Impact of diet in shaping gut microbiota revealed by a c Europe and rural Africa

Proceedings of the National Academy of Sciences of the Unite 107, 14691-14696

DOI: 10.1073/pnas.1005963107

Citation Report

#	Article	IF	CITATIONS
2	The Human Intestinal Microbiota and Microbiome. , 0, , 635-644.		0
3	Self portraits. Gut Microbes, 2010, 1, 357-358.	9.8	0
4	Probiotics in Perspective. Gastroenterology, 2010, 139, 1808-1812.	1.3	95
5	Ethnobiology for a Diverse World: Microbial Ethnobiology and the Loss of Distinctive Food Cultures. Journal of Ethnobiology, 2010, 30, 181-183.	2.1	17
6	Probiotics, Enteric and Diarrheal Diseases, and Global Health. Gastroenterology, 2011, 140, 8-14.e9.	1.3	113
7	Development of the Human Gastrointestinal Microbiota and Insights From High-Throughput Sequencing. Gastroenterology, 2011, 140, 1713-1719.	1.3	329
8	Microbial Induction of Immunity, Inflammation, and Cancer. Frontiers in Physiology, 2011, 1, 168.	2.8	97
9	Gastrointestinal Microbiome Signatures of Pediatric Patients With Irritable Bowel Syndrome. Gastroenterology, 2011, 141, 1782-1791.	1.3	579
10	Metagenomic biomarker discovery and explanation. Genome Biology, 2011, 12, R60.	9.6	11,192
11	The Human Microbiome Project in 2011 and Beyond. Cell Host and Microbe, 2011, 10, 287-291.	11.0	241
12	Eating For Two: How Metabolism Establishes Interspecies Interactions in the Gut. Cell Host and Microbe, 2011, 10, 336-347.	11.0	425
13	Gut microbiota and the role of probiotics in therapy. Current Opinion in Pharmacology, 2011, 11, 593-603.	3.5	58
14	Gut microbiota and probiotics in colon tumorigenesis. Cancer Letters, 2011, 309, 119-127.	7.2	184
15	The Guts of Dietary Habits. Science, 2011, 334, 45-46.	12.6	32
16	Commensal flora and the regulation of inflammatory and autoimmune responses. Seminars in Immunology, 2011, 23, 139-145.	5.6	79
17	Dietary Intake and Risk of Developing Inflammatory Bowel Disease: A Systematic Review of the Literature. American Journal of Gastroenterology, 2011, 106, 563-573.	0.4	758
18	Gut Microbiota and Pediatric Disease. Digestive Diseases, 2011, 29, 531-539.	1.9	34
19	Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host–Microbe Model System. PLoS Genetics, 2011, 7, e1002272.	3.5	650

Γιτατιών Ρεσώρι

		CITATION REPORT		
# 20	ARTICLE Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science, 2011, 334,	105-108.	IF 12.6	Citations 5,253
21	Gut microbiome, obesity, and metabolic dysfunction. Journal of Clinical Investigation, 20 2126-2132.	11, 121,	8.2	703
22	Treat Your Bug Right. Frontiers in Physiology, 2011, 2, 9.		2.8	13
23	Environmental and Gut Bacteroidetes: The Food Connection. Frontiers in Microbiology, 2	2011, 2, 93.	3.5	989
24	Gut Microbiota of Healthy and Malnourished Children in Bangladesh. Frontiers in Microb 2, 228.	iology, 2011,	3.5	157
25	Metabonomics and its role in amino acid nutrition research. Frontiers in Bioscience - Lan 16, 2451.	dmark, 2011,	3.0	27
26	Comparative Analysis of Korean Human Gut Microbiota by Barcoded Pyrosequencing. PL e22109.	oS ONE, 2011, 6,	2.5	199
27	Diet and Environment Shape Fecal Bacterial Microbiota Composition and Enteric Pathog Grizzly Bears. PLoS ONE, 2011, 6, e27905.	en Load of	2.5	68
28	New molecular approaches in the diagnosis of acute diarrhea: advantages for clinicians a researchers. Current Opinion in Gastroenterology, 2011, 27, 24-29.	ind	2.3	28
29	Impact of Probiotics on Colonizing Microbiota of the Gut. Journal of Clinical Gastroenter 45, S115-S119.	ology, 2011,	2.2	115
30	Evaluation of Intestinal Microbiotas of Healthy Japanese Adults and Effect of Antibiotics Ribosomal RNA Gene Based Clone Library Method. Biological and Pharmaceutical Bulletin 1011-1020.	Using the 16S 1, 2011, 34,	1.4	28
31	News from the End of the Gut-How the Highly Segmental Pattern of Colonic HCO3- Tran to Absorptive Function and Mucosal Integrity. Biological and Pharmaceutical Bulletin, 20 794-802.	sport Relates 11, 34,	1.4	28
32	Gut Microbiota, Immunity, and Disease: A Complex Relationship. Frontiers in Microbiolog	gy, 2011, 2, 180.	3.5	161
33	Regulation of Inflammation by Short Chain Fatty Acids. Nutrients, 2011, 3, 858-876.		4.1	1,180
34	The host selects mucosal and luminal associations of coevolved gut microorganisms: a n concept. FEMS Microbiology Reviews, 2011, 35, 681-704.	ovel	8.6	232
35	Diet, gut microbiota and immune responses. Nature Immunology, 2011, 12, 5-9.		14.5	1,050
37	Early child growth: how do nutrition and infection interact?. Maternal and Child Nutrition 129-142.	ו, 2011, 7,	3.0	176
38	Assessment of intestinal microbiota of full-term breast-fed infants from two different ge locations. Early Human Development, 2011, 87, 511-513.	ographical	1.8	47

#	Article	IF	CITATIONS
39	Island biogeography effects on microbial evolution may contribute to Crohn's disease. Biochemical Pharmacology, 2011, 82, 1801-1806.	4.4	6
40	Grain Sorghum Lipids: Extraction, Characterization, and Health Potential. ACS Symposium Series, 2011, , 149-170.	0.5	4
41	The Human Gut Microbiome: Ecology and Recent Evolutionary Changes. Annual Review of Microbiology, 2011, 65, 411-429.	7.3	589
42	The new puzzle about the treatment of type 2 diabetes after the ACCORD and Da Qing studies. Langenbeck's Archives of Surgery, 2011, 396, 941-947.	1.9	1
43	Gut microbiota as a candidate for lifespan extension: an ecological/evolutionary perspective targeted on living organisms as metaorganisms. Biogerontology, 2011, 12, 599-609.	3.9	64
44	Impact of microbial transformation of food on health—from fermented foods to fermentation in the gastro-intestinal tract. Current Opinion in Biotechnology, 2011, 22, 211-219.	6.6	104
45	Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 2011, 6, 285-306.	2.5	628
46	Antibiotic resistance determinants in the interplay between food and gut microbiota. Genes and Nutrition, 2011, 6, 275-284.	2.5	80
47	Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease?. Genes and Nutrition, 2011, 6, 241-260.	2.5	194
48	Bacterial biofilms associated with food particles in the human large bowel. Molecular Nutrition and Food Research, 2011, 55, 969-978.	3.3	29
49	Symbiosis and development: The hologenome concept. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 56-66.	3.6	169
50	Symbiotic bacteria are responsible for diet-induced mating preference in <i>Drosophila melanogaster</i> , providing support for the hologenome concept of evolution. Gut Microbes, 2011, 2, 190-192.	9.8	82
51	Immunological footprint: the development of a child's immune system in environments rich in microorganisms and parasites. Parasitology, 2011, 138, 1508-1518.	1.5	29
52	Role of microbiota in postnatal maturation of intestinal T-cell responses. Current Opinion in Gastroenterology, 2011, 27, 502-508.	2.3	26
53	Diversity and Abundance of Single-Stranded DNA Viruses in Human Feces. Applied and Environmental Microbiology, 2011, 77, 8062-8070.	3.1	207
54	The nature of nutrition: a unifying framework. Australian Journal of Zoology, 2011, 59, 350.	1.0	78
55	Human intestinal microbiota: Characterization of a simplified and stable gnotobiotic rat model. Gut Microbes, 2011, 2, 25-33.	9.8	144
56	Medical Journal Watch: Context and Applications. Alternative and Complementary Therapies, 2011, 17, 57-61.	0.1	Ο

#	Article	IF	CITATIONS
57	Community Health Care: Therapeutic Opportunities in the Human Microbiome. Science Translational Medicine, 2011, 3, 78ps12.	12.4	82
58	The hybrid science of diet, microbes, and metabolic health. American Journal of Clinical Nutrition, 2011, 94, 1-2.	4.7	28
59	Beneficial Microorganisms in Multicellular Life Forms. , 2011, , .		16
60	Hygiene and Other Early Childhood Influences on the Subsequent Function of the Immune System. Digestive Diseases, 2011, 29, 144-153.	1.9	49
61	Towards an Evolutionary Model of Animal-Associated Microbiomes. Entropy, 2011, 13, 570-594.	2.2	48
62	Nutritional Immunology: A Multi-Dimensional Approach. PLoS Pathogens, 2011, 7, e1002223.	4.7	136
63	Infectious (Non)tolerance–Frustrated Commensalism Gone Awry?. Cold Spring Harbor Perspectives in Biology, 2012, 4, a007328-a007328.	5.5	13
64	Structural Changes of Gut Microbiota during Berberine-Mediated Prevention of Obesity and Insulin Resistance in High-Fat Diet-Fed Rats. PLoS ONE, 2012, 7, e42529.	2.5	435
65	Is bile acid a determinant of the gut microbiota on a high-fat diet?. Gut Microbes, 2012, 3, 455-459.	9.8	170
66	Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes, 2012, 3, 352-365.	9.8	208
67	Effect of Breast and Formula Feeding on Gut Microbiota Shaping in Newborns. Frontiers in Cellular and Infection Microbiology, 2012, 2, 94.	3.9	314
68	Food and the gut microbiota in inflammatory bowel diseases. Current Opinion in Gastroenterology, 2012, 28, 314-320.	2.3	94
69	Taking a metagenomic view of human nutrition. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 448-454.	2.5	54
70	Current opinion in gastroenterology. Current Opinion in Gastroenterology, 2012, 28, 547-550.	2.3	7
71	Inulin and fructo-oligosaccharides have divergent effects on colitis and commensal microbiota in HLA-B27 transgenic rats. British Journal of Nutrition, 2012, 108, 1633-1643.	2.3	93
72	Comparison with ancestral diets suggests dense acellular carbohydrates promote an inflammatory microbiota, and may be the primary dietary cause of leptin resistance and obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2012, 5, 175.	2.4	83
73	The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes, 2012, 3, 4-14.	9.8	881
74	Bioinformatic approaches for functional annotation and pathway inference in metagenomics data. Briefings in Bioinformatics, 2012, 13, 696-710.	6.5	70

#	Article	IF	CITATIONS
75	Composition of the early intestinal microbiota. Gut Microbes, 2012, 3, 203-220.	9.8	195
76	Maternal micronutrients can modify colonic mucosal microbiota maturation in murine offspring. Gut Microbes, 2012, 3, 426-433.	9.8	27
77	The Human Microbiome and Its Potential Importance to Pediatrics. Pediatrics, 2012, 129, 950-960.	2.1	252
78	Significance of the microbiome in obstructive lung disease. Thorax, 2012, 67, 456-463.	5.6	190
79	The gut microbiota, environment and diseases of modern society. Gut Microbes, 2012, 3, 374-382.	9.8	56
80	Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME Journal, 2012, 6, 1848-1857.	9.8	407
81	Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes, 2012, 3, 29-34.	9.8	151
82	Pyrosequencing as a tool for better understanding of human microbiomes. Journal of Oral Microbiology, 2012, 4, 10743.	2.7	121
83	Impact of a Resistant Dextrin on Intestinal Ecology: How Altering the Digestive Ecosystem with NUTRIOSE®, a Soluble Fibre with Prebiotic Properties, May Be Beneficial for Health. Journal of International Medical Research, 2012, 40, 211-224.	1.0	66
84	Direct Comparisons of Illumina vs. Roche 454 Sequencing Technologies on the Same Microbial Community DNA Sample. PLoS ONE, 2012, 7, e30087.	2.5	360
85	The gut microbiome: scourge, sentinel or spectator?. Journal of Oral Microbiology, 2012, 4, 9367.	2.7	48
86	Changes in Bowel Microbiota Induced by Feeding Weanlings Resistant Starch Stimulate Transcriptomic and Physiological Responses. Applied and Environmental Microbiology, 2012, 78, 6656-6664.	3.1	29
87	Inclusion of Chicory (Cichorium intybus L.) in Pigs' Diets Affects the Intestinal Microenvironment and the Gut Microbiota. Applied and Environmental Microbiology, 2012, 78, 4102-4109.	3.1	102
88	Distinct Gut Microbiota in Southeastern African and Northern European Infants. Journal of Pediatric Gastroenterology and Nutrition, 2012, 54, 812-816.	1.8	143
89	Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13034-13039.	7.1	151
90	Microbiome and immunological interactions. Nutrition Reviews, 2012, 70, S18-S30.	5.8	96
91	The impact of nutrition on the human microbiome. Nutrition Reviews, 2012, 70, S10-S13.	5.8	213
92	The microbiota in inflammatory bowel disease: friend, bystander, and sometime-villain. Nutrition Reviews, 2012, 70, S31-S37.	5.8	34

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
93	Defining a Healthy Human Gut Microbiome: Current Concepts, Future Directions, and Clinical Applications. Cell Host and Microbe, 2012, 12, 611-622.	11.0	615
94	Infection Control in the Multidrug-Resistant Era: Tending the Human Microbiome. Clinical Infectious Diseases, 2012, 54, 707-713.	5.8	82
95	The Hologenome Concept. , 2012, , 323-340.		2
96	Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biology, 2012, 13, R42.	9.6	797
97	Microbial regulation of allergic responses to food. Seminars in Immunopathology, 2012, 34, 671-688.	6.1	40
98	Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn's disease. Journal of Gastroenterology, 2012, 47, 1298-1307.	5.1	152
99	Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell, 2012, 150, 470-480.	28.9	1,603
100	Effects of fibre-enriched diets on tissue lipid profiles of MSG obese rats. Food and Chemical Toxicology, 2012, 50, 4062-4067.	3.6	31
101	Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions. Food Research International, 2012, 48, 916-929.	6.2	49
102	Specific Dietary Oligosaccharides Increase Th1 Responses in a Mouse Respiratory Syncytial Virus Infection Model. Journal of Virology, 2012, 86, 11472-11482.	3.4	31
103	Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nutrition in Clinical Practice, 2012, 27, 201-214.	2.4	596
104	Novel techniques and findings in the study of plant microbiota: Search for plant probiotics. Plant Science, 2012, 193-194, 96-102.	3.6	125
105	The Human Microbiome Project: lessons from human genomics. Trends in Microbiology, 2012, 20, 1-4.	7.7	58
106	The role of the gut microbiota in nutrition and health. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 577-589.	17.8	1,515
107	Enteric pathogens through life stages. Frontiers in Cellular and Infection Microbiology, 2012, 2, 114.	3.9	57
108	Metagenomics and probiotics. Clinical Microbiology and Infection, 2012, 18, 32-34.	6.0	46
109	Gut bacteria in health and disease: a survey on the interface between intestinal microbiology and colorectal cancer. Biological Reviews, 2012, 87, 701-730.	10.4	122
110	The Colonic Microbiota and Colonic Disease. Current Gastroenterology Reports, 2012, 14, 446-452.	2.5	22

#	Article	IF	CITATIONS
111	Categorization of the gut microbiota: enterotypes or gradients?. Nature Reviews Microbiology, 2012, 10, 591-592.	28.6	260
112	The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell, 2012, 148, 1258-1270.	28.9	2,920
113	The function of our microbiota: who is out there and what do they do?. Frontiers in Cellular and Infection Microbiology, 2012, 2, 104.	3.9	352
114	Unbalance of intestinal microbiota in atopic children. BMC Microbiology, 2012, 12, 95.	3.3	144
115	Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food. Cell and Bioscience, 2012, 2, 39.	4.8	9
116	The Microbiome in Infectious Disease and Inflammation. Annual Review of Immunology, 2012, 30, 759-795.	21.8	688
117	Microbial culturomics: paradigm shift in the human gut microbiome study. Clinical Microbiology and Infection, 2012, 18, 1185-1193.	6.0	905
118	Data mining the human gut microbiota for therapeutic targets. Briefings in Bioinformatics, 2012, 13, 751-768.	6.5	19
119	The etiology of autoimmune diseases: the case of myasthenia gravis. Annals of the New York Academy of Sciences, 2012, 1274, 33-39.	3.8	13
120	The gut microbiota in IBD. Nature Reviews Gastroenterology and Hepatology, 2012, 9, 599-608.	17.8	984
121	Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489, 242-249.	27.8	3,582
122	Up-regulating the Human Intestinal Microbiome Using Whole Plant Foods, Polyphenols, and/or Fiber. Journal of Agricultural and Food Chemistry, 2012, 60, 8776-8782.	5.2	242
123	The relationship between gut microbiota and weight gain in humans. Future Microbiology, 2012, 7, 91-109.	2.0	306
124	Human Gut Microbiota: Repertoire and Variations. Frontiers in Cellular and Infection Microbiology, 2012, 2, 136.	3.9	252
125	Natural Killer T Cells: Born in the Thymus, Raised in the Gut. Gastroenterology, 2012, 143, 293-296.	1.3	3
126	Low diversity of the gut microbiota in infants with atopic eczema. Journal of Allergy and Clinical Immunology, 2012, 129, 434-440.e2.	2.9	659
127	Development of atopic dermatitis according to age of onset and association with early-life exposures. Journal of Allergy and Clinical Immunology, 2012, 130, 130-136.e5.	2.9	116
128	â€ ⁻ Omics' of the mammalian gut – new insights into function. Current Opinion in Biotechnology, 2012, 23, 491-500.	6.6	31

#	Article	IF	CITATIONS
129	Intestinal microbiota is a plastic factor responding to environmental changes. Trends in Microbiology, 2012, 20, 385-391.	7.7	152
130	Effects of early dietary intervention with a fermentable fibre on colonic microbiota activity and mucin gene expression in newly weaned rats. Journal of Functional Foods, 2012, 4, 520-530.	3.4	41
131	Early Development of Intestinal Microbiota. Gastroenterology Clinics of North America, 2012, 41, 717-731.	2.2	51
132	The Early Settlers: Intestinal Microbiology in Early Life. Annual Review of Food Science and Technology, 2012, 3, 425-447.	9.9	164
133	Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease. Nutrients, 2012, 4, 1095-1119.	4.1	533
134	Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 2012, 3, 289-306.	9.8	1,611
135	A novel therapeutic target, GPR43; Where it stands in drug discovery. Archives of Pharmacal Research, 2012, 35, 1505-1509.	6.3	9
136	High-level dietary fibre up-regulates colonic fermentation and relative abundance of saccharolytic bacteria within the human faecal microbiota in vitro. European Journal of Nutrition, 2012, 51, 693-705.	3.9	71
137	The Global Perspective on Irritable Bowel Syndrome: A Rome Foundation–World Gastroenterology Organisation Symposium. American Journal of Gastroenterology, 2012, 107, 1602-1609.	0.4	37
138	Assessment of the Probiotic Potential of a Dairy Product Fermented by Propionibacterium freudenreichii in Piglets. Journal of Agricultural and Food Chemistry, 2012, 60, 7917-7927.	5.2	49
139	Gut Microbiota Drives Metabolic Disease in Immunologically Altered Mice. Advances in Immunology, 2012, 116, 93-112.	2.2	40
140	Does Our Food (Environment) Change Our Gut Microbiome (â€~In-Vironment'): A Potential Role for Inflammatory Bowel Disease?. Digestive Diseases, 2012, 30, 33-39.	1.9	25
141	Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489, 220-230.	27.8	4,114
143	Genes and †̃In-Vironment': How Will Our Concepts on the Pathophysiology of Inflammatory Bowel Disease Develop in the Future?. Digestive Diseases, 2012, 30, 2-11.	1.9	39
144	New Insights in Gut Microbiota Establishment in Healthy Breast Fed Neonates. PLoS ONE, 2012, 7, e44595.	2.5	259
145	Insights from Characterizing Extinct Human Gut Microbiomes. PLoS ONE, 2012, 7, e51146.	2.5	178
146	Insights to the Ethiopathogenesis of the Inflammatory Bowel Disease. , 0, , .		0
148	Human gut microbiome viewed across age and geography. Nature, 2012, 486, 222-227.	27.8	6,247

	CITATION	N REPORT	
#	Article	IF	CITATIONS
150	Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012, 488, 178-184.	27.8	2,618
151	Inflammasomes in health and disease. Nature, 2012, 481, 278-286.	27.8	1,921
152	Human Microbiome in Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 2012, 7, 99-122.	22.4	423
153	Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME Journal, 2012, 6, 320-329.	9.8	1,038
154	How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology, 2012, 10, 323-335.	28.6	1,073
155	Stability and Robustness of Human Metabolic Phenotypes in Response to Sequential Food Challenges. Journal of Proteome Research, 2012, 11, 643-655.	3.7	113
156	Commensal gut flora and brain autoimmunity: a love or hate affair?. Acta Neuropathologica, 2012, 123, 639-651.	7.7	70
157	Epithelial barrier biology: good fences make good neighbours. Immunology, 2012, 135, 1-8.	4.4	109
158	The <i>yin yang</i> of bacterial polysaccharides: lessons learned from <i>B. fragilis</i> PSA. Immunological Reviews, 2012, 245, 13-26.	6.0	124
159	Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunological Reviews, 2012, 245, 164-176.	6.0	186
160	The potential for probiotic manipulation of the gastrointestinal microbiome. Current Opinion in Biotechnology, 2012, 23, 192-201.	6.6	66
161	Advancing analytical algorithms and pipelines for billions of microbial sequences. Current Opinion in Biotechnology, 2012, 23, 64-71.	6.6	57
162	Can we vaccinate against depression?. Drug Discovery Today, 2012, 17, 451-458.	6.4	34
163	Cerealâ€based fermented foods in developing countries: ancient foods for modern research. International Journal of Food Science and Technology, 2012, 47, 1109-1114.	2.7	60
164	Daily follow-up of bacterial communities in the human gut reveals stable composition and host-specific patterns of interaction. FEMS Microbiology Ecology, 2012, 81, 427-437.	2.7	24
165	Prostate cancer chemoprevention by soy isoflavones: Role of intestinal bacteria as the "second human genome― Cancer Science, 2012, 103, 969-975.	3.9	48
166	Microbes and the gutâ€brain axis. Neurogastroenterology and Motility, 2012, 24, 405-413.	3.0	292
167	Characterization of the Gastrointestinal Microbiota in Health and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2012, 18, 372-390.	1.9	91

#	Article	IF	CITATIONS
168	Hygiene Hypothesis and Autoimmune Diseases. Clinical Reviews in Allergy and Immunology, 2012, 42, 5-15.	6.5	323
169	Improving the performance of an end-point PCR assay commonly used for the detection of Bacteroidales pertaining to cow feces. Applied Microbiology and Biotechnology, 2012, 93, 1703-1713.	3.6	12
170	Emerging importance of holobionts in evolution and in probiotics. Gut Pathogens, 2013, 5, 12.	3.4	41
171	Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: Part II – contemporary contextual research. Gut Pathogens, 2013, 5, 3.	3.4	80
172	The mTOR Pathway and the Role of Energy Balance Throughout Life in Colorectal Cancer Etiology and Prognosis: Unravelling Mechanisms Through a Multidimensional Molecular Epidemiologic Approach. Current Nutrition Reports, 2013, 2, 19-26.	4.3	19
173	Human intestinal metagenomics: state of the art and future. Current Opinion in Microbiology, 2013, 16, 232-239.	5.1	62
174	Holobiont nutrition. Gut Microbes, 2013, 4, 340-346.	9.8	34
176	Diversity of the intestinal microbiota in different patterns of feeding infants by Illumina high-throughput sequencing. World Journal of Microbiology and Biotechnology, 2013, 29, 2365-2372.	3.6	73
177	Can temperature explain the latitudinal gradient of ulcerative colitis? Cohort of Norway. BMC Public Health, 2013, 13, 530.	2.9	18
178	The biodiversity hypothesis and allergic disease: world allergy organization position statement. World Allergy Organization Journal, 2013, 6, 3.	3.5	282
179	Enhancing the digestibility of cowpea (Vigna unguiculata) by traditional processing and fermentation. LWT - Food Science and Technology, 2013, 54, 186-193.	5.2	24
180	Nutritional and Physiological Functions of Amino Acids in Pigs. , 2013, , .		10
181	Primates, Pathogens, and Evolution. , 2013, , .		8
182	Functional profiling of the gut microbiome in disease-associated inflammation. Genome Medicine, 2013, 5, 65.	8.2	61
183	Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environmental Microbiology Reports, 2013, 5, 765-775.	2.4	171
184	The Gordian Knot of dysbiosis, obesity and NAFLD. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 637-644.	17.8	134
185	Structural modulation of gut microbiota in life-long calorie-restricted mice. Nature Communications, 2013, 4, 2163.	12.8	404
186	Hirschsprung-associated enterocolitis: pathogenesis, treatment and prevention. Pediatric Surgery International, 2013, 29, 873-881.	1.4	111

#	Article	IF	CITATIONS
187	Nutrition, the gut microbiome and the metabolic syndrome. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 59-72.	2.4	95
188	Intestinal colonization: How key microbial players become established in this dynamic process. BioEssays, 2013, 35, 913-923.	2.5	61
189	Bridging immunity and lipid metabolism by gut microbiota. Journal of Allergy and Clinical Immunology, 2013, 132, 253-262.	2.9	61
190	High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients. Anaerobe, 2013, 22, 50-56.	2.1	158
191	A refined palate: Bacterial consumption of host glycans in the gut. Glycobiology, 2013, 23, 1038-1046.	2.5	151
192	Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. American Journal of Clinical Nutrition, 2013, 98, 111-120.	4.7	544
193	The role of diet in triggering human inflammatory disorders in the modern age. Microbes and Infection, 2013, 15, 765-774.	1.9	35
194	The Human Microbiome and Probiotics: Implications for Pediatrics. Annals of Nutrition and Metabolism, 2013, 63, 42-52.	1.9	30
195	Function of the microbiota. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 5-16.	2.4	81
196	Review article: evidenceâ€based dietary advice for patients with inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2013, 38, 1156-1171.	3.7	98
197	Review of the association between meat consumption and risk of colorectal cancer. Nutrition Research, 2013, 33, 983-994.	2.9	133
198	Differential Modulation of Human Intestinal Bifidobacterium Populations after Consumption of a Wild Blueberry (Vaccinium angustifolium) Drink. Journal of Agricultural and Food Chemistry, 2013, 61, 8134-8140.	5.2	100
199	Gut microbiota and non-alcoholic fatty liver disease: new insights. Clinical Microbiology and Infection, 2013, 19, 338-348.	6.0	196
200	A Dried Yeast Fermentate Selectively Modulates both the Luminal and Mucosal Gut Microbiota and Protects against Inflammation, As Studied in an Integrated in Vitro Approach. Journal of Agricultural and Food Chemistry, 2013, 61, 9380-9392.	5.2	49
201	A fresh look at the hygiene hypothesis: How intestinal microbial exposure drives immune effector responses in atopic disease. Seminars in Immunology, 2013, 25, 378-387.	5.6	55
202	Fighting Obesity with Bacteria. Science, 2013, 341, 1069-1070.	12.6	98
203	Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18360-18367.	7.1	574
204	Systems biological approaches to measure and understand vaccine immunity in humans. Seminars in Immunology, 2013, 25, 209-218.	5.6	58

#	ARTICLE	IF	CITATIONS
205	Diet-Microbiota Interactions and Their Implications for Healthy Living. Nutrients, 2013, 5, 234-252.	4.1	174
206	Clinical Consequences of Diet-Induced Dysbiosis. Annals of Nutrition and Metabolism, 2013, 63, 28-40.	1.9	100
207	Role of the intestinal microbiome in liver disease. Journal of Autoimmunity, 2013, 46, 66-73.	6.5	172
208	Temporal Response of the Human Virome to Immunosuppression and Antiviral Therapy. Cell, 2013, 155, 1178-1187.	28.9	397
209	Structure and function of the human skin microbiome. Trends in Microbiology, 2013, 21, 660-668.	7.7	348
210	Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients, 2013, 5, 1417-1435.	4.1	1,514
211	Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes. American Journal of Clinical Nutrition, 2013, 98, 16-24.	4.7	351
212	Noninvasive Analysis of Microbiome Dynamics in the Fruit Fly Drosophila melanogaster. Applied and Environmental Microbiology, 2013, 79, 6984-6988.	3.1	46
213	Interactions between gut microbiota, food and the obese host. Trends in Food Science and Technology, 2013, 34, 44-53.	15.1	21
214	Herbal approaches to system dysfunctions. , 2013, , 183-350.		Ο
215	The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic T _{reg} Cell Homeostasis. Science, 2013, 341, 569-573.	12.6	3,945
216	Intestinal Microbial Diversity during Early-Life Colonization Shapes Long-Term IgE Levels. Cell Host and Microbe, 2013, 14, 559-570.	11.0	496
217	Meta-analyses of studies of the human microbiota. Genome Research, 2013, 23, 1704-1714.	5.5	352
218	Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacology & Toxicology, 2013, 14, 62.	2.4	179
219	Intestinal Microbiota Composition in Children. World Review of Nutrition and Dietetics, 2013, , 9-16.	0.3	0
220	Emerging Aspects of Food and Nutrition on Gut Microbiota. Journal of Agricultural and Food Chemistry, 2013, 61, 9559-9574.	5.2	40
221	Human gut microbiota community structures in urban and rural populations in Russia. Nature Communications, 2013, 4, 2469.	12.8	233
222	A Prospective Study of Long-term Intake of Dietary Fiber and Risk ofÂCrohn's Disease and Ulcerative Colitis. Gastroenterology, 2013, 145, 970-977.	1.3	494

#	Article	IF	CITATIONS
223	Alterations in the Gut Microbiota Associated with HIV-1 Infection. Cell Host and Microbe, 2013, 14, 329-339.	11.0	387
224	Assessing the Human Gut Microbiota in Metabolic Diseases. Diabetes, 2013, 62, 3341-3349.	0.6	384
225	Impact of Polyphenols and Polyphenol-Rich Dietary Sources on Gut Microbiota Composition. Journal of Agricultural and Food Chemistry, 2013, 61, 9517-9533.	5.2	306
226	Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutrition Research, 2013, 33, 811-816.	2.9	70
227	Molecular monitoring of fecal microbiota in healthy adults following probiotic yogurt intake. PharmaNutrition, 2013, 1, 123-129.	1.7	18
228	Advancing Our Understanding of the Human Microbiome Using QIIME. Methods in Enzymology, 2013, 531, 371-444.	1.0	553
229	Diet, the human gut microbiota, and IBD. Anaerobe, 2013, 24, 117-120.	2.1	105
230	Initial Intestinal Colonization in the Human Infant and Immune Homeostasis. Annals of Nutrition and Metabolism, 2013, 63, 8-15.	1.9	137
231	Diagnosis and Management of Small Intestinal Bacterial Overgrowth. Nutrition in Clinical Practice, 2013, 28, 289-299.	2.4	102
232	Surveying the Microbiome of Ants: Comparing 454 Pyrosequencing with Traditional Methods To Uncover Bacterial Diversity. Applied and Environmental Microbiology, 2013, 79, 525-534.	3.1	122
233	Integrating nutrition and immunology: A new frontier. Journal of Insect Physiology, 2013, 59, 130-137.	2.0	125
234	Hypothesis: Bacteria Control Host Appetites. Journal of Bacteriology, 2013, 195, 411-416.	2.2	58
235	Fecal Microbiota Composition Differs Between Children With β-Cell Autoimmunity and Those Without. Diabetes, 2013, 62, 1238-1244.	0.6	498
236	Therapeutic modulation of intestinal dysbiosis. Pharmacological Research, 2013, 69, 75-86.	7.1	142
237	Role of gut microbiota in liver diseases. Hepatology Research, 2013, 43, 139-146.	3.4	66
238	Gut microbiota, immune development and function. Pharmacological Research, 2013, 69, 87-113.	7.1	200
239	The role of gut microbiota in human obesity: Recent findings and future perspectives. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 160-168.	2.6	97
240	Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME Journal, 2013, 7, 269-280.	9.8	462

	СПАНО	N REPORT	
#	Article	IF	CITATIONS
241	The influence of diet on the gut microbiota. Pharmacological Research, 2013, 69, 52-60.	7.1	817
242	Barcoded pyrosequencing analysis of the microbial community in a simulator of the human gastrointestinal tract showed a colon region-specific microbiota modulation for two plant-derived polysaccharide blends. Antonie Van Leeuwenhoek, 2013, 103, 409-420.	1.7	19
243	Decreased abundance of <i><scp>F</scp>aecalibacterium prausnitzii</i> in the gut microbiota of <scp>C</scp> rohn's disease. Journal of Gastroenterology and Hepatology (Australia), 2013, 28, 613-619.	2.8	235
244	Waiting for the human intestinal Eukaryotome. ISME Journal, 2013, 7, 1253-1255.	9.8	64
245	Impact of dietary factors and food processing on food allergy. Molecular Nutrition and Food Research, 2013, 57, 145-152.	3.3	45
246	Gut–Liver Axis: Role of Inflammasomes. Journal of Clinical and Experimental Hepatology, 2013, 3, 141-149.	0.9	34
247	Role of diet and gut microbiota in management of inflammatory bowel disease in an Asian migrant. Journal of Allergy and Clinical Immunology, 2013, 132, 250-250.e5.	2.9	7
248	New food safety concerns associated with gut microbiota. Trends in Food Science and Technology, 2013, 34, 62-66.	15.1	8
249	A role for IL-22 in the relationship between intestinal helminths, gut microbiota and mucosal immunity. International Journal for Parasitology, 2013, 43, 253-257.	3.1	53
250	Investigation of the koala (Phascolarctos cinereus) hindgut microbiome via 16S pyrosequencing. Veterinary Microbiology, 2013, 167, 554-564.	1.9	51
251	Microbial–immune crossâ€ŧalk and regulation of the immune system. Immunology, 2013, 138, 12-22.	4.4	32
252	Selecting age-related functional characteristics in the human gut microbiome. Microbiome, 2013, 1, 2.	11.1	45
253	Vitamin D insufficiency is associated with challenge-proven food allergy in infants. Journal of Allergy and Clinical Immunology, 2013, 131, 1109-1116.e6.	2.9	223
254	Our Second Genome—Human Metagenome. Advances in Microbial Physiology, 2013, 62, 119-144.	2.4	23
255	Gut microbiota, host health, and polysaccharides. Biotechnology Advances, 2013, 31, 318-337.	11.7	181
256	Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterology and Motility, 2013, 25, 4-15.	3.0	208
257	Intestinal Microbes, Diet, and Colorectal Cancer. Current Colorectal Cancer Reports, 2013, 9, 95-105.	0.5	14
258	Gut bacterial microbiota and obesity. Clinical Microbiology and Infection, 2013, 19, 305-313.	6.0	232

#	Article	IF	CITATIONS
259	Exploring the bovine rumen bacterial community from birth to adulthood. ISME Journal, 2013, 7, 1069-1079.	9.8	799
260	Implications of the human microbiome in inflammatory bowel diseases. FEMS Microbiology Letters, 2013, 342, 10-17.	1.8	50
261	The cell biology of the intestinal epithelium and its relation to inflammatory bowel disease. International Journal of Biochemistry and Cell Biology, 2013, 45, 798-806.	2.8	18
262	Infant Gut Microbiota: Developmental Influences and Health Outcomes. , 2013, , 233-256.		13
263	Variations in Diversity and Richness of Gut Bacterial Communities of Termites (Reticulitermes flavipes) Fed with Grassy and Woody Plant Substrates. Microbial Ecology, 2013, 65, 531-536.	2.8	61
264	The gut microbial metabolome: modulation of cancer risk in obese individuals. Proceedings of the Nutrition Society, 2013, 72, 178-188.	1.0	27
265	Ethnic diversity of gut microbiota: Species characterization of Bacteroides fragilis group and genus Bifidobacterium in healthy Belgian adults, and comparison with data from Japanese subjects. Journal of Bioscience and Bioengineering, 2013, 116, 265-270.	2.2	39
266	The Gut Microbiota. , 2013, , 3-24.		18
267	Intestinal Microbiota and its Role in Irritable Bowel Syndrome (IBS). Current Gastroenterology Reports, 2013, 15, 323.	2.5	104
268	Patterns and Processes in Parasite Co-Infection. Advances in Parasitology, 2013, 82, 321-369.	3.2	59
268 269	Patterns and Processes in Parasite Co-Infection. Advances in Parasitology, 2013, 82, 321-369. Malnutrition and microbiota—a new relationship?. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 261-262.	3.2 17.8	59 15
	Malnutrition and microbiota—a new relationship?. Nature Reviews Gastroenterology and Hepatology,		
269	Malnutrition and microbiota—a new relationship?. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 261-262. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. Journal of Nutritional	17.8	15
269 270	 Malnutrition and microbiotaâ€"a new relationship?. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 261-262. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. Journal of Nutritional Biochemistry, 2013, 24, 1183-1201. Evolutionary Aspects of Obesity, Insulin Resistance, and Cardiovascular Risk. Current Cardiovascular 	17.8 4.2	15 167
269 270 271	 Malnutrition and microbiotaâ€"a new relationship?. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 261-262. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. Journal of Nutritional Biochemistry, 2013, 24, 1183-1201. Evolutionary Aspects of Obesity, Insulin Resistance, and Cardiovascular Risk. Current Cardiovascular Risk Reports, 2013, 7, 136-146. Comparative Analysis of the Gut Microbiota in People with Different Levels of Ginsenoside Rb1 	17.8 4.2 2.0	15 167 2
269 270 271 272	Malnutrition and microbiotaâ€" a new relationship?. Nature Reviews Castroenterology and Hepatology, 2013, 10, 261-262. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. Journal of Nutritional Biochemistry, 2013, 24, 1183-1201. Evolutionary Aspects of Obesity, Insulin Resistance, and Cardiovascular Risk. Current Cardiovascular Risk Reports, 2013, 7, 136-146. Comparative Analysis of the Gut Microbiota in People with Different Levels of Ginsenoside Rb1 Degradation to Compound K. PLoS ONE, 2013, 8, e62409.	17.8 4.2 2.0 2.5	15 167 2 89
269 270 271 272 273	Malnutrition and microbiotaâ€"a new relationship?. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 261-262. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. Journal of Nutritional Biochemistry, 2013, 24, 1183-1201. Evolutionary Aspects of Obesity, Insulin Resistance, and Cardiovascular Risk. Current Cardiovascular Risk Reports, 2013, 7, 136-146. Comparative Analysis of the Gut Microbiota in People with Different Levels of Ginsenoside Rb1 Degradation to Compound K. PLoS ONE, 2013, 8, e62409. Probiotics and prebiotics and health in ageing populations. Maturitas, 2013, 75, 44-50. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 2013,	17.8 4.2 2.0 2.5 2.4	15 167 2 89 157

#	Article	IF	CITATIONS
277	Testing evolutionary models to explain the process of nucleotide substitution in gut bacterial 16S rRNA gene sequences. FEMS Microbiology Letters, 2013, 346, 97-104.	1.8	4
278	A Guide to Enterotypes across the Human Body: Meta-Analysis of Microbial Community Structures in Human Microbiome Datasets. PLoS Computational Biology, 2013, 9, e1002863.	3.2	446
279	Gut Microbiota Composition Modifies Fecal Metabolic Profiles in Mice. Journal of Proteome Research, 2013, 12, 2987-2999.	3.7	196
280	Beyond phylotyping: understanding the impact of gut microbiota on host biology. Neurogastroenterology and Motility, 2013, 25, 358-372.	3.0	48
282	Longâ€ŧerm monitoring of the human intestinal microbiota composition. Environmental Microbiology, 2013, 15, 1146-1159.	3.8	195
283	Effect of calf starter feeding on gut microbial diversity and expression of genes involved in host immune responses and tight junctions in dairy calves during weaning transition. Journal of Dairy Science, 2013, 96, 3189-3200.	3.4	84
284	Early nutrition patterns and diseases of adulthood: A plausible link?. European Journal of Internal Medicine, 2013, 24, 5-10.	2.2	44
285	Opportunities and challenges for gut microbiome studies in the Indian population. Microbiome, 2013, 1, 24.	11.1	51
286	Effects of infant cereals with different carbohydrate profiles on colonic function—randomised and double-blind clinical trial in infants aged between 6 and 12Âmonths—pilot study. European Journal of Pediatrics, 2013, 172, 1535-1542.	2.7	14
287	Streptococcus bovis/Streptococcus equinus complex fecal carriage, colorectal carcinoma, and infective endocarditis: a new appraisal of a complex connection. European Journal of Clinical Microbiology and Infectious Diseases, 2013, 32, 1171-1176.	2.9	31
288	Monotonous Diets Protect Against Acute Colitis in Mice. Journal of Pediatric Gastroenterology and Nutrition, 2013, 56, 544-550.	1.8	17
289	Modulating the Human Gut Microbiome as an Emerging Therapeutic Paradigm. Science Progress, 2013, 96, 224-236.	1.9	17
291	Gut microbiota in health and disease. Revista De GastroenterologÃa De México (English Edition), 2013, 78, 240-248.	0.2	25
293	Diet, Microbiome, and the Intestinal Epithelium: An Essential Triumvirate?. BioMed Research International, 2013, 2013, 1-12.	1.9	43
294	Diet, Gut Flora, and Multiple Sclerosis: Current Research and Future Perspectives. , 2013, , 115-126.		8
295	Microbial â€ [~] Old Friends', immunoregulation and stress resilience. Evolution, Medicine and Public Health, 2013, 2013, 46-64.	2.5	167
296	Co-evolution in context: The importance of studying gut microbiomes in wild animals. Microbiome Science and Medicine, 2013, 1, .	0.3	138
297	Microbial dysbiosis and colon carcinogenesis: could colon cancer be considered a bacteria-related disease?. Therapeutic Advances in Gastroenterology, 2013, 6, 215-229.	3.2	120

		CITATION RE	EPORT	
#	Article		IF	Citations
298	Functions of intestinal microflora in children. Current Opinion in Gastroenterology, 202	13, 29, 31-38.	2.3	50
299	Carbohydrates and the human gut microbiota. Current Opinion in Clinical Nutrition and Care, 2013, 16, 453-460.	d Metabolic	2.5	145
300	The role of gut microbiota in nutritional status. Current Opinion in Clinical Nutrition an Care, 2013, 16, 509-516.	Id Metabolic	2.5	38
301	Intake of Whole-Grain and Fiber-Rich Rye Bread Versus Refined Wheat Bread Does Not Intestinal Microbiota Composition in Finnish Adults with Metabolic Syndrome. Journal 2013, 143, 648-655.		2.9	85
302	Molecular signatures for the dynamic process of establishing intestinal host–microbi Current Opinion in Gastroenterology, 2013, 29, 621-627.	al homeostasis.	2.3	10
303	Effects of Enteral Nutrition on Crohn's Disease. Inflammatory Bowel Diseases, 201	3, 19, 1322-1329.	1.9	82
304	Conserved Shifts in the Gut Microbiota Due to Gastric Bypass Reduce Host Weight and Science Translational Medicine, 2013, 5, 178ra41.	d Adiposity.	12.4	824
305	Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Ge 2013, 23, 1715-1720.	nome Research,	5.5	151
306	Food Components and the Immune System: From Tonic Agents to Allergens. Frontiers 2013, 4, 102.	in Immunology,	4.8	51
307	Distinct Distal Gut Microbiome Diversity and Composition in Healthy Children from Bar the United States. PLoS ONE, 2013, 8, e53838.	ngladesh and	2.5	278
308	Stool Microbiome and Metabolome Differences between Colorectal Cancer Patients ar Adults. PLoS ONE, 2013, 8, e70803.	1d Healthy	2.5	547
310	The Gut Microbiota and IBD. , 2013, , 35-42.			0
311	Hot topics in gut microbiota. United European Gastroenterology Journal, 2013, 1, 311-	-318.	3.8	50
312	Diet, Gut Enterotypes and Health: Is There a Link?. Nestle Nutrition Institute Workshop 65-73.	Series, 2013, 77,	0.1	14
313	The intestinal microbiome and necrotizing enterocolitis. Current Opinion in Pediatrics, 382-387.	2013, 25,	2.0	86
314	The more the merrier: <i>Faecalibacterium prausnitzii</i> in <scp>C</scp> rohn's disea Gastroenterology and Hepatology (Australia), 2013, 28, 757-759.	se. Journal of	2.8	3
315	The hypersensitivity to colonic distension of <scp>IBS</scp> patients can be transferre through their fecal microbiota. Neurogastroenterology and Motility, 2013, 25, e272-82		3.0	231
316	Variation between Populations in the Innate Immune Response to Vaccine Adjuvants. F Immunology, 2013, 4, 81.	Frontiers in	4.8	53

#	Article	IF	CITATIONS
317	Habitual Dietary Intake Is Associated with Stool Microbiota Composition in Monozygotic Twins. Journal of Nutrition, 2013, 143, 417-423.	2.9	110
318	The Use of Metagenomic Approaches to Analyze Changes in Microbial Communities. Microbiology Insights, 2013, 6, MBI.S10819.	2.0	66
319	Exploring host–microbiota interactions in animal models and humans. Genes and Development, 2013, 27, 701-718.	5.9	413
321	Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome. Microbial Biotechnology, 2013, 6, 335-340.	4.2	39
322	The primate vaginal microbiome: Comparative context and implications for human health and disease. American Journal of Physical Anthropology, 2013, 152, 119-134.	2.1	115
323	Modulation of inflammatory and immune responses by short-chain fatty acids. , 2013, , 435-458.		8
324	The Human Gut Microbiome and Its Dysfunctions. Digestive Diseases, 2013, 31, 278-285.	1.9	65
325	Influences of the Microbiome on the Early Origins of Allergic Asthma. Annals of the American Thoracic Society, 2013, 10, S165-S169.	3.2	17
326	FLX Pyrosequencing Analysis of the Effects of the Brown-Algal Fermentable Polysaccharides Alginate and Laminaran on Rat Cecal Microbiotas. Applied and Environmental Microbiology, 2013, 79, 860-866.	3.1	66
327	Dietary choice affects Shiga toxin-producing <i>Escherichia coli</i> (STEC) O157:H7 colonization and disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2126-33.	7.1	93
328	The role of the gastrointestinal microbiome in <i><i>Helicobacter pylori</i></i> pathogenesis. Gut Microbes, 2013, 4, 505-531.	9.8	178
329	Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut, 2013, 62, 159-176.	12.1	776
330	Factors that drive variation among gut microbial communities. Gut Microbes, 2013, 4, 403-408.	9.8	24
331	The role of gut microbiota in programming the immune phenotype. Journal of Developmental Origins of Health and Disease, 2013, 4, 203-214.	1.4	126
332	Microbiology and Treatment of Acute Apical Abscesses. Clinical Microbiology Reviews, 2013, 26, 255-273.	13.6	172
333	New insights into probiotic mechanisms. Gut Microbes, 2013, 4, 94-100.	9.8	42
334	Partial Associations of Dietary Iron, Smoking and Intestinal Bacteria with Colorectal Cancer Risk. Nutrition and Cancer, 2013, 65, 169-177.	2.0	43
335	Effects of a probiotic fermented milk on functional constipation: A randomized, doubleâ€blind, placeboâ€controlled study. Journal of Gastroenterology and Hepatology (Australia), 2013, 28, 1141-1147.	2.8	76

