: A Review. IEEE Sensors Journal, 2020, 20, 5-31.	2.4	65
2118	Design and characterization of PNVCLâ€based nanofibers and evaluation of their potential applications as scaffolds for surface drug delivery of hydrophobic drugs. Journal of Applied Polymer Science, 2020, 137, 48472.	1.3	5
2119	3-D printed porous cellulose acetate tissue scaffolds for additive manufacturing. Additive Manufacturing, 2020, 31, 100927.	1.7	28
2120	Electrospun rubber/thermoplastic hybrid nanofibers for localized toughening effects in epoxy resins. Journal of Applied Polymer Science, 2020, 137, 48501.	1.3	6
2121	Valve leafletâ€inspired elastomeric scaffolds with tunable and anisotropic mechanical properties. Polymers for Advanced Technologies, 2020, 31, 94-106.	1.6	19

#	Article	IF	CITATIONS
2122	Dynamic mechanical analysis of novel cosmeceutical facial creams containing nanoâ€encapsulated natural plant and fruit extracts. Journal of Cosmetic Dermatology, 2020, 19, 1146-1154.	0.8	16
2123	Fabrication of silk fibroin/poly(lactic-co-glycolic acid)/graphene oxide microfiber mat via electrospinning for protective fabric. Materials Science and Engineering C, 2020, 107, 110308.	3.8	23
2124	Effect of Maltodextrin Dextrose Equivalent on Electrospinnability and Glycation Reaction of Blends with Pea Protein Isolate. Food Biophysics, 2020, 15, 206-215.	1.4	21
2125	Electromagnetic Scattering Properties of MWCNTs/Graphene Doped Epoxy Layered with PVC Nanofiber/E-Glass Composites. Journal of Electronic Materials, 2020, 49, 2249-2256.	1.0	15
2126	Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning. Acta Biomaterialia, 2020, 104, 135-146.	4.1	35
2127	Peptide-protein based nanofibers in pharmaceutical and biomedical applications. International Journal of Biological Macromolecules, 2020, 148, 1084-1097.	3.6	55
2128	Waterborne Electrospinning of α-Lactalbumin Generates Tunable and Biocompatible Nanofibers for Drug Delivery. ACS Applied Nano Materials, 2020, 3, 1910-1921.	2.4	29
2129	Nanodiamond in composite: Biomedical application. Journal of Biomedical Materials Research - Part A, 2020, 108, 906-922.	2.1	36
2130	Production of polyacrylonitrile/boehmite nanofibrous composite tubular structures by oppositeâ€charge electrospinning with enhanced properties from a lowâ€concentration polymer solution. Polymer Composites, 2020, 41, 1649-1661.	2.3	18
2131	Electrospun nanofiber from various source of expanded polystyrene (EPS) waste and their characterization as potential air filter media. Waste Management, 2020, 103, 76-86.	3.7	69
2132	Transition-Metal-Based Zeolite Imidazolate Framework Nanofibers via an Electrospinning Approach: A Review. ACS Omega, 2020, 5, 57-67.	1.6	45
2133	Protein and Polysaccharide-Based Magnetic Composite Materials for Medical Applications. International Journal of Molecular Sciences, 2020, 21, 186.	1.8	40
2134	Preparation of cell culture scaffolds using polycaprolactone/quince seed mucilage. International Journal of Biological Macromolecules, 2020, 155, 1270-1276.	3.6	24
2135	Controlled release of curcumin from electrospun fiber mats with antibacterial activity. Journal of Drug Delivery Science and Technology, 2020, 55, 101386.	1.4	65
2136	Development and characterization of electrospun cellulose acetate nanofibers modified by cationic surfactant. Polymer Testing, 2020, 81, 106206.	2.3	29
2137	Loading of phenolic compounds into electrospun nanofibers and electrosprayed nanoparticles. Trends in Food Science and Technology, 2020, 95, 59-74.	7.8	92
2138	Maneuvering the secondary surface morphology of electrospun poly (vinylidene fluoride) nanofibers by controlling the processing parameters. Materials Research Express, 2020, 7, 015008.	0.8	19
2139	Solution Blow Spinning of Polylactic Acid to Prepare Fibrous Oil Adsorbents Through Morphology Optimization with Response Surface Methodology. Journal of Polymers and the Environment, 2020, 28, 812-825.	2.4	12

# 2140	ARTICLE Three-Dimensional Porous Trabecular Scaffold Exhibits Osteoconductive Behaviors In Vitro. Regenerative Engineering and Translational Medicine, 2020, 6, 241-250.	IF 1.6	CITATIONS 2
2141	Agricultural waste-derived superabsorbent hydrogels: Preparation, performance, and socioeconomic impacts. Journal of Cleaner Production, 2020, 251, 119669.	4.6	104
2142	Tailoring Electrospun Poly(<scp>l</scp> -lactic acid) Nanofibers as Substrates for Microfluidic Applications. ACS Applied Materials & Interfaces, 2020, 12, 60-69.	4.0	16
2143	Encapsulation of Phase-Changing Eutectic Salts in Magnesium Oxide Fibers for High-Temperature Carbon Dioxide Capture: Beyond the Capacity–Stability Tradeoff. ACS Applied Materials & Interfaces, 2020, 12, 518-526.	4.0	13
2144	Functional separators for the batteries of the future. Journal of Power Sources, 2020, 449, 227556.	4.0	22
2145	Magnetic bacterial cellulose and carbon nanofiber aerogel by simple immersion and pyrolysis. Journal of Materials Science, 2020, 55, 4113-4126.	1.7	20
2146	Regenerative medicine and drug delivery: Progress via electrospun biomaterials. Materials Science and Engineering C, 2020, 109, 110521.	3.8	70
2147	Electrospinning of tyrosineâ€based oligopeptides: Selfâ€assembly or forced assembly?. Journal of Biomedical Materials Research - Part A, 2020, 108, 829-838.	2.1	10
2148	Polyethylene Terephthalate Nanofiber Sheet as the Novel Extraction Medium for the Determination of Phthalates in Water Samples. Analytical Sciences, 2020, 36, 277-281.	0.8	5
2149	Electrospun β-carotene–loaded SPI:PVA fiber mats produced by emulsion-electrospinning as bioactive coatings for food packaging. Food Packaging and Shelf Life, 2020, 23, 100426.	3.3	55
2150	Green electrospun nanofiber membranes filter prepared from novel biomass thermoplastic copolyester: Morphologies and filtration properties. Journal of the Taiwan Institute of Chemical Engineers, 2020, 106, 206-214.	2.7	31
2151	Preparation and characterization of pea protein isolate-pullulan blend electrospun nanofiber films. International Journal of Biological Macromolecules, 2020, 157, 641-647.	3.6	54
2152	Electrospun Polyurethane–Gelatin Composite: A New Tissue-Engineered Scaffold for Application in Skin Regeneration and Repair of Complex Wounds. ACS Biomaterials Science and Engineering, 2020, 6, 505-516.	2.6	47
2153	A Critical Review on the Production of Electrospun Nanofibres for Guided Bone Regeneration in Oral Surgery. Nanomaterials, 2020, 10, 16.	1.9	43
2154	Poly(Vinyl Alcohol)-Based Nanofibrous Electrospun Scaffolds for Tissue Engineering Applications. Polymers, 2020, 12, 7.	2.0	141
2155	Highly stable nanofibrous La2NiZrO6 catalysts for fast methane partial oxidation. Fuel, 2020, 265, 116861.	3.4	19
2156	Effect of solvent on the physicochemical properties of electrospun nanocomposite with gamat oil and cerium oxide for potential medical engineering application. Journal of the Textile Institute, 2021, 112, 1545-1554.	1.0	2
2157	Humidity Controlled Mechanical Properties of Electrospun Polyvinylidene Fluoride (PVDF) Fibers. Fibers, 2020, 8, 65.	1.8	19

	CITATION REF	CITATION REPORT		
# 2158	ARTICLE A Fast-Degradable Nano-dressing with Potent Antibacterial Effect. BioNanoScience, 2020, 10, 983-990.	IF 1.5	CITATIONS	
2159	Super-hydrophobicity: Mechanism, fabrication and its application in medical implants to prevent biomaterial associated infections. Journal of Industrial and Engineering Chemistry, 2020, 92, 1-17.	2.9	43	
2161	A review of smart electrospun fibers toward textiles. Composites Communications, 2020, 22, 100506.	3.3	119	
2162	Lipase immobilization with support materials, preparation techniques, and applications: Present and future aspects. International Journal of Biological Macromolecules, 2020, 163, 1624-1639.	3.6	114	
2163	Research Progress and Development Demand of Nanocellulose Reinforced Polymer Composites. Polymers, 2020, 12, 2113.	2.0	49	
2164	Effect of Intermediate Ion Cleaning of the Titanium Target on the Structure of Bioresorbable PLLA Scaffolds under Coating Deposition by DC Reactive Magnetron Sputtering. Inorganic Materials: Applied Research, 2020, 11, 646-652.	0.1	0	
2165	Synthesis and Characterization of Copolymer Poly(vinylidene fluoride)/Graphene Nanofiber. IOP Conference Series: Materials Science and Engineering, 2020, 833, 012079.	0.3	1	
2166	Axonal extension from dorsal root ganglia on fibrillar and highly aligned poly(lactic) Tj ETQq1 1 0.784314 rgBT /Ov extruded microfibres. International Journal of Biological Macromolecules, 2020, 163, 1959-1969.	verlock 10 3.6	0 Tf 50 467 10	
2167	Recent advances in formulating electrospun nanofiber membranes: Delivering active phytoconstituents. Journal of Drug Delivery Science and Technology, 2020, 60, 102038.	1.4	15	
2168	Mechanical Considerations of Electrospun Scaffolds for Myocardial Tissue and Regenerative Engineering. Bioengineering, 2020, 7, 122.	1.6	28	
2169	Antibacterial electrospun nanofibers from poly (vinyl alcohol) and <i>Mikania micrantha</i> with augmented moisture properties: formation and evaluation. Journal of the Textile Institute, 2021, 112, 1602-1610.	1.0	11	
2170	Design the SBS Elastomer Electrospun Fibermat/Polyester Composite Textiles: Morphology Effect on Waterproofâ€Breathable Performance. Macromolecular Materials and Engineering, 2020, 305, 2000370.	1.7	20	
2171	Investigation of the Mechanical and Dynamic-Mechanical Properties of Electrospun Polyvinylpyrrolidone Membranes: A Design of Experiment Approach. Polymers, 2020, 12, 1524.	2.0	18	
2172	Unfolding the electrospinning potential of biopolymers for preparation of nanofibers. Journal of Drug Delivery Science and Technology, 2020, 57, 101604.	1.4	75	
2173	Electrospinning of PLA with DMF: Effect of polymer concentration on the bead diameter of the electrospun fibre. IOP Conference Series: Materials Science and Engineering, 2020, 778, 012087.	0.3	7	
2174	Preparation of Chitosan-Polycaprolactone (PCL) Composite Nanofiber as Potential for Annulus Fibrosus Regeneration. Key Engineering Materials, 0, 840, 368-376.	0.4	1	
2175	Collagen-functionalized electrospun smooth and porous polymeric scaffolds for the development of human skin-equivalent. RSC Advances, 2020, 10, 26594-26603.	1.7	21	
2176	Dripping, jetting and tip streaming. Reports on Progress in Physics, 2020, 83, 097001.	8.1	91	

ARTICLE IF CITATIONS Novel core-shell fiber delivery system for synergistic treatment of cervical cancer. Journal of Drug 2177 11 1.4 Delivery Science and Technology, 2020, 59, 101865. 1D Titanium Dioxide: Achievements in Chemical Sensing. Materials, 2020, 13, 2974. 2178 1.3 Photocatalytic Methylene Blue Degradation of Electrospun Ti–Zn Complex Oxide Nanofibers. 2179 1.9 13 Nanomaterials, 2020, 10, 1311. Effect of rheological and structural properties of bacterial cellulose fibrils and whey protein 2180 5.1 biocomposites on electrosprayed food-grade particles. Carbohydrate Polymers, 2020, 241, 116319. Nanofiber Technology for Regenerative Engineering. ACS Nano, 2020, 14, 9347-9363. 2181 7.3 68 The Effect of Process Parameters on Alignment of Tubular Electrospun Nanofibers for Tissue 1.4 Regeneration Purposes. Journal of Drug Delivery Science and Technology, 2020, 58, 101781. Coloration of cellulose nanofibres with pigments. Coloration Technology, 2020, 136, 427-434. 2183 0.7 5 Synthesis of Nanofibers from Alginateâ€Polyvinyl Alcohol using Electrospinning Methods. 2184 0.4 Macromolecular Symposia, 2020, 391, 1900199. 2185 Trends in biomaterials for three-dimensional cancer modeling., 2020, , 3-41. 3 Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury: Materials 2.6 34 Perspective. ACS Biomaterials Science and Engineering, 2020, 6, 6490-6509. Dependence of poly(vinyl butyral) electrospun fibres diameter on molecular weight and 2187 3 1.1 concentration. Journal of Industrial Textiles, 2022, 51, 1612S-1626S. Microfibrous Extracellular Matrix Changes the Liver Hepatocyte Energy Metabolism via Integrins. ACS 2188 2.6 Biomaterials Science and Engineering, 2020, 6, 5849-5856. Biomaterials preparation by electrospinning of gelatin and sodium hyaluronate/gelatin nanofibers 2189 0.5 3 with non-toxic solvents. Morphologie, 2020, 104, 158-168. Microwave-assisted calcination of electrospun indium–gallium–zinc oxide nanofibers for high-performance field-effect transistors. RSC Advances, 2020, 10, 38351-38356. 2190 1.7 Effects of nanofibers on mesenchymal stem cells: environmental factors affecting cell adhesion and osteogenic differentiation and their mechanisms. Journal of Zhejiang University: Šcience B, 2020, 21, 2191 20 1.3 871-884. Enhancing Stability and Tooth Bleaching Activity of Carbamide Peroxide by Electrospun Nanofibrous Film. Pharmaceuticals, 2020, 13, 381. Low cost, high performance ultrafiltration membranes from glass fiber-PTFE–graphene composites. 2193 1.6 8 Scientific Reports, 2020, 10, 21123. A critical review on nanomaterials membrane bioreactor (NMs-MBR) for wastewater treatment. Npj 2194 3.1 Clean Water, 2020, 3, .

#	Article	IF	CITATIONS
2195	Coaxial Electrospun Nanofibers with Different Shell Contents to Control Cell Adhesion and Viability. ACS Omega, 2020, 5, 28178-28185.	1.6	14
2196	Fabrication and characterization of cinnamaldehyde loaded polysaccharide composite nanofiber film as potential antimicrobial packaging material. Food Packaging and Shelf Life, 2020, 26, 100600.	3.3	35
2197	Safety Considerations in 3D Bioprinting Using Mesenchymal Stromal Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 924.	2.0	18
2198	Electrospinning and <scp>3D</scp> bioprinting for intervertebral disc tissue engineering. JOR Spine, 2020, 3, e1117.	1.5	23
2199	Nano-structured glaucoma drainage implant safely and significantly reduces intraocular pressure in rabbits via post-operative outflow modulation. Scientific Reports, 2020, 10, 12911.	1.6	8
2200	Vascular Stents Coated with Electrospun Drug-Eluting Material: Functioning in Rabbit Iliac Artery. Polymers, 2020, 12, 1741.	2.0	12
2201	One-step electrospinning cellulose nanofibers with superhydrophilicity and superoleophobicity underwater for high-efficiency oil-water separation. International Journal of Biological Macromolecules, 2020, 162, 1536-1545.	3.6	41
2202	Advanced Design of Fiber-Based Particulate Filters: Materials, Morphology, and Construction of Fibrous Assembly. Polymers, 2020, 12, 1714.	2.0	44
2203	Curcumin/Usnic Acid-Loaded Electrospun Nanofibers Based on Hyaluronic Acid. Materials, 2020, 13, 3476.	1.3	15
2204	Polymer-Based Scaffolds for Soft-Tissue Engineering. Polymers, 2020, 12, 1566.	2.0	40
2205	A review on electrospinning nanofibers in the field of microwave absorption. Ceramics International, 2020, 46, 26441-26453.	2.3	75
2206	Electrospun drug blended poly(lactic acid) (PLA) nanofibers and their antimicrobial activities. Journal of Polymer Research, 2020, 27, 1.	1.2	22
2207	Surface Enriched Sulfonic Acid Ionic Clusters of Nafion Nanofibers as Longâ€Range Interconnected Ionic Nanochannels for Anisotropic Proton Transportation: Phenomenon and Molecular Mechanism. Advanced Materials Interfaces, 2020, 7, 2000342.	1.9	10
2208	Biopolymer-Based Nanofibrous Membrane for Water Purification Treatment. Handbook of Environmental Chemistry, 2020, , 225-240.	0.2	1
2209	Fabrication of amyloid nanofiber matrices by electrospinning. , 2020, , 41-68.		0
2210	Fibrous scaffolds for bone tissue engineering. , 2020, , 351-382.		3
2211	Electrospun cellulose nanofibers from toilet paper. Journal of Material Cycles and Waste Management, 2020, 22, 1999-2011.	1.6	11
2212	Micropatterned Reactive Nanofibers: Facile Fabrication of a Versatile Biofunctionalizable Interface. ACS Applied Polymer Materials, 2020, 2, 4026-4036.	2.0	16

#	Article	IF	CITATIONS
2213	Potential Applications of Magnesium-Based Polymeric Nanocomposites Obtained by Electrospinning Technique. Nanomaterials, 2020, 10, 1524.	1.9	22
2214	Development of laboratory-scale high-speed rotary devices for a potential pharmaceutical microfibre drug delivery platform. International Journal of Pharmaceutics, 2020, 588, 119740.	2.6	11
2215	Diclofenac Embedded in Silk Fibroin Fibers as a Drug Delivery System. Materials, 2020, 13, 3580.	1.3	21
2216	Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings. International Journal of Biological Macromolecules, 2020, 164, 4613-4627.	3.6	92
2217	PEGylated curcumin-loaded nanofibrous mats with controlled burst release through bead knot-on-spring design. Progress in Biomaterials, 2020, 9, 175-185.	1.8	3
2218	Arabinoxylan and rhamnogalacturonan mucilage: Outgoing and potential trends of pharmaceutical, environmental, and medicinal merits. International Journal of Biological Macromolecules, 2020, 165, 2550-2564.	3.6	32
2219	Dual electrospinning of a nanocomposites biofilm: Potential use as an antimicrobial barrier. Materials Today Communications, 2020, 25, 101671.	0.9	8
2220	Wet‧pinning of Biocompatible Core–Shell Polyelectrolyte Complex Fibers for Tissue Engineering. Advanced Materials Interfaces, 2020, 7, 2000849.	1.9	21
2221	Removal of methylene blue from aqueous solution using poly(acrylic acid)/SiO2 and functionalized poly(acrylic acid)/SiO2 composite nanofibers. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100381.	1.7	5
2222	Functionally graded coatings on biomaterials: a critical review. Materials Today Chemistry, 2020, 18, 100375.	1.7	11
2223	Impact of Apparatus Orientation and Gravity in Electrospinning—A Review of Empirical Evidence. Polymers, 2020, 12, 2448.	2.0	27
2225	Fabrication and Characterization of Electrospun Scaffold Based on Polycaprolactone-Aloe vera and Polyvinyl Alcohol for Skin Tissue Engineering. Fibers and Polymers, 2020, 21, 1694-1703.	1.1	3
2226	Sustainable Personal Protective Clothing for Healthcare Applications: A Review. ACS Nano, 2020, 14, 12313-12340.	7.3	252
2227	<p>Fabrication of Photo-Crosslinkable Poly(Trimethylene Carbonate)/Polycaprolactone Nanofibrous Scaffolds for Tendon Regeneration</p> . International Journal of Nanomedicine, 2020, Volume 15, 6373-6383.	3.3	14
2229	Enhancing photocatalytic performance by sonication and surfactant addition on the synthesis process of PVA/TiO2 nanofibers membranes by electrospinning method. AIP Conference Proceedings, 2020, , .	0.3	1
2230	Electrospun Hydrophobic Polyaniline/Silk Fibroin Electrochromic Nanofibers with Low Electrical Resistance. Polymers, 2020, 12, 2102.	2.0	18
2231	Bioprocess Engineering for Bioremediation. Handbook of Environmental Chemistry, 2020, , .	0.2	1
2232	Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review, Composites Part B: Engineering, 2020, 201, 108340.	5.9	282

	CITATION	Report	
#	Article	IF	CITATIONS
2233	Responsive Nanofibers with Embedded Hierarchical Lipid Self-Assemblies. Langmuir, 2020, 36, 11787-11797.	1.6	6
2234	Electrospun Nanomaterials: Applications in Food, Environmental Remediation, and Bioengineering. Nanomaterials, 2020, 10, 1714.	1.9	7
2235	Development of Highly Expandable Wrinkled Nanofiber Mat Using Metal Bundle Collector. Journal of Nanoscience and Nanotechnology, 2020, 20, 4227-4230.	0.9	0
2236	Preparation and Characterization of PHBV/PEO/AZâ€Gelatin Electrospun Mats with Photochemical Surface Modification: The Role of AZâ€Gelatin. Macromolecular Materials and Engineering, 2020, 305, 2000344.	1.7	7
2237	Electrospun captoprilâ€loaded <scp>PCL</scp> â€carbon quantum dots nanocomposite scaffold: Fabrication, characterization, and in vitro studies. Polymers for Advanced Technologies, 2020, 31, 3302-3315.	1.6	21
2238	Medicinal plants used in wound dressings made of electrospun nanofibers. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1527-1548.	1.3	38
2239	Electrospun Fibre Composite for Controlled Drug Release. MRS Advances, 2020, 5, 2409-2417.	0.5	2
2240	Water-based synthesis of photocrosslinked hyaluronic acid/polyvinyl alcohol membranes <i>via</i> electrospinning. RSC Advances, 2020, 10, 31271-31279.	1.7	11
2241	Preparation and Characterization of Electrospun Collagen Based Composites for Biomedical Applications. Materials, 2020, 13, 3961.	1.3	13
2242	Manufacturing of Food Packaging Based on Nanocellulose: Current Advances and Challenges. Nanomaterials, 2020, 10, 1726.	1.9	65
2243	Electrospun biomimetic polymer nanofibers as vascular grafts. Material Design and Processing Communications, 2021, 3, e203.	0.5	6
2244	Advances in Functional Polymer Nanofibers: From Spinning Fabrication Techniques to Recent Biomedical Applications. ACS Applied Materials & Interfaces, 2020, 12, 45673-45701.	4.0	144
2245	Development of phthalocyanine functionalised TiO ₂ and ZnO nanofibers for photodegradation of methyl orange. New Journal of Chemistry, 2020, 44, 16340-16350.	1.4	19
2246	Processing, Carbonization, and Characterization of Lignin Based Electrospun Carbon Fibers: A Review. Frontiers in Energy Research, 2020, 8, .	1.2	33
2248	Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. Nanomaterials, 2020, 10, 1609.	1.9	73
2249	Electrospinning With Lyophilized Platelet-Rich Fibrin Has the Potential to Enhance the Proliferation and Osteogenesis of MC3T3-E1 Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 595579.	2.0	8
2250	Uranium Carbide Fibers with Nano-Grains as Starting Materials for ISOL Targets. Nanomaterials, 2020, 10, 2458.	1.9	3
2251	SIMPoly: A Matlab-Based Image Analysis Tool to Measure Electrospun Polymer Scaffold Fiber Diameter. Tissue Engineering - Part C: Methods, 2020, 26, 628-636.	1.1	19

#	Article	IF	Citations
2252	Mechanical and Physical Regulation of Fibroblast–Myofibroblast Transition: From Cellular Mechanoresponse to Tissue Pathology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 609653.	2.0	107
2253	Topographical and Biomechanical Guidance of Electrospun Fibers for Biomedical Applications. Polymers, 2020, 12, 2896.	2.0	29
2254	Bromelain Immobilized onto Diamine-functionalized Electrospun Polyvinyl Chloride Fibers as a Durable Heterogeneous Catalyst. Fibers and Polymers, 2020, 21, 2224-2230.	1.1	1
2255	Effectiveness of Core-Shell Nanofibers Incorporating Amphotericin B by Solution Blow Spinning Against Leishmania and Candida Species. Frontiers in Bioengineering and Biotechnology, 2020, 8, 571821.	2.0	10
2256	Radiopaque scaffolds based on electrospun iodixanol/polycaprolactone fibrous composites. Materialia, 2020, 14, 100874.	1.3	5
2257	The Effect of Ultraviolet Exposure on Physical Properties of Electrospun Nanofiber Membrane Based on Polyvinyl Alcohol and <i>Aloe vera</i> . Key Engineering Materials, 0, 860, 244-250.	0.4	2
2258	The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Advances in Colloid and Interface Science, 2020, 286, 102315.	7.0	97
2259	Polymer-Derived Electrospun Co ₃ O ₄ @C Porous Nanofiber Network for Flexible, High-Performance, and Stable Supercapacitors. ACS Applied Energy Materials, 2020, 3, 11002-11014.	2.5	24
2260	Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts, 2020, 10, 1260.	1.6	82
2261	The Effect of Dye and Pigment Concentrations on the Diameter of Melt-Electrospun Polylactic Acid Fibers. Polymers, 2020, 12, 2321.	2.0	21
2262	Nanohybrid biodegradable scaffolds for TGF-β3 release for the chondrogenic differentiation of human mesenchymal stem cells. International Journal of Pharmaceutics, 2020, 581, 119248.	2.6	11
2263	Embedded polyzwitterionic brush-modified nanofibrous membrane through subsurface-initiated polymerization for highly efficient and durable oil/water separation. Journal of Colloid and Interface Science, 2020, 575, 388-398.	5.0	41
2264	Superclear, Porous Cellulose Membranes with Chitosan-Coated Nanofibers for Visualized Cutaneous Wound Healing Dressing. ACS Applied Materials & Interfaces, 2020, 12, 24370-24379.	4.0	105
2265	3 D nano bilayered spatially and functionally graded scaffold impregnated bromelain conjugated magnesium doped hydroxyapatite nanoparticle for periodontal regeneration. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 109, 103822.	1.5	23
2266	Electrospun PLGA nanomembrane: A novel formulation of extended-release bupivacaine delivery reducing postoperative pain. Materials and Design, 2020, 193, 108768.	3.3	10
2267	Modern Chemical Routes for the Controlled Synthesis of Anisotropic Bimetallic Nanostructures and Their Application in Catalysis. Frontiers in Chemistry, 2020, 8, 357.	1.8	34
2268	Development of a novel nanoâ€based detection card by electrospinning for rapid and sensitive analysis of pesticide residues. Journal of the Science of Food and Agriculture, 2020, 100, 4400-4408.	1.7	9
2269	Encapsulation of thiabendazole in hydroxypropylâ€ <i>β</i> â€cyclodextrin nanofibers via polymerâ€free electrospinning and its characterization. Pest Management Science, 2020, 76, 3264-3272.	1.7	47

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2270	Biopolymers, liposomes, and nanofibers as modified peroral drug release formulants. , 2	2020, , 249-270.		1
2271	Nanoparticles for topical drug delivery: Potential for skin cancer treatment. Advanced I Reviews, 2020, 153, 87-108.	Drug Delivery	6.6	96
2272	A concise review on electrospun nanofibres/nanonets for filtration of gaseous and solic constituents (PM2.5) from polluted air. Colloids and Interface Science Communication 100275.	ł s, 2020, 37,	2.0	41
2273	Nanofibrous MgO composites: structures, properties, and applications. Polymer-Plastic and Materials, 2020, 59, 1522-1551.	s Technology	0.6	6
2274	Preparation of nanocomposites from agricultural waste and their versatile applications 51-98.	. , 2020, ,		4
2275	Tunable Photoluminescence of Polyvinyl Alcohol Electrospun Nanofibers by Doping of NaYF ₄ : Eu ⁺³ Nanophosphor. Journal of Nanomaterials, 2020	, 2020, 1-8.	1.5	13
2276	Strategies to Improve Nanofibrous Scaffolds for Vascular Tissue Engineering. Nanomat 887.	erials, 2020, 10,	1.9	30
2277	Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: Fa characterization. International Journal of Biological Macromolecules, 2020, 160, 112-1	abrication and 27.	3.6	52
2278	Effects of chemical, electrochemical, and electrospun deposition of polyaniline coating of anode electrodes for evaluation of MFCs' performance. Journal of Environmenta Engineering, 2020, 8, 104039.	s on surface l Chemical	3.3	8
2279	Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Materials Science and Engineering C, 2020, 114, 110994.	J.	3.8	169
2280	Nanofibers as drug-delivery systems for infection control in dentistry. Expert Opinion o Delivery, 2020, 17, 919-930.	n Drug	2.4	25
2282	A Synthetic Graft With Multilayered Co-Electrospinning Nanoscaffolds for Bridging Mac Cuff Tear in a Rat Model. American Journal of Sports Medicine, 2020, 48, 1826-1836.	ssive Rotator	1.9	25
2284	Transparent Metallized Microfibers as Recyclable Electrostatic Air Filters with Ionization Materials & amp; Interfaces, 2020, 12, 25266-25275.	1. ACS Applied	4.0	22
2288	Towards Analysis and Optimization of Electrospun PVP (Polyvinylpyrrolidone) Nanofibe in Polymer Technology, 2020, 2020, 1-9.	rs. Advances	0.8	20
2289	Electrospun Nanofibrous Membranes for Water Treatment. , 0, , .			8
2290	Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. Journal of Ma Science and Technology, 2020, 59, 243-261.	iterials	5.6	135
2291	The pitch-based silicon-carbon composites fabricated by electrospraying technique as t material of lithium ion battery. Journal of Alloys and Compounds, 2020, 844, 156025.	he anode	2.8	19
2292	Optically activated and interrogated plasmonic hydrogels for applications in wound he of Biophotonics, 2020, 13, e202000135.	aling. Journal	1.1	15

#	Article	IF	CITATIONS
2293	Li2CoTi3O8 and its composite nanofibers as high performance and long cycle lithium ion electrode materials. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	3
2294	Calcium zirconium silicate (baghdadite) ceramic as a biomaterial. Ceramics International, 2020, 46, 21902-21909.	2.3	23
2295	Red shifted photoluminescent properties of electrospun poly(methyl methacrylate) nanofibers incorporated with green synthesised silver nanoparticles. Materials Today: Proceedings, 2020, 33, 1402-1409.	0.9	4
2296	From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. Journal of Materials Chemistry B, 2020, 8, 6667-6685.	2.9	55
2297	Application of mesoporous nanofibers as sorbent for removal of veterinary drugs from water systems. Science of the Total Environment, 2020, 738, 140282.	3.9	15
2298	A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing, 2020, 90, 106647.	2.3	183
2299	Functionalized electrospun nanofiber membranes for water treatment: A review. Science of the Total Environment, 2020, 739, 139944.	3.9	150
2300	Encapsulation of Bioactive Compounds from Aloe Vera Agrowastes in Electrospun Poly (Ethylene) Tj ETQq1 1 0.7	'84314 rgi 2.0	3T40verlock
2301	Bioâ€Derived Natural Materials Based Triboelectric Devices for Selfâ€Powered Ubiquitous Wearable and Implantable Intelligent Devices. Advanced Sustainable Systems, 2020, 4, 2000108.	2.7	42
2302	Electrospun Resveratrol-Loaded Polyvinylpyrrolidone/Cyclodextrin Nanofibers and Their Biomedical Applications. Pharmaceutics, 2020, 12, 552.	2.0	37
2303	Electrospun Polyacrylonitrileâ€Derived Co or Fe Containing Nanofibre Catalysts for Oxygen Reduction Reaction at the Alkaline Membrane Fuel Cell Cathode. ChemCatChem, 2020, 12, 4568-4581.	1.8	31
2304	Mucoadhesive Electrospun Fibre-Based Technologies for Oral Medicine. Pharmaceutics, 2020, 12, 504.	2.0	33
2305	Electrospun Keratin-Polysulfone Blend Membranes for Treatment of Tannery Effluents. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	17
2306	Electrospun Biomaterials in the Treatment and Prevention of Scars in Skin Wound Healing. Frontiers in Bioengineering and Biotechnology, 2020, 8, 481.	2.0	46
2307	Porous Polyvinyl Alcohol Membranes: Preparation Methods and Applications. Symmetry, 2020, 12, 960.	1.1	66
2308	Diversity of Electrospinning Approach for Vascular Implants: Multilayered Tubular Scaffolds. Regenerative Engineering and Translational Medicine, 2020, 6, 383-397.	1.6	9
2309	A critical review of membrane modification techniques for fouling and biofouling control in pressure-driven membrane processes. Nanotechnology for Environmental Engineering, 2020, 5, 1.	2.0	48
2310	Corneal stromal regeneration by hybrid oriented poly (ε-caprolactone)/lyophilized silk fibroin electrospun scaffold. International Journal of Biological Macromolecules, 2020, 161, 377-388.	3.6	51

ARTICLE IF CITATIONS # Vancomycin-loaded electrospun polycaprolactone/nano-hydroxyapatite membrane for the treatment 2311 0.8 4 of blood infections. Medical Hypotheses, 2020, 144, 109992. Synthetic polymer-based membranes for lithium-ion batteries. , 2020, , 383-415. Artificial neural network-based models for predicting the sound absorption coefficient of 2313 1.7 46 electrospun poly(vinyl pyrrolidone)/silica composite. Applied Acoustics, 2020, 169, 107472. A Novel Profiled Multi-Pin Electrospinning System for Nanofiber Production and Encapsulation of 2314 Nanoparticles into Nanofibers. Scientific Reports, 2020, 10, 4302. Fabrication, Applications, and Prospects of Aramid Nanofiber. Advanced Functional Materials, 2020, 30, 2315 7.8 209 2000186. 1.6 A Current Overview of Scaffold-Based Bone Regeneration Strategies with Dental Stem Cells. Advances 2317 0.8 17 in Experimental Medicine and Biology, 2020, 1288, 61-85. Polylactic acid–based materials encapsulating carvacrol obtained by solvent casting and 2318 1.5 20 electrospinning. Journal of Food Science, 2020, 85, 1177-1185. 2319 Nanomaterials in Biofuels Research. Clean Energy Production Technologies, 2020, , . 0.3 9 Electrospinning: A Powerful Tool to Improve the Corrosion Resistance of Metallic Surfaces Using 1.0 Nanofibrous Coatings. Metals, 2020, 10, 350. Effect of poly(ethylene oxide) on the electrospinning behavior and characteristics of ethyl cellulose 2321 1.3 35 composite fibers. Materialia, 2020, 10, 100649. Multilayer electrospun nanofibrous membranes with antibacterial property for air filtration. Applied 3.1 Surface Science, 2020, 515, 145962. PLA/1²-CD-based fibres loaded with quercetin as potential antibacterial dressing materials. Colloids and 2323 2.5 62 Surfaces B: Biointerfaces, 2020, 190, 110949. Different osteogenic differentiation potential of mesenchymal stem cells on three different polymeric substrates. Gene, 2020, 740, 144534. 2324 1.0 24 Production of $2\hat{\epsilon}$ hydroxyethyl methacrylate $\hat{\epsilon} \cdot g \hat{\epsilon}$ poly(ethylene terephthalate) nanofibers by electrospinning and evaluation of the properties of the obtained nanofibers. Journal of Applied 2325 10 1.3 Polymer Science, 2020, 137, 49257. Electrospinning 3D bioactive glasses for wound healing. Biomedical Materials (Bristol), 2020, 15, 2326 30 015014. Effect of moderate DC electric field on formation of surfactant-laden drops. Chemical Engineering 2327 2.7 2 Research and Design, 2020, 157, 133-141. Preparation as Well as Evaluation of the Nanofiber Membrane Loaded with Nigella sativa Extract 2.4 Using the Electrospinning Method. Journal of Polymers and the Environment, 2020, 28, 1614-1625.

#	ARTICLE	IF	Citations
2329	Separation Applications. Journal of Polymers and the Environment, 2020, 28, 1484-1491.	2.4	24
2330	New Poly(β-Cyclodextrin)/Poly(Vinyl Alcohol) Electrospun Sub-Micrometric Fibers and Their Potential Application for Wastewater Treatments. Nanomaterials, 2020, 10, 482.	1.9	13
2331	Electrospun Ag-TiO ₂ Nanofibers for Photocatalytic Glucose Conversion to High-Value Chemicals. ACS Omega, 2020, 5, 5862-5872.	1.6	33
2332	Antimicrobial Bilayer Nanocomposites Based on the Incorporation of As-Synthetized Hollow Zinc Oxide Nanotubes. Nanomaterials, 2020, 10, 503.	1.9	26
2333	Biobased Dyes as Conductive Additives to Reduce the Diameter of Polylactic Acid Fibers during Melt Electrospinning. Materials, 2020, 13, 1055.	1.3	21
2334	Influence of monomeric concentration on mechanical and electrical properties of poly(styrene―co) Tj ETQq1 1 0 Polymer Science, 2020, 137, 49166.).784314 ı 1.3	rgBT /Overio 5
2335	Recent Advances on Nanofiber Fabrications: Unconventional State-of-the-Art Spinning Techniques. Polymers, 2020, 12, 1386.	2.0	47
2337	Numerical simulation of gasâ€assisted polymerâ€melt electrospinning: Parametric study of a multinozzle system for mass production. Polymer Engineering and Science, 2020, 60, 2111-2121.	1.5	3
2338	A Mini-Review: Needleless Electrospinning of Nanofibers for Pharmaceutical and Biomedical Applications. Processes, 2020, 8, 673.	1.3	85
2339	Production of food nanomaterials by specialized equipment. , 2020, , 161-204.		4
2340	Effect of protein adsorption on bioelectrochemistry of electrospun core-shell MWCNTs/gelatin-Hb nanobelts on electrode surface. Process Biochemistry, 2020, 96, 73-79.	1.8	16
2341	Activated carbon nanofibers derived from coconut shell charcoal for dye removal application. Advanced Powder Technology, 2020, 31, 3267-3273.	2.0	39
2342	Recent advances in biopolymer-based transdermal patches. , 2020, , 195-217.		0
2343	Swelling of PVA/Chitosan/TiO ₂ Nanofibers Membrane in Different PH. Materials Science Forum, 2020, 990, 220-224.	0.3	8
2344	Structure and Properties of Fibrous Materials Based on Poly(-3-Hydroxybutyrate). Materials Science Forum, 2020, 992, 375-379.	0.3	1
2345	Antioxidant-loaded nanocarriers for drinks. , 2020, , 337-372.		1
2346	Perspectives on Synthetic Materials to Guide Tissue Regeneration for Osteochondral Defect Repair. ACS Biomaterials Science and Engineering, 2020, 6, 4324-4336.	2.6	30
2347	Hydrophobic silica-aerogel integrated polyacrylonitrile nanofibers. Journal of Industrial Textiles, 2022, 51, 4740S-4756S.	1.1	6

ARTICLE IF CITATIONS Medical Fibers and Biotextiles., 2020, , 575-600. 4 2349 Chitin and chitosan: chemistry, solubility, fiber formation, and their potential applications. , 2020, , 35-57. Diametral tensile strength on restorative dental composite: Contrasting results from the addition of 2351 0.3 1 PMMA fiber filler. AIP Conference Proceedings, 2020, , . Development of dopamine biosensor based on polyaniline/carbon quantum dots composite. Journal of 1.2 Polymer Research, 2020, 27, 1. Electrospun Polymer Nanofiber from Moringa Oleifera Kernel Oil with Coaxial Electrospinning 2353 0.3 5 Method. Current Nutrition and Food Science, 2020, 16, 90-97. A hybrid platform for three-dimensional printing of bone scaffold by combining thermal-extrusion and electrospinning methods. Microsystem Technologies, 2020, 26, 1847-1861. 2354 1.2 Ciprofloxacin-loaded polymeric nanoparticles incorporated electrospun fibers for drug delivery in 2355 3.0 67 tissue engineering applications. Drug Delivery and Translational Research, 2020, 10, 706-720. Electrospun Polymers in Cartilage Engineeringâ€"State of Play. Frontiers in Bioengineering and 2356 2.0 26 Biotechnology, 2020, 8, 77. 2357 Electrospinning Technology: Designing Nanofibers toward Wound Healing Application., 2020,,. 2 Innovative Poly (Vinylidene Fluoride) (PVDF) Electrospun Nanofiber Membrane Preparation Using 2358 1.4 44 DMSO as a Low Toxicity Solvent. Membranes, 2020, 10, 36. Simple Fabrication of Multicomponent Heterogeneous Fibers for Cell Coâ€Culture via Microfluidic 2359 2.1 24 Spinning. Macromolecular Bioscience, 2020, 20, 1900395. Incorporation of UiO-66-NH2 into modified PAN nanofibers to enhance adsorption capacity and 2360 1.2 selectivity for oil removal. Journal of Polymer Research, 2020, 27, 1. A collinear reflection Mueller matrix microscope for backscattering Mueller matrix imaging. Optics 2361 2.0 25 and Lasers in Engineering, 2020, 129, 106055. Antibacterial biohybrid nanofibers for wound dressings. Acta Biomaterialia, 2020, 107, 25-49. 4.1 374 Evaluation of the potential of chimeric spidroins/poly(L-lactic-co- $l\mu$ -caprolactone) (PLCL) nanofibrous 2363 3.8 19 scaffolds for tissue engineering. Materials Science and Engineering C, 2020, 111, 110752. Electrospun blends comprised of poly(methyl methacrylate) and ethyl(hydroxyethyl)cellulose 2364 5.1 functionalized with perichromic dyes. Carbohydrate Polymers, 2020, 236, 115991. Metamaterials: What Is Out There and What Is about to Come., 2020, , 3-51. 2365 1 Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme 6.6 environments. Chemical Engineering Journal, 2020, 390, 124623.

#	Article	IF	CITATIONS
2367	Annexation of Nickel Vanadate (Ni ₃ V ₂ O ₈) Nanocubes on Nanofibers: An Excellent Electrocatalyst for Water Oxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 4572-4579.	3.2	30
2368	The effect of additives and process parameters on the pilot-scale manufacturing of polylactic acid sub-microfibers by melt electrospinning. Textile Reseach Journal, 2020, 90, 1948-1961.	1.1	12

The incorporation and release of ungeremine, an antifungal Amaryllidaceae alkaloid, in poly(lactic) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

2370	Influence of the carbon source on the properties of poly-(3)-hydroxybutyrate produced by Paraburkholderia xenovorans LB400 and its electrospun fibers. International Journal of Biological Macromolecules, 2020, 152, 11-20.	3.6	23
2371	Functionalized silk fibroin nanofibers as drug carriers: Advantages and challenges. Journal of Controlled Release, 2020, 321, 324-347.	4.8	125
2372	Collagen-I and fibronectin modified three-dimensional electrospun PLGA scaffolds for long-term in vitro maintenance of functional hepatocytes. Materials Science and Engineering C, 2020, 111, 110723.	3.8	27
2373	Development of Molecularly Imprinted Membranes for Selective Determination of Urinary Ultra-Trace 5-Fluorouracil as Antineoplastic Drug Used in Chemotherapy. Macromolecular Research, 2020, 28, 390-399.	1.0	3
2374	Bio-inspired human in vitro outer retinal models: Bruch's membrane and its cellular interactions. Acta Biomaterialia, 2020, 104, 1-16.	4.1	13
2375	Alignmentâ€Improved and Diameterâ€Reduced Electrospun Polymer Fibers via the Hotâ€Stretching Process. Macromolecular Materials and Engineering, 2020, 305, 1900637.	1.7	11
2376	A Review on the Secondary Surface Morphology of Electrospun Nanofibers: Formation Mechanisms, Characterizations, and Applications. ChemistrySelect, 2020, 5, 1335-1348.	0.7	64
2377	Layered 3D Printing by Tethered Pyro-Electrospinning. Advances in Polymer Technology, 2020, 2020, 1-9.	0.8	18
2378	Development of nanocomposite membranes by electrospun nanofibrous materials. , 2020, , 199-218.		8
2379	Amidoxime Modified Polymers of Intrinsic Microporosity (PIM-1); A Versatile Adsorbent for Efficient Removal of Charged Dyes; Equilibrium, Kinetic and Thermodynamic Studies. Journal of Polymers and the Environment, 2020, 28, 995-1009.	2.4	21
2380	Fabrication of Antibacterial Nanofibrous Membrane Infused with Essential Oil Extracted from Tea Tree for Packaging Applications. Polymers, 2020, 12, 125.	2.0	16
2381	Optimization of electrospinning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 781-803.	1.9	55
2382	Preparation of a hordein-quercetin-chitosan antioxidant electrospun nanofibre film for food packaging and improvement of the film hydrophobic properties by heat treatment. Food Packaging and Shelf Life, 2020, 23, 100466.	3.3	44
2383	SiC/rGO Core–Shell Nanowire as a Lightweight, Highly Efficient Gigahertz Electromagnetic Wave Absorber. ACS Applied Electronic Materials, 2020, 2, 473-482.	2.0	32
2384	TiO2 Sol-Gel Coated PAN/O-MMT Multi-Functional Composite Nanofibrous Membrane Used as the Support for Laccase Immobilization: Synergistic Effect between the Membrane Support and Enzyme for Dye Degradation. Polymers, 2020, 12, 139.	2.0	20

#	Article	IF	CITATIONS
2386	Multifarious Fabrication Approaches of Producing Aligned Collagen Scaffolds for Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2020, 6, 779-797.	2.6	55
2387	Fabrication and characterization of PVA/CS-PCL/gel multi-scale electrospun scaffold: simulating extracellular matrix for enhanced cellular infiltration and proliferation. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 729-746.	1.9	9
2388	In situ melt electrospun polycaprolactone/Fe3O4 nanofibers for magnetic hyperthermia. Materials Science and Engineering C, 2020, 110, 110708.	3.8	18
2389	Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polymer Testing, 2020, 84, 106381.	2.3	72
2390	Enhanced nano-aerosol loading performance of multilayer PVDF nanofiber electret filters. Separation and Purification Technology, 2020, 240, 116606.	3.9	32
2391	Whispering gallery mode emission from dye-doped polymer fiber cross-sections fabricated by near-field electrospinning. Nanoscale, 2020, 12, 9873-9883.	2.8	15
2392	Space charge limited current conduction in thermoelectric electrospun NaCo2O4 nanofibers. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	6
2393	Electrospun fibrous membranes of poly (lactic-co-glycolic acid) with \hat{l}^2 -tricalcium phosphate for guided bone regeneration application. Polymer Testing, 2020, 86, 106489.	2.3	14
2394	Glucosinolates and phenolic compounds rich broccoli extract: Encapsulation by electrospraying and antitumor activity against glial tumor cells. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111020.	2.5	29
2395	Hydrogel membranes: A review. Materials Science and Engineering C, 2020, 114, 111023.	3.8	117
2396	Novel mineralized electrospun chitosan/PVA/TiO ₂ nanofibrous composites for potential biomedical applications: computational and experimental insights. Nanoscale Advances, 2020, 2, 1512-1522.	2.2	29
2397	Magnesium-containing silk fibroin/polycaprolactone electrospun nanofibrous scaffolds for accelerating bone regeneration. Arabian Journal of Chemistry, 2020, 13, 5526-5538.	2.3	30
2398	Gelatin-crosslinked pectin nanofiber mats allowing cell infiltration. Materials Science and Engineering C, 2020, 112, 110941.	3.8	23
2400	Structural features of composite protein-polysaccharide hydrogel in the presence of a carbon nanomaterial. Russian Chemical Bulletin, 2020, 69, 581-589.	0.4	12
2401	Exosome-mimetics as an engineered gene-activated matrix induces in-situ vascularized osteogenesis. Biomaterials, 2020, 247, 119985.	5.7	56
2402	In situ growth of aligned CsPbBr3 nanorods in polymer fibers with tailored aspect ratios. Ceramics International, 2020, 46, 18352-18357.	2.3	13
2403	MIL-88/PVB nanofiber as recyclable heterogeneous catalyst for photocatalytic and Fenton process under visible light irradiation. Chemical Physics Letters, 2020, 749, 137431.	1.2	26
2404	Fast dissolving nanofibrous matrices prepared by electrospinning of polyaspartamides. European Polymer Journal, 2020, 130, 109624.	2.6	13

#	Article	IF	CITATIONS
2405	Alginate-based electrospun core/shell nanofibers containing dexpanthenol: A good candidate for wound dressing. Journal of Drug Delivery Science and Technology, 2020, 57, 101708.	1.4	38
2406	Preparation of Multiferroic YFeO ₃ Nanofibers and the Photocatalytic Activity under Visible Irradiation. Integrated Ferroelectrics, 2020, 206, 105-111.	0.3	3
2407	Atomic layer deposition and electrospinning as membrane surface engineering methods for water treatment: a short review. Environmental Science: Water Research and Technology, 2020, 6, 1765-1785.	1.2	12
2408	Preparation and Evaluation of Nanofibrous Hydroxypropyl Cellulose and β-Cyclodextrin Polyurethane Composite Mats. Nanomaterials, 2020, 10, 754.	1.9	15
2409	Electrospinning approach for nanoencapsulation of bioactive compounds; recent advances and innovations. Trends in Food Science and Technology, 2020, 100, 190-209.	7.8	96
2410	Electro-blown spinning driven by cylindrical rotating triboelectric nanogenerator and its applications for fabricating nanofibers. Applied Materials Today, 2020, 19, 100631.	2.3	10
2411	Design of 3D multi-layered electrospun membranes embedding iron-based layered double hydroxide for drug storage and control of sustained release. European Polymer Journal, 2020, 131, 109675.	2.6	23
2412	MnFe2O4 nanoparticles/cellulose acetate composite nanofiber for controllable release of naproxen. Materials Chemistry and Physics, 2020, 250, 123055.	2.0	26
2413	The Influence of Laser Modification on a Composite Substrate and the Resistance of Thin Layers Created Using the PVD Process. Sensors, 2020, 20, 1920.	2.1	5
2414	Microwave Pretreatment for the Improvement of Physicochemical Properties of Carob Flour and Rice Starch–Based Electrospun Nanofilms. Food and Bioprocess Technology, 2020, 13, 838-850.	2.6	16
2415	Cermets as anode materials. , 2020, , 165-194.		0
2416	Synthesis and characterization of Fe3O4@Cs@Ag nanocomposite and its use in the production of magnetic and antibacterial nanofibrous membranes. Applied Surface Science, 2020, 521, 146332.	3.1	29
2417	Dual nanofiber scaffolds composed of polyurethane- gelatin/nylon 6- gelatin for bone tissue engineering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124817.	2.3	34
2418	Incorporation of lysozyme into a mucoadhesive electrospun patch for rapid protein delivery to the oral mucosa. Materials Science and Engineering C, 2020, 112, 110917.	3.8	35
2419	The Crystallization Behavior of Poly(<scp>l</scp> -lactic acid)/Poly(<scp>d</scp> -lactic acid) Electrospun Fibers: Effect of Distance of Isomeric Polymers. Industrial & Engineering Chemistry Research, 2020, 59, 8480-8491.	1.8	15
2420	Facile Removal of Phytochromes and Efficient Recovery of Pesticides Using Heteropore Covalent Organic Framework-Based Magnetic Nanospheres and Electrospun Films. ACS Applied Materials & Interfaces, 2020, 12, 20922-20932.	4.0	53
2421	Advances in HIV diagnosis and monitoring. Critical Reviews in Biotechnology, 2020, 40, 623-638.	5.1	20
2422	Modified cylindrical collectors for improved orientation of electrospun nanofibers. Polymer Bulletin, 2021, 78, 849-862.	1.7	4

#	Article	IF	CITATIONS
2423	Recent advances in electrospun electrode materials for sodium-ion batteries. Journal of Energy Chemistry, 2021, 54, 225-241.	7.1	91
2424	Polymeric nanocomposite via electrospinning: Assessment of morphology, physical properties and applications. Journal of Plastic Film and Sheeting, 2021, 37, 70-92.	1.3	10
2425	In-situ crosslinking of electrospun gelatin-carbodiimide nanofibers: fabrication, characterization, and modeling of solution parameters. Chemical Engineering Communications, 2021, 208, 976-992.	1.5	13
2426	Application of needle-free roller spinning technology in nanofibers. Journal of Industrial Textiles, 2021, 50, 906-920.	1.1	2
2427	Electrospinning technique for production of polyaniline nanocomposites/nanofibres for multi-functional applications: A review. Synthetic Metals, 2021, 271, 116609.	2.1	84
2428	A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment. Journal of Hazardous Materials, 2021, 401, 123608.	6.5	192
2429	Cellulose acetate nanofibers loaded with crude annatto extract: Preparation, characterization, and in vivo evaluation for potential wound healing applications. Materials Science and Engineering C, 2021, 118, 111322.	3.8	55
2430	Electrospun nanofibers for personal protection in mines. Chemical Engineering Journal, 2021, 404, 126558.	6.6	80
2431	Enhanced electrospinning: Multi-level fiber alignment by control of electrohydrodynamic jet motion for tissue engineering. Chemical Engineering Journal, 2021, 418, 126561.	6.6	12
2432	Enhanced Catalytic Activity of Immobilized Phytase into Polyvinyl Alcohol-Sodium Alginate Based Electrospun Nanofibers. Catalysis Letters, 2021, 151, 821-831.	1.4	35
2433	Inulin added electrospun composite nanofibres by electrospinning for the encapsulation of probiotics: characterisation and assessment of viability during storage and simulated gastrointestinal digestion. International Journal of Food Science and Technology, 2021, 56, 927-935.	1.3	25
2434	Flexible and transparent composite nanofibre membrane that was fabricated via a "green― electrospinning method for efficient particulate matter 2.5 capture. Journal of Colloid and Interface Science, 2021, 582, 506-514.	5.0	160
2435	Nanostructured polymer scaffold decorated with cerium oxide nanoparticles toward engineering an anti-hypertrophic cardiac patch. Materials Science and Engineering C, 2021, 118, 111416.	3.8	41
2436	Enhanced dynamic Cu(II) ion removal using hot-pressed chitosan / poly (vinyl alcohol) electrospun nanofibrous affinity membrane (ENAM). Chemical Engineering Research and Design, 2021, 146, 329-337.	2.7	27
2437	High sensitivity In-Ga-Zn-O nanofiber-based double gate field effect transistors for chemical sensing. Sensors and Actuators B: Chemical, 2021, 326, 128827.	4.0	17
2438	The influence of nanostructure on the wetting transition of polyvinylidene fluoride nanoweb: from the petal effect to the lotus effect. Textile Reseach Journal, 2021, 91, 752-765.	1.1	4
2439	Gelatin/β–Cyclodextrin Bio–Nanofibers as respiratory filter media for filtration of aerosols and volatile organic compounds at low air resistance. Journal of Hazardous Materials, 2021, 403, 123841.	6.5	67
2440	Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles. Journal of Colloid and Interface Science, 2021, 584, 164-173.	5.0	63

#	Article	IF	CITATIONS
2441	Electrospun nanofibrous sheet doped with a novel triphenylamine based salicylaldehyde fluorophore for hydrazine vapor detection. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112879.	2.0	6
2442	Porous protoporphyrin IX-embedded cellulose diacetate electrospun microfibers in antimicrobial photodynamic inactivation. Materials Science and Engineering C, 2021, 118, 111502.	3.8	20
2443	A hybrid scaffold of gelatin glycosaminoglycan matrix and fibrin as a carrier of human corneal fibroblast cells. Materials Science and Engineering C, 2021, 118, 111430.	3.8	13
2444	Thermochromic and/or photochromic properties of electrospun cellulose acetate microfibers for application as sensors in smart packing. Journal of Applied Polymer Science, 2021, 138, 50039.	1.3	18
2445	Preparation of shape memory epoxy resin for asphalt mixtures and its influences on the main pavement performance. Construction and Building Materials, 2021, 267, 121055.	3.2	9
2446	Nanomedicine Approaches to Negotiate Local Biobarriers for Topical Drug Delivery. Advanced Therapeutics, 2021, 4, 2000160.	1.6	6
2447	Biocompatible Crosslinked Nanofibers of Poly(Vinyl Alcohol)/Carboxymethylâ€Kappa arrageenan Produced by a Green Process. Macromolecular Bioscience, 2021, 21, e2000292.	2.1	19
2448	Preparation of Bi-based porous and magnetic electrospun fibers and their photocatalytic properties in weak polar medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125718.	2.3	5
2449	Chromium containing leather trimmings valorization: Sustainable sound absorber from collagen hydrolysate intercalated electrospun nanofibers. Journal of Hazardous Materials, 2021, 405, 124231.	6.5	17
2450	An antimicrobial peptide-immobilized nanofiber mat with superior performances than the commercial silver-containing dressing. Materials Science and Engineering C, 2021, 119, 111608.	3.8	15
2451	Delivery of Therapeutics from Layer-by-Layer Electrospun Nanofiber Matrix for Wound Healing: An Update. Journal of Pharmaceutical Sciences, 2021, 110, 635-653.	1.6	81
2452	Activated Carbon Containing PEGâ€Based Hydrogels as Novel Candidate Dressings for the Treatment of Malodorous Wounds. Macromolecular Materials and Engineering, 2021, 306, .	1.7	14
2453	Electrospinning of silk fibroin-based nanofibers and their applications in tissue engineering. , 2021, , 111-146.		5
2454	Laser irradiation method to prepare polyethylene porous fiber membrane with ultrahigh xylene gas filtration capacity. Journal of Hazardous Materials, 2021, 407, 124395.	6.5	10
2455	Porous polymeric membranes: fabrication techniques and biomedical applications. Journal of Materials Chemistry B, 2021, 9, 2129-2154.	2.9	56
2456	Dual-temporal bidirectional immunomodulation of Cu-Zn Bi-layer nanofibrous membranes for sequentially enhancing antibacterial activity and osteogenesis. Applied Materials Today, 2021, 22, 100888.	2.3	17
2457	An overview on nanostructured TiO2–containing fibers for photocatalytic degradation of organic pollutants in wastewater treatment. Journal of Water Process Engineering, 2021, 40, 101827.	2.6	46
2458	Photocatalytic and antifouling properties of electrospun TiO2 polyacrylonitrile composite nanofibers under visible light. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114913.	1.7	60

#	Article	IF	CITATIONS
2459	Electrospun carbon (nano) fibers for catalysis. , 2021, , 197-234.		1
2460	Electrospun three-dimensional nanofibrous scaffolds based on polycaprolactone for stem cells differentiation and bone regeneration. , 2021, , 179-215.		1
2461	Review: theoretical and experimental investigation of the intrinsic properties of Zn2GeO4 nanocrystals. Journal of Materials Science, 2021, 56, 4552-4568.	1.7	6
2462	An optimization approach for fabricating electrospun nanofiber air filters with minimized pressure drop for indoor PM2.5 control. Building and Environment, 2021, 188, 107449.	3.0	25
2463	Electrospun PGS/PCL, PLLA/PCL, PLGA/PCL and pure PCL scaffolds for retinal progenitor cell cultivation. Biochemical Engineering Journal, 2021, 166, 107846.	1.8	31
2464	Functionalized porous filtration media for gravity-driven filtration: Reviewing a new emerging approach for oil and water emulsions separation. Separation and Purification Technology, 2021, 259, 117983.	3.9	49
2465	Peptide grafting strategies before and after electrospinning of nanofibers. Acta Biomaterialia, 2021, 122, 82-100.	4.1	31
2466	Encapsulation of fragrances in micron-size silk fibroin carriers via coaxial electrohydrodynamic techniques. Materials Chemistry and Physics, 2021, 260, 124167.	2.0	7
2467	Determination of mechanical properties of polymer matrix composites reinforced with electrospinning N66, PAN, PVA and PVC nanofibers: A comparative study. Materials Today Communications, 2021, 26, 101939.	0.9	31
2468	Fabrication and characterization of in situ cross-linked electrospun Poly(vinyl alcohol)/phase change material nanofibers. Solar Energy, 2021, 213, 339-349.	2.9	17
2469	Electrospinning for healthcare: recent advancements. Journal of Materials Chemistry B, 2021, 9, 939-951.	2.9	81
2470	Electrospun poly (vinyl alcohol) nanofibers incorporating caffeic acid/cyclodextrins through the supramolecular assembly for antibacterial activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 249, 119308.	2.0	14
2471	Doubleâ€layer <scp>PLLA</scp> /PEO_Chitosan nanofibrous mats containing <scp><i>Hypericum perforatum</i></scp> L. as an effective approach for wound treatment. Polymers for Advanced Technologies, 2021, 32, 1493-1506.	1.6	14
2472	Room temperature flexible NH3 sensor based on polyaniline coated Rh-doped SnO2 hollow nanotubes. Sensors and Actuators B: Chemical, 2021, 330, 129313.	4.0	48
2473	Electrospinning of Electroconductive Water-Resistant Nanofibers of PEDOT–PSS, Cellulose Nanofibrils and PEO: Fabrication, Characterization, and Cytocompatibility. ACS Applied Bio Materials, 2021, 4, 483-493.	2.3	17
2474	Electrospinning for the manufacture of biosensor components: A miniâ€review. Medical Devices & Sensors, 2021, 4, e10136.	2.7	11
2475	Electrospun freestanding hydrophobic fabric as a potential polymer semi-permeable membrane for islet encapsulation. Materials Science and Engineering C, 2021, 118, 111409.	3.8	13
2477	The Electrospinning Process. , 2021, , 153-185.		1

#	Article	IF	CITATIONS
2478	Introducing electrospun polylactic acid incorporating etched halloysite nanotubes as a new nanofibrous web for controlled release of Amoxicillin. Journal of Nanostructure in Chemistry, 2021, 11, 245-258.	5.3	23
2479	Preparation of antibacterial biocompatible polycaprolactone/keratin nanofibrous mats by electrospinning. Journal of Applied Polymer Science, 2021, 138, 49862.	1.3	18
2480	Engineering Oriented Scaffolds for Directing Neuronal Regeneration. , 2021, , 125-152.		0
2481	Enhancing properties and water resistance of PEO-based electrospun nanofibrous membranes by photo-crosslinking. Journal of Materials Science, 2021, 56, 1879-1896.	1.7	20
2482	Electrospun cotton–wool-like silica/gelatin hybrids with covalent coupling. Journal of Sol-Gel Science and Technology, 2021, 97, 11-26.	1.1	4
2483	Structurally modified poly(methyl methacrylate) electrospun nanofibers as better host matrix for noble metal nanoparticles. Journal of Applied Polymer Science, 2021, 138, 50210.	1.3	5
2485	Influence of silk fibroin on the preparation of nanofibrous scaffolds for the effective use in osteoregenerative applications. Journal of Drug Delivery Science and Technology, 2021, 61, 102182.	1.4	9
2486	Morphology, physical, and mechanical properties of potentially applicable coelectrospun polysulfone/ <scp>chitosanâ€polyvinyl</scp> alcohol fibrous membranes in water purification. Journal of Applied Polymer Science, 2021, 138, 49933.	1.3	15
2487	Polyvinylidene fluoride nanofibers obtained by electrospinning and blowspinning: Electrospinning enhances the piezoelectric βâ€phase – myth or reality?. Journal of Applied Polymer Science, 2021, 138, 49959.	1.3	7
2488	Ultra-high sensitivity pH-sensors using silicon nanowire channel dual-gate field-effect transistors fabricated by electrospun polyvinylpyrrolidone nanofibers pattern template transfer. Sensors and Actuators B: Chemical, 2021, 326, 128835.	4.0	30
2489	Recent Progress in Functional Materials for Selective Detection and Removal of Mercury(II) Ions. Advanced Functional Materials, 2021, 31, .	7.8	109
2490	Electrospray: More than just an ionization source. Electrophoresis, 2021, 42, 103-121.	1.3	18
2491	Conductive Polymer Nanobiosensors. Environmental Chemistry for A Sustainable World, 2021, , 85-118.	0.3	1
2492	A Critical Analysis On Parameters Affecting The Formation of Nano Fibers Using Electrospinning Technique. SSRG International Journal of Engineering Trends and Technology, 2021, 69, 126-131.	0.3	1
2493	Electrospun-based TiO ₂ nanofibers for organic pollutant photodegradation: a comprehensive review. Reviews in Chemical Engineering, 2022, 38, 641-668.	2.3	4
2494	Recent advances in nano-encapsulation technologies for controlled release of biostimulants and antimicrobial agents. , 2021, , 29-55.		8
2495	Rapid Fabrication of Cell-Laden Microfibers for Construction of Aligned Biomimetic Tissue. Frontiers in Bioengineering and Biotechnology, 2020, 8, 610249.	2.0	5
2496	Preparation and Characterization of Polyamide Thin Film Composite Nanofiltration Membrane Based on Polyurethane Nanofibrous Support, Journal of Polymers and the Environment, 2021, 29, 2463-2477.	2.4	5