#	Article	IF	CITATIONS
337	Gut Microbes and Host Health: From the Cradle to the Grave. Journal of the Brewing Society of Japan, 2013, 108, 724-733.	0.3	0
338	Probiotics and nutrients for the first 1000 days of life in the developing world. Beneficial Microbes, 2013, 4, 3-16.	2.4	16
339	The diversity of intestinal microbiota of Mongolians living in Inner Mongolia, China. Beneficial Microbes, 2013, 4, 319-328.	2.4	19
340	Non-dairy probiotic beverages: the next step into human health. Beneficial Microbes, 2013, 4, 127-142.	2.4	48
341	Active and secreted IgA-coated bacterial fractions from the human gut reveal an under-represented microbiota core. Scientific Reports, 2013, 3, 3515.	3.3	41
342	Polyunsaturated Fatty Acids in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2013, 19, 650-661.	1.9	89
343	Subgingival microflora in inflammatory bowel disease patients with untreated periodontitis. European Journal of Gastroenterology and Hepatology, 2013, 25, 239-245.	1.6	57
344	Impact of Ethnicity, Geography, and Disease on the Microbiota in Health and Inflammatory Bowel Diseases, 2013, 19, 2906-2918.	1.9	79
345	The Potential Link between Gut Microbiota and IgE-Mediated Food Allergy in Early Life. International Journal of Environmental Research and Public Health, 2013, 10, 7235-7256.	2.6	50
346	Data mining analysis of terminal restriction fragment length polymorphism shows geographical differences in the human gut microbiota. Biomedical Reports, 2013, 1, 559-562.	2.0	6
347	Advances in Nutritional Metabolomics. Current Metabolomics, 2013, 1, 109-120.	0.5	26
349	Ancient Gut Microbiomes Shed Light on Modern Disease. Environmental Health Perspectives, 2013, 121, A118.	6.0	7
350	Upper gastrointestinal microbiota and digestive diseases. World Journal of Gastroenterology, 2013, 19, 1541.	3.3	79
351	Effects of Diet on Gut Microbiota Profile and the Implications for Health and Disease. Bioscience of Microbiota, Food and Health, 2013, 32, 1-12.	1.8	41
352	Comparison of the Distal Gut Microbiota from People and Animals in Africa. PLoS ONE, 2013, 8, e54783.	2.5	63
353	Analysis of Metagenomic Data Containing High Biodiversity Levels. PLoS ONE, 2013, 8, e58118.	2.5	12
354	Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Allelic Variants Relate to Shifts in Faecal Microbiota of Cystic Fibrosis Patients. PLoS ONE, 2013, 8, e61176.	2.5	83
355	Shedding Light on the Microbial Community of the Macropod Foregut Using 454-Amplicon Pyrosequencing. PLoS ONE, 2013, 8, e61463.	2.5	41

		CITATION RE	PORT	
#	Article		IF	CITATIONS
356	Impact of Colonoscopy Bowel Preparation on Intestinal Microbiota. PLoS ONE, 2013, 8	, e62815.	2.5	85
357	Lactobacillus gasseri SF1183 Affects Intestinal Epithelial Cell Survival and Growth. PLoS e69102.	ONE, 2013, 8,	2.5	18
358	The Gut Bacterial Community of Mammals from Marine and Terrestrial Habitats. PLoS C e83655.	NE, 2013, 8,	2.5	88
359	Reduced Incidence of Prevotella and Other Fermenters in Intestinal Microflora of Autist PLoS ONE, 2013, 8, e68322.	ic Children.	2.5	709
360	Modification of Intestinal Microbiota and Its Consequences for Innate Immune Respons Pathogenesis of Campylobacteriosis. Clinical and Developmental Immunology, 2013, 20		3.3	108
362	Clinical significance of lymph node metastasis in gastric cancer. World Journal of Gastro 2014, 20, 3967.	benterology,	3.3	144
363	Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World Jo Gastrointestinal Oncology, 2014, 6, 41.	urnal of	2.0	210
364	Polyphasic Analysis of a Middle Ages Coprolite Microbiota, Belgium. PLoS ONE, 2014, 9	, e88376.	2.5	43
365	Seasonal Variation in Human Gut Microbiome Composition. PLoS ONE, 2014, 9, e9073	1.	2.5	246
366	Characterization of Fecal Microbiota across Seven Chinese Ethnic Groups by Quantitati Chain Reaction. PLoS ONE, 2014, 9, e93631.	ve Polymerase	2.5	34
367	Gut Microbiomes of Indian Children of Varying Nutritional Status. PLoS ONE, 2014, 9, e	95547.	2.5	154
368	Bacterial Community Composition in the Gut Content and Ambient Sediment of Sea Cu Apostichopus japonicus Revealed by 16S rRNA Gene Pyrosequencing. PLoS ONE, 2014,	ıcumber 9, e100092.	2.5	79
369	Gut Microbiota: The Next-Gen Frontier in Preventive and Therapeutic Medicine?. Frontie 2014, 1, 15.	rs in Medicine,	2.6	39
370	What is the Future of the Gut Microbiota-Related Treatment? Toward Modulation of Mi Preventive and Therapeutic Medicine. Frontiers in Medicine, 2014, 1, 19.	crobiota in	2.6	8
371	From lifetime to evolution: timescales of human gut microbiota adaptation. Frontiers in Microbiology, 2014, 5, 587.		3.5	91
372	Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomic Enhanced by the Shortage of Amino Acids. Frontiers in Nutrition, 2014, 1, 21.	cron are	3.7	50
373	External Influence of Early Childhood Establishment of Gut Microbiota and Subsequent Implications. Frontiers in Pediatrics, 2014, 2, 109.	Health	1.9	181
374	Microbiome Associations of Therapeutic Enteral Nutrition. Nutrients, 2014, 6, 5298-53	11.	4.1	11

#	Article	IF	CITATIONS
375	Integrons in the Intestinal Microbiota as Reservoirs for Transmission of Antibiotic Resistance Genes. Pathogens, 2014, 3, 238-248.	2.8	58
376	The Effects of Diet and the Microbiome on Reproduction and Longevity: A Comparative Review Across 5 Continents. Journal of Nutrition & Food Sciences, 2014, 05, .	1.0	19
377	Heat Shock Proteins: Intestinal Gatekeepers that Are Influenced by Dietary Components and the Gut Microbiota. Pathogens, 2014, 3, 187-210.	2.8	38
378	The Importance of Microbiota and Host Interactions Throughout Life. , 2014, , 489-511.		0
379	Unraveling the ties between irritable bowel syndrome and intestinal microbiota. World Journal of Gastroenterology, 2014, 20, 2470.	3.3	67
380	Obesity and Gut's Dysbiosis Promote Neuroinflammation, Cognitive Impairment, and Vulnerability to Alzheimer's disease: New Directions and Therapeutic Implications. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2014, s1, .	0.1	14
381	Infectious etiopathogenesis of Crohn's disease. World Journal of Gastroenterology, 2014, 20, 12102.	3.3	53
382	Post-infectious irritable bowel syndrome: Mechanistic insights into chronic disturbances following enteric infection. World Journal of Gastroenterology, 2014, 20, 3976.	3.3	79
383	Diversity: From Diet to Flora to Life. Global Advances in Health and Medicine, 2014, 3, 6-8.	1.6	2
384	MICROFLORA OF THE INTESTINE The Natural Microflora of Humans. , 2014, , 634-638.		4
385	Western diet induces dysbiosis with increased <i>E coli</i> in CEABAC10 mice <i>,</i> alters host barrier function favouring AIEC colonisation. Gut, 2014, 63, 116-124.	12.1	417
386	Gut microbiome of the Hadza hunter-gatherers. Nature Communications, 2014, 5, 3654.	12.8	1,067
387	Metabolic tinkering by the gut microbiome. Gut Microbes, 2014, 5, 369-380.	9.8	105
388	New insights into the hygiene hypothesis in allergic diseases. Gut Microbes, 2014, 5, 239-244.	9.8	61
389	Gastrointestinal microbiota and metabolite biomarkers in children with autism spectrum disorders. Biomarkers in Medicine, 2014, 8, 331-344.	1.4	57
390	Glycan Degradation (GlyDeR) Analysis Predicts Mammalian Gut Microbiota Abundance and Host Diet-Specific Adaptations. MBio, 2014, 5, .	4.1	35
391	HIV-induced alteration in gut microbiota. Gut Microbes, 2014, 5, 562-570.	9.8	131
392	The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiology, 2014, 14, 311.	3.3	178

#	Article	IF	CITATIONS
394	Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals?. Gut Microbes, 2014, 5, 74-82.	9.8	47
395	Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. European Journal of Immunology, 2014, 44, 3166-3181.	2.9	75
396	Interrelationships between maternal DHA in erythrocytes, milk and adipose tissue. Is 1Âwt% DHA the optimal human milk content? Data from four Tanzanian tribes differing in lifetime stable intakes of fish. British Journal of Nutrition, 2014, 111, 854-866.	2.3	22
397	Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutrition and Diabetes, 2014, 4, e121-e121.	3.2	503
398	Dietary Clues to the Pathogenesis of Crohn's Disease. Digestive Diseases, 2014, 32, 389-394.	1.9	37
399	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. Journal of Nutrition, Health and Aging, 2014, 18, 773-786.	3.3	64
400	The role of metagenomics in understanding the human microbiome in health and disease. Virulence, 2014, 5, 413-423.	4.4	87
401	Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus. MBio, 2014, 5, e01548-14.	4.1	500
402	Western lifestyle: a â€~master' manipulator of the intestinal microbiota?. Gut, 2014, 63, 5-6.	12.1	46
403	Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Frontiers in Microbiology, 2014, 5, 298.	3.5	130
404	Gut Microbioma Population: An Indicator Really Sensible to Any Change in Age, Diet, Metabolic Syndrome, and Life-Style. Mediators of Inflammation, 2014, 2014, 1-11.	3.0	57
405	The Intestinal Microbiome in Early Life: Health and Disease. Frontiers in Immunology, 2014, 5, 427.	4.8	685
406	Diet and the development of the human intestinal microbiome. Frontiers in Microbiology, 2014, 5, 494.	3.5	391
407	Meta-Omic Platforms to Assist in the Understanding of NAFLD Gut Microbiota Alterations: Tools and Applications. International Journal of Molecular Sciences, 2014, 15, 684-711.	4.1	26
408	Microbial Succession in the Gut: Directional Trends of Taxonomic and Functional Change in a Birth Cohort of Spanish Infants. PLoS Genetics, 2014, 10, e1004406.	3.5	164
409	Helminth Colonization Is Associated with Increased Diversity of the Gut Microbiota. PLoS Neglected Tropical Diseases, 2014, 8, e2880.	3.0	353
410	Pyrosequencing reveals diverse fecal microbiota in Simmental calves during early development. Frontiers in Microbiology, 2014, 5, 622.	3.5	78
411	Gut Microbiota in Human Health and Diseases. , 2014, , 469-469.		0

#	Article	IF	CITATIONS
412	Modulation of Gut Microbiota in the Management of Metabolic Disorders: The Prospects and Challenges. International Journal of Molecular Sciences, 2014, 15, 4158-4188.	4.1	95
413	The Three Genetics (Nuclear DNA, Mitochondrial DNA, and Gut Microbiome) of Longevity in Humans Considered as Metaorganisms. BioMed Research International, 2014, 2014, 1-14.	1.9	25
414	Diarrhea in young children from low-income countries leads to large-scale alterations in intestinal microbiota composition. Genome Biology, 2014, 15, R76.	9.6	219
415	Microbiology of the Anthropocene. Anthropocene, 2014, 5, 1-8.	3.3	83
416	Are We Under- or Mistreating Patients at the Time of Presentation?. Digestive Diseases, 2014, 32, 364-369.	1.9	0
417	The Impact of Microbiota on Brain and Behavior: Mechanisms & Therapeutic Potential. Advances in Experimental Medicine and Biology, 2014, 817, 373-403.	1.6	247
418	Hibernation alters the diversity and composition of mucosaâ€associated bacteria while enhancing antimicrobial defence in the gut of 13â€ined ground squirrels. Molecular Ecology, 2014, 23, 4658-4669.	3.9	62
419	Rural and urban microbiota. Gut Microbes, 2014, 5, 351-356.	9.8	34
420	Development of ileal cytokine and immunoglobulin expression levels in response to early feeding in broilers and layers. Poultry Science, 2014, 93, 3017-3027.	3.4	26
421	Bacterial microbiome of <i>Coptotermes curvignathus</i> (Isoptera: Rhinotermitidae) reflects the coevolution of species and dietary pattern. Insect Science, 2014, 21, 584-596.	3.0	9
422	Major faecal microbiota shifts in composition and diversity with age in a geographically restricted cohort of mothers and their children. FEMS Microbiology Ecology, 2014, 87, 280-290.	2.7	144
423	The Gut Microbiome and the Brain. Journal of Medicinal Food, 2014, 17, 1261-1272.	1.5	498
424	Characterization of the rumen microbiome of Indian Kankrej cattle (Bos indicus) adapted to different forage diet. Applied Microbiology and Biotechnology, 2014, 98, 9749-9761.	3.6	40
425	Host–microorganism interactions in lung diseases. Nature Reviews Immunology, 2014, 14, 827-835.	22.7	275
426	The chicken gastrointestinal microbiome. FEMS Microbiology Letters, 2014, 360, 100-112.	1.8	521
427	Individuals' diet diversity influences gut microbial diversity in two freshwater fish (threespine) Tj ETQq1 1 0.7843	6.4 6.4	Dverlock 10
428	Gut microbiota and cardiometabolic outcomes: influence of dietary patterns and their associated components. American Journal of Clinical Nutrition, 2014, 100, 369S-377S.	4.7	61
429	Ancient human oral plaque preserves a wealth of biological data. Nature Genetics, 2014, 46, 321-323.	21.4	20

#	Article	IF	CITATIONS
430	Bacteroides and Prevotella. , 2014, , 203-208.		33
431	From Low-Residue Diets to Plant-Based Diets in Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2014, 59, 3129-3130.	2.3	4
432	Comparing the effects of acute alcohol consumption in germ-free and conventional mice: the role of the gut microbiota. BMC Microbiology, 2014, 14, 240.	3.3	105
433	Host genetics and diet, but not immunoglobulin A expression, converge to shape compositional features of the gut microbiome in an advanced intercross population of mice. Genome Biology, 2014, 15, 552.	8.8	134
434	Randomized Open-Label Pilot Study of the Influence of Probiotics and the Gut Microbiome on Toxic Metal Levels in Tanzanian Pregnant Women and School Children. MBio, 2014, 5, e01580-14.	4.1	163
435	†The way to a man's heart is through his gut microbiota' – dietary pro- and prebiotics for the management of cardiovascular risk. Proceedings of the Nutrition Society, 2014, 73, 172-185.	1.0	108
436	Intestinal Colonization and Programming of the Intestinal Immune Response. Journal of Clinical Gastroenterology, 2014, 48, S8-S11.	2.2	40
437	Partial Enteral Nutrition with a Crohn's Disease Exclusion Diet Is Effective for Induction of Remission in Children and Young Adults with Crohn's Disease. Inflammatory Bowel Diseases, 2014, 20, 1353-1360.	1.9	211
438	Carbohydrate Intake in the Etiology of Crohn's Disease and Ulcerative Colitis. Inflammatory Bowel Diseases, 2014, 20, 2013-2021.	1.9	78
439	Diet, the Gut Microbiome, and Epigenetics. Cancer Journal (Sudbury, Mass), 2014, 20, 170-175.	2.0	158
440	Irritable bowel syndrome, inflammatory bowel disease and the microbiome. Current Opinion in Endocrinology, Diabetes and Obesity, 2014, 21, 15-21.	2.3	73
441	The microbiota and helminths: sharing the same niche in the human host. Parasitology, 2014, 141, 1255-1271.	1.5	88
442	Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Frontiers in Microbiology, 2014, 5, 190.	3.5	250
444	Intestinal Microbial Diversity and Perioperative Complications. Journal of Parenteral and Enteral Nutrition, 2014, 38, 392-399.	2.6	56
445	Mycobacteria, Immunoregulation, and Autoimmunity. , 2014, , 1-26.		0
446	The Health Advantage of a Vegan Diet: Exploring the Gut Microbiota Connection. Nutrients, 2014, 6, 4822-4838.	4.1	175
447	The Effect of Malnutrition on Norovirus Infection. MBio, 2014, 5, e01032-13.	4.1	50
448	Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World Journal of Gastroenterology, 2014, 20, 908.	3.3	176

#	Article	IF	CITATIONS
449	Mediterranean Diet and Health: Food Effects on Gut Microbiota and Disease Control. International Journal of Molecular Sciences, 2014, 15, 11678-11699.	4.1	162
450	The Gut Microbiota and Effects on Metabolism. , 2014, , 508-526.		4
451	Gut microbiota and metabolic syndrome. World Journal of Gastroenterology, 2014, 20, 16079.	3.3	405
452	Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats. British Journal of Nutrition, 2014, 111, 2135-2145.	2.3	58
453	Diet, the Gut Microbiome and the Metabolome in IBD. Nestle Nutrition Institute Workshop Series, 2014, 79, 73-82.	0.1	18
454	Exclusive Enteral Nutrition: Clues to the Pathogenesis of Crohn's Disease. Nestle Nutrition Institute Workshop Series, 2014, 79, 131-140.	0.1	6
455	Intestinal microbiota of preterm infants differ over time and between hospitals. Microbiome, 2014, 2, 36.	11.1	58
456	Past and future corollaries of theories on causes of metabolic syndrome and obesity related co-morbidities part 2: a composite unifying theory review of human-specific co-adaptations to brain energy consumption. Archives of Public Health, 2014, 72, 31.	2.4	7
457	Host lifestyle affects human microbiota on daily timescales. Genome Biology, 2014, 15, R89.	9.6	735
458	Fecal Shortâ€Chain Fatty Acids of Very‣owâ€Birthâ€Weight Preterm Infants Fed Expressed Breast Milk or Formula. Journal of Pediatric Gastroenterology and Nutrition, 2014, 59, 725-731.	1.8	27
459	<i><scp>B</scp>lautia</i> and <i><scp>P</scp>revotella</i> sequences distinguish human and animal fecal pollution in <scp>B</scp> razil surface waters. Environmental Microbiology Reports, 2014, 6, 696-704.	2.4	38
460	Prevalence of Functional Gastrointestinal Disorders in Colombian SchoolÂChildren. Journal of Pediatrics, 2014, 164, 542-545.e1.	1.8	103
461	The abundance of fecal Faecalibacterium prausnitzii in relation to obesity and gender in Chinese adults. Archives of Microbiology, 2014, 196, 73-77.	2.2	47
462	Probiotic antigens stimulate hepatic natural killer <scp>T</scp> cells. Immunology, 2014, 141, 203-210.	4.4	35
463	Acne vulgaris, probiotics and the gut-brain-skin axis: from anecdote to translational medicine. Beneficial Microbes, 2014, 5, 185-199.	2.4	88
464	Increased food diversity in the first year of life is inversely associated with allergic diseases. Journal of Allergy and Clinical Immunology, 2014, 133, 1056-1064.e7.	2.9	237
465	Beneficial modulation of the gut microbiota. FEBS Letters, 2014, 588, 4120-4130.	2.8	204
466	High Abundance of Escherichia During the Establishment of Fecal Microbiota in Brazilian Children. Microbial Ecology, 2014, 67, 624-634.	2.8	25

#	Article	IF	CITATIONS
467	Caecal fermentation, putrefaction and microbiotas in rats fed milk casein, soy protein or fish meal. Applied Microbiology and Biotechnology, 2014, 98, 2779-2787.	3.6	55
468	Caecal environment of rats fed far East Asian-modelled diets. Applied Microbiology and Biotechnology, 2014, 98, 4701-4709.	3.6	11
469	Stability of the Maternal Gut Microbiota During Late Pregnancy and Early Lactation. Current Microbiology, 2014, 68, 419-427.	2.2	126
470	Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. Journal of Physiological Anthropology, 2014, 33, 2.	2.6	193
471	Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. European Journal of Nutrition, 2014, 53, 1051-1064.	3.9	155
472	Diet Effects in Gut Microbiome and Obesity. Journal of Food Science, 2014, 79, R442-51.	3.1	88
473	The Role of Short-Chain Fatty Acids in Health and Disease. Advances in Immunology, 2014, 121, 91-119.	2.2	1,587
474	Microbial Enterotypes, Inferred by the Prevotella-to-Bacteroides Ratio, Remained Stable during a 6-Month Randomized Controlled Diet Intervention with the New Nordic Diet. Applied and Environmental Microbiology, 2014, 80, 1142-1149.	3.1	142
475	Microbiota in the stomach: New insights. Journal of Digestive Diseases, 2014, 15, 54-61.	1.5	50
476	A role for the gut microbiota in IBS. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 497-505.	17.8	304
477	Compositional and Functional Features of the Gastrointestinal Microbiome and Their Effects on Human Health. Gastroenterology, 2014, 146, 1449-1458.	1.3	386
478	Diet and the Intestinal Microbiome: Associations, Functions, and Implications for Health and Disease. Gastroenterology, 2014, 146, 1564-1572.	1.3	486
479	Brain–Gut Microbiome Interactions and Functional Bowel Disorders. Gastroenterology, 2014, 146, 1500-1512.	1.3	383
480	Microbiome and Autoimmunity. , 2014, , 329-340.		0
481	Lactic Acid Bacteria. , 2014, , .		29
482	Integrative Weight Management. , 2014, , .		2
483	Systemic impact of intestinal helminth infections. Mucosal Immunology, 2014, 7, 753-762.	6.0	99
484	The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiology Reviews, 2014, 38, 996-1047.	8.6	923

#	Article	IF	CITATIONS
485	Description of Pelistega indica sp. nov., isolated from human gut. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 1389-1394.	1.7	20
486	Pharmacomicrobiomics: The Impact of Human Microbiome Variations on Systems Pharmacology and Personalized Therapeutics. OMICS A Journal of Integrative Biology, 2014, 18, 402-414.	2.0	122
487	The Human Gut Microbiome and Its Role in Obesity and the Metabolic Syndrome. , 2014, , 71-105.		4
488	Gut microbiota in older subjects: variation, health consequences and dietary intervention prospects. Proceedings of the Nutrition Society, 2014, 73, 441-451.	1.0	33
489	The microbiome: stress, health and disease. Mammalian Genome, 2014, 25, 49-74.	2.2	361
490	Obsessive–compulsive disorder and gut microbiota dysregulation. Medical Hypotheses, 2014, 82, 163-166.	1.5	39
491	Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505, 559-563.	27.8	7,592
492	Gut microbiota modulation and implications for host health: Dietary strategies to influence the gut–brain axis. Innovative Food Science and Emerging Technologies, 2014, 22, 239-247.	5.6	50
493	Saturated fatty acid (SFA) status and SFA intake exhibit different relations with serum total cholesterol and lipoprotein cholesterol: a mechanistic explanation centered around lifestyle-induced low-grade inflammation. Journal of Nutritional Biochemistry, 2014, 25, 304-312.	4.2	32
494	Diet and Inflammatory Bowel Disease: Review of Patient-Targeted Recommendations. Clinical Gastroenterology and Hepatology, 2014, 12, 1592-1600.	4.4	169
495	Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nature Medicine, 2014, 20, 159-166.	30.7	2,147
496	Maintenance of a healthy trajectory of the intestinal microbiome during aging: A dietary approach. Mechanisms of Ageing and Development, 2014, 136-137, 70-75.	4.6	72
497	Intestinal microbiota, diet and health. British Journal of Nutrition, 2014, 111, 387-402.	2.3	371
498	Impact of Diet on Human Intestinal Microbiota and Health. Annual Review of Food Science and Technology, 2014, 5, 239-262.	9.9	173
499	Yacon effects in immune response and nutritional status of iron and zinc in preschool children. Nutrition, 2014, 30, 666-672.	2.4	41
500	High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nature Communications, 2014, 5, 3889.	12.8	361
501	Diet-Microbiota-Health Interactions in Older Subjects: Implications for Healthy Aging. Interdisciplinary Topics in Gerontology, 2014, 40, 141-154.	3.6	27
502	Impact of lifestyle on the gut microbiota of healthy infants and their mothers - the ALADDIN birth cohort. FEMS Microbiology Ecology, 2014, 90, 791-801.	2.7	100

ARTICLE IF CITATIONS Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. 503 3.4 211 International Journal of Obesity, 2014, 38, 1525-1531. The Effects of Gastrointestinal Surgery on Gut Microbiota: Potential Contribution to Improved 504 4.8 Insulin Sensitivity. Current Atherosclerosis Reports, 2014, 16, 454. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS 505 8.6 219 Microbiology Reviews, 2014, 38, 1202-1234. Cellular and molecular pathways through which commensal bacteria modulate sensitization to dietary antigens. Current Opinion in Immunology, 2014, 31, 79-86. New aspects of IgA synthesis in the gut. International Immunology, 2014, 26, 489-494. 507 4.0 23 Discovering new indicators of fecal pollution. Trends in Microbiology, 2014, 22, 697-706. 508 509 Diet, Metabolites, and "Western-Lifestyle―Inflammatory Diseases. Immunity, 2014, 40, 833-842. 14.3 736 Structural changes in the gut microbiome of constipated patients. Physiological Genomics, 2014, 46, 2.3 271 679-686. Hand bacterial communities vary across two different human populations. Microbiology (United) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 4 511 Geographic variation in the eukaryotic virome of human diarrhea. Virology, 2014, 468-470, 556-564. 2.4

CITATION REPORT

513	Compositional dynamics of the human intestinal microbiota with aging: Implications for health. Journal of Nutrition, Health and Aging, 0, , .	3.3	5
514	Microbiota, Immunoregulatory Old Friends and Psychiatric Disorders. Advances in Experimental Medicine and Biology, 2014, 817, 319-356.	1.6	96
515	Long-term dietary pattern of fecal donor correlates with butyrate production and markers of protein fermentation during in vitro fecal fermentation. Nutrition Research, 2014, 34, 749-759.	2.9	38
516	African fermented foods and probiotics. International Journal of Food Microbiology, 2014, 190, 84-96.	4.7	180
517	Chemoprevention in Gastrointestinal Physiology and Disease. Natural products and microbiome. American Journal of Physiology - Renal Physiology, 2014, 307, G1-G15.	3.4	49
518	An Overview of the Microbiome and the Effects of Antibiotics. Journal for Nurse Practitioners, 2014, 10, 445-450.	0.8	10
519	Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays, 2014, 36, 940-949.	2.5	328
520	Geographical variation of human gut microbial composition. Biology Letters, 2014, 10, 20131037.	2.3	158

# 521	ARTICLE Alterations of the human gut microbiome in liver cirrhosis. Nature, 2014, 513, 59-64.	IF 27.8	Citations 1,782
522	What could probiotic do for us?. Food Science and Human Wellness, 2014, 3, 47-50.	4.9	8
523	A Perspective on the Complexity of Dietary Fiber Structures and Their Potential Effect on the Gut Microbiota. Journal of Molecular Biology, 2014, 426, 3838-3850.	4.2	424
524	Individual diet has sex-dependent effects on vertebrate gut microbiota. Nature Communications, 2014, 5, 4500.	12.8	464
525	Digesting the emerging role for the gut microbiome in central nervous system demyelination. Multiple Sclerosis Journal, 2014, 20, 1553-1559.	3.0	60
526	The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 2014, 12, 661-672.	28.6	2,007
527	Starving our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metabolism, 2014, 20, 779-786.	16.2	614
528	Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using highâ€ŧhroughput parallel pyrosequencing. Molecular Ecology, 2014, 23, 5048-5060.	3.9	66
529	Fast food fever: reviewing the impacts of the Western diet on immunity. Nutrition Journal, 2014, 13, 61.	3.4	289
530	Nutritional psychiatry research: an emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch. Journal of Physiological Anthropology, 2014, 33, 22.	2.6	113
531	Host–microbe interactions shaping the gastrointestinal environment. Trends in Immunology, 2014, 35, 538-548.	6.8	138
532	Plant prebiotics and human health: Biotechnology to breed prebiotic-rich nutritious food crops. Electronic Journal of Biotechnology, 2014, 17, 238-245.	2.2	60
533	The effects of the microbiota on the host immune system. Autoimmunity, 2014, 47, 494-504.	2.6	43
534	Harnessing microbiome and probiotic research in sub-Saharan Africa: recommendations from an African workshop. Microbiome, 2014, 2, 12.	11.1	20
535	Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology, 2014, , .	1.6	59
536	Pharma-Nutrition. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , .	0.6	0
537	The Microbiota, the Immune System and the Allograft. American Journal of Transplantation, 2014, 14, 1236-1248.	4.7	53
538	The role of gut microbes in satisfying the nutritional demands of adult and juvenile wild, black howler monkeys (<scp><i>A</i></scp> <i>louatta pigra</i>). American Journal of Physical Anthropology, 2014, 155, 652-664.	2.1	103

	CITATIO	N REPORT	
#	Article	IF	Citations
539	Intestinal Microbiota and Probiotics in Celiac Disease. Clinical Microbiology Reviews, 2014, 27, 482-489.	13.6	104
540	Diet, gut microbes, and genetics in immune function: can we leverage our current knowledge to achieve better outcomes in inflammatory bowel diseases?. Current Opinion in Immunology, 2014, 31, 16-23.	5.5	29
541	Analyzing the Human Microbiome: A "How To―guide for Physicians. American Journal of Gastroenterology, 2014, 109, 983-993.	0.4	69
542	The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood. Pediatric Research, 2014, 76, 2-10.	2.3	194
543	Zinc transport and diabetes risk. Nature Genetics, 2014, 46, 323-324.	21.4	18
544	Immaturity in the gut microbial community. Nature, 2014, 510, 344-345.	27.8	8
545	Microbiota and diabetes: an evolving relationship. Gut, 2014, 63, 1513-1521.	12.1	631
546	Microbiota Modification with Probiotics Induces Hepatic Bile Acid Synthesis via Downregulation of the Fxr-Fgf15 Axis in Mice. Cell Reports, 2014, 7, 12-18.	6.4	283
547	Designing future prebiotic fiber to target metabolic syndrome. Nutrition, 2014, 30, 497-502.	2.4	46
548	Shrinkage of the human core microbiome and a proposal for launching microbiome biobanks. Future Microbiology, 2014, 9, 639-656.	2.0	12
549	Microbiomes are true to type. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9372-9373.	7.1	6
550	Maillard reaction products modulate gut microbiota composition in adolescents. Molecular Nutrition and Food Research, 2014, 58, 1552-1560.	3.3	107
551	Microbial â€~old friends', immunoregulation and socioeconomic status. Clinical and Experimental Immunology, 2014, 177, 1-12.	2.6	165
552	Rapidly expanding knowledge on the role of the gut microbiome in health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1981-1992.	3.8	141
553	Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME Journal, 2014, 8, 2218-2230.	9.8	489
554	Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. International Journal of Obesity, 2014, 38, 1115-1119.	3.4	141
555	Towards an integrated understanding of gut microbiota using insects as model systems. Journal of Insect Physiology, 2014, 69, 12-18.	2.0	53
556	Biomass Utilization by Gut Microbiomes. Annual Review of Microbiology, 2014, 68, 279-296.	7.3	161

#	Article	IF	CITATIONS
557	Elucidating the interactions between the human gut microbiota and its host through metabolic modeling. Frontiers in Genetics, 2014, 5, 86.	2.3	72
558	The microbial basis of inflammatory bowel diseases. Journal of Clinical Investigation, 2014, 124, 4190-4196.	8.2	172
559	Role of the gut microbiota in inflammatory bowel disease pathogenesis: What have we learnt in the past 10 years?. World Journal of Gastroenterology, 2014, 20, 1192.	3.3	293
560	The Influence of Early Life Nutrition on Epigenetic Regulatory Mechanisms of the Immune System. Nutrients, 2014, 6, 4706-4719.	4.1	60
561	Immunopathology of inflammatory bowel disease. World Journal of Gastroenterology, 2014, 20, 6.	3.3	438
562	Unrest at home: diarrheal disease and microbiota disturbance. Genome Biology, 2014, 15, 120.	9.6	5
563	Associations of Cocaine Use and HIV Infection With the Intestinal Microbiota, Microbial Translocation, and Inflammation. Journal of Studies on Alcohol and Drugs, 2014, 75, 347-357.	1.0	97
564	Antimicrobial Peptides and Gut Microbiota in Homeostasis and Pathology. , 2014, , 171-218.		0
566	Polysaccharides from Mushrooms: A Natural Source of Bioactive Carbohydrates. , 2014, , 168-189.		0
567	Infl uence of the Intestinal Microbiota on the Critically. , 2014, , 301-314.		1
568	Reviews and Perspectives. Canadian Journal of Psychiatry, 2014, 59, 1-2.	1.9	5
569	Fermentable non-starch polysaccharides increases the abundance of Bacteroides–Prevotella–Porphyromonas in ileal microbial community of growing pigs. Animal, 2014, 8, 1777-1787.	3.3	131
570	Patients undergoing elective coronary artery bypass grafting exhibit poor pre-operative intakes of fruit, vegetables, dietary fibre, fish and vitamin D. British Journal of Nutrition, 2015, 113, 1466-1476.	2.3	7
571	Plant microbiota: implications for human health. British Journal of Nutrition, 2015, 114, 1531-1532.	2.3	10
572	Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutrition Research Reviews, 2015, 28, 42-66.	4.1	251
573	Early-Life Gut Microbial Composition. Journal of Pediatric Biochemistry, 2015, 05, 041-050.	0.2	9
574	Composition and antioxidant activity of water-soluble oligosaccharides from Hericium erinaceus. Molecular Medicine Reports, 2015, 11, 3794-3799.	2.4	26
575	Correlations of Gut Microbial Community Shift with Hepatic Damage and Growth Inhibition of <i>Carassius auratus</i> Induced by Pentachlorophenol Exposure. Environmental Science & Technology, 2015, 49, 11894-11902.	10.0	107

#	Article	IF	CITATIONS
576	Dietary Yeasts Reduce Inflammation in Central Nerve System via Microflora. Annals of Clinical and Translational Neurology, 2015, 2, 56-66.	3.7	41
577	Membrane filter method to study the effects of Lactobacillus acidophilus and Bifidobacterium longum on fecal microbiota. Microbiology and Immunology, 2015, 59, 643-652.	1.4	7
578	Distribution, structure and biosynthetic gene families of (1,3;1,4)â€Î²â€glucan in <i>Sorghum bicolor</i> . Journal of Integrative Plant Biology, 2015, 57, 429-445.	8.5	33
580	Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Scientific Reports, 2015, 5, 18563.	3.3	133
581	Microorganisms in Fermented Foods and Beverages. , 2015, , 16-125.		3
582	Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: implications for conservation. Scientific Reports, 2015, 5, 14862.	3.3	170
583	Differential responses of gut microbiota to the same prebiotic formula in oligotrophic and eutrophic batch fermentation systems. Scientific Reports, 2015, 5, 13469.	3.3	29
584	Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Scientific Reports, 2015, 5, 14405.	3.3	499
587	Comparative analyses of fecal microbiota in Tibetan and Chinese Han living at low or high altitude by barcoded 454 pyrosequencing. Scientific Reports, 2015, 5, 14682.	3.3	107
588	Meta-genomic analysis of toilet waste from long distance flights; a step towards global surveillance of infectious diseases and antimicrobial resistance. Scientific Reports, 2015, 5, 11444.	3.3	74
589	Shifts in the Midgut/Pyloric Microbiota Composition within a Honey Bee Apiary throughout a Season. Microbes and Environments, 2015, 30, 235-244.	1.6	67
590	Decreased Diversity of the Oral Microbiota of Patients with Hepatitis B Virus-Induced Chronic Liver Disease: A Pilot Project. Scientific Reports, 2015, 5, 17098.	3.3	79
591	Effect of ethnicity and socioeconomic variation to the gut microbiota composition among pre-adolescent in Malaysia. Scientific Reports, 2015, 5, 13338.	3.3	68
592	Healthy gut microbiota and long term health. Beneficial Microbes, 2015, 6, 173-179.	2.4	9
593	Allergie und das Mikrobiom des Darms – Teil 1. Deutsche Zeitschrift Für Akupunktur, 2015, 58, 22-26.	0.1	1
594	Common beans and cowpeas as complementary foods to reduce environmental enteric dysfunction and stunting in Malawian children: study protocol for two randomized controlled trials. Trials, 2015, 16, 520.	1.6	37
595	The effect of dietary resistant starch type 2 on the microbiota and markers of gut inflammation in rural Malawi children. Microbiome, 2015, 3, 37.	11.1	53
596	New frontiers in fibre. Nutrition Bulletin, 2015, 40, 247-252.	1.8	2

	CITATION	Report	
#	ARTICLE Fecal microbiome of growing pigs fed a cereal based diet including chicory (Cichorium intybus L.) or	IF	CITATIONS
597	ribwort (Plantago lanceolata L.) forage. Journal of Animal Science and Biotechnology, 2015, 6, 53.	5.3	15
598	Linear growth faltering in infants is associated with Acidaminococcus sp. and community-level changes in the gut microbiota. Microbiome, 2015, 3, 24.	11.1	120
599	Variable responses of human and non-human primate gut microbiomes to a Western diet. Microbiome, 2015, 3, 53.	11.1	108
600	Immunoregulation of multiple sclerosis by gut environmental factors. Clinical and Experimental Neuroimmunology, 2015, 6, 362-369.	1.0	5
601	The intestinal microbiome and health. Current Opinion in Infectious Diseases, 2015, 28, 464-470.	3.1	136
602	On the origin of species: Factors shaping the establishment of infant's gut microbiota. Birth Defects Research Part C: Embryo Today Reviews, 2015, 105, 240-251.	3.6	66
603	The Intestinal Microbiome in Bariatric Surgery Patients. European Eating Disorders Review, 2015, 23, 496-503.	4.1	34
604	Colonic bacterial composition in Parkinson's disease. Movement Disorders, 2015, 30, 1351-1360.	3.9	932
605	The role of the commensal microbiota in the regulation of tolerance to dietary allergens. Current Opinion in Allergy and Clinical Immunology, 2015, 15, 243-249.	2.3	51
606	From Birth to "Immunohealth,―Allergies and Enterocolitis. Journal of Clinical Gastroenterology, 2015, 49, S7-S12.	2.2	19
607	Reciprocal interaction of diet and microbiome in inflammatory bowel diseases. Current Opinion in Gastroenterology, 2015, 31, 464-470.	2.3	31
608	Distinctive Intestinal <i>Lactobacillus</i> Communities in 6â€Monthâ€Old Infants From Rural Malawi and Southwestern Finland. Journal of Pediatric Gastroenterology and Nutrition, 2015, 61, 641-648.	1.8	12
609	The Intestinal Microbiota in Acute Anorexia Nervosa and During Renourishment. Psychosomatic Medicine, 2015, 77, 969-981.	2.0	237
610	Malnutrition: Causes and Strategies. Journal of Food Processing & Technology, 2015, 06, .	0.2	12
611	Mycobiota: Micro-Eukaryotes Inhabiting Our Body as Commensals or Opportunistic Pathogens. Fungal Genomics & Biology, 2015, 05, .	0.4	3
612	Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics. Genes, 2015, 6, 841-857.	2.4	61
613	Comparison of the gut microbiota profile in breast-fed and formula-fed Korean infants using pyrosequencing. Nutrition Research and Practice, 2015, 9, 242.	1.9	93
614	Gut Microbiota as Potential Orchestrators of Irritable Bowel Syndrome. Gut and Liver, 2015, 9, 318-31.	2.9	114

#	Article	IF	CITATIONS
615	Intrinsic association between diet and the gut microbiome: current evidence. Nutrition and Dietary Supplements, 2015, 7, 69.	0.7	11
616	Anaerobic Infections. , 2015, , 2736-2743.e1.		5
617	Contribution of diet to the composition of the human gut microbiota. Microbial Ecology in Health and Disease, 2015, 26, 26164.	3.5	310
618	Milk- and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Frontiers in Cellular and Infection Microbiology, 2015, 5, 3.	3.9	174
619	Does Whole Grain Consumption Alter Gut Microbiota and Satiety?. Healthcare (Switzerland), 2015, 3, 364-392.	2.0	29
620	Gut Microbiota: A Modulator of Brain Plasticity and Cognitive Function in Ageing. Healthcare (Switzerland), 2015, 3, 898-916.	2.0	67
621	Does the Gut Microbiota Contribute to Obesity? Going beyond the Gut Feeling. Microorganisms, 2015, 3, 213-235.	3.6	38
622	Gut Microbiota and Host Reaction in Liver Diseases. Microorganisms, 2015, 3, 759-791.	3.6	47
623	The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients, 2015, 7, 17-44.	4.1	1,108
624	Adaptation to Lactose in Lactase Non Persistent People: Effects on Intolerance and the Relationship between Dairy Food Consumption and Evalution of Diseases. Nutrients, 2015, 7, 6751-6779.	4.1	65
625	Intestinal Microbiota and Celiac Disease: Cause, Consequence or Co-Evolution?. Nutrients, 2015, 7, 6900-6923.	4.1	151
626	Lentil and Kale: Complementary Nutrient-Rich Whole Food Sources to Combat Micronutrient and Calorie Malnutrition. Nutrients, 2015, 7, 9285-9298.	4.1	52
627	riboFrame: An Improved Method for Microbial Taxonomy Profiling from Non-Targeted Metagenomics. Frontiers in Genetics, 2015, 6, 329.	2.3	15
628	Stress Induces Endotoxemia and Low-Grade Inflammation by Increasing Barrier Permeability. Frontiers in Immunology, 2015, 6, 223.	4.8	197
629	Mechanisms of Microbe–Host Interaction in Crohn's Disease: Dysbiosis vs. Pathobiont Selection. Frontiers in Immunology, 2015, 6, 555.	4.8	83
630	Interaction of Intestinal Microorganisms with the Human Host in the Framework of Autoimmune Diseases. Frontiers in Immunology, 2015, 6, 594.	4.8	30
631	Characterization of the gut microbiota of Kawasaki disease patients by metagenomic analysis. Frontiers in Microbiology, 2015, 6, 824.	3.5	51
632	Geriatric Respondents and Non-Respondents to Probiotic Intervention Can be Differentiated by Inherent Gut Microbiome Composition. Frontiers in Microbiology, 2015, 6, 944.	3.5	19

#	Article	IF	CITATIONS
633	Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches. Frontiers in Microbiology, 2015, 6, 1050.	3.5	258
634	Endogenous Levels of Circulating Androgens and Risk of Crohn's Disease and Ulcerative Colitis Among Women. Inflammatory Bowel Diseases, 2015, 21, 1.	1.9	18
635	Characterization of the Gut Microbiota of Papua New Guineans Using Reverse Transcription Quantitative PCR. PLoS ONE, 2015, 10, e0117427.	2.5	22
636	Patterns of Gut Bacterial Colonization in Three Primate Species. PLoS ONE, 2015, 10, e0124618.	2.5	50
637	Chronic Trichuris muris Infection in C57BL/6 Mice Causes Significant Changes in Host Microbiota and Metabolome: Effects Reversed by Pathogen Clearance. PLoS ONE, 2015, 10, e0125945.	2.5	220
638	Obesity Alters the Microbial Community Profile in Korean Adolescents. PLoS ONE, 2015, 10, e0134333.	2.5	129
639	Co-Administration of Cholesterol-Lowering Probiotics and Anthraquinone from Cassia obtusifolia L. Ameliorate Non-Alcoholic Fatty Liver. PLoS ONE, 2015, 10, e0138078.	2.5	58
640	Global Profiling of Carbohydrate Active Enzymes in Human Gut Microbiome. PLoS ONE, 2015, 10, e0142038.	2.5	86
641	Seasonal Shifts in Diet and Gut Microbiota of the American Bison (Bison bison). PLoS ONE, 2015, 10, e0142409.	2.5	104
642	Design and Investigation of PolyFermS In Vitro Continuous Fermentation Models Inoculated with Immobilized Fecal Microbiota Mimicking the Elderly Colon. PLoS ONE, 2015, 10, e0142793.	2.5	59
643	Oral Microbiota and Risk for Esophageal Squamous Cell Carcinoma in a High-Risk Area of China. PLoS ONE, 2015, 10, e0143603.	2.5	146
644	Diet, Microbiota and Immune System in Type 1 Diabetes Development and Evolution. Nutrients, 2015, 7, 9171-9184.	4.1	93
645	Role of the normal gut microbiota. World Journal of Gastroenterology, 2015, 21, 8787.	3.3	1,775
646	Onset of Ulcerative Colitis during a Low-Carbohydrate Weight-Loss Diet and Treatment with a Plant-Based Diet: A Case Report. , 2016, 20, 80-84.		15
647	Incidence Trends and Geographical Variability of Pediatric Inflammatory Bowel Disease in Slovenia: A Nationwide Study. BioMed Research International, 2015, 2015, 1-8.	1.9	22
648	Social networks predict gut microbiome composition in wild baboons. ELife, 2015, 4, .	6.0	403
649	The Multifaceted Role of Commensal Microbiota in Homeostasis and Gastrointestinal Diseases. Journal of Immunology Research, 2015, 2015, 1-14.	2.2	33
650	Intestinal Microbiota as Modulators of the Immune System and Neuroimmune System: Impact on the Host Health and Homeostasis. Journal of Immunology Research, 2015, 2015, 1-14.	2.2	88

#	ARTICLE Harnessing the Microbiome to Enhance Cancer Immunotherapy. Journal of Immunology Research, 2015,	IF	CITATIONS
651	2015, 1-12.	2.2	54
652	Toward Enteral Nutrition in the Treatment of Pediatric Crohn Disease in Canada: A Workshop to Identify Barriers and Enablers. Canadian Journal of Gastroenterology and Hepatology, 2015, 29, 351-356.	1.9	41
653	The secret lives of Drosophila flies. ELife, 2015, 4, .	6.0	160
654	Intrinsic Immunomodulatory Effects of Low-Digestible Carbohydrates Selectively Extend Their Anti-Inflammatory Prebiotic Potentials. BioMed Research International, 2015, 2015, 1-13.	1.9	23
655	High Amount of Dietary Fiber Not Harmful But Favorable for Crohn Disease. , 2015, 19, 58-61.		40
656	Gut bacteria in children with autism spectrum disorders: challenges and promise of studying how a complex community influences a complex disease. Microbial Ecology in Health and Disease, 2015, 26, 26914.	3.5	105
657	The Human Microbiome of Local Body Sites and Their Unique Biology. , 2015, , 11-18.		1
658	Diversity in gut bacterial community of school-age children in Asia. Scientific Reports, 2015, 5, 8397.	3.3	221
659	Changing views on diverticular disease: impact of aging, obesity, diet, and microbiota. Neurogastroenterology and Motility, 2015, 27, 305-312.	3.0	48
660	Variation in koala microbiomes within and between individuals: effect of body region and captivity status. Scientific Reports, 2015, 5, 10189.	3.3	78
661	Microbiota at Multiple Body Sites during Pregnancy in a Rural Tanzanian Population and Effects of Moringa-Supplemented Probiotic Yogurt. Applied and Environmental Microbiology, 2015, 81, 4965-4975.	3.1	85
662	Cervicovaginal Bacteria Are a Major Modulator of Host Inflammatory Responses in the Female Genital Tract. Immunity, 2015, 42, 965-976.	14.3	554
663	The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease, 2015, 26, 26050.	3.5	766
664	Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Marine Ecology - Progress Series, 2015, 518, 209-223.	1.9	277
665	Malnutrition, Immunodeficiency, and Mucosal Infection. , 2015, , 1461-1479.		1
666	Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. British Journal of Nutrition, 2015, 113, S6-S17.	2.3	156
667	Oral supplementation with l-glutamine alters gut microbiota of obese and overweight adults: A pilot study. Nutrition, 2015, 31, 884-889.	2.4	67
668	The effect of past antibiotic exposure on diabetes risk. European Journal of Endocrinology, 2015, 172, 639-648.	3.7	131