# 2497	ARTICLE Encapsulation of herb extracts (Aromatic and medicinal herbs). , 2021, , 263-322.	IF	CITATIONS 3
2498	The Role of Electrospun Nanomaterials in the Future of Energy and Environment. Materials, 2021, 14, 558.	1.3	21
2499	Different Bioremediation Techniques for Management of Waste Water. Advances in Environmental Engineering and Green Technologies Book Series, 2021, , 1-18.	0.3	1
2500	The Mechanical Properties of PVC Nanofiber Mats Obtained by Electrospinning. Fibers, 2021, 9, 2.	1.8	27
2501	Smart Fibrous Structures Produced by Electrospinning Using the Combined Effect of PCL/Graphene Nanoplatelets. Applied Sciences (Switzerland), 2021, 11, 1124.	1.3	18
2502	Electrospun PVDF-based composite nanofabrics: an emerging trend toward energy harvesting. , 2021, , 215-236.		0
2503	Three Dimensional (3D) Printable Gel-Inks for Skin Tissue Regeneration. Gels Horizons: From Science To Smart Materials, 2021, , 191-227.	0.3	0
2504	Functionalized Carbon Nanotubes-Based Electrospun Nano-Fiber Composite and Its Applications for Environmental Remediation. Springer Series on Polymer and Composite Materials, 2021, , 353-376.	0.5	0
2505	Quercetin-gold nanorods incorporated into nanofibers: development, optimization and cytotoxicity. RSC Advances, 2021, 11, 19956-19966.	1.7	7
2506	Electrospun composite nanofibers as sensors for food analysis. , 2021, , 261-286.		5
2507	Electrospinning of Polysaccharides for Tissue Engineering Applications. Reviews and Advances in Chemistry, 2021, 11, 112-133.	0.2	4
2508	Electrospun nanofibers promote wound healing: theories, techniques, and perspectives. Journal of Materials Chemistry B, 2021, 9, 3106-3130.	2.9	109
2509	Polymer nanofabrication and plasma processing. , 2021, , 69-100.		0
2510	Electrospun biopolymer-based hybrid composites. , 2021, , 225-252.		2
2511	Advances and innovations in electrospinning technology. , 2021, , 45-81.		9
2512	Influence of surface topography on PCL electrospun scaffolds for liver tissue engineering. Journal of Materials Chemistry B, 2021, 9, 8081-8093.	2.9	13
2513	Application of electrospun composite materials for algal bioprocesses. , 2021, , 449-469.		1
2514	Electrospinning and nanofibrous structures for biomedical applications. , 2021, , 401-436.		1

#	Article	IF	CITATIONS
2515	PVA/PVP K90 Nanofibers Containing Punica granatum Peel Extract for Cosmeceutical Purposes. Fibers and Polymers, 2021, 22, 36-48.	1.1	6
2516	Advances in Biosensors Based on Electrospun Micro/Nanomaterials for Food Quality Control and Safety. Concepts and Strategies in Plant Sciences, 2021, , 243-274.	0.6	2
2517	Recent Progress in Electrospinning Technologies for Graphene-Based Materials. Carbon Nanostructures, 2021, , 1-34.	0.1	0
2518	Electrospun collagen core/poly- <scp>l</scp> -lactic acid shell nanofibers for prolonged release of hydrophilic drug. RSC Advances, 2021, 11, 5703-5711.	1.7	23
2519	Photocatalytic activity based on electrospun nanofibers. Interface Science and Technology, 2021, 32, 625-672.	1.6	8
2520	Recent Advances in Scaffolding from Natural-Based Polymers for Volumetric Muscle Injury. Molecules, 2021, 26, 699.	1.7	20
2521	Optimizing the Ecovio® and Ecovio®/zein solution parameters to achieve electrospinnability and provide thin fibers. Journal of Molecular Liquids, 2021, 321, 114476.	2.3	9
2522	Effects of electrospinning parameters on peanut protein isolate nanofibers diameter. CYTA - Journal of Food, 2021, 19, 729-738.	0.9	5
2523	Modeling of the electrospinning process. , 2021, , 237-253.		1
2524	Green Preparation and Environmental Applications of Some Electrospun Fibers. Materials Horizons, 2021, , 455-484.	0.3	0
2525	Mechanical and Dielectric Properties of Aligned Electrospun Fibers. Fibers, 2021, 9, 4.	1.8	19
2526	Emerging product formation. , 2021, , 257-275.		3
2527	Adsorbents based on nanofibers. Interface Science and Technology, 2021, 33, 389-443.	1.6	6
2528	Recent advancements and challenges of nanomaterials application in biofuel production. , 2021, , 7-55.		3
2529	In silico dynamics of COVID-19 phenotypes for optimizing clinical management. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	33
2530	Biohybrid Polymer Nanofibers for Sensor and Energy Applications. , 2021, , 177-197.		0
2531	A review on surface modification methods of poly(arylsulfone) membranes for biomedical applications. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 906-965.	1.9	9
2532	Lightweight Nanocomposites Polymers for Shielding Application. , 2021, , 554-575.		0

#	Article	IF	CITATIONS
2533	3D Graphene Nanocomposite by Electrospinning for Supercapacitor. Carbon Nanostructures, 2021, , 93-118.	0.1	0
2534	Engineering of biopolymer-based nanofibers for medical uses. , 2021, , 383-424.		1
2535	Electrospinning: The State of Art Technique for the Production of Nanofibers and Nanofibrous Membranes for Advanced Engineering Applications. Materials Horizons, 2021, , 23-71.	0.3	1
2536	A Comparative Study on the Dissolution of Argema mimosae Silk Fibroin and Fabrication of Films and Nanofibers. Polymers, 2021, 13, 549.	2.0	7
2537	Preparation, characterization and antibacterial activity of Malva Sylvestris L. seed extract containing novel electrospun PVA nanofibers. Gazi University Journal of Science, 0, , .	0.6	3
2538	Polycaprolactone/chitosan core/shell nanofibrous mat fabricated by electrospinning process as carrier for rosuvastatin drug. Polymer Bulletin, 2022, 79, 1627-1645.	1.7	9
2539	Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art. Polymers, 2021, 13, 745.	2.0	32
2540	Nanostructured Dense Collagenâ€Polyester Composite Hydrogels as Amphiphilic Platforms for Drug Delivery. Advanced Science, 2021, 8, 2004213.	5.6	40
2541	CuO/ZnO Heterojunction Nanograins: Methanol Vapour Detection. Journal of Electronic Materials, 2021, 50, 2482-2495.	1.0	5
2542	Structurally modified electrospun poly(methyl methacrylate) nanofibers as advanced host matrices for PbS quantum dots. Journal of Applied Polymer Science, 2021, 138, 50534.	1.3	5
2543	Studies on the structural and optical properties of samarium βâ€diketonate complex incorporated electrospun poly(methylmethacrylate) nanofibres with different architectures. Luminescence, 2021, 36, 1032-1047.	1.5	5
2544	Polyamidoxime nanoparticles/polyvinyl alcohol composite chelating nanofibers prepared by centrifugal spinning for uranium extraction. Reactive and Functional Polymers, 2021, 159, 104812.	2.0	11
2545	3D-Printed, Modular, and Parallelized Microfluidic System with Customizable Scaffold Integration to Investigate the Roles of Basement Membrane Topography on Endothelial Cells. ACS Biomaterials Science and Engineering, 2021, 7, 1600-1607.	2.6	6
2546	A novel polymeric fibrous microstructured biodegradable small-caliber tubular scaffold for cardiovascular tissue engineering. Journal of Materials Science: Materials in Medicine, 2021, 32, 21.	1.7	17
2547	Preparation of flexible electrospun AOPAN/PVDF membranes for removing Pb2+ from water. Applied Water Science, 2021, 11, 1.	2.8	6
2548	Fabrication and characterization of chitosan/kefiran electrospun nanofibers for tissue engineering applications. Journal of Applied Polymer Science, 2021, 138, 50547.	1.3	21
2549	Nitrogen-enriched carbon nanofibers with tunable semi-ionic C F bonds as a stable long cycle anode for sodium-ion batteries. Journal of Colloid and Interface Science, 2021, 583, 535-543.	5.0	24
2550	Engineering and Assessing Cardiac Tissue Complexity. International Journal of Molecular Sciences, 2021, 22, 1479.	1.8	13

#	Article	IF	CITATIONS
2551	Role of Electrospinning Parameters on Poly(Lactic-co-Glycolic Acid) and Poly(Caprolactone-co-Glycolic acid) Membranes. Polymers, 2021, 13, 695.	2.0	13
2552	Fabrication and characterization of electrospun biopolyester/gelatin nanofibers. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1478-1487.	1.6	9
2554	Role of Block Copolymers in Tissue Engineering Applications. Cells Tissues Organs, 2022, , 76-89.	1.3	5
2555	Encapsulation by Electrospraying of Anticancer Compounds from Jackfruit Extract (Artocarpus) Tj ETQq1 1 0.7843 Agents in Medicinal Chemistry, 2021, 21, 523-531.	814 rgBT 0.9	Overlock 1 6
2556	Plume particle energy analysis of an ionic liquid electrospray ion source with high emission density. Journal of Applied Physics, 2021, 129, .	1.1	12
2557	Customizing the Protoscolicidal Activity by a Drug Delivery System: Application of Guar Gum in Electrospun Nanofibers. Iranian Journal of Parasitology, 2021, 16, 136-145.	0.6	0
2558	Smart composite nanofiber mats with thermal management functionality. Scientific Reports, 2021, 11, 4256.	1.6	23
2559	Tailoring Unidirectional Waterâ€Penetration Janus Fabric with Surface Electrospun Deposition. Macromolecular Materials and Engineering, 2021, 306, 2000578.	1.7	4
2560	Green synthesised silver nanoparticles incorporated electrospun poly(methyl methacrylate) nanofibers with different architectures for ophthalmologic alternatives. Journal of Bioactive and Compatible Polymers, 2021, 36, 93-110.	0.8	2
2561	Insight into the Electrospinning Process for SOFC Cathode Nanofibers. Journal of Physical Chemistry C, 2021, 125, 7044-7053.	1.5	7
2562	Nanofibres for Clean Air Breathing. Journal of the Institution of Engineers (India): Series E, 2021, 102, 137-143.	0.5	1
2563	One-Step Fabrication of Low-Cost, Autoclavable, and Multifunctional Silk-Based Nanofibrous Permeable Hanging Cell Culture Inserts for Various Biological Applications. ACS Omega, 2021, 6, 7605-7614.	1.6	1
2564	Development of electrospun core–shell polymeric mat using poly (ethyl-2) cyanoacrylate/polyurethane to attenuate biological adhesion on polymeric mesh implants. Materials Science and Engineering C, 2021, 122, 111930.	3.8	3
2565	Nanofibrous Filters for PM2.5 Filtration: Conception, Mechanism and Progress. Nano, 2021, 16, 2130004.	0.5	6
2566	Facile modification of polycaprolactone nanofibers with egg white protein. Journal of Materials Science: Materials in Medicine, 2021, 32, 34.	1.7	6
2567	Effect and Mechanism of Solvent Properties on Solution Behavior and Films Condensed State Structure for the Semi-rigid Conjugated Polymers. Chinese Journal of Polymer Science (English) Tj ETQq1 1 0.7843	3 1240rgBT	Overlock 1
2568	Modeling tensile strength and suture retention of polycaprolactone electrospun nanofibrous scaffolds by artificial neural networks. Materials Today Communications, 2021, 26, 102115.	0.9	13
2569	Electrospun Fe-Incorporated ZIF-67 Nanofibers for Effective Electrocatalytic Water Splitting. Inorganic Chemistry, 2021, 60, 4034-4046.	1.9	49

ARTICLE IF CITATIONS Electrospun Nanofibrous Scaffolds: Review of Current Progress in the Properties and Manufacturing 2570 2.0 14 Process, and Possible Applications for COVID-19. Polymers, 2021, 13, 916. Controlled drug release: On the evolution of physically entrapped drug inside the electrospun poly(lactic-co-glycolic acid) matrix. Journal of Controlled Release, 2021, 331, 472-479. 2571 4.8 Effect of Process Parameters on Hand Values of PU Laminated Waterproof Breathable Textile. Fibers 2572 2 1.1 and Polymers, 2021, 22, 1853-1862. Programmed dual-electrospun fibers with a 3D substrate-independent customized biomolecule 0.9 gradient. Materials Today Communications, 2021, 26, 102066. An Overview of Recent Advances in the Synthesis and Applications of the Transition Metal Carbide 2574 1.9 31 Nanomaterials. Nanomaterials, 2021, 11, 776. Detailed Process Analysis of Biobased Polybutylene Succinate Microfibers Produced by Laboratory-Scale Melt Electrospinning. Polymers, 2021, 13, 1024. From 1D electrospun nanofibers to advanced multifunctional fibrous 3D aerogels. Applied Materials 2576 2.3 33 Today, 2021, 22, 100964. Electrospun Carbon Nanofibers from Biomass and Biomass Blendsâ€"Current Trends. Polymers, 2021, 13, 2577 2.0 1071. A radial 3D polycaprolactone nanofiber scaffold modified by biomineralization and silk fibroin 2578 coating promote bone regeneration in vivo. International Journal of Biological Macromolecules, 3.6 40 2021, 172, 19-29. Available technologies on improving the stability of polyphenols in food processing. Food Frontiers, 2579 2021, 2, 109-139. Fabrication of biodegradable polyurethane electrospun webs of fibers modified with biocompatible 2580 1.1 3 graphene oxide nanofiller. Journal of Industrial Textiles, 2022, 51, 4041S-4065S. Electrospinning as a tool in fabricating hydrated porous cobalt phosphate fibrous network as high rate OER electrocatalysts in alkaline and neutral media. International Journal of Hydrogen Energy, 3.8 29 2021, 46, 10366-10376. Appreciating the First Line of the Human Innate Immune Defense: A Strategy to Model and Alleviate the 2582 5.2 12 Neutrophil Elastaseâ€Mediated Attack toward Bioactivated Biomaterials. Small, 2021, 17, e2007551. Ecovio®-based nanofibers as a potential fast transdermal releaser of aceclofenac. Journal of 2583 2.3 Molecular Liquids, 2021, 325, 115206. 2584 A Review on Centrifugally Spun Fibers and Their Applications. Polymer Reviews, 2022, 62, 1-64. 5.3 37 The determinant role of fabrication technique in final characteristics of scaffolds for tissue engineering applications: A focus on silk fibroin-based scaffolds. Materials Science and Engineering C, 2021, 122, 111867. Coaxial electrospinning of PVA/Nigella seed oil nanofibers: Processing and morphological 2586 characterization. Materials Science and Engineering B: Solid-State Materials for Advanced 1.7 28 Technology, 2021, 265, 115012. Bioactive anti-oxidative polycaprolactone/gelatin electrospun nanofibers containing selenium nanoparticles/vitamin E for wound dressing applications. Journal of Biomaterials Applications, 2021, 1.2 36, 193-209

ARTICLE

IF CITATIONS

2588 Multilayer adsorption and kinetic studies of dyes on pure and structurally modified poly(methyl) Tj ETQq0 0 0 rgBT (Overlock 10 Tf 50 7-

2589	The Evolution of Fabrication Methods in Human Retina Regeneration. Applied Sciences (Switzerland), 2021, 11, 4102.	1.3	3
2590	Crosslinked electrospun composite membranes of poly(vinyl alcohol) and poly(vinyl chloride): tunable mechanical properties, porosity and performance. Polymer International, 2021, 70, 1495-1507.	1.6	2
2591	Prospects of Polymeric Nanofibers Loaded with Essential Oils for Biomedical and Food-Packaging Applications. International Journal of Molecular Sciences, 2021, 22, 4017.	1.8	45
2592	High generation dendrimer decorated poly-ƕcaprolactone/polyacrylic acid electrospun nanofibers for the design of a bioelectrochemical sensing surface. Reactive and Functional Polymers, 2021, 161, 104853.	2.0	19
2593	Formulations for Bacteriophage Therapy and the Potential Uses of Immobilization. Pharmaceuticals, 2021, 14, 359.	1.7	41
2594	Graphene/chitosan/Ag+- doped hydroxyapatite triple composite fiber coatings on new generation hybrid titanium composite by electrospinning. Journal of Composite Materials, 0, , 002199832110075.	1.2	7
2595	A nano chitosan membrane barrier prepared via Nanospider technology with non-toxic solvent for peritoneal adhesions' prevention. Journal of Biomaterials Applications, 2021, 36, 321-331.	1.2	6
2596	The Use of Microfabrication Techniques for the Design and Manufacture of Artificial Stem Cell Microenvironments for Tissue Regeneration. Bioengineering, 2021, 8, 50.	1.6	11
2597	Electrospun Nanofiber Mats for Filtering Applications—Technology, Structure and Materials. Polymers, 2021, 13, 1368.	2.0	54
2598	Improvements of plant protein functionalities by Maillard conjugation and Maillard reaction products. Critical Reviews in Food Science and Nutrition, 2022, 62, 7036-7061.	5.4	47
2599	Determination of the Adhesion Between Electrospun Mats through Peel tests. Fibers and Polymers, 2021, 22, 1266-1273.	1.1	0
2600	Robust dual-layered omniphobic electrospun membrane with anti-wetting and anti-scaling functionalised for membrane distillation application. Journal of Membrane Science, 2021, 624, 119089.	4.1	52
2601	Electrospun orally disintegrating film formulation of telmisartan. Pharmaceutical Development and Technology, 2021, 26, 661-672.	1.1	10
2602	Hierarchical meso/macro-porous TiO2/graphitic carbon nitride nanofibers with enhanced hydrogen evolution. Materials and Design, 2021, 202, 109542.	3.3	31
2603	Electrospun Polyetherimide-Graphene Oxide Nanofiber Electrodes for Enhanced Conductivity. Journal of Fiber Science and Technology, 2021, 77, 136-145.	0.2	5
2604	A Polyurethane-based Electrospun Nanofiber Bundle Soft Actuator: Fabrication, Modeling, and Control. , 2021, , .		0
2605	Natural and Synthetic Fiberâ€Based Adsorbents for Water Remediation. Clean - Soil, Air, Water, 2021, 49, 2000189.	0.7	14

#	Article	IF	CITATIONS
2606	Synthesis and electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3–Î′ Ce0.9Gd0.1O1.95 co-electrospun nanofiber cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2021, 46, 13818-13831.	3.8	21
2607	Physical and Mechanical Properties of Natural Leaf Fiber-Reinforced Epoxy Polyester Composites. Polymers, 2021, 13, 1369.	2.0	48
2608	Single electrode piezoelectric nanogenerator for intelligent passive daytime radiative cooling. Nano Energy, 2021, 82, 105695.	8.2	64
2609	New Hyaluronic Acid/Polyethylene Oxide-Based Electrospun Nanofibers: Design, Characterization and In Vitro Biological Evaluation. Polymers, 2021, 13, 1291.	2.0	8
2610	Synthesis and characterization of electrospun PAN-based activated carbon nanofibers reinforced with cellulose nanocrystals for adsorption of VOCs. Chemical Engineering Journal, 2021, 410, 128412.	6.6	56
2611	Bioinspired Fibers with Controlled Wettability: From Spinning to Application. ACS Nano, 2021, 15, 7907-7930.	7.3	53
2612	Patterned Electrospinning: A Method of Generating Defined Fibrous Constructs Influencing Cell Adhesion and Retention. ACS Applied Bio Materials, 2021, 4, 4084-4093.	2.3	0
2613	New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofibers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 33, 102353.	1.7	19
2614	Piezoelectric polymers: theory, challenges and opportunities. International Materials Reviews, 2022, 67, 65-88.	9.4	103
2615	Preparation of polylactic acid/TiO2/GO nano-fibrous films and their preservation effect on green peppers. International Journal of Biological Macromolecules, 2021, 177, 135-148.	3.6	48
2616	Tunable dual-mode photoluminescences from SrAl2O4: Eu/Yb nanofibers by different atmospheric annealing. Journal of Alloys and Compounds, 2021, 859, 158261.	2.8	10
2617	Development of biodegradable webs of PLA/PCL blends prepared via electrospinning: Morphological, chemical, and thermal characterization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1844-1856.	1.6	24
2618	Future applications of electrospun nanofibers in pressure driven water treatment: A brief review and research update. Journal of Environmental Chemical Engineering, 2021, 9, 105107.	3.3	54
2619	Polysaccharide-Based Materials Created by Physical Processes: From Preparation to Biomedical Applications. Pharmaceutics, 2021, 13, 621.	2.0	29
2620	Aligned electrospun nerve conduits with electrical activity as a strategy for peripheral nerve regeneration. Artificial Organs, 2021, 45, 813-818.	1.0	11
2621	Activity, stability, and binding capacity of β-galactosidase immobilized on electrospun nylon-6 fiber membrane. Journal of Dairy Science, 2021, 104, 3888-3898.	1.4	1
2622	Emerging Biofabrication Techniques: A Review on Natural Polymers for Biomedical Applications. Polymers, 2021, 13, 1209.	2.0	50
2623	Effect of Electrospinning Parameters on the Fiber Diameter and Morphology of PLGA Nanofibers. Dental Oral Biology and Craniofacial Research, 2021, , 1-7.	0.2	11
#	Article	IF	CITATIONS
------	--	-----	-----------
2624	In vitro and in vivo effect of polycaprolactone nanofiber coating on polyethylene glycol diacrylate scaffolds for intervertebral disc repair. Biomedical Materials (Bristol), 2021, 16, 045024.	1.7	10
2625	Selenium and clarithromycin loaded PLA-GO composite wound dressings by electrospinning method. International Journal of Polymeric Materials and Polymeric Biomaterials, 2022, 71, 898-909.	1.8	9
2626	Cu–Ag Alloy Nanoparticles in Hydrogel Nanofibers for the Catalytic Reduction of Organic Compounds. ACS Applied Nano Materials, 2021, 4, 6045-6056.	2.4	21
2627	Electrospun fibers based on porcine plasma: a rheological and morphological study. Iranian Polymer Journal (English Edition), 2021, 30, 723-735.	1.3	1
2628	Effect of sodium alginate molecular structure on electrospun membrane cell adhesion. Materials Science and Engineering C, 2021, 124, 112067.	3.8	27
2629	Phosphate removal using surface enriched hematite and tetra-n-butylammonium bromide incorporated polyacrylonitrile composite nanofibers. Science of the Total Environment, 2021, 770, 145364.	3.9	20
2630	Characterization of degree of alignment of polymer microfibers electrospun on a rotating water collector. Journal of Sensor Science and Technology, 2021, 30, 125-130.	0.1	0
2631	Development of a Dust Respirator by Improving the Half Mask Frame Design. International Journal of Environmental Research and Public Health, 2021, 18, 5482.	1.2	3
2632	Hierarchically Hollow Microfibers as a Scalable and Effective Thermal Insulating Cooler for Buildings. ACS Nano, 2021, 15, 10076-10083.	7.3	107
2633	Conversion of Electrospun Chitosan into Chitin: A Robust Strategy to Tune the Properties of 2D Biomimetic Nanofiber Scaffolds. Polysaccharides, 2021, 2, 271-286.	2.1	0
2634	Synthesis, Characterization, and Electrospinning of a Functionalizable, Polycaprolactone-Based Polyurethane for Soft Tissue Engineering. Polymers, 2021, 13, 1527.	2.0	8
2635	Advances in the design and fabrication of high-performance flow battery electrodes for renewable energy storage. Advances in Applied Energy, 2021, 2, 100016.	6.6	27
2636	Electrospun Biodegradable Bi-Layered Microfiber Membranes for Aluminum Removal from Drinking Water. Micro and Nanosystems, 2021, 13, 82-89.	0.3	2
2637	Mechanical Properties of Electrospun Fibers—A Critical Review. Advanced Engineering Materials, 2021, 23, 2100153.	1.6	84
2638	Development of Efficient Antimicrobial Zinc Oxide Modified Montmorillonite Incorporated Polyacrylonitrile Nanofibers for Particulate Matter Filtration. Fibers and Polymers, 2021, 22, 2726-2737.	1.1	7
2639	Tendon tissue engineering: Cells, growth factors, scaffolds and production techniques. Journal of Controlled Release, 2021, 333, 448-486.	4.8	70
2640	One-Dimensional (1D) Nanostructured Materials for Energy Applications. Materials, 2021, 14, 2609.	1.3	47
2641	The manufacturing and applications of the porous metal membranes: A critical review. CIRP Journal of Manufacturing Science and Technology, 2021, 33, 339-368.	2.3	23

#	Article	IF	CITATIONS
2642	Bilayer films of poly(Iµâ€caprolactone) electrosprayed with gum rosin microspheres: Processing and characterization. Polymers for Advanced Technologies, 2021, 32, 3770-3781.	1.6	4
2643	Electrospun polymeric nanofiber decorated with sea urchin-like gold nanoparticles as an efficient and stable SERS platform. Journal of Colloid and Interface Science, 2021, 590, 125-133.	5.0	24
2644	Silver/Copper Nanoparticle-Modified Polymer Chitosan/PVA Blend Fibers. International Journal of Polymer Science, 2021, 2021, 1-12.	1.2	9
2645	Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. Journal of Industrial and Engineering Chemistry, 2021, 98, 103-129.	2.9	154
2646	pH-Responsive Electrospun Nanofibers and Their Applications. Polymer Reviews, 2022, 62, 351-399.	5.3	44
2647	Tailoring the Surface Properties of Micro/Nanofibers Using 0D, 1D, 2D, and 3D Nanostructures: A Review on Postâ€Modification Methods. Advanced Materials Interfaces, 2021, 8, 2100430.	1.9	42
2648	Electrospun Nanofibers for Sensing and Biosensing Applications—A Review. International Journal of Molecular Sciences, 2021, 22, 6357.	1.8	67
2649	Fabrication and Properties of Electrospun and Electrosprayed Polyethylene Glycol/Polylactic Acid (PEG/PLA) Films. Coatings, 2021, 11, 790.	1.2	12
2650	Optimization of the Electrospun Niobium–Tungsten Oxide Nanofibers Diameter Using Response Surface Methodology. Nanomaterials, 2021, 11, 1644.	1.9	4
2651	Characterization of poly(lactic-co-glycolic acid) nanofibers electrospun using a sustainable green chemistry with a low toxicity solvent system. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-10.	1.8	1
2652	Fabrication and characterization of budesonide loaded colon-specific nanofiber drug delivery systems using anionic and cationic polymethacrylate polymers. Journal of Drug Delivery Science and Technology, 2021, 63, 102511.	1.4	13
2653	Surface Plasmon Resonance-Enhanced Bathochromic-Shifted Photoluminescent Properties of Pure and Structurally Modified Electrospun Poly(methyl methacrylate) (PMMA) Nanofibers Incorporated with Green-Synthesized Silver Nanoparticles. Journal of Electronic Materials, 2021, 50, 4834-4849.	1.0	4
2654	Recent developments of electrospun nanofibrous materials as novel adsorbents for water treatment. Materials Today Communications, 2021, 27, 102272.	0.9	16
2655	Electrospun Cobalt-Incorporated MOF-5 Microfibers as a Promising Electrocatalyst for OER in Alkaline Media. Inorganic Chemistry, 2021, 60, 9899-9911.	1.9	41
2656	Evaluation of the Photocatalytic Activity and Anticorrosion Performance of Electrospun Fibers Doped with Metallic Oxides. Polymers, 2021, 13, 2011.	2.0	13
2657	Fabrication of Highly Oriented Cylindrical Polyacrylonitrile, Poly(lactide-co-glycolide), Polycaprolactone and Poly(vinyl acetate) Nanofibers for Vascular Graft Applications. Polymers, 2021, 13, 2075.	2.0	7
2658	Fabrication and Characterization of Titanium Dioxide Nanoparticle Filled Polyacrylonitrile Fiber for Photocatalytic Application by Wet Spinning. Fibers and Polymers, 0, , 1.	1.1	5
2659	Clindamycin-loaded nanofibers of polylactic acid, elastin and gelatin for use in tissue engineering. Polymer Bulletin, 2022, 79, 5495-5513.	1.7	6

#	Article	IF	CITATIONS
2660	Synthesis, Characterization, and Applications of Silver Nano Fibers in Humidity, Ammonia, and Temperature Sensing. Micromachines, 2021, 12, 682.	1.4	4
2661	Design and development of a nozzle-free electrospinning device for the high-throughput production of biomaterial nanofibers. Medical Engineering and Physics, 2021, 92, 80-87.	0.8	15
2662	The effect of adding reduced graphene oxide to electrospun polycaprolactone scaffolds on MG-63 cells activity. Materials Today Communications, 2021, 27, 102287.	0.9	10
2663	Non-Toxic Crosslinking of Electrospun Gelatin Nanofibers for Tissue Engineering and Biomedicine—A Review. Polymers, 2021, 13, 1973.	2.0	66
2664	A review: can waste wool keratin be regenerated as a novel textile fibre via the reduction method?. Journal of the Textile Institute, 2022, 113, 1750-1766.	1.0	12
2665	Electrospun Membranes as a Porous Barrier for Molecular Transport: Membrane Characterization and Release Assessment. Pharmaceutics, 2021, 13, 916.	2.0	6
2666	Electrospun Nanofibers/Nanofibrous Scaffolds Loaded with Silver Nanoparticles as Effective Antibacterial Wound Dressing Materials. Pharmaceutics, 2021, 13, 964.	2.0	59
2667	Electrospun lignin-PVP nanofibers and their ability for structuring oil. International Journal of Biological Macromolecules, 2021, 180, 212-221.	3.6	29
2668	Fabrication of scaffold based on gelatin and polycaprolactone (PCL) for wound dressing application. Journal of Drug Delivery Science and Technology, 2021, 63, 102501.	1.4	41
2669	A review on the origin of nanofibers/nanorods structures and applications. Journal of Materials Science: Materials in Medicine, 2021, 32, 68.	1.7	11
2670	Electrospun polyacrylonitrile nanofibers as graphene oxide quantum dot precursors with improved photoluminescent properties. Materials Science in Semiconductor Processing, 2021, 127, 105729.	1.9	9
2671	Electrospun Polysaccharidic Textiles for Biomedical Applications. Textiles, 2021, 1, 152-169.	1.8	11
2672	Preparation of CuCrO2 Anisotropic Dela-fossite-Type Thin Film by Electrospinning on Glass Substrates. Ceramics, 2021, 4, 364-377.	1.0	4
2673	Thermal and dynamic mechanical behavior of poly(lactic acid) (PLA)â€based electrospun scaffolds for tissue engineering. Journal of Applied Polymer Science, 2021, 138, 51313.	1.3	21
2674	Effect of BaTiO3 on the aging process of PLA fibers obtained by centrifugal spinning. Materials Today Chemistry, 2021, 20, 100461.	1.7	6
2675	WO3 Fibers/g-C3N4 Z-Scheme Heterostructure Photocatalysts for Simultaneous Oxidation/Reduction of Phenol/Cr (VI) in Aquatic Media. Catalysts, 2021, 11, 792.	1.6	19
2676	Effects of Electrospinning Parameters on the Microstructure of PVP/TiO2 Nanofibers. Nanomaterials, 2021, 11, 1616.	1.9	22
2677	Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 1: Nanofibers and Features of Their Forming. Nanomaterials, 2021, 11, 1544.	1.9	15

#	Article	IF	CITATIONS
2678	Graphene nanocomposites: A review on processes, properties, and applications. Journal of Industrial Textiles, 2022, 51, 3718S-3766S.	1.1	22
2679	Global View and Trends in Electrospun Nanofiber Membranes for Particulate Matter Filtration: A Review. Macromolecular Materials and Engineering, 2021, 306, 2100278.	1.7	32
2680	An overview on the development of <scp>nanofiberâ€based</scp> as polymer electrolyte membrane and electrocatalyst in fuel cell application. International Journal of Energy Research, 2021, 45, 18441-18472.	2.2	21
2681	Ultralow Resistance Two tage Electrostatically Assisted Air Filtration by Polydopamine Coated PET Coarse Filter. Small, 2021, 17, e2102051.	5.2	40
2682	Developments of Advanced Electrospinning Techniques: A Critical Review. Advanced Materials Technologies, 2021, 6, 2100410.	3.0	183
2683	Industrializing metal–organic frameworks: Scalable synthetic means and their transformation into functional materials. Materials Today, 2021, 47, 170-186.	8.3	69
2684	New Biocomposite Electrospun Fiber/Alginate Hydrogel for Probiotic Bacteria Immobilization. Materials, 2021, 14, 3861.	1.3	12
2685	Electrospun PLGA/SF/artemisinin composite nanofibrous membranes for wound dressing. International Journal of Biological Macromolecules, 2021, 183, 68-78.	3.6	47
2686	Production and Characterization of N-Halamine Based Polyvinyl Chloride (PVC) Nanowebs. Tekstil Ve Konfeksiyon, 2021, 31, 147-155.	0.3	1
2687	Fibrous Scaffolds From Elastin-Based Materials. Frontiers in Bioengineering and Biotechnology, 2021, 9, 652384.	2.0	12
2688	Hepatic patch by stacking patient-specific liver progenitor cell sheets formed on multiscale electrospun fibers promotes regenerative therapy for liver injury. Biomaterials, 2021, 274, 120899.	5.7	25
2689	Design and characterization of novel ecofriendly European fish eel gelatin-based electrospun microfibers applied for fish oil encapsulation. Process Biochemistry, 2021, 106, 10-19.	1.8	8
2690	Electrospinning Engineering Enables High-Performance Sodium-Ion Batteries. Advanced Fiber Materials, 2022, 4, 43-65.	7.9	71
2691	Electrohydrodynamic Processing of PVP-Doped Kraft Lignin Micro- and Nano-Structures and Application of Electrospun Nanofiber Templates to Produce Oleogels. Polymers, 2021, 13, 2206.	2.0	15
2692	Deacetylated Cellulose Acetate/Polyurethane Composite Nanofiber Membranes with Highly Efficient Oil/Water Separation and Excellent Mechanical Properties. Macromolecular Materials and Engineering, 2021, 306, 2100270.	1.7	9
2693	Poly glycerol sebacate/ polycaprolactone/ carbon quantum dots fibrous scaffold as a multifunctional platform for cardiac tissue engineering. Materials Chemistry and Physics, 2021, 266, 124543.	2.0	23
2694	ZnO/Ag nanoparticles incorporated multifunctional parallel side by side nanofibers for air filtration with enhanced removing organic contaminants and antibacterial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126564.	2.3	30
2695	Low-Dimensional Nanostructures Based on Cobalt Oxide (Co3O4) in Chemical-Gas Sensing. Chemosensors, 2021, 9, 197.	1.8	29

#	Article	IF	CITATIONS
2696	Overview of Nano-Fiber Mats Fabrication via Electrospinning and Morphology Analysis. Textiles, 2021, 1, 206-226.	1.8	43
2697	Review—Recent Membranes for Vanadium Redox Flow Batteries. Journal of the Electrochemical Society, 2021, 168, 070553.	1.3	36
2698	Highlights on Advancing Frontiers in Tissue Engineering. Tissue Engineering - Part B: Reviews, 2022, 28, 633-664.	2.5	44
2699	Mixed-Matrix Membrane Fabrication for Water Treatment. Membranes, 2021, 11, 557.	1.4	27
2700	Preparation and characterization of polycaprolactone/chitosan-g-polycaprolactone/hydroxyapatite electrospun nanocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2021, 182, 1638-1649.	3.6	46
2701	Control of copper nanoparticle metallization on electrospun fibers via Pd and Ag seed-assisted templating. Journal of Materials Science, 2021, 56, 16307-16323.	1.7	1
2702	Electrospinning of chitosan-based nanofibers: from design to prospective applications. Reviews in Chemical Engineering, 2023, 39, 31-70.	2.3	29
2703	Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics. Advanced Drug Delivery Reviews, 2021, 175, 113823.	6.6	32
2704	Parameters' Investigation of Tubular Electrospinning System for the Fabrication of Polyurethane (PU)/Polycaprolactone (PCL) Small Hollow Tube for Vascular Engineering's Applications. IFMBE Proceedings, 2022, , 403-413.	0.2	0
2705	Sensitive and rapid detection of fingerprints based on electrospun nanofibrous membranes and quantum dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126716.	2.3	9
2706	Novel 5-flurouracil-Embedded non-woven PVA - PVP electrospun nanofibers with enhanced anti-cancer efficacy: Formulation, evaluation and in vitro anti-cancer activity. Journal of Drug Delivery Science and Technology, 2021, 64, 102654.	1.4	11
2707	Electrospun quad-axial nanofibers for controlled and sustained drug delivery. Materials and Design, 2021, 206, 109732.	3.3	30
2708	Luminous efficacy enhancement for LED lamps using highly reflective quantum dot-based photoluminescent films. Optics Express, 2021, 29, 29007.	1.7	4
2709	PEDOT:PSS-Coated Polybenzimidazole Electroconductive Nanofibers for Biomedical Applications. Polymers, 2021, 13, 2786.	2.0	12
2711	Fabrication of Poly (Vinyl Alcohol)/Gelatin Biomimetic Electrospun Nanofibrous Composites and Its Bioactivity Assessment for Bone Tissue Engineering. Gene, Cell and Tissue, 2021, 8, .	0.2	0
2712	Recent trends in water purification using electrospun nanofibrous membranes. International Journal of Environmental Science and Technology, 2022, 19, 9149-9176.	1.8	28
2713	Silver Nanoparticle-Coated Polyhydroxyalkanoate Based Electrospun Fibers for Wound Dressing Applications. Materials, 2021, 14, 4907.	1.3	11
2714	TiO ₂ nanofibers fabricated by electrospinning technique and degradation of MO dye under UV light. Zeitschrift Fur Kristallographie - Crystalline Materials, 2021, 236, 239-250.	0.4	16

#	Article	IF	CITATIONS
2715	Circulatory Management of Polymer Waste: Recycling into Fine Fibers and Their Applications. Materials, 2021, 14, 4694.	1.3	15
2716	High-rate electrospun Ti3C2Tx MXene/carbon nanofiber electrodes for flexible supercapacitors. Applied Surface Science, 2021, 556, 149710.	3.1	61
2717	Immobilization of beneficial microbe Methylobacterium aminovorans in electrospun nanofibre as potential seed coatings for improving germination and growth of groundnut Arachis hypogaea. Plant Growth Regulation, 2022, 97, 419-427.	1.8	10
2718	Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200344.	1.6	10
2719	Nanofiber as a novel vehicle for transdermal delivery of therapeutic agents: challenges and opportunities. Future Journal of Pharmaceutical Sciences, 2021, 7, .	1.1	10
2720	New trends in nanofibers functionalization and recent applications in wastewater treatment. Polymers for Advanced Technologies, 2021, 32, 4587-4597.	1.6	7
2721	Tubular bioartificial organs: From physiological requirements to fabrication processes and resulting properties. A critical review Cells Tissues Organs, 2021, , .	1.3	2
2722	Electrospun carbon nanofibers for lithium metal anodes: Progress and perspectives. Chinese Chemical Letters, 2022, 33, 141-152.	4.8	44
2723	Electrospinning through the prism of time. Materials Today Chemistry, 2021, 21, 100543.	1.7	27
2724	Development of Highly Crystalline Polylactic Acid with β-Crystalline Phase from the Induced Alignment of Electrospun Fibers. Polymers, 2021, 13, 2860.	2.0	17
2725	Silk biomaterials for vascular tissue engineering applications. Acta Biomaterialia, 2021, 134, 79-106.	4.1	27
2726	Polyvinyl alcohol/chitosan/silver nanofibers as antibacterial agents and as efficient adsorbents to remove methyl orange from aqueous solutions. Journal of the Iranian Chemical Society, 2022, 19, 1287-1299.	1.2	4
2727	Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets. Journal of Fluid Mechanics, 2021, 925, .	1.4	8
2728	Precise in-situ release of microRNA from an injectable hydrogel induces bone regeneration. Acta Biomaterialia, 2021, 135, 289-303.	4.1	34
2729	Characteristics of electrospun membranes in different spidroin/PCL ratios. Biomedical Materials (Bristol), 2021, 16, 065022.	1.7	3
2730	Electrohydrodynamic atomisation driven design and engineering of opportunistic particulate systems for applications in drug delivery, therapeutics and pharmaceutics. Advanced Drug Delivery Reviews, 2021, 176, 113788.	6.6	21
2731	Eugenol-acacia gum-based bifunctional nanofibers as a potent antifungal transdermal substitute. Nanomedicine, 2021, 16, 2269-2289.	1.7	9
2732	Blend Electrospinning of Poly(ƕCaprolactone) and Poly(Ethylene Glycol-400) Nanofibers Loaded with Ibuprofen as a Potential Drug Delivery System for Wound Dressings. Autex Research Journal, 2023, 23, 66-76.	0.6	5

#	Article	IF	Citations
2733	Recent progress in materials development and biological properties of GTR membranes for periodontal regeneration. Chemical Biology and Drug Design, 2021, 98, 1007-1024.	1.5	21
2734	Advanced nanomedicine approaches applied for treatment of skin carcinoma. Journal of Controlled Release, 2021, 337, 589-611.	4.8	41
2735	Jawbones Scaffold Constructed by TGF-β1 and BMP-2 Loaded Chitosan Microsphere Combining with Alg/HA/ICol for Osteogenic-Induced Differentiation. Polymers, 2021, 13, 3079.	2.0	4
2736	Biofabrication of Artificial Stem Cell Niches in the Anterior Ocular Segment. Bioengineering, 2021, 8, 135.	1.6	5
2737	Bioactive nano yarns as surgical sutures for wound healing. Materials Science and Engineering C, 2021, 128, 112334.	3.8	25
2738	Design and Production of Customizable and Highly Aligned Fibrillar Collagen Scaffolds. ACS Biomaterials Science and Engineering, 2021, , .	2.6	2
2739	Chloramphenicol loaded polylactide melt electrospun scaffolds for biomedical applications. International Journal of Pharmaceutics, 2021, 606, 120897.	2.6	4
2740	Progress in one-dimensional nanostructures. Materials Characterization, 2021, 179, 111373.	1.9	19
2741	Influence of nanofiber coating thickness and drop volume on spreading, imbibition, and evaporation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127450.	2.3	9
2742	A Chitosan Nanofiber Sponge for Oyster-Inspired Filtration of Microplastics. ACS Applied Polymer Materials, 2021, 3, 4685-4694.	2.0	22
2743	A Short Review on Various Engineering Applications of Electrospun One-Dimensional Metal Oxides. Materials, 2021, 14, 5139.	1.3	5
2744	Active packaging based on sodium caseinate-gelatin nanofiber mats encapsulated with Mentha spicata L. essential oil and MgO nanoparticles: Preparation, properties, and food application. Food Packaging and Shelf Life, 2021, 29, 100737.	3.3	33
2745	Study on the Preparation and Lipophilic Properties of Polyvinyl Alcohol (PVA) Nanofiber Membranes via Green Electrospinning. Nanomaterials, 2021, 11, 2514.	1.9	28
2746	Recent progress in the removal of mercury ions from water based MOFs materials. Coordination Chemistry Reviews, 2021, 443, 214034.	9.5	93
2747	Progress of superconducting nanofibers via electrospinning. Journal of Physics Condensed Matter, 2022, 34, 043002.	0.7	6
2748	Nanoencapsulation of <scp>caseinâ€derived</scp> peptides within electrospun nanofibres. Journal of the Science of Food and Agriculture, 2022, 102, 1684-1698.	1.7	9
2749	Cells, scaffolds, and bioactive factors: Engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials, 2021, 278, 121173.	5.7	31
2750	Electrosprayed whey protein nanocarriers containing natural phenolics; thermal and antioxidant properties, release behavior and stability. Journal of Food Engineering, 2021, 307, 110644.	2.7	7

#	Article	IF	Citations
2751	In-situ cellulose-framework templates mediated monodispersed silver nanoparticles via facile UV-light photocatalytic activity for anti-microbial functionalization. Carbohydrate Polymers, 2021, 269, 118255.	5.1	16
2752	Research progress in electrospinning engineering for all-solid-state electrolytes of lithium metal batteries. Journal of Energy Chemistry, 2021, 61, 253-268.	7.1	52
2753	A sandwich-like structure composite electrospun membrane of polylactic acid/nano-hydroxyapatite and polyvinyl alcohol/sodium alginate/nano-hydroxyapatite for skull defect repair. Materials and Design, 2021, 209, 109957.	3.3	17
2754	Photocatalysis of free-standing electrospinning SiO2 membranes with loaded BiFeO3/C3N4 short rods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127326.	2.3	1
2755	The effect of incorporating graphene and polycaprolactone-grafted graphene oxide nanosheets on thermal and physico-mechanical properties, microstructure and biocompatibility of electrospun polyurethane nanocomposite mats. Composites Part B: Engineering, 2021, 224, 109210.	5.9	21
2756	Grain size influence on the flexibility and luminous intensity of inorganic CaTiO3:Pr3+ crystal nanofibers. Ceramics International, 2021, 47, 31329-31336.	2.3	7
2757	Random and aligned electrospun poly(ε-caprolactone) (PCL)/poly(1,8-octanediol-co-citrate) (POC) fiber mats for cardiac tissue engineering using benign solvents. European Polymer Journal, 2021, 160, 110772.	2.6	10
2758	Development of electrospun films enriched with ethyl lauroyl arginate as novel antimicrobial food packaging materials for fresh strawberry preservation. Food Control, 2021, 130, 108371.	2.8	35
2759	Electrospinning of glutelin-hordein incorporated with Oliveria decumbens essential oil: Characterization of nanofibers. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112058.	2.5	13
2760	Formulation and characterisation of deferoxamine nanofiber as potential wound dressing for the treatment of diabetic foot ulcer. Journal of Drug Delivery Science and Technology, 2021, 66, 102751.	1.4	13
2761	Carbon nanotube enhanced membrane distillation for salty and dyeing wastewater treatment by electrospinning technology. Environmental Research, 2022, 204, 111892.	3.7	20
2762	A review of advances in multifunctional XTiO3 perovskite-type oxides as piezo-photocatalysts for environmental remediation and energy production. Journal of Hazardous Materials, 2022, 421, 126792.	6.5	62
2763	Preparation and properties of electrospun peanut protein isolate/poly-l-lactic acid nanofibers. LWT - Food Science and Technology, 2022, 153, 112418.	2.5	14
2764	Fabrication and characterization of 3-dimensional electrospun poly(vinyl alcohol)/keratin/chitosan nanofibrous scaffold. Carbohydrate Polymers, 2022, 275, 118682.	5.1	27
2765	Strongly polarized light from highly aligned electrospun luminescent natural rubber fibers. Journal of Luminescence, 2022, 241, 118498.	1.5	3
2766	Modifications in metal oxide electrospun nanofibers for environmental applications. , 2021, , 621-639.		0
2767	Electrospun nanofibres with antimicrobial activities. , 2021, , 589-618.		1
2768	Electrospun Nanomaterials: Applications in Water Contamination Remediation. Advanced Sciences and Technologies for Security Applications, 2021, , 197-213.	0.4	0

		CITATION R	EPORT	
#	Article		IF	CITATIONS
2769	Nanotechnology in Textile Finishing: Recent Developments. , 2021, , 2509-2539.			0
2770	Studies on the structural and optical properties of pure and structurally modified electro poly(methyl methacrylate) nanofibers incorporated with lanthanide complex. Polymer-Pl Technology and Materials, 2021, 60, 886-905.	ospun astics	0.6	3
2771	Mixed polymer and bioconjugate core/shell electrospun fibres for biphasic protein releas Materials Chemistry B, 2021, 9, 4120-4133.	e. Journal of	2.9	10
2772	A comprehensive review on antimicrobial face masks: an emerging weapon in fighting pa Advances, 2021, 11, 6544-6576.	andemics. RSC	1.7	83
2773	Chitosanâ€Functionalized Recycled Polyethylene Terephthalate Nanofibrous Membrane Onâ€Demand Oilâ€Water Separation. Global Challenges, 2021, 5, 2000107.	for Sustainable	1.8	16
2774	Modification of textiles for functional applications. , 2021, , 303-365.			10
2775	Electrospun and co-electrospun biopolymer nanofibers for skin wounds on diabetic patie overview. RSC Advances, 2021, 11, 15340-15350.	ents: an	1.7	19
2776	The effect of deposition angle on morphology and diameter of electrospun TiO _{2<, nanofibers. Nanocomposites, 2021, 7, 70-78.}	/sub>/PVP	2.2	5
2777	Three-Dimensional Melt-Electrowritten Polycaprolactone/Chitosan Scaffolds Enhance Me Stem Cell Behavior. ACS Applied Bio Materials, 2021, 4, 1319-1329.	esenchymal	2.3	17
2778	Facile fabrication and characterization of aliphatic polyketone (PK) micro/nano fiber mer <i>via</i> electrospinning and a post treatment process. RSC Advances, 2021, 11, 678-	nbranes 683.	1.7	10
2779	Poly(butylene succinate) fibrous dressings containing natural antimicrobial agents. Jourr Industrial Textiles, 2022, 51, 6948S-6967S.	nal of	1.1	6
2780	Electrospinning of luminescence nanofibers: Current and future trends in wearable light- devices. , 2021, , 383-404.	-emitting		1
2781	Up-to-date Notions of Polystyrene Nanocomposite Nanofibers. Materials Research Innov 26, 113-125.	vations, 2022,	1.0	2
2782	The migration behavior of electrospun nanofibers within cotton slivers in roller drafting a effects on composite yarn quality. Textile Reseach Journal, 2021, 91, 1555-1564.	and their	1.1	2
2783	Effect of Low-Molecular-Mass Additives on Structure and Properties of Nonwoven Mater Prepared by Electrospinning of Polypropylene Melts. Fibre Chemistry, 2021, 52, 366-370	ials).	0.0	1
2784	Increasing ionic conductivity within thermoplastics via commercial additives results in a decrease in fiber diameter from melt electrospinning. Soft Matter, 2021, 17, 9264-9279	dramatic	1.2	3
2785	Electrospun Skin Tissue Engineering Scaffolds Based on Polycaprolactone/Hyaluronic Ac Acid. Fibers and Polymers, 2021, 22, 19-29.	id/L-ascorbic	1.1	17
2786	Current perspectives on 3D ZIFs incorporated with 1D carbon matrices as fibers <i>via<!--<br-->electrospinning processes towards electrocatalytic water splitting: a review. Journal of N Chemistry A, 2021, 9, 11961-12002.</i>	li> laterials	5.2	50

#	Article	IF	CITATIONS
2787	Hydrogel Processing Techniques and Vascular Tissue Engineering. Biomaterials Science Series, 2021, , 207-237.	0.1	0
2788	Electrospun Nanofibers for Wastewater Treatment. Springer Series on Polymer and Composite Materials, 2021, , 87-117.	0.5	0
2789	Carboxymethyl Cellulose (CMC) Based Electrospun Composite Nanofiber Mats for Food Packaging. Polymers, 2021, 13, 302.	2.0	42
2790	Basic concepts and fundamental insights into electrospinning. , 2021, , 3-43.		2
2792	Developing a Clinically Relevant Tissue Engineered Heart Valve—A Review of Current Approaches. Advanced Healthcare Materials, 2017, 6, 1700918.	3.9	27
2793	Tailoring the Morphology of Responsive Bioinspired Bicomponent Fibers. Macromolecular Materials and Engineering, 2018, 303, 1700248.	1.7	25
2794	Incorporation of nanohydroxyapatite and vitamin D3 into electrospun PCL/Gelatin scaffolds: The influence on the physical and chemical properties and cell behavior for bone tissue engineering. Polymers for Advanced Technologies, 2018, 29, 451-462.	1.6	67
2795	Electrospun Nanofibers as Carriers in Dermal Drug Delivery. Environmental Chemistry for A Sustainable World, 2020, , 139-163.	0.3	2
2796	Natural and Synthetic Polymers for Designing Composite Materials. , 2015, , 1-54.		6
2797	Facile and Ultrasensitive Sensors Based on Electrospinning-Netting Nanofibers/Nets. Nanoscience and Technology, 2015, , 1-34.	1.5	4
2798	Nanofibre-Based Sensors for Visual and Optical Monitoring. Nanoscience and Technology, 2015, , 157-177.	1.5	12
2799	Application of Nanoparticles in Manufacturing. , 2016, , 1219-1278.		3
2800	Energy Harvesting Smart Textiles. Human-computer Interaction Series, 2017, , 199-231.	0.4	14
2801	Fabrication of Nanofibers: Electrospinning and Non-electrospinning Techniques. , 2019, , 45-77.		27
2802	Electrospun Nanofibers: Solving Global Issues. Nanostructure Science and Technology, 2014, , 3-38.	0.1	12
2803	Rational Design of Artificial Cellular Niches for Tissue Engineering. Computational Methods in Applied Sciences (Springer), 2014, , 129-147.	0.1	2
2804	Nanotechnology: An Application in Biofuel Production. Clean Energy Production Technologies, 2020, , 143-160.	0.3	13
2805	Fabrication and Characterization of Novel Antibacterial Ultrafine Nylon-6 Nanofibers Impregnated by Carlic Sour. Fibers and Polymers, 2020, 21, 2780-2787.	1.1	17

#	Article	lF	CITATIONS
2806	Physicochemical characterization of nanofiber composites. , 2017, , 97-115.		37
2807	Biological characterization of nanofiber composites. , 2017, , 157-196.		7
2808	Simulation and theory of open-tube dispersion in short and long capillaries with slip boundaries and retention. Journal of Chromatography A, 2019, 1588, 85-98.	1.8	9
2809	Recent advances in biodegradable matrices for active ingredient release in crop protection: Towards attaining sustainability in agriculture. Current Opinion in Colloid and Interface Science, 2020, 48, 121-136.	3.4	55
2810	Coaxial electrospun PCL/Gelatin-MA fibers as scaffolds for vascular tissue engineering. Colloids and Surfaces B: Biointerfaces, 2017, 159, 7-15.	2.5	66
2811	Biodegradable electrospun PLLA fibers containing the mosquito-repellent DEET. European Polymer Journal, 2019, 113, 377-384.	2.6	24
2812	High-flux ultrafiltration membrane based on electrospun polyacrylonitrile nanofibrous scaffolds for arsenate removal from aqueous solutions. Journal of Colloid and Interface Science, 2017, 506, 564-571.	5.0	59
2813	Electrospun nanofiber membranes for wastewater treatment applications. Separation and Purification Technology, 2020, 250, 117116.	3.9	280
2814	Electrospun Thermosetting Carbon Nanotube–Epoxy Nanofibers. ACS Applied Polymer Materials, 2021, 3, 610-619.	2.0	15
2815	Electrospun Nanofibrous Membranes for Preventing Tendon Adhesion. ACS Biomaterials Science and Engineering, 2020, 6, 4356-4376.	2.6	21
2816	Chapter 14. Materials for Tissue Engineering and 3D Cell Culture. RSC Polymer Chemistry Series, 2016, , 460-489.	0.1	1
2817	Electric field directed formation of aligned conjugated polymer fibers. Soft Matter, 2017, 13, 3894-3908.	1.2	34
2818	A novel receptor-free polydiacetylene nanofiber biosensor for detecting <i>E. coli via</i> colorimetric changes. Materials Advances, 2020, 1, 3387-3397.	2.6	12
2819	Biodegradable poly (ε-caprolactone)/gelatin nanofibers: Effect of tubular halloysite on structure and properties. AIP Conference Proceedings, 2016, , .	0.3	3
2820	Electrospun Poly(styrene) Fibers as a Protection for the First- and the Second-Generation Grubbs' Catalyst. Polymer-Plastics Technology and Engineering, 2017, 56, 1188-1195.	1.9	1
2821	Effect of interfiber bonding on the rupture of electrospun fibrous mats. Journal Physics D: Applied Physics, 2021, 54, 025302.	1.3	14
2822	<i>In situ</i> preparation of 2D MoS ₂ nanosheets vertically supported on TiO ₂ /PVDF flexible fibers and their photocatalytic performance. Nanotechnology, 2020, 31, 375606.	1.3	8
2823	Essential Oil Bioactive Fibrous Membranes Prepared via Coaxial Electrospinning. Journal of Food Science, 2017, 82, 1412-1422.	1.5	54

#	Article	IF	CITATIONS
2824	Aligned electrospun polycaprolactone nanofiber matrix as a functional air filter. , 2019, , .		1
2825	Synthesis of Grafted Biodegradable Poly(Îμ-caprolactone) as Antibacterial and Antifungal Agent. Polymer Science - Series B, 2020, 62, 697-705.	0.3	3
2826	Review of carbon-based electromagnetic shielding materials: film, composite, foam, textile. Textile Reseach Journal, 2021, 91, 1167-1183.	1.1	32
2827	Chapter 18 Nanostructured Fibers Via Electrospinning (Part I). , 2016, , 253-280.		2
2829	Capturing relevant extracellular matrices for investigating cell migration. F1000Research, 2015, 4, 1408.	0.8	29
2831	Modified Electro-spun Polyvinyl Alcohol Nanofibers Used as Super Adsorbing Material for Lead Ions in Aqueous Solution. Journal of Residuals Science and Technology, 2016, 13, 233-242.	0.6	10
2833	Tissue Engineering: New Paradigm of Biomedicine. Biosciences, Biotechnology Research Asia, 2019, 16, 521-532.	0.2	9
2834	Electrospun Polylactic Acid Based Nanofibers for Biomedical Applications. Material Science Research India, 2018, 15, 224-240.	0.9	20
2835	Enhancement of luminous efficacy for LED lamps by introducing polyacrylonitrile electrospinning nanofiber film. Optics Express, 2018, 26, 27716.	1.7	10
2836	Pilot-scale production of polylactic acid nanofibers by melt electrospinning. E-Polymers, 2020, 20, 233-241.	1.3	5
2837	Temperature effects on electrospun chitosan nanofibers. Green Processing and Synthesis, 2020, 9, 488-495.	1.3	12
2838	Smart textiles and wearable technologies – opportunities offered in the fight against pandemics in relation to current COVID-19 state. Reviews on Advanced Materials Science, 2020, 59, 487-505.	1.4	39
2839	Roles of Nanofiber Scaffold Structure and Chemistry in Directing Human Bone Marrow Stromal Cell Response. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2016, 1, .	0.1	5
2840	Doxycycline release and antibacterial activity from PMMA/PEO electrospun fiber mats. Journal of Applied Oral Science, 2019, 27, e20180663.	0.7	20
2841	Fabrication of Fish Gelatin Microfibrous Mats by Solution Blow Spinning. Materials Research, 2019, 22,	0.6	3
2842	Preparation of porous poly (lactic acid) fibers by medium field electrospinning for tissue engineering applications. Materials Research, 2020, 23, .	0.6	5
2843	Nylon 6, 12/Cloisite 30B Electrospun Nanocomposites for Dental Applications. Journal of Siberian Federal University - Biology, 2016, 9, 198-211.	0.2	10
2844	As-spun Bio-novolac Fiber Morphological Study based on Resin's Physico- chemical Properties. Sains Malaysiana, 2017, 46, 1659-1665.	0.3	3

	Сітатіої	n Report	
#	Article	IF	CITATIONS
2845	The Design and Evaluation of a Fast-Dissolving Drug Delivery System for Loratadine Using the Electrospinning Method. Jundishapur Journal of Natural Pharmaceutical Products, 2016, 11, .	0.3	18
2846	A new design of an electrospinning apparatus for tissue engineering applications. International Journal of Bioprinting, 2017, 3, 121.	1.7	13
2847	Polymer Gel Fibers Produced by UV-Reactive Electrospinning. Journal of Fiber Science and Technology, 2020, 76, 359-369.	0.2	3
2848	CHEMICAL CROSSLINKING OF POLY (VINYL ALCOHOL)/ POLY ETHYLENE GLYCOL WITH GLUTARALDEHYDE NANOFIBERS. Al-Azhar Bulletin of Science, 2016, 27, 9-17.	0.0	6
2849	Encapsulation of Plant-derived Bioactive Ingredients through Electrospraying for Nutraceuticals and Functional Foods Applications. Current Medicinal Chemistry, 2020, 27, 2872-2886.	1.2	5
2850	Nanotechnology: A Promising Tool Towards Wound Healing. Current Pharmaceutical Design, 2017, 23, 3515-3528.	0.9	48
2851	Natural Inorganic Ingredients in Wound Healing. Current Pharmaceutical Design, 2020, 26, 621-641.	0.9	24
2852	Electrospun Composite Nanofibers in Photoenergy Applications. Current Organic Chemistry, 2013, 17, 1382-1389.	0.9	2
2853	Protein-inorganic Nanohybrids: A Potential Symbiosis in Tissue Engineering. Current Drug Targets, 2018, 19, 1897-1904.	1.0	12
2854	An Overview of Chitosan Nanofibers and their Applications in the Drug Delivery Process. Current Drug Delivery, 2019, 16, 272-294.	0.8	54
2855	Electrospun Nanofibers for Diabetes: Tissue Engineering and Cell-Based Therapies. Current Stem Cell Research and Therapy, 2019, 14, 152-168.	0.6	9
2856	A Literature Investigation about Electrospinning and Nanofibers: Historical Trends, Current Status and Future Challenges. Recent Patents on Nanotechnology, 2015, 9, 76-85.	0.7	29
2857	Formulation, Characterization and In vitro Cytotoxicity of 5-Fluorouracil Loaded Polymeric Electrospun Nanofibers for the Treatment of Skin Cancer. Recent Patents on Nanotechnology, 2019, 13, 114-128.	0.7	25
2858	Response Surface Modeling and Optimization of Electrospun Nanofiber Membranes. The Open Nanoscience Journal, 2013, 7, 8-17.	1.8	33
2859	Biomat _dBase: A Database on Biomaterials. The Open Tissue Engineering and Regenerative Medicine Journal, 2012, 5, 59-67.	2.6	4
2860	Advances in Electrospinning of Nanofibers and their Biomedical Applications. Current Tissue Engineering, 2013, 2, 91-108.	0.2	14
2861	Encapsulation and Bioavailability of Lactobacillus spp. in Electrospun Fibers. Current Biotechnology, 2020, 9, 15-22.	0.2	4
2862	Comparative Dynamic Characteristics of Electrospun Ultrathin Fibers and Films Based on Poly(3-hydroxybutyrate). Chemistry and Chemical Technology, 2016, 10, 151-158.	0.2	3