#	Article	IF	CITATIONS
669	Systemic effects of gut microbiota and its relationship with disease and modulation. BMC Immunology, 2015, 16, 21.	2.2	61
670	A proposed framework for an appropriate evaluation scheme for microorganisms as novel foods with a health claim in Europe. Microbial Cell Factories, 2015, 14, 48.	4.0	44
671	Loss of Microbiome Ecological Niches and Diversity by Global Change and Trophic Downgrading. SpringerBriefs in Ecology, 2015, , 89-113.	0.2	6
672	Diversity of Intestinal Clostridium coccoides Group in the Japanese Population, as Demonstrated by Reverse Transcription-Quantitative PCR. PLoS ONE, 2015, 10, e0126226.	2.5	54
673	Gut Microbial Succession Follows Acute Secretory Diarrhea in Humans. MBio, 2015, 6, e00381-15.	4.1	150
674	Metagenomic cross-talk: the regulatory interplay between immunogenomics and the microbiome. Genome Medicine, 2015, 7, 120.	8.2	68
675	The Microbiome, Intestinal Function, and Arginine Metabolism of Healthy Indian Women Are Different from Those of American and Jamaican Women. Journal of Nutrition, 2016, 146, 706-713.	2.9	40
676	In-depth analysis of the impacts of rural population growth on the natural environment: a GIS and remote sensing approach. Transactions of the Royal Society of South Africa, 2015, 70, 149-153.	1.1	1
677	Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environmental Microbiology, 2015, 17, 4954-4964.	3.8	279
679	Review article: dietary fibre-microbiota interactions. Alimentary Pharmacology and Therapeutics, 2015, 42, 158-179.	3.7	430
681	Beneficial Microorganisms in Food and Nutraceuticals. Microbiology Monographs, 2015, , .	0.6	12
682	Advances in grain sorghum and its co-products as a human health promoting dietary system. Food Research International, 2015, 77, 349-359.	6.2	70
683	Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10479-10484.	7.1	410
684	The effect of dietary fibre preparations from potato starch on the growth and activity of bacterial strains belonging to the phyla Firmicutes, Bacteroidetes, and Actinobacteria. Journal of Functional Foods, 2015, 19, 661-668.	3.4	40
685	Bugs and Guts. Nutrition in Clinical Practice, 2015, 30, 747-759.	2.4	24
686	Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis, 2015, 243, 638-644.	0.8	175
687	Characterizing the fecal microbiota of infants with botulism. Microbiome, 2015, 3, 54.	11.1	19
688	Possible Role of the Microbiome in the Development of Acute Malnutrition and Implications for Food-Based Strategies to Prevent and Treat Acute Malnutrition. Food and Nutrition Bulletin, 2015, 36, S72-S75.	1.4	7

#	Article	IF	CITATIONS
689	Roles of Probiotics on Lifelong Diversifications of Gut Microbiota. Microbiology Monographs, 2015, , 245-263.	0.6	0
690	Early-life stress origins of gastrointestinal disease: animal models, intestinal pathophysiology, and translational implications. American Journal of Physiology - Renal Physiology, 2015, 309, G927-G941.	3.4	53
692	Integrated multi-scale strategies to investigate nutritional compounds and their effect on the gut microbiota. Current Opinion in Biotechnology, 2015, 32, 149-155.	6.6	35
693	Nutrients, Foods, and Colorectal Cancer Prevention. Gastroenterology, 2015, 148, 1244-1260.e16.	1.3	466
694	The Rebirth of Culture in Microbiology through the Example of Culturomics To Study Human Gut Microbiota. Clinical Microbiology Reviews, 2015, 28, 237-264.	13.6	605
695	Ancient human microbiomes. Journal of Human Evolution, 2015, 79, 125-136.	2.6	123
696	The gut microbiota and inflammatory noncommunicable diseases: Associations and potentials for gut microbiota therapies. Journal of Allergy and Clinical Immunology, 2015, 135, 3-13.	2.9	232
697	Symbiosis, dysbiosis, and rebiosis—The value of metaproteomics in human microbiome monitoring. Proteomics, 2015, 15, 1142-1151.	2.2	28
698	Mouse Models of Food Allergy: How Well do They Simulate the Human Disorder?. Critical Reviews in Food Science and Nutrition, 2015, 55, 437-452.	10.3	34
699	A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME Journal, 2015, 9, 1979-1990.	9.8	339
700	Stability of Gut Enterotypes in Korean Monozygotic Twins and Their Association with Biomarkers and Diet. Scientific Reports, 2014, 4, 7348.	3.3	124
701	Immunoprotective Effects of Probiotics in the Elderly. , 2015, , 363-372.		6
702	Distinct gut microbiota of healthy children from two different geographic regions of Thailand. Archives of Microbiology, 2015, 197, 561-573.	2.2	56
703	Shifts in microbiota species and fermentation products in a dietary model enriched in fat and sucrose. Beneficial Microbes, 2015, 6, 97-111.	2.4	28
704	Gut microbial and short-chain fatty acid profiles in adults with chronic constipation before and after treatment with lubiprostone. Anaerobe, 2015, 33, 33-41.	2.1	49
706	Growth promotion and gut microbiota: insights from antibiotic use. Environmental Microbiology, 2015, 17, 2216-2227.	3.8	51
707	Intestinal Microbiota And Diet in IBS: Causes, Consequences, or Epiphenomena?. American Journal of Gastroenterology, 2015, 110, 278-287.	0.4	283
708	Gut microbial metabolism and colon cancer: Can manipulations of the microbiota be useful in the management of gastrointestinal health?. BioEssays, 2015, 37, 403-412.	2.5	43

#	Article	IF	CITATIONS
709	Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in in intestine of humans with non-alcoholic fatty liver disease. Scientific Reports, 2015, 5, 8096.	3.3	471
710	Decrease in lactobacilli in the intestinal microbiota of celiac children with a gluten-free diet, and selection of potentially probiotic strains. Canadian Journal of Microbiology, 2015, 61, 32-37.	1.7	52
712	The influence of diet on the gut microbiota and its consequences for health. Current Opinion in Biotechnology, 2015, 32, 195-199.	6.6	148
713	How informative is the mouse for human gut microbiota research?. DMM Disease Models and Mechanisms, 2015, 8, 1-16.	2.4	990
714	Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber. American Journal of Clinical Nutrition, 2015, 101, 251-261.	4.7	246
715	Microbial Activities and Intestinal Homeostasis: A Delicate Balance Between Health and Disease. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 28-40.	4.5	137
716	Metabonomics and Gut Microbiota in Nutrition and Disease. Molecular and Integrative Toxicology, 2015, , .	0.5	5
717	Food, Immunity, and the Microbiome. Gastroenterology, 2015, 148, 1107-1119.	1.3	278
718	An Apple a Day Keeps the Doctor Away – Inter-Relationship Between Apple Consumption, the Gut Microbiota and Cardiometabolic Disease Risk Reduction. , 2015, , 173-194.		9
719	Linking fat intake, the intestinal microbiome, and necrotizing enterocolitis in premature infants. Pediatric Research, 2015, 77, 121-126.	2.3	14
720	Metagenomic Insights into the Effects of Fructo-oligosaccharides (FOS) on the Composition of Fecal Microbiota in Mice. Journal of Agricultural and Food Chemistry, 2015, 63, 856-863.	5.2	90
721	Nutrition Facts in Multiple Sclerosis. ASN Neuro, 2015, 7, 175909141456818.	2.7	169
722	The Gut Microbiota Appears to Compensate for Seasonal Diet Variation in the Wild Black Howler Monkey (Alouatta pigra). Microbial Ecology, 2015, 69, 434-443.	2.8	254
723	Biogeography of the Intestinal Mucosal and Lumenal Microbiome in the Rhesus Macaque. Cell Host and Microbe, 2015, 17, 385-391.	11.0	273
724	Dietary effects on human gut microbiome diversity. British Journal of Nutrition, 2015, 113, S1-S5.	2.3	350
725	Nutrition Management in Childhood Kidney Disease: an Integrative and Lifecourse Approach. , 2015, , 1-21.		0
726	Human gut microbiota: does diet matter?. Proceedings of the Nutrition Society, 2015, 74, 23-36.	1.0	112
728	Fecal Microbiota in Healthy Subjects Following Omnivore, Vegetarian and Vegan Diets: Culturable Populations and rRNA DGGE Profiling. PLoS ONE, 2015, 10, e0128669.	2.5	78

#	Article	IF	CITATIONS
729	Biological control in the microbiome era: Challenges and opportunities. Biological Control, 2015, 89, 98-108.	3.0	145
730	Microbiome influences on allergy in mice and humans. Current Opinion in Immunology, 2015, 36, 94-100.	5.5	42
731	Dietary intake of soluble fiber and risk of islet autoimmunity by 5 y of age: results from the TEDDY study. American Journal of Clinical Nutrition, 2015, 102, 345-352.	4.7	18
732	Reticulate Evolution. Interdisciplinary Evolution Research, 2015, , .	0.3	19
733	Nutritional systems biology of type 2 diabetes. Genes and Nutrition, 2015, 10, 481.	2.5	26
734	Cecal drop reflects the chickens' cecal microbiome, fecal drop does not. Journal of Microbiological Methods, 2015, 117, 164-170.	1.6	41
735	Metagenomics of the human intestinal tract: from who is there to what is done there. Current Opinion in Food Science, 2015, 4, 64-68.	8.0	12
736	The intestinal glycome and its modulation by diet and nutrition. Nutrition Reviews, 2015, 73, 359-375.	5.8	30
737	Metabolome progression during early gut microbial colonization of gnotobiotic mice. Scientific Reports, 2015, 5, 11589.	3.3	29
738	A Nutritional Anthropology of the Human Gut Microbiota. , 2015, , 17-26.		0
739	Metabolic Syndrome and Complications of Pregnancy. , 2015, , .		2
740	Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nature Communications, 2015, 6, 7320.	12.8	683
741	Alterations in Intestinal Microbiota Correlate With Susceptibility to Type 1 Diabetes. Diabetes, 2015, 64, 3510-3520.	0.6	246
742	Can we change our microbiome to prevent colorectal cancer development?. Acta Oncológica, 2015, 54, 1085-1095.	1.8	18
743	Gut Microbiome: Westernization and the Disappearance of Intestinal Diversity. Current Biology, 2015, 25, R611-R613.	3.9	169
744	Giardia duodenalis: New Research Developments in Pathophysiology, Pathogenesis, and Virulence Factors. Current Tropical Medicine Reports, 2015, 2, 110-118.	3.7	39
745	Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 2015, 33, 496-503.	9.3	2,453
746	Engineering the Microbiome: a Novel Approach to Immunotherapy for Allergic and Immune Diseases. Current Allergy and Asthma Reports, 2015, 15, 39.	5.3	13

#	Article	IF	CITATIONS
747	Diet and the Gut Microbiota â \in " How the Gut. , 2015, , 225-245.		6
748	<i>Lactobacillus pentosus</i> var. <i>plantarum</i> C29 increases the protective effect of soybean against scopolamine-induced memory impairment in mice. International Journal of Food Sciences and Nutrition, 2015, 66, 912-918.	2.8	14
749	Evolution of the Human Microbiome and Impacts on Human Health, Infectious Disease, and Hominid Evolution. Interdisciplinary Evolution Research, 2015, , 231-253.	0.3	6
750	Microbial influences on hormesis, oncogenesis, and therapy: A review of the literature. Environmental Research, 2015, 142, 239-256.	7.5	10
751	Dietary saponins from four popular herbal tea exert prebiotic-like effects on gut microbiota in C57BL/6 mice. Journal of Functional Foods, 2015, 17, 892-902.	3.4	53
752	Hypotheses of the origin of natural antibodies: A glycobiologist's opinion. Biochemistry (Moscow), 2015, 80, 820-835.	1.5	30
753	Lentinula edodes-Derived Polysaccharide Alters the Spatial Structure of Gut Microbiota in Mice. PLoS ONE, 2015, 10, e0115037.	2.5	66
754	Gut Microbiota Dynamics during Dietary Shift in Eastern African Cichlid Fishes. PLoS ONE, 2015, 10, e0127462.	2.5	109
755	The Effect of Diet and Probiotics on the Human Gut Microbiome. , 2015, , 35-45.		0
756	Enterolignan-Producing Phenotypes Are Associated with Increased Gut Microbial Diversity and Altered Composition in Premenopausal Women in the United States. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 546-554.	2.5	55
757	Explaining Diversity in Metagenomic Datasets by Phylogenetic-Based Feature Weighting. PLoS Computational Biology, 2015, 11, e1004186.	3.2	24
758	Gut microbiome, gut function, and probiotics: Implications for health. Indian Journal of Gastroenterology, 2015, 34, 93-107.	1.4	30
759	Dynamic efficiency of the human intestinal microbiota. Critical Reviews in Microbiology, 2015, 41, 165-171.	6.1	32
760	Helsinki alert of biodiversity and health. Annals of Medicine, 2015, 47, 218-225.	3.8	95
761	The role of the gut microbiota in metabolic health. FASEB Journal, 2015, 29, 3111-3123.	0.5	167
762	Our interface with the built environment: immunity and the indoor microbiota. Trends in Immunology, 2015, 36, 121-123.	6.8	42
763	Modeling a microbial community and biodiversity assay with OBO Foundry ontologies: the interoperability gains of a modular approach. Database: the Journal of Biological Databases and Curation, 2015, 2015, bau132-bau132.	3.0	5
764	Differences in Gut Microbiota Between Atopic and Healthy Children. Current Microbiology, 2015, 71, 177-183.	2.2	19

#	Article	IF	CITATIONS
765	IBD and the Gut Microbiota—from Bench to Personalized Medicine. Current Gastroenterology Reports, 2015, 17, 15.	2.5	54
767	Green areas around homes reduce atopic sensitization in children. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 195-202.	5.7	208
768	Divergences in gene repertoire among the reference Prevotella genomes derived from distinct body sites of human. BMC Genomics, 2015, 16, 153.	2.8	58
769	Unraveling the Hygiene Hypothesis of helminthes and autoimmunity: origins, pathophysiology, and clinical applications. BMC Medicine, 2015, 13, 81.	5.5	129
770	The gut microbiome in cardio-metabolic health. Genome Medicine, 2015, 7, 33.	8.2	92
771	Natural environments, ancestral diets, and microbial ecology: is there a modern "paleo-deficit disorder� Part II. Journal of Physiological Anthropology, 2015, 34, 9.	2.6	25
772	16S gut community of the Cameron County Hispanic Cohort. Microbiome, 2015, 3, 7.	11.1	46
773	Kinship, inbreeding and fineâ€scale spatial structure influence gut microbiota in a hindgutâ€fermenting tortoise. Molecular Ecology, 2015, 24, 2521-2536.	3.9	96
774	The role of probiotics on each component of the metabolic syndrome and other cardiovascular risks. Expert Opinion on Therapeutic Targets, 2015, 19, 1127-1138.	3.4	34
775	Theories, Mechanisms and Patterns of Microbiome Species Coexistence in an Era of Climate Change. SpringerBriefs in Ecology, 2015, , 13-53.	0.2	11
776	Type 2 diabetes and gut microbiome: at the intersection of known and unknown. Gut Microbes, 2015, 6, 85-92.	9.8	88
777	Comparison of the gut microbiota of people in France and Saudi Arabia. Nutrition and Diabetes, 2015, 5, e153.	3.2	100
778	Metagenome Sequencing of the Hadza Hunter-Gatherer Gut Microbiota. Current Biology, 2015, 25, 1682-1693.	3.9	342
779	Gut microbiome compositional and functional differences between tumor and non-tumor adjacent tissues from cohorts from the US and Spain. Gut Microbes, 2015, 6, 161-172.	9.8	98
780	Mongolians core gut microbiota and its correlation with seasonal dietary changes. Scientific Reports, 2014, 4, 5001.	3.3	126
781	Subsistence strategies in traditional societies distinguish gut microbiomes. Nature Communications, 2015, 6, 6505.	12.8	449
782	Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. European Journal of Nutrition, 2015, 54, 325-341.	3.9	437
783	Sewage Reflects the Microbiomes of Human Populations. MBio, 2015, 6, e02574.	4.1	220

#	Article	IF	CITATIONS
784	Nutri(meta)genetics and Cardiovascular Disease: Novel Concepts in the Interaction of Diet and Genomic Variation. Current Atherosclerosis Reports, 2015, 17, 505.	4.8	13
785	Obesity and the gastrointestinal microbiota: a review of associations and mechanisms. Nutrition Reviews, 2015, 73, 376-385.	5.8	119
786	The influence of the microbiota on the immune response to transplantation. Current Opinion in Organ Transplantation, 2015, 20, 1-7.	1.6	28
787	Inflammatory bowel disease pathogenesis: Where are we?. Journal of Gastroenterology and Hepatology (Australia), 2015, 30, 12-18.	2.8	67
788	The immunity–diet–microbiota axis in the development of metabolic syndrome. Current Opinion in Lipidology, 2015, 26, 73-81.	2.7	41
789	Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications, 2015, 6, 6734.	12.8	983
790	Culturable aerobic and facultative bacteria from the gut of the polyphagic dung beetle <i>Thorectes lusitanicus</i> . Insect Science, 2015, 22, 178-190.	3.0	17
792	The gut microbiome and diet in psychiatry. Current Opinion in Psychiatry, 2015, 28, 1-6.	6.3	301
793	Hypothalamic innate immune reaction in obesity. Nature Reviews Endocrinology, 2015, 11, 339-351.	9.6	133
794	Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology, 2015, 23, 354-366.	7.7	474
795	Why Is Initial Bacterial Colonization of the Intestine Important to Infants' and Children's Health?. Journal of Pediatric Gastroenterology and Nutrition, 2015, 60, 294-307.	1.8	252
796	Levansucrases of a Pseudomonas syringae pathovar as catalysts for the synthesis of potentially prebiotic oligo- and polysaccharides. New Biotechnology, 2015, 32, 597-605.	4.4	38
798	Impact of diet on the human intestinal microbiota. Current Opinion in Food Science, 2015, 2, 71-77.	8.0	44
799	The human gut microbiome, a taxonomic conundrum. Systematic and Applied Microbiology, 2015, 38, 276-286.	2.8	113
800	Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (<i>Gorilla) Tj ETQq0 0 0</i>	rgBT /Ove	rlqck 10 Tf 5
801	Gut Microbiota: The Conductor in the Orchestra of Immune–Neuroendocrine Communication. Clinical Therapeutics, 2015, 37, 954-967.	2.5	163
802	Locally sourced probiotics, the next opportunity for developing countries?. Trends in Biotechnology, 2015, 33, 197-200.	9.3	45

#	Article	IF	CITATIONS
804	Computational methodology for predicting the landscape of the human–microbial interactome region level influence. Journal of Bioinformatics and Computational Biology, 2015, 13, 1550023.	0.8	12
805	The Gut Microbiota of Rural Papua New Guineans: Composition, Diversity Patterns, and Ecological Processes. Cell Reports, 2015, 11, 527-538.	6.4	475
806	Host genetic variation impacts microbiome composition across human body sites. Genome Biology, 2015, 16, 191.	8.8	612
807	An integrated metabonomics and microbiology analysis of host-microbiota metabolic interactions in rats with Coptis chinensis-induced diarrhea. RSC Advances, 2015, 5, 79329-79341.	3.6	22
808	Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterology, 2015, 15, 100.	2.0	436
809	Impact of Gut Microbiota on Obesity, Diabetes, and Cardiovascular Disease Risk. Current Cardiology Reports, 2015, 17, 120.	2.9	125
810	The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation. Immunity, 2015, 43, 998-1010.	14.3	362
811	Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome, 2015, 3, 36.	11.1	283
812	Nutritional control of immunity: Balancing the metabolic requirements with an appropriate immune function. Seminars in Immunology, 2015, 27, 300-309.	5.6	55
813	Linking Microbiota to Human Diseases: A Systems Biology Perspective. Trends in Endocrinology and Metabolism, 2015, 26, 758-770.	7.1	134
814	Microbiota of the indoor environment: a meta-analysis. Microbiome, 2015, 3, 49.	11.1	216
815	Dysbiotic gut microbiome: A key element of Crohn's disease. Comparative Immunology, Microbiology and Infectious Diseases, 2015, 43, 36-49.	1.6	59
816	Stool Bacteriomic Profiling in Patients with Metastatic Renal Cell Carcinoma Receiving Vascular Endothelial Growth Factor–Tyrosine Kinase Inhibitors. Clinical Cancer Research, 2015, 21, 5286-5293.	7.0	52
817	High level of fecal calprotectin at age 2Âmonths as a marker of intestinal inflammation predicts atopic dermatitis and asthma by age 6. Clinical and Experimental Allergy, 2015, 45, 928-939.	2.9	69
818	Helminths and the microbiota: parts of the hygiene hypothesis. Parasite Immunology, 2015, 37, 314-323.	1.5	70
819	Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity. Journal of Immunology, 2015, 195, 4059-4066.	0.8	154
820	Gut Microbiome. Nutrition in Clinical Practice, 2015, 30, 734-746.	2.4	264
821	Description of a novel pectin-degrading bacterial species Prevotella pectinovora sp. nov., based on its phenotypic and genomic traits. Journal of Microbiology, 2015, 53, 503-510.	2.8	21

#	Article	IF	CITATIONS
822	High Amylose Starch with Low In Vitro Digestibility Stimulates Hindgut Fermentation and Has a Bifidogenic Effect in Weaned Pigs. Journal of Nutrition, 2015, 145, 2464-2470.	2.9	58
823	Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nature Communications, 2015, 6, 8141.	12.8	168
824	Analysis of the intestinal microbial community structure of healthy and long-living elderly residents in Gaotian Village of Liuyang City. Applied Microbiology and Biotechnology, 2015, 99, 9085-9095.	3.6	47
825	Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. Future Microbiology, 2015, 10, 1485-1504.	2.0	90
826	Impact of dietary fiber/starch ratio in shaping caecal microbiota in rabbits. Canadian Journal of Microbiology, 2015, 61, 771-784.	1.7	47
827	Assessing the Intestinal Microbiota in the SHINE Trial. Clinical Infectious Diseases, 2015, 61, S738-S744.	5.8	14
828	Impact of personalized diet and probiotic supplementation on inflammation, nutritional parameters and intestinal microbiota – The "RISTOMED project― Randomized controlled trial in healthy older people. Clinical Nutrition, 2015, 34, 593-602.	5.0	102
829	Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metabolism, 2015, 22, 971-982.	16.2	1,190
830	Crosstalk at the mucosal border: importance of the gut microenvironment in IBS. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 36-49.	17.8	147
831	Whole Plant Foods and Colon Cancer Risk. , 2015, , 195-207.		0
832	Whole Grain Oats Improve Insulin Sensitivity and Plasma Cholesterol Profile and Modify Gut Microbiota Composition in C57BL/6J Mice. Journal of Nutrition, 2015, 145, 222-230.	2.9	56
833	Early Childhood Gut Microbiomes Show Strong Geographic Differences Among Subjects at High Risk for Type 1 Diabetes. Diabetes Care, 2015, 38, 329-332.	8.6	79
834	The interplay between the intestinal microbiota and the immune system. Clinics and Research in Hepatology and Gastroenterology, 2015, 39, 9-19.	1.5	60
835	Deciphering the human microbiome using next-generation sequencing data and bioinformatics approaches. Methods, 2015, 79-80, 52-59.	3.8	39
836	Development of an Enhanced Metaproteomic Approach for Deepening the Microbiome Characterization of the Human Infant Gut. Journal of Proteome Research, 2015, 14, 133-141.	3.7	77
837	MECHANISMS IN ENDOCRINOLOGY: Gut microbiota in patients with type 2 diabetes mellitus. European Journal of Endocrinology, 2015, 172, R167-R177.	3.7	183
838	The human microbiota associated with overall health. Critical Reviews in Biotechnology, 2015, 35, 129-140.	9.0	20
839	Hygiene and other early childhood influences on the subsequent function of the immune system. Brain Research, 2015, 1617, 47-62.	2.2	78

#	Article	IF	CITATIONS
840	Gut microbiome and anticancer immune response: really hot Sh*t!. Cell Death and Differentiation, 2015, 22, 199-214.	11.2	100
841	Gut microbiome and nonalcoholic fatty liver diseases. Pediatric Research, 2015, 77, 245-251.	2.3	123
842	Environmental Risk Factors for Inflammatory Bowel Diseases: A Review. Digestive Diseases and Sciences, 2015, 60, 290-298.	2.3	136
843	In-depth diversity analysis of the bacterial community resident in the camel rumen. Systematic and Applied Microbiology, 2015, 38, 67-76.	2.8	92
844	Maternal stress, nutrition and physical activity: Impact on immune function, CNS development and psychopathology. Brain Research, 2015, 1617, 28-46.	2.2	89
845	Novel opportunities for the exploitation of host–microbiome interactions in the intestine. Current Opinion in Biotechnology, 2015, 32, 28-34.	6.6	14
846	Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals. Mucosal Immunology, 2015, 8, 760-772.	6.0	255
847	Advances in Host Plant and Rhizobium Genomics to Enhance Symbiotic Nitrogen Fixation inÂGrain Legumes. Advances in Agronomy, 2015, , 1-116.	5.2	73
848	A metabolomic and pharmacokinetic study on the mechanism underlying the lipid-lowering effect of orally administered berberine. Molecular BioSystems, 2015, 11, 463-474.	2.9	62
849	Childhood malnutrition and the intestinal microbiome. Pediatric Research, 2015, 77, 256-262.	2.3	120
850	Comparative Analysis of the Intestinal Bacterial Communities in Different Species of Carp by Pyrosequencing. Microbial Ecology, 2015, 69, 25-36.	2.8	212
851	Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environmental Microbiology, 2015, 17, 1615-1630.	3.8	118
852	Breast milk, microbiota, and intestinal immune homeostasis. Pediatric Research, 2015, 77, 220-228.	2.3	236
853	Diet and host–microbial crosstalk in postnatal intestinal immune homeostasis. Nature Reviews Gastroenterology and Hepatology, 2015, 12, 14-25.	17.8	85
854	Obesity-Associated Gut Microbiota. , 2015, , 149-171.		3
855	Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut, 2015, 64, 731-742.	12.1	477
856	Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophrenia Research, 2016, 176, 23-35.	2.0	188
857	Helminth Infections and Gut Microbiota: The Futuristic Study of Pathogen Virulence and Gut Ecosystem. Journal of Molecular Biomarkers & Diagnosis, 2016, 07, .	0.4	3

#	Article	IF	Citations
859	Comprehensive review of association estimators for the inference of gene networks. Turkish Journal of Electrical Engineering and Computer Sciences, 2016, 24, 695-718.	1.4	11
860	5. Entwicklung des Mikrobioms beim Neugeborenen und Kleinkind. , 2016, , .		0
861	6. Die physiologische Standortflora. , 2016, , 61-82.		0
862	Microbiome research in food allergy and atopic dermatitis. Allergy Asthma & Respiratory Disease, 2016, 4, 389.	0.2	8
863	Development and Application of a Plant-Based Diet Scoring System for Japanese Patients with Inflammatory Bowel Disease. , 2016, 20, 16-019.		20
864	Intestinal microbiota transplant – current state of knowledge. Reumatologia, 2016, 1, 24-28.	1.1	11
865	Microbiome. , 2016, , .		0
866	Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. World Journal of Gastroenterology, 2016, 22, 8905.	3.3	113
867	Effects of Undaria pinnatifida and Laminaria japonica on Rat's Intestinal Microbiota and Metabolite. Journal of Nutrition & Food Sciences, 2016, 06, .	1.0	8
868	Factoring the intestinal microbiome into the pathogenesis of autoimmune hepatitis. World Journal of Gastroenterology, 2016, 22, 9257.	3.3	55
869	Environmental risk factors for inflammatory bowel diseases: Evidence based literature review. World Journal of Gastroenterology, 2016, 22, 6296.	3.3	144
870	Structure and Function of IgA. , 2016, , 23-30.		0
871	An Exposome Perspective on Environmental Enteric Dysfunction. Environmental Health Perspectives, 2016, 124, 1121-1126.	6.0	20
872	Microbiome, Prebiotics, and Human Health. , 2016, , 335-343.		1
873	Influence of environmental factors in the development of inflammatory bowel diseases. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2016, 7, 112.	1.1	71
875	The Microbiome and Mental Health: Looking Back, Moving Forward with Lessons from Allergic Diseases. Clinical Psychopharmacology and Neuroscience, 2016, 14, 131-147.	2.0	36
876	Role of the Microbiota in Immune Development. , 2016, , 109-119.		0
877	Perspectives on Microbiome Manipulation in People of Developing Countries. , 2016, , 31-43.		Ο

# 878	ARTICLE The gut microbiota: a key regulator of metabolic diseases. BMB Reports, 2016, 49, 536-541.	IF 2.4	Citations
879	Influence of Dietary Factors on Gut Microbiota. , 2016, , 147-154.		0
880	Schisandrin B: A Double-Edged Sword in Nonalcoholic Fatty Liver Disease. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	4.0	29
881	Fecal Microbiota and Diet of Children with Chronic Constipation. International Journal of Pediatrics (United Kingdom), 2016, 2016, 1-8.	0.8	28
882	Microflora Disturbance during Progression of Glucose Intolerance and Effect of Sitagliptin: An Animal Study. Journal of Diabetes Research, 2016, 2016, 1-10.	2.3	85
883	Colectomy Rates for Ulcerative Colitis Differ between Ethnic Groups: Results from a 15-Year Nationwide Cohort Study. Canadian Journal of Gastroenterology and Hepatology, 2016, 2016, 1-7.	1.9	12
884	The Microbiome in Aging. , 2016, , 185-222.		1
885	Microbiome and the Effect on Immune Response. , 2016, , 171-194.		0
886	Effects of dietary fiber preparations made from maize starch on the growth and activity of selected bacteria from the Firmicutes, Bacteroidetes, and Actinobacteria phyla in fecal samples from obese children Acta Biochimica Polonica, 2016, 63, 261-6.	0.5	15
887	Gut Microbiota: A Contributing Factor to Obesity. Frontiers in Cellular and Infection Microbiology, 2016, 6, 95.	3.9	70
888	Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 290.	4.8	93
889	Alteration in the Gut Microbiota Provokes Susceptibility to Tuberculosis. Frontiers in Immunology, 2016, 7, 529.	4.8	122
890	Role of Vitamin D in the Hygiene Hypothesis: The Interplay between Vitamin D, Vitamin D Receptors, Gut Microbiota, and Immune Response. Frontiers in Immunology, 2016, 7, 627.	4.8	108
891	Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Frontiers in Microbiology, 2016, 7, 185.	3.5	1,443
892	Gut Microbiome and Kidney Disease in Pediatrics: Does Connection Exist?. Frontiers in Microbiology, 2016, 7, 235.	3.5	7
893	Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem?. Frontiers in Microbiology, 2016, 7, 455.	3.5	438
894	Development of Ruminal and Fecal Microbiomes Are Affected by Weaning But Not Weaning Strategy in Dairy Calves. Frontiers in Microbiology, 2016, 7, 582.	3.5	148
895	Molecular Characterization and Meta-Analysis of Gut Microbial Communities Illustrate Enrichment of Prevotella and Megasphaera in Indian Subjects. Frontiers in Microbiology, 2016, 7, 660.	3.5	110

#	ARTICLE	IF	CITATIONS
896	Current Knowledge and Future Research Directions on Fecal Bacterial Patterns and Their Association with Asthma. Frontiers in Microbiology, 2016, 7, 838.	3.5	5
897	Variations in the Post-weaning Human Gut Metagenome Profile As Result of Bifidobacterium Acquisition in the Western Microbiome. Frontiers in Microbiology, 2016, 07, 1058.	3.5	14
898	Fermented Foods: Are They Tasty Medicines for Helicobacter pylori Associated Peptic Ulcer and Gastric Cancer?. Frontiers in Microbiology, 2016, 7, 1148.	3.5	21
899	Composition of Ileal Bacterial Community in Grazing Goats Varies across Non-rumination, Transition and Rumination Stages of Life. Frontiers in Microbiology, 2016, 07, 1364.	3.5	46
900	From Mouth to Model: Combining in vivo and in vitro Oral Biofilm Growth. Frontiers in Microbiology, 2016, 7, 1448.	3.5	25
901	Exploring Relationships between Host Genome and Microbiome: New Insights from Genome-Wide Association Studies. Frontiers in Microbiology, 2016, 7, 1611.	3.5	22
902	Interactions between Obesity Status and Dietary Intake of Monounsaturated and Polyunsaturated Oils on Human Gut Microbiome Profiles in the Canola Oil Multicenter Intervention Trial (COMIT). Frontiers in Microbiology, 2016, 7, 1612.	3.5	64
903	Alteration of Fecal Microbiota Profiles in Juvenile Idiopathic Arthritis. Associations with HLA-B27 Allele and Disease Status. Frontiers in Microbiology, 2016, 7, 1703.	3.5	65
904	Evaluating the Contribution of Gut Microbiota to the Variation of Porcine Fatness with the Cecum and Fecal Samples. Frontiers in Microbiology, 2016, 07, 2108.	3.5	66
905	Effect of Dietary Bioactive Compounds on Mitochondrial and Metabolic Flexibility. Diseases (Basel,) Tj ETQq1 1 (0.784314 2.5	rgBT/Overloc
906	Gut Microbiota and Lifestyle Interventions in NAFLD. International Journal of Molecular Sciences, 2016, 17, 447.	4.1	75
907	Diet, Microbiota, Obesity, and NAFLD: A Dangerous Quartet. International Journal of Molecular	(
	Sciences, 2016, 17, 481.	4.1	100
908	Sciences, 2016, 17, 481. Modulating Composition and Metabolic Activity of the Gut Microbiota in IBD Patients. International Journal of Molecular Sciences, 2016, 17, 578.	4.1 4.1	100 55
908 909	Sciences, 2016, 17, 481. Modulating Composition and Metabolic Activity of the Gut Microbiota in IBD Patients. International		
	Sciences, 2016, 17, 481. Modulating Composition and Metabolic Activity of the Gut Microbiota in IBD Patients. International Journal of Molecular Sciences, 2016, 17, 578. The Metabolic Role of Gut Microbiota in the Development of Nonalcoholic Fatty Liver Disease and	4.1	55
909	Sciences, 2016, 17, 481. Modulating Composition and Metabolic Activity of the Gut Microbiota in IBD Patients. International Journal of Molecular Sciences, 2016, 17, 578. The Metabolic Role of Gut Microbiota in the Development of Nonalcoholic Fatty Liver Disease and Cardiovascular Disease. International Journal of Molecular Sciences, 2016, 17, 1225.	4.1 4.1	55 50
909 910	Sciences, 2016, 17, 481. Modulating Composition and Metabolic Activity of the Gut Microbiota in IBD Patients. International Journal of Molecular Sciences, 2016, 17, 578. The Metabolic Role of Gut Microbiota in the Development of Nonalcoholic Fatty Liver Disease and Cardiovascular Disease. International Journal of Molecular Sciences, 2016, 17, 1225. Microbiome, Metabolome and Inflammatory Bowel Disease. Microorganisms, 2016, 4, 20. Impact of a High-Fat or High-Fiber Diet on Intestinal Microbiota and Metabolic Markers in a Pig Model.	4.1 4.1 3.6	55 50 142

#	Article	IF	CITATIONS
914	Dietary Gluten-Induced Gut Dysbiosis Is Accompanied by Selective Upregulation of microRNAs with Intestinal Tight Junction and Bacteria-Binding Motifs in Rhesus Macaque Model of Celiac Disease. Nutrients, 2016, 8, 684.	4.1	57
915	Sodium Butyrate Reduces Colitogenic Immunoglobulin A-Coated Bacteria and Modifies the Composition of Microbiota in IL-10 Deficient Mice. Nutrients, 2016, 8, 728.	4.1	30
916	Analysis of Gut Microbiota in Coronary Artery Disease Patients: a Possible Link between Gut Microbiota and Coronary Artery Disease. Journal of Atherosclerosis and Thrombosis, 2016, 23, 908-921.	2.0	224
917	Gut Microbiota and Coronary Artery Disease. International Heart Journal, 2016, 57, 663-671.	1.0	55
918	The Role of the Gut Microbiome on Chronic Kidney Disease. Advances in Applied Microbiology, 2016, 96, 65-94.	2.4	86
919	Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population. Journal of Clinical Biochemistry and Nutrition, 2016, 59, 65-70.	1.4	171
920	Lower Neighborhood Socioeconomic Status Associated with Reduced Diversity of the Colonic Microbiota in Healthy Adults. PLoS ONE, 2016, 11, e0148952.	2.5	121
921	Longitudinal Analysis of the Intestinal Microbiota in Persistently Stunted Young Children in South India. PLoS ONE, 2016, 11, e0155405.	2.5	94
922	Phenylketonuria and Gut Microbiota: A Controlled Study Based on Next-Generation Sequencing. PLoS ONE, 2016, 11, e0157513.	2.5	52
923	Mothers Secretor Status Affects Development of Childrens Microbiota Composition and Function: A Pilot Study. PLoS ONE, 2016, 11, e0161211.	2.5	63
924	Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health?. Frontiers in Physiology, 2016, 7, 51.	2.8	156
925	Development of the Chick Microbiome: How Early Exposure Influences Future Microbial Diversity. Frontiers in Veterinary Science, 2016, 3, 2.	2.2	246
926	Enteric Ecosystem Disruption in Autism Spectrum Disorder: Can the Microbiota and Macrobiota be Restored?. Current Pharmaceutical Design, 2016, 22, 6107-6121.	1.9	18
928	The Microbiome and Cancer. Cancer Nursing, 2016, 39, E56-E62.	1.5	20
929	The Infant Microbiome. Nursing Research, 2016, 65, 76-88.	1.7	203
930	Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metabolism, 2016, 24, 151-157.	16.2	496
931	Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Molecular Ecology, 2016, 25, 3776-3800.	3.9	325
932	Airway Microbiota and the Implications of Dysbiosis in Asthma. Current Allergy and Asthma Reports, 2016, 16, 52.	5.3	48

#	Article	IF	CITATIONS
933	Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. Journal of Molecular Biology, 2016, 428, 3230-3252.	4.2	375
934	Dysbiosis Contributes to Arthritis Development via Activation of Autoreactive T Cells in the Intestine. Arthritis and Rheumatology, 2016, 68, 2646-2661.	5.6	463
935	Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. Journal of Avian Biology, 2016, 47, 659-668.	1.2	66
936	The human gut microbiota and its interactive connections to diet. Journal of Human Nutrition and Dietetics, 2016, 29, 539-546.	2.5	62
937	Alterations in the gut microbiotas of children with food sensitization in early life. Pediatric Allergy and Immunology, 2016, 27, 254-262.	2.6	141
938	Effects of dispersal limitation in the face of intense selection via dietary intervention on the faecal microbiota of rats. Environmental Microbiology Reports, 2016, 8, 187-195.	2.4	10
939	Biological Anthropology in 2015: Open Access, Biocultural Interactions, and Social Change. American Anthropologist, 2016, 118, 317-329.	1.4	7
940	Exposure to soil, house dust and decaying plants increases gut microbial diversity and decreases serum immunoglobulin <scp>E</scp> levels in <scp>BALB</scp> /c mice. Environmental Microbiology, 2016, 18, 1326-1337.	3.8	62
941	The human gut microbiome in health: establishment and resilience of microbiota over a lifetime. Environmental Microbiology, 2016, 18, 2103-2116.	3.8	169
942	Role of Diet in Inflammatory Bowel Disease. Annals of Nutrition and Metabolism, 2016, 68, 32-41.	1.9	67
943	Enteropathogen-Induced Microbiota Biofilm Disruptions and Post-Infectious Intestinal Inflammatory Disorders. Current Tropical Medicine Reports, 2016, 3, 94-101.	3.7	3
944	Microbiota at the crossroads of autoimmunity. Autoimmunity Reviews, 2016, 15, 859-869.	5.8	117
945	Dietary Practices and Beliefs in Patients with Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2016, 22, 164-170.	1.9	146
946	Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflammatory Bowel Diseases, 2016, 22, 1137-1150.	1.9	555
947	The prebiotic concept and human health: a changing landscape with riboflavin as a novel prebiotic candidate?. European Journal of Clinical Nutrition, 2016, 70, 1348-1353.	2.9	45
948	Diet–microbiota interactions as moderators of human metabolism. Nature, 2016, 535, 56-64.	27.8	1,602
949	Gut microbiome in chronic kidney disease. Experimental Physiology, 2016, 101, 471-477.	2.0	61
950	Beneficial Effects of a Dietary Weight Loss Intervention on Human Gut Microbiome Diversity and Metabolism Are Not Sustained during Weight Maintenance, Obesity Facts, 2016, 9, 379-391	3.4	48

#	Article	IF	CITATIONS
951	Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type. BMC Microbiology, 2016, 16, 284.	3.3	92
952	Functional analysis for gut microbes of the brown tree frog (Polypedates megacephalus) in artificial hibernation. BMC Genomics, 2016, 17, 1024.	2.8	68
953	Influence of habitual dietary fibre intake on the responsiveness of the gut microbiota to a prebiotic: protocol for a randomised, double-blind, placebo-controlled, cross-over, single-centre study. BMJ Open, 2016, 6, e012504.	1.9	12
954	The Gastrointestinal Microbiome. , 2016, , 126-137.		1
955	The Gut Microbiome. , 2016, , 799-808.		2
956	Comparison of the bacterial communities in feces from wild versus housed sables (Martes zibellina) by high-throughput sequence analysis of the bacterial 16S rRNA gene. AMB Express, 2016, 6, 98.	3.0	18
957	Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. Journal of the International Society of Sports Nutrition, 2016, 13, 43.	3.9	338
958	Effects of <scp>l</scp> -carnitine and/or maize distillers dried grains with solubles in diets of gestating and lactating sows on the intestinal barrier functions of their offspring. British Journal of Nutrition, 2016, 116, 459-469.	2.3	9
959	Dietary and Lifestyle Factors Associated with Colorectal Cancer Risk and Interactions with Microbiota: Fiber, Red or Processed Meat and Alcoholic Drinks. Gastrointestinal Tumors, 2016, 3, 17-24.	0.7	78
960	Systemic Wound Healing Associated with local sub-Cutaneous Mechanical Stimulation. Scientific Reports, 2016, 6, 39043.	3.3	13
961	Measuring the diversity of the human microbiota with targeted next-generation sequencing. Briefings in Bioinformatics, 2018, 19, bbw119.	6.5	58
963	Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nature Communications, 2016, 7, 13699.	12.8	145
964	European Crohn's and Colitis Organisation Topical Review on environmental factors in IBD. Journal of Crohn's and Colitis, 2017, 11, jjw223.	1.3	27
965	Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health. Trends in Food Science and Technology, 2016, 57, 201-212.	15.1	48
966	Nutrition Considerations for Microbiota Health in Diabetes. Diabetes Spectrum, 2016, 29, 238-244.	1.0	8
967	Human microbiome as therapeutic intervention target to reduce cardiovascular disease risk. Current Opinion in Lipidology, 2016, 27, 615-622.	2.7	36
968	The Gut Microbiome and Its Role in Obesity. Nutrition Today, 2016, 51, 167-174.	1.0	261
969	Nutrition, Epigenetics and Health: Evolutionary Perspectives. , 2016, , 177-199.		1

# 970	ARTICLE Analysis and Interpretation of the Human Microbiome. Inflammatory Bowel Diseases, 2016, 22, 1713-1722.	IF 1.9	Citations
972	Biome engineeringâ€⊋020. Microbial Biotechnology, 2016, 9, 553-563.	4.2	28
973	Gut Microbiotas and Host Evolution: Scaling Up Symbiosis. Trends in Ecology and Evolution, 2016, 31, 539-549.	8.7	308
974	Host genetics is associated with the gut microbial community membership rather than the structure. Molecular BioSystems, 2016, 12, 1676-1686.	2.9	11
975	Spatial dynamics of the bacterial community structure in the gastrointestinal tract of red kangaroo (Macropus rufus). World Journal of Microbiology and Biotechnology, 2016, 32, 98.	3.6	14
976	Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiology, 2016, 16, 90.	3.3	993
977	Dextrins from Maize Starch as Substances Activating the Growth of Bacteroidetes and Actinobacteria Simultaneously Inhibiting the Growth of Firmicutes, Responsible for the Occurrence of Obesity. Plant Foods for Human Nutrition, 2016, 71, 190-196.	3.2	38
978	Biological mechanisms underlying evolutionary origins of psychotic and mood disorders. Neuroscience Research, 2016, 111, 13-24.	1.9	5
980	The Gut Microbiota and Obesity in Humans. , 2016, , 27-47.		0
981	Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clinical and Translational Immunology, 2016, 5, e82.	3.8	196
982	IBD: In Food We Trust. Journal of Crohn's and Colitis, 2016, 10, 1351-1361.	1.3	56
983	Procedure optimization for extracting short-chain fatty acids from human faeces. Journal of Pharmaceutical and Biomedical Analysis, 2016, 124, 337-340.	2.8	19
984	Different subtype strains of <i>Akkermansia muciniphila</i> abundantly colonize in southern China. Journal of Applied Microbiology, 2016, 120, 452-459.	3.1	47
985	Elucidating the richness of bacterial groups in the gut of Nicobarese tribal community – Perspective on their lifestyle transition. Anaerobe, 2016, 39, 68-76.	2.1	10
986	A bug's view of allergic airways disease. Paediatric Respiratory Reviews, 2016, 19, 69-74.	1.8	2
987	Improvement in adiposity with oligofructose is modified by antibiotics in obese rats. FASEB Journal, 2016, 30, 2720-2732.	0.5	30
988	Evaluation of the effects of intrapartum antibiotic prophylaxis on newborn intestinal microbiota using a sequencing approach targeted to multi hypervariable 16S rDNA regions. Applied Microbiology and Biotechnology, 2016, 100, 5537-5546.	3.6	84
989	Relationship of Enhanced Butyrate Production by Colonic Butyrate-Producing Bacteria to Immunomodulatory Effects in Normal Mice Fed an Insoluble Fraction of Brassica rapa L. Applied and Environmental Microbiology, 2016, 82, 2693-2699.	3.1	36

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
991	Mediterranean diet and faecal microbiota: a transversal study. Food and Function, 2016, 7, 2347-2356.	4.6	120
992	Microbiota and caspase-1/caspase-8 regulate IL-1β-mediated bone disease. Gut Microbes, 2016, 7, 334-341	9.8	13
993	Altered gastrointestinal microbiota in irritable bowel syndrome and its modification by diet: probiotics, prebiotics and the low FODMAP diet. Proceedings of the Nutrition Society, 2016, 75, 306-318.	1.0	89
994	Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis, 2016, 44, 399-407.	2.0	122
995	Foodomics as part of the host-microbiota-exposome interplay. Journal of Proteomics, 2016, 147, 3-20.	2.4	46
996	Gut microbiota: an Indicator to Gastrointestinal Tract Diseases. Journal of Gastrointestinal Cancer, 2016, 47, 232-238.	1.3	19
997	Multicultural Aspects in Functional Gastrointestinal Disorders (FGIDs). Gastroenterology, 2016, 150, 1344-1354.e2.	1.3	54
998	The healthy human microbiome. Genome Medicine, 2016, 8, 51.	8.2	1,214
999	Impact of early gut microbiota on immune and metabolic development and function. Seminars in Fetal and Neonatal Medicine, 2016, 21, 380-387.	2.3	83
1000	Early-life enteric infections: relation between chronic systemic inflammation and poor cognition in children. Nutrition Reviews, 2016, 74, 374-386.	5.8	73
1001	The Gut Microbiota in Type 2 Diabetes. , 2016, , 275-293.		0
1002	Fine-tuning of the mucosal barrier and metabolic systems using the diet-microbial metabolite axis. International Immunopharmacology, 2016, 37, 79-86.	3.8	16
1004	Genetic Determinants of the Gut Microbiome in UK Twins. Cell Host and Microbe, 2016, 19, 731-743.	11.0	831
1005	Human Microbiota-Associated Mice: A Model with Challenges. Cell Host and Microbe, 2016, 19, 575-578.	11.0	190
1006	The Human Gut Microbiota. Advances in Experimental Medicine and Biology, 2016, 902, 95-108.	1.6	72
1007	Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits. ISME Journal, 2016, 10, 2973-2977.	9.8	308
1008	Human microbiome versus food-borne pathogens: friend or foe. Applied Microbiology and Biotechnology, 2016, 100, 4845-4863.	3.6	19
1009	Microbes Drive Evolution of Animals and Plants: the Hologenome Concept. MBio, 2016, 7, e01395.	4.1	358

		TATION RE	PORT	
#	Article		IF	Citations
1011	Microbiota bacteriana asociada al papel moneda de circulaciÃ ³ n en Colombia. Infectio, 2016, 20, 218-	224.	0.4	2
1012	The Role of Microbiome Diversity in Brain Health and Inflammation: A Clinical Conversation with David Perlmutter, MD, FACN, ABIHM, and Robert Rountree, MD. Alternative and Complementary Therapies, 2016, 22, 87-92.		0.1	0
1013	Microbiota and chronic inflammatory arthritis: an interwoven link. Journal of Translational Medicine, 2016, 14, 233.		4.4	37
1014	Efficiency of Amazonian tubers flours in modulating gut microbiota of male rats. Innovative Food Science and Emerging Technologies, 2016, 38, 1-6.		5.6	16
1015	Consensus canadien sur la nutrition féminine : adolescence, reproduction, ménopause et au-delÃ Journal of Obstetrics and Gynaecology Canada, 2016, 38, 555-609.e19.		0.7	1
1016	Healthy Subjects Differentially Respond to Dietary Capsaicin Correlating with Specific Gut Enterotypes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4681-4689.		3.6	103
1017	The fungal cultivar of leaf utter ants produces specific enzymes in response to different plant substrates. Molecular Ecology, 2016, 25, 5795-5805.		3.9	37
1018	Effect of dietary interventions on the intestinal microbiota of Mongolian hosts. Science Bulletin, 2016, 61, 1605-1614.		9.0	16
1019	Neonatal Androgen Exposure Causes Persistent Gut Microbiota Dysbiosis Related to Metabolic Diseas in Adult Female Rats. Endocrinology, 2016, 157, 4888-4898.	е	2.8	76
1020	Health Disparities and the Microbiome. Trends in Microbiology, 2016, 24, 847-850.		7.7	66
1021	The CF gastrointestinal microbiome: Structure and clinical impact. Pediatric Pulmonology, 2016, 51, S35-S44.		2.0	27
1022	Does the buck stop with the bugs?: an overview of microbial dysbiosis in rheumatoid arthritis. International Journal of Rheumatic Diseases, 2016, 19, 8-20.		1.9	46
1023	Nutrition and Depression: Current Evidence on the Association of Dietary Patterns with Depression and Its Subtypes. , 2016, , 279-304.			1
1024	Purified rutin and rutinâ€rich asparagus attenuates disease severity and tissue damage following dextran sodium sulfateâ€induced colitis. Molecular Nutrition and Food Research, 2016, 60, 2396-241	2.	3.3	27
1025	Environmental factors in autoimmune diseases and their role in multiple sclerosis. Cellular and Molecular Life Sciences, 2016, 73, 4611-4622.		5.4	82
1032	Lactulose Differently Modulates the Composition of Luminal and Mucosal Microbiota in C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 2016, 64, 6240-6247.		5.2	98
1033	Review: Microbiome in Inflammatory Arthritis and Human Rheumatic Diseases. Arthritis and Rheumatology, 2016, 68, 35-45.		5.6	187
1034	Comparative analysis of the fecal bacterial community ofÂfive harbor seals (Phoca vitulina). MicrobiologyOpen, 2016, 5, 782-792.		3.0	28

#	Article	IF	CITATIONS
1035	Stress and the Microbiota–Gut–Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neuroscience and Therapeutics, 2016, 22, 102-117.	3.9	262
1036	The gut microbiota and metabolic disease: current understanding and future perspectives. Journal of Internal Medicine, 2016, 280, 339-349.	6.0	212
1037	Japanese traditional dietary fungus koji Aspergillus oryzae functions as a prebiotic for Blautia coccoides through glycosylceramide: Japanese dietary fungus koji is a new prebiotic. SpringerPlus, 2016, 5, 1321.	1.2	41
1038	Consumption of a Bifidobacterium bifidum Strain for 4 Weeks Modulates Dominant Intestinal Bacterial Taxa and Fecal Butyrate in Healthy Adults. Applied and Environmental Microbiology, 2016, 82, 5850-5859.	3.1	50
1039	The association between the intake of specific dietary components and lifestyle factors and microscopic colitis. European Journal of Clinical Nutrition, 2016, 70, 1309-1317.	2.9	33
1040	Interplay between gut microbiota, its metabolites and human metabolism: Dissecting cause from consequence. Trends in Food Science and Technology, 2016, 57, 233-243.	15.1	22
1041	Gut Microbiota: Modulation of Host Physiology in Obesity. Physiology, 2016, 31, 327-335.	3.1	48
1042	The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, 34, 1210-1224.	11.7	158
1043	Diet and Gut Microbial Function in Metabolic and Cardiovascular Disease Risk. Current Diabetes Reports, 2016, 16, 93.	4.2	28
1046	Insights into human evolution from ancient and contemporary microbiome studies. Current Opinion in Genetics and Development, 2016, 41, 14-26.	3.3	49
1047	The Role of the Intestinal Microbiome in Type 1 Diabetes Pathogenesis. Current Diabetes Reports, 2016, 16, 89.	4.2	47
1048	Colonyâ€dependent sex differences in protozoan communities of the lower termite <i>Reticulitermes speratus</i> (Isoptera: Rhinotermitidae). Ecological Research, 2016, 31, 749-755.	1.5	14
1049	Hyperoxaluria leads to dysbiosis and drives selective enrichment of oxalate metabolizing bacterial species in recurrent kidney stone endures. Scientific Reports, 2016, 6, 34712.	3.3	84
1051	Gut microbiome and dietary patterns in different Saudi populations and monkeys. Scientific Reports, 2016, 6, 32191.	3.3	55
1052	Differential fecal microbiota are retained in broiler chicken lines divergently selected for fatness traits. Scientific Reports, 2016, 6, 37376.	3.3	83
1053	Changes in intestinal immunity, gut microbiota, and expression of energy metabolism–related genes explain adenoma growth in bilberry and cloudberry-fed Apc Min mice. Nutrition Research, 2016, 36, 1285-1297.	2.9	17
1054	Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutrition Reviews, 2016, 74, 624-634.	5.8	401
1055	Insulin Sensitivity-Enhancing Activity of Phlorizin Is Associated with Lipopolysaccharide Decrease and Gut Microbiota Changes in Obese and Type 2 Diabetes (<i>db/db</i>) Mice. Journal of Agricultural and Food Chemistry, 2016, 64, 7502-7511.	5.2	92

#	Article	IF	CITATIONS
1057	- Nutrigenetics and Crohn's Disease. , 2016, , 172-187.		0
1058	Micronutrient Adequacy and Dietary Diversity Exert Positive and Distinct Effects on Linear Growth in Urban Zambian Infants. Journal of Nutrition, 2016, 146, 2093-2101.	2.9	24
1059	Role of Gut Microbiota and Short Chain Fatty Acids in Modulating Energy Harvest and Fat Partitioning in Youth. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4367-4376.	3.6	124
1060	Dietary Risk Factors for the Onset and Relapse of Inflammatory Bowel Disease. , 2016, , 17-28.		0
1061	Microbiome–Epigenome Interactions and the Environmental Origins of Inflammatory Bowel Diseases. Journal of Pediatric Gastroenterology and Nutrition, 2016, 62, 208-219.	1.8	50
1063	Predictable food supplies induce plastic shifts in avian scaled body mass. Behavioral Ecology, 0, , arw108.	2.2	11
1064	Visceral adiposity syndrome. Diabetology and Metabolic Syndrome, 2016, 8, 40.	2.7	85
1065	Mobile genes in the human microbiome are structured from global to individual scales. Nature, 2016, 535, 435-439.	27.8	233
1066	Intestinal microbiota could transfer host Gut characteristics from pigs to mice. BMC Microbiology, 2016, 16, 238.	3.3	54
1068	Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys. Advances in Nutrition, 2016, 7, 1111-1121.	6.4	51
1069	Microbial Community Patterns Associated with Automated Teller Machine Keypads in New York City. MSphere, 2016, 1, .	2.9	28
1070	Prolonged transfer of feces from the lean mice modulates gut microbiota in obese mice. Nutrition and Metabolism, 2016, 13, 57.	3.0	55
1071	Long-Term Implications of Antibiotic Use on Gut Health and Microbiota in Populations Including Patients With Cystic Fibrosis. , 2016, , 223-259.		1
1072	Psychobiotics and the Manipulation of Bacteria–Gut–Brain Signals. Trends in Neurosciences, 2016, 39, 763-781.	8.6	691
1073	Good Bugs, Bad Bugs in the Gut: The Role of Microbiota Dysbiosis in Chronic Gastrointestinal Consequences of Infection. American Journal of Gastroenterology Supplements (Print), 2016, 3, 25-32.	0.7	6
1074	Prosteatotic and Protective Components in a Unique Model of Fatty Liver: Gut Microbiota and Suppressed Complement System. Scientific Reports, 2016, 6, 31763.	3.3	47
1075	Dairy and plant based food intakes are associated with altered faecal microbiota in 2 to 3 year old Australian children. Scientific Reports, 2016, 6, 32385.	3.3	58
1076	Inferences of African evolutionary history from genomic data. Current Opinion in Genetics and Development, 2016, 41, 159-166.	3.3	34

58

#	Article	IF	CITATIONS
1077	Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats. Journal of Ethnopharmacology, 2016, 194, 717-726.	4.1	86
1078	Alterations in the Fecal Microbiota of Patients with HIV-1 Infection: An Observational Study in A Chinese Population. Scientific Reports, 2016, 6, 30673.	3.3	153
1079	The microbiota and chronic kidney diseases: a doubleâ€edged sword. Clinical and Translational Immunology, 2016, 5, e86.	3.8	62
1080	Soy and Gut Microbiota: Interaction and Implication for Human Health. Journal of Agricultural and Food Chemistry, 2016, 64, 8695-8709.	5.2	92
1081	Significant pharmacokinetic differences of berberine are attributable to variations in gut microbiota between Africans and Chinese. Scientific Reports, 2016, 6, 27671.	3.3	37
1082	Obese Mice Fed a Diet Supplemented with Enzyme-Treated Wheat Bran Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria. Journal of Nutrition, 2016, 146, 2445-2460.	2.9	16
1083	Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging, 2016, 4, 3-16.	1.1	150
1084	High purity galacto-oligosaccharides enhance specific Bifidobacterium species and their metabolic activity in the mouse gut microbiome. Beneficial Microbes, 2016, 7, 247-264.	2.4	85
1085	The human gut microbiome of Latin America populations: a landscape to be discovered. Current Opinion in Infectious Diseases, 2016, 29, 528-537.	3.1	20
1086	The microbiome in asthma. Current Opinion in Pediatrics, 2016, 28, 764-771.	2.0	57
1087	A method for automated pathogenic content estimation with application to rheumatoid arthritis. BMC Systems Biology, 2016, 10, 107.	3.0	9
1088	Unusual sub-genus associations of faecal Prevotella and Bacteroides with specific dietary patterns. Microbiome, 2016, 4, 57.	11.1	101
1089	The Microbiome of the Built Environment and Human Behavior. International Review of Neurobiology, 2016, 131, 289-323.	2.0	47
1090	The Intestinal Microbiota in the Irritable Bowel Syndrome. International Review of Neurobiology, 2016, 131, 247-261.	2.0	21
1091	The Importance of Diet and Gut Health to the Treatment and Prevention of Mental Disorders. International Review of Neurobiology, 2016, 131, 325-346.	2.0	33
1092	Gut Microbial Diversity Is Reduced in Smokers with Crohn's Disease. Inflammatory Bowel Diseases, 2016, 22, 2070-2077.	1.9	83
1093	The Significance of the Enteric Microbiome on the Development of Childhood Disease: A Review of Prebiotic and Probiotic Therapies in Disorders of Childhood. Clinical Medicine Insights Pediatrics, 2016, 10, CMPed.S38338.	1.4	60
1094	Effect of probiotic yoghurt on animal-based diet-induced change in gut microbiota: an open, randomised, parallel-group study. Beneficial Microbes, 2016, 7, 473-484.	2.4	38

#	Article	IF	CITATIONS
1095	The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology, 2016, 63, 764-775.	7.3	1,029
1096	The Gut Microbiome and Obesity. Current Oncology Reports, 2016, 18, 45.	4.0	230
1097	What's bugging your teen?—The microbiota and adolescent mental health. Neuroscience and Biobehavioral Reviews, 2016, 70, 300-312.	6.1	44
1098	Therapeutic potential of recombinant cystatin from Schistosoma japonicum in TNBS-induced experimental colitis of mice. Parasites and Vectors, 2016, 9, 6.	2.5	61
1099	The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: a review. Microbiome, 2016, 4, 21.	11.1	99
1100	The role of the gut microbiota in NAFLD. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 412-425.	17.8	728
1101	Global investigation of composition and interaction networks in gut microbiomes of individuals belonging to diverse geographies and age-groups. Gut Pathogens, 2016, 8, 17.	3.4	38
1102	Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Reports, 2016, 15, 2809-2824.	6.4	489
1103	The role of Gut Microbiota in the development of obesity and Diabetes. Lipids in Health and Disease, 2016, 15, 108.	3.0	364
1104	The Bacterial Microbiome and Virome Milestones of Infant Development. Trends in Microbiology, 2016, 24, 801-810.	7.7	119
1105	Gut Microbiota Dysbiosis as Risk and Premorbid Factors of IBD and IBS Along the Childhood–Adulthood Transition. Inflammatory Bowel Diseases, 2016, 22, 487-504.	1.9	117
1106	Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1696-1709.	3.8	111
1107	Protective effect of polysaccharides fractions from Sijunzi decoction in reserpine-induced spleen deficiency rats. RSC Advances, 2016, 6, 60657-60665.	3.6	32
1108	New insights into therapeutic strategies for gut microbiota modulation in inflammatory diseases. Clinical and Translational Immunology, 2016, 5, e87.	3.8	85
1109	Microbiota and pathogen â€~pas de deux': setting up and breaking down barriers to intestinal infection. Pathogens and Disease, 2016, 74, ftw051.	2.0	20
1110	Vegetarian diets and gut microbiota: important shifts in markers of metabolism and cardiovascular disease. Nutrition Reviews, 2016, 74, 444-454.	5.8	29
1112	Canadian Consensus on Female Nutrition: Adolescence, Reproduction, Menopause, and Beyond. Journal of Obstetrics and Gynaecology Canada, 2016, 38, 508-554.e18.	0.7	67
1113	Current status of Blastocystis: A personal view. Parasitology International, 2016, 65, 763-771.	1.3	253

#	Article	IF	CITATIONS
1114	Can exercise affect the course of inflammatory bowel disease? Experimental and clinical evidence. Pharmacological Reports, 2016, 68, 827-836.	3.3	70
1115	The Gastrointestinal Tract: an Initial Organ of Metabolic Hypertension?. Cellular Physiology and Biochemistry, 2016, 38, 1681-1694.	1.6	33
1116	Antibiotics, obesity and the link to microbes - what are we doing to our children?. BMC Medicine, 2016, 14, 57.	5.5	103
1117	The obese gut microbiome across the epidemiologic transition. Emerging Themes in Epidemiology, 2016, 13, 2.	2.7	40
1118	Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome, 2016, 4, 15.	11.1	348
1119	Effect of room temperature transport vials on DNA quality and phylogenetic composition of faecal microbiota of elderly adults and infants. Microbiome, 2016, 4, 19.	11.1	51
1120	How the microbiota shapes rheumatic diseases. Nature Reviews Rheumatology, 2016, 12, 398-411.	8.0	122
1121	Fostering of advanced mutualism with gut microbiota by Immunoglobulin A. Immunological Reviews, 2016, 270, 20-31.	6.0	79
1122	16S rRNA gene sequencing of mock microbial populations- impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiology, 2016, 16, 123.	3.3	241
1123	Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut, 2016, 65, 63-72.	12.1	428
1124	Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria as Fermentable Substrates by the Intestinal Microbiota. Critical Reviews in Food Science and Nutrition, 2016, 56, 1440-1453.	10.3	139
1125	Assembly of the <i>Caenorhabditis elegans</i> gut microbiota from diverse soil microbial environments. ISME Journal, 2016, 10, 1998-2009.	9.8	296
1126	The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. Journal of Nutritional Biochemistry, 2016, 36, 1-20.	4.2	155
1127	Fecal microbiota transplantation: in perspective. Therapeutic Advances in Gastroenterology, 2016, 9, 229-239.	3.2	302
1128	Microbiota Control of Malaria Transmission. Trends in Parasitology, 2016, 32, 120-130.	3.3	23
1129	Fibre for the future. Nature, 2016, 529, 158-159.	27.8	26
1130	Diet-induced extinctions in the gut microbiota compound over generations. Nature, 2016, 529, 212-215.	27.8	1,287
1131	Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food and Function, 2016, 7, 1788-1796.	4.6	106

#	Article	IF	Citations
1132	Extrusion of barley and oat influence the fecal microbiota and SCFA profile of growing pigs. Food and Function, 2016, 7, 1024-1032.	4.6	31
1133	Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference. Aquaculture, 2016, 454, 72-80.	3.5	188
1134	A mechanistic review on plant-derived natural compounds as dietary supplements for prevention of inflammatory bowel disease. Expert Review of Gastroenterology and Hepatology, 2016, 10, 745-758.	3.0	38
1135	A glance at … dietary emulsifiers, the human intestinal mucus and microbiome, and dietary fiber. Nutrition, 2016, 32, 609-614.	2.4	24
1136	Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows. Anaerobe, 2016, 38, 50-60.	2.1	93
1138	Immune Response to Helminth Infections and Its Role in Treatment for Autoimmune Disorders. , 2016, , 131-154.		0
1139	Two Healthy Diets Modulate Gut Microbial Community Improving Insulin Sensitivity in a Human Obese Population. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 233-242.	3.6	223
1140	Bile Acids, the Microbiome and Metabolic Disease-Implications for Surgery. , 2016, , 81-90.		0
1141	A healthy gastrointestinal microbiome is dependent on dietary diversity. Molecular Metabolism, 2016, 5, 317-320.	6.5	262
1142	Inhibitory effects of laminaran and alginate on production of putrefactive compounds from soy protein by intestinal microbiota in vitro and in rats. Carbohydrate Polymers, 2016, 143, 61-69.	10.2	51
1143	Gut microbiome diversity in acute infective and chronic inflammatory gastrointestinal diseases in North India. Journal of Gastroenterology, 2016, 51, 660-671.	5.1	40
1144	Microbiota and lifestyle interactions through the lifespan. Trends in Food Science and Technology, 2016, 57, 265-272.	15.1	24
1145	The diet-microbiota-metabolite axis regulates the host physiology. Journal of Biochemistry, 2016, 160, 1-10.	1.7	21
1146	Gut Microbiota Differences in Children From Distinct Socioeconomic Levels Living in the Same Urban Area in Brazil. Journal of Pediatric Gastroenterology and Nutrition, 2016, 63, 460-465.	1.8	21
1147	<i>Helicobacter pylori</i> in children with asthmatic conditions at school age, and their mothers. Alimentary Pharmacology and Therapeutics, 2016, 43, 933-943.	3.7	30
1148	Effects of L.   paracasei subp. paracasei X12 on cell cycle of colon cancer HT-29 cells and regulation of mTOR signalling pathway. Journal of Functional Foods, 2016, 21, 431-439.	3.4	22
1149	The Second Brain: Is the Gut Microbiota a Link Between Obesity and Central Nervous System Disorders?. Current Obesity Reports, 2016, 5, 51-64.	8.4	83
1150	Food for thought: The role of nutrition in the microbiota-gut–brain axis. Clinical Nutrition Experimental, 2016, 6, 25-38.	2.0	163

#	Article	IF	CITATIONS
1151	Sub-clinical detection of gut microbial biomarkers of obesity and type 2 diabetes. Genome Medicine, 2016, 8, 17.	8.2	219
1152	Prebiotics: Definition and protective mechanisms. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 27-37.	2.4	120
1153	Characterizing the Intestinal Microbiome in Infantile Colic. Biological Research for Nursing, 2016, 18, 307-315.	1.9	35
1154	Diet, microbiota, and dysbiosis: a †recipe' for colorectal cancer. Food and Function, 2016, 7, 1731-1740.	4.6	97
1155	Composition of the gut microbiota modulates the severity of malaria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2235-2240.	7.1	198
1156	Wine Safety, Consumer Preference, and Human Health. , 2016, , .		13
1157	Physiological Role of Gut Microbiota for Maintaining Human Health. Digestion, 2016, 93, 176-181.	2.3	107
1158	Gut microbiota and the pathogenesis of necrotizing enterocolitis in preterm neonates. Future Microbiology, 2016, 11, 273-292.	2.0	52
1159	Interactions Between Wine Polyphenols and Gut Microbiota. , 2016, , 259-278.		7
1160	Metabolic modeling with Big Data and the gut microbiome. Applied & Translational Genomics, 2016, 10, 10-15.	2.1	28
1161	Microbial perturbations and modulation in conditions associated with malnutrition and malabsorption. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2016, 30, 161-172.	2.4	26
1162	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2016, , 447-459.		4
1163	Gut microbiome as a novel cardiovascular therapeutic target. Current Opinion in Pharmacology, 2016, 27, 8-12.	3.5	52
1164	Gut Microbiome of Coexisting BaAka Pygmies and Bantu Reflects Gradients of Traditional Subsistence Patterns. Cell Reports, 2016, 14, 2142-2153.	6.4	231
1165	Gut microbiota, obesity and diabetes. Postgraduate Medical Journal, 2016, 92, 286-300.	1.8	377
1166	Bardoxolone Methyl Prevents High-Fat Diet-Induced Colon Inflammation in Mice. Journal of Histochemistry and Cytochemistry, 2016, 64, 237-255.	2.5	17
1167	Nutritional Management of Inflammatory Bowel Diseases. , 2016, , .		5
1168	Impact du microbiote intestinal sur le développement des allergies. Revue Francaise D'allergologie, 2016, 56, 133-134.	0.2	1

ARTICLE IF CITATIONS Antibiotic resistance genes as an emerging environmental contaminant. Environmental Reviews, 2016, 4.5 138 1169 24, 205-218. Diet and Microbiome in Inflammatory Bowel Diseases., 2016, , 3-16. 1170 Elimination Diets for Inflammatory Bowel Disease., 2016, , 117-129. 0 1171 It's in the Milk: Feeding the Microbiome to Promote Infant Growth. Cell Metabolism, 2016, 23, 393-394. Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired 1173 11.0 330 Immunodeficiency Syndrome. Cell Host and Microbe, 2016, 19, 311-322. Characterization of the gut microbiome in epidemiologic studies: the multiethnic cohort experience. 1174 Annals of Epidemiology, 2016, 26, 373-379. Impact of probiotic supplements on microbiome diversity following antibiotic treatment of mice. Gut 1175 9.8 107 Microbes, 2016, 7, 101-114. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Research, 3.4 387 2016, 23, 125-133. Role of the microbiome in the normal and aberrant glycemic response. Clinical Nutrition 1177 2.0 29 Experimental, 2016, 6, 59-73. Association between the gut microbiota and diet: Fetal life, early childhood, and further life. 1179 2.4 Nutrition, 2016, 32, 620-627. Human Breast Milk and Infant Formulas Differentially Modify the Intestinal Microbiota in Human 1180 2.9 44 Infants and Host Physiology in Rats. Journal of Nutrition, 2016, 146, 191-199. High Prevalence of Nausea among School Children in Latin America. Journal of Pediatrics, 2016, 169, 1.8 98-104.e1. The role of the intestinal microbiota in type 1 diabetes mellitus. Nature Reviews Endocrinology, 2016, 1182 9.6 335 12, 154-167. Dietary Isomers of Sialyllactose Increase Ganglioside Sialic Acid Concentrations in the Corpus Callosum and Cerebellum and Modulate the Colonic Microbiota of Formula-Fed Piglets. Journal of 109 Nutrition, 2016, 146, 200-208. Effects of the dietary protein level on the microbial composition and metabolomic profile in the 1184 107 2.1 hindgut of the pig. Ánaerobe, 2016, 38, 61-69. Carriage of Enterobacteria Producing Extended-Spectrum Î²-Lactamases and Composition of the Gut 3.2 Microbiota in an Amerindian Community. Antimicrobial Agents and Chemotherapy, 2016, 60, 507-514. Gut microbiome in health and disease: Linking the microbiome–gut–brain axis and environmental 394 1186 factors in the pathogenesis of systemic and neurodegenerative diseases. , 2016, 158, 52-62. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nature Reviews Nephrology, 2016, 12, 169-181.

#	Article	IF	Citations
1188	The impact of long-term dietary pattern of fecal donor on in vitro fecal fermentation properties of inulin. Food and Function, 2016, 7, 1805-1813.	4.6	16
1190	Nutrition Support for the Critically III. , 2016, , .		5
1191	What is new about diet in hepatic encephalopathy. Metabolic Brain Disease, 2016, 31, 1289-1294.	2.9	30
1192	Metagenomic diagnostics for the simultaneous detection of multiple pathogens in human stool specimens from CA´te d'Ivoire: a proof-of-concept study. Infection, Genetics and Evolution, 2016, 40, 389-397.	2.3	34
1193	Small Intestinal Bacterial Overgrowth. , 2016, , 487-494.		0
1194	Prebiotics Use in Children. , 2016, , 181-193.		1
1195	Gut Microbiota. , 2016, , 515-523.		11
1196	<i>Lactobacillus rhamnosus</i> GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants. ISME Journal, 2016, 10, 742-750.	9.8	407
1197	High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 2016, 65, 1812-1821.	12.1	1,092
1199	Impact of sugar syrup and pollen diet on the bacterial diversity in the gut of indoor-reared bumblebees (Bombus terrestris). Apidologie, 2016, 47, 548-560.	2.0	35
1200	The emerging global epidemic of paediatric inflammatory bowel disease – causes and consequences. Journal of Internal Medicine, 2016, 279, 241-258.	6.0	40
1201	Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut, 2016, 65, 57-62.	12.1	737
1202	Regulation of body fat mass by the gut microbiota: Possible mediation by the brain. Peptides, 2016, 77, 54-59.	2.4	20
1203	Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children. Indoor Air, 2016, 26, 179-192.	4.3	147
1204	Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Critical Reviews in Food Science and Nutrition, 2017, 57, 59-81.	10.3	178
1205	Effects of pectin on fermentation characteristics, carbohydrate utilization, and microbial community composition in the gastrointestinal tract of weaning pigs. Molecular Nutrition and Food Research, 2017, 61, 1600186.	3.3	98
1206	The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease. Molecular Neurobiology, 2017, 54, 4432-4451.	4.0	191
1207	The gut microbiota and inflammatory bowel diseases. Translational Research, 2017, 179, 38-48.	5.0	124

#	Article	IF	CITATIONS
1208	Significant differences found in short nucleotide sequences of human intestinal metagenomes of Northern-European and Chinese Origin. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3627-3631.	2.4	1
1209	Diversity and composition of cultivable gut bacteria in an endemic island bird and its mainland sister species. Symbiosis, 2017, 71, 155-164.	2.3	5
1210	The possible mechanisms of the human microbiome in allergic diseases. European Archives of Oto-Rhino-Laryngology, 2017, 274, 617-626.	1.6	84
1211	Mechanistic and Technical Challenges in Studying the Human Microbiome and Cancer Epidemiology. Technology in Cancer Research and Treatment, 2017, 16, 150-158.	1.9	7
1212	Endurance exercise and gut microbiota: A review. Journal of Sport and Health Science, 2017, 6, 179-197.	6.5	226
1213	Gut microbiome in chronic kidney disease: challenges and opportunities. Translational Research, 2017, 179, 24-37.	5.0	186
1214	The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Critical Reviews in Food Science and Nutrition, 2017, 57, 3543-3564.	10.3	250
1215	The microbiome and atopic eczema: More than skin deep. Australasian Journal of Dermatology, 2017, 58, 18-24.	0.7	46
1216	Diet, gut microbes, and the pathogenesis of inflammatory bowel diseases. Molecular Nutrition and Food Research, 2017, 61, 1600129.	3.3	110
1217	Alterations of gut microbiota in patients with irritable bowel syndrome: A systematic review and metaâ€analysis. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 28-38.	2.8	125
1218	Gut microbiota, diet, and obesityâ€related disorders—The good, the bad, and the future challenges. Molecular Nutrition and Food Research, 2017, 61, 1600252.	3.3	143
1219	Maternal exposure to a Westernâ€style diet causes differences in intestinal microbiota composition and gene expression of suckling mouse pups. Molecular Nutrition and Food Research, 2017, 61, 1600141.	3.3	33
1220	Current views on hunterâ€gatherer nutrition and the evolution of the human diet. American Journal of Physical Anthropology, 2017, 162, 84-109.	2.1	115
1222	Health effects of resistant starch. Nutrition Bulletin, 2017, 42, 10-41.	1.8	213
1223	The thyroid, the eyes and the gut: a possible connection. Journal of Endocrinological Investigation, 2017, 40, 567-576.	3.3	36
1224	Diet and the Microbiome. Gastroenterology Clinics of North America, 2017, 46, 49-60.	2.2	27
1225	The Influence of the Microbiome on Allergic Sensitization to Food. Journal of Immunology, 2017, 198, 581-589.	0.8	92
1226	Host-Microbiota Interactions Shape Local and Systemic Inflammatory Diseases. Journal of Immunology, 2017, 198, 564-571.	0.8	99

#	Article	IF	Citations
1227	Inside Out: HIV, the Gut Microbiome, and the Mucosal Immune System. Journal of Immunology, 2017, 198, 605-614.	0.8	59
1228	Lessons on dietary biomarkers from twin studies. Proceedings of the Nutrition Society, 2017, 76, 303-307.	1.0	4
1229	<i>Roseburia</i> spp.: a marker of health?. Future Microbiology, 2017, 12, 157-170.	2.0	483
1230	Personalized microbiomeâ€based approaches to metabolic syndrome management and prevention. Journal of Diabetes, 2017, 9, 226-236.	1.8	39
1231	Intestinal Microbiota: Facts and Fiction. Digestive Diseases, 2017, 35, 139-147.	1.9	28
1232	The Effect of <i>Lactobacillus</i> isolates on growth performance, immune response, intestinal bacterial community composition of growing Rex Rabbits. Journal of Animal Physiology and Animal Nutrition, 2017, 101, e1-e13.	2.2	32
1233	Inhibitory effects of soybean oligosaccharides and water-soluble soybean fibre on formation of putrefactive compounds from soy protein by gut microbiota. International Journal of Biological Macromolecules, 2017, 97, 173-180.	7.5	43
1234	Gut Microbiome of the Canadian Arctic Inuit. MSphere, 2017, 2, .	2.9	40
1235	Anti-inflammatory effects of phenolic-rich cranberry bean (Phaseolus vulgaris L.) extracts and enhanced cellular antioxidant enzyme activities in Caco-2 cells. Journal of Functional Foods, 2017, 38, 675-685.	3.4	39
1236	Latitude as a coâ€driver of human gut microbial diversity?. BioEssays, 2017, 39, 1600145.	2.5	31
1237	A Dirichlet-Tree Multinomial Regression Model for Associating Dietary Nutrients with Gut Microorganisms. Biometrics, 2017, 73, 792-801.	1.4	37
1238	The Impact of Tannin Consumption on Iron Bioavailability and Status: A Narrative Review. Current Developments in Nutrition, 2017, 1, 1-12.	0.3	92
1239	Effects of the Dietary Protein and Carbohydrate Ratio on Gut Microbiomes in Dogs of Different Body Conditions. MBio, 2017, 8, .	4.1	122
1240	Patterns in Gut Microbiota Similarity Associated with Degree of Sociality among Sex Classes of a Neotropical Primate. Microbial Ecology, 2017, 74, 250-258.	2.8	70
1241	Negative binomial mixed models for analyzing microbiome count data. BMC Bioinformatics, 2017, 18, 4.	2.6	113
1242	Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nature Communications, 2017, 8, 14319.	12.8	357
1243	The microbiome and systemic lupus erythematosus. Immunologic Research, 2017, 65, 432-437.	2.9	53
1244	Microbiome and Cardiac Health. , 2017, , 67-97.		0

#	Article	IF	CITATIONS
1246	Metaâ€analysis of the human gut microbiome from urbanized and preâ€agricultural populations. Environmental Microbiology, 2017, 19, 1379-1390.	3.8	153
1247	Diversity and enterotype in gut bacterial community of adults in Taiwan. BMC Genomics, 2017, 18, 932.	2.8	61
1248	The human gut microbiome as source of innovation for health: Which physiological and therapeutic outcomes could we expect?. Therapie, 2017, 72, 21-38.	1.0	28
1249	Association of the Intestinal Microbiome with the Development of Neovascular Age-Related Macular Degeneration. Scientific Reports, 2017, 7, 40826.	3.3	149
1250	Being overweight or obese is associated with harboring a gut microbial community not capable of metabolizing the soy isoflavone daidzein to O- desmethylangolensin in peri- and post-menopausal women. Maturitas, 2017, 99, 37-42.	2.4	37
1251	Prebiotic inulinâ€type fructans and galactoâ€oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. Journal of Gastroenterology and Hepatology (Australia), 2017, 32, 64-68.	2.8	209
1252	Metabolic in Vivo Labeling Highlights Differences of Metabolically Active Microbes from the Mucosal Gastrointestinal Microbiome between High-Fat and Normal Chow Diet. Journal of Proteome Research, 2017, 16, 1593-1604.	3.7	26
1253	Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 2017, 8, 172-184.	9.8	1,027
1254	Significant disparities in allergy prevalence and microbiota between the young people in Finnish and Russian Karelia. Clinical and Experimental Allergy, 2017, 47, 665-674.	2.9	97
1255	Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. American Journal of Clinical Nutrition, 2017, 105, 635-650.	4.7	203
1256	Altered intestinal microbiota in patients with chronic pancreatitis: implications in diabetes and metabolic abnormalities. Scientific Reports, 2017, 7, 43640.	3.3	88
1257	Fecal Bacterial Communities in treated HIV infected individuals on two antiretroviral regimens. Scientific Reports, 2017, 7, 43741.	3.3	67
1258	Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. International Journal of Cancer, 2017, 140, 2545-2556.	5.1	164
1259	The Gut Microbiome and Metabolic Health. Current Nutrition Reports, 2017, 6, 16-23.	4.3	10
1260	Gut microbiota, metabolome and immune signatures in patients with uncomplicated diverticular disease. Gut, 2017, 66, 1252-1261.	12.1	138
1261	Biotransformation of Panax ginseng extract by rat intestinal microflora: identification and quantification of metabolites using liquid chromatography-tandem mass spectrometry. Journal of Ginseng Research, 2017, 41, 540-547.	5.7	38
1262	Differences in Gut Metabolites and Microbial Composition and Functions between Egyptian and U.S. Children Are Consistent with Their Diets. MSystems, 2017, 2, .	3.8	111
1263	Chickpea-supplemented diet alters the gut microbiome and enhances gut barrier integrity in C57Bl/6 male mice. Journal of Functional Foods, 2017, 38, 663-674.	3.4	46

#	Article	IF	CITATIONS
1264	Determinants and Duration of Impact of Early Gut Bacterial Colonization. Annals of Nutrition and Metabolism, 2017, 70, 246-250.	1.9	18
1265	Influence of diet on the gut microbiome and implications for human health. Journal of Translational Medicine, 2017, 15, 73.	4.4	1,714
1267	Dietary intake of fibers: differential effects in men and women on perceived general health and immune functioning. Food and Nutrition Research, 2017, 61, 1297053.	2.6	32
1268	Safety of <i>Bifidobacterium animalis</i> Subsp. <i>Lactis</i> (<i>B. lactis</i>) Strain BBâ€12â€Supplemented Yogurt in Healthy Children. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64, 302-309.	1.8	15
1269	The influence of diet on the grass carp intestinal microbiota and bile acids. Aquaculture Research, 2017, 48, 4934-4944.	1.8	26
1270	Salivary microbiome of an urban Indian cohort and patterns linked to subclinical inflammation. Oral Diseases, 2017, 23, 926-940.	3.0	26
1271	Gut Microbial Diversity in Antibiotic-Naive Children After Systemic Antibiotic Exposure: A Randomized Controlled Trial. Clinical Infectious Diseases, 2017, 64, 1147-1153.	5.8	62
1272	Role of short-chain fatty acids in colonic inflammation, carcinogenesis, and mucosal protection and healing. Nutrition Reviews, 2017, 75, 286-305.	5.8	245
1273	The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediatric Research, 2017, 82, 387-395.	2.3	120
1274	A psychology of the human brain–gut–microbiome axis. Social and Personality Psychology Compass, 2017, 11, e12309.	3.7	121
1276	The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: from current human evidence to future possibilities. Diabetologia, 2017, 60, 943-951.	6.3	266
1277	Effects of dietary rapeseed meal supplementation on cecal microbiota in laying hens with different flavin-containing monooxygenase 3 genotypes. Poultry Science, 2017, 96, 1748-1758.	3.4	16
1278	Ethnicity influences gut metabolites and microbiota of the tribes of Assam, India. Metabolomics, 2017, 13, 1.	3.0	7
1279	The intestinal microbiota, energy balance, and malnutrition: emphasis on the role of short-chain fatty acids. Expert Review of Endocrinology and Metabolism, 2017, 12, 215-226.	2.4	30
1280	Microbiota, Environment, and Diet. Journal of Pediatric Gastroenterology and Nutrition, 2017, 65, e24.	1.8	4
1281	pH-Mediated Microbial and Metabolic Interactions in Fecal Enrichment Cultures. MSphere, 2017, 2, .	2.9	105
1282	Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Molecular Nutrition and Food Research, 2017, 61, 1601082.	3.3	110
1283	Effects of potato dextrin on the composition and metabolism of the gut microbiota in rats fed standard and high-fat diets. Journal of Functional Foods, 2017, 34, 398-407.	3.4	23

#	Article	IF	CITATIONS
1284	Seasonal variation in the copepod gut microbiome in the subtropical North Atlantic Ocean. Environmental Microbiology, 2017, 19, 3087-3097.	3.8	53
1285	Is the calorie concept a real solution to the obesity epidemic?. Global Health Action, 2017, 10, 1289650.	1.9	56
1286	The Threat of Antimicrobial Resistance on the Human Microbiome. Microbial Ecology, 2017, 74, 1001-1008.	2.8	102
1287	Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naÃ⁻ve Parkinson's disease patients. Genome Medicine, 2017, 9, 39.	8.2	420
1289	Multi-drug resistant pathogenic bacteria in the gut of young children in Bangladesh. Gut Pathogens, 2017, 9, 19.	3.4	37
1290	The shrinking human gut microbiome. Current Opinion in Microbiology, 2017, 38, 30-35.	5.1	47
1291	Changes in gut microbiota of migratory passerines during stopover after crossing an ecological barrier. Auk, 2017, 134, 137-145.	1.4	45
1292	Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. Journal of Molecular Medicine, 2017, 95, 1-8.	3.9	267
1293	The Microbiome in Neurogastroenterology. , 2017, , 53-70.		0
1294	Early-Life Sugar Consumption Affects the Rat Microbiome Independently of Obesity. Journal of Nutrition, 2017, 147, 20-28.	2.9	93
1295	Consensus report: faecal microbiota transfer – clinical applications and procedures. Alimentary Pharmacology and Therapeutics, 2017, 45, 222-239.	3.7	95
1296	Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metabolism, 2017, 26, 110-130.	16.2	572
1297	Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Molecular Nutrition and Food Research, 2017, 61, 1700118.	3.3	141
1298	Alteration of the gut microbiota in Chinese population with chronic kidney disease. Scientific Reports, 2017, 7, 2870.	3.3	192
1299	Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Scientific Reports, 2017, 7, 2594.	3.3	400
1300	The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain, Behavior, and Immunity, 2017, 66, 31-44.	4.1	134
1301	Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes. ISME Journal, 2017, 11, 1975-1987.	9.8	76
1302	Introduction to the human gut microbiota. Biochemical Journal, 2017, 474, 1823-1836.	3.7	1,988

#	Article	IF	CITATIONS
1303	Dietary Behaviors in Psoriasis: Patient-Reported Outcomes from a U.S. National Survey. Dermatology and Therapy, 2017, 7, 227-242.	3.0	65
1304	Loop ileostomy-mediated fecal stream diversion is associated with microbial dysbiosis. Gut Microbes, 2017, 8, 467-478.	9.8	45
1305	Adaptation of gut microbiome to different dietary nonstarch polysaccharide fractions in a porcine model. Molecular Nutrition and Food Research, 2017, 61, 1700012.	3.3	32
1306	Atopic dermatitis and food sensitization in South African toddlers. Annals of Allergy, Asthma and Immunology, 2017, 118, 742-743.e3.	1.0	20
1307	CE. American Journal of Nursing, 2017, 117, 24-30.	0.4	6
1308	A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Veterinary Research, 2017, 13, 147.	1.9	66
1309	A pea (Pisum sativum L.) seed albumin extract prevents colonic DSS induced dysbiosis in mice. Journal of Functional Foods, 2017, 35, 279-294.	3.4	14
1310	Green tea polyphenols reduce obesity in highâ€fat dietâ€induced mice by modulating intestinal microbiota composition. International Journal of Food Science and Technology, 2017, 52, 1723-1730.	2.7	50
1311	Protein Malnutrition During Juvenile Age Increases Ileal and Colonic Permeability in Rats. Journal of Pediatric Gastroenterology and Nutrition, 2017, 64, 707-712.	1.8	7
1312	Body fluid prediction from microbial patterns for forensic application. Forensic Science International: Genetics, 2017, 30, 10-17.	3.1	61
1313	Variability, stability, and resilience of fecal microbiota in dairy cows fed whole crop corn silage. Applied Microbiology and Biotechnology, 2017, 101, 6355-6364.	3.6	34
1314	Transmission of the gut microbiota: spreading of health. Nature Reviews Microbiology, 2017, 15, 531-543.	28.6	150
1315	Microbiome and NAFLD: potential influence of aerobic fitness and lifestyle modification. Physiological Genomics, 2017, 49, 385-399.	2.3	31
1316	Analysis of Alkaline and Neutral Volatile Metabolites in Feces by Gas Chromatography-Tandem Mass Spectrometry. Chinese Journal of Analytical Chemistry, 2017, 45, 837-843.	1.7	3
1317	Progress with treating the microbial dysbiosis associated with irritable bowel syndrome. Current Opinion in Gastroenterology, 2017, 33, 21-25.	2.3	1
1318	Early-life nutritional exposures and lifelong health: immediate and long-lasting impacts of probiotics, vitamin D, and breastfeeding. Nutrition Reviews, 2017, 75, nuw056.	5.8	35
1319	Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. Journal of Nutrition, 2017, 147, 1468S-1475S.	2.9	268
1320	Spray-drying process preserves the protective capacity of a breast milk-derived Bifidobacterium lactis	3.3	27

#	Article	IF	CITATIONS
1321	Proteobacteria explain significant functional variability in the human gut microbiome. Microbiome, 2017, 5, 36.	11.1	156
1322	Modulation of gut microbiota contributes to curcumin-mediated attenuation of hepatic steatosis in rats. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1801-1812.	2.4	105
1323	Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves. Scientific Reports, 2017, 7, 198.	3.3	87
1324	Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators. Translational Psychiatry, 2017, 7, e1081-e1081.	4.8	115
1325	A Perspective on Brain–Gut Communication: The American Gastroenterology Association and American Psychosomatic Society Joint Symposium on Brain–Gut Interactions and the Intestinal Microenvironment. Psychosomatic Medicine, 2017, 79, 847-856.	2.0	23
1326	Asian gut microbiome. Science Bulletin, 2017, 62, 816-817.	9.0	6
1327	Cassava foliage affects the microbial diversity of Chinese indigenous geese caecum using 16S rRNA sequencing. Scientific Reports, 2017, 7, 45697.	3.3	40
1329	Human milk microbiome in urban and rural populations of India. Meta Gene, 2017, 13, 13-22.	0.6	25
1330	Bacterial Colonization of the Newborn Gut, Immune Development, and Prevention of Disease. Nestle Nutrition Institute Workshop Series, 2017, 88, 23-34.	0.1	13
1331	Diet and Gut Microbiota in Health and Disease. Nestle Nutrition Institute Workshop Series, 2017, 88, 117-126.	0.1	51
1332	Microbiota-Gut-Brain Axis: Modulator of Host Metabolism and Appetite. Journal of Nutrition, 2017, 147, 727-745.	2.9	280
1333	Mechanisms and consequences of intestinal dysbiosis. Cellular and Molecular Life Sciences, 2017, 74, 2959-2977.	5.4	401
1334	Gastrointestinal Tract: a Promising Target for the Management of Hypertension. Current Hypertension Reports, 2017, 19, 31.	3.5	7
1335	Intestinal Barrier Function and the Gut Microbiome Are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose. Journal of Nutrition, 2017, 147, 770-780.	2.9	118
1336	Donor Considerations in Fecal Microbiota Transplantation. Current Gastroenterology Reports, 2017, 19, 10.	2.5	21
1337	Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochemical Pharmacology, 2017, 139, 24-39.	4.4	247
1338	Rice- or pork-based diets with similar calorie and content result in different rat gut microbiota. International Journal of Food Sciences and Nutrition, 2017, 68, 829-839.	2.8	4
1339	The ecology of human microbiota: dynamics and diversity in health and disease. Annals of the New York Academy of Sciences, 2017, 1399, 78-92.	3.8	88