#	Article	IF	CITATIONS
2863	Electrospun Nanofibers of Acrylonitrile and Itaconic Acid Copolymers and their Stabilization. Journal of Advances in Chemistry, 2014, 6, 958-981.	0.1	2
2864	Çevreci ÇözĂ¼cĂ¼ler ile Polivinilpirolidon Nanolif Üretimi. SDU Journal of Science, 0, , 352-366.	0.1	6
2865	Nanodiamond-containing composites for tissue scaffolds and surgical implants: A review. Journal of Composites and Compounds, 2020, 2, 215-227.	0.4	6
2866	Modification and mechanical properties of electrospun blended fibermat of PLGA and siloxane-containing vaterite/PLLA hybrids for bone repair. EXPRESS Polymer Letters, 2011, 5, 873-881.	1.1	5
2867	A review on electrospun bio-based polymers for water treatment. EXPRESS Polymer Letters, 2015, 9, 839-880.	1.1	78
2868	Electrospun Scaffolds in Tendons Regeneration: a review. Muscles, Ligaments and Tendons Journal, 2019, 09, 478.	0.1	6
2870	EFFECT OF DEPOSITION TIME ON THE OPTOELECTRICAL PROPERTIES OF ELECTROSPUN PAN/AGNO3 NANOFIBERS. Tekstil Ve Konfeksiyon, 0, , .	0.3	3
2871	In situ Enabling Approaches for Tissue Regeneration: Current Challenges and New Developments. Frontiers in Bioengineering and Biotechnology, 2020, 8, 85.	2.0	36
2872	Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration. Bioengineering, 2021, 8, 4.	1.6	26
2873	Tissue Engineering in Liver Regenerative Medicine: Insights into Novel Translational Technologies. Cells, 2020, 9, 304.	1.8	62
2874	Electrospun PCL/PGS Composite Fibers Incorporating Bioactive Glass Particles for Soft Tissue Engineering Applications. Nanomaterials, 2020, 10, 978.	1.9	46
2875	Localized Delivery of Drugs through Medical Textiles for Treatment of Burns: A Perspective Approach. Advanced Pharmaceutical Bulletin, 2021, 11, 248-260.	0.6	9
2876	Ardil Protein Based Electro spun Mat for Medical Applications Investigation. Bulletin of Scientific Research, 0, , 17-23.	0.0	1
2877	Novel materials for fuel cells operating on liquid fuels. AIMS Energy, 2017, 5, 458-481.	1.1	6
2878	Electrospun ECM macromolecules as biomimetic scaffold for regenerative medicine: challenges for preserving conformation and bioactivity. AIMS Materials Science, 2017, 4, 638-669.	0.7	18
2879	Experimental Investigation of the Filtration Characteristics of Charged Porous Fibers. Aerosol and Air Quality Research, 2018, 18, 1470-1482.	0.9	5
2880	Electrospun PLLA Membranes for Caffeine Delivery: Diffusional Approach. Journal of Biomedical Science and Engineering, 2017, 10, 563-574.	0.2	3
2881	Processing and Characterization of PMMA Nanofiber Reinforced Epoxy Composites. World Journal of Nano Science and Engineering, 2016, 06, 58-63.	0.3	5

#	Article		CITATIONS
2882	Thermo-sensitive Electrospun Fibrous Magnetic Composite Sheets. Journal of Magnetics, 2015, 20, 215-220.	0.2	1
2883	DEVELOPMENT OF POLY (LACTIC-CO-GLYCOLIC ACID)/ BIOGLASS FIBERS USING AN ELECTROSPINNING TECHNIQUE. Latin American Applied Research, 2018, 48, 131-138.	0.2	2
2884	Conducting Polymer Nanofibers based Sensors for Organic and Inorganic Gaseous Compounds. Asian Journal of Atmospheric Environment, 2020, 14, 85-104.	0.4	12
2885	Electrospun nanofibers: A nanotechnological approach for drug delivery and dissolution optimization in poorly water-soluble drugs. ADMET and DMPK, 2020, 8, 325-353.	1.1	9
2886	Fabrication of Pure Electrospun Materials from Hyaluronic Acid. Fibres and Textiles in Eastern Europe, 2017, 25, 45-52.	0.2	11
2887	Formation and Analysis of Electrospun Nonwoven Mats from Bicomponent PVA/Aqueous Propolis Nano-Microfibres. Fibres and Textiles in Eastern Europe, 2015, 23, 35-41.	0.2	23
2888	Electrospinning of Polymeric Fibres: an Unconventional View on the Influence of Surface Tension on Fibre Diameter. Fibres and Textiles in Eastern Europe, 2016, 24, 22-29.	0.2	16
2889	Preparation and Characterization of Cellulose Nanofibril/Polyvinyl Alcohol Composite Nanofibers by Electrospinning. Journal of the Korean Wood Science and Technology, 2014, 42, 119-129.	0.8	16
2890	Synthesis and Characterization of CuCo2O4Nanofiber Electrocatalyst for Oxygen Evolution Reaction. Journal of the Korean Institute of Surface Engineering, 2016, 49, 539-548.	0.1	1
2891	Fabrication of Biomass Based Polyethylene Furoate Nanofiber by Electrospinning. Journal of the Korea Academia-Industrial Cooperation Society, 2014, 15, 4024-4031.	0.0	1
2892	Electrospinning Technique as a Powerful Tool for the Design of Superhydrophobic Surfaces. , 0, , .		2
2893	The Influence of Electrospinning Parameters and Drug Loading on Polyhydroxyalkanoate (PHA) Nanofibers for Drug Delivery. International Journal of Biotechnology for Wellness Industries, 2016, 4, 103-113.	0.3	14
2894	Nanofibers as a Vehicle for the Synthetic Attactant TRIMEDLURE to be Used for Ceratitis capitata Wied: (Diptera, Tethritidae) Capture. Journal of Research Updates in Polymer Science, 2014, 3, 40-47.	0.3	17
2896	Preparation of Porous Nanostructures Controlled by Electrospray. Korean Chemical Engineering Research, 2015, 53, 627-631.	0.2	1
2897	Modification of the surface nanotopography of implant devices: A translational perspective. Materials Today Bio, 2021, 12, 100152.	2.6	25
2898	Hemostatic Electrospun Nanocomposite Containing Poly(lactic acid)/Halloysite Nanotube Functionalized by Poly(amidoamine) Dendrimer for Wound Healing Application: In Vitro and In Vivo Assays. Macromolecular Bioscience, 2022, 22, e2100313.	2.1	4
2899	Overview on immobilization of enzymes on synthetic polymeric nanofibers fabricated by electrospinning. Biotechnology and Bioengineering, 2022, 119, 9-33.	1.7	38
2900	Porous metal–organic framework-based filters: Synthesis methods and applications for environmental remediation. Chemical Engineering Journal, 2022, 430, 133160.	6.6	36

#	Article	IF	CITATIONS
2901	Synthesis of Electrospun NASICON Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Solid Electrolyte Nanofibers by Control of Germanium Hydrolysis. Journal of the Electrochemical Society, 2021, 168, 110512.	1.3	6
2902	Electrospinning of a Copolymer PVDF-co-HFP Solved in DMF/Acetone: Explicit Relations among Viscosity, Polymer Concentration, DMF/Acetone Ratio and Mean Nanofiber Diameter. Polymers, 2021, 13, 3418.	2.0	12
2903	Celluloseâ€Based Hybrid Aerogels: Strategies toward Design and Functionality. Advanced Materials, 2021, 33, e2102892.	11.1	64
2904	Scalable Submicron Channel Fabrication by Suspended Nanofiber Lithography for Shortâ€Channel Fieldâ€Effect Transistors. Advanced Functional Materials, 2022, 32, 2109254.	7.8	9
2905	Synthesis and Water Treatment Applications of Nanofibers by Electrospinning. Processes, 2021, 9, 1779.	1.3	18
2906	Research progress, models and simulation of electrospinning technology: a review. Journal of Materials Science, 2022, 57, 58-104.	1.7	42
2907	Antibacterial Activity of Cyclodextrinâ€Azo Dye Inclusion Complex Encapsulated Electrospun Polycaprolactone Nanofibers. ChemistrySelect, 2021, 6, 10440-10446.	0.7	3
2908	Antibacterial Properties of Coaxial Spinning Membrane of Methyl ferulate/zein and Its Preservation Effect on Sea Bass. Foods, 2021, 10, 2385.	1.9	13
2909	Nanofiber-based systems intended for diabetes. Journal of Nanobiotechnology, 2021, 19, 317.	4.2	24
2910	Fabrication and Electrical, Thermal and Morphological Properties of Novel Carbon Nanofiber Web/Unsaturated Polyester Composites. Carbon Letters, 2010, 11, 285-292.	3.3	0
2911	Optical properties of Al doped ZnO Nanofibers Prepared by electrospinning. Journal of the Korean Crystal Growth and Crystal Technology, 2011, 21, 205-209.	0.3	2
2912	Synthesis of Well-Distributed SnO2-Sn-Ag3Sn Nanoparticles in Carbon Nanofibers Using Co-Electrospinning. Korean Journal of Materials Research, 2013, 23, 143-148.	0.1	1
2913	Oil Absorbencies of Fibers of Biodegradable and Microbial Polymers Prepared by Electrospinning Method. Journal of Environmental Science International, 2013, 22, 243-249.	0.0	2
2914	Development of Conducting Polymers. , 2013, , .		0
2915	Effect of Electrospinning Parameters on Fiber Morphology of Tissue Engineering Scaffolds: A Review. Journal of Fashion Technology & Textile Engineering, 2014, 02, .	0.1	0
2916	Wave-like beads on nanofibers by blown bubble spinning. Thermal Science, 2014, 18, 1477-1479.	0.5	3
2917	Smart Nanofibers. NIMS Monographs, 2014, , 189-235.	0.1	0
2918	Advances in Electrospun Nanofi bers Modeling. , 2014, , 1-110.		0

		CITATION RE	IPORT	
#	Article		IF	CITATIONS
2919	A Detailed Review on Pore Structure Analysis of Electrospun Porous Membranes. , 201	4, , 29-49.		0
2920	Statistical Study of Process Parameters Effects on Crystallinity of Electrospun Polyamic 0, , .	le 6,6 Fibres. ,		0
2921	Spinning. Seikei-Kakou, 2014, 26, 317-324.		0.0	0
2922	Electrospinning Process: A Comprehensive Review and Update. , 2014, , 19-126.			1
2924	Bioactive Glassâ \in "Biopolymer Composites for Applications in Tissue Engineering. , 201	5, , 1-26.		0
2925	Bioactive Glass-Biopolymer Composites. , 2015, , 1-26.			0
2927	Electrospinning: A Practical Approach for Membrane Fabrication. , 2015, , 72-101.			1
2931	Nanomorphology, Controlled: Bulk Polymer Conversion into Nano-Sized Materials. , 0,	, 5414-5436.		0
2932	Emerging Technologies to Increase the Bioavailability of Poorly Water-Soluble Drugs. A in the Pharmaceutical Sciences Series, 2016, , 691-740.	APS Advances	0.2	1
2933	Immunotherapy and Vaccines. , 2016, , 441-464.			0
2934	An Investigation onto the Importance of Dimensionless Analysis in the Modeling of Ele International Journal of Chemoinformatics and Chemical Engineering, 2016, 5, 12-23.	ctrospinning.	0.1	0
2935	Electrospun Biodegradable Polyester Micro-/Nanofibers for Drug Delivery and Their Clir Applications. , 2016, , 125-158.	ical		Ο
2937	Smart Biomaterials in Tissue-Engineering Applications. , 2016, , 125-150.			0
2938	Incorporação de clorexidina à superfÃcie da liga Ti7,5Mo após modificaç£o de s crescimento de nanotubos de TiO2 associado a eletrofiação. Archives of Health Inve	uperfÃcie com estigation, 2016, 5, .	0.0	Ο
2939	2. Designing Scaffolds for Bone Tissue Engineering. , 2016, , 19-40.			1
2940	Polymer- and Carbon-Based Nanofibres for Energy Storage. Engineering Materials and I 307-335.	Processes, 2017, ,	0.2	0
2942	FORMATION AND PROPERTIES OF DBC/PLA MICROFIBRES. Progress on Chemistry and Chitin and Its Derivatives, 2017, XXII, 5-13.	Application of	0.1	0
2944	Use of Nanotechnology for Immobilization and Entrapment of Food Applicable Enzyme Series in Phytochemistry, 2018, , 1-25.	s. Reference	0.2	0

#	Article	IF	Citations
2945	The overview of methods for obtaining alginate hydrogels and nanofibers using the electrospinning technique. Materials Protection, 2018, 59, 327-337.	0.1	0
2947	Strategies For Improving Electrospinability Of Polysulfone. , 2018, , .		0
2948	Estimation And Control Of A Double-Inverted Pendulum. , 2018, , .		4
2949	Functionalized PVDF Nanofiber Membranes for Desalination by Direct Contact Membrane Distillation. International Journal of Materials Science and Engineering, 2018, 6, 67-71.	0.1	0
2950	Polyacrylonitrile and activated carbon composite for electric double layer capacitors. , 0, , .		0
2951	Electric double layer capacitors prepared with polyvinyl alcohol and multi-walled carbon nanotubes. , 0, , .		0
2952	Graphene Katkılı Sıvılaştırılmış Fındık Kabuğu Polyvinyl pyrrolidone (PVP) Nanoyüzeyler Tekniği İle Elde Edilmesi Ve Karakterizasyonu. Kahramanmaraş Sütçü İmam Üniversitesi Mühend Bilimleri Dergisi, 2018, 21, 184-194.	in Elektros isl ib. 0	spinning 1
2953	Use of Nanotechnology for Immobilization and Entrapment of Food Applicable Enzymes. Reference Series in Phytochemistry, 2019, , 2037-2061.	0.2	2
2954	Obtenção de scaffolds bioabsorvÃveis a partir de blenda de PLGA e IR com adição de hidroxiapatita. Revista Materia, 2019, 24, .	0.1	0
2955	Functionalized Graphene/Polymer Nanofiber Composites and Their Functional Applications. Carbon Nanostructures, 2019, , 127-156.	0.1	1
2956	Lightweight Nanocomposites Polymers for Shielding Application. Advances in Chemical and Materials Engineering Book Series, 2019, , 206-233.	0.2	0
2957	Microfluidic Platforms for Biofabrication and 3D Tissue Modeling. Biomaterials Science Series, 2019, , 49-76.	0.1	0
2958	Advances in Melt Electrospinning Technique. , 2019, , 125-156.		5
2959	Polymer-Based Nanofibers: Preparation, Fabrication, and Applications. , 2019, , 215-261.		14
2960	Avaliação morfológica de fibras eletrofiadas de policaprolactona em função do tipo de solvente. Revista Materia, 2019, 24, .	0.1	8
2961	The Effect of Adding Alginate Natural Polymer on the Structure of Polyvinyl Alcohol Biocompatible Nanofibers in Electrospinning Process. Iranian South Medical Journal, 2019, 22, 29-40.	0.2	1
2962	Preparation of anti-bacterial biocomposite nanofibers fabricated by electrospinning method. Journal of the Turkish Chemical Society, Section A: Chemistry, 2020, 7, 125-142.	0.4	10
2963	Design and Development of Brahmi Extract Loaded Nanofibers for Cognitive Disorder and Its Optimization. International Journal of Scientific Research in Science and Technology, 2019, , 104-115.	0.1	0

ARTICLE

2964	ÐʻÐ _, ораÐĐ»Ð°Ð³Ð°ÐµÐ¼Ñ‹Ðµ ĐºĐ¾Đ¼ĐįĐ¾ĐĐ,цÐ,Đ, ÑƒĐ»ÑŒÑ,раÑ,Ð¾Đ½ĐºÐ,Ñ Đ²Đ¾Đ»Đ¾ Đ ℜĐ¾Đ½1DįĐ¾Đ»

2965	Benzalkonyum Klorür Katkılı PVA/Gelatin Nanolif Yapılarının Antibakteriyel Özellikleri. International Journal of Advances in Engineering and Pure Sciences, 0, , 128-138.		0
2966	Production of Polyvinylpyrrolidone Nanowebs Containing Zinc Cyclohexane Mono Carboxylate via Electrospinning and Investigatıon of Antibacterial Effıciency. Fibres and Textiles in Eastern Europe, 2019, 27, 91-96.	0.2	1
2967	Biohybrid Polymer Nanofibers for Sensor and Energy Applications. , 2020, , 1-21.		1
2968	Influencia de los parámetros de electrohilado en la morfologÃa y tamaño de fibras de fibroÃna de seda. Revista Materia, 2020, 25, .	0.1	0
2969	Biomaterials and Scaffolds for Repair of the Peripheral Nervous System. , 2020, , 1-35.		1
2970	Optimization of the Electrospinning Conditions by Box-Behnken Design to Prepare Poly(Vinyl) Tj ETQq0 0 0 rgBT / 2020, 08, 13-31.	Overlock 0.2	10 Tf 50 50 5
2971	PAN/Zeolit Esaslı Nanoliflerin Üretimi ve Karakterizasyonu. El-Cezeri Journal of Science and Engineering, 0, , .	0.1	0
2972	GNP katkılı Hibrit PVB-TEOS Nanofiberlerin Üretimi ve Karakterizasyonu. Türk Doğa Ve Fen Dergisi, 0, , 101-106.	0.2	0
2973	COMPARATIVE ANALYSIS OF CLOVE AND EUCALYPTUS ESSENTIAL OILS-BASED PVP/GELATIN NANOFIBERS. Tekstil Ve Konfeksiyon, 2020, 30, 126-137.	0.3	6
2974	Effect of polymer and surfactant concentrations on PVP nanofibers morphology. International Advanced Researches and Engineering Journal, 2020, 4, 99-105.	0.4	1
2975	ELECTROSPUN PROTEIN NANOFIBERS AND THEIR POTENTIAL FOOD APPLICATIONS. MuÄŸla Journal of Science and Technology, 0, , .	0.1	6
2976	Applying Acoustic Emission Technique for Detecting Various Damages Occurred in PCL Nanomodified Composite Laminates. Polymers, 2021, 13, 3680.	2.0	9
2977	A Review on Electrospun Nanofibers Based Advanced Applications: From Health Care to Energy Devices. Polymers, 2021, 13, 3746.	2.0	69
2978	Mil-53(Fe)-loaded polyacrylonitrile membrane with superamphiphilicity and double hydrophobicity for effective emulsion separation and photocatalytic dye degradation. Separation and Purification Technology, 2022, 282, 119910.	3.9	37
2979	Biotechnological Applications of Polymeric Nanofiber Platforms Loaded with Diverse Bioactive Materials. Polymers, 2021, 13, 3734.	2.0	18
2980	Supralingual administration of paracetamol embedded in polyvinyl alcohol nanofibers: A pharmacokinetic study. Journal of Drug Delivery Science and Technology, 2022, 67, 102948.	1.4	2
2981	Effects of Polyvinylpyrrolidone and Ethyl Cellulose in Polyurethane Electrospun Nanofibers on Morphology and Drug Release Characteristics. Turkish Journal of Pharmaceutical Sciences, 2020, 17, 638-644.	0.6	8

#	Article	IF	Citations
2982	Nanotechnology in Textile Finishing: Recent Developments. , 2021, , 1-31.		0
2983	A local collocation method with radial basis functions for an electrospinning problem. Engineering Analysis With Boundary Elements, 2022, 134, 398-411.	2.0	3
2984	Fabrication of a dual-response intelligent antibacterial nanofiber and its application in beef preservation. LWT - Food Science and Technology, 2022, 154, 112606.	2.5	11
2985	Different Bioremediation Techniques for Management of Waste Water. , 2022, , 357-374.		0
2986	A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment. Journal of Environmental Management, 2022, 301, 113908.	3.8	67
2987	Nanotechnology and Functional Food. , 2020, , 85-112.		3
2988	Polyvinylpyrrolidone matrix concentration effects on the physical properties of TiO2 nanofibers prepared using electrospinning method. AIP Conference Proceedings, 2020, , .	0.3	0
2989	ĐĐ¾Đ²Ñ‹Đµ Đ¿ĐµÑ€ÑĐ¿ĐµĐºÑ,Đ¸Đ²Đ½Ñ‹Đµ Đ¼Đ°Ñ,ĐµÑ€Đ¸Đ°Đ»Ñ‹ Đ½Đ° Đ¾ÑĐ½Đ¾Đ²Đµ Ñ€ĐµĐºĐ¾Đ	¹∕₄ Ð.£ Ð,Đ¹∕	′2Ð9Ð1⁄2Ñ,Ð∛
2990	Development and validation of a home-built electrospinner unit. Procedia CIRP, 2020, 95, 97-102.	1.0	0
2991	Numerical analysis of the electrospinning process for fabrication of composite fibers. Thermal Science, 2020, 24, 2377-2383.	0.5	7
2992	Rutin-Based Phytomedicines for Cancer Benefit. , 2020, , 71-126.		0
2993	Functional nanofibers: fabrication, functionalization, and potential applications. , 2020, , 581-609.		1
2994	Biến Äʿá»™ng quần thể cá lÃnh canh vÃng (Coilia rebentischii) ở sông Cá»a Lá»›n, tỉnh Cà Mau. Ta Journal of Science, 2020, 56(Aquaculture), 124.	p Chi Khoa 0.1	a Hoc =
2995	Tổng hợp sợi nano carbon/ZnO bằng kỹ thuáºt quay Äʿiện hoÌa. Tap Chi Khoa Hoc = Journal of Sciend 1.	ce, 2020, 5	56(3),
2996	Electrospun natural rubber fibers-based flexible conductive membranes. Revista Materia, 2020, 25, .	0.1	1
2997	Bioinks for 3D printing of artificial extracellular matrices. , 2020, , 1-37.		5
2999	Non-contact fast Mueller matrix measurement system for investigation of bio-tissues. , 2020, , .		0
3005	Valorization of Marine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products. Frontiers in Marine Science, 2021, 8, .	1.2	35

#	Article	IF	CITATIONS
3006	Study of the Optical Properties of Electrospun PAN/GO Nanocomposites. Solid State Phenomena, 0, 326, 17-31.	0.3	0
3007	Harnessing Therapeutic Potentials of Statins Using Nanofibrous Carriers. Bioinorganic Chemistry and Applications, 2021, 2021, 1-10.	1.8	2
3008	The adsorption, kinetics, and interaction mechanisms of various types of estrogen on electrospun polymeric nanofiber membranes. Nanotechnology, 2022, 33, 075702.	1.3	6
3009	Sustainable lithiumâ€ion battery separators based on poly(3â€hydroxybutyrateâ€coâ€hydroxyvalerate) pristine and composite electrospun membranes. Energy Technology, 0, , 2100761.	1.8	4
3010	Concentration, Temperature and Molecular Weight Dependent on Optical Properties of Poly (Vinyl) Tj ETQq0 0 0 2020, V9, .	rgBT /Ove 0.2	erlock 10 Tf 5 1
3012	In Vitro Mechanobiology of Glioma: Mimicking the Brain Blood Vessels and White Matter Tracts Invasion Paths. Neuromethods, 2021, , 159-196.	0.2	3
3013	Production of Multi-Walled Carbon Nanotube and Graphene Doped Thermoplastic Polyurethane Fiber and Investigation of Mechanical Properties. ECS Journal of Solid State Science and Technology, 2020, 9, 101011.	0.9	3
3014	Scaffold Design for Nerve Regeneration. , 2021, , 257-283.		0
3015	Biopolymer Composite Nanofibers Electrospun from Regenerated Silk Fibroin and PHBV: Fabrication Method, Morphology and Thermal Stability. Polymer Science - Series A, 2020, 62, 648-659.	0.4	1
3016	Electrospinning of Chitosan Biopolymer and Polyethylene Oxide Blends. Autex Research Journal, 2020, 20, 426-440.	0.6	5
3017	Antibacterial Electrospun Nanofibres. Environmental and Microbial Biotechnology, 2021, , 239-255.	0.4	0
3018	Biodegradable synthetic scaffolds for tendon regeneration. Muscles, Ligaments and Tendons Journal, 2012, 2, 181-6.	0.1	26
3019	Development of Absorbable, Antibiotic-Eluting Sutures for Ophthalmic Surgery. Translational Vision Science and Technology, 2017, 6, 1.	1.1	20
3020	Semi-IPN Films and Electrospun Nanofibers Based on Chitosan/PVA as an Antibacterial Wound Dressing. Iranian Journal of Pharmaceutical Research, 2019, 18, 1156-1167.	0.3	5
3022	Chitosan/PVA/Doxycycline Film and Nanofiber Accelerate Diabetic Wound Healing in a Rat Model. Iranian Journal of Pharmaceutical Research, 2020, 19, 225-239.	0.3	0
3023	Fabrication of chitosan-based electrospun nanofiber scaffold: Amplification of biomechanical properties, structural stability, and seeded cell viability. Veterinary Research Forum, 2021, 12, 25-32.	0.3	2
3024	<i>In situ</i> encapsulation of metal sulfide into hierarchical nanostructured electrospun nanofibers as self-supported electrodes for flexible quasi-solid-state supercapacitors. Journal of Materials Chemistry C, 2022, 10, 542-548.	2.7	16
3025	Gas separation and filtration membrane applications of polymer/graphene nanocomposites. , 2022, , 197-222.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
3026	Techniques for wearable gas sensors fabrication. Sensors and Actuators B: Chemical, 202	2, 353, 131133.	4.0	27
3027	Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy 106774.	, 2022, 92,	8.2	60
3028	Microfiltration membranes developed from nanofibers via an electrospinning process. Ma Chemistry and Physics, 2022, 277, 125509.	terials	2.0	4
3029	Experimental study of the impact of electrospinning parameters on the electromechanica of strain sensitive electrospun multiwalled carbon nanotubes/ thermoplastic polyurethan nanofibers. Advanced Composite Materials, 2022, 31, 335-350.	l properties 2	1.0	5
3030	Progress in Electrospun Polymer Composite Fibers for Microwave Absorption and Electro Interference Shielding. ACS Applied Electronic Materials, 2021, 3, 4657-4680.	nagnetic	2.0	38
3031	Biomimetic Approaches for the Design and Fabrication of Bone-to-Soft Tissue Interfaces. Biomaterials Science and Engineering, 2023, 9, 3810-3831.	ACS	2.6	21
3032	Electrospun Porous Biobased Polymer Mats for Biomedical Applications. Engineering Mat 539-586.	erials, 2022, ,	0.3	3
3033	Effect of sequential electrospinning and co-electrospinning on morphological and fluid mo wall properties of polycaprolactone and bovine gelatin scaffolds, for potential use in smal vascular grafts. Biomaterials Research, 2021, 25, 38.	echanical I diameter	3.2	10
3034	Magnetic Carbon Nanofiber Mats for Prospective Single Photon Avalanche Diode (SPAD) Applications. Sensors, 2021, 21, 7873.	Sensing	2.1	5
3035	Thermo-Modulated Nanofibrous Skin Covered Janus Membranes for Efficient Oil/Water Se Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 127935.	eparation.	2.3	13
3036	Controllable synthesis and magnetic properties of NiAl0.8Fe1.2O4 electrospun nanofibre International, 2022, 48, 7117-7125.	s. Ceramics	2.3	1
3037	Expanding the Repertoire of Electrospinning: New and Emerging Biopolymers, Techniques Applications. Advanced Healthcare Materials, 2022, 11, e2101979.	s, and	3.9	35
3038	Effect of Carbon Nanotube Loading on Electrical Properties of Electrospun Polyvinylidene (PVDF) Fiber. Journal of Physics: Conference Series, 2021, 2080, 012015.	Fluoride	0.3	2
3039	Optimization of Chitosan Properties with the Aim of a Water Resistant Adhesive Develop Polymers, 2021, 13, 4031.	ment.	2.0	19
3040	Silk fibroin electrospun nanofiber blends with antibiotics and polyvinyl alcohol for burn we healing. Journal of Applied Polymer Science, 2022, 139, 51930.	ound	1.3	10
3041	Desired properties and corresponding improvement measures of electrospun nanofibers f membrane distillation, reinforcement, and selfâ€healing applications. Polymer Engineerin 2022, 62, 247-268.	or g and Science,	1.5	9
3042	Antiviral Electrospun Polymer Composites: Recent Advances and Opportunities for Tacklin Frontiers in Materials, 2021, 8, .	ng COVID-19.	1.2	3
3043	Electrospinning of Neat Graphene Nanofibers. Advanced Fiber Materials, 2022, 4, 268-27	9	7.9	31

#	Article	IF	CITATIONS
3044	Recycling of polyvinyl butyral from waste automotive windshield and fabrication of their electrospun fibrous materials. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132, 104136.	2.7	7
3046	Polymer Nanofibers for Biomedical Applications: Advances in Electrospinning. Current Applied Polymer Science, 2021, 4, 190-209.	0.2	2
3048	Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. Biosensors, 2021, 11, 472.	2.3	45
3049	Cellulose-based electrospun nanofibers: a review. Cellulose, 2022, 29, 25-54.	2.4	29
3050	The effect of morphology on poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 587 Td (fluoride-trifluoroethy aligned nanofiber mats. Sensors and Actuators A: Physical, 2022, 333, 113255.	lene-chlor 2.0	otrifluoroethy 5
3051	Metal-organic frameworks with different dimensionalities: An ideal host platform for enzyme@MOF composites. Coordination Chemistry Reviews, 2022, 454, 214327.	9.5	124
3052	The Application of Nanomaterial in Skeletal Muscle Regeneration. , 2021, , 37-85.		0
3053	Progress in Functionalized Polymeric Membranes for Application in Waste Water Treatment. Energy, Environment, and Sustainability, 2022, , 205-226.	0.6	1
3054	Sustainable production of curable maltodextrin-based electrospun microfibers. RSC Advances, 2021, 12, 762-771.	1.7	4
3055	Bioengineering of fibroblastâ€conditioned polycaprolactone/gelatin electrospun scaffold for skin tissue engineering. Artificial Organs, 2022, 46, 1040-1054.	1.0	16
3056	Analysis of the electrostatic field distribution to improve the electrospinning process—Practical tips. Journal of Computational Science, 2022, 59, 101542.	1.5	6
3057	Development and evaluation of novel nanofibers based on mango kernel starch obtained by electrospinning. Polymer Testing, 2022, 106, 107462.	2.3	17
3058	Biologically modified electrospun polycaprolactone nanofibrous scaffold promotes osteogenic differentiation. Journal of Drug Delivery Science and Technology, 2022, 68, 103050.	1.4	2
3059	Interfacial assembly of functional mesoporous nanomatrices for laser desorption/ionization mass spectrometry. Nano Today, 2022, 42, 101365.	6.2	8
3060	A peanut-shaped optical fiber sensor coated with electrospinning polyvinyl alcohol/nano-ZnO film. Sensors and Actuators A: Physical, 2022, 335, 113370.	2.0	10
3061	ENTRAPMENT OF FREE CELLS WITHIN ELECTROSPUN NANOFIBERS: MINI REVIEW ON PARAMETERS INFLUENCING NANOFIBERS CHARACTERISTICS AND CELLS VIABILITY. Jurnal Teknologi (Sciences and) Tj ETQq1 1	0.ø&4314	• rgBT /Overic
3062	Investigation of Cold Atmospheric Plasma Activity in PCL/ZnO Tissue Scaffolding To Be Used in Wound Tissues. , 2020, , .		0
3063	Optimization of Nylon 6 electrospun nanofiber diameter in needle-less wire electrode using central composite design and response surface methodology. Journal of Industrial Textiles, 2022, 51, 7279S-7292S.	1.1	6