# 1340	ARTICLE Dietary Interventions and Multiple Sclerosis. Current Neurology and Neuroscience Reports, 2017, 17, 28.	IF 4.2	CITATIONS 37
1341	Mechanisms of cross-talk between the diet, the intestinal microbiome, and the undernourished host. Gut Microbes, 2017, 8, 98-112.	9.8	43
1342	The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me) on intestinal microbiota of high fat diet-induced obesity mice model. Food Research International, 2017, 92, 9-16.	6.2	117
1343	Comparative Analysis of the Rats' Gut Microbiota Composition in Animals with Different Ginsenosides Metabolizing Activity. Journal of Agricultural and Food Chemistry, 2017, 65, 327-337.	5.2	38
1344	Microbial nutrient niches in the gut. Environmental Microbiology, 2017, 19, 1366-1378.	3.8	258
1345	Adherence to a Mediterranean Diet Influences the Fecal Metabolic Profile of Microbial-Derived Phenolics in a Spanish Cohort of Middle-Age and Older People. Journal of Agricultural and Food Chemistry, 2017, 65, 586-595.	5.2	63
1346	Microbiome, growth retardation and metabolism: are they related?. Annals of Human Biology, 2017, 44, 201-207.	1.0	22
1347	Irritable bowel syndrome: a gut microbiota-related disorder?. American Journal of Physiology - Renal Physiology, 2017, 312, G52-G62.	3.4	198
1348	Metabolomic data suggest regulation of black howler monkey (<i>Alouatta pigra</i>) diet composition at the molecular level. American Journal of Primatology, 2017, 79, 1-10.	1.7	8
1349	Bacteria isolated from lung modulate asthma susceptibility in mice. ISME Journal, 2017, 11, 1061-1074.	9.8	74
1350	Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1. Food and Function, 2017, 8, 680-686.	4.6	50
1351	Using the Human Gastrointestinal Microbiome to Personalize Nutrition Advice: Are Registered Dietitian Nutritionists Ready for the Opportunities and Challenges?. Journal of the Academy of Nutrition and Dietetics, 2017, 117, 1865-1869.	0.8	6
1352	Metagenomic profiling of gut microbial communities in both wild and artificially reared Barâ€headed goose (<i>Anser indicus</i>). MicrobiologyOpen, 2017, 6, e00429.	3.0	39
1353	Prospective randomized controlled study on the effects of <i>Saccharomyces boulardii</i> CNCM I-745 and amoxicillin-clavulanate or the combination on the gut microbiota of healthy volunteers. Gut Microbes, 2017, 8, 17-32.	9.8	89
1354	Linking dietary patterns with gut microbial composition and function. Gut Microbes, 2017, 8, 113-129.	9.8	137
1355	Microbiota network and mathematic microbe mutualism in colostrum and mature milk collected in two different geographic areas: Italy versus Burundi. ISME Journal, 2017, 11, 875-884.	9.8	80
1356	The effects of iron fortification and supplementation on the gut microbiome and diarrhea in infants and children: a review. American Journal of Clinical Nutrition, 2017, 106, 1688S-1693S.	4.7	186
1357	Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers, 2017, 5, e1373208.	3.2	501

#	Article	IF	CITATIONS
1358	Whole-Grain Starch and Fiber Composition Modifies Ileal Flow of Nutrients and Nutrient Availability in the Hindgut, Shifting Fecal Microbial Profiles in Pigs. Journal of Nutrition, 2017, 147, jn255851.	2.9	13
1359	Metagenomic characterization of the effect of feed additives on the gut microbiome and antibiotic resistome of feedlot cattle. Scientific Reports, 2017, 7, 12257.	3.3	136
1360	Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nature Biotechnology, 2017, 35, 1077-1086.	17.5	400
1361	Characterization of the human DNA gut virome across populations with different subsistence strategies and geographical origin. Environmental Microbiology, 2017, 19, 4728-4735.	3.8	32
1362	Dietary Therapies in Pediatric Inflammatory Bowel Disease. Gastroenterology Clinics of North America, 2017, 46, 731-744.	2.2	18
1363	Beneficial effects of carotenoid-producing cells of Bacillus indicus HU16 in a rat model of diet-induced metabolic syndrome. Beneficial Microbes, 2017, 8, 823-831.	2.4	22
1364	Challenges in simulating the human gut for understanding the role of the microbiota in obesity. Beneficial Microbes, 2017, 8, 31-53.	2.4	19
1365	Action and function of Faecalibacterium prausnitzii in health and disease. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2017, 31, 643-648.	2.4	297
1366	Molecular Mechanism by which Prominent Human Gut Bacteroidetes Utilize Mixed-Linkage Beta-Glucans, Major Health-Promoting Cereal Polysaccharides. Cell Reports, 2017, 21, 417-430.	6.4	119
1367	How diet can impact gut microbiota to promote or endanger health. Current Opinion in Gastroenterology, 2017, 33, 417-421.	2.3	41
1368	Reciprocal Prioritization to Dietary Glycans by Gut Bacteria in a Competitive Environment Promotes Stable Coexistence. MBio, 2017, 8, .	4.1	121
1369	Changes of the intestinal microbiome—host homeostasis in HIV-infected individuals — a focus on the bacterial gut microbiome. European Journal of Microbiology and Immunology, 2017, 7, 158-167.	2.8	28
1370	The maternal microbiome during pregnancy and allergic disease in the offspring. Seminars in Immunopathology, 2017, 39, 669-675.	6.1	80
1372	Is there a relationship between intestinal microbiota, dietary compounds, and obesity?. Trends in Food Science and Technology, 2017, 70, 105-113.	15.1	53
1373	Core fecal microbiota of domesticated herbivorous ruminant, hindgut fermenters, and monogastric animals. MicrobiologyOpen, 2017, 6, e00509.	3.0	83
1374	Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME Journal, 2017, 11, 2834-2847.	9.8	96
1375	Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science, 2017, 357, 802-806.	12.6	694
1376	The Microbiota and Energy Balanc. Endocrinology, 2017, , 1-18.	0.1	0

		CITATION REPO	ORT	
#	Article	I	F	CITATIONS
1377	Neanderthal Cooking and the Costs of Fire. Current Anthropology, 2017, 58, S329-S336.	1	1.6	38
1378	High frequency of intestinal T _H 17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Science Advances, 2017, 3, e1700492.		10.3	228
1379	Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Science and Human Wellness, 2017, 6, 121-130.		4.9	116
1380	Prevalence of Pentatrichomonas hominis infections in six farmed wildlife species in Jilin, China. Veterinary Parasitology, 2017, 244, 160-163.		1.8	12
1381	A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids, 2 49, 2083-2090.	2017, :	2.7	227
1382	Fermentation properties of isomaltooligosaccharides are affected by human fecal enterotypes. Anaerobe, 2017, 48, 206-214.		2.1	57
1383	Postinfection Irritable Bowel Syndrome. Journal of Clinical Gastroenterology, 2017, 51, 869-877.	:	2.2	31
1384	Dietary intake of fat and fibre according to reference values relates to higher gut microbiota richness in overweight pregnant women. British Journal of Nutrition, 2017, 118, 343-352.		2.3	93
1385	Review article: nextâ€generation transformative advances in the pathogenesis and management of autoimmune hepatitis. Alimentary Pharmacology and Therapeutics, 2017, 46, 920-937.	;	3.7	21
1386	Linking Spatial Structure and Community-Level Biotic Interactions through Cooccurrence and Time Series Modeling of the Human Intestinal Microbiota. MSystems, 2017, 2, .		3.8	8
1387	Consumption of Two Healthy Dietary Patterns Restored Microbiota Dysbiosis in Obese Patients with Metabolic Dysfunction. Molecular Nutrition and Food Research, 2017, 61, 1700300.	٦ ٤	3.3	107
1388	Investigation into the stability and culturability of Chinese enterotypes. Scientific Reports, 2017, 7, 7947.		3.3	32
1389	The microbiota–gut–brain axis in obesity. The Lancet Gastroenterology and Hepatology, 2017,	2, 747-756. 🛛 🕯	8.1	408
1390	Deep Sequencing of RNA from Blood and Oral Swab Samples Reveals the Presence of Nucleic Acid f a Number of Pathogens in Patients with Acute Ebola Virus Disease and Is Consistent with Bacterial Translocation across the Gut. MSphere, 2017, 2, .		2.9	30
1391	16S rRNA Metagenomics of Asian Gut Microbiota. , 2017, , 71-81.			0
1392	Lifestyle alters GUT-bacteria function: Linking immune response and host. Bailliere's Best Practice an Research in Clinical Gastroenterology, 2017, 31, 625-635.	nd	2.4	13
1393	Diversifying Food Systems in the Pursuit of Sustainable Food Production and Healthy Diets. Trends Plant Science, 2017, 22, 842-856.	in t	8.8	169
1394	Gut microbiota and IBD: causation or correlation?. Nature Reviews Gastroenterology and Hepatolog 2017, 14, 573-584.	у,	17.8	1,099

# 1395	ARTICLE Black Raspberries and Their Anthocyanin and Fiber Fractions Alter the Composition and Diversity of Gut Microbiota in F-344 Rats. Nutrition and Cancer, 2017, 69, 943-951.	IF 2.0	CITATIONS 82
1396	The Hibernator Microbiome: Host-Bacterial Interactions in an Extreme Nutritional Symbiosis. Annual Review of Nutrition, 2017, 37, 477-500.	10.1	58
1397	Comparison of Fecal Microbial Composition and Antibiotic Resistance Genes from Swine, Farm Workers and the Surrounding Villagers. Scientific Reports, 2017, 7, 4965.	3.3	18
1398	Gut microbiome diversity influenced more by the Westernized dietary regime than the body mass index as assessed using effect size statistic. MicrobiologyOpen, 2017, 6, e00476.	3.0	46
1399	Strategies to increase the efficacy of using gut microbiota for the modulation of obesity. Obesity Reviews, 2017, 18, 1260-1271.	6.5	24
1400	Evolution, human-microbe interactions, and life history plasticity. Lancet, The, 2017, 390, 521-530.	13.7	178
1401	Development of a fast and cost-effective gas chromatography–mass spectrometry method for the quantification of short-chain and medium-chain fatty acids in human biofluids. Analytical and Bioanalytical Chemistry, 2017, 409, 5555-5567.	3.7	61
1402	Global Disparities and Their Implications in the Occurrence and Outcome of Autoimmune Hepatitis. Digestive Diseases and Sciences, 2017, 62, 2277-2292.	2.3	55
1403	The human microbiome. Advances in Medical Sciences, 2017, 62, 414-420.	2.1	140
1404	Changes in the gut microbial communities following addition of walnuts to the diet. Journal of Nutritional Biochemistry, 2017, 48, 94-102.	4.2	79
1405	Links between Natural Variation in the Microbiome and Host Fitness in Wild Mammals. Integrative and Comparative Biology, 2017, 57, 756-769.	2.0	92
1406	Issues and consequences of using nutrition to modulate the avian immune response. Journal of Applied Poultry Research, 2017, 26, 605-612.	1.2	29
1407	Impact of Childhood Malnutrition on Host Defense and Infection. Clinical Microbiology Reviews, 2017, 30, 919-971.	13.6	203
1408	Close association between intestinal microbiota and irritable bowel syndrome. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 2303-2317.	2.9	16
1409	Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. British Journal of Nutrition, 2017, 117, 1645-1655.	2.3	221
1410	Navy and black bean supplementation primes the colonic mucosal microenvironment to improve gut health. Journal of Nutritional Biochemistry, 2017, 49, 89-100.	4.2	59
1411	The Effects of Captivity on the Mammalian Gut Microbiome. Integrative and Comparative Biology, 2017, 57, 690-704.	2.0	301
1412	Dietary perturbations alter the ecological significance of ingested Lactobacillus plantarum in the digestive tract. Scientific Reports, 2017, 7, 7267.	3.3	9

ARTICLE IF CITATIONS # Gut microbial diversity in health and disease: experience of healthy Indian subjects, and colon carcinoma and inflammatory bowel disease patients. Microbial Ecology in Health and Disease, 2017, 28, 3.5 41 1413 1322447. Exploring the microbiome in health and disease. Toxicology Research and Application, 2017, 1, 1414 239784731774188. Enteromorpha and polysaccharides from enteromorpha ameliorate loperamide-induced constipation 1415 5.6 73 in mice. Biomedicine and Pharmacotherapy, 2017, 96, 1075-1081. Does Modification of the Large Intestinal Microbiome Contribute to the Anti-inflammatory Activity of 0.3 Fermentable Fiber?. Current Developments in Nutrition, 2017, 2, cdn.117.001180. Development of Microbiota in Infants and its Role in Maturation of Gut Mucosa and Immune System. 1417 3.3 54 Archives of Medical Research, 2017, 48, 666-680. Cecal microbiome divergence of broiler chickens by sex and body weight. Journal of Microbiology, 2.8 2017, 55, 939-945. Correlations between gut microbiota community structures of Tibetans and geography. Scientific 1419 3.3 65 Reports, 2017, 7, 16982. Contemporary Applications of Fecal Microbiota Transplantation to Treat Intestinal Diseases in 1421 3.3 37 Humans. Archive's of Medical Research, 2017, 48, 766-773. The Association Between Artificial Sweeteners and Obesity. Current Gastroenterology Reports, 2017, 1422 2.5 121 19, 64. Gut microbiota and body composition in anorexia nervosa inpatients in comparison to athletes. 1423 overweight, obese, and normal weight controls. International Journal of Eating Disorders, 2017, 50, 1421-1431. Bacteriome genetic structures of urban deposits are indicative of their origin and impacted by 1424 3.3 24 chemical pollutants. Scientific Reports, 2017, 7, 13219. Diet, Gut Microbiota, and Colorectal Cancer Prevention: a Review of Potential Mechanisms and 0.5 Promising Targets for Future Research. Current Colorectal Cancer Reports, 2017, 13, 429-439. 1426 Dietary Impacts on the Composition of Microbiota in Human Health and Disease., 2017, , 377-404. 0 The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of 1427 6.6 1,118 the Infant Gut Microbiota. Microbiology and Molecular Biology Reviews, 2017, 81, . Gut Microbiota, Nitric Oxide, and Microglia as Prerequisites for Neurodegenerative Disorders. ACS 1428 3.5141 Chemical Neuroscience, 2017, 8, 1438-1447. Holistic View on Health: Two Protective Layers of Biodiversity. Annales Zoologici Fennici, 2017, 54, 1429 39-49. Changes in the Qualitative and Quantitative Composition of the Intestinal Microflora in Rats in 1430 0.4 0 Experimental Allergic Encephalomyelitis. Neuroscience and Behavioral Physiology, 2017, 47, 328-336. Variability in gut microbiota response to an inulin-type fructan prebiotic within an in vitro 1431 three-stage continuous colonic model system. Bioactive Carbohydrates and Dietary Fibre, 2017, 11, 26-37.

ARTICLE IF CITATIONS The gut eukaryotic microbiota influences the growth performance among cohabitating shrimp. 1432 3.6 77 Applied Microbiology and Biotechnology, 2017, 101, 6447-6457. Fecal microbial characterization of hospitalized patients with suspected infectious diarrhea shows 1433 3.3 significant dysbiosis. Scientific Reports, 2017, 7, 1088. Eating Disorders and the Intestinal Microbiota: Mechanisms of Energy Homeostasis and Behavioral 1434 4.5 51 Influence. Current Psychiatry Reports, 2017, 19, 51. Immune-modulating effects in mouse dendritic cells of lactobacilli and bifidobacteria isolated from 1435 individuals following omnivorous, vegetarian and vegan diets. Cytokine, 2017, 97, 141-148. Dietary and lifestyle disease indices and caecal microbiota in high fat diet, dietary fibre free diet, or 1436 3.4 45 DSS induced IBD models in ICR mice. Journal of Functional Foods, 2017, 35, 605-614. The potential role of fecal microbiota transplantation in the treatment of inflammatory Bowel 1.5 disease. Scandinavian Journal of Gastroenterology, 2017, 52, 1172-1184. Tropical Enteropathies. Current Gastroenterology Reports, 2017, 19, 29. 1438 2.5 32 Social Influences on Prevotella and the Gut Microbiome of Young Monkeys. Psychosomatic Medicine, 1439 2.0 47 2017, 79, 888-897. Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial 1440 3.0 83 metabolism. BMC Systems Biology, 2017, 11, 56. Modeling environmental risk factors of autism in mice induces IBD-related gut microbial dysbiosis and 1441 2.6 hyperserotonemia. Molecular Brain, 2017, 10, 14. Effect of Bacillus subtilis and Bacillus licheniformis supplementation in diets with low- and 1442 high-protein content on ileal crude protein and amino acid digestibility and intestinal microbiota 5.346 composition of growing pigs. Journal of Animal Science and Biotechnology, 2017, 8, 37. Association of dietary patterns with the fecal microbiota in Korean adolescents. BMC Nutrition, 2017, 1.6 34 3, 20. Modifications in bacterial groups and short chain fatty acid production in the gut of healthy adult 1444 rats after long-term consumption of dietary Maillard reaction products. Food Research 6.2 57 International, 2017, 100, 134-142. Linking rhizosphere microbiome composition of wild and domesticated <i>Phaseolus vulgaris</i> to 1445 9.8 298 genotypic and root phenotypic traits. ISME Journal, 2017, 11, 2244-2257. The nutritionâ€gut microbiomeâ€physiology axis and allergic diseases. Immunological Reviews, 2017, 278, 1446 6.0 223 277-295. 16S sequencing and functional analysis of the fecal microbiome during treatment of newly diagnosed 1447 pediatric inflammatory bowel disease. Medicine (United States), 2017, 96, e7347. Phylogenetic profile of gut microbiota in healthy adults after moderate intake of red wine. Molecular 1448 3.3 43 Nutrition and Food Research, 2017, 61, 1600620. Human Oral Buccal Microbiomes Are Associated with Farmworker Status and Azinphos-Methyl 1449 3.1 Agricultural Pesticide Exposure. Applied and Environmental Microbiology, 2017, 83, .

# 1450	ARTICLE Childhood body mass is positively associated with cesarean birth in Y ucatec M aya subsistence farmers. American Journal of Human Biology, 2017, 29, e22920.	IF 1.6	CITATIONS
1451	From obesity through immunity to type 2 diabetes mellitus. International Journal of Diabetes in Developing Countries, 2017, 37, 407-418.	0.8	5
1452	Probiotics During the Perinatal Period. , 2017, , 429-459.		2
1453	Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research, 2017, 179, 223-244.	5.0	351
1454	Developmental origins of NAFLD: a womb with a clue. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 81-96.	17.8	162
1455	Rethinking Diet to Aid Human–Microbe Symbiosis. Trends in Microbiology, 2017, 25, 100-112.	7.7	99
1456	Microbiome in the pathogenesis of cystic fibrosis and lung transplant-related disease. Translational Research, 2017, 179, 84-96.	5.0	29
1457	Highâ€fiber and highâ€protein diets shape different gut microbial communities, which ecologically behave similarly under stress conditions, as shown in a gastrointestinal simulator. Molecular Nutrition and Food Research, 2017, 61, 1600150.	3.3	33
1458	Gut microbiota after Rouxâ€en‥ gastric bypass and sleeve gastrectomy in a diabetic rat model: Increased diversity and associations of discriminant genera with metabolic changes. Diabetes/Metabolism Research and Reviews, 2017, 33, e2857.	4.0	52
1459	The microbial epigenome in metabolic syndrome. Molecular Aspects of Medicine, 2017, 54, 71-77.	6.4	26
1460	Differential Changes in Gut Microbiota After Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission. Obesity Surgery, 2017, 27, 917-925.	2.1	230
1461	On the pathogenesis of insulin-dependent diabetes mellitus: the role of microbiota. Immunologic Research, 2017, 65, 242-256.	2.9	23
1462	Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of Gastroenterology, 2017, 52, 1-8.	5.1	632
1463	Addition of arabinoxylan and mixed linkage glucans in porcine diets affects the large intestinal bacterial populations. European Journal of Nutrition, 2017, 56, 2193-2206.	3.9	27
1464	Mucosaâ€associated biohydrogenating microbes protect the simulated colon microbiome from stress associated with high concentrations of polyâ€unsaturated fat. Environmental Microbiology, 2017, 19, 722-739.	3.8	18
1465	The role of microbiota in compensatory growth of proteinâ€restricted rats. Microbial Biotechnology, 2017, 10, 480-491.	4.2	16
1466	Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5 102

1467 T	he Gut Microbiome and Its Marriage to the Immune System: Can We Change It All?. Birkhauser Idvances in Infectious Diseases, 2017, , 191-208.	0.3	0
--------	---	-----	---

#	Article	IF	CITATIONS
1468	Intestinal microbiome landscaping: insight in community assemblage and implications for microbial modulation strategies. FEMS Microbiology Reviews, 2017, 41, 182-199.	8.6	182
1469	Chapter 11 Intestinal microbiota and its role in the development of paediatric gastrointestinal disorders. , 2017, , 197-216.		2
1470	Inflammation and Microbiota and Gut Reconditioning. , 2017, , 1609-1660.		1
1471	Stability of the microbial population in the gut of omnivorous wireworms (Coleoptera, Elateridae). Biology Bulletin, 2017, 44, 430-438.	0.5	1
1472	Gut Microbiota in Obesity and Metabolic Abnormalities: A Matter of Composition or Functionality?. Archives of Medical Research, 2017, 48, 735-753.	3.3	59
1473	Food-grade cationic antimicrobial ε-polylysine transiently alters the gut microbial community and predicted metagenome function in CD-1 mice. Npj Science of Food, 2017, 1, 8.	5.5	31
1474	Complementary and Alternative Medicine Strategies for Therapeutic Gut Microbiota Modulation in Inflammatory Bowel Disease and their Next-Generation Approaches. Gastroenterology Clinics of North America, 2017, 46, 689-729.	2.2	27
1475	Faecal transplantation for IBD management—pitfalls and promises. British Medical Bulletin, 2017, 124, 1-10.	6.9	4
1476	Microbiota Diversification and Crash Induced by Dietary Oxalate in the Mammalian Herbivore <i>Neotoma albigula</i> . MSphere, 2017, 2, .	2.9	22
1477	Interindividual variability in gut microbiota and host response to dietary interventions. Nutrition Reviews, 2017, 75, 1059-1080.	5.8	155
1478	The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health1,2. Journal of Animal Science, 2017, 95, 3225-3246.	0.5	84
1479	Effects of host traits and land-use changes on the gut microbiota of the Namibian black-backed jackal (Canis mesomelas). FEMS Microbiology Ecology, 2017, 93, .	2.7	40
1480	Seasonality of blood neopterin levels in the Old Order Amish. Pteridines, 2017, 28, 163-176.	0.5	3
1481	Diet and microbiota in inflammatory bowel disease: The gut in disharmony. World Journal of Gastroenterology, 2017, 23, 2124.	3.3	123
1483	5. Endogene Mechanismen. , 2017, , 96-126.		0
1484	HIV-associated changes in the enteric microbial community: potential role in loss of homeostasis and development of systemic inflammation. Current Opinion in Infectious Diseases, 2017, 30, 31-43.	3.1	78
1485	Links between Dietary Protein Sources, the Gut Microbiota, and Obesity. Frontiers in Physiology, 2017, 8, 1047.	2.8	83
1486	Potential of Health and Demographic Surveillance System in Asthma and Chronic Obstructive Pulmonary Disease Microbiome Research. Frontiers in Public Health, 2017, 5, 196.	2.7	5

#	Article	IF	CITATIONS
1487	Chapter 5 Early diet and the infant gut microbiome: how breastfeeding and solid foods shape the microbiome. , 2017, , 105-118.		5
1488	Vegetarian Diets and the Microbiome. , 2017, , 429-461.		3
1489	The Role of the Brain–Gut–Microbiome in Mental Health and Mental Disorders. , 2017, , 389-397.		0
1490	Gut microbiota–derived short-chain fatty acids and kidney diseases. Drug Design, Development and Therapy, 2017, Volume 11, 3531-3542.	4.3	108
1491	Dysbiosis. , 2017, , 227-232.		13
1492	Dietary Fiber, Soluble and Insoluble, Carbohydrates, Fructose, and Lipids. , 2017, , 187-200.		2
1493	Old Fashioned vs. Ultra-Processed-Based Current Diets: Possible Implication in the Increased Susceptibility to Type 1 Diabetes and Celiac Disease in Childhood. Foods, 2017, 6, 100.	4.3	50
1494	The Role of Diet in the Prevention and Treatment of Cardiovascular Disease. , 2017, , 595-623.		4
1495	The influence of dietary immunomodulatory factors on development of food allergy in children. Postepy Dermatologii I Alergologii, 2017, 2, 89-96.	0.9	11
1496	The Imbalance between n-6/n-3 Polyunsaturated Fatty Acids and Inflammatory Bowel Disease: A Comprehensive Review and Future Therapeutic Perspectives. International Journal of Molecular Sciences, 2017, 18, 2619.	4.1	107
1497	The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists. Microorganisms, 2017, 5, 66.	3.6	71
1498	The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota. Nutrients, 2017, 9, 173.	4.1	40
1499	Iron in Micronutrient Powder Promotes an Unfavorable Gut Microbiota in Kenyan Infants. Nutrients, 2017, 9, 776.	4.1	65
1500	"Omics―in Human Colostrum and Mature Milk: Looking to Old Data with New Eyes. Nutrients, 2017, 9, 843.	4.1	75
1501	Bridging the Gap between Gut Microbial Dysbiosis and Cardiovascular Diseases. Nutrients, 2017, 9, 859.	4.1	132
1502	Fatty Acids Consumption: The Role Metabolic Aspects Involved in Obesity and Its Associated Disorders. Nutrients, 2017, 9, 1158.	4.1	162
1503	Dietary Pea Fiber Supplementation Improves Glycemia and Induces Changes in the Composition of Gut Microbiota, Serum Short Chain Fatty Acid Profile and Expression of Mucins in Glucose Intolerant Rats. Nutrients, 2017, 9, 1236.	4.1	53
1504	Soluble Fibre Meal Challenge Reduces Airway Inflammation and Expression of GPR43 and GPR41 in Asthma. Nutrients, 2017, 9, 57.	4.1	127

#	Article	IF	CITATIONS
1505	Meta Analysis of Skin Microbiome: New Link between Skin Microbiota Diversity and Skin Health with Proposal to Use This as a Future Mechanism to Determine Whether Cosmetic Products Damage the Skin. Cosmetics, 2017, 4, 14.	3.3	27
1506	Effects of Antidiabetic Drugs on Gut Microbiota Composition. Genes, 2017, 8, 250.	2.4	104
1507	A Review of the Benefits of Nature Experiences: More Than Meets the Eye. International Journal of Environmental Research and Public Health, 2017, 14, 864.	2.6	212
1508	Gut–CNS-Axis as Possibility to Modulate Inflammatory Disease Activity—Implications for Multiple Sclerosis. International Journal of Molecular Sciences, 2017, 18, 1526.	4.1	37
1509	Enterotype May Drive the Dietary-Associated Cardiometabolic Risk Factors. Frontiers in Cellular and Infection Microbiology, 2017, 7, 47.	3.9	68
1510	The Glycolytic Versatility of Bacteroides uniformis CECT 7771 and Its Genome Response to Oligo and Polysaccharides. Frontiers in Cellular and Infection Microbiology, 2017, 7, 383.	3.9	47
1511	Dietary Corn Bran Fermented by Bacillus subtilis MA139 Decreased Gut Cellulolytic Bacteria and Microbiota Diversity in Finishing Pigs. Frontiers in Cellular and Infection Microbiology, 2017, 7, 526.	3.9	59
1512	Host–Microbiota Mutualism in Metabolic Diseases. Frontiers in Endocrinology, 2017, 8, 267.	3.5	20
1513	The Maternal Diet, Gut Bacteria, and Bacterial Metabolites during Pregnancy Influence Offspring Asthma. Frontiers in Immunology, 2017, 8, 365.	4.8	74
1514	The Microbiota and Epigenetic Regulation of T Helper 17/Regulatory T Cells: In Search of a Balanced Immune System. Frontiers in Immunology, 2017, 8, 417.	4.8	103
1515	Detrimental Impact of Microbiota-Accessible Carbohydrate-Deprived Diet on Gut and Immune Homeostasis: An Overview. Frontiers in Immunology, 2017, 8, 548.	4.8	114
1516	Patterns of Early-Life Gut Microbial Colonization during Human Immune Development: An Ecological Perspective. Frontiers in Immunology, 2017, 8, 788.	4.8	144
1517	The Impact of Western Diet and Nutrients on the Microbiota and Immune Response at Mucosal Interfaces. Frontiers in Immunology, 2017, 8, 838.	4.8	349
1518	Immunological and Clinical Effect of Diet Modulation of the Gut Microbiome in Multiple Sclerosis Patients: A Pilot Study. Frontiers in Immunology, 2017, 8, 1391.	4.8	121
1519	Human-Driven Microbiological Contamination of Benthic and Hyporheic Sediments of an Intermittent Peri-Urban River Assessed from MST and 16S rRNA Genetic Structure Analyses. Frontiers in Microbiology, 2017, 8, 19.	3.5	29
1520	Impact of Westernized Diet on Gut Microbiota in Children on Leyte Island. Frontiers in Microbiology, 2017, 8, 197.	3.5	132
1521	Gut Microbial Diversity Assessment of Indian Type-2-Diabetics Reveals Alterations in Eubacteria, Archaea, and Eukaryotes. Frontiers in Microbiology, 2017, 8, 214.	3.5	81
1522	Structure and Function of the Fecal Microbiota in Diarrheic Neonatal Piglets. Frontiers in Microbiology, 2017, 8, 502.	3.5	103

#	Article	IF	CITATIONS
1523	Comparative Analysis of the Gut Microbial Communities in Forest and Alpine Musk Deer Using High-Throughput Sequencing. Frontiers in Microbiology, 2017, 8, 572.	3.5	73
1524	Association between Yogurt Consumption and Intestinal Microbiota in Healthy Young Adults Differs by Host Gender. Frontiers in Microbiology, 2017, 8, 847.	3.5	54
1525	Different Types of Dietary Fibers Trigger Specific Alterations in Composition and Predicted Functions of Colonic Bacterial Communities in BALB/c Mice. Frontiers in Microbiology, 2017, 8, 966.	3.5	47
1526	Gut Dysbiosis and Adaptive Immune Response in Diet-induced Obesity vs. Systemic Inflammation. Frontiers in Microbiology, 2017, 8, 1157.	3.5	62
1527	Geography, Ethnicity or Subsistence-Specific Variations in Human Microbiome Composition and Diversity. Frontiers in Microbiology, 2017, 8, 1162.	3.5	695
1528	The Gut Microbiota of Healthy Chilean Subjects Reveals a High Abundance of the Phylum Verrucomicrobia. Frontiers in Microbiology, 2017, 8, 1221.	3.5	225
1529	Human Gut Microbiota: Toward an Ecology of Disease. Frontiers in Microbiology, 2017, 8, 1265.	3.5	110
1530	Prophylactic Supplementation of Bifidobacterium longum 51A Protects Mice from Ovariectomy-Induced Exacerbated Allergic Airway Inflammation and Airway Hyperresponsiveness. Frontiers in Microbiology, 2017, 8, 1732.	3.5	27
1531	Effect of Functional Oligosaccharides and Ordinary Dietary Fiber on Intestinal Microbiota Diversity. Frontiers in Microbiology, 2017, 8, 1750.	3.5	101
1532	Linking the Gut Microbial Ecosystem with the Environment: Does Gut Health Depend on Where We Live?. Frontiers in Microbiology, 2017, 8, 1935.	3.5	113
1533	Diet, Environments, and Gut Microbiota. A Preliminary Investigation in Children Living in Rural and Urban Burkina Faso and Italy. Frontiers in Microbiology, 2017, 8, 1979.	3.5	222
1534	Progressive Colonization of Bacteria and Degradation of Rice Straw in the Rumen by Illumina Sequencing. Frontiers in Microbiology, 2017, 8, 2165.	3.5	41
1535	Low-Molecular-Weight Chitosan Supplementation Increases the Population of Prevotella in the Cecal Contents of Weanling Pigs. Frontiers in Microbiology, 2017, 8, 2182.	3.5	31
1536	Microbial Mechanistic Insight into the Role of Inulin in Improving Maternal Health in a Pregnant Sow Model. Frontiers in Microbiology, 2017, 8, 2242.	3.5	46
1537	Exploring Braak's Hypothesis of Parkinson's Disease. Frontiers in Neurology, 2017, 8, 37.	2.4	210
1538	The Microbiome and Blood Pressure: Can Microbes Regulate Our Blood Pressure?. Frontiers in Pediatrics, 2017, 5, 138.	1.9	102
1539	Changes in Gut Microbial Ecology and Immunological Responses of Mice Fed the Insoluble Fraction of <i>Brassica rapa</i> L. that was Fermented or Not. Microbes and Environments, 2017, 32, 268-274.	1.6	6
1540	Proteobacteria: A Common Factor in Human Diseases. BioMed Research International, 2017, 2017, 1-7.	1.9	673

#	Article	IF	CITATIONS
1541	Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology?. Journal of Immunology Research, 2017, 2017, 1-14.	2.2	52
1542	A phylogenetic transform enhances analysis of compositional microbiota data. ELife, 2017, 6, .	6.0	247
1543	L-Glutamine Supplementation Alleviates Constipation during Late Gestation of Mini Sows by Modifying the Microbiota Composition in Feces. BioMed Research International, 2017, 2017, 1-9.	1.9	28
1544	Human Gut Microbiota Associated with Obesity in Chinese Children and Adolescents. BioMed Research International, 2017, 2017, 1-8.	1.9	127
1545	The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract. Mediators of Inflammation, 2017, 2017, 1-9.	3.0	116
1546	Gut Mesenchymal Stromal Cells in Immunity. Stem Cells International, 2017, 2017, 1-6.	2.5	10
1547	Potential Public Health Impact of Human Milk Oligosaccharides. , 2017, , 207-222.		2
1548	The microbiota in inflammatory bowel disease: current and therapeutic insights. Journal of Inflammation Research, 2017, Volume 10, 63-73.	3.5	168
1549	In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota. Nutrients, 2017, 9, 1237.	4.1	42
1550	Gut Fermentation of Dietary Fibres: Physico-Chemistry of Plant Cell Walls and Implications for Health. International Journal of Molecular Sciences, 2017, 18, 2203.	4.1	165
1551	Microbiome sharing between children, livestock and household surfaces in western Kenya. PLoS ONE, 2017, 12, e0171017.	2.5	49
1552	Methanobrevibacter attenuation via probiotic intervention reduces flatulence in adult human: A non-randomised paired-design clinical trial of efficacy. PLoS ONE, 2017, 12, e0184547.	2.5	20
1553	Evolution in fecal bacterial/viral composition in infants of two central African countries (Gabon and) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
1554	Comparative characterization of bacterial communities in geese fed all-grass or high-grain diets. PLoS ONE, 2017, 12, e0185590.	2.5	29
1555	Community characteristics of the gut microbiomes of competitive cyclists. Microbiome, 2017, 5, 98.	11.1	219
1556	16S rRNA gene-based association study identified microbial taxa associated with pork intramuscular fat content in feces and cecum lumen. BMC Microbiology, 2017, 17, 162.	3.3	77
1557	The relation between Blastocystis and the intestinal microbiota in Swedish travellers. BMC Microbiology, 2017, 17, 231.	3.3	56
1558	The human microbiome in evolution. BMC Biology, 2017, 15, 127.	3.8	243

#	Article	IF	CITATIONS
1559	Microbial community composition along the digestive tract in forage- and grain-fed bison. BMC Veterinary Research, 2017, 13, 253.	1.9	41
1560	ldentification of natural antimicrobial peptides from bacteria through metagenomic and metatranscriptomic analysis of high-throughput transcriptome data of Taiwanese oolong teas. BMC Systems Biology, 2017, 11, 131.	3.0	19
1561	Worse inflammatory profile in omnivores than in vegetarians associates with the gut microbiota composition. Diabetology and Metabolic Syndrome, 2017, 9, 62.	2.7	78
1562	Recent urbanization in China is correlated with a Westernized microbiome encoding increased virulence and antibiotic resistance genes. Microbiome, 2017, 5, 121.	11.1	70
1563	The Inuit gut microbiome is dynamic over time and shaped by traditional foods. Microbiome, 2017, 5, 151.	11.1	53
1564	Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome, 2017, 5, 164.	11.1	186
1565	Unraveling the gut microbiome of the long-lived naked mole-rat. Scientific Reports, 2017, 7, 9590.	3.3	46
1566	A yeast fermentate improves gastrointestinal discomfort and constipation by modulation of the gut microbiome: results from a randomized double-blind placebo-controlled pilot trial. BMC Complementary and Alternative Medicine, 2017, 17, 441.	3.7	28
1568	The Relationship between Habitual Dietary Intake and Gut Microbiota in Young Japanese Women. Journal of Nutritional Science and Vitaminology, 2017, 63, 396-404.	0.6	23
1569	Le malattie infiammatorie immuno-mediate (IMID) di interesse internistico: fisiopatologia, aspetti clinici e prospettive di terapia. Italian Journal of Medicine, 2017, 5, 1.	0.3	0
1570	Gut Microbiota and Metabolic Disorders. Journal of Korean Diabetes, 2017, 18, 63.	0.3	0
1571	Multi-targeting therapeutic mechanisms of the Chinese herbal medicine QHD in the treatment of non-alcoholic fatty liver disease. Oncotarget, 2017, 8, 27820-27838.	1.8	55
1572	Microbiota Influences Vaccine and Mucosal Adjuvant Efficacy. Immune Network, 2017, 17, 20.	3.6	19
1573	Microbiota-gut-brain axis and the central nervous system. Oncotarget, 2017, 8, 53829-53838.	1.8	195
1574	Impact of Early Nutrition on Intestinal Microbiome: Effects on Immunity and Long-Term Health. , 2017, , 203-228.		1
1575	The ecological community of commensal, symbiotic, and pathogenic gastrointestinal microorganisms – an appraisal. Clinical and Experimental Gastroenterology, 2017, Volume 10, 91-103.	2.3	38
1576	Induction with Infliximab and a Plant-Based Diet as First-Line (IPF) Therapy for Crohn Disease: A Single-Group Trial. , 2017, 21, 17-009.		34
1577	The Influence of Microbiota on Mechanisms of Bariatric Surgery. , 2017, , 267-281.		3

#	Article	IF	CITATIONS
1578	Gut Microbial Metabolism in Health and Disease. , 2017, , 835-856.		0
1579	Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World Journal of Gastroenterology, 2017, 23, 6016-6029.	3.3	533
1580	Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World Journal of Gastroenterology, 2017, 23, 60.	3.3	288
1581	Extracts from <i>Hericium erinaceus</i> relieve inflammatory bowel disease by regulating immunity and gut microbiota. Oncotarget, 2017, 8, 85838-85857.	1.8	61
1582	Diet and Microbes in the Pathogenesis of Lupus. , 2017, , .		2
1583	Differential effects of short chain fatty acids on endothelial Nlrp3 inflammasome activation and neointima formation: Antioxidant action of butyrate. Redox Biology, 2018, 16, 21-31.	9.0	89
1584	Plant-based diets and cardiovascular health. Trends in Cardiovascular Medicine, 2018, 28, 437-441.	4.9	256
1585	Comparison of the microbial community structure between inflamed and nonâ€inflamed sites in patients with ulcerative colitis. Journal of Gastroenterology and Hepatology (Australia), 2018, 33, 1590-1597.	2.8	87
1586	Market Integration Predicts Human Gut Microbiome Attributes across a Gradient of Economic Development. MSystems, 2018, 3, .	3.8	31
1587	Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere, 2018, 6, 47-51.	3.0	213
1588	The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine, 2018, 32, 9-25.	1.6	433
1589	Gut microbiota diversity according to dietary habits and geographical provenance. Human Microbiome Journal, 2018, 7-8, 1-9.	3.8	178
1590	Human Gut Microbiota in Health and Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 62, 549-560.	2.6	63
1591	Impact of Nutrition on the Gut Microbiota. , 2018, , 105-131.		2
1592	Fecal Fatty Acid Profiling as a Potential New Screening Biomarker in Patients with Colorectal Cancer. Digestive Diseases and Sciences, 2018, 63, 1229-1236.	2.3	31
1593	Dietary nutrition and gut microflora: A promising target for treating diseases. Trends in Food Science and Technology, 2018, 75, 72-80.	15.1	75
1594	Influence of diet and dietary nanoparticles on gut dysbiosis. Microbial Pathogenesis, 2018, 118, 61-65.	2.9	13
1595	Gut : liver : brain axis: the microbial challenge in the hepatic encephalopathy. Food and Functior 1373-1388.	1,2018,9, 4.6	55

		CITATION REPORT		
#	Article		IF	CITATIONS
1596	Mechanisms of Oral Tolerance. Clinical Reviews in Allergy and Immunology, 2018, 55,	107-117.	6.5	178
1597	Intestinal microbiota and the immune system in metabolic diseases. Journal of Microbi 154-162.	ology, 2018, 56,	2.8	80
1599	How human microbiome talks to health and disease. European Journal of Clinical Micro Infectious Diseases, 2018, 37, 1595-1601.	biology and	2.9	30
1600	Coix polysaccharides: Gut microbiota regulation and immunomodulatory. Bioactive Ca and Dietary Fibre, 2018, 16, 53-61.	rbohydrates	2.7	34
1601	Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity. Obesit 801-809.	y, 2018, 26,	3.0	110
1602	Nutraceuticals in rodent models as potential treatments for human Inflammatory Bow Pharmacological Research, 2018, 132, 99-107.	el Disease.	7.1	23
1603	The inside tract: The appendicular, cecal, and colonic microbiome of captive ayeâ€ayes of Physical Anthropology, 2018, 166, 960-967.	. American Journal	2.1	13
1604	Urbanization and the gut microbiota in health and inflammatory bowel disease. Nature Gastroenterology and Hepatology, 2018, 15, 440-452.	e Reviews	17.8	187
1605	HIV-exposure, early life feeding practices and delivery mode impacts on faecal bacteria South African birth cohort. Scientific Reports, 2018, 8, 5078.	l profiles in a	3.3	28
1606	Guided Protocol for Fecal Microbial Characterization by 16S rRNA-Amplicon Sequencir Visualized Experiments, 2018, , .	ıg. Journal of	0.3	14
1607	Gut microbiota and obesity. Clinical Nutrition Experimental, 2018, 20, 60-64.		2.0	71
1608	Urologic Applications of the Microbiota in Multiple Sclerosis. Current Bladder Dysfunct 2018, 13, 66-74.	tion Reports,	0.5	0
1609	Food, microbiome and colorectal cancer. Digestive and Liver Disease, 2018, 50, 647-6	52.	0.9	43
1610	Microbiome and Gut Dysbiosis. Experientia Supplementum (2012), 2018, 109, 459-47	6.	0.9	121
1611	The New Frontier: the Intestinal Microbiome and Surgery. Journal of Gastrointestinal St 22, 1277-1285.	urgery, 2018,	1.7	11
1612	The Intestinal Microbiota in Colorectal Cancer. Cancer Cell, 2018, 33, 954-964.		16.8	543
1613	Specific properties of probiotic strains: relevance and benefits for the host. EPMA Journ 205-223.	nal, 2018, 9,	6.1	68
1614	Impact of a vegan diet on the human salivary microbiota. Scientific Reports, 2018, 8, 5	847.	3.3	93

#	Article	IF	CITATIONS
1615	Comparative study on intestinal bacterial communities of Boleophthalmus pectinirostris and Periophthalmus magnuspinnatus with different sexes and feeding strategies. Annals of Microbiology, 2018, 68, 123-133.	2.6	9
1616	Fecal Microbiome and Food Allergy in Pediatric Atopic Dermatitis: A Cross-Sectional Pilot Study. International Archives of Allergy and Immunology, 2018, 175, 77-84.	2.1	58
1617	Inter-relationship of the Intestinal Microbiome, Diet, and Mental Health. Current Behavioral Neuroscience Reports, 2018, 5, 1-12.	1.3	2
1618	Cervicovaginal Microbiota and Reproductive Health: The Virtue of Simplicity. Cell Host and Microbe, 2018, 23, 159-168.	11.0	182
1619	Atorvastatin Treatment Modulates the Gut Microbiota of the Hypercholesterolemic Patients. OMICS A Journal of Integrative Biology, 2018, 22, 154-163.	2.0	63
1620	Comparative metaproteomics analysis shows altered fecal microbiota signatures in patients with major depressive disorder. NeuroReport, 2018, 29, 417-425.	1.2	126
1621	The Influence of Microbiota on Gastrointestinal Motility. , 2018, , 113-127.		1
1622	Characterization of the Gut Microbiota in Six Geographical Populations of Chinese Rhesus Macaques (Macaca mulatta), Implying an Adaptation to High-Altitude Environment. Microbial Ecology, 2018, 76, 565-577.	2.8	87
1623	Fibre intake and the development of inflammatory bowel disease: A European prospective multi-centre cohort study (EPIC-IBD). Journal of Crohn's and Colitis, 2018, 12, 129-136.	1.3	79
1624	Antibiotics Disturb the Microbiome and Increase the Incidence of Resistance Genes in the Gut of a Common Soil Collembolan. Environmental Science & Technology, 2018, 52, 3081-3090.	10.0	162
1625	Adaptation of commensal proliferating <i>Escherichia coli</i> to the intestinal tract of young children with cystic fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1605-1610.	7.1	41
1626	Functional metagenomics identifies novel genes ABCTPP, TMSRP1 and TLSRP1 among human gut enterotypes. Scientific Reports, 2018, 8, 1397.	3.3	45
1627	Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice. Food and Function, 2018, 9, 1612-1620.	4.6	70
1628	Clinical Relevance of Gastrointestinal Microbiota During Pregnancy: A Primer for Nurses. Biological Research for Nursing, 2018, 20, 84-102.	1.9	9
1629	Sex dependent effects of silver nanoparticles on the zebrafish gut microbiota. Environmental Science: Nano, 2018, 5, 740-751.	4.3	55
1630	Adaptive immune education by gut microbiota antigens. Immunology, 2018, 154, 28-37.	4.4	203
1631	Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans. Endocrine Reviews, 2018, 39, 133-153.	20.1	207
1632	Analysis of fecal microbiota in patients with functional constipation undergoing treatment with synbiotics. European Journal of Clinical Microbiology and Infectious Diseases, 2018, 37, 555-563.	2.9	24

#	Article	IF	CITATIONS
1633	Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study. Schizophrenia Research, 2018, 197, 470-477.	2.0	222
1634	Occupancy strongly influences faecal microbial composition of wild lemurs. FEMS Microbiology Ecology, 2018, 94, .	2.7	8
1635	The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Science of the Total Environment, 2018, 627, 1018-1038.	8.0	244
1636	Metabolic Fate of ¹³ C-Labeled Polydextrose and Impact on the Gut Microbiome: A Triple-Phase Study in a Colon Simulator. Journal of Proteome Research, 2018, 17, 1041-1053.	3.7	17
1637	Diet and microbiota linked in health and disease. Food and Function, 2018, 9, 688-704.	4.6	148
1638	Microbiota in obesity: interactions with enteroendocrine, immune and central nervous systems. Obesity Reviews, 2018, 19, 435-451.	6.5	77
1639	Isolation, Cultivation, and Storage of Bifidobacteria. , 2018, , 67-98.		3
1640	Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: Implications for host health in zebrafish. Environmental Pollution, 2018, 234, 307-317.	7.5	136
1641	Early-life gut microbiome and cow's milk allergy- a prospective case - control 6-month follow-up study. Saudi Journal of Biological Sciences, 2018, 25, 875-880.	3.8	45
1642	Mushroom polysaccharides from Ganoderma lucidum and Poria cocos reveal prebiotic functions. Journal of Functional Foods, 2018, 41, 191-201.	3.4	96
1643	In vitro digestion by saliva, simulated gastric and small intestinal juices and fermentation by human fecal microbiota of sulfated polysaccharides from Gracilaria rubra. Journal of Functional Foods, 2018, 40, 18-27.	3.4	135
1644	The gut microbiota as a novel regulator of cardiovascular function and disease. Journal of Nutritional Biochemistry, 2018, 56, 1-15.	4.2	122
1645	Rates of gut microbiome divergence in mammals. Molecular Ecology, 2018, 27, 1884-1897.	3.9	179
1646	Colon Cancer. Surgical Oncology Clinics of North America, 2018, 27, 243-267.	1.5	50
1647	Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3, 8-16.	13.3	717
1648	Research Strategies for Nutritional and Physical Activity Epidemiology and Cancer Prevention. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 233-244.	2.5	15
1649	Molecular mechanistic pathway of colorectal carcinogenesis associated with intestinal microbiota. Anaerobe, 2018, 49, 63-70.	2.1	23
1650	Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host and Microbe, 2018, 23, 27-40.e7.	11.0	477

		CITATION REPORT		
#	Article		IF	CITATIONS
1651	Causes of impaired oral vaccine efficacy in developing countries. Future Microbiology,	2018, 13, 97-118.	2.0	154
1652	Ecological plasticity in the gastrointestinal microbiomes of Ethiopian Chlorocebus mor Scientific Reports, 2018, 8, 20.	nkeys.	3.3	37
1653	Dietary Factors Modulate Colonic Tumorigenesis Through the Interaction of Gut Micro Host Chloride Channels. Molecular Nutrition and Food Research, 2018, 62, 1700554.	biota and	3.3	24
1654	Influence of fruit and invertebrate consumption on the gut microbiota of wild whiteâ€ (<i>Cebus capucinus</i>). American Journal of Physical Anthropology, 2018, 165, 576-	faced capuchins 588.	2.1	36
1655	Simulated Digestion and Fermentation in Vitro by Human Gut Microbiota of Polysacch Collected Pollen of Chinese Wolfberry. Journal of Agricultural and Food Chemistry, 201		5.2	127
1656	Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Reviews, 2018, 42, 146-164.	Microbiology	8.6	188
1657	Pathogens, microbiome and the host: emergence of the ecological Koch's postulates. I Microbiology Reviews, 2018, 42, 273-292.	FEMS	8.6	103
1658	Vegetarian Diets and Pediatric Obesity. Contemporary Endocrinology, 2018, , 287-303		0.1	1
1659	Diet, Microbiota, and Metabolic Health: Trade-Off Between Saccharolytic and Proteolyt Fermentation. Annual Review of Food Science and Technology, 2018, 9, 65-84.	tic	9.9	93
1660	Short-chain fatty acids regulate systemic bone mass and protect from pathological bor Communications, 2018, 9, 55.	ne loss. Nature	12.8	393
1661	Modulations in the offspring gut microbiome are refractory to postnatal synbiotic sup among juvenile primates. BMC Microbiology, 2018, 18, 28.	plementation	3.3	19
1662	The hologenome concept of evolution after 10Âyears. Microbiome, 2018, 6, 78.		11.1	326
1663	The association of diet, gut microbiota and colorectal cancer: what we eat may imply v Protein and Cell, 2018, 9, 474-487.	vhat we get.	11.0	204
1665	Review article: short chain fatty acids as potential therapeutic agents in human gastroi inflammatory disorders. Alimentary Pharmacology and Therapeutics, 2018, 48, 15-34.	intestinal and	3.7	339
1666	Malaria and the Microbiome: A Systematic Review. Clinical Infectious Diseases, 2018, 6	57, 1831-1839.	5.8	33
1667	Gastrointestinal influences in multiple sclerosis: Focus on the role of the microbiome. C Experimental Neuroimmunology, 2018, 9, 2-12.	Clinical and	1.0	4
1668	Dysbiosis of gut microbiota and microbial metabolites in Parkinson's Disease. Agei Reviews, 2018, 45, 53-61.	ng Research	10.9	265
1669	Mass spectrometry approaches to metabolic profiling of microbial communities within gastrointestinal tract. Methods, 2018, 149, 13-24.	the human	3.8	21

#	Article	IF	CITATIONS
1670	Determinants of IBD Heritability: Genes, Bugs, and More. Inflammatory Bowel Diseases, 2018, 24, 1133-1148.	1.9	122
1671	Relationship between diet, the gut microbiota, and brain function. Nutrition Reviews, 2018, 76, 603-617.	5.8	47
1672	Wisconsin microbiome study, a cross-sectional investigation of dietary fibre, microbiome composition and antibiotic-resistant organisms: rationale and methods. BMJ Open, 2018, 8, e019450.	1.9	31
1673	Elucidation of bacterial species during childhood diarrhea through 16S rRNA Illumina Miseq approach. Meta Gene, 2018, 16, 234-240.	0.6	3
1674	Mechanisms underlying the effects of n-3 polyunsaturated fatty acids on fear memory processing and their hypothetical effects on fear of cancer recurrence in cancer survivors. Prostaglandins Leukotrienes and Essential Fatty Acids, 2018, 131, 14-23.	2.2	10
1675	Understanding the Intestinal Microbiome in Health and Disease. Veterinary Clinics of North America Equine Practice, 2018, 34, 1-12.	0.7	66
1676	High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome, 2018, 6, 57.	11.1	176
1677	Impact of dietary compounds on cancer-related gut microbiota and microRNA. Applied Microbiology and Biotechnology, 2018, 102, 4291-4303.	3.6	15
1678	Exploring Bacteroidetes: Metabolic key points and immunological tricks of our gut commensals. Digestive and Liver Disease, 2018, 50, 635-639.	0.9	137
1679	Gut Microbial Dysbiosis in Indian Children with Autism Spectrum Disorders. Microbial Ecology, 2018, 76, 1102-1114.	2.8	130
1680	Fecal microbiome composition and stability in 4- to 8-year old children is associated with dietary patterns and nutrient intake. Journal of Nutritional Biochemistry, 2018, 56, 165-174.	4.2	50
1681	FUT2 genotype and secretory status are not associated with fecal microbial composition and inferred function in healthy subjects. Gut Microbes, 2018, 9, 1-12.	9.8	33
1682	Evidence of dysbiosis in the intestinal microbial ecosystem of children and adolescents with primary hyperlipidemia and the potential role of regular hazelnut intake. FEMS Microbiology Ecology, 2018, 94,	2.7	27
1683	Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Scientific Reports, 2018, 8, 4318.	3.3	125
1684	Influence of fecal collection conditions and 16S rRNA gene sequencing at two centers on human gut microbiota analysis. Scientific Reports, 2018, 8, 4386.	3.3	46
1685	Diet, the intestinal microbiota, and immune health in aging. Critical Reviews in Food Science and Nutrition, 2018, 58, 651-661.	10.3	84
1686	Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs. Gut, 2018, 67, 872-881.	12.1	176
1687	Dietary pea fibre alters the microbial community and fermentation with increase in fibre degradationâ€associated bacterial groups in the colon of pigs. Journal of Animal Physiology and Animal Nutrition, 2018, 102, e254-e261.	2.2	30

#	Article	IF	CITATIONS
1688	Food additives, contaminants and other minor components: effects on human gut microbiota—a review. Journal of Physiology and Biochemistry, 2018, 74, 69-83.	3.0	127
1689	Cafeteria diet and probiotic therapy: cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Molecular Psychiatry, 2018, 23, 351-361.	7.9	84
1690	The Geography of Malnutrition. Professional Geographer, 2018, 70, 47-59.	1.8	10
1691	Microbial Interactions and Interventions in Colorectal Cancer. Microbiology Spectrum, 2017, 5, .	3.0	35
1692	Maternal Gut Microbiome Biodiversity in Pregnancy. American Journal of Perinatology, 2018, 35, 024-030.	1.4	51
1693	Diet Versus Phylogeny: a Comparison of Gut Microbiota in Captive Colobine Monkey Species. Microbial Ecology, 2018, 75, 515-527.	2.8	106
1694	Can the gastrointestinal microbiota be modulated by dietary fibre to treat obesity?. Irish Journal of Medical Science, 2018, 187, 393-402.	1.5	27
1695	Determinants of Reduced Genetic Capacity for Butyrate Synthesis by the Gut Microbiome in Crohn's Disease and Ulcerative Colitis. Journal of Crohn's and Colitis, 2018, 12, 204-216.	1.3	93
1696	The impact of rumen cannulation on the microbial community of goat rumens as measured using 16S rRNA highâ€ŧhroughput sequencing. Journal of Animal Physiology and Animal Nutrition, 2018, 102, 175-183.	2.2	11
1697	Diet, Gut Microbiota, and Vitamins D +ÂA in Multiple Sclerosis. Neurotherapeutics, 2018, 15, 75-91.	4.4	117
1698	Gut microbiota and obesity: Concepts relevant to clinical care. European Journal of Internal Medicine, 2018, 48, 18-24.	2.2	95
1699	The role of the intestinal microbiota in the pathogenesis and treatment of inflammatory bowel diseases. Seminars in Colon and Rectal Surgery, 2018, 29, 21-27.	0.3	0
1700	Synthetic Biology and the Gut Microbiome. Biotechnology Journal, 2018, 13, e1700159.	3.5	35
1701	Characterization of the Stool Microbiome in Hispanic Preschool Children by Weight Status and Time. Childhood Obesity, 2018, 14, 122-130.	1.5	21
1702	Digestion under saliva, simulated gastric and small intestinal conditions and fermentation in vitro by human intestinal microbiota of polysaccharides from Fuzhuan brick tea. Food Chemistry, 2018, 244, 331-339.	8.2	280
1703	The hygiene hypothesis in autoimmunity: the role of pathogens and commensals. Nature Reviews Immunology, 2018, 18, 105-120.	22.7	322
1704	Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cellular and Molecular Life Sciences, 2018, 75, 129-148.	5.4	190
1705	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. Microbiology Spectrum, 2017, 5, .	3.0	125

#	Article	IF	CITATIONS
1706	Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. European Journal of Nutrition, 2018, 57, 861-876.	3.9	102
1707	Prospective Study of Gastrointestinal Symptoms in School Children of South America. Journal of Pediatric Gastroenterology and Nutrition, 2018, 66, 391-394.	1.8	5
1708	Beyond gut feelings: how the gut microbiota regulates blood pressure. Nature Reviews Cardiology, 2018, 15, 20-32.	13.7	287
1709	Breastfeeding increases microbial community resilience. Jornal De Pediatria, 2018, 94, 258-267.	2.0	15
1710	Gut colonization with extended-spectrum β-lactamase-producing Enterobacteriaceae may increase disease activity in biologic-naive outpatients with ulcerative colitis: an interim analysis. European Journal of Gastroenterology and Hepatology, 2018, 30, 92-100.	1.6	10
1711	Alterations in gut microbiota associated with a cafeteria diet and the physiological consequences in the host. International Journal of Obesity, 2018, 42, 746-754.	3.4	31
1712	Gastrointestinal microbial diversity and short-chain fatty acid production in pigs fed different fibrous diets with or without cell wall-degrading enzyme supplementation. Livestock Science, 2018, 207, 105-116.	1.6	21
1713	A review of metabolic potential of human gut microbiome in human nutrition. Archives of Microbiology, 2018, 200, 203-217.	2.2	206
1714	Dietary Fiber in Health and Disease. , 2018, , .		6
1715	The Dynamics of the Gut Microbiome in Multiple Sclerosis in Relation to Disease. Neurologic Clinics, 2018, 36, 185-196.	1.8	30
1716	Colonic Bacteroides are positively associated with trabecular bone structure and programmed by maternal vitamin D in male but not female offspring in an obesogenic environment. International Journal of Obesity, 2018, 42, 696-703.	3.4	14
1717	Effect of Probiotic Supplementation on CD4 Cell Count in HIV-Infected Patients: A Systematic Review and Meta-analysis. Journal of Dietary Supplements, 2018, 15, 776-788.	2.6	13
1718	Adverse effect of early-life high-fat/high-carbohydrate ("Westernâ€) diet on bacterial community in the distal bowel of mice. Nutrition Research, 2018, 50, 25-36.	2.9	20
1719	Phylogeny and Antagonistic Activities of Culturable Bacteria Associated with the Gut Microbiota of the Sea Urchin (Paracentrotus lividus). Current Microbiology, 2018, 75, 359-367.	2.2	9
1720	Insights on the Role of Fiber in Colonic Microbiota Health. , 2018, , 41-66.		2
1721	Low dietary fiber intake increases <i>Collinsella</i> abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes, 2018, 9, 189-201.	9.8	233
1722	A metagenomic approach to dissect the genetic composition of enterotypes in Han Chinese and two Muslim groups. Systematic and Applied Microbiology, 2018, 41, 1-12.	2.8	24
1723	Trimethylamine N -oxide: A harmful, protective or diagnostic marker in lifestyle diseases?. Nutrition, 2018, 46, 7-12.	2.4	92

#	Article	IF	CITATIONS
1724	Aspiration: /aspə'rÄ&H(É™)n/: Noun: An Ambiguous Term Used for a Diagnosis of Uncertainty. Clinical Pulmonary Medicine, 2018, 25, 177-183.	0.3	7
1725	Microbiome Research in Atopic Dermatitis. Hanyang Medical Reviews, 2018, 38, 85.	0.4	1
1726	The Multifactorial Etiopathogeneses Interplay of Inflammatory Bowel Disease: An Overview. Gastrointestinal Disorders, 2018, 1, 75-105.	0.8	10
1727	Mycobacteria, Immunoregulation, and Autoimmunity. , 2018, , 121-154.		1
1728	Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: a pilot study. PeerJ, 2018, 6, e4693.	2.0	84
1729	Pathogenesis of Inflammatory Bowel Disease: Basic Science in the Light of Real-World Epidemiology. Gastrointestinal Disorders, 2018, 1, 129-146.	0.8	7
1730	Role of diet and gut microbiota on colorectal cancer immunomodulation. World Journal of Gastroenterology, 2018, 25, 151-162.	3.3	103
1731	Similarities and differences in gut microbiome composition correlate with dietary patterns of Indian and Chinese adults. AMB Express, 2018, 8, 104.	3.0	55
1732	Benefits of procyanidins on gut microbiota in Bama minipigs and implications in replacing antibiotics. Journal of Veterinary Science, 2018, 19, 798.	1.3	4
1733	Is Host Filtering the Main Driver of Phylosymbiosis across the Tree of Life?. MSystems, 2018, 3, .	3.8	119
1734	Escherichia�coli O101â€ʻinduced diarrhea develops gut microbial dysbiosis in rats. Experimental and Therapeutic Medicine, 2019, 17, 824-834.	1.8	12
1735	Prokaryotes Rule the World. , 2018, , .		1
1736	Metagenomic Approaches for Investigating the Role of the Microbiome in Gut Health and Inflammatory Diseases. , 2018, , .		1
1737	Comparison of Gut Microbial Diversity in Beijing Oil and Arbor Acres Chickens. Brazilian Journal of Poultry Science, 2018, 20, 37-44.	0.7	5
1738	Exploiting Significance of Physical Exercise in Prevention of Gastrointestinal Disorders. Current Pharmaceutical Design, 2018, 24, 1916-1925.	1.9	18
1740	Gut microbiome transition across a lifestyle gradient in Himalaya. PLoS Biology, 2018, 16, e2005396.	5.6	128
1742	Demystifying Dysbiosis: Can the Gut Microbiome Promote Oral Tolerance Over IgE-mediated Food Allergy?. Current Pediatric Reviews, 2018, 14, 156-163.	0.8	22
1743	Damage accrual in systemic lupus erythematosus in Dominicans in New York City and the Dominican Republic. Lupus, 2018, 27, 1989-1995.	1.6	1

#	Article	IF	CITATIONS
1744	Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes. International Journal of Molecular Sciences, 2018, 19, 3720.	4.1	138
1745	Gut Microbiota and its Role in Human Health. Psihologijske Teme, 2018, 27, 17-32.	0.2	1
1746	Decreased microbial co-occurrence network stability and SCFA receptor level correlates with obesity in African-origin women. Scientific Reports, 2018, 8, 17135.	3.3	42
1747	Impact of a Healthy Dietary Pattern on Gut Microbiota and Systemic Inflammation in Humans. Nutrients, 2018, 10, 1783.	4.1	71
1748	Divergent short-chain fatty acid production and succession of colonic microbiota arise in fermentation of variously-sized wheat bran fractions. Scientific Reports, 2018, 8, 16655.	3.3	62
1749	A low-gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nature Communications, 2018, 9, 4630.	12.8	124
1750	An Insight Into the Intestinal Web of Mucosal Immunity, Microbiota, and Diet in Inflammation. Frontiers in Immunology, 2018, 9, 2617.	4.8	70
1751	Polygonatum odoratum Polysaccharides Modulate Gut Microbiota and Mitigate Experimentally Induced Obesity in Rats. International Journal of Molecular Sciences, 2018, 19, 3587.	4.1	83
1752	Low Salivary Amylase Gene (AMY1) Copy Number Is Associated with Obesity and Gut Prevotella Abundance in Mexican Children and Adults. Nutrients, 2018, 10, 1607.	4.1	36
1753	Resveratrol, Metabolic Syndrome, and Gut Microbiota. Nutrients, 2018, 10, 1651.	4.1	181
1754	The Evolution of Living Beings Started with Prokaryotes and in Interaction with Prokaryotes. , 2018, , 241-338.		2
1755	A multicenter, randomized controlled comparison of three renutrition strategies for the management of moderate acute malnutrition among children aged from 6 to 24Âmonths (the MALINEA) Tj ETQq1	1.0 .7843	3164 rgBT /©∖
1756	Gut Microbiome Dysbiosis and Immunometabolism: New Frontiers for Treatment of Metabolic Diseases. Mediators of Inflammation, 2018, 2018, 1-12.	3.0	199
1757	Changes in Gastric Microbiota during Gastric Carcinogenesis. The Korean Journal of Helicobacter and Upper Gastrointestinal Research, 2018, 18, 95.	0.4	5
1758	Qualitative modelling of the interplay of inflammatory status and butyrate in the human gut: a hypotheses about robust bi-stability. BMC Systems Biology, 2018, 12, 144.	3.0	5
1759	Population-Based Gut Microbiome Associations With Hypertension. Circulation Research, 2018, 123, 1185-1187.	4.5	6
1761	A Metabologenomic Approach Reveals Changes in the Intestinal Environment of Mice Fed on American Diet. International Journal of Molecular Sciences, 2018, 19, 4079.	4.1	41
1762	Dietary quality of predominantly traditional diets is associated with blood glucose profiles, but not with total fecal Bifidobacterium in Indonesian women. PLoS ONE, 2018, 13, e0208815.	2.5	19

#	Article	IF	CITATIONS
1763	Diet, physical activity and screen time but not body mass index are associated with the gut microbiome of a diverse cohort of college students living in university housing: a cross-sectional study. BMC Microbiology, 2018, 18, 210.	3.3	51
1764	Probiotics on Pediatric Functional Gastrointestinal Disorders. Nutrients, 2018, 10, 1836.	4.1	41
1765	Dietary Composition and Cardiovascular Risk: A Mediator or a Bystander?. Nutrients, 2018, 10, 1912.	4.1	26
1766	Pre-obese children's dysbiotic gut microbiome and unhealthy diets may predict the development of obesity. Communications Biology, 2018, 1, 222.	4.4	65
1767	Development of the Gut Microbiome in Children, and Lifetime Implications for Obesity and Cardiometabolic Disease. Children, 2018, 5, 160.	1.5	53
1768	Lost food narratives canÂgrow human health inÂcities. Frontiers in Ecology and the Environment, 2018, 16, 560-562.	4.0	5
1769	A paradigm shift for the prevention and treatment of individual and global obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2018, Volume 11, 855-861.	2.4	4
1770	The effects of dietary astaxanthin on intestinal health of juvenile tiger puffer Takifugu rubripes in terms of antioxidative status, inflammatory response and microbiota. Aquaculture Nutrition, 2018, 25, 466.	2.7	2
1771	Inhibiting Growth of Clostridioides difficile by Restoring Valerate, Produced by the Intestinal Microbiota. Gastroenterology, 2018, 155, 1495-1507.e15.	1.3	127
1772	Novel association of <i>Psychrobacter</i> and <i>Pseudomonas</i> with malodour in bloodhound dogs, and the effects of a topical product composed of essential oils and plantâ€derived essential fatty acids in a randomized, blinded, placeboâ€controlled study. Veterinary Dermatology, 2018, 29, 465.	1.2	19
1773	Update on the epidemiology of Australian inflammatory bowel disease from the Geelong cohort: Does diet matter after all?. Journal of Gastroenterology and Hepatology (Australia), 2018, 33, 20-21.	2.8	1
1774	Diet: Cause or Consequence of the Microbial Profile of Cholelithiasis Disease?. Nutrients, 2018, 10, 1307.	4.1	16
1775	The "Gut Feeling†Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics, 2018, 15, 109-125.	4.4	117
1776	Metagenomic Insights into the Degradation of Resistant Starch by Human Gut Microbiota. Applied and Environmental Microbiology, 2018, 84, .	3.1	63
1777	The gut microbiota: cause and cure of gut diseases. Medical Journal of Australia, 2018, 209, 312-317.	1.7	10
1778	New Insights into the Pathogenesis and Treatment of Malnutrition. Gastroenterology Clinics of North America, 2018, 47, 813-827.	2.2	18
1779	Edible Insects and Other Chitin-Bearing Foods in Ethnic Peru: Accessibility, Nutritional Acceptance, and Food-Security Implications. Journal of Ethnobiology, 2018, 38, 424.	2.1	5
1780	Linking gut microbiota, metabolic syndrome and economic status based on a population-level analysis. Microbiome, 2018, 6, 172.	11.1	131

#	Article	IF	CITATIONS
1781	Intestinal toxicity of deoxynivalenol is limited by supplementation with Lactobacillus plantarum JM113 and consequentially altered gut microbiota in broiler chickens. Journal of Animal Science and Biotechnology, 2018, 9, 74.	5.3	65
1782	Response of Gut Microbiota to Dietary Fiber and Metabolic Interaction With SCFAs in Piglets. Frontiers in Microbiology, 2018, 9, 2344.	3.5	72
1783	Introductory Chapter: The Need for Dietary Interventions for Diabetes. , 2018, , .		0
1784	Influence of the microbiota and probiotics in obesity. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2018, 30, 271-279.	0.2	15
1785	The use of random forests modelling to detect yeast-mannan sensitive bacterial changes in the broiler cecum. Scientific Reports, 2018, 8, 13270.	3.3	7
1786	The Microbiotic Highway to Health—New Perspective on Food Structure, Gut Microbiota, and Host Inflammation. Nutrients, 2018, 10, 1590.	4.1	45
1787	Biology and Taxonomy of crAss-like Bacteriophages, the Most Abundant Virus in the Human Gut. Cell Host and Microbe, 2018, 24, 653-664.e6.	11.0	233
1788	In Vitro Fermentation of Selected Prebiotics and Their Effects on the Composition and Activity of the Adult Gut Microbiota. International Journal of Molecular Sciences, 2018, 19, 3097.	4.1	126
1789	Nutritional Therapy for Inflammatory Bowel Disease. , 2018, , .		0
1790	Propionate Protects Haloperidol-Induced Neurite Lesions Mediated by Neuropeptide Y. Frontiers in Neuroscience, 2018, 12, 743.	2.8	13
1791	Fermented Foods and Beverages in Human Diet and Their Influence on Gut Microbiota and Health. Fermentation, 2018, 4, 90.	3.0	56
1792	Contribution of Host Genetics to the Variation of Microbial Composition of Cecum Lumen and Feces in Pigs. Frontiers in Microbiology, 2018, 9, 2626.	3.5	44
	1111gs. Honders in Microbiology, 2010, 9, 2020.		
1793	Gas Chromatography Mass Spectrometry (GC-MS) Quantification of Metabolites in Stool Using 13C Labelled Compounds. Metabolites, 2018, 8, 75.	2.9	5
1793 1794	Gas Chromatography Mass Spectrometry (GC-MS) Quantification of Metabolites in Stool Using 13C		5
	Gas Chromatography Mass Spectrometry (GC-MS) Quantification of Metabolites in Stool Using 13C Labelled Compounds. Metabolites, 2018, 8, 75.	2.9 28.9	511
1794	Gas Chromatography Mass Spectrometry (GC-MS) Quantification of Metabolites in Stool Using 13C Labelled Compounds. Metabolites, 2018, 8, 75. US Immigration Westernizes the Human Gut Microbiome. Cell, 2018, 175, 962-972.e10.	2.9 28.9	511

1798Dietary Patterns Affect the Gut Microbiomeâ€"The Link to Risk of Cardiometabolic Diseases. Journal of
Nutrition, 2018, 148, 1402-1407.2.934

#	Article	IF	CITATIONS
1799	Dietary supplementation with <i>Rehmannia glutinosa</i> affects the composition of intestinal microorganisms in common carp. Journal of Basic Microbiology, 2018, 58, 1023-1032.	3.3	11
1800	A fucoidan from sea cucumber <i>Pearsonothuria graeffei</i> with well-repeated structure alleviates gut microbiota dysbiosis and metabolic syndromes in HFD-fed mice. Food and Function, 2018, 9, 5371-5380.	4.6	67
1801	Child Weight Gain Trajectories Linked To Oral Microbiota Composition. Scientific Reports, 2018, 8, 14030.	3.3	39
1802	Gut microbiota modulates drug pharmacokinetics. Drug Metabolism Reviews, 2018, 50, 357-368.	3.6	97
1803	Microbial enterotypes in personalized nutrition and obesity management. American Journal of Clinical Nutrition, 2018, 108, 645-651.	4.7	131
1804	The effect of exposure to high altitude and low oxygen on intestinal microbial communities in mice. PLoS ONE, 2018, 13, e0203701.	2.5	44
1805	The Gut Microbiota in the Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Frontiers in Microbiology, 2018, 9, 2247.	3.5	408
1806	Eating Habits in Combating Disease. , 2018, , 423-432.		1
1807	The microbiome and inborn errors of metabolism: Why we should look carefully at their interplay?. Genetics and Molecular Biology, 2018, 41, 515-532.	1.3	14
1808	Changes in daily maximum temperature extremes across India over 1951–2014 and their relation with cereal crop productivity. Stochastic Environmental Research and Risk Assessment, 2018, 32, 3067-3081.	4.0	13
1809	Cranberries attenuate animal-based diet-induced changes in microbiota composition and functionality: a randomized crossover controlled feeding trial. Journal of Nutritional Biochemistry, 2018, 62, 76-86.	4.2	80
1810	Diet, Microbiota and Gut-Lung Connection. Frontiers in Microbiology, 2018, 9, 2147.	3.5	267
1811	Gut microbiota mediates the anti-obesity effect of calorie restriction in mice. Scientific Reports, 2018, 8, 13037.	3.3	114
1812	Modulation of the immune system by the gut microbiota in the development of type 1 diabetes. Human Vaccines and Immunotherapeutics, 2018, 14, 1-17.	3.3	11
1813	Modulation of the Gastrointestinal Microbiome with Nondigestible Fermentable Carbohydrates To Improve Human Health. , 0, , 453-483.		8
1814	Microbial Interactions and Interventions in Colorectal Cancer. , 2018, , 99-130.		1
1815	Breastfeeding increases microbial community resilience. Jornal De Pediatria (Versão Em Português), 2018, 94, 258-267.	0.2	1
1816	Starvation stress affects the interplay among shrimp gut microbiota, digestion and immune activities. Fish and Shellfish Immunology, 2018, 80, 191-199.	3.6	61

#	Article	IF	CITATIONS
1817	Alopecia areata and the gut—the link opens up for novel therapeutic interventions. Expert Opinion on Therapeutic Targets, 2018, 22, 503-511.	3.4	43
1818	Microbial Metabolism in the Mammalian Gut. Journal of Pediatric Gastroenterology and Nutrition, 2018, 66, S72-S79.	1.8	15
1819	The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Frontiers in Neuroendocrinology, 2018, 51, 80-101.	5.2	218
1820	The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 525-535.	17.8	178
1821	Gut Microbiota and Human Health: Insights From Ecological Restoration. Quarterly Review of Biology, 2018, 93, 73-90.	0.1	10
1822	Prebiotic effects of white button mushroom (Agaricus bisporus) feeding on succinate and intestinal gluconeogenesis in C57BL/6 mice. Journal of Functional Foods, 2018, 45, 223-232.	3.4	28
1823	Evolutionaire geneeskunde. Bijblijven (Amsterdam, Netherlands), 2018, 34, 391-425.	0.0	0
1824	Influence of changes in the intestinal microflora on the immune function in mice. Journal of Veterinary Medical Science, 2018, 80, 440-446.	0.9	14
1825	Helminth-induced regulatory T cells and suppression of allergic responses. Current Opinion in Immunology, 2018, 54, 1-6.	5.5	32
1826	Caecal infusion of the shortâ€chain fatty acid propionate affects the microbiota and expression of inflammatory cytokines in the colon in a fistula pig model. Microbial Biotechnology, 2018, 11, 859-868.	4.2	43
1827	Childhood Microbial Experience, Immunoregulation, Inflammation, and Adult Susceptibility to Psychosocial Stressors and Depression. , 2018, , 17-44.		3
1828	The Gut-Brain-Microbe Interaction: Relevance in Inflammation and Depression. , 2018, , 241-252.		0
1829	Effects of Mediterranean Diet on Endothelial Function. , 2018, , 363-389.		1
1830	Sulfated polysaccharides from pacific abalone reduce diet-induced obesity by modulating the gut microbiota. Journal of Functional Foods, 2018, 47, 211-219.	3.4	41
1831	Dietary Fiber Confers Protection against Flu by Shaping Ly6câ^' Patrolling Monocyte Hematopoiesis and CD8+ T Cell Metabolism. Immunity, 2018, 48, 992-1005.e8.	14.3	441
1832	Microbiome-Mediated Effects of the Mediterranean Diet on Inflammation. Advances in Nutrition, 2018, 9, 193-206.	6.4	126
1833	Supplementation with organic acids showing different effects on growth performance, gut morphology and microbiota of weaned pigs fed with highly or less digestible diets. Journal of Animal Science, 2018, 96, 3302-3318.	0.5	33
1834	Prolonged restraint stressor exposure in outbred CD-1 mice impacts microbiota, colonic inflammation, and short chain fatty acids. PLoS ONE, 2018, 13, e0196961.	2.5	36

#	Article	IF	CITATIONS
1835	Gut microflora may facilitate adaptation to anthropic habitat: A comparative study in <i>Rattus</i> . Ecology and Evolution, 2018, 8, 6463-6472.	1.9	4
1836	Bariatric surgery drives major rearrangements of the intestinal microbiota including the biofilm composition. Frontiers in Bioscience - Elite, 2018, 10, 495-505.	1.8	11
1837	Asymptomatic Intestinal Colonization with Protist <i>Blastocystis</i> Is Strongly Associated with Distinct Microbiome Ecological Patterns. MSystems, 2018, 3, .	3.8	99
1838	Analysis of Microbial Diversity: Regarding the (Paradoxical) Difficulty of Seeing Big in Metagenomics. , 2018, , 63-87.		0
1839	Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives. Mediators of Inflammation, 2018, 2018, 1-17.	3.0	107
1840	Diet Effects on Gut Microbiome Composition, Function, and Host Physiology. , 2018, , 755-766.		1
1841	Antibiotic-induced changes in the microbiota disrupt redox dynamics in the gut. ELife, 2018, 7, .	6.0	121
1842	Effects of Substance Use and Sex Practices on the Intestinal Microbiome During HIV-1 Infection. Journal of Infectious Diseases, 2018, 218, 1560-1570.	4.0	41
1843	Evidence-Based Approach in Translational Dental Research. , 2018, , 81-101.		5
1844	Overlapping Community Compositions of Gut and Fecal Microbiomes in Lab-Reared and Field-Collected German Cockroaches. Applied and Environmental Microbiology, 2018, 84, .	3.1	67
1845	Intestinal Microbiome in Health and Disease: Introduction. , 2018, , 1-3.		2
1846	Water system is a controlling variable modulating bacterial diversity of gastrointestinal tract and performance in rainbow trout. PLoS ONE, 2018, 13, e0195967.	2.5	20
1847	Fiber Supplements Derived From Sugarcane Stem, Wheat Dextrin and Psyllium Husk Have Different In Vitro Effects on the Human Gut Microbiota. Frontiers in Microbiology, 2018, 9, 1618.	3.5	25
1849	Remnant Small Bowel Length in Pediatric Short Bowel Syndrome and the Correlation with Intestinal Dysbiosis and Linear Growth. Journal of the American College of Surgeons, 2018, 227, 439-449.	0.5	28
1850	Free Dietary Choice and Free-Range Rearing Improve the Product Quality, Gait Score, and Microbial Richness of Chickens. Animals, 2018, 8, 84.	2.3	25
1851	Gut Microbes: The Miniscule Laborers in the Human Body. , 2018, , 1-31.		1
1852	Preventive and Therapeutic Effects of Dietary Fibers Against Cardiovascular Diseases. , 2018, , 365-393.		0
1853	Bacterial communities related to 3-nitro-1-propionic acid degradation in the rumen of grazing ruminants in the Qinghai-Tibetan Plateau. Anaerobe, 2018, 54, 42-54.	2.1	8

#	Article	IF	CITATIONS
1854	Effects of anthocyanins from the fruit of Lycium ruthenicum Murray on intestinal microbiota. Journal of Functional Foods, 2018, 48, 533-541.	3.4	69
1855	Gut microbiota, short chain fatty acids, and obesity across the epidemiologic transition: the METS-Microbiome study protocol. BMC Public Health, 2018, 18, 978.	2.9	32
1856	Human Milk Oligosaccharides and Associations With Immune-Mediated Disease and Infection in Childhood: A Systematic Review. Frontiers in Pediatrics, 2018, 6, 91.	1.9	77
1857	Microbiome Responses to an Uncontrolled Short-Term Diet Intervention in the Frame of the Citizen Science Project. Nutrients, 2018, 10, 576.	4.1	96
1858	Gut microbiota is associated with obesity and cardiometabolic disease in a population in the midst of Westernization. Scientific Reports, 2018, 8, 11356.	3.3	82
1859	Composition and Function of the Gut Microbiome. , 2018, , 5-30.		5
1860	The Gut-Brain Axis, the Human Gut Microbiota and Their Integration in the Development of Obesity. Frontiers in Physiology, 2018, 9, 900.	2.8	122
1861	Effect of dietary fat to starch content on fecal microbiota composition and activity in dogs1. Journal of Animal Science, 2018, 96, 3684-3698.	0.5	35
1862	Metagenomic analysis of gut microbial communities from a Central Asian population. BMJ Open, 2018, 8, e021682.	1.9	31
1863	Microbiome and Diseases: Allergy. , 2018, , 175-194.		0
1863 1864	Microbiome and Diseases: Allergy. , 2018, , 175-194. Microbiome and Diet. , 2018, , 79-88.		0
		4.2	
1864	Microbiome and Diet. , 2018, , 79-88. Alterations and structural resilience of the gut microbiota under dietary fat perturbations. Journal	4.2 3.3	1
1864 1865	Microbiome and Diet. , 2018, , 79-88. Alterations and structural resilience of the gut microbiota under dietary fat perturbations. Journal of Nutritional Biochemistry, 2018, 61, 91-100. Impact of Edible Cricket Consumption on Gut Microbiota in Healthy Adults, a Double-blind,		1 26
1864 1865 1866	Microbiome and Diet. , 2018, , 79-88. Alterations and structural resilience of the gut microbiota under dietary fat perturbations. Journal of Nutritional Biochemistry, 2018, 61, 91-100. Impact of Edible Cricket Consumption on Gut Microbiota in Healthy Adults, a Double-blind, Randomized Crossover Trial. Scientific Reports, 2018, 8, 10762. Relapse Prevention in Ulcerative Colitis by Plant-Based Diet Through Educational Hospitalization: A		1 26 149
1864 1865 1866 1867	Microbiome and Diet. , 2018, , 79-88. Alterations and structural resilience of the gut microbiota under dietary fat perturbations. Journal of Nutritional Biochemistry, 2018, 61, 91-100. Impact of Edible Cricket Consumption on Gut Microbiota in Healthy Adults, a Double-blind, Randomized Crossover Trial. Scientific Reports, 2018, 8, 10762. Relapse Prevention in Ulcerative Colitis by Plant-Based Diet Through Educational Hospitalization: A Single-Group Trial. , 2018, 22, 17-167. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis	3.3	1 26 149 19
1864 1865 1866 1867 1868	Microbiome and Diet. , 2018, , 79-88. Alterations and structural resilience of the gut microbiota under dietary fat perturbations. Journal of Nutritional Biochemistry, 2018, 61, 91-100. Impact of Edible Cricket Consumption on Gut Microbiota in Healthy Adults, a Double-blind, Randomized Crossover Trial. Scientific Reports, 2018, 8, 10762. Relapse Prevention in Ulcerative Colitis by Plant-Based Diet Through Educational Hospitalization: A Single-Group Trial. , 2018, 22, 17-167. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. Journal of Experimental Medicine, 2018, 215, 2019-2034.	3.3 8.5	1 26 149 19 236

#	Article	IF	CITATIONS
1872	Impact of a 3-Months Vegetarian Diet on the Gut Microbiota and Immune Repertoire. Frontiers in Immunology, 2018, 9, 908.	4.8	56
1873	Gut Microbiota: An Integral Moderator in Health and Disease. Frontiers in Microbiology, 2018, 9, 151.	3.5	306
1874	Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens. Frontiers in Microbiology, 2018, 9, 235.	3.5	328
1875	Assessing the Influence of Vegan, Vegetarian and Omnivore Oriented Westernized Dietary Styles on Human Gut Microbiota: A Cross Sectional Study. Frontiers in Microbiology, 2018, 9, 317.	3.5	78
1876	Clostridium difficile – From Colonization to Infection. Frontiers in Microbiology, 2018, 9, 646.	3.5	118
1877	Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population. Frontiers in Microbiology, 2018, 9, 890.	3.5	392
1878	Exploratory Analysis of the Microbiological Potential for Efficient Utilization of Fiber Between Lantang and Duroc Pigs. Frontiers in Microbiology, 2018, 9, 1342.	3.5	13
1879	Urban Diets Linked to Gut Microbiome and Metabolome Alterations in Children: A Comparative Cross-Sectional Study in Thailand. Frontiers in Microbiology, 2018, 9, 1345.	3.5	55
1880	Persistence of Cellulolytic Bacteria Fibrobacter and Treponema After Short-Term Corn Stover-Based Dietary Intervention Reveals the Potential to Improve Rumen Fibrolytic Function. Frontiers in Microbiology, 2018, 9, 1363.	3.5	92
1881	Effects of Oligosaccharides From Morinda officinalis on Gut Microbiota and Metabolome of APP/PS1 Transgenic Mice. Frontiers in Neurology, 2018, 9, 412.	2.4	71
1882	Effects of the Brown Seaweed Laminaria japonica Supplementation on Serum Concentrations of IgG, Triglycerides, and Cholesterol, and Intestinal Microbiota Composition in Rats. Frontiers in Nutrition, 2018, 5, 23.	3.7	49
1883	Gut Microbiome Composition in Non-human Primates Consuming a Western or Mediterranean Diet. Frontiers in Nutrition, 2018, 5, 28.	3.7	125
1884	The influence of bioregenerative lifeâ€support system dietary structure and lifestyle on the gut microbiota: a 105â€day groundâ€based space simulation in Lunar Palace 1. Environmental Microbiology, 2018, 20, 3643-3656.	3.8	35
1885	Microbial Regulation of Glucose Metabolism and Insulin Resistance. Genes, 2018, 9, 10.	2.4	38
1886	Analysis of the Gut Microbiome of Rural and Urban Healthy Indians Living in Sea Level and High Altitude Areas. Scientific Reports, 2018, 8, 10104.	3.3	104
1887	Glycation of fish protein impacts its fermentation metabolites and gut microbiota during in vitro human colonic fermentation. Food Research International, 2018, 113, 189-196.	6.2	29
1888	The Expensive-Tissue Hypothesis in Vertebrates: Gut Microbiota Effect, a Review. International Journal of Molecular Sciences, 2018, 19, 1792.	4.1	19
1889	Probiotics in the Rescue of Gut Inflammation. , 2018, , 101-116.		5

#	Article	IF	CITATIONS
1890	Meanings, measurements, and musings on the significance of patterns in human microbiome variation. Current Opinion in Genetics and Development, 2018, 53, 43-52.	3.3	5
1891	The microbial reproductive ecology of whiteâ€faced capuchins (<i>Cebus capucinus</i>). American Journal of Primatology, 2018, 80, e22896.	1.7	36
1892	Gut microbiota correlates with fiber and apparent nutrients digestion in goose. Poultry Science, 2018, 97, 3899-3909.	3.4	23
1893	Thermal processing of food reduces gut microbiota diversity of the host and triggers adaptation of the microbiota: evidence from two vertebrates. Microbiome, 2018, 6, 99.	11.1	42
1894	Gut Microbiota and Mucosal Immunity in the Neonate. Medical Sciences (Basel, Switzerland), 2018, 6, 56.	2.9	67
1895	Application of Intestinal Flora in the Study of TCM Formulae. , 2018, , 97-112.		3
1896	Protection of Bifidobacterial cells against antibiotics by a high molecular weight exopolysaccharide of a medicinal fungus Cs-HK1 through physical interactions. International Journal of Biological Macromolecules, 2018, 119, 312-319.	7.5	11
1897	Simultaneous HS-SPME GC-MS determination of short chain fatty acids, trimethylamine and trimethylamine N-oxide for gut microbiota metabolic profile. Talanta, 2018, 189, 573-578.	5.5	33
1898	Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with type 2 diabetes. Diabetologia, 2018, 61, 1700-1711.	6.3	74
1899	Age and fecal microbial strain-specific differences in patients with spondyloarthritis. Arthritis Research and Therapy, 2018, 20, 14.	3.5	58
1900	Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut Pathogens, 2018, 10, 3.	3.4	153
1901	Alfalfa-containing diets alter luminal microbiota structure and short chain fatty acid sensing in the caecal mucosa of pigs. Journal of Animal Science and Biotechnology, 2018, 9, 11.	5.3	45
1902	Effects of predation stress and food ration on perch gut microbiota. Microbiome, 2018, 6, 28.	11.1	67
1903	Human microbiome restoration and safety. International Journal of Medical Microbiology, 2018, 308, 487-497.	3.6	46
1904	Gut microbiota promotes production of aromatic metabolites through degradation of barley leaf fiber. Journal of Nutritional Biochemistry, 2018, 58, 49-58.	4.2	21
1905	Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. American Journal of Clinical Nutrition, 2018, 107, 965-983.	4.7	408
1906	Differences in gut microbiota between silkworms (<i>Bombyx mori</i>) reared on fresh mulberry (<i>Morus alba</i> var. multicaulis) leaves or an artificial diet. RSC Advances, 2018, 8, 26188-26200.	3.6	34
1907	Developmental Immunotoxicology Testing (DIT). , 2018, , 467-497.		2

#	Article	IF	CITATIONS
1908	Oral consumption of cinnamon enhances the expression of immunity and lipid absorption genes in the small intestinal epithelium and alters the gut microbiota in normal mice. Journal of Functional Foods, 2018, 49, 96-104.	3.4	3
1909	High-Throughput Analysis Reveals Seasonal Variation of the Gut Microbiota Composition Within Forest Musk Deer (Moschus berezovskii). Frontiers in Microbiology, 2018, 9, 1674.	3.5	50
1910	Dynamic changes in human-gut microbiome in relation to a placebo-controlled anthelminthic trial in Indonesia. PLoS Neglected Tropical Diseases, 2018, 12, e0006620.	3.0	44
1911	Influence of dietary protein on Dahl salt-sensitive hypertension: a potential role for gut microbiota. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R907-R914.	1.8	13
1912	Review: The compositional variation of the rumen microbiome and its effect on host performance and methane emission. Animal, 2018, 12, s220-s232.	3.3	53
1913	Effects of Tempeh Fermentation with Lactobacillus plantarum and Rhizopus oligosporus on Streptozotocin-Induced Type II Diabetes Mellitus in Rats. Nutrients, 2018, 10, 1143.	4.1	36
1914	Predictability and persistence of prebiotic dietary supplementation in a healthy human cohort. Scientific Reports, 2018, 8, 12699.	3.3	37
1915	Role of gut microbiota in chronic lowâ€grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obesity Reviews, 2018, 19, 1719-1734.	6.5	169
1916	Microbial modulation of the gut microbiome for treating autoimmune diseases. Expert Review of Gastroenterology and Hepatology, 2018, 12, 985-996.	3.0	35
1917	Negative Binomial Mixed Models for Analyzing Longitudinal Microbiome Data. Frontiers in Microbiology, 2018, 9, 1683.	3.5	50
1918	Effect of Diet on Gut Microbiota as an Etiological Factor in Autism Spectrum Disorder. , 2018, , 273-297.		2
1919	Early life colonization of the human gut: microbes matter everywhere. Current Opinion in Microbiology, 2018, 44, 70-78.	5.1	141
1920	Human Breast Milk: Exploring the Linking Ring Among Emerging Components. Frontiers in Pediatrics, 2018, 6, 215.	1.9	31
1921	Paradigms of Lung Microbiota Functions in Health and Disease, Particularly, in Asthma. Frontiers in Physiology, 2018, 9, 1168.	2.8	151
1922	Carcinogenesis as a Result of Multiple Inflammatory and Oxidative Hits: a Comprehensive Review from Tumor Microenvironment to Gut Microbiota. Neoplasia, 2018, 20, 721-733.	5.3	65
1923	Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metabolism, 2018, 27, 1222-1235.e6.	16.2	352
1924	Microbiome in normal and pathological pregnancies: A literature overview. American Journal of Reproductive Immunology, 2018, 80, e12993.	1.2	48
1925	Infant and Adult Gut Microbiome and Metabolome in Rural Bassa and Urban Settlers from Nigeria. Cell Reports, 2018, 23, 3056-3067.	6.4	128