#	Article	IF	CITATIONS
3064	3D printing for soft musculoskeletal tissue engineering. , 2022, , 167-200.		0
3065	PLA-based blends and composites. , 2022, , 237-281.		2
3066	Electrospun polymer composites and ceramics nanofibers. , 2022, , 503-525.		1
3067	Curcumin and Silver Doping Enhance the Spinnability and Antibacterial Activity of Melt-Electrospun Polybutylene Succinate Fibers. Nanomaterials, 2022, 12, 283.	1.9	10
3068	Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers. International Journal of Molecular Sciences, 2022, 23, 1290.	1.8	27
3069	Metronidazole Topically Immobilized Electrospun Nanofibrous Scaffold: Novel Secondary Intention Wound Healing Accelerator. Polymers, 2022, 14, 454.	2.0	32
3070	Nanofiber Systems as Herbal Bioactive Compounds Carriers: Current Applications in Healthcare. Pharmaceutics, 2022, 14, 191.	2.0	15
3071	Formulation of acyclovir (core)-dexpanthenol (sheath) nanofibrous patches for the treatment of herpes labialis. International Journal of Pharmaceutics, 2022, 611, 121354.	2.6	15
3072	Near-Field Electrospinning: Crucial Parameters, Challenges, and Applications. ACS Applied Bio Materials, 2022, 5, 394-412.	2.3	34
3073	Omegaâ€3 polyunsaturated fatty acid encapsulation system: Physical and oxidative stability, and medical applications. Food Frontiers, 2022, 3, 239-255.	3.7	18
3074	Nanocellulose in packaging industry. , 2022, , 43-66.		2
3075	Antibacterial and inÂvivo studies of poly(É›-caprolactone)-silver electrospun nanofibers: effect of preparation methods on the properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 0, , 1-12.	1.8	1
3076	Highâ€Power Triboelectric Nanogenerator Based on Enriched Polyvinylpyrrolidone Nanofibers for Energy Harvesting. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	3
3077	Preparation and Characterization of Electrospun Polysaccharide FucoPol-Based Nanofiber Systems. Nanomaterials, 2022, 12, 498.	1.9	5
3078	Improving thermal conductivities of textile materials by nanohybrid approaches. IScience, 2022, 25, 103825.	1.9	18
3079	In Situ Fabrication of Lead-Free Cs ₃ Cu ₂ I ₅ Nanostructures Embedded in Poly(Vinylidene Fluoride) Electrospun Fibers for Polarized Emission. ACS Applied Nano Materials, 2022, 5, 508-516.	2.4	14
3080	Morphological Development of Immersion-Electrospun Polymer Products Based on Nonsolvent-Induced Phase Separation. ACS Applied Polymer Materials, 2022, 4, 879-888.	2.0	6
3081	Recent Advances in Synthetic and Natural Biomaterialsâ€Based Therapy for Bone Defects. Macromolecular Bioscience, 2022, 22, e2100383.	2.1	14

#	Article	IF	Citations
3082	Preparation and Evaluation of Polyvinylpyrrolidone Electrospun Nanofiber Patches of Pioglitazone for the Treatment of Atopic Dermatitis. AAPS PharmSciTech, 2022, 23, 51.	1.5	5
3083	Cellulose reinforcement in bioplastic composites. , 2022, , 143-158.		0
3084	Active Electrospun Mats: A Promising Material for Active Food Packaging. , 0, , .		1
3085	Stable 3D hierarchical scaffolds by origami approach: Effect of interfacial crosslinking by nanohybrid shish-kebab assemblies. Materials and Design, 2022, 213, 110353.	3.3	2
3086	Fabrication and investigation potential effect of lentinan and docetaxel nanofibers for synergistic treatment of breast cancer in vitro. Polymers for Advanced Technologies, 2022, 33, 1468-1480.	1.6	8
3087	Development of an Electrospun Patch Platform Technology for the Delivery of Carvedilol in the Oral Mucosa. Nanomaterials, 2022, 12, 438.	1.9	8
3088	Extraction of silicon in the form of nanoparticles and nanorods from coal fly ash. , 2022, , 451-474.		1
3089	Development for preparation of nanofibers using polylactic acid and biomass lignin via electrospinning process. AIP Conference Proceedings, 2022, , .	0.3	0
3090	Electrospun Ti ₃ C ₂ T _x MXene and silicon embedded in carbon nanofibers for lithium-ion batteries. Journal Physics D: Applied Physics, 2022, 55, 204002.	1.3	6
3091	Methods to Characterize Electrospun Scaffold Morphology: A Critical Review. Polymers, 2022, 14, 467.	2.0	14
3092	Colloid Syringeless Electrospinning toward Nonwoven Nanofiber Web Containing a Massive Amount of Inorganic Fillers. Macromolecular Materials and Engineering, 2022, 307, .	1.7	8
3093	Effect of processing and storage time of aqueous solutions on silk fibroin structure and methanol post-treatment of electrospun fibers. Journal of Materials Science, 2022, 57, 3842-3854.	1.7	5
3094	The Structuring of Sage (Salvia officinalis L.) Extract-Incorporating Edible Zein-Based Materials with Antioxidant and Antibacterial Functionality by Solvent Casting versus Electrospinning. Foods, 2022, 11, 390.	1.9	17
3095	Solution processing of piezoelectric unconventional structures. , 2022, , 375-439.		3
3096	Biomedical applications of electrospun chitosan nanofibers. , 2022, , 75-110.		1
3097	Nanofibers in the treatment of osteomyelitis and bone regeneration. Journal of Drug Delivery Science and Technology, 2022, 67, 102999.	1.4	3
3098	Tunable Spun Fiber Constructs in Biomedicine: Influence of Processing Parameters in the Fibers' Architecture. Pharmaceutics, 2022, 14, 164.	2.0	23
3099	Development in liquid crystal microcapsules: fabrication, optimization and applications. Journal of Materials Chemistry C, 2022, 10, 413-432.	2.7	16

Сп	ION	REPO) RT
<u> </u>		TYPE I V	

#	Article	IF	CITATIONS
3100	Regulated Exogenous/Endogenous Inflammation via "Innerâ€Outer―Medicated Electrospun Fibers for Promoting Tissue Reconstruction. Advanced Healthcare Materials, 2022, 11, e2102534.	3.9	13
3101	Methods of producing three dimensional electrospun scaffolds for bone tissue engineering: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2022, , 095441192110694.	1.0	3
3102	Recently developed electrospinning methods: a review. Textile Reseach Journal, 2022, 92, 5130-5145.	1.1	21
3103	Electrospun poly(e aprolactone)/propolis fiber morphology: A process optimisation study. Journal of Applied Polymer Science, 2022, 139, .	1.3	8
3104	Electrospinning hydrophobically modified polyvinyl alcohol composite air filter paper with water resistance and high filterability properties. Nordic Pulp and Paper Research Journal, 2022, 37, 356-365.	0.3	1
3105	Improved biological behaviours and osteoinductive capacity of the gelatin nanofibers while composites with <scp>GO</scp> / <scp>MgO</scp> . Cell Biochemistry and Function, 2022, 40, 203-212.	1.4	4
3106	Additive Manufacturing Approaches toward the Fabrication of Biomaterials. Advanced Materials Interfaces, 2022, 9, .	1.9	3
3107	3D hybrid scaffold with aligned nanofiber yarns embedded in injectable hydrogels for monitoring and repairing chronic wounds. Composites Part B: Engineering, 2022, 234, 109688.	5.9	19
3108	Electrospun polyacrylonitrile (PAN) nanofiber: preparation, experimental characterization, organic vapor sensing ability and theoretical simulations of binding energies. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	6
3109	Hydroxypropyl methylcellulose-based micro- and nanostructures for encapsulation of melanoidins: Effect of electrohydrodynamic processing variables on morphological and physicochemical properties. International Journal of Biological Macromolecules, 2022, 202, 453-467.	3.6	8
3110	Construction of Polytetrafluoroethylene nanofiber membrane via continuous electrospinning/electrospraying strategy for oil-water separation and demulsification. Separation and Purification Technology, 2022, 287, 120575.	3.9	33
3111	Recent applications of electrospun nanofibres in microextraction based-sample preparation techniques for determination of environmental pollutants. Current Opinion in Environmental Science and Health, 2022, 26, 100323.	2.1	5
3112	Electrospinning Techniques for Encapsulation. Composites Science and Technology, 2022, , 39-61.	0.4	1
3113	Non-toxic nature of nano-biosorbents as a positive approach toward green environment. , 2022, , 187-226.		0
3114	Foaming of PCL-Based Composites Using scCO2: Structure and Physical Properties. Materials, 2022, 15, 1169.	1.3	7
3115	Application of Electrospun Nonwoven Fibers in Air Filters. Fibers, 2022, 10, 15.	1.8	35
3119	Polymer-based nanoenhanced nanofiltration membranes. , 2022, , 197-235.		3
3121	Nanofiber-Reinforced Bionanocomposites in Agriculture Applications. Composites Science and Technology, 2022, , 311-332.	0.4	1

#	Article	IF	CITATIONS
3122	Controlling the elasticity of polyacrylonitrile fibers <i>via</i> ionic liquids containing cyano-based anions. RSC Advances, 2022, 12, 8656-8660.	1.7	2
3124	Polysaccharides-metal oxide composite: A green functional material. , 2022, , 371-394.		1
3125	Electrospun Chitosan Functionalized with C12, C14 or C16 Tails for Blood-Contacting Medical Devices. Gels, 2022, 8, 113.	2.1	1
3126	TiO2–Based Nanofibrous Membranes for Environmental Protection. Membranes, 2022, 12, 236.	1.4	7
3127	Palladium Impregnation on Electrospun Carbon Fibers for Catalytic Reduction of Bromate in Water. Processes, 2022, 10, 458.	1.3	1
3128	Gelatin‣ysozyme Nanofibrils Electrospun Patches with Improved Mechanical, Antioxidant, and Bioresorbability Properties for Myocardial Regeneration Applications. Advanced Functional Materials, 2022, 32, .	7.8	18
3129	Shape-Memory Materials via Electrospinning: A Review. Polymers, 2022, 14, 995.	2.0	17
3130	Enhanced Electromechanical Response in PVDF-BNBT Composite Nanofibers for Flexible Sensor Applications. Materials, 2022, 15, 1769.	1.3	3
3131	Investigation of antibacterial activity of one-dimensional electrospun Walnut green husk extract-PVP nanofibers. Iranian Polymer Journal (English Edition), 2022, 31, 779-785.	1.3	3
3132	The effect of different sizes of crossâ€linked fibers of biodegradable electrospun poly(εâ€caprolactone) scaffolds on osteogenic behavior in a rat model in vivo. Journal of Applied Polymer Science, 2022, 139, .	1.3	8
3133	Shape memory poly (glycerol sebacate)â€based electrospun fiber scaffolds for tissue engineering applications: A review. Journal of Applied Polymer Science, 2022, 139, .	1.3	7
3134	Ferroelectric Polymer Nanofibers Reminiscent of Morphotropic Phase Boundary Behavior for Improved Piezoelectric Energy Harvesting. Small, 2022, 18, e2104472.	5.2	16
3135	Improved water flux in optimized electrospun polysulfone/nanoclay membranes. Polymer Composites, 2022, 43, 2602-2614.	2.3	7
3136	Characterization of sodium carboxymethyl cellulose/calcium alginate scaffold loaded with curcumin in skin tissue engineering. Journal of Applied Polymer Science, 2022, 139, 52271.	1.3	2
3137	The effect of various electrospinning parameter and sol-gel concentration on morphology of silica and titania nanofibers. IOP Conference Series: Materials Science and Engineering, 2022, 1231, 012012.	0.3	1
3138	Nanofibers: Production, Characterization, and Tissue Engineering Applications. , 0, , .		2
3139	Electrospun composites nanofibers from cellulose acetate/carbon black as efficient adsorbents for heavy and light machine oil from aquatic environment. Journal of the Iranian Chemical Society, 2022, 19, 3013-3027.	1.2	12
3140	Artificial Intelligence Deep Exploration of Influential Parameters on Physicochemical Properties of Curcumin‣oaded Electrospun Nanofibers. Advanced NanoBiomed Research, 2022, 2, .	1.7	13

#	Article	IF	CITATIONS
3141	Electrospinning and characterization of magnetoelectric NdFeO3–PbZr0.52Ti0.48O3 Core–Shell nanofibers. Ceramics International, 2022, 48, 18415-18424.	2.3	6
3142	Comparative Study of Polycaprolactone Electrospun Fibers and Casting Films Enriched with Carbon and Nitrogen Sources and Their Potential Use in Water Bioremediation. Membranes, 2022, 12, 327.	1.4	2
3143	β-cyclodextrin based electrospun nanofibers for arginase immobilization and its application in the production of L-ornithine. Journal of Polymer Research, 2022, 29, 1.	1.2	3
3144	Miniature coiled artificial muscle for wireless soft medical devices. Science Advances, 2022, 8, eabm5616.	4.7	32
3145	A Review on Electrospinning of Natural Bio Herbs Blended with Polyvinyl Alcohol Nanofibres for Biomedical Applications. Journal of Natural Fibers, 2022, 19, 11984-12003.	1.7	5
3146	Cranberry proanthocyanidins composite electrospun nanofibers as a potential alternative for bacterial entrapment applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1876-1886.	1.6	0
3147	Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. Journal of Orthopaedic Translation, 2022, 33, 41-54.	1.9	58
3148	Electrospun Nanofiber Membranes for Air Filtration: A Review. Nanomaterials, 2022, 12, 1077.	1.9	81
3149	PVDF/KNO3 Composite Sub-Microfibers Produced by Solution Blow Spinning as a Hydrophobic Matrix for Fertilizer Delivery System. Polymers, 2022, 14, 1000.	2.0	5
3150	Electrospinning Synthesis of Na0.5Bi0.5TiO3 Nanofibers for Dielectric Capacitors in Energy Storage Application. Nanomaterials, 2022, 12, 906.	1.9	6
3151	Electrospun Azoâ€Cellulose Fabric: A Smart Polysaccharidic Photoâ€Actuator. Macromolecular Rapid Communications, 2022, 43, e2200063.	2.0	3
3152	Electrospun Nanofibers Revisited: An Update on the Emerging Applications in Nanomedicine. Materials, 2022, 15, 1934.	1.3	18
3153	Treatment Management of Diabetic Wounds Utilizing Herbalism: An Overview. Current Diabetes Reviews, 2023, 19, .	0.6	2
3154	Waste-Derived Cellulosic Fibers and Their Applications. Advances in Materials Science and Engineering, 2022, 2022, 1-13.	1.0	11
3155	Promotion of dermal tissue engineering in a rat model using a composite 3D-printed scaffold with electrospun nanofibers and recipient-site preconditioning with an external volume expansion device. Journal of Biomaterials Applications, 2022, , 088532822210805.	1.2	0
3156	Natural protein-based electrospun nanofibers for advanced healthcare applications: progress and challenges. 3 Biotech, 2022, 12, 92.	1.1	4
3157	Bioactive inorganic particlesâ€based biomaterials for skin tissue engineering. Exploration, 2022, 2, .	5.4	41
3158	Silver Nanowires Embedded Chitosan/Polyâ€Lactic Acid Electrospun Nanocomposite Web Based Nanofibrous Multifunctional Membrane for Safe Water Purification. Advanced Sustainable Systems, 2022 6	2.7	3

#	Article	IF	CITATIONS
3159	Optimization of the Spinneret Rotation Speed and Airflow Parameters for the Nozzleless Forcespinning of a Polymer Solution. Polymers, 2022, 14, 1042.	2.0	5
3160	Piezoelectric Electrospun Fibrous Scaffolds for Bone, Articular Cartilage and Osteochondral Tissue Engineering. International Journal of Molecular Sciences, 2022, 23, 2907.	1.8	21
3161	Continuous Microfiber Wire Mandrelâ€Less Biofabrication for Soft Tissue Engineering Applications. Advanced Healthcare Materials, 2022, , 2102613.	3.9	0
3162	The Effect of Surface Wettability on Viscoelastic Droplet Dynamics under Electric Fields. Micromachines, 2022, 13, 580.	1.4	2
3163	Manufacturing Cyclodextrin Fibers Using Water. Macromolecular Materials and Engineering, 2022, 307, .	1.7	9
3164	Multifaceted tannin crosslinked bioinspired dECM decorated nanofibers modulating cell–scaffold biointerface for tympanic membrane perforation bioengineering. Biomedical Materials (Bristol), 2022, 17, 034102.	1.7	11
3165	Controlled release of azithromycin from polycaprolactone/chitosan nanofibrous membranes. Journal of Drug Delivery Science and Technology, 2022, 71, 103246.	1.4	4
3166	Antioxidant α-Mangostin Coated Woven Polycaprolactone Nanofibrous Yarn Scaffold for Cardiac Tissue Repair. ACS Applied Nano Materials, 2022, 5, 5075-5086.	2.4	5
3167	PDMS micro-dewy spider-web-like metal nanofiber films for fabrication of high-performance transparent flexible electrode with improved mechanical strength. Microelectronic Engineering, 2022, 258, 111777.	1.1	3
3168	Multilayered 3-D nanofibrous scaffold with chondroitin sulfate sustained release as dermal substitute. International Journal of Biological Macromolecules, 2022, 206, 718-729.	3.6	8
3169	Tannin-reinforced iron substituted hydroxyapatite nanorods functionalized collagen-based composite nanofibrous coating as a cell-instructive bone-implant interface scaffold. Chemical Engineering Journal, 2022, 438, 135611.	6.6	28
3170	Regenerative therapies for tympanic membrane. Progress in Materials Science, 2022, 127, 100942.	16.0	11
3171	Synthesis and characterization of electrospun n-ZnO/n-Bi2O3/epoxy-PVA nanofiber mat for low X-ray energy shielding application. Radiation Physics and Chemistry, 2022, 195, 110102.	1.4	4
3172	Perspectives of conducting polymer nanostructures for high-performance electrochemical capacitors. Journal of Energy Storage, 2022, 51, 104418.	3.9	29
3173	Progress in recycling and valorization of waste silk. Science of the Total Environment, 2022, 830, 154812.	3.9	27
3174	Advances in spray products for skin regeneration. Bioactive Materials, 2022, 16, 187-203.	8.6	27
3175	Hierarchically porous membranes for lithium rechargeable batteries: Recent progress and opportunities. EcoMat, 2022, 4, .	6.8	24
3176	Pectin-Based Scaffolds for Tissue Engineering Applications. , 0, , .		4

#	Article	IF	CITATIONS
3177	Modeling Experimental Parameters for the Fabrication of Multifunctional Surfaces Composed of Electrospun PCL/ZnO-NPs Nanofibers. Polymers, 2021, 13, 4312.	2.0	4
3178	Scaffolds for Use in Craniofacial Bone. Methods in Molecular Biology, 2022, 2403, 223-234.	0.4	1
3179	Functional nanoparticles in electrospun fibers for biomedical applications. Nano Select, 2022, 3, 999-1011.	1.9	9
3180	An Investigation into Hydraulic Permeability of Fibrous Membranes with Nonwoven Random and Quasi-Parallel Structures. Membranes, 2022, 12, 54.	1.4	0
3181	Polystyrene-Fiber-Rod Hybrid Composite Structure for Optical Enhancement in Quantum-Dot-Converted Light-Emitting Diodes. ACS Applied Polymer Materials, 2022, 4, 91-99.	2.0	8
3182	Silk Sericin Activates Mild Immune Response and Increases Antibody Production. Journal of Biomedical Nanotechnology, 2021, 17, 2433-2443.	0.5	4
3183	Bottom-up self-assembly of nanofibers in the surfactant mixture of CTAB and Pluronics. AIP Advances, 2021, 11, 125031.	0.6	3
3184	Immobilized phytases: an overview of different strategies, support material, and their applications in improving food and feed nutrition. Critical Reviews in Food Science and Nutrition, 2023, 63, 5465-5487.	5.4	10
3185	Evaluation of Freeze Drying and Electrospinning Techniques for Saffron Encapsulation and Storage Stability of Encapsulated Bioactives. Journal of Composites Science, 2021, 5, 326.	1.4	8
3186	Liquid-Assisted Electrospinning Three-Dimensional Polyacrylonitrile Nanofiber Crosslinked with Chitosan. Journal of Nanomaterials, 2021, 2021, 1-9.	1.5	2
3187	Influence of reducing agents on in situ synthesis of gold nanoparticles and scaffold conductivity with emphasis on neural differentiation. Materials Science and Engineering C, 2022, 134, 112634.	3.8	8
3188	<i>para</i> -Aramid Nanofiber Membranes for High-Performance and Multifunctional Materials. ACS Applied Nano Materials, 2022, 5, 747-758.	2.4	10
3189	One-Dimensional Metal Oxide Nanostructures for Chemical Sensors. , 0, , .		2
3191	Theoretical concepts of membrane-nanomaterial composites. , 2022, , 37-80.		0
3192	Covalent organic framework membrane on electrospun polyvinylidene fluoride substrate with a hydrophilic intermediate layer. Journal of Colloid and Interface Science, 2022, 622, 11-20.	5.0	11
3193	High selective property of gelatin/MWCNTs functionalized carbon fiber microelectrode: Toward real-time monitoring of ascorbate. Journal of Electroanalytical Chemistry, 2022, 914, 116315.	1.9	6
3194	Staggered Nanofiber Scaffolds via Electric-Field-Controlled Assembly for Bone Tissue Regeneration. ACS Applied Nano Materials, 2022, 5, 6327-6339.	2.4	6
3195	Preparation of Linalool/Polycaprolactone Coaxial Electrospinning Film and Application in Preserving Salmon Slices. Frontiers in Microbiology, 2022, 13, 860123.	1.5	0

#	Article	IF	CITATIONS
3196	Silk fibroinâ€based films in food packaging applications: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2253-2273.	5.9	20
3197	Electrospun Polymer Nanofibers with Antimicrobial Activity. Polymers, 2022, 14, 1661.	2.0	50

3198 ĐЛЕĐšĐ¢ĐĐžĐĐžĐĐœĐžĐ'ĐĐĐ~Đ• Đ¡Đ~ĐĐ¢Đ•Đ¢Đ~ЧĐ•Đ¡ĐšĐ~Đ¥ Đ'ОЛОКОЕĐ~ Đ~Đ¥ ĐŸĐĐ~ĐœĐ•ĐĐ•ĐĐ.Đ• (ĐžĐÍĐ—ĐžĐ). N

3199	Bioactive Molecule-incorporated Polymeric Electrospun Fibers for Bone Tissue Engineering. Current Stem Cell Research and Therapy, 2023, 18, 470-486.	0.6	0
3200	Gelatin-based electrospun and lyophilized scaffolds with nano scale feature for bone tissue engineering application: review. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1704-1758.	1.9	10
3201	CHAPTER 12. Pretreatment Processes for the Analysis of Organic Pollutants with Nanomaterials. RSC Detection Science, 0, , 306-354.	0.0	0
3205	Physico-mechanical and biological evaluation of heparin/VEGF-loaded electrospun polycaprolactone/decellularized rat aorta extracellular matrix for small-diameter vascular grafts. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1664-1684.	1.9	9
3210	Smart nanofibres for specific and ultrasensitive nanobiosensors and drug delivery systems. Acta Veterinaria Brno, 2022, 91, 163-170.	0.2	1
3212	Avaliação ambiental do uso de reagentes na produção de nanofibras de hidroxiapatita pela técnica de fiação por sopro em solução / Environmental assessment of the use of reagents in production of hydroxyapatite nanofibers by solution blow spinning technique. Brazilian Journal of Development, 2022, 8, 22312-22327.	0.0	0
3213	Surface Grafting of Electrospun Fibers: Multiscale Characterization and Perspective for Potential Applications. ACS Applied Polymer Materials, 2022, 4, 3743-3751.	2.0	1
3214	Biomaterials Used for Periodontal Disease Treatment: Focusing on Immunomodulatory Properties. International Journal of Biomaterials, 2022, 2022, 1-8.	1.1	4
3215	An Implantable Magneto-Responsive Poly(aspartamide) Based Electrospun Scaffold for Hyperthermia Treatment. Nanomaterials, 2022, 12, 1476.	1.9	7
3216	Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. Polymer Reviews, 2023, 63, 127-199.	5.3	23
3217	Binary polymer systems for biomedical applications. International Materials Reviews, 2023, 68, 184-224.	9.4	7
3218	Review—Electrospun Inorganic Solid-State Electrolyte Fibers for Battery Applications. Journal of the Electrochemical Society, 2022, 169, 050527.	1.3	7
3219	Marine Biopolymers as Bioactive Functional Ingredients of Electrospun Nanofibrous Scaffolds for Biomedical Applications. Marine Drugs, 2022, 20, 314.	2.2	22
3220	Electrospun Chitosan Nanofibres and Its Application. Current Drug Therapy, 2022, 17, .	0.2	1
3221	Electrospinning as a Promising Process to Preserve the Quality and Safety of Meat and Meat Products. Coatings, 2022, 12, 644.	1.2	25

#	Article	IF	CITATIONS
3222	Cross-Linking Agents for Electrospinning-Based Bone Tissue Engineering. International Journal of Molecular Sciences, 2022, 23, 5444.	1.8	14
3223	Recycling and Reutilizing Polymer Waste via Electrospun Micro/Nanofibers: A Review. Nanomaterials, 2022, 12, 1663.	1.9	8
3224	Targeting the tumor biophysical microenvironment to reduce resistance to immunotherapy. Advanced Drug Delivery Reviews, 2022, 186, 114319.	6.6	35
3225	Pro-angiogenic Potential of Mesenchymal Stromal Cells Regulated by Matrix Stiffness and Anisotropy Mimicking Right Ventricles. Biomacromolecules, 2022, , .	2.6	2
3226	Recent progress in development and applications of biomaterials. Materials Today: Proceedings, 2022, 62, 385-391.	0.9	6
3227	Effect of grain size on macroscopic flexibility and luminescence intensity of inorganic (Ba,Ca)TiO3:Pr3+. Journal of Alloys and Compounds, 2022, 912, 165163.	2.8	1
3228	Design and fabrication of biodegradable electrospun nanofibers loaded with biocidal agents. International Journal of Polymeric Materials and Polymeric Biomaterials, 2023, 72, 433-459.	1.8	13
3229	Sequential Infiltration Synthesis for High-Precision Fabrication of Applied Ceramic Fibers with Designed Nanostructures─Nanowires, Nanobelts, and Core–Shell Fibers. ACS Applied Nano Materials, 2022, 5, 7228-7236.	2.4	4
3230	Electrospun nanofibrous membrane for biomedical application. SN Applied Sciences, 2022, 4, 172.	1.5	27
3231	Encapsulating MoS2-nanoflowers conjugated with chitosan oligosaccharide into electrospun nanofibrous scaffolds for photothermal inactivation of bacteria. Journal of Nanostructure in Chemistry, 2024, 14, 137-151.	5.3	11
3232	Comparison of materials for rapid passive collection of environmental <scp>DNA</scp> . Molecular Ecology Resources, 2022, 22, 2559-2572.	2.2	9
3233	Amphiphilic Crosslinked Four-Armed Poly(lactic- <i>co</i> -glycolide) Electrospun Membranes for Enhancing Cell Adhesion. ACS Biomaterials Science and Engineering, 2022, 8, 2428-2436.	2.6	0
3234	Biomaterials and Scaffolds for Repair of the Peripheral Nervous System. Reference Series in Biomedical Engineering, 2022, , 245-279.	0.1	2
3237	Effect of Chitosan Solution on Low-Cohesive Soil's Shear Modulus G Determined through Resonant Column and Torsional Shearing Tests. Applied Sciences (Switzerland), 2022, 12, 5332.	1.3	7
3238	Electromagnetic Interference Shielding with Electrospun Nanofiber Mats—A Review of Production, Physical Properties and Performance. Fibers, 2022, 10, 47.	1.8	14
3239	Design and Fabrication of a Dual Protein-Based Trilayered Nanofibrous Scaffold for Efficient Wound Healing. ACS Applied Bio Materials, 2022, 5, 2726-2740.	2.3	13
3240	Electrospun nanofibrous ZnO/PVA/PVP composite films for efficient antimicrobial face masks. Ceramics International, 2022, 48, 29197-29204.	2.3	14
3241	A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. European Polymer Journal, 2022, 173, 111293.	2.6	35

#	Article	IF	CITATIONS
3242	Fabrication and characterization of electrospun membranes with highly lipoprotein repellent properties. Materials Chemistry and Physics, 2022, 287, 126281.	2.0	0
3243	Design of 3D Polycaprolactone/ε-Polylysine Modified Chitosan Fibrous Scaffolds Incorporation of Bioactive Factors for Accelerating Wound Healing. SSRN Electronic Journal, 0, , .	0.4	0
3244	Chromium-rich Cr _{<i>x</i>} Ir _{1â^'<i>x</i>} O ₂ wire-in-tube alloys for boosted water oxidation with long standing electrocatalytic activity. Journal of Materials Chemistry A, 2022, 10, 13803-13813.	5.2	10
3245	Stabilization of nano zero-valent iron by electrospun composite mat with good catalysis and recyclability. Journal of Cleaner Production, 2022, 363, 132459.	4.6	5
3246	Electrospinning for the Modification of 3D Objects for the Potential Use in Tissue Engineering. Technologies, 2022, 10, 66.	3.0	3
3247	ELECTROSPUN SODIUM ALGINATE/POLY(ETHYLENE OXIDE) NANOFIBERS FOR WOUND HEALING APPLICATIONS: CHALLENGES AND FUTURE DIRECTIONS. Cellulose Chemistry and Technology, 2022, 56, 251-270.	0.5	9
3248	A Review: TiO2 based photoelectrocatalytic chemical oxygen demand sensors and their usage in industrial applications. Journal of Electroanalytical Chemistry, 2022, 918, 116466.	1.9	20
3249	Fabrication and characterization of gas-assisted core-shell hydrogel nanofibers as a drug release system with antibacterial activity. European Polymer Journal, 2022, 174, 111302.	2.6	6
3250	Natural Polymers and Their Nanocomposites Used for Environmental Applications. Nanomaterials, 2022, 12, 1707.	1.9	17
3251	Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS Applied Bio Materials, 2022, 5, 2461-2480.	2.3	18
3252	Engineering of IrO2 nanofiber for surface enhanced Raman Scattering. Current Applied Physics, 2022, ,	1.1	1
3253	Nanochitin: Chemistry, Structure, Assembly, and Applications. Chemical Reviews, 2022, 122, 11604-11674.	23.0	102
3254	Electro-Catalytic Properties of Palladium and Palladium Alloy Electro-Catalysts Supported on Carbon Nanofibers for Electro-Oxidation of Methanol and Ethanol in Alkaline Medium. Catalysts, 2022, 12, 608.	1.6	3
3255	Basement membrane properties and their recapitulation in organ-on-chip applications. Materials Today Bio, 2022, 15, 100301.	2.6	11
3256	The effect of solvent and pressure on polycaprolactone solutions for particle and fibre formation. European Polymer Journal, 2022, 173, 111300.	2.6	13
3257	A novel colorimetric biosensor for detecting SARS-CoV-2 by utilizing the interaction between nucleocapsid antibody and spike proteins. In Vitro Models, 0, , .	1.0	6
3258	Air pollution control for indoor environments using nanofiber filters: A brief review and post-pandemic perspectives. Chemical Engineering Journal Advances, 2022, 11, 100330.	2.4	11
3261	Recent Progress on the Fabrication of Ultrafine Polyamide-6 Based Nanofibers Via Electrospinning: A Topical Review. Nano-Micro Letters, 2014, 6, .	14.4	2