#	Article	IF	CITATIONS
1926	The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host and Microbe, 2018, 23, 705-715.	11.0	1,441
1927	Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and Healthy Aging, 2018, 4, 267-285.	1.1	438
1928	The Microbiome in Psychology and Cognitive Neuroscience. Trends in Cognitive Sciences, 2018, 22, 611-636.	7.8	148
1929	Influencia de la microbiota y de los probióticos en la obesidad. ClÃnica E Investigación En Arteriosclerosis, 2018, 30, 271-279.	0.8	31
1930	Microbiome and butyrate production are altered in the gut of rats fed a glycated fish protein diet. Journal of Functional Foods, 2018, 47, 423-433.	3.4	56
1931	Camellia Oil (<i>Camellia oleifera</i> Abel.) Modifies the Composition of Gut Microbiota and Alleviates Acetic Acid-Induced Colitis in Rats. Journal of Agricultural and Food Chemistry, 2018, 66, 7384-7392.	5.2	52
1932	Good or bad: gut bacteria in human health and diseases. Biotechnology and Biotechnological Equipment, 2018, 32, 1075-1080.	1.3	55
1933	Translational Oral Health Research. , 2018, , .		2
1934	Dysbiosis in the Gut Bacterial Microbiome of Patients with Uveitis, an Inflammatory Disease of the Eye. Indian Journal of Microbiology, 2018, 58, 457-469.	2.7	118
1935	Applying Precision Medicine to Healthy Living for the Prevention and Treatment of Cardiovascular Disease. Current Problems in Cardiology, 2018, 43, 448-483.	2.4	27
1936	Chronic exposure to fungicide propamocarb induces bile acid metabolic disorder and increases trimethylamine in C57BL/6J mice. Science of the Total Environment, 2018, 642, 341-348.	8.0	55
1937	A snapshot of gut microbiota of an adult urban population from Western region of India. PLoS ONE, 2018, 13, e0195643.	2.5	48
1938	Genetic and Environmental Influences on Gut Microbiota. , 2018, , 91-104.		0
1939	Gut Microbiota, Early Colonization and Factors in its Development that Influence Health. , 2018, , 1-35.		0
1940	Intestinal-Based Diseases and Peripheral Infection Risk Associated with Gut Dysbiosis: Therapeutic use of Pre- and Probiotics and Fecal Microbiota Transplantation. , 2018, , 197-288.		0
1941	Dysbiosis of the Microbiota: Therapeutic Strategies Utilizing Dietary Modification, Pro- and Prebiotics and Fecal Transplant Therapies in Promoting Normal Balance and Local GI Functions. , 2018, , 381-419.		3
1942	An exploratory study on the effect of daily fruits and vegetable juice on human gut microbiota. Food Science and Biotechnology, 2018, 27, 1377-1386.	2.6	13
1943	Early-life food nutrition, microbiota maturation and immune development shape life-long health. Critical Reviews in Food Science and Nutrition, 2019, 59, S30-S38.	10.3	19

#	Article	IF	CITATIONS
1944	Shortâ€ŧerm direct contact with soil and plant materials leads to an immediate increase in diversity of skin microbiota. MicrobiologyOpen, 2019, 8, e00645.	3.0	63
1945	Perinatal shortâ€chain fructooligosaccharides program intestinal microbiota and improve enteroinsular axis function and inflammatory status in highâ€fat dietâ€fed adult pigs. FASEB Journal, 2019, 33, 301-313.	0.5	26
1946	An integrated look at the effect of structure on nutrient bioavailability in plant foods. Journal of the Science of Food and Agriculture, 2019, 99, 493-498.	3.5	42
1947	Abundance of gut Prevotella at baseline and metabolic response to barley prebiotics. European Journal of Nutrition, 2019, 58, 2365-2376.	3.9	46
1949	Interplay between food and gut microbiota in health and disease. Food Research International, 2019, 115, 23-31.	6.2	168
1950	Neonatal Microbiome and the Gut–Brain Axis: Is It the Origin of Adult Diseases?. Journal of Pediatric Neurology, 2019, 17, 095-104.	0.2	0
1951	Links between environment, diet, and the hunter-gatherer microbiome. Gut Microbes, 2019, 10, 216-227.	9.8	105
1952	Effect of industrial trans-fatty acids-enriched diet on gut microbiota of C57BL/6 mice. European Journal of Nutrition, 2019, 58, 2625-2638.	3.9	39
1953	Diagnostics and therapeutic implications of gut microbiota alterations in cardiometabolic diseases. Trends in Cardiovascular Medicine, 2019, 29, 141-147.	4.9	36
1954	High Doses of Copper and Mercury Changed Cecal Microbiota in Female Mice. Biological Trace Element Research, 2019, 189, 134-144.	3.5	47
1955	Switching to a fibre-rich and low-fat diet increases colonic folate contents among African Americans. Applied Physiology, Nutrition and Metabolism, 2019, 44, 127-132.	1.9	18
1956	Improved hemodynamic and liver function in portal hypertensive cirrhotic rats after administration of B. pseudocatenulatum CECT 7765. European Journal of Nutrition, 2019, 58, 1647-1658.	3.9	13
1957	Microbiota: Novel Gateway Towards Personalised Medicine. Europeanization and Globalization, 2019, , 107-120.	0.1	0
1958	The impact of human-facilitated selection on the gut microbiota of domesticated mammals. FEMS Microbiology Ecology, 2019, 95, .	2.7	29
1959	Using poly(β-hydroxybutyrate-β-hydroxyvalerate) as carbon source in biofloc-systems: Nitrogen dynamics and shift of Oreochromis niloticus gut microbiota. Science of the Total Environment, 2019, 694, 133664.	8.0	21
1960	The association between gut microbiota composition and BMI in Chinese male college students, as analysed by next-generation sequencing. British Journal of Nutrition, 2019, 122, 986-995.	2.3	46
1961	Gut Microbiome Biomarkers and Functional Diversity Within an Amazonian Semi-Nomadic Hunter–Gatherer Group. Frontiers in Microbiology, 2019, 10, 1743.	3.5	32
1962	Gut microbiome response to a modern Paleolithic diet in a Western lifestyle context. PLoS ONE, 2019, 14, e0220619.	2.5	62

#	Article	IF	CITATIONS
1963	Gut Microbiota, Dietary Phytochemicals, and Benefits to Human Health. Current Pharmacology Reports, 2019, 5, 332-344.	3.0	54
1965	Cooked Red Lentils Dose-Dependently Modulate the Colonic Microenvironment in Healthy C57Bl/6 Male Mice. Nutrients, 2019, 11, 1853.	4.1	12
1966	Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens, 2019, 8, 126.	2.8	464
1967	Comparative Analyses of Fecal Microbiota in European Mouflon (Ovis orientalis musimon) and Blue Sheep (Pseudois nayaur) Living at Low or High Altitudes. Frontiers in Microbiology, 2019, 10, 1735.	3.5	27
1968	Liupao tea extract alleviates diabetes mellitus and modulates gut microbiota in rats induced by streptozotocin and high-fat, high-sugar diet. Biomedicine and Pharmacotherapy, 2019, 118, 109262.	5.6	48
1969	Protective Effects of Anthocyanins in Obesityâ€Associated Inflammation and Changes in Gut Microbiome. Molecular Nutrition and Food Research, 2019, 63, e1900149.	3.3	53
1970	Interactions between microbiota, diet/nutrients and immune/inflammatory response in rheumatic diseases: focus on rheumatoid arthritis. Reumatologia, 2019, 57, 151-157.	1.1	21
1971	The interaction between the gut Microbiota and herbal medicines. Biomedicine and Pharmacotherapy, 2019, 118, 109252.	5.6	98
1972	Diet, Gut Microbiota, and Obesity: Links with Host Genetics and Epigenetics and Potential Applications. Advances in Nutrition, 2019, 10, S17-S30.	6.4	255
1973	Ketogenic Diet and Microbiota: Friends or Enemies?. Genes, 2019, 10, 534.	2.4	166
1973 1974	Ketogenic Diet and Microbiota: Friends or Enemies?. Genes, 2019, 10, 534. Dysbiosis of the gut microbiome is associated with CKD5 and correlated with clinical indices of the disease: a case–controlled study. Journal of Translational Medicine, 2019, 17, 228.	2.4 4.4	166 29
	Dysbiosis of the gut microbiome is associated with CKD5 and correlated with clinical indices of the		
1974	Dysbiosis of the gut microbiome is associated with CKD5 and correlated with clinical indices of the disease: a case–controlled study. Journal of Translational Medicine, 2019, 17, 228. Glutamic acid supplementation reduces body fat weight in finishing pigs when provided solely or in combination with arginine and it is associated with colonic propionate and butyrate concentrations.	4.4	29
1974 1975	Dysbiosis of the gut microbiome is associated with CKD5 and correlated with clinical indices of the disease: a case–controlled study. Journal of Translational Medicine, 2019, 17, 228. Glutamic acid supplementation reduces body fat weight in finishing pigs when provided solely or in combination with arginine and it is associated with colonic propionate and butyrate concentrations. Food and Function, 2019, 10, 4693-4704. Bacterial modulation of visceral sensation: mediators and mechanisms. American Journal of	4.4 4.6	29 28
1974 1975 1976	 Dysbiosis of the gut microbiome is associated with CKD5 and correlated with clinical indices of the disease: a case–controlled study. Journal of Translational Medicine, 2019, 17, 228. Glutamic acid supplementation reduces body fat weight in finishing pigs when provided solely or in combination with arginine and it is associated with colonic propionate and butyrate concentrations. Food and Function, 2019, 10, 4693-4704. Bacterial modulation of visceral sensation: mediators and mechanisms. American Journal of Physiology - Renal Physiology, 2019, 317, G363-G372. Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic 	4.4 4.6 3.4	29 28 22
1974 1975 1976 1977	Dysbiosis of the gut microbiome is associated with CKD5 and correlated with clinical indices of the disease: a caseâ€" controlled study. Journal of Translational Medicine, 2019, 17, 228. Glutamic acid supplementation reduces body fat weight in finishing pigs when provided solely or in combination with arginine and it is associated with colonic propionate and butyrate concentrations. Food and Function, 2019, 10, 4693-4704. Bacterial modulation of visceral sensation: mediators and mechanisms. American Journal of Physiology - Renal Physiology, 2019, 317, G363-G372. Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation. Microbiome, 2019, 7, 103. Dietary Factors and Modulation of Bacteria Strains of Akkermansia muciniphila and Faecalibacterium	4.4 4.6 3.4 11.1	29 28 22 65
1974 1975 1976 1977 1978	Dysbiosis of the gut microbiome is associated with CKD5 and correlated with clinical indices of the disease: a case†"controlled study. Journal of Translational Medicine, 2019, 17, 228. Glutamic acid supplementation reduces body fat weight in finishing pigs when provided solely or in combination with arginine and it is associated with colonic propionate and butyrate concentrations. Food and Function, 2019, 10, 4693-4704. Bacterial modulation of visceral sensation: mediators and mechanisms. American Journal of Physiology - Renal Physiology, 2019, 317, G363-G372. Contribution of gut microbiota to metabolism of dietary glycine betaine in mice and in vitro colonic fermentation. Microbiome, 2019, 7, 103. Dietary Factors and Modulation of Bacteria Strains of Akkermansia muciniphila and Faecalibacterium prausnitzii: A Systematic Review. Nutrients, 2019, 11, 1565. Global methane emissions from the human body: Past, present and future. Atmospheric Environment,	4.4 4.6 3.4 11.1 4.1	29 28 22 65 109

#	Article	IF	CITATIONS
1982	The Role of the Gut-Brain Axis in Attention-Deficit/Hyperactivity Disorder. Gastroenterology Clinics of North America, 2019, 48, 407-431.	2.2	41
1983	Glycan Utilisation and Function in the Microbiome of Weaning Infants. Microorganisms, 2019, 7, 190.	3.6	13
1984	Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nature Microbiology, 2019, 4, 1727-1736.	13.3	184
1985	A nutritional approach to microbiota in Parkinson's disease. Bioscience of Microbiota, Food and Health, 2019, 38, 115-127.	1.8	32
1986	Epigenetic Regulation at the Interplay Between Gut Microbiota and Host Metabolism. Frontiers in Genetics, 2019, 10, 638.	2.3	116
1987	Crosstalk between the Ketogenic Diet and Epilepsy: From the Perspective of Gut Microbiota. Mediators of Inflammation, 2019, 2019, 1-9.	3.0	47
1988	Taxonomic features and comparisons of the gut microbiome from two edible fungus-farming termites (Macrotermes falciger; M. natalensis) harvested in the Vhembe district of Limpopo, South Africa. BMC Microbiology, 2019, 19, 164.	3.3	17
1989	Gallocatechin Gallate-Containing Fermented Green Tea Extract Ameliorates Obesity and Hypertriglyceridemia Through the Modulation of Lipid Metabolism in Adipocytes and Myocytes. Journal of Medicinal Food, 2019, 22, 779-788.	1.5	17
1990	Gut Microbiomes and Their Impact on Human Health. , 2019, , 355-385.		0
1991	Amish (Rural) vs. non-Amish (Urban) Infant Fecal Microbiotas Are Highly Diverse and Their Transplantation Lead to Differences in Mucosal Immune Maturation in a Humanized Germfree Piglet Model. Frontiers in Immunology, 2019, 10, 1509.	4.8	31
1992	Interaction between high-fat diet and ethanol intake leads to changes on the fecal microbiome. Journal of Nutritional Biochemistry, 2019, 72, 108215.	4.2	16
1993	groEL Gene-Based Phylogenetic Analysis of Lactobacillus Species by High-Throughput Sequencing. Genes, 2019, 10, 530.	2.4	25
1994	Effects of a Fermented Beverage of Changbai Mountain Fruit and Vegetables on the Composition of Gut Microbiota in Mice. Plant Foods for Human Nutrition, 2019, 74, 468-473.	3.2	10
1995	Explaining the link between maternal lipid profiles and food allergy in offspring. Journal of Allergy and Clinical Immunology, 2019, 144, 661-662.	2.9	2
1996	Dicaffeoylquinic acids from llex kudingcha attenuate dextran sulfate sodium-induced colitis in C57BL/6 mice in association with the modulation of gut microbiota. Journal of Functional Foods, 2019, 61, 103468.	3.4	20
1997	Modeling the temporal dynamics of the gut microbial community in adults and infants. PLoS Computational Biology, 2019, 15, e1006960.	3.2	42
1998	BOARD INVITED REVIEW: The pig microbiota and the potential for harnessing the power of the microbiome to improve growth and health1. Journal of Animal Science, 2019, 97, 3741-3757.	0.5	39
1999	Diet Quality Is Associated with Microbial Diversity and Host Health. Journal of Nutrition, 2019, 149, 1489-1490.	2.9	2

#	Article	IF	CITATIONS
2000	Predicting the Longitudinally and Radially Varying Gut Microbiota Composition Using Multi-Scale Microbial Metabolic Modeling. Processes, 2019, 7, 394.	2.8	18
2001	Whole genome metagenomic analysis of the gut microbiome of differently fed infants identifies differences in microbial composition and functional genes, including an absent CRISPR/Cas9 gene in the formula-fed cohort. Human Microbiome Journal, 2019, 12, 100057.	3.8	8
2002	Microorganisms, Tryptophan Metabolism, and Kynurenine Pathway: A Complex Interconnected Loop Influencing Human Health Status. International Journal of Tryptophan Research, 2019, 12, 117864691985299.	2.3	129
2003	Diet in the Pathogenesis and Management of Ulcerative Colitis; A Review of Randomized Controlled Dietary Interventions. Nutrients, 2019, 11, 1498.	4.1	77
2004	Gut microbiota phenotypes of obesity. Npj Biofilms and Microbiomes, 2019, 5, 18.	6.4	144
2005	Unraveling the effects of the gut microbiota composition and function on horse endurance physiology. Scientific Reports, 2019, 9, 9620.	3.3	28
2006	Association between the pig genome and its gut microbiota composition. Scientific Reports, 2019, 9, 8791.	3.3	64
2007	Dissecting the role of the gut microbiota and diet on visceral fat mass accumulation. Scientific Reports, 2019, 9, 9758.	3.3	41
2008	The specific use of alginate from <i>Laminaria japonica</i> by <i>Bacteroides</i> species determined its modulation of the <i>Bacteroides</i> community. Food and Function, 2019, 10, 4304-4314.	4.6	21
2009	Chronic exposure to graphene oxide (GO) induced inflammation and differentially disturbed the intestinal microbiota in zebrafish. Environmental Science: Nano, 2019, 6, 2452-2469.	4.3	25
2010	Aflatoxin Exposure, Child Stunting, and Dysbiosis in the Intestinal Microbiome Among Children in Guatemala. Environmental Engineering Science, 2019, 36, 958-968.	1.6	17
2011	The flavonoid-rich Quzhou Fructus Aurantii extract modulates gut microbiota and prevents obesity in high-fat diet-fed mice. Nutrition and Diabetes, 2019, 9, 30.	3.2	79
2012	Gut Microbiome Modulation Based on Probiotic Application for Anti-Obesity: A Review on Efficacy and Validation. Microorganisms, 2019, 7, 456.	3.6	56
2013	Animal Models of Undernutrition and Enteropathy as Tools for Assessment of Nutritional Intervention Nutrients, 2019, 11, 2233.	4.1	25
2014	Shifting Climates, Foods, and Diseases: The Human Microbiome through Evolution. BioEssays, 2019, 41, e1900034.	2.5	21
2015	Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs. Journal of Veterinary Medical Science, 2019, 81, 1783-1790.	0.9	12
2016	Inflammatory Bowel Disease: A Potential Result from the Collusion between Gut Microbiota and Mucosal Immune System. Microorganisms, 2019, 7, 440.	3.6	57
2017	Differential Effects of Typical Korean Versus American-Style Diets on Gut Microbial Composition and Metabolic Profile in Healthy Overweight Koreans: A Randomized Crossover Trial. Nutrients, 2019, 11, 2450	4.1	33

#	Article	IF	CITATIONS
2018	Health Challenges of the Pacific Region: Insights From History, Geography, Social Determinants, Genetics, and the Microbiome. Frontiers in Immunology, 2019, 10, 2184.	4.8	31
2019	Review of the scientific evidence and technical opinion on noncaloric sweetener consumption in gastrointestinal diseases. Revista De GastroenterologÃa De México (English Edition), 2019, 84, 492-510.	0.2	13
2020	Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients, 2019, 11, 2393.	4.1	374
2021	Gut microbiota differences in elderly subjects between rural city Kyotango and urban city Kyoto: an age-gender-matched study. Journal of Clinical Biochemistry and Nutrition, 2019, 65, 125-131.	1.4	17
2022	The Prevotella copri Complex Comprises Four Distinct Clades Underrepresented in Westernized Populations. Cell Host and Microbe, 2019, 26, 666-679.e7.	11.0	274
2023	Convergence of human and Old World monkey gut microbiomes demonstrates the importance of human ecology over phylogeny. Genome Biology, 2019, 20, 201.	8.8	57
2024	Framework for rational donor selection in fecal microbiota transplant clinical trials. PLoS ONE, 2019, 14, e0222881.	2.5	36
2025	Diet as Regulator of Gut Microbiota and its Role in Health and Disease. Archives of Medical Research, 2019, 50, 259-268.	3.3	49
2026	The metabolic and vascular protective effects of olive (Olea europaea L.) leaf extract in diet-induced obesity in mice are related to the amelioration of gut microbiota dysbiosis and to its immunomodulatory properties. Pharmacological Research, 2019, 150, 104487.	7.1	59
2027	Is the Diet Industry Disrupting Your Microbiota?. Current Tropical Medicine Reports, 2019, 6, 256-262.	3.7	1
2028	Feeding Mode, but Not Prebiotics, Affects Colonic Microbiota Composition and Volatile Fatty Acid Concentrations in Sow-Reared, Formula-Fed, and Combination-Fed Piglets. Journal of Nutrition, 2019, 149, 2156-2163.	2.9	7
2029	Comparative characterization of bacterial communities in geese consuming of different proportions of ryegrass. PLoS ONE, 2019, 14, e0223445.	2.5	27
2030	Recent systems biology approaches for probiotics use in health aspects: a review. 3 Biotech, 2019, 9, 448.	2.2	15
2031	Guidelines for Transparency on Gut Microbiome Studies in Essential and Experimental Hypertension. Hypertension, 2019, 74, 1279-1293.	2.7	54
2032	Gastrointestinal Microbiota and Type 1 Diabetes Mellitus: The State of Art. Journal of Clinical Medicine, 2019, 8, 1843.	2.4	54
2033	Nutrigenomics and personalized nutrition for the prevention of hyperglycemia and type 2 diabetes mellitus. , 2019, , 339-352.		1
2034	Exploring possible associations of the intestine bacterial microbiome with the pre-weaned weight gaining performance of piglets in intensive pig production. Scientific Reports, 2019, 9, 15534.	3.3	27
2035	Using compositional principal component analysis to describe children's gut microbiota in relation to diet and body composition. American Journal of Clinical Nutrition, 2020, 111, 70-78.	4.7	20

#	Article	IF	CITATIONS
2036	Japanese Diet Score Is Associated with Gut Microbiota Composition in Young Japanese Adults. Journal of Nutritional Science and Vitaminology, 2019, 65, 414-420.	0.6	10
2037	Combined Buckwheat d-Fagomine and Fish Omega-3 PUFAs Stabilize the Populations of Gut Prevotella and Bacteroides While Reducing Weight Gain in Rats. Nutrients, 2019, 11, 2606.	4.1	14
2038	Undigested Food and Gut Microbiota May Cooperate in the Pathogenesis of Neuroinflammatory Diseases: A Matter of Barriers and a Proposal on the Origin of Organ Specificity. Nutrients, 2019, 11, 2714.	4.1	30
2039	Distinct Polysaccharide Utilization Profiles of Human Intestinal Prevotella copri Isolates. Cell Host and Microbe, 2019, 26, 680-690.e5.	11.0	115
2040	Cohabitation is associated with a greater resemblance in gut microbiota which can impact cardiometabolic and inflammatory risk. BMC Microbiology, 2019, 19, 230.	3.3	26
2041	Diet–microbiome–disease: Investigating diet's influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathogens, 2019, 15, e1007891.	4.7	49
2042	The internationalization of human microbiome research. Current Opinion in Microbiology, 2019, 50, 50-55.	5.1	25
2043	<i>Pueraria lobata</i> for Diabetes Mellitus: Past, Present and Future. The American Journal of Chinese Medicine, 2019, 47, 1419-1444.	3.8	32
2044	Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far?. Diseases (Basel, Switzerland), 2019, 7, 58.	2.5	84
2045	Nutritional psychiatry: Towards improving mental health by what you eat. European Neuropsychopharmacology, 2019, 29, 1321-1332.	0.7	191
2045 2046	Nutritional psychiatry: Towards improving mental health by what you eat. European	0.7	191 13
	Nutritional psychiatry: Towards improving mental health by what you eat. European Neuropsychopharmacology, 2019, 29, 1321-1332. Effects of combined d-fagomine and omega-3 PUFAs on gut microbiota subpopulations and diabetes risk		
2046	Nutritional psychiatry: Towards improving mental health by what you eat. European Neuropsychopharmacology, 2019, 29, 1321-1332. Effects of combined d-fagomine and omega-3 PUFAs on gut microbiota subpopulations and diabetes risk factors in rats fed a high-fat diet. Scientific Reports, 2019, 9, 16628. Gut microbiotas and immune checkpoint inhibitor therapy response: a causal or coincidental	3.3	13
2046 2047	Nutritional psychiatry: Towards improving mental health by what you eat. European Neuropsychopharmacology, 2019, 29, 1321-1332. Effects of combined d-fagomine and omega-3 PUFAs on gut microbiota subpopulations and diabetes risk factors in rats fed a high-fat diet. Scientific Reports, 2019, 9, 16628. Gut microbiotas and immune checkpoint inhibitor therapy response: a causal or coincidental relationship?. Clinical Chemistry and Laboratory Medicine, 2019, 58, 18-24. Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by ageâ€related	3.3 2.3	13 13
2046 2047 2048	Nutritional psychiatry: Towards improving mental health by what you eat. European Neuropsychopharmacology, 2019, 29, 1321-1332. Effects of combined d-fagomine and omega-3 PUFAs on gut microbiota subpopulations and diabetes risk factors in rats fed a high-fat diet. Scientific Reports, 2019, 9, 16628. Gut microbiotas and immune checkpoint inhibitor therapy response: a causal or coincidental relationship?. Clinical Chemistry and Laboratory Medicine, 2019, 58, 18-24. Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by ageâ€related dietary changes. MicrobiologyOpen, 2019, 8, e923. Metagenomic analysis reveals a rich bacterial content in highâ€risk prostate tumors from African men.	3.3 2.3 3.0	13 13 44
2046 2047 2048 2049	Nutritional psychiatry: Towards improving mental health by what you eat. European Neuropsychopharmacology, 2019, 29, 1321-1332. Effects of combined d-fagomine and omega-3 PUFAs on gut microbiota subpopulations and diabetes risk factors in rats fed a high-fat diet. Scientific Reports, 2019, 9, 16628. Gut microbiotas and immune checkpoint inhibitor therapy response: a causal or coincidental relationship?. Clinical Chemistry and Laboratory Medicine, 2019, 58, 18-24. Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by ageâ€related dietary changes. MicrobiologyOpen, 2019, 8, e923. Metagenomic analysis reveals a rich bacterial content in highâ€risk prostate tumors from African men. Prostate, 2019, 79, 1731-1738. Gut microbiota-derived succinate: Friend or foe in human metabolic diseases?. Reviews in Endocrine	3.32.33.02.3	13 13 44 28
2046 2047 2048 2049 2050	Nutritional psychiatry: Towards improving mental health by what you eat. European Neuropsychopharmacology, 2019, 29, 1321-1332. Effects of combined d-fagomine and omega-3 PUFAs on gut microbiota subpopulations and diabetes risk factors in rats fed a high-fat diet. Scientific Reports, 2019, 9, 16628. Gut microbiotas and immune checkpoint inhibitor therapy response: a causal or coincidental relationship?. Clinical Chemistry and Laboratory Medicine, 2019, 58, 18-24. Longitudinal development of the gut microbiota in healthy and diarrheic piglets induced by ageâ€related dietary changes. MicrobiologyOpen, 2019, 8, e923. Metagenomic analysis reveals a rich bacterial content in highâ€risk prostate tumors from African men. Prostate, 2019, 79, 1731-1738. Gut microbiota-derived succinate: Friend or foe in human metabolic diseases?. Reviews in Endocrine and Metabolic Disorders, 2019, 20, 439-447. Intestinal microbiota and colorectal carcinoma: Implications for pathogenesis, diagnosis, and	 3.3 2.3 3.0 2.3 5.7 	 13 13 44 28 162

#	Article	IF	CITATIONS
2054	Steatosis and gut microbiota dysbiosis induced by high-fat diet are reversed by 1-week chow diet administration. Nutrition Research, 2019, 71, 72-88.	2.9	17
2055	New Insights on Obesity and Diabetes from Gut Microbiome Alterations in Egyptian Adults. OMICS A Journal of Integrative Biology, 2019, 23, 477-485.	2.0	31
2056	The Key to Successful Weight Loss on a High-Fiber Diet May Be in Gut Microbiome Prevotella Abundance. Journal of Nutrition, 2019, 149, 2083-2084.	2.9	16
2057	Typical indigenous bacteria in the cecum of ddY mice fed a casein–beef tallow diet or wholeâ€egg diet. Journal of Food Biochemistry, 2019, 43, e13064.	2.9	7
2058	Longâ€ŧerm evolution of the natural isolate of <i>Escherichia coli</i> 536 in the mouse gut colonized after maternal transmission reveals convergence in the constitutive expression of the lactose operon. Molecular Ecology, 2019, 28, 4470-4485.	3.9	23
2059	City life alters the gut microbiome and stable isotope profiling of the eastern water dragon (<i>Intellagama lesueurii</i>). Molecular Ecology, 2019, 28, 4592-4607.	3.9	27
2060	Gut microbes, ageing & organ function: a chameleon in modern biology?. EMBO Molecular Medicine, 2019, 11, e9872.	6.9	14
2061	Extensive variability in the gut microbiome of a highlyâ€specialized and critically endangered lemur species across sites. American Journal of Primatology, 2019, 81, e23046.	1.7	9
2062	Role of Dietary Lipids in Modulating Inflammation through the Gut Microbiota. Nutrients, 2019, 11, 117.	4.1	45
2063	Association of dietary patterns with the gut microbiota in older, community-dwelling men. American Journal of Clinical Nutrition, 2019, 110, 1003-1014.	4.7	55
2064	Here, there, and everywhere: How pathogenic <i>Escherichia coli</i> sense and respond to gastrointestinal biogeography. Cellular Microbiology, 2019, 21, e13107.	2.1	26
2065	The Microbiota-Gut-Brain Axis. Physiological Reviews, 2019, 99, 1877-2013.	28.8	2,304
2066	Structurally Different Pectic Oligosaccharides Produced from Apple Pomace and Their Biological Activity In Vitro. Foods, 2019, 8, 365.	4.3	33
2067	Effects of Land Transport Stress on Variations in Ruminal Microbe Diversity and Immune Functions in Different Breeds of Cattle. Animals, 2019, 9, 599.	2.3	26
2068	Western oropharyngeal and gut microbial profiles are associated with allergic conditions in Chinese immigrant children. World Allergy Organization Journal, 2019, 12, 100051.	3.5	19
2069	Pursuing Human-Relevant Gut Microbiota-Immune Interactions. Immunity, 2019, 51, 225-239.	14.3	105
2070	Plasticity in the Human Gut Microbiome Defies Evolutionary Constraints. MSphere, 2019, 4, .	2.9	40
2071	A Reasonable Diet Promotes Balance of Intestinal Microbiota: Prevention of Precolorectal Cancer. BioMed Research International, 2019, 2019, 1-10	1.9	37

#	Article	IF	Citations
2072	Dietary supplementation with fermented Mao-tai lees beneficially affects gut microbiota structure and function in pigs. AMB Express, 2019, 9, 26.	3.0	21
2073	Adaptation of Syntenic Xyloglucan Utilization Loci of Human Gut <i>Bacteroidetes</i> to Polysaccharide Side Chain Diversity. Applied and Environmental Microbiology, 2019, 85, .	3.1	24
2074	An expectation-maximization algorithm enables accurate ecological modeling using longitudinal microbiome sequencing data. Microbiome, 2019, 7, 118.	11.1	28
2075	Maturation of the infant rhesus macaque gut microbiome and its role in the development of diarrheal disease. Genome Biology, 2019, 20, 173.	8.8	40
2076	Different Gut Microbial Profiles in Sub-Saharan African and South Asian Women of Childbearing Age Are Primarily Associated With Dietary Intakes. Frontiers in Microbiology, 2019, 10, 1848.	3.5	16
2077	Early life determinants induce sustainable changes in the gut microbiome of six-year-old children. Scientific Reports, 2019, 9, 12675.	3.3	32
2078	Early-Life Iron Deficiency and Subsequent Repletion Alters Development of the Colonic Microbiota in the Pig. Frontiers in Nutrition, 2019, 6, 120.	3.7	17
2079	Microbial Mechanistic Insights into the Role of Sweet Potato Vine on Improving Health in Chinese Meishan Gilt Model. Animals, 2019, 9, 632.	2.3	6
2080	The gut microbiome and cardiovascular disease: current knowledge and clinical potential. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H923-H938.	3.2	82
2081	Research on mechanism of charred hawthorn on digestive through modulating "brain-gut―axis and gut flora. Journal of Ethnopharmacology, 2019, 245, 112166.	4.1	33
2082	Obesity-related cognitive impairment: The role of endothelial dysfunction. Neurobiology of Disease, 2019, 132, 104580.	4.4	65
2083	The Gut Microbiota in the First Decade of Life. Trends in Microbiology, 2019, 27, 997-1010.	7.7	368
2084	Microbiome Signatures Associated With Steatohepatitis and Moderate to Severe Fibrosis in Children With Nonalcoholic Fatty Liver Disease. Gastroenterology, 2019, 157, 1109-1122.	1.3	184
2085	The association of gut microbiota characteristics in Malawian infants with growth and inflammation. Scientific Reports, 2019, 9, 12893.	3.3	25
2086	Dietary Fatty Acids and Host–Microbial Crosstalk in Neonatal Enteric Infection. Nutrients, 2019, 11, 2064.	4.1	9
2087	Probiotic strains improve high-fat diet-induced hypercholesterolemia through modulating gut microbiota in ways different from atorvastatin. Food and Function, 2019, 10, 6098-6109.	4.6	14
2088	Diet–microbiota interactions and personalized nutrition. Nature Reviews Microbiology, 2019, 17, 742-753.	28.6	514
2089	Complex interactions between the microbiome and cancer immune therapy. Critical Reviews in Clinical Laboratory Sciences, 2019, 56, 567-585.	6.1	28

#	Article	IF	CITATIONS
2090	Plant-Based Fat, Dietary Patterns Rich in Vegetable Fat and Gut Microbiota Modulation. Frontiers in Nutrition, 2019, 6, 157.	3.7	38
2091	Homeostasis and dysbiosis of the gut microbiome in health and disease. Journal of Biosciences, 2019, 44, 1.	1.1	107
2092	Deprivation of dietary fiber enhances susceptibility of mice to cryptosporidiosis. PLoS Neglected Tropical Diseases, 2019, 13, e0007411.	3.0	15
2093	Comparative Analysis of Fecal Microbiota Composition Between Rheumatoid Arthritis and Osteoarthritis Patients. Genes, 2019, 10, 748.	2.4	62
2094	Influence of hydroxyl-terminated polybutadiene liquid on rheology of fumed silica filled cis-polybutadiene rubber. Polymer, 2019, 180, 121709.	3.8	11
2095	Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 690-704.	17.8	686
2096	Gut Microbiota: An Important Link between Western Diet and Chronic Diseases. Nutrients, 2019, 11, 2287.	4.1	43
2097	Revisión de la evidencia cientÃfica y opinión técnica sobre el consumo de edulcorantes no calóricos en enfermedades gastrointestinales. Revista De GastroenterologÃa De México, 2019, 84, 492-510.	0.2	7
2098	2- <i>O</i> -{i>-{i>-{cscp>d-Glucopyranosyl- <scp>l</scp> -ascorbic Acid, an Ascorbic Acid Derivative Isolated from the Fruits of <i>Lycium Barbarum</i> L., Modulates Gut Microbiota and Palliates Colitis in Dextran Sodium Sulfate-Induced Colitis in Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 11408-11419.	5.2	70
2099	Impact of a Nomadic Pastoral Lifestyle on the Gut Microbiome in the Fulani Living in Nigeria. Frontiers in Microbiology, 2019, 10, 2138.	3.5	19
2100	Lotus seed oligosaccharides at various dosages with prebiotic activity regulate gut microbiota and relieve constipation in mice. Food and Chemical Toxicology, 2019, 134, 110838.	3.6	36
2101	High-Salt Intake Reduces Apomorphine-Induced Penile Erection and Increases Neurally Mediated Contractile Responses of the Cavernosal Smooth Muscle in Rats. American Journal of Hypertension, 2019, 32, 1206-1213.	2.0	4
2102	Sodium, hypertension, and the gut: does the gut microbiota go salty?. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1173-H1182.	3.2	37
2103	Metabolomics and proteomics as tools to advance the understanding of exercise responses: The emerging role of gut microbiota in athlete health and performance. , 2019, , 433-459.		1
2104	The Role of Dietary Fiber in Rheumatoid Arthritis Patients: A Feasibility Study. Nutrients, 2019, 11, 2392.	4.1	75
2105	Beneficial Effects of Dietary Polyphenols on Gut Microbiota and Strategies to Improve Delivery Efficiency. Nutrients, 2019, 11, 2216.	4.1	268
2106	Effects of berberine and metformin on intestinal inflammation and gut microbiome composition in db/db mice. Biomedicine and Pharmacotherapy, 2019, 118, 109131.	5.6	155
2107	Role of Probiotics in Mycoplasma pneumoniae Pneumonia in Children: A Short-Term Pilot Project. Frontiers in Microbiology, 2018, 9, 3261.	3.5	7

#	Article	IF	CITATIONS
2108	The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. GigaScience, 2019, 8, .	6.4	143
2109	Social dynamics modeling of chrono-nutrition. PLoS Computational Biology, 2019, 15, e1006714.	3.2	9
2110	Interactions between Host PPARs and Gut Microbiota in Health and Disease. International Journal of Molecular Sciences, 2019, 20, 387.	4.1	46
2111	The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. Npj Biofilms and Microbiomes, 2019, 5, 5.	6.4	179
2112	Population structure of human gut bacteria in a diverse cohort from rural Tanzania and Botswana. Genome Biology, 2019, 20, 16.	8.8	66
2113	Alterations in the intestinal microbiota of patients with severe and active Graves' orbitopathy: a cross-sectional study. Journal of Endocrinological Investigation, 2019, 42, 967-978.	3.3	41
2114	Bifidobacterium with the role of 5-hydroxytryptophan synthesis regulation alleviates the symptom of depression and related microbiota dysbiosis. Journal of Nutritional Biochemistry, 2019, 66, 43-51.	4.2	169
2115	Gut microbiota profiling with differential tolerance against the reduced dietary fibre level in rabbit. Scientific Reports, 2019, 9, 288.	3.3	15
2116	Metagenomic dissection of the canine gut microbiota: insights into taxonomic, metabolic and nutritional features. Environmental Microbiology, 2019, 21, 1331-1343.	3.8	60
2117	Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome, 2019, 7, 9.	11.1	261
2118	Epigenetic Regulation of Early Nutrition on Immune System. , 2019, , 1067-1078.		0
2119	Disentangling Microbial Mediators of Malnutrition: Modeling Environmental Enteric Dysfunction. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 692-707.	4.5	37
2120	Diet-Gut Microbiota Interactions and Gestational Diabetes Mellitus (GDM). Nutrients, 2019, 11, 330.	4.1	93
2121	Mixed Viral-Bacterial Infections and Their Effects on Gut Microbiota and Clinical Illnesses in Children. Scientific Reports, 2019, 9, 865.	3.3	49
2122	Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus) Tj ETQq0 0 0 rgB	T ¦Oyerloc	k 10 Tf 50 1
2123	Carbohydrate Monotony as Protection and Treatment for Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2019, 13, 942-948.	1.3	18
2124	Effect of Delivery Mode and Nutrition on Gut Microbiota in Neonates. Annals of Nutrition and Metabolism, 2019, 74, 132-139.	1.9	60
2125	How diet and the microbiome shape health or contribute to disease: A mini-review of current models	2.4	11

and clinical studies. Experimental Biology and Medicine, 2019, 244, 484-493. 125

#	Article	IF	CITATIONS
2126	The Role of Every-Day Cosmetics in Altering the Skin Microbiome: A Study Using Biodiversity. Cosmetics, 2019, 6, 2.	3.3	27
2127	Digestive tract mycobiota and microbiota and the effects on the immune system. Human Microbiome Journal, 2019, 12, 100056.	3.8	7
2128	Gut microbiome of pre-adolescent children of two ethnicities residing in three distant cities. Scientific Reports, 2019, 9, 7831.	3.3	25
2129	A Mechanistic Model of Gut–Brain Axis Perturbation and High-Fat Diet Pathways to Gut Microbiome Homeostatic Disruption, Systemic Inflammation, and Type 2 Diabetes. Biological Research for Nursing, 2019, 21, 384-399.	1.9	9
2130	Age-based dynamic changes of phylogenetic composition and interaction networks of health pig gut microbiome feeding in a uniformed condition. BMC Veterinary Research, 2019, 15, 172.	1.9	74
2131	Intestinal parasitic infection alters bacterial gut microbiota in children. PeerJ, 2019, 7, e6200.	2.0	49
2132	Integrative Analysis Toward Different Glucose Tolerance-Related Gut Microbiota and Diet. Frontiers in Endocrinology, 2019, 10, 295.	3.5	43
2133	A Novel View of Human Helicobacter pylori Infections: Interplay between Microbiota and Beta-Defensins. Biomolecules, 2019, 9, 237.	4.0	39
2134	The Influence of Modernization and Disease on the Gastric Microbiome of Orang Asli, Myanmars and Modern Malaysians. Microorganisms, 2019, 7, 174.	3.6	8
2135	Gut microbiota and physical frailty through the mediation of sarcopenia. Experimental Gerontology, 2019, 124, 110639.	2.8	43
2136	The Role of the Gut Microbiome in Predicting Response to Diet and the Development of Precision Nutrition Models. Part II: Results. Advances in Nutrition, 2019, 10, 979-998.	6.4	50
2137	Environmental enteric dysfunction and growth. Jornal De Pediatria (Versão Em Português), 2019, 95, 85-94.	0.2	0
2138	An untargeted fecal and urine metabolomics analysis of the interplay between the gut microbiome, diet and human metabolism in Indian and Chinese adults. Scientific Reports, 2019, 9, 9191.	3.3	66
2139	Hass Avocado Inclusion in a Weight-Loss Diet Supported Weight Loss and Altered Gut Microbiota: A 12-Week Randomized, Parallel-Controlled Trial. Current Developments in Nutrition, 2019, 3, nzz068.	0.3	36
2140	Dietary Composition and Effects in Inflammatory Bowel Disease. Nutrients, 2019, 11, 1398.	4.1	30
2141	Effects of dietary Clostridium butyricum addition to sows in late gestation and lactation on reproductive performance and intestinal microbiota1. Journal of Animal Science, 2019, 97, 3426-3439.	0.5	26
2142	Correlation of diet, microbiota and metabolite networks in inflammatory bowel disease. Journal of Digestive Diseases, 2019, 20, 447-459.	1.5	103
2143	Microbiota and Thyroid Interaction in Health and Disease. Trends in Endocrinology and Metabolism, 2019, 30, 479-490.	7.1	116

		CITATION REPORT		
#	Article		IF	CITATIONS
2145	The gut microbiota perspective for interventions in MS. Autoimmunity Reviews, 2019,	18, 814-824.	5.8	19
2146	Comparative analysis of gut bacterial communities in housefly larvae fed different diet high-throughput sequencing approach. FEMS Microbiology Letters, 2019, 366, .	s using a	1.8	16
2147	Surveying Gut Microbiome Research in Africans: Toward Improved Diversity and Repres Trends in Microbiology, 2019, 27, 824-835.	sentation.	7.7	51
2148	Selective Antimicrobial Effects of Curcumin@Halloysite Nanoformulation: A <i>Caenor elegans</i> Study. ACS Applied Materials & Interfaces, 2019, 11, 23050-23064.	habditis	8.0	73
2149	Impact of the Gastrointestinal Microbiome in Health and Disease: Co-evolution with th System. Current Topics in Microbiology and Immunology, 2019, 421, 303-318.	e Host Immune	1.1	24
2150	In vitro fermentation of \hat{l}^{2} -carrageenan oligosaccharides by human gut microbiota and effect on HT29 cells. Journal of Functional Foods, 2019, 59, 80-91.	its inflammatory	3.4	57
2151	Dietary multi-enzyme complex improves In Vitro nutrient digestibility and hind gut mic fermentation of pigs. PLoS ONE, 2019, 14, e0217459.	robial	2.5	16
2152	Amorphous cellulose feed supplement alters the broiler caecal microbiome. Poultry Sci 3811-3817.	ence, 2019, 98,	3.4	19
2153	Towards a Food Pharmacy: Immunologic Modulation through Diet. Nutrients, 2019, 12	l, 1239.	4.1	28
2154	Ingestion of Non-digestible Carbohydrates From Plant-Source Foods and Decreased Ris Cancer: A Review on the Biological Effects and the Mechanisms of Action. Frontiers in 6, 72.		3.7	35
2155	Alzheimer's disease and symbiotic microbiota: an evolutionary medicine perspective. A York Academy of Sciences, 2019, 1449, 3-24.	nnals of the New	3.8	45
2156	Sex, gut microbiome, and cardiovascular disease risk. Biology of Sex Differences, 2019	, 10, 29.	4.1	95
2157	Gut Microbiota Dysbiosis in Human Obesity: Impact of Bariatric Surgery. Current Obes 8, 229-242.	ity Reports, 2019,	8.4	85
2158	Effects of Different Diets on Microbiota in The Small Intestine Mucus and Weight Regu Scientific Reports, 2019, 9, 8500.	ılation in Rats.	3.3	19
2159	Metabolic Dependencies Underlie Interaction Patterns of Gut Microbiota During Enter Frontiers in Microbiology, 2019, 10, 1205.	opathogenesis.	3.5	13
2160	The gut microbiome and metabolome of saddleback tamarins (<i>Leontocebus wedde into the foraging ecology of a smallâ€bodied primate. American Journal of Primatology</i>	lli): Insights , 2019, 81, e23003.	1.7	10
2161	Gut microbiota in ALS: possible role in pathogenesis?. Expert Review of Neurotherapeu 785-805.	tics, 2019, 19,	2.8	30
2162	Gut microbial metabolites associated with HIV infection. Future Virology, 2019, 14, 33	5-347.	1.8	18

#	Article	IF	CITATIONS
2163	Molecular Mechanisms of Inflammation: Induction, Resolution and Escape by Helicobacter pylori. Current Topics in Microbiology and Immunology, 2019, , .	1.1	5
2164	Nutritional Modulation of Immune and Central Nervous System Homeostasis: The Role of Diet in Development of Neuroinflammation and Neurological Disease. Nutrients, 2019, 11, 1076.	4.1	35
2165	The Healthy Human Blood Microbiome: Fact or Fiction?. Frontiers in Cellular and Infection Microbiology, 2019, 9, 148.	3.9	221
2167	Gut microbiota in wild and captive Guizhou snubâ€nosed monkeys, <i>Rhinopithecus brelichi</i> . American Journal of Primatology, 2019, 81, e22989.	1.7	55
2168	Reconceptualizing anorexia nervosa. Psychiatry and Clinical Neurosciences, 2019, 73, 518-525.	1.8	48
2169	Oral and Systemic Effects of Xylitol Consumption. Caries Research, 2019, 53, 491-501.	2.0	19
2170	The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. Journal of the International Society of Sports Nutrition, 2019, 16, 21.	3.9	106
2171	The ancestral and industrialized gut microbiota and implications for human health. Nature Reviews Microbiology, 2019, 17, 383-390.	28.6	255
2172	Multi-Omic Analysis of the Microbiome and Metabolome in Healthy Subjects Reveals Microbiome-Dependent Relationships Between Diet and Metabolites. Frontiers in Genetics, 2019, 10, 454.	2.3	104
2173	Microbiota Alterations in Alzheimer's Disease: Involvement of the Kynurenine Pathway and Inflammation. Neurotoxicity Research, 2019, 36, 424-436.	2.7	32
2174	Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 184-192.	5.2	126
2175	<i>Bacillus subtilis</i> Strain DSM 29784 Modulates the Cecal Microbiome, Concentration of Short-Chain Fatty Acids, and Apparent Retention of Dietary Components in Shaver White Chickens during Grower, Developer, and Laying Phases. Applied and Environmental Microbiology, 2019, 85, .	3.1	43
2176	The microbiome: toward preventing allergies and asthma by nutritional intervention. Current Opinion in Immunology, 2019, 60, 10-18.	5.5	14
2177	Evolution of the gut microbiome following acute HIV-1 infection. Microbiome, 2019, 7, 73.	11.1	69
2178	Degradation of fibres from fruit by-products allows selective modulation of the gut bacteria in an in vitro model of the proximal colon. Journal of Functional Foods, 2019, 57, 275-285.	3.4	24
2179	Gut microbial diversity increases with social rank in the African cichlid fish, Astatotilapia burtoni. Animal Behaviour, 2019, 152, 79-91.	1.9	7
2180	Metabolite-Sensing G Protein-Coupled Receptors Connect the Diet-Microbiota-Metabolites Axis to Inflammatory Bowel Disease. Cells, 2019, 8, 450.	4.1	53
2181	Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients, 2019, 11, 1073.	4.1	90

#	Article	IF	CITATIONS
2182	Inulin Can Alleviate Metabolism Disorders in ob/ob Mice by Partially Restoring Leptin-related Pathways Mediated by Gut Microbiota. Genomics, Proteomics and Bioinformatics, 2019, 17, 64-75.	6.9	134
2183	Probiotic <i>Bifidobacterium lactis</i> V9 Regulates the Secretion of Sex Hormones in Polycystic Ovary Syndrome Patients through the Gut-Brain Axis. MSystems, 2019, 4, .	3.8	157
2184	Effects of Long-Term Dietary Protein Restriction on Intestinal Morphology, Digestive Enzymes, Gut Hormones, and Colonic Microbiota in Pigs. Animals, 2019, 9, 180.	2.3	26
2185	Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. International Journal of Molecular Sciences, 2019, 20, 1912.	4.1	98
2186	EAACI position paper: Influence of dietary fatty acids on asthma, food allergy, and atopic dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1429-1444.	5.7	103
2187	Combination of Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis Shows a Stronger Anti-Inflammatory Effect than Individual Strains in HT-29 Cells. Nutrients, 2019, 11, 969.	4.1	76
2188	Addition of plant dietary fibre to a raw red meat high protein, high fat diet, alters the faecal bacteriome and organic acid profiles of the domestic cat (Felis catus). PLoS ONE, 2019, 14, e0216072.	2.5	39
2189	A unique polysaccharide from Hericium erinaceus mycelium ameliorates acetic acid-induced ulcerative colitis rats by modulating the composition of the gut microbiota, short chain fatty acids levels and GPR41/43 respectors. International Immunopharmacology, 2019, 71, 411-422.	3.8	87
2190	Overall Dietary Quality Relates to Gut Microbiota Diversity and Abundance. International Journal of Molecular Sciences, 2019, 20, 1835.	4.1	61
2191	Phenylketonuria Diet Promotes Shifts in Firmicutes Populations. Frontiers in Cellular and Infection Microbiology, 2019, 9, 101.	3.9	33
2192	Effect of raw potato starch on the gut microbiome and metabolome in mice. International Journal of Biological Macromolecules, 2019, 133, 37-43.	7.5	35
2193	The impacts of natural polysaccharides on intestinal microbiota and immune responses – a review. Food and Function, 2019, 10, 2290-2312.	4.6	157
2194	Structural modulation of gut microbiota reveals Coix seed contributes to weight loss in mice. Applied Microbiology and Biotechnology, 2019, 103, 5311-5321.	3.6	27
2195	Gastrointestinal and liver diseases and atrial fibrillation: a review of the literature. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481983223.	3.2	15
2196	Fermented feed regulates growth performance and the cecal microbiota community in geese. Poultry Science, 2019, 98, 4673-4684.	3.4	46
2197	Gut microbiome interventions in human health and diseases. Medicinal Research Reviews, 2019, 39, 2286-2313.	10.5	52
2198	Effect of a polyphenol-rich plant matrix on colonic digestion and plasma antioxidant capacity in a porcine model. Journal of Functional Foods, 2019, 57, 211-221.	3.4	10
2199	Ligustrum robustum Intake, Weight Loss, and Gut Microbiota: An Intervention Trial. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-11.	1.2	2

#	Article	IF	Citations
2200	Associations between usual diet and gut microbiota composition: results from the Milieu Intérieur cross-sectional study. American Journal of Clinical Nutrition, 2019, 109, 1472-1483.	4.7	66
2201	The Microbiome and Food Allergy. Annual Review of Immunology, 2019, 37, 377-403.	21.8	102
2202	Low-Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes. Nutrients, 2019, 11, 962.	4.1	129
2203	Stereotypes About Enterotype: the Old and New Ideas. Genomics, Proteomics and Bioinformatics, 2019, 17, 4-12.	6.9	97
2204	The role of the gut microbiome in sex differences in arterial pressure. Biology of Sex Differences, 2019, 10, 22.	4.1	44
2205	Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 2019, 11, 923.	4.1	220
2206	Alteration of gut microbiota by a Westernized lifestyle and its correlation with insulin resistance in nonâ€diabetic Japanese men. Journal of Diabetes Investigation, 2019, 10, 1463-1470.	2.4	18
2207	Interactions Between Food and Gut Microbiota: Impact on Human Health. Annual Review of Food Science and Technology, 2019, 10, 389-408.	9.9	52
2208	Changes in Mouse Gut Microbial Community in Response to the Different Types of Commonly Consumed Meat. Microorganisms, 2019, 7, 76.	3.6	11
2209	Epidemiology, Pathophysiology, and Treatment of Diverticulitis. Gastroenterology, 2019, 156, 1282-1298.e1.	1.3	231
2210	In Vitro Methods to Study Colon Release: State of the Art and An Outlook on New Strategies for Better In-Vitro Biorelevant Release Media. Pharmaceutics, 2019, 11, 95.	4.5	38
2211	Characterizing the microbiota in gastrointestinal tract segments of <i>Rhabdophis subminiatus</i> : Dynamic changes and functional predictions. MicrobiologyOpen, 2019, 8, e789.	3.0	21
2212	The epidemiology of Clostridioides difficile infection in Brazil: AÂsystematic review covering thirty years. Anaerobe, 2019, 58, 13-21.	2.1	21
2214	Diet-Derived Fatty Acids, Brain Inflammation, and Mental Health. Frontiers in Neuroscience, 2019, 13, 265.	2.8	74
2215	Similarly in depression, nuances of gut microbiota: Evidences from a shotgun metagenomics sequencing study on major depressive disorder versus bipolar disorder with current major depressive episode patients. Journal of Psychiatric Research, 2019, 113, 90-99.	3.1	111
2216	Improvement of Colonic Immune Function with Soy Isoflavones in High-Fat Diet-Induced Obese Rats. Molecules, 2019, 24, 1139.	3.8	58
2217	Microbes and the Mind: How Bacteria Shape Affect, Neurological Processes, Cognition, Social Relationships, Development, and Pathology. Perspectives on Psychological Science, 2019, 14, 397-418.	9.0	25
2218	Dynamic Change of Gut Microbiota During Porcine Epidemic Diarrhea Virus Infection in Suckling Piglets. Frontiers in Microbiology, 2019, 10, 322.	3.5	78

#	Article	IF	CITATIONS
2219	Dietary raisin intake has limited effect on gut microbiota composition in adult volunteers. Nutrition Journal, 2019, 18, 14.	3.4	20
2220	The Effects of Intact Cereal Grain Fibers, Including Wheat Bran on the Gut Microbiota Composition of Healthy Adults: A Systematic Review. Frontiers in Nutrition, 2019, 6, 33.	3.7	93
2221	Examination of the temporal and spatial dynamics of the gut microbiome in newborn piglets reveals distinct microbial communities in six intestinal segments. Scientific Reports, 2019, 9, 3453.	3.3	59
2222	A More Robust Gut Microbiota in Calorie-Restricted Mice Is Associated with Attenuated Intestinal Injury Caused by the Chemotherapy Drug Cyclophosphamide. MBio, 2019, 10, .	4.1	44
2223	Significant Differences in Bacterial and Potentially Pathogenic Communities Between Sympatric Hooded Crane and Greater White-Fronted Goose. Frontiers in Microbiology, 2019, 10, 163.	3.5	27
2224	Microbiome programming of brain development: implications for neurodevelopmental disorders. Developmental Medicine and Child Neurology, 2019, 61, 744-749.	2.1	25
2225	MNEMONIC: MetageNomic Experiment Mining to create an OTU Network of Inhabitant Correlations. BMC Bioinformatics, 2019, 20, 96.	2.6	1
2226	Distinct Genetic and Functional Traits of Human Intestinal Prevotella copri Strains Are Associated with Different Habitual Diets. Cell Host and Microbe, 2019, 25, 444-453.e3.	11.0	229
2227	Alterations of Gut Microbiota in Patients With Irritable Bowel Syndrome Based on 16S rRNA-Targeted Sequencing: A Systematic Review. Clinical and Translational Gastroenterology, 2019, 10, e00012.	2.5	110
2228	Microbes, metabolites, and the gut–lung axis. Mucosal Immunology, 2019, 12, 843-850.	6.0	540
2229	Short chain fatty acid butyrate uptake reduces expressions of prostanoid EP4 receptors and their mediation of cyclooxygenase-2 induction in HCA-7 human colon cancer cells. European Journal of Pharmacology, 2019, 853, 308-315.	3.5	16
2230	Factors influencing the gut microbiome in children: from infancy to childhood. Journal of Biosciences, 2019, 44, 1.	1.1	81
2231	Beyond Gut Instinct: Metabolic Short-Chain Fatty Acids Moderate the Pathogenesis of Alphaherpesviruses. Frontiers in Microbiology, 2019, 10, 723.	3.5	13
2232	Review on Bile Acids: Effects of the Gut Microbiome, Interactions with Dietary Fiber, and Alterations in the Bioaccessibility of Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2019, 67, 9124-9138.	5.2	106
2233	The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Frontiers in Nutrition, 2019, 6, 47.	3.7	389
2234	Gut <i>Prevotella</i> as a possible biomarker of diet and its eubiotic versus dysbiotic roles: a comprehensive literature review. British Journal of Nutrition, 2019, 122, 131-140.	2.3	204
2235	Vegetarian or glutenâ€free diets in patients with inflammatory bowel disease are associated with lower psychological wellâ€being and a different gut microbiota, but no beneficial effects on the course of the disease. United European Gastroenterology Journal, 2019, 7, 767-781.	3.8	67
2236	What's Normal? Microbiomes in Human Milk and Infant Feces Are Related to Each Other but Vary Geographically: The INSPIRE Study. Frontiers in Nutrition, 2019, 6, 45.	3.7	148

ARTICLE IF CITATIONS Serum level of sex steroid hormone is associated with diversity and profiles of human gut 2237 2.1 175 microbiome. Research in Microbiology, 2019, 170, 192-201. The Role of the Microbiome in Immunologic Development and its Implication For Pancreatic Cancer 2238 1.3 Immunotherapy. Gastroenterology, 2019, 156, 2097-2115.e2. Phytate degradation, intestinal microbiota, microbial metabolites and immune values are changed in growing pigs fed diets with varying calcium–phosphorus concentration and fermentable substrates. 2239 2.2 10 Journal of Animal Physiology and Animal Nutrition, 2019, 103, 1185-1197. Defining Dysbiosis in Patients with Urolithiasis. Scientific Reports, 2019, 9, 5425. 2240 The Impact of Chronic Intestinal Inflammation on Brain Disorders: the Microbiota-Gut-Brain Axis. 2241 4.0 41 Molecular Neurobiology, 2019, 56, 6941-6951. The effect of diet on hypertensive pathology: is there a link via gut microbiota-driven immunometabolism?. Cardiovascular Research, 2019, 115, 1435-1447. 3.8 The role of diet and intestinal microbiota in the development of metabolic syndrome. Journal of 2243 4.2 116 Nutritional Biochemistry, 2019, 70, 1-27. Effect of the sulfation pattern of sea cucumber-derived fucoidan oligosaccharides on modulating metabolic syndromes and gut microbiota dysbiosis caused by HFD in mice. Journal of Functional Foods, 2244 3.4 38 2019, 55, 193-210. Promoting Mental Health and Wellness in Youth Through Physical Activity, Nutrition, and Sleep. Child 2245 1.9 88 and Adolescent Psychiatric Clinics of North America, 2019, 28, 171-193. Prebiotics – an added benefit of some fibre types. Nutrition Bulletin, 2019, 44, 74-91. 1.8 2246 Sport nutrition, redox homeostasis and toxicity in sport performance. Current Opinion in Toxicology, 2247 2 5.02019, 13, 45-67. Shaping the Gut Microbiota by Breastfeeding: The Gateway to Allergy Prevention?. Frontiers in 2248 1.9 159 Pediatrics, 2019, 7, 47. 2249 The Gut Microbiome in Vegetarians. , 2019, , 393-400. 1 The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic 12.8 crosstalk in lymphocytes. Nature Communications, 2019, 10, 760 2252 Conserve the germs: the gut microbiota and adaptive potential. Conservation Genetics, 2019, 20, 19-27. 1.5 55 Ascaris suum infection was associated with a worm-independent reduction in microbial diversity and altered metabolic potential in the porcine gut microbiome. International Journal for Parasitology, 3.1 2019, 49, 247-256. A ropy exopolysaccharide producing strain<i>Bifidobacterium longum</i>subsp.<i>longum</i>YS108R 2254 alleviates DSS-induced colitis by maintenance of the mucosal barrier and gut microbiota modulation. 4.6 98 Food and Function, 2019, 10, 1595-1608. Resistance towards metronidazole in Blastocystis sp.: A pathogenic consequence. PLoS ONE, 2019, 14, e0212542.

ARTICLE IF CITATIONS # Dualâ€Stimuliâ€Responsive Gut Microbiotaâ€Targeting Berberineâ€CS/PTâ€NPs Improved Metabolic Status in 2256 14.9 37 Obese Hamsters. Advanced Functional Materials, 2019, 29, 1808197. Psychotropics and the Microbiome: a Chamber of Secrets…. Psychopharmacology, 2019, 236, 1411-1432. 3.1 109 Dietary Short Chain Fatty Acids: How the Gut Microbiota Fight Against Autoimmune and Inflammatory 2258 5 Diseases., 2019, , 139-159. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with 12.1 cardiometabolic risk factors: a 6-month randomised controlled feeding trial. Gut, 2019, 68, 1417-1429. Virome Diversity Correlates with Intestinal Microbiome Diversity in Adult Monozygotic Twins. Cell 2260 11.0 159 Host and Microbe, 2019, 25, 261-272.e5. Review article: dietary fibre in the era of microbiome science. Alimentary Pharmacology and Therapeutics, 2019, 49, 506-515. 3.7 Organophosphorus pesticide chlorpyrifos intake promotes obesity and insulin resistance through 2262 11.1 149 impacting gut and gut microbiota. Microbiome, 2019, 7, 19. Jamun (<i>Eugenia jambolana</i> Lam.) Fruit Extract Prevents Obesity by Modulating the Gut 2263 3.3 46 Microbiome in Highâ€Fatâ€Dietâ€Fed Mice. Molecular Nutrition and Food Research, 2019, 63, e1801307. Microbial Diversity and Organic Acid Production of Guinea Pig Faecal Samples. Current Microbiology, 2264 2.2 2 2019, 76, 425-434. The Role of the Microbiome in Cancer Initiation and Progression: How Microbes and Cancer Cells 4.3 Utilize Excess Energy and Promote One Another's Growth. Current Nutrition Reports, 2019, 8, 42-51. The gut microbiota and blood pressure in experimental models. Current Opinion in Nephrology and 2266 2.0 44 Hypertension, 2019, 28, 97-104. Eczema-protective probiotic alters infant gut microbiome functional capacity but not composition: 2267 2.4 sub-sample analysis from a RCT. Beneficial Microbes, 2019, 10, 5-17. Gut Microbiota Imbalance is Related to Sporadic Colorectal Neoplasms. A Pilot Study. Applied Sciences 2268 2.5 16 (Switzerland), 2019, 9, 5491. Chapter 18 Cross-feeding during human colon fermentation., 2019, , 313-338. 2269 Mice co-administrated with partially hydrolysed whey proteins and prebiotic fibre mixtures show 2270 2.4 7 allergen-specific tolerance and a modulated gut microbiota. Beneficial Microbes, 2019, 10, 165-178. Effect of rice bran fermented with Saccharomyces cerevisiae and Lactobacillus plantarum on gut 2271 2.4 microbiome of mice fed high-sucrose diet. Beneficial Microbes, 2019, 10, 811-821. Racial Differences in the Oral Microbiome: Data from Low-Income Populations of African Ancestry 2272 3.8 32 and European Ancestry. MSystems, 2019, 4, . Comparative analysis of microbiota along the length of the gastrointestinal tract of two tree squirrel species (<i>>Sciurus aberti</i> and <i>>S. niger</i>) living in sympatry. Ecology and Evolution, 2019, 9, 13344-13358.

		CITATION REPORT		
# 2274	ARTICLE The Strange Case of Prevotella copri: Dr. Jekyll or Mr. Hyde?. Cell Host and Microbe, 201	9 26 577-578	IF 11.0	Citations 20
2275	Comparison of Japanese and Indian intestinal microbiota shows diet-dependent interact bacteria and fungi. Npj Biofilms and Microbiomes, 2019, 5, 37.		6.4	60
2276	Identification of the core bacteria in rectums of diarrheic and non-diarrheic piglets. Scien Reports, 2019, 9, 18675.	ntific	3.3	43
2277	Helicobacter pylori infection associates with fecal microbiota composition and diversity Reports, 2019, 9, 20100.	. Scientific	3.3	49
2278	The impact of immunomodulatory factors from maternal diet during pregnancy on cow in offspring – A pilot study in the paediatric population of the Kuyavian-Pomeranian V Allergologia Et Immunopathologia, 2019, 47, 570-578.		1.7	2
2279	Linking the effects of helminth infection, diet and the gut microbiota with human whole signatures. PLoS Pathogens, 2019, 15, e1008066.	e-blood	4.7	25
2280	Habitual animal fat consumption in shaping gut microbiota and microbial metabolites. F Function, 2019, 10, 7973-7982.	⁻ ood and	4.6	22
2281	Role of Obesity, Mesenteric Adipose Tissue, and Adipokines in Inflammatory Bowel Dise Biomolecules, 2019, 9, 780.	ases.	4.0	70
2282	Gut microbiota composition of Japanese macaques associates with extent of human en American Journal of Primatology, 2019, 81, e23072.	croachment.	1.7	22
2283	Exacerbation of Chikungunya Virus Rheumatic Immunopathology by a High Fiber Diet a Frontiers in Immunology, 2019, 10, 2736.	nd Butyrate.	4.8	30
2284	Relation Between Gut Microbiota Composition and Traditional Spontaneous Fermented Among Kazakh Nomads in Xinjiang, China. Journal of Food Science, 2019, 84, 3804-381	Dairy Foods .4.	3.1	5
2285	Immunomodulatory and anti-inflammatory effects of probiotics in multiple sclerosis: a s review. Journal of Neuroinflammation, 2019, 16, 231.	ystematic	7.2	72
2286	Diet, Health, and the Gut Microbiota. , 2019, , 815-829.			1
2287	Metabolic Modeling of Clostridium difficile Associated Dysbiosis of the Gut Microbiota. 2019, 7, 97.	Processes,	2.8	9
2288	Microbial genomes from non-human primate gut metagenomes expand the primate-ass tree of life with over 1000 novel species. Genome Biology, 2019, 20, 299.	ociated bacterial	8.8	58
2289	Personalized Nutrition. Journal of Pediatric Gastroenterology and Nutrition, 2019, 69, 6	33-638.	1.8	15
2290	Nutritional interventions for the treatment of IBD: current evidence and controversies. Advances in Gastroenterology, 2019, 12, 175628481989053.	l'herapeutic	3.2	36
2291	The Gut Microbiome in Inflammatory Bowel Disease: Lessons Learned From Other Immu Inflammatory Diseases. American Journal of Gastroenterology, 2019, 114, 1051-1070.	ine-Mediated	0.4	53

#	Article	IF	CITATIONS
2292	Maternal and Breast Milk Influences on the Infant Gut Microbiome, Enteric Health and Growth Outcomes of Rhesus Monkeys. Journal of Pediatric Gastroenterology and Nutrition, 2019, 69, 363-369.	1.8	10
2293	The good bugs. Current Opinion in Pediatrics, 2019, 31, 661-669.	2.0	16
2294	Effects of Low-FODMAPS Diet on Irritable Bowel Syndrome Symptoms and Gut Microbiome. Gastroenterology Nursing, 2019, 42, 150-158.	0.4	16
2295	Fecal microbiome as determinant of the effect of diet on colorectal cancer risk: comparison of meat-based versus pesco-vegetarian diets (the MeaTlc study). Trials, 2019, 20, 688.	1.6	14
2296	Host–microbiota interactions in rheumatoid arthritis. Experimental and Molecular Medicine, 2019, 51, 1-6.	7.7	109
2297	Increased Use of Emulsifiers in Processed Foods and the Links to Obesity. Current Gastroenterology Reports, 2019, 21, 61.	2.5	22
2298	Crocin-I ameliorates the disruption of lipid metabolism and dysbiosis of the gut microbiota induced by chronic corticosterone in mice. Food and Function, 2019, 10, 6779-6791.	4.6	28
2299	Effects of dietary intake of potatoes on body weight gain, satiety-related hormones, and gut microbiota in healthy rats. RSC Advances, 2019, 9, 33290-33301.	3.6	7
2300	Probiotic effect and dietary correlations on faecal microbiota profiles in irritable bowel syndrome. South African Journal of Clinical Nutrition, 2021, 34, 84-89.	0.7	3
2301	Comparison of the gut microbiota of captive common bottlenose dolphins <i>Tursiops truncatus</i> in three aquaria. Journal of Applied Microbiology, 2019, 126, 31-39.	3.1	23
2302	Effects of glucose oxidase on growth performance, gut function, and cecal microbiota of broiler chickens. Poultry Science, 2019, 98, 828-841.	3.4	50
2303	El Niño Altered Gut Microbiota of Children: A New Insight on Weather–Gut Interactions and Protective Effects of Probiotic. Journal of Medicinal Food, 2019, 22, 230-240.	1.5	6
2304	Dysbiosis of the gut microbiome is associated with thyroid cancer and thyroid nodules and correlated with clinical index of thyroid function. Endocrine, 2019, 64, 564-574.	2.3	78
2305	The Gut Microbiota: A Clinically Impactful Factor in Patient Health and Disease. SN Comprehensive Clinical Medicine, 2019, 1, 188-199.	0.6	14
2306	Comparison of the gut microbiota of obese individuals from different geographic origins. New Microbes and New Infections, 2019, 27, 40-47.	1.6	12
2307	Primary Cell-Derived Intestinal Models: Recapitulating Physiology. Trends in Biotechnology, 2019, 37, 744-760.	9.3	79
2308	Disease-modifying therapies alter gut microbial composition in MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e517.	6.0	75
2309	Effect of Resistant Starch on the Gut Microbiota and Its Metabolites in Patients with Coronary Artery Disease. Journal of Atherosclerosis and Thrombosis, 2019, 26, 705-719.	2.0	24

#	Article	IF	CITATIONS
2310	Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food and Chemical Toxicology, 2019, 124, 385-399.	3.6	74
2311	Potential Influences of Gut Microbiota on the Formation of Intracranial Aneurysm. Hypertension, 2019, 73, 491-496.	2.7	84
2312	Assessing the Influence of Dietary History on Gut Microbiota. Current Microbiology, 2019, 76, 237-247.	2.2	10
2313	Treponema species enrich the gut microbiota of traditional rural populations but are absent from urban individuals. New Microbes and New Infections, 2019, 27, 14-21.	1.6	63
2314	Gut microbiota and health: connecting actors across the metabolic system. Proceedings of the Nutrition Society, 2019, 78, 177-188.	1.0	49
2315	The composition and structure of the intestinal microflora of <i>Anguilla marmorata</i> at different growth rates: a deep sequencing study. Journal of Applied Microbiology, 2019, 126, 1340-1352.	3.1	30
2316	Specific Microbiota Dynamically Regulate the Bidirectional Gut–Brain Axis Communications in Mice Fed Meat Protein Diets. Journal of Agricultural and Food Chemistry, 2019, 67, 1003-1017.	5.2	34
2317	Enhancing Clinical Efficacy through the Gut Microbiota: A New Field of Traditional Chinese Medicine. Engineering, 2019, 5, 40-49.	6.7	21
2318	The Role of the Microbiome in Asthma: The Gut–Lung Axis. International Journal of Molecular Sciences, 2019, 20, 123.	4.1	162
2319	Dietary fat, the gut microbiota, and metabolic health – A systematic review conducted within the MyNewGut project. Clinical Nutrition, 2019, 38, 2504-2520.	5.0	175
2320	Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: a role for iron?. Journal of Biomedical Science, 2019, 26, 1.	7.0	204
2321	A Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity. Cell Host and Microbe, 2019, 25, 113-127.e6.	11.0	210
2322	Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Critical Reviews in Food Science and Nutrition, 2019, 59, 848-863.	10.3	132
2323	Alterations in gut microbiota composition and metabolic parameters after dietary intervention with barley beta glucans in patients with high risk for metabolic syndrome development. Anaerobe, 2019, 55, 67-77.	2.1	78
2324	Non-covalent dietary fiber - Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends in Food Science and Technology, 2019, 83, 235-247.	15.1	201
2325	Importance of gut microbiota in obesity. European Journal of Clinical Nutrition, 2019, 72, 26-37.	2.9	88
2326	Relationship between peptide YY, cholecystokinin and fermentation products in fasted, re-fed and ad libitum fed broiler chickens. Animal Feed Science and Technology, 2019, 247, 141-148.	2.2	8
2327	Diet and the Role of Food in Common Gastrointestinal Diseases. Medical Clinics of North America, 2019, 103, 101-110.	2.5	9

#	Article	IF	CITATIONS
2328	Arabinoxylan from Argentinian whole wheat flour promote the growth of <i>Lactobacillus reuteri</i> and <i>Bifidobacterium breve</i> . Letters in Applied Microbiology, 2019, 68, 142-148.	2.2	23
2329	Developments on the Applications and the Suitability of Functional Fermented Sour Sobya as a Viable Source of Novel Probiotics in the Managements of Gastrointestinal Disorders and Blood Lipid Profiles. , 2019, , 579-602.		1
2330	In-vitro digestion by simulated gastrointestinal juices of Lactobacillus rhamnosus cultured with mulberry oligosaccharides and subsequent fermentation with human fecal inocula. LWT - Food Science and Technology, 2019, 101, 61-68.	5.2	20
2331	Inhibition of pyruvate dehydrogenase kinase-4 by l-glutamine protects pregnant rats against fructose-induced obesity and hepatic lipid accumulation. Biomedicine and Pharmacotherapy, 2019, 110, 59-67.	5.6	28
2332	Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. Cell, 2019, 176, 649-662.e20.	28.9	1,087
2333	Effects of diet on the childhood gut microbiome and its implications for atopic dermatitis. Journal of Allergy and Clinical Immunology, 2019, 143, 1636-1637.e5.	2.9	35
2334	Microbial and metabolic alterations in gut microbiota of sows during pregnancy and lactation. FASEB Journal, 2019, 33, 4490-4501.	0.5	68
2335	Probiotics, prebiotics and amelioration of diseases. Journal of Biomedical Science, 2019, 26, 3.	7.0	242
2336	Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome, 2019, 7, 2.	11.1	135
2337	The gut microbiome in anorexia nervosa: relevance for nutritional rehabilitation. Psychopharmacology, 2019, 236, 1545-1558.	3.1	56
2338	Effects and immune responses of probiotic treatment in ruminants. Veterinary Immunology and Immunopathology, 2019, 208, 58-66.	1.2	33
2339	Microbial regulation of organismal energy homeostasis. Nature Metabolism, 2019, 1, 34-46.	11.9	354
2340	The Microbiota and Energy Balance. Endocrinology, 2019, , 109-126.	0.1	2
2341	A great-ape view of the gutÂmicrobiome. Nature Reviews Genetics, 2019, 20, 195-206.	16.3	49
2342	Cross-Domain and Viral Interactions in the Microbiome. Microbiology and Molecular Biology Reviews, 2019, 83, .	6.6	95
2343	Environmental enteric dysfunction and growth. Jornal De Pediatria, 2019, 95, 85-94.	2.0	21
2344	The interplay among gut microbiota, hypertension and kidney diseases: The role of short-chain fatty acids. Pharmacological Research, 2019, 141, 366-377.	7.1	94
2345	The Metabolic Response to a Low Amino Acid Diet is Independent of Diet-Induced Shifts in the Composition of the Gut Microbiome. Scientific Reports, 2019, 9, 67.	3.3	16

#	Article	IF	CITATIONS
2346	HIV Status Does Not Affect Rectal Microbiome Composition, Diversity, or Stability over Time: A Chicago Women's Interagency HIV Study. AIDS Research and Human Retroviruses, 2019, 35, 260-266.	1.1	6
2347	Gut microbiota in children and altered profiles in juvenile idiopathic arthritis. Journal of Autoimmunity, 2019, 98, 1-12.	6.5	39
2348	Microbiome as a therapeutic target in alcohol-related liver disease. Journal of Hepatology, 2019, 70, 260-272.	3.7	170
2349	Endophytic bacterial communities in peels and pulp of five root vegetables. PLoS ONE, 2019, 14, e0210542.	2.5	21
2350	What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 2019, 7, 14.	3.6	1,796
2351	Adaptation to Fasting in Crucian Carp (Carassius auratus): Gut Microbiota and Its Correlative Relationship with Immune Function. Microbial Ecology, 2019, 78, 6-19.	2.8	20
2352	The role of obesity in inflammatory bowel disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 63-72.	3.8	34
2353	Gut Microbiota; Its Importance in Obesity. , 2019, , 353-362.		1
2354	Antenatal Microbial Colonization of Mammalian Gut. Reproductive Sciences, 2019, 26, 1045-1053.	2.5	33
2355	Gut microbiome and type 2 diabetes: where we are and where to go?. Journal of Nutritional Biochemistry, 2019, 63, 101-108.	4.2	261
2356	Polysaccharides from Laminaria japonica alleviated metabolic syndrome in BALB/c mice by normalizing the gut microbiota. International Journal of Biological Macromolecules, 2019, 121, 996-1004.	7.5	59
2357	A mathematical model to investigate the key drivers of the biogeography of the colon microbiota. Journal of Theoretical Biology, 2019, 462, 552-581.	1.7	30
2358	The Costs of Living Together: Immune Responses to the Microbiota and Chronic Gut Inflammation. Applied and Environmental Microbiology, 2019, 85, .	3.1	4
2359	The Microbiome in Patients With Inflammatory Diseases. Clinical Gastroenterology and Hepatology, 2019, 17, 243-255.	4.4	38
2360	Pharmacokinetic Study of Compound K in Japanese Subjects After Ingestion of <i>Panax ginseng</i> Fermented by <i>Lactobacillus paracasei</i> A221 Reveals Significant Increase of Absorption into Blood. Journal of Medicinal Food, 2019, 22, 257-263.	1.5	18
2361	Microbes: possible link between modern lifestyle transition and the rise of metabolic syndrome. Obesity Reviews, 2019, 20, 407-419.	6.5	35
2362	Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice. Journal of Gastroenterology, 2019, 54, 347-358.	5.1	130
2363	Microbial monotherapy with <i>Prevotella histicola</i> for patients with multiple sclerosis. Expert Review of Neurotherapeutics, 2019, 19, 45-53.	2.8	15

#	Article	IF	CITATIONS
2364	Thinking Outside the Cereal Box: Noncarbohydrate Routes for Dietary Manipulation of the Gut Microbiota. Applied and Environmental Microbiology, 2019, 85, .	3.1	14
2365	The Gut Microbiome in Adult and Pediatric Functional Gastrointestinal Disorders. Clinical Gastroenterology and Hepatology, 2019, 17, 256-274.	4.4	119
2366	Exploring Human Bacterial Diversity Toward Prevention of Infectious Disease and Health Promotion. , 2019, , 519-533.		4
2367	Forensic human identification with targeted microbiome markers using nearest neighbor classification. Forensic Science International: Genetics, 2019, 38, 130-139.	3.1	45
2368	Obesity and the microbiome: Big changes on a small scale?. , 2019, , 281-300.		0
2369	The mammalian mycobiome: A complex system in a dynamic relationship with the host. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2019, 11, e1438.	6.6	58
2370	You are what you eat: diet, health and the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 35-56.	17.8	980
2371	Targeting the gut microbiota by dietary nutrients: A new avenue for human health. Critical Reviews in Food Science and Nutrition, 2019, 59, 181-195.	10.3	38
2372	Modern perspectives on the health benefits of kefir in next generation sequencing era: Improvement of the host gut microbiota. Critical Reviews in Food Science and Nutrition, 2019, 59, 1782-1793.	10.3	54
2373	Dietary wheat amylase trypsin inhibitors exacerbate murine allergic airway inflammation. European Journal of Nutrition, 2019, 58, 1507-1514.	3.9	40
2374	Monovalerin and trivalerin increase brain acetic acid, decrease liver succinic acid, and alter gut microbiota in rats fed high-fat diets. European Journal of Nutrition, 2019, 58, 1545-1560.	3.9	18
2375	The Effect of Synbiotic Supplementation on Growth Parameters in Mild to Moderate FTT Children Aged 2–5ÂYears. Probiotics and Antimicrobial Proteins, 2020, 12, 119-124.	3.9	3
2376	Targeting gut microbiota with dietary components on cancer: Effects and potential mechanisms of action. Critical Reviews in Food Science and Nutrition, 2020, 60, 1025-1037.	10.3	73
2377	Interactions of dietary fat with the gut microbiota: Evaluation of mechanisms and metabolic consequences. Clinical Nutrition, 2020, 39, 994-1018.	5.0	61
2378	Polyphenols and Intestinal Permeability: Rationale and Future Perspectives. Journal of Agricultural and Food Chemistry, 2020, 68, 1816-1829.	5.2	101
2379	Food processing, gut microbiota and the globesity problem. Critical Reviews in Food Science and Nutrition, 2020, 60, 1769-1782.	10.3	51
2380	Identifying psychiatric disorder-associated gut microbiota using microbiota-related gene set enrichment analysis. Briefings in Bioinformatics, 2020, 21, 1016-1022.	6.5	63
2381	The role of intestinal microbiota in the pathogenesis of colorectal carcinoma. Folia Microbiologica, 2020, 65, 17-24.	2.3	9

#	Article	IF	CITATIONS
2382	Diet and Environment in Colorectal Cancer Development, Roles of. , 2020, , 33-50.		0
2383	Impact of black raspberries on the normal and malignant Apc deficient murine gut microbiome. Journal of Berry Research, 2020, 10, 61-76.	1.4	6
2384	The protective effect of extra-virgin olive oil in the experimental model of multiple sclerosis in the rat. Nutritional Neuroscience, 2020, 23, 37-48.	3.1	24
2385	Preterm infant gut microbial patterns related to the development of necrotizing enterocolitis. Journal of Maternal-Fetal and Neonatal Medicine, 2020, 33, 349-358.	1.5	34
2386	Assessment of gut microbiota fecal metabolites by chromatographic targeted approaches. Journal of Pharmaceutical and Biomedical Analysis, 2020, 177, 112867.	2.8	23
2387	A critical review on diet-induced microbiota changes and cardiovascular diseases. Critical Reviews in Food Science and Nutrition, 2020, 60, 2914-2925.	10.3	26
2388	Diet, the Gut Microbiome, and Autoimmune Diseases. , 2020, , 331-342.		3
2389	Chain conformation, physicochemical properties of fucosylated chondroitin sulfate from sea cucumber Stichopus chloronotus and its in vitro fermentation by human gut microbiota. Carbohydrate Polymers, 2020, 228, 115359.	10.2	45
2390	Effect of ultra-processed diet on gut microbiota and thus its role in neurodegenerative diseases. Nutrition, 2020, 71, 110609.	2.4	76
2391	The microbial composition of dried fish prepared according to Greenlandic Inuit traditions and industrial counterparts. Food Microbiology, 2020, 85, 103305.	4.2	15
2392	Influence of a 3-month low-calorie Mediterranean diet compared to the vegetarian diet on human gut microbiota and SCFA: the CARDIVEG Study. European Journal of Nutrition, 2020, 59, 2011-2024.	3.9	94
2393	Daily intake of wheat germ-enriched bread may promote a healthy gut bacterial microbiota: a randomised controlled trial. European Journal of Nutrition, 2020, 59, 1951-1961.	3.9	6
2394	Human milk and infant formula differentially alters the microbiota composition and functional gene relative abundance in the small and large intestines in weanling rats. European Journal of Nutrition, 2020, 59, 2131-2143.	3.9	7
2395	Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 2020, 60, 477-502.	9.4	227
2396	Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: implications on health effects. Critical Reviews in Food Science and Nutrition, 2020, 60, 2691-2709.	10.3	63
2397	Guided dietary fibre intake as a means of directing short-chain fatty acid production by the gut microbiota. Journal of the Royal Society of New Zealand, 2020, 50, 434-455.	1.9	21
2398	A Crucial Role for Diet in the Relationship Between Gut Microbiota and Cardiometabolic Disease. Annual Review of Medicine, 2020, 71, 149-161.	12.2	38
2399	Optimized hydrolytic methods by response surface methodology to accurately estimate the phenols in cereal by HPLC-DAD: The case of millet. Food Chemistry, 2020, 303, 125393.	8.2	27

#	Article	IF	CITATIONS
2400	Association between gut microbiota composition and glycoalbumin level during pregnancy in Japanese women: Pilot study from Chiba Study of Mother and Child Health. Journal of Diabetes Investigation, 2020, 11, 699-706.	2.4	8
2401	Diet and the Gut Microbiome in Early Life. , 2020, , 51-59.		0
2402	The fungal community and its interaction with the concentration of short hain fatty acids in the faeces of Chenghua, Yorkshire and Tibetan pigs. Microbial Biotechnology, 2020, 13, 509-521.	4.2	17
2403	Reconciling Hygiene and Cleanliness: A New Perspective from Human Microbiome. Indian Journal of Microbiology, 2020, 60, 37-44.	2.7	10
2404	12th Roche Diabetes Care Network Meeting: April 11–13, 2019, Copenhagen, Denmark. Diabetes Technology and Therapeutics, 2020, 22, 142-167.	4.4	0
2405	Effects of acute heat stress on intestinal microbiota in growâ€finishing pigs, and associations with feed intake and serum profile. Journal of Applied Microbiology, 2020, 128, 840-852.	3.1	53
2406	Dietary Habits of 2- to 9-Year-Old American Children Are Associated with Gut Microbiome Composition. Journal of the Academy of Nutrition and Dietetics, 2020, 120, 517-534.	0.8	34
2407	Neuroactive compounds in foods: Occurrence, mechanism and potential health effects. Food Research International, 2020, 128, 108744.	6.2	127
2408	Does the gut microbiota contribute to the oligodendrocyte progenitor niche?. Neuroscience Letters, 2020, 715, 134574.	2.1	6
2409	Characterization of the microbial community structure in intestinal segments of yak (Bos grunniens). Anaerobe, 2020, 61, 102115.	2.1	46
2410	Hydroxycinnamic acids and human health: recent advances. Journal of the Science of Food and Agriculture, 2020, 100, 483-499.	3.5	96
2411	Is a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Critical Reviews in Food Science and Nutrition, 2020, 60, 2990-3004.	10.3	47
2412	The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease. Nutrients, 2020, 12, 79.	4.1	52
2413	Oligosaccharides from <i>Gracilaria lemaneiformis</i> better attenuated high fat diet-induced metabolic syndrome by promoting the Bacteroidales proliferation. Food and Function, 2020, 11, 1049-1062.	4.6	18
2414	The effect of bound polyphenols on the fermentation and antioxidant properties of carrot dietary fiber <i>in vivo</i> and <i>in vitro</i> . Food and Function, 2020, 11, 748-758.	4.6	30
2415	Provision of Lipid-Based Nutrient Supplements to Mothers During Pregnancy and 6 Months Postpartum and to Their Infants from 6 to 18 Months Promotes Infant Cut Microbiota Diversity at 18 Months of Age but Not Microbiota Maturation in a Rural Malawian Setting: Secondary Outcomes of a Randomized Trial, lournal of Nutrition, 2020, 150, 918-928.	2.9	23
2416	Dietary fiber isolated from sweet potato residues promotes a healthy gut microbiome profile. Food and Function, 2020, 11, 689-699.	4.6	46
2417	Gut microbiota of provisioned and wild rhesus macaques (<i>Macaca mulatta</i>) living in a limestone forest in southwest Guangxi, China. MicrobiologyOpen, 2020, 9, e981.	3.0	18

#	Article	IF	CITATIONS
2418	Dietary legumes, intestinal microbiota, inflammation and colorectal cancer. Journal of Functional Foods, 2020, 64, 103707.	3.4	15
2419	The influence of dietary patterns on gut microbiome and its consequences for nonalcoholic fatty liver disease. Trends in Food Science and Technology, 2020, 96, 135-144.	15.1	12
2420	Rapid PCR identification of Prevotella copri in an Australian cohort of pregnant women. Journal of Developmental Origins of Health and Disease, 2020, 11, 228-234.	1.4	2
2421	Physicochemical Characterization of a Polysaccharide from Green Microalga <i>Chlorella pyrenoidosa</i> and Its Hypolipidemic Activity via Gut Microbiota Regulation in Rats. Journal of Agricultural and Food Chemistry, 2020, 68, 1186-1197.	5.2	65
2422	Characterization of the gut microbiota of Nicaraguan children in a water insecure context. American Journal of Human Biology, 2020, 32, e23371.	1.6	16
2423	Gut Microbial Metabolites and Biochemical Pathways Involved in Irritable Bowel Syndrome: Effects of Diet and Nutrition on the Microbiome. Journal of Nutrition, 2020, 150, 1012-1021.	2.9	22
2424	A Descriptive Review on the Prevalence of Gastrointestinal Disturbances and Their Multiple Associations in Autism Spectrum Disorder. Medicina (Lithuania), 2020, 56, 11.	2.0	65
2425	Anti-obesity effects of α-amylase inhibitor enriched-extract from white common beans (<i>Phaseolus) Tj ETQq1 1 obese rats. Food and Function, 2020, 11, 1624-1634.</i>	0.784314 4.6	rgBT /Overi 41
2426	Interaction between food antigens and the immune system: Association with autoimmune disorders. Autoimmunity Reviews, 2020, 19, 102459.	5.8	29
2427	A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Frontiers in Nutrition, 2019, 6, 191.	3.7	76
2428	Potential TMA-Producing Bacteria Are Ubiquitously Found in Mammalia. Frontiers in Microbiology, 2019, 10, 2966.	3.5	71
2429	Gut microbiota and immunology of the gastrointestinal tract. , 2020, , 63-78.		3
2430	Effects of gastrointestinal digested polyphenolic enriched extracts of Chilean currants (Ribes) Tj ETQq0 0 0 rgBT / 129, 108848.	Overlock 1 6.2	0 Tf 50 267 13
2431	The role of microbiota in tissue repair and regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 539-555.	2.7	23
2433	Microbial orchestra in juvenile idiopathic arthritis: Sounds of disarray?. Immunological Reviews, 2020, 294, 9-26.	6.0	20
2434	Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME Journal, 2020, 14, 609-622.	9.8	32
2435	Toxigenic gut bacteria, diet and colon carcinogenesis. Journal of the Royal Society of New Zealand, 2020, 50, 418-433.	1.9	3
2436	Home chemical and microbial transitions across urbanization. Nature Microbiology, 2020, 5, 108-115.	13.3	83

#	Article	IF	CITATIONS
2437	More Arrows in the Ancient DNA Quiver: Use of Paleoepigenomes and Paleomicrobiomes to Investigate Animal Adaptation to Environment. Molecular Biology and Evolution, 2020, 37, 307-319.	8.9	13
2438	Nutritional status and consumption of inflammatory and anti-inflammatory foods by patients with inflammatory bowel diseases. Journal of Coloproctology, 2020, 40, 099-104.	0.1	2
2439	Development and validation of the Simulator of the Canine Intestinal Microbial Ecosystem (SCIME)1. Journal of Animal Science, 2020, 98, .	0.5	14
2440	The Influence of Diet Interventions Using Whole, Plant Food on the Gut Microbiome: A Narrative Review. Journal of the Academy of Nutrition and Dietetics, 2020, 120, 608-623.	0.8	24
2441	A Systematic Review of Organic Versus Conventional Food Consumption: Is There a Measurable Benefit on Human Health?. Nutrients, 2020, 12, 7.	4.1	81
2442	Characterizing the Composition of the Pediatric Gut Microbiome: A Systematic Review. Nutrients, 2020, 12, 16.	4.1	27
2443	Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients, 2020, 12, 17.	4.1	57
2445	Human Respiratory and Gut Microbiomes—Do They Really Contribute to Respiratory Health?. Frontiers in Pediatrics, 2020, 8, 528.	1.9	11
2446	The Impact of Germination on Sorghum Nutraceutical Properties. Foods, 2020, 9, 1218.	4.3	21
2447	Gut microbiota composition in obese and non-obese adult relatives from the highlands of Papua New Guinea. FEMS Microbiology Letters, 2020, 367, .	1.8	4
2448	Health and disease markers correlate with gut microbiome composition across thousands of people. Nature Communications, 2020, 11, 5206.	12.8	378
2449	Gut microbiota and fecal metabolites in captive and wild North China leopard (Panthera pardus) Tj ETQq1 1 0.784 Veterinary Research, 2020, 16, 363.	314 rgBT / 1.9	Overlock 10 11
2450	Insight into Polyphenol and Gut Microbiota Crosstalk: Are Their Metabolites the Key to Understand Protective Effects against Metabolic Disorders?. Antioxidants, 2020, 9, 982.	5.1	71
2451	Gut microbiota and old age: Modulating factors and interventions for healthy longevity. Experimental Gerontology, 2020, 141, 111095.	2.8	61
2452	Contrasting microbiota profiles observed in children carrying either Blastocystis spp. or the commensal amoebas Entamoeba coli or Endolimax nana. Scientific Reports, 2020, 10, 15354.	3.3	22
2453	Nutrition and the Gut Microbiota in 10- to 18-Month-Old Children Living in Urban Slums of Mumbai, India. MSphere, 2020, 5, .	2.9	20
2454	Short-chain fatty acids bind to apoptosis-associated speck-like protein to activate inflammasome complex to prevent Salmonella infection. PLoS Biology, 2020, 18, e3000813.	5.6	32
2455	Effects of supplementing geese with green sweet sorghum stalks on microbiota in segments of the gastrointestinal tract. South African Journal of Animal Sciences, 2020, 50, 421-433.	0.5	0

#	Article	IF	CITATIONS
2456	Dietary cellulose induces anti-inflammatory immunity and transcriptional programs via maturation of the intestinal microbiota. Gut Microbes, 2020, 12, 1829962.	9.8	35
2457	Diversity of gut microbiomes in marine fishes is shaped by hostâ€related factors. Molecular Ecology, 2020, 29, 5019-5034.	3.9	57
2458	Association between postoperative changes in the gut microbiota and pseudopsia after cardiac surgery: prospective observational study. BMC Surgery, 2020, 20, 247.	1.3	9
2459	The Gut Microbiota and Inflammation: An Overview. International Journal of Environmental Research and Public Health, 2020, 17, 7618.	2.6	296
2460	Effects of dietary restriction on gut microbiota and CNS autoimmunity. Clinical Immunology, 2022, 235, 108575.	3.2	10
2461	High-Fat Proteins Drive Dynamic Changes in Gut Microbiota, Hepatic Metabolome, and Endotoxemia-TLR-4-NFκB-Mediated Inflammation in Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 11710-11725.	5.2	32
2462	Crosstalk between circadian rhythms and the microbiota. Immunology, 2020, 161, 278-290.	4.4	26
2463	The Core and Distinction of the Gut Microbiota in Chinese Populations across Geography and Ethnicity. Microorganisms, 2020, 8, 1579.	3.6	18
2464	Gut Microbiome in Children from Indigenous and Urban Communities in México: Different Subsistence Models, Different Microbiomes. Microorganisms, 2020, 8, 1592.	3.6	13
2465	Bifidobacterium longum subsp. longum YS108R fermented milk alleviates DSS induced colitis via anti-inflammation, mucosal barrier maintenance and gut microbiota modulation. Journal of Functional Foods, 2020, 73, 104153.	3.4	32
2466	Effects of seasonality and previous logging on faecal helminth-microbiota associations in wild lemurs. Scientific Reports, 2020, 10, 16818.	3.3	7
2467	Diet Quality, Food Groups and Nutrients Associated with the Gut Microbiota in a Nonwestern Population. Nutrients, 2020, 12, 2938.	4.1	24
2468	COVID 19 mortality: Probable role of microbiome to explain disparity. Medical Hypotheses, 2020, 144, 110209.	1.5	24
2469	"Diet in the Etiopathogenesis of IBD: Is There A Culinary Culprit?― Crohn's & Colitis 360, 2020, 2, .	1.1	0
2470	High abundance of genus Prevotella is associated with dysregulation of IFN-I and T cell