# 3262	ARTICLE Graphene-based polymer composite films. , 2022, , 309-331.	IF	CITATIONS 0
3263	An overview of medical textile materials. , 2022, , 3-42.		6
3264	Biotextiles for medical implants and regenerative medicine. , 2022, , 169-211.		0
3265	Smart dyes for medical textiles and related therapy. , 2022, , 529-550.		0
3266	Biomaterials for medical and healthcare products. , 2022, , 43-86.		1
3267	A review on biopolymer-derived electrospun nanofibers for biomedical and antiviral applications. Biomaterials Science, 2022, 10, 4424-4442.	2.6	11
3268	Nanofibers in Respiratory Masks: An Alternative to Prevent Pathogen Transmission. IEEE Transactions on Nanobioscience, 2023, 22, 685-701.	2.2	1
3269	Fabrication of Electrospun Xylan-g-PMMA/TiO2 Nanofibers and Photocatalytic Degradation of Methylene Blue. Polymers, 2022, 14, 2489.	2.0	5
3270	Tuning the Drug Release from Antibacterial Polycaprolactone/Rifampicin-Based Core–Shell Electrospun Membranes: A Proof of Concept. ACS Applied Materials & Interfaces, 2022, 14, 27599-27612.	4.0	11
3271	A comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers. Scientific Reports, 2022, 12, .	1.6	34
3272	Antibacterial Activity of Electrospun Polyacrylonitrile Copper Nanoparticle Nanofibers on Antibiotic Resistant Pathogens and Methicillin Resistant Staphylococcus aureus (MRSA). Nanomaterials, 2022, 12, 2139.	1.9	10
3273	Necklaceâ€Like Nanostructures: From Fabrication, Properties to Applications. Advanced Materials, 2022, 34, .	11.1	8
3274	Different Kraft lignin sources for electrospun nanostructures production: Influence of chemical structure and composition. International Journal of Biological Macromolecules, 2022, 214, 554-567.	3.6	17
3275	Electrospun Scaffolds Functionalized with a Hydrogen Sulfide Donor Stimulate Angiogenesis. ACS Applied Materials & Interfaces, 0, , .	4.0	2
3276	Review of the Electrospinning Process and the Electro-Conversion of 5-Hydroxymethylfurfural (HMF) into Added-Value Chemicals. Materials, 2022, 15, 4336.	1.3	3
3277	Hybrid Nanofibrous Composites with Anisotropic Mechanics and Architecture for Tendon/Ligament Repair and Regeneration. Small, 2022, 18, .	5.2	11
3278	A review of geometry-confined perovskite morphologies: From synthesis to efficient optoelectronic applications. Nano Research, 2022, 15, 7402-7431.	5.8	9
3279	NADES-derived beta cyclodextrin-based polymers as sustainable precursors to produce sub-micrometric cross-linked mats and fibrous carbons. Polymer Degradation and Stability, 2022, 202, 110040.	2.7	3

#	Article	IF	CITATIONS
3280	Control of drug release from cotton fabric by nanofibrous mat. International Journal of Biological Macromolecules, 2022, 217, 270-281.	3.6	6
3281	Advances in polymeric nanocomposites for automotive applications: A review. Polymers for Advanced Technologies, 2022, 33, 3023-3048.	1.6	23
3282	Photocatalytic membrane of TiO ₂ /CNT decorated PAN nanofibers with enhanced performance under LED visible-light irradiation. Energy and Environment, 0, , 0958305X2211084.	2.7	1
3283	Ulvan/gelatin-based nanofibrous patches as a promising treatment for burn wounds. Journal of Drug Delivery Science and Technology, 2022, 74, 103535.	1.4	11
3284	Additive manufacturing and advanced functionalities of cardiac patches: A review. European Polymer Journal, 2022, 174, 111332.	2.6	12
3285	Methods of protection and application of carotenoids in foods - A bibliographic review. Food Bioscience, 2022, 48, 101829.	2.0	11
3286	Electrospun Nanofibrous Scaffolds for Neural Tissue Engineering. Advances in Polymer Science, 2022,	0.4	0
3287	Hierarchical Integration of 3D Printing and Electrospinning of Nanofibers for Rapid Prototyping. , 2022, , 631-655.		4
3288	Metal oxide-based fiber technology in the pharmaceutical and medical chemistry. , 2022, , 259-300.		0
3289	Nanotechnology-based therapies for skin wound regeneration. , 2022, , 485-530.		2
3290	Electrospinning and Three-Dimensional (3D) Printing for Biofabrication. , 2022, , 555-604.		5
3293	Electrospun nanofibers for angiogenesis strategies. , 2022, , 383-414.		0
3294	Macromolecular-scale electrospinning controlling inner topologic structure through a blowing air. Thermal Science, 2022, 26, 2663-2666.	0.5	3
3295	Application of Hand-Held Electrospinning Devices in Medicine. , 2022, , 605-630.		1
3296	Biomedical Applications of Fibers Produced by Electrospinning, Microfluidic Spinning and Combinations of Both. , 2022, , 251-295.		1
3297	Electrospun Collagen Based Nanofibrous Mats for Wound Healing: An Integrative Review. Biosciences, Biotechnology Research Asia, 2022, 19, 515-528.	0.2	1
3298	Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature, 2022, 606, 909-916.	13.7	123
3299	Wet Electrospinning and its Applications: A Review. Tecno Lógicas, 2022, 25, e2223.	0.1	3

#	Article	IF	CITATIONS
3300	Fabrication and evaluation of electrospun polyacrylonitrile/silver nanofiber membranes for air filtration and antibacterial activity. Polymer Bulletin, 2023, 80, 5481-5499.	1.7	6
3301	A Review: Current Status and Emerging Developments on Natural Polymerâ€Based Electrospun Fibers. Macromolecular Rapid Communications, 2022, 43, .	2.0	41
3302	Optimal Entanglement of Polymers Promotes the Formation of Highly Oriented Fibers. Macromolecules, 2022, 55, 6493-6504.	2.2	3
3303	Traceâ€Level Phenolics Detection Based on Composite PANâ€MWCNTs Nanofibers. ChemBioChem, 2022, 23, .	1.3	2
3304	Process optimization and modelling the BET surface area of electrospun cellulose acetate nanofibres using response surface methodology. Bulletin of Materials Science, 2022, 45, .	0.8	3
3305	A Bibliometric Analysis of Electrospun Nanofibers for Dentistry. Journal of Functional Biomaterials, 2022, 13, 90.	1.8	4
3306	Electrospinning Drug-Loaded Alginate-Based Nanofibers towards Developing a Drug Release Rate Catalog. Polymers, 2022, 14, 2773.	2.0	5
3307	A Review on Synthetic Fibers for Polymer Matrix Composites: Performance, Failure Modes and Applications. Materials, 2022, 15, 4790.	1.3	40
3308	Strategically designed SPEEK nanofibrous scaffold with tailored delivery of resveratrol for skin wound regeneration. Biomedical Physics and Engineering Express, 2022, 8, 055008.	0.6	1
3309	Adhesion and Proliferation of Mesenchymal Stem Cells on Plasma-Coated Biodegradable Nanofibers. Journal of Composites Science, 2022, 6, 193.	1.4	4
3310	Antimicrobial properties of PLA membranes loaded with pink pepper (Schinus terebinthifolius Raddi) essential oil applied in simulated cream cheese packaging. Food Biophysics, 0, , .	1.4	3
3311	Biological and mechanical investigation of novel flax/silk protein-based nanofibrous scaffold for bone regeneration. Progress in Natural Science: Materials International, 2022, 32, 443-455.	1.8	4
3312	Topographical pattern for neuronal tissue engineering. Journal of Industrial and Engineering Chemistry, 2022, 114, 19-32.	2.9	3
3313	Simple synthesis of soft, tough, and cytocompatible biohybrid composites. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	4
3314	Reusable Halophilic Bacteria Attached Cellulose Acetate Nanofiber Webs for Removal of Cr (VI) and Reactive Dye. Journal of Nano Research, 0, 74, 35-45.	0.8	1
3315	Electrospun nanofibrous membrane functionalized with dual drug-cyclodextrin inclusion complexes for the potential treatment of otitis externa. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129742.	2.3	7
3316	Mimicking the Natural Basement Membrane for Advanced Tissue Engineering. Biomacromolecules, 2022, 23, 3081-3103.	2.6	18
3317	Preparation of PCL Electrospun Fibers Loaded with Cisplatin and Their Potential Application for the Treatment of Prostate Cancer. Emergency Medicine International, 2022, 2022, 1-8.	0.3	2
#	Article	IF	CITATIONS
------	--	-----	-----------
3318	The Effect of Electrical Polarity on the Diameter of Biobased Polybutylene Succinate Fibers during Melt Electrospinning. Polymers, 2022, 14, 2865.	2.0	3
3319	Advanced bio-nanoscaffold for bone tissue regeneration in animal model. Journal of Drug Delivery Science and Technology, 2022, 74, 103593.	1.4	1
3320	Effect of solvent and additives on the electrospinnability of BSA solutions. Colloids and Surfaces B: Biointerfaces, 2022, 217, 112683.	2.5	6
3321	Tiny tots for a big-league in wound repair: Tools for tissue regeneration by nanotechniques of today. Journal of Controlled Release, 2022, 349, 443-459.	4.8	11
3322	Poly(L-lactic acid)/poly(ethylene oxide) based composite electrospun fibers loaded with magnesium-aluminum layered double hydroxide nanoparticles. International Journal of Biological Macromolecules, 2022, 217, 562-571.	3.6	11
3323	Facile generation of crumpled polymer strips by immersion electrospinning for oil spill cleanups. Journal of Colloid and Interface Science, 2022, 626, 581-590.	5.0	6
3324	Encapsulation of β-carotene into food-grade nanofibers via coaxial electrospinning of hydrocolloids: Enhancement of oxidative stability and photoprotection. Food Hydrocolloids, 2022, 133, 107949.	5.6	21
3325	Thiol-ene conjugation of a VEGF peptide to electrospun scaffolds for potential applications in angiogenesis. Bioactive Materials, 2023, 20, 306-317.	8.6	16
3326	Study of Various Electrospinning Parameters on Nanofibers Morphology for Flexible Devices. , 2020, , .		0
3327	Biomass-based porous composites with heat transfer characteristics: preparation, performance and evaluation - a review. Journal of Porous Materials, 2022, 29, 1667-1687.	1.3	2
3328	Electrospun kaolin-loaded chitosan/PEO nanofibers for rapid hemostasis and accelerated wound healing. International Journal of Biological Macromolecules, 2022, 217, 998-1011.	3.6	26
3329	Construction and Evaluation of Traceable rhES-QDs-M-MS Protein Delivery System: Sustained-Release Properties, Targeted Effect, and Antitumor Activity. AAPS PharmSciTech, 2022, 23, .	1.5	1
3330	Electrospinning of Fiber Matrices from Polyhydroxybutyrate for the Controlled Release Drug Delivery Systems. , 0, , .		0
3331	Pilot-Scale Electrospinning of PLA Using Biobased Dyes as Multifunctional Additives. Polymers, 2022, 14, 2989.	2.0	6
3332	Valorization of a Levulinic Acid Platform through Electrospinning of Polyhydroxyalkanoate-Based Fibrous Membranes for In Vitro Modeling of Biological Barriers. ACS Applied Polymer Materials, 0, , .	2.0	7
3333	Performance study of novel PES membrane using electrospray deposition method for organic contaminants separation. Chemical Engineering Research and Design, 2022, 186, 73-81.	2.7	4
3334	Functional electrospun polymeric materials for bioelectronic devices: a review. Materials Advances, 2022, 3, 6753-6772.	2.6	11
3335	Direct and remote induced actuation in artificial muscles based on electrospun fiber networks. Scientific Reports, 2022, 12, .	1.6	2

#	Article	IF	CITATIONS
3336	Preparation and Characterization of Phase Change Polyester Fiber. Integrated Ferroelectrics, 2022, 228, 238-248.	0.3	4
3337	Solvent-free electrospinning of liquid polybutadienes and their in-situ photocuring. European Polymer Journal, 2022, 177, 111453.	2.6	4
3338	Encapsulation of Anthocyanic Extract of Jambolan (Syzygium cumini (L.)) in Zein Sub-micron Fibers Produced by Electrospinning. Food Biophysics, 2023, 18, 133-147.	1.4	4
3339	A Conditional Generative Adversarial Network and Transfer Learning-Oriented Anomaly Classification System for Electrospun Nanofibers. International Journal of Neural Systems, 2022, 32, .	3.2	9
3340	Surface Modification of Ni–Ti Stents by Biodegradable Binary PVA/Propolis Electrospun Nano Fibers. Arabian Journal for Science and Engineering, 0, , .	1.7	2
3341	Polymer-based electrospun nanofibrous mats for the cytotoxic assay on liver cancer cell line with the Cardiospermum halicacabum leaf. Applied Nanoscience (Switzerland), 2022, 12, 3021-3029.	1.6	3
3342	"Jianbing―styling multifunctional electrospinning composite membranes for wound healing. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
3343	Wearable adjunct ozone and antibiotic therapy system for treatment of Gram-negative dermal bacterial infection. Scientific Reports, 2022, 12, .	1.6	10
3344	A smart tri-layered nanofibrous hydrogel thin film with controlled release of dual drugs for chemo-thermal therapy of breast cancer. Journal of Drug Delivery Science and Technology, 2022, , 103702.	1.4	2
3345	Processes taking place during the preparation and use of electrospun PLA fibers and their effect on controlled drug release. Journal of Thermal Analysis and Calorimetry, 0, , .	2.0	0
3346	A Comparative Study on the Addition of MgO and Mg(OH) ₂ Nanoparticles into PCL Electrospun Fibers. Macromolecular Chemistry and Physics, 0, , 2200215.	1.1	3
3347	Advances in Zinc and Magnesium Battery Polymer Cathode Materials. ACS Applied Energy Materials, 2022, 5, 10331-10358.	2.5	3
3348	Design of a nanofibrous guided tissue regeneration carrier as a potential drug delivery system for tetracycline hydrochloride in the management of periodontitis. Journal of Drug Delivery Science and Technology, 2022, 75, 103722.	1.4	2
3349	Algal nanofibers: Current status and recent developments. Materials Today Communications, 2022, 33, 104248.	0.9	4
3350	Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers, 2022, 14, 3266.	2.0	39
3351	An ultrasensitive nanofiber-based assay for enzymatic hydrolysis and deep-sea microbial degradation of cellulose. IScience, 2022, 25, 104732.	1.9	5
3352	Carbon black incorporated electrospun nanofibers for air filtration application. Journal of Electrostatics, 2022, 119, 103738.	1.0	4
3353	The formation of highly stable form of isotactic polybutene-1 electrospun membrane via self-seeding. Polymer, 2022, 256, 125230.	1.8	0

#	Article	IF	CITATIONS
3354	Composite fibrous membrane comprising PLA and PCL fibers for biomedical application. Composites Communications, 2022, 34, 101268.	3.3	21
3355	A review on electrospun membranes for potential air filtration application. Journal of Environmental Chemical Engineering, 2022, 10, 108452.	3.3	29
3356	Effects of amylose and amylopectin molecular structures on starch electrospinning. Carbohydrate Polymers, 2022, 296, 119959.	5.1	15
3357	Preparation and antibacterial properties of chitosan/polyvinyl alcohol nanofibrous mats using different organic acids as solvents. Process Biochemistry, 2022, 122, 13-28.	1.8	7
3358	Current status of microplastics and nanoplastics removal methods: Summary, comparison and prospect. Science of the Total Environment, 2022, 851, 157991.	3.9	20
3359	Flexible solar and thermal energy conversion devices: Organic photovoltaics (OPVs), organic thermoelectric generators (OTEGs) and hybrid PV-TEG systems. Applied Materials Today, 2022, 29, 101614.	2.3	16
3360	The effect of different solvent systems on physical properties of electrospun poly(glycerol) Tj ETQq0 0 0 rgBT /Ov	erlock 10 0.6	Tf ₅ 50 502 Tc
3362	Optimization of curcumin nanofibers as fast dissolving oral films prepared by emulsion electrospinning via central composite design. Journal of Drug Delivery Science and Technology, 2022, 75, 103714.	1.4	6
3363	Bioinspired polypyrrole based fibrillary artificial muscle with actuation and intrinsic sensing capabilities. Scientific Reports, 2022, 12, .	1.6	7
3364	MEMRAN TEKNOLOJİLERİ VE MEMBRAN TEKNOLOJİLERİNİN ELEKTROSPİNNİNG YÖNTEMİ İLE NA ÜZERİNE LİTERATÜR TARAMASI. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Biliml 25, 183-211.	NO LİF Â eroDærgisi	ÅœRETİMÄ , 2022,
3365	Modification and Functionalization of Fibers Formed by Electrospinning: A Review. Membranes, 2022, 12, 861.	1.4	32
3366	Advances in Antitumor Nano-Drug Delivery Systems of 10-Hydroxycamptothecin. International Journal of Nanomedicine, 0, Volume 17, 4227-4259.	3.3	10
3369	Fabrication of electrospun polyamide–weathered basalt nano-composite as a non-conventional membrane for basic and acid dye removal. Polymer Bulletin, 2023, 80, 8511-8533.	1.7	7
3370	Recent progress in the fluorescent probes for hydrazine detection. Tetrahedron, 2022, 124, 132989.	1.0	9
3371	Curcumin-loaded electrospun peanut protein isolate/ poly-l-lactic acid nanofibre membranes: Preparation and characterisation and release behaviour. LWT - Food Science and Technology, 2022, 169, 113978.	2.5	5
3372	Stable amorphous solid dispersion of flubendazole with high loading via electrospinning. Journal of Controlled Release, 2022, 351, 123-136.	4.8	11
3373	A review of nanostructure-based gas sensors in a power consumption perspective. Sensors and Actuators B: Chemical, 2022, 372, 132612.	4.0	15
3374	Electrospinning and nanofibers: Building drug delivery systems and potential in pesticide delivery. Materials Today Communications, 2022, 33, 104399.	0.9	5

#	Article	IF	CITATIONS
3375	Rapid and efficient removal of toxic ions from water using Zr-based MOFs@PIM hierarchical porous nanofibre membranes. Chemical Engineering Journal, 2023, 452, 139198.	6.6	4
3376	Unique applications of carbon materials in infrared stealth: A review. Chemical Engineering Journal, 2023, 452, 139147.	6.6	31
3377	Chapter 8. Role of Topographic Cues in Engineering the Muscle Niche. Biomaterials Science Series, 2022, , 152-183.	0.1	0
3378	Electrospinning Technology: Its Process Conditions and Food Packaging Applications. Food Engineering Series, 2022, , 447-468.	0.3	3
3379	Bioactive glass-based fibrous wound dressings. Burns and Trauma, 2022, 10, .	2.3	12
3380	Synthesis of nanomaterials using top-down methods. , 2022, , 37-60.		0
3381	Electrospun Biomimetic Tympanic Membrane Implants: Simulating the Effect of Fiber/Filament Arrangement on Acousto-Mechanical Behavior. SSRN Electronic Journal, 0, , .	0.4	0
3382	Electrospun Nanofibers of High-Performance Electret Polymers for Tactile Sensing and Wearable Electronics. , 2022, , 31-52.		1
3383	Electrospun nanofibrous membranes for membrane distillation. , 2022, , 215-261.		2
3384	Thermoplastic polymer/wool composites. , 2022, , 155-179.		1
3385	Fabrication of Textile-Based Scaffolds Using Electrospun Nanofibers for Biomedical Applications. Advances in Polymer Science, 2022, , .	0.4	1
3386	A critical review: the impact of electrical poling on the longitudinal piezoelectric strain coefficient. Materials Advances, 2022, 3, 8886-8921.	2.6	9
3387	Advances in Electrostatic Spinning of Polymer Fibers Functionalized with Metal-Based Nanocrystals and Biomedical Applications. Molecules, 2022, 27, 5548.	1.7	8
3388	Essential Oil—Loaded Nanofibers for Pharmaceutical and Biomedical Applications: A Systematic Mini-Review. Pharmaceutics, 2022, 14, 1799.	2.0	12
3389	Silsesquioxane-Doped Electrospun Nanofibrillar Membranes for Separation Systems. Polymers, 2022, 14, 3569.	2.0	1
3390	Electrospun Poly (Vinyl Alcohol) Nanofibrous Mat Loaded with Green Propolis Extract, Chitosan and Nystatin as an Innovative Wound Dressing Material. Journal of Pharmaceutical Innovation, 2023, 18, 704-718.	1.1	6
3391	Electrospinning of Natural Biopolymers for Innovative Food Applications: A Review. Food and Bioprocess Technology, 2023, 16, 704-725.	2.6	16
3392	Future direction of wound dressing research: Evidence From the bibliometric analysis. Journal of Industrial Textiles, 2022, 52, 152808372211305.	1.1	3

#	Article	IF	CITATIONS
3393	Biodegradable active packaging: Components, preparation, and applications in the preservation of postharvest perishable fruits and vegetables. Critical Reviews in Food Science and Nutrition, 2024, 64, 2304-2339.	5.4	10
3394	A review on the advances in electrochemical capacitive charge storage in transition metal oxide electrodes for pseudocapacitors. International Journal of Energy Research, 2022, 46, 21757-21796.	2.2	14
3395	Electrospun biomedical nanofibers and their future as intelligent biomaterials. Current Opinion in Biomedical Engineering, 2022, 24, 100418.	1.8	9
3396	Fabrication and Characterization of Electrospun Fish Gelatin Mats Doped with Essential Oils and β-Cyclodextrins for Food Packaging Applications. Food Biophysics, 2023, 18, 186-197.	1.4	3
3397	Carboxyl-functionalized poly(arylene ether nitrile)-based rare earth coordination polymer nanofibrous membrane for highly sensitive and selective sensing of Fe3+ ions. Advanced Composites and Hybrid Materials, 2022, 5, 2031-2041.	9.9	36
3398	Electrospun Gelatin Nanofibres—Fabrication, Cross-linking and Biomedical Applications: A Review. , 2023, 1, 553-568.		3
3399	Competitive Behavior of Isotactic Polybutene-1 Polymorphs in Electrospun Membranes and Solution Cast Films via Cold Crystallization. Journal of Macromolecular Science - Physics, 0, , 1-17.	0.4	0
3400	2D CoFe-LDH Nanosheet-Incorporated 1D Microfibers as a High-Performance OER Electrocatalyst in Neutral and Alkaline Media. ACS Applied Energy Materials, 2022, 5, 11483-11497.	2.5	23
3401	Design of 3D polycaprolactone/ε-polylysine-modified chitosan fibrous scaffolds with incorporation of bioactive factors for accelerating wound healing. Acta Biomaterialia, 2022, 152, 197-209.	4.1	17
3402	Development of a time-resolved fluorescence microsphere Eu lateral flow test strip based on a molecularly imprinted electrospun nanofiber membrane for determination of fenvalerate in vegetables. Frontiers in Nutrition, 0, 9, .	1.6	4
3403	Fabrication of Electrospun Exfoliated Graphite Nanosheets/Polystyrene composite nanofiber mats. Journal of Thermoplastic Composite Materials, 2023, 36, 3499-3515.	2.6	3
3404	Developing Electrospun Ethylcellulose Nanofibrous Webs: An Alternative Approach for Structuring Castor Oil. ACS Applied Polymer Materials, 2022, 4, 7217-7227.	2.0	7
3405	Electrospun Nanofiber Composites for Drug Delivery: A Review on Current Progresses. Polymers, 2022, 14, 3725.	2.0	22
3406	Polysaccharide Electrospun Nanofibers for Wound Healing Applications. International Journal of Nanomedicine, 0, Volume 17, 3913-3931.	3.3	29
3407	Electrospun Polymer Materials with Fungicidal Activity: A Review. Molecules, 2022, 27, 5738.	1.7	0
3408	Electrospun Metal–Organic Framework Nanofiber Membranes for Energy Storage and Environmental Protection. Advanced Fiber Materials, 2022, 4, 1463-1485.	7.9	35
3409	Versatile Electrospinning for Structural Designs and Ionic Conductor Orientation in All-Solid-State Lithium Batteries. Electrochemical Energy Reviews, 2022, 5, .	13.1	21
3410	Electronically Modified Ce ³⁺ Ion Doped 2D NiFe-LDH Nanosheets over a 1D Microfiber: A High-Performance Electrocatalyst for Overall Water Splitting. ACS Applied Energy Materials, 2022, 5, 12768-12781.	2.5	22

		CITATION RE	PORT	
#	Article		IF	CITATIONS
3411	Electrospun polyacrylonitrile fibrous membrane for dust removal. Frontiers in Materials	i, 0, 9, .	1.2	9
3412	Electrospun nanofibers for drug delivery applications: Methods and mechanism. Polym Advanced Technologies, 2023, 34, 6-23.	ers for	1.6	32
3413	Advances in electrospinning and 3D bioprinting strategies to enhance functional reger skeletal muscle tissue. , 2022, 142, 213135.	ieration of		16
3414	Investigation on the morphology and the permeability of biomimetic cellulose triacetat impregnated membranes (IM): In-situ synchrotron imaging, experimental and computa Materials Chemistry and Physics, 2022, 292, 126755.	ie (CTA) tional studies.	2.0	0
3415	Emerging starch composite nanofibrous films for food packaging: Facile construction, property, and antibacterial activity enhancement. International Journal of Biological Macromolecules, 2022, 222, 868-879.	hydrophobic	3.6	16
3416	Fabrication of superconducting YBCO agglomerated particles (ANPs) by electrospinnin	g., 0,, 181-188.		4
3417	Electrospun Nanofiber Composite for Levofloxacin in Ocular Drug Delivery. Pharmaceu Nanotechnology, 2022, 10, 393-400.	tical	0.6	6
3418	Multifunctional Core–Shell Particle Electrodes for Application in Fluidized Bed Reactor 325-333.	brs. , 2023, 1,		1
3419	Current strategies in biomaterial-based periosteum scaffolds to promote bone regener Journal of Biomaterials Applications, 2023, 37, 1259-1270.	ation: A review.	1.2	1
3420	Prospects of Polymeric Nanocomposite Membranes for Water Purification and Scalabil Health and Environmental Impacts: A Review. Nanomaterials, 2022, 12, 3637.	ity and their	1.9	15
3421	Electrospun Membranes of Poly(butylene succinate) and Poly(butylene/2â€butyl,2â€e	:hylâ€propylene) Tj ETQq0	0 0 rgBT / 0.4	Oyerlock 10
3422	Development and evaluation of different electroactive poly(vinylidene fluoride) archite endothelial cell culture. Frontiers in Bioengineering and Biotechnology, 0, 10, .	ctures for	2.0	3
3423	Development of New Bio-Composite of PEO/Silk Fibroin Blends Loaded with Piezoelect Polymers, 2022, 14, 4209.	ric Material.	2.0	5
3424	Production of rGO-Based Electrospinning Nanocomposites Incorporated in Recycled PE Alternative Dry Electrode. Polymers, 2022, 14, 4288.	ET as an	2.0	1
3425	The Fabrication of Cesium Lead Bromide-Coated Cellulose Nanocomposites and Their E Detection of Nitrogen Gas. Sensors, 2022, 22, 7737.	iffect on the	2.1	0
3426	Effects of the methyl methacrylate addition, polymerization temperature and time on t core-shell structure and its application as addition in electrospun composite fiber biosc Ceramics International, 2022, , .	he MBG@PMMA affold.	2.3	2
3427	Enzyme-Enhanced Codelivery of Doxorubicin and Bcl-2 Inhibitor by Electrospun Nanofil Synergistic Inhibition of Prostate Cancer Recurrence. Pharmaceuticals, 2022, 15, 1244	pers for	1.7	4
3429	Nano-Based Drug Delivery Systems for Periodontal Tissue Regeneration. Pharmaceutics	s, 2022, 14, 2250.	2.0	9

#	Article	IF	CITATIONS
3430	Pectin/Pectin Derivatives as Potential Scaffolds for the Tissue Engineering Applications. Natural Products Journal, 2023, 13, .	0.1	0
3431	Tailoring Nanostructured Supports to Achieve High Performance in Enzymatic Biofuel Cells. ACS Applied Energy Materials, 2022, 5, 13113-13127.	2.5	4
3432	Protein–based electrospun nanofibers: electrospinningÂconditions, biomedical applications, prospects, and challenges. Journal of the Textile Institute, 2023, 114, 1592-1617.	1.0	7
3433	Nanocomposite Biomaterials for Tissue Engineering and Regenerative Medicine Applications. , 0, , .		1
3434	Fabrication of Zein-Chitosan-Zein Sandwich-Like Nanofibers Containing Teicoplanin as a Local Antibacterial Drug Delivery System. Journal of Pharmaceutical Innovation, 0, , .	1.1	0
3435	Pointâ€ofâ€need quantitative detection of trihalomethanes in environmental water samples using a highly sensitive and selective fiberâ€based preconcentration system. Journal of Applied Polymer Science, 0, , .	1.3	1
3436	An ultrasound-enhanced electrospinning for generating multilayered nanofibrous structures. Journal of Drug Delivery Science and Technology, 2022, 78, 103935.	1.4	2
3437	Electrospun nanofiber nerve guidance conduits for peripheral nerve regeneration: A review. European Polymer Journal, 2022, 181, 111663.	2.6	9
3438	Rifampicin-loaded electrospun polycaprolactone membranes: Characterization of stability, antibacterial effects and urotheliocytes proliferation. Materials and Design, 2022, 224, 111286.	3.3	5
3439	Photocatalytic NOx degradation performance of TiO2-nanofiber-spray-coated foam composite according to saturated conditions. Construction and Building Materials, 2022, 358, 129414.	3.2	0
3440	Hybrid nanofibers opportunities and frontiers – A review. Journal of Environmental Chemical Engineering, 2022, 10, 108850.	3.3	9
3441	Highly efficient, low-resistant, well-ordered PAN nanofiber membranes for air filtration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655, 130302.	2.3	14
3442	Potentials of mycosynthesized nanomaterials for efficient remediation of environmental contaminants. , 2023, , 693-724.		1
3443	MOFs meet electrospinning: New opportunities for water treatment. Chemical Engineering Journal, 2023, 453, 139669.	6.6	30
3444	Ultrafine and bimodal structured polyamide-6 nanofiber/nets membrane for air nanofiltration. Journal of Industrial Textiles, 2022, 52, 152808372210792.	1.1	0
3445	Biomimetic tissue regeneration using electrospun nanofibrous scaffolds. , 2022, 14, 169-186.		1
3446	Stimuliâ€Responsive Electrospun Fluorescent Fibers Augmented with Aggregationâ€Induced Emission (AIE) for Smart Applications. Advanced Science, 2023, 10, .	5.6	23
3447	Comprehensive Study on the Reinforcement of Electrospun PHB Scaffolds with Composite Magnetic Fe ₃ O ₄ –rGO Fillers: Structure, Physico-Mechanical Properties, and Piezoelectric Response. ACS Omega, 2022, 7, 41392-41411.	1.6	9

#	Article	IF	CITATIONS
3448	Characterization of the produced electrospun fish gelatin nanofiber containing fucoxanthin. Food Science and Biotechnology, 2023, 32, 329-339.	1.2	0
3449	Fabrication of cellulose acetate/cellulose nitrate/carbon black nanofiber composite for oil spill treatment. Biomass Conversion and Biorefinery, 0, , .	2.9	4
3450	Electrospun rocket seed (Eruca sativa Mill) mucilage/polyvinyl alcohol nanofibers: fabrication and characterization. Iranian Polymer Journal (English Edition), 2023, 32, 203-211.	1.3	2
3451	The Formation Mechanism of Electrospun Beaded Fibers: Experiment and Simulation Study. AATCC Journal of Research, 0, , 247234442211320.	0.3	0
3452	Red onion skin extract rich in flavonoids encapsulated in ultrafine fibers of sweet potato starch by electrospinning. Food Chemistry, 2023, 406, 134954.	4.2	14
3453	Sources, Selection, and Microenvironmental Preconditioning of Cells for Urethral Tissue Engineering. International Journal of Molecular Sciences, 2022, 23, 14074.	1.8	6
3454	Nanofiber Based on Electrically Conductive Materials for Biosensor Applications. , 2023, 1, 664-679.		2
3455	Antibiotics-loaded nanofibers fabricated by electrospinning for the treatment of bone infections. Arabian Journal of Chemistry, 2023, 16, 104392.	2.3	3
3456	Microstructure Engineered Silicon Alloy Anodes for Lithiumâ€ion Batteries: Advances and Challenges. Batteries and Supercaps, 2023, 6, .	2.4	12
3458	Development and characterization of sumatriptan-loaded soy bean polysaccharide nanofiber using electrospinning technique. Journal of Drug Delivery Science and Technology, 2022, 78, 103940.	1.4	3
3459	In Situ Synthesis of AZO-Np in Guar Gum/PVOH Composite Fiber Mats for Potential Bactericidal Release. Polymers, 2022, 14, 4983.	2.0	1
3461	Emerging trends in silk fibroin based nanofibers for impaired wound healing. Journal of Drug Delivery Science and Technology, 2023, 79, 103994.	1.4	8
3462	Characterization and Testing for Lowest Eutectic Mixture of TNBA/DNTF. Propellants, Explosives, Pyrotechnics, 2023, 48, .	1.0	7
3463	Chapter 8. Advanced Scaffold Design <i>via</i> Electrospinning. Biomaterials Science Series, 2022, , 197-225.	0.1	0
3464	Effective diesel removal by a novel electrospun composite nanofibrous membrane with immobilized <i>Bacillus cereus</i> LY-1. RSC Advances, 2022, 12, 34208-34216.	1.7	0
3465	Nanofiber-coated, tacrolimus-eluting sutures inhibit post-operative neointimal hyperplasia in rats. Journal of Controlled Release, 2023, 353, 96-104.	4.8	1
3466	Engineering uniformity in mass production of MWCNTs/epoxy nanofibers using a lateral belt-driven multi-nozzle electrospinning technique to enhance the mechanical properties of CFRPs. Polymer Testing, 2023, 118, 107883.	2.3	4
3467	Endothelialization and smooth muscle cell regeneration capabilities of a bi-layered small diameter vascular graft for blood vessel reconstruction. Materials and Design, 2023, 225, 111488.	3.3	9

#	Article	IF	CITATIONS
3468	Applications of electrospinning in human health: From detection, protection, regulation to reconstruction. Nano Today, 2023, 48, 101723.	6.2	46
3469	Electrically-assisted supersonic solution blowing and solution blow spinning of fibrous materials from natural rubber extracted from havea brasilienses. Industrial Crops and Products, 2023, 192, 116101.	2.5	7
3470	Highly sensitive detection of glucose via glucose oxidase immobilization onto conducting polymer-coated composite polyacrylonitrile nanofibers. Enzyme and Microbial Technology, 2023, 164, 110178.	1.6	14
3471	Orbital Angular Momentum in Fibers. Journal of Lightwave Technology, 2023, 41, 1934-1962.	2.7	4
3472	Electrospinning of marine polysaccharides: Processing and chemical aspects, challenges, and future prospects. Nanotechnology Reviews, 2022, 11, 3250-3280.	2.6	2
3473	Investigation of the influence of carbon surface properties on the cathode behavior of Lithium-air batteries using electrospun carbon nanofibers. , 2022, , .		0
3474	Modeling electrospun PLGA nanofibers' diameter using response surface methodology and artificial neural networks. Journal of Industrial Textiles, 2022, 52, 152808372211426.	1.1	5
3475	Electrospun Textile Strategies in Tendon to Bone Junction Reconstruction. Advanced Fiber Materials, 2023, 5, 764-790.	7.9	7
3476	Biomimetic Microadhesion Guided Instant Spinning. Nano Letters, 2022, 22, 9396-9404.	4.5	4
3477	A Review on Electrospinning as Versatile Supports for Diverse Nanofibers and Their Applications in Environmental Sensing. Advanced Fiber Materials, 2023, 5, 429-460.	7.9	24
3478	Electrospinning of ZrO2 fibers without sol-gel methods: Effect of inorganic Zr-source on electrospinning properties and phase composition. Open Ceramics, 2023, 13, 100324.	1.0	3
3479	Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications. Macromolecular Bioscience, 2023, 23, .	2.1	10
3481	Grapheneâ€Based Nanocomposites as Antibacterial, Antiviral and Antifungal Agents. Advanced Healthcare Materials, 2023, 12, .	3.9	9
3482	Fluoropolymer Membranes for Membrane Distillation and Membrane Crystallization. Polymers, 2022, 14, 5439.	2.0	4
3483	Conducting Electrospun Nanofibres: Monitoring of Iodine Doping of P3HT through Infrared (IRAV) and Raman (RaAV) Polaron Spectroscopic Features. Nanomaterials, 2022, 12, 4308.	1.9	3
3484	Computational study of dynamics of confined droplets under electric field: effect of contact angle. International Journal of Numerical Methods for Heat and Fluid Flow, 2023, 33, 1775-1796.	1.6	2
3485	Polymeric Nanofibers for Drug Delivery Applications: A Recent Review. Journal of Materials Science: Materials in Medicine, 2022, 33, .	1.7	19
3486	Cross-electrospun PVDF/PVDF-HFP nanofibrous membrane with central combination design and its waterproof and moisture permeable composite fabric. Textile Reseach Journal, 2023, 93, 2273-2289.	1.1	2

#	Article	IF	CITATIONS
3487	Recent Developments of Electrospinning-Based Photocatalysts in Degradation of Organic Pollutants: Principles and Strategies. ACS Omega, 2022, 7, 45867-45881.	1.6	15
3488	Photocatalytic degradation of dyes by novel electrospun nanofibers: A review. Chemosphere, 2023, 313, 137654.	4.2	37
3489	Contact-Piezoelectric Bi-Catalysis of an Electrospun ZnO@PVDF Composite Membrane for Dye Decomposition. Molecules, 2022, 27, 8579.	1.7	4
3491	Electrospun Conducting Polymers: Approaches and Applications. Materials, 2022, 15, 8820.	1.3	9
3492	Fineâ€Tuning the Endcap Chemistry of Acrylated Poly(Ethylene Glycol)â€Based Hydrogels for Efficient Burn Wound Exudate Management. Macromolecular Bioscience, 2023, 23, .	2.1	0
3493	Recent advances in electrospun protein fibers/nanofibers for the food and biomedical applications. Advances in Colloid and Interface Science, 2023, 311, 102827.	7.0	15
3494	Novel Electrospun Polycaprolactone/Calcium Alginate Scaffolds for Skin Tissue Engineering. Materials, 2023, 16, 136.	1.3	4
3495	Preparation and characterization of carex meyeriana Kunthcellulose nanofibers by electrospinning. Scientific Reports, 2022, 12, .	1.6	1
3496	Antimicrobial Bilayer Film Based on Chitosan/Electrospun Zein Fiber Loaded with Jaboticaba Peel Extract for Food Packaging Applications. Polymers, 2022, 14, 5457.	2.0	3
3497	Fiber diameters and parallel patterns: proliferation and osteogenesis of stem cells. International Journal of Energy Production and Management, 2023, 10, .	1.9	6
3498	A systematic study of nano-based fibrous systems: Diagnostic and therapeutic approaches for dementia control. Ageing Research Reviews, 2023, , 101853.	5.0	0
3499	A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 446-473.	2.4	35
3500	Implantable Electrospun Nanofibers with Wound-Healing Capabilities in the Reduction of Pressure Ulcers. ACS Applied Polymer Materials, 2023, 5, 429-440.	2.0	5
3501	Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon, 2023, 9, e12810.	1.4	20
3502	Preparation and Characterization of Electrospun Poly(lactic acid)/Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 T for Selective Copper (II) Ions Removal from Wastewater. Membranes, 2023, 13, 54.	f 50 187 1.4	Td (glycol)â€ 8
3503	Functional acellular matrix for tissue repair. Materials Today Bio, 2023, 18, 100530.	2.6	17
3504	Porous PVDF mats with significantly enhanced dielectric properties and novel dipole arrangement for high-performance triboelectric nanogenerators. Applied Materials Today, 2023, 30, 101732.	2.3	8
3505	Electrospun Nanofibrous Materials for Oil/Water Separation. ACS Symposium Series, 0, , 41-81.	0.5	2

#	Article	IF	CITATIONS
3506	Step by Step Modification of Electrospinning Process to Fabricate Ultra-Fine Dextran Nanofibers. Polymer-Plastics Technology and Materials, 2023, 62, 294-305.	0.6	0
3507	Laccase-Carrying Polylactic Acid Electrospun Fibers, Advantages and Limitations in Bio-Oxidation of Amines and Alcohols. Journal of Functional Biomaterials, 2023, 14, 25.	1.8	1
3508	Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers, 2023, 15, 65.	2.0	49
3509	Antibacterial and Antifouling Efficiency of Essential Oils-Loaded Electrospun Polyvinylidene Difluoride Membranes. International Journal of Molecular Sciences, 2023, 24, 423.	1.8	2
3510	Electrospun Nanofiber: Application in Tissue Regeneration. International Journal of Life Science and Pharma Research, 0, , P127-P140.	0.1	1
3511	Advancement of Electrospun Nerve Conduit for Peripheral Nerve Regeneration: A Systematic Review (2016–2021). International Journal of Nanomedicine, 0, Volume 17, 6723-6758.	3.3	5
3512	Bioactive glass nanofibers: synthesis and applications. , 2023, , 351-378.		0
3513	Drug-releasing textile materials: current developments and future perspectives. , 2023, , 1-38.		2
3514	Multifaceted approach for nanofiber fabrication. , 2023, , 253-283.		0
3515	Current approaches in nanofiber-based drug delivery systems: methods and applications. , 2023, , 39-71.		1
3516	Electrospun Nanofiber-Based Drug Carrier to Manage Inflammation. Advances in Wound Care, 2023, 12, 529-543.	2.6	0
3517	Biomaterials and biomimetics. , 2023, , 23-69.		0
3518	Multifunctional polymer/carbonaceous nanocomposites for aerospace applications. , 2023, , 55-83.		5
3519	Core-Sheath Pt-CeO2/Mesoporous SiO2 Electrospun Nanofibers as Catalysts for the Reverse Water Gas Shift Reaction. Nanomaterials, 2023, 13, 485.	1.9	4
3520	Biomaterials Based on Organic Polymers and Layered Double Hydroxides Nanocomposites: Drug Delivery and Tissue Engineering. Pharmaceutics, 2023, 15, 413.	2.0	8
3521	Electrospinning for biomedical applications. , 2023, , 433-464.		2
3522	Electrospun and nanofibrous membranes for membrane distillation. , 2023, , 371-407.		1
3523	The Effect of Electrospinning Parameters on Morphological and Mechanical Properties of PAN-based Nanofibers Membrane. Baghdad Science Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
3524	Fluorine-Free, Highly Durable Waterproof and Breathable Fibrous Membrane with Self-Clean Performance. Nanomaterials, 2023, 13, 516.	1.9	5
3525	Electrospraying for membrane fabrication. , 2023, , 53-80.		0
3526	Nanofibers for oil-water separation and coalescing filtration. , 2023, , 409-432.		0
3527	Electrospinning of ultrafine nonâ€hydrolyzed silk sericin/ <scp>PEO</scp> fibers on <scp>PLA</scp> : A bilayer scaffold fabrication. Polymer Engineering and Science, 2023, 63, 830-840.	1.5	2
3528	Electrospinning of Potential Medical Devices (Wound Dressings, Tissue Engineering Scaffolds, Face) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf :

3529	Electrospun membranes for air filtration. , 2023, , 577-601.		0
3530	Biobased Nanomaterials─The Role of Interfacial Interactions for Advanced Materials. Chemical Reviews, 2023, 123, 2200-2241.	23.0	26
3531	Study of the dextrose equivalent of maltodextrins in electrospinning using an ethanol/water mixture as the electrospinning solvent. Food Hydrocolloids, 2023, 139, 108498.	5.6	12
3532	Production of Fish Analogues from Plant Proteins: Potential Strategies, Challenges, and Outlook. Foods, 2023, 12, 614.	1.9	8
3533	Towards a Material-by-Design Approach to Electrospun Scaffolds for Tissue Engineering Based on Statistical Design of Experiments (DOE). Materials, 2023, 16, 1539.	1.3	2
3534	Biodegradable Electrospun Scaffolds as an Emerging Tool for Skin Wound Regeneration: A Comprehensive Review. Pharmaceuticals, 2023, 16, 325.	1.7	4
3535	Advance of design and application in self-healing anticorrosive coating: a review. Journal of Coatings Technology Research, 2023, 20, 819-841.	1.2	8
3536	Magnetic-Field-Assisted Emulsion Electrospinning System: Designing, Assembly, and Testing for the Production of PCL/Gelatin Core–Shell Nanofibers. Fibers and Polymers, 2023, 24, 515-523.	1.1	1
3537	Research Progress of Constructing Anode Materials for Potassium Ion Batteries Based on Electrospinning Technology. , 2023, 4, 8-14.		0
3538	Unveiling the Mechanism of the <i>in Situ</i> Formation of 3D Fiber Macroassemblies with Controlled Properties. ACS Nano, 2023, 17, 6800-6810.	7.3	6
3539	Highly stable, sensitive, and wide-range temperature sensing of luminous nanofibers fabricated by in-situ crystallization of CsPbBr3 within silica for a non-contact optical temperature probe. Chemical Engineering Journal, 2023, 460, 141772.	6.6	12
3540	Thermal treatment of electrospun polystyrene fibers: microstructural evolution and mechanical behavior. Journal of Materials Science, 2023, 58, 6009-6024.	1.7	0
3541	High-Speed Centrifugal Spinning Polymer Slip Mechanism and PEO/PVA Composite Fiber Preparation. Nanomaterials, 2023, 13, 1277.	1.9	4

#	Article	IF	Citations
3542	Recent advancement in development and modification of nanofibrous matrix for the application in sensing and remediation of water pollutants. Applied Nanoscience (Switzerland), 2023, 13, 6115-6132.	1.6	1
3543	Boron nitride decorated poly(vinyl alcohol)/poly(acrylic acid) composite nanofibers: A promising material for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 141, 105773.	1.5	3
3544	Bead-free and beaded electrospun phase change fibers: A comparative study. European Polymer Journal, 2023, 191, 112037.	2.6	2
3545	Research progress in preparation, properties, and applications of medical protective fiber materials. Applied Materials Today, 2023, 32, 101792.	2.3	8
3546	A triboelectric nanogenerator-based tactile sensor array system for monitoring pressure distribution inside prosthetic limb. Nano Energy, 2023, 111, 108397.	8.2	12
3547	Electro-blown spinning: New insight into the effect of electric field and airflow hybridized forces on the production yield and characteristics of nanofiber membranes. Journal of Science: Advanced Materials and Devices, 2023, 8, 100552.	1.5	5
3548	High hydrostatic pressure (HHP) as a green technology opens up a new possibility for the fabrication of electrospun nanofibers: Part I- improvement of soy protein isolate properties by HHP. Food Hydrocolloids, 2023, 140, 108659.	5.6	7
3549	Highly efficient removal of salicylic acid from pharmaceutical wastewater using a flexible composite nanofiber membrane modified with UiO-66(Hf) MOFs. Applied Surface Science, 2023, 625, 157183.	3.1	5
3550	Fabrication and characterization of natural polyphenol and ZnO nanoparticles loaded protein-based biopolymer multifunction electrospun nanofiber films, and application in fruit preservation. Food Chemistry, 2023, 418, 135851.	4.2	16
3551	Electrospinning-assisted radiative cooling composite films. Solar Energy Materials and Solar Cells, 2023, 255, 112316.	3.0	2
3552	Amino-rich nanofiber membrane with favorable hemocompatibility for highly efficient removal of bilirubin from plasma. Separation and Purification Technology, 2023, 315, 123648.	3.9	3
3553	Nanofiber mats containing lavender oil and methyl jasmonate as an innovative treatment to extend vase life in cut rose flowers. Postharvest Biology and Technology, 2023, 201, 112343.	2.9	2
3554	Progress and opportunities in Gellan gum-based materials: A review of preparation, characterization and emerging applications. Carbohydrate Polymers, 2023, 311, 120782.	5.1	17
3556	Influência da tensão e da distância de trabalho na produção de nanofibras de acetato de celulose para aplicação em Engenharia de Tecidos. Revista Materia, 2022, 27, .	0.1	Ο
3557	Antimicrobial food packaging application of angelica root (Angelica sylvestris) oil-loaded electrospun biofibers. Food Packaging and Shelf Life, 2023, 35, 101035.	3.3	5
3558	Selected Biopolymers' Processing and Their Applications: A Review. Polymers, 2023, 15, 641.	2.0	9
3559	Recent Development in Novel Lithium-Sulfur Nanofiber Separators: A Review of the Latest Fabrication and Performance Optimizations. Membranes, 2023, 13, 183.	1.4	3
3560	Cyclodextrin-Based Hostâ \in "Guest Supramolecular Nanofibrous Composite for Biomedical Applications. , 0, , .		0

#	Article	IF	CITATIONS
3561	Electrospun polycaprolactone/chitosan/pectin composite nanofibre: a novel wound dressing scaffold. Bulletin of Materials Science, 2023, 46, .	0.8	4
3562	Suspended Graphene/PEDOT: PSSâ€₽EO Channel for H ₂ Gas Sensing Fabricated Using Directâ€Write Functional Fibers. Advanced Materials Technologies, 2023, 8, .	3.0	1
3563	Electrohydrodynamic Techniques for the Manufacture and/or Immobilization of Vesicles. Polymers, 2023, 15, 795.	2.0	3
3564	Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering, 2023, 10, 218.	1.6	17
3565	Collagen Nanoyarns: Hierarchical Three-Dimensional Biomaterial Constructs. Biomacromolecules, 2023, 24, 1155-1163.	2.6	1
3566	Nanoarchitectonics of electrochemical aptasensor based on electrospun carbon nanofibers and gold nanoparticles for tetracycline detection in chicken ham. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	1
3567	Development of Silk Fibroin Scaffolds for Vascular Repair. Biomacromolecules, 2023, 24, 1121-1130.	2.6	5
3568	Electrospun UV-cross-linked polyvinylpyrrolidone fibers modified with polycaprolactone/polyethersulfone microspheres for drug delivery. , 2023, 147, 213330.		6
3571	Fabrication and characterization of electrospun cellulose acetate nanofibers derived from rice husk for potential wound healing application. Cellulose, 2023, 30, 3153-3164.	2.4	0
3572	Electrospinning Living Bacteria: A Review of Applications from Agriculture to Health Care. ACS Applied Bio Materials, 2023, 6, 951-964.	2.3	7
3573	Fabrication and characterization of costmary essential oil loaded salep-polyvinyl alcohol fast-dissolving electrospun nanofibrous mats. Journal of Food Measurement and Characterization, 2023, 17, 3076-3093.	1.6	3
3574	The effect of nozzle spacing on the electric field and fiber size distribution in a multiâ€nozzle electrospinning system. Journal of Applied Polymer Science, 2023, 140, .	1.3	1
3575	Quercetin-Loaded Polycaprolactone-Polyvinylpyrrolidone Electrospun Membranes for Health Application: Design, Characterization, Modeling and Cytotoxicity Studies. Membranes, 2023, 13, 242.	1.4	6
3576	Recent advances in tendon tissue engineering strategy. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	7
3577	Nanofibres in Drug Delivery Applications. Fibers, 2023, 11, 21.	1.8	21
3578	Encapsulation of caffeine in sandwich structured Alyssum homolocarpum seed gum/PVA/gelatin nanofibers using electrospinning technique. Food Hydrocolloids, 2023, 140, 108604.	5.6	6
3579	An Overview on Wound Dressings and Sutures Fabricated by Electrospinning. Biotechnology and Bioprocess Engineering, 2023, 28, 17-35.	1.4	6
3580	Generation of Controllable Patterned Nanofibrous Networks by Electrospinning Lithography: Simultaneous Detection and Adsorption toward Cesium Ions. ACS Sustainable Chemistry and Engineering, 2023, 11, 3810-3819.	3.2	2

#	Article	IF	CITATIONS
3581	Fabrication of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Fibers Using Centrifugal Fiber Spinning: Structure, Properties and Application Potential. Polymers, 2023, 15, 1181.	2.0	5
3582	Deposition Methods for the Integration of Molecularly Imprinted Polymers (MIPs) in Sensor Applications. , 2023, 2, .		4
3583	Evaluation of strategies to incorporate silver nanoparticles into electrospun microfibers for the preparation of wound dressings and their antimicrobial activity. Polymer-Plastics Technology and Materials, 2023, 62, 1029-1056.	0.6	1
3584	Evaluation of Antibacterial Properties of Electrospun Polyurethane-chitosan Nanofiber Media. MuhandisÄ«-i BihdÄsht-i á,¥irfah/Ä«, 2021, 8, 67-73.	0.2	0
3585	Polymers and rheology: A tale of give and take. Polymer, 2023, 271, 125811.	1.8	7
3586	Preparation and Characterization of Electrospun Polylactic Acid Micro/Nanofibers under Different Solvent Conditions. Fluid Dynamics and Materials Processing, 2021, 17, 629-638.	0.5	2
3587	Unique Fiber Morphologies from Emulsion Electrospinning—A Case Study of Poly(ε-caprolactone) and Its Applications. Colloids and Interfaces, 2023, 7, 19.	0.9	8
3588	Chitosan-Based Porous Carbon Materials for Agriculture and Agro-waste Applications. Materials Horizons, 2023, , 763-812.	0.3	2
3589	Surface modification of a polypropylene separator by an electrospun coating layer of Poly(vinyl) Tj ETQq0 0 0 rgB	T /Overloc 1.2	k 10 Tf 50 4
3590	Immobilization and Release of Platelet-Rich Plasma from Modified Nanofibers Studied by Advanced X-ray Photoelectron Spectroscopy Analyses. Polymers, 2023, 15, 1440.	2.0	4
3591	Self-assembled micropillar arrays <i>via</i> near-field electrospinning. Nanoscale, 0, , .	2.8	0
3592	Flexible Strain Sensor Enabled by Carbon Nanotubesâ€Decorated Electrospun TPU Membrane for Human Motion Monitoring. Advanced Materials Interfaces, 2023, 10, .	1.9	9
3593	Recent Developments in Electrospun Nanofibers as Delivery of Phytoconstituents for Wound Healing. , 2023, 2, 148-171.		6

	3594	Smart textiles with PCMs for thermoregulation. , 2023, , 445-505.	1
--	------	---	---

 Photocatalytic and Antimicrobial Properties of Electrospun TiO₂â€"SiO₂â€"Al₂â€"ZrO₂â€"CaOâ€"CeO₂ Ceramic Membranes. ACS Omega, 2023, 8, 10836-10850.
Functionalized electrospun biobased polymeric materials in filtration., 2023,, 625-651.
Nanocomposites for cartilage regeneration., 2023,, 213-260.

3598Oil/Water Mixtures and Emulsions Separation Methodsâ€"An Overview. Materials, 2023, 16, 2503.1.32

#	Article	IF	CITATIONS
3599	Levan as a Functional Polymer for Biomedical Applications. , 2023, , 257-274.		1
3600	Review on Cell Structure Regulation and Performances Improvement of Porous Poly(Lactic Acid). Macromolecular Rapid Communications, 2023, 44, .	2.0	2
3601	An electrospun polylactic acid film containing silver nanoparticles and encapsulated Thymus daenensis essential oil: release behavior, physico-mechanical and antibacterial studies. Journal of Food Measurement and Characterization, 0, , .	1.6	1
3602	Nanofibers in Ocular Drug Targeting and Tissue Engineering: Their Importance, Advantages, Advances, and Future Perspectives. Pharmaceutics, 2023, 15, 1062.	2.0	3
3603	Efficient, Breathable, and Compostable Multilayer Air Filter Material Prepared from Plant-Derived Biopolymers. Membranes, 2023, 13, 380.	1.4	1
3604	Enhanced Adhesion of Electrospun Polycaprolactone Nanofibers to Plasma-Modified Polypropylene Fabric. Polymers, 2023, 15, 1686.	2.0	3
3606	Nanofibras de ZnO produzidas por eletrofiação: sÃntese, caracterização e atividade fotocatalÃŧica. Brazilian Journal of Development, 2023, 9, 12874-12894.	0.0	0
3607	Wetting of Cell Aggregates on Microdisk Topography Structures Achieved by Maskless Optical Projection Lithography. Small, 2023, 19, .	5.2	1
3608	Electrospinning of Nanofibers Incorporated with Essential Oils: Applications in Food. Current Pharmaceutical Biotechnology, 2023, 24, 1881-1897.	0.9	1
3609	Novel Electrospun Cotton-Like Nano/Microfiber from Waste Polycarbonate Plastic for Use as Filler Fiber in Outerwear Textiles. Fibers and Polymers, 0, , .	1.1	Ο
3610	Up-scaling of cellulose acetate electrospun nanofibers with a needleless wire spinneret technique. Cellulose, 2023, 30, 4873-4888.	2.4	1
3611	Recent progress in MXenes incorporated into electrospun nanofibers for biomedical application: Study focusing from 2017 to 2022. Chinese Chemical Letters, 2023, 34, 108463.	4.8	11
3612	Optical Properties of Electrospun Nanofiber Mats. Membranes, 2023, 13, 441.	1.4	4
3613	Development of Novel Pharmaceutical Forms of the Marine Bioactive Pigment Echinochrome A Enabling Alternative Routes of Administration. Marine Drugs, 2023, 21, 250.	2.2	1
3614	ELECTROSPINNING OF ANTIBACTERIAL CELLULOSE ACETATE NANOFIBERS. Cellulose Chemistry and Technology, 2023, 57, 79-91.	0.5	0
3615	Preparation of nanocomposite membranes loaded with taxifolin liposome and its mechanism of wound healing in diabetic mice. International Journal of Biological Macromolecules, 2023, 241, 124537.	3.6	12
3616	Grading Threads. Exploiting Viscous Thread Instability for the additive fabrication of Functionally Graded Structures via sensor-adaptive robotic control. Architecture, Structures and Construction, 2023, 3, 171-191.	0.7	0
3617	Biodegradable polymer nanocomposites as electrode materials for electrochemical double-layer capacitors and hybrid supercapacitor applications. , 2023, , 311-352.		0

#	Article	IF	Citations
3632 3633	Biofabrication techniques for neural tissue engineering. , 2023, , 269-313. Prospects of Safe Use of Nanomaterials in Biomedical Applications. , 2023, , 83-101.		0
3638	Biomaterials Applied to Medical Devices and Pharmacy. , 2023, , 1-13.		0
3644	Conventional approaches to synthesis and deposition of perovskite metal oxides. , 2023, , 143-174.		0
3666	Nanofibers' utility for rejuvenation of heavily contaminated environments. , 2023, , 23-50.		0
3676	Production of plant-based meat: functionality, limitations and future prospects. European Food Research and Technology, 2023, 249, 2189-2213.	1.6	6
3681	Nanofiber-based Systems. , 2023, , 392-420.		0
3694	Electrospinning of metal oxide nanostructures. , 2023, , 125-152.		1
3720	Fluoropolymer nanocomposites for water desalination applications. , 2023, , 529-559.		0
3729	Electrospining and electrospraying technologies for nutraceutical delivery system development. , 2023, , 279-323.		0
3734	Electrospun PANi Nanofibers for Biodegradable Sensors. , 2023, , .		0
3744	Current trends in the detection and removal of heavy metal ions using functional materials. Chemical Society Reviews, 2023, 52, 5827-5860.	18.7	15
3751	Nanostructures and biomaterials based on silk polymer for medical diagnostic and therapeutic applications. Polymer Bulletin, 0, , .	1.7	0
3759	Wearable biosensor platform: design and healthcare commercial values. , 2024, , 201-225.		0
3770	Natural biopolymers in drug delivery—role, challenges and clinical applications. , 2023, , 3-23.		0
3778	Electrospun Composite Nanofibers and Polymer Composites. , 2012, , 301-349.		0
3782	Electrospun Nanofibers for Membrane-Based Water Filtration. Nanostructure Science and Technology, 2023, , 153-179.	0.1	0
3790	Manufacturing of Particulate and Fiber Reinforced Composites: A Review. Composites Science and Technology, 2024, , 119-142.	0.4	0

		CITATION REPORT		
#	Article		IF	Citations
3791	Waterborne Polyurethanes: Chemistries and Applications. ACS Symposium Series, 0, , 1	.5-30.	0.5	0
3793	Electrospun Polyurethanes. ACS Symposium Series, 0, , 119-131.		0.5	0
3794	An electrospun nanofiber mat as an electrode for AC-dielectrophoretic trapping of nanc Nanoscale, 2023, 15, 18241-18249.	particles.	2.8	0
3795	Advanced Flame Retardants for Polyurethane. ACS Symposium Series, 0, , 31-52.		0.5	0
3796	Bio-Based Polyurethanes and Their Applications. ACS Symposium Series, 0, , 1-14.		0.5	0
3799	Biomanufacturing in Japan: frontier research from 2018 to 2023. Bio-Design and Manuf 6, 617-645.	acturing, 2023,	3.9	0
3801	Synergistic Effect of P and N-Based Flame Retardants on Bio-Based Polyurethane Foams Series, 0, , 71-91.	s. ACS Symposium	0.5	0
3806	Polyurethanes for Thermal Insulation. ACS Symposium Series, 0, , 93-117.		0.5	0
3818	Polyurethanes for Elastomers. ACS Symposium Series, 0, , 133-151.		0.5	0
3822	Polyurethanes for Sealants. ACS Symposium Series, 0, , 153-168.		0.5	0
3824	Role of Flame-Retardants on the Physico-Mechanical Properties of Polyurethanes. ACS S Series, 0, , 53-70.	Symposium	0.5	0
3846	Polymer-Based Electrospun Materials for Environmental Remediation. , 2024, , .			0
3852	Nanocarriers: Potential Vehicles for Managed Delivery of Bioactive Compounds in Thera , 135-160.	peutics. , 2023,		0
3857	Polymer nanocomposites in biomedical implants. , 2024, , 67-96.			0
3860	Silk fibroin nanofibers and their blends for skin tissue engineering applications. , 2024, ,	, 445-476.		0
3861	Electrospun nanofibers applications in caries lesions: prevention, treatment and regene Journal of Materials Chemistry B, 2024, 12, 1429-1445.	ration.	2.9	0
3871	Physics of Electrospinning. , 0, , .			0
3873	Polymeric membrane reactors. , 2024, , 677-698.			0

#	Article	IF	CITATIONS
3874	Functional electrospun nanofibers: fabrication, properties, and applications in wound-healing process. RSC Advances, 2024, 14, 3359-3378.	1.7	1
3888	3D-Scaffold Design of Biodegradable Nanofibers for Tissue Regeneration and Drug Delivery. , 2024, , 212-232.		0
3889	Electrospun Nanofibers for Transdermal Drug Delivery: Current Scenarios. , 2024, , 69-90.		0
3890	Smart polymer-based self-cleaning coatings for commercial solar cells and solar panels. , 2024, , 409-435.		0
3891	Electrospun nanofibrous systems in food packaging. , 2024, , 409-445.		0
3897	Board 18: Work in Progress: Implementation of a Junior-level Biomedical Engineering Design Course Focused on the Manufacturing of Electrospun Nanofibers , 0, , .		0
3903	Evaluation of Anticoagulant Activity of Heparin Loaded in PCL Fibers Using Thromboelastography. IFMBE Proceedings, 2024, , 3-11.	0.2	0
3904	Pressure Sensors Based on Piezoelectric Polymers for Biomedical Wearable Applications. IFMBE Proceedings, 2024, , 518-525.	0.2	0
3910	Advanced postoperative tissue antiadhesive membranes enabled with electrospun nanofibers. Biomaterials Science, 2024, 12, 1643-1661.	2.6	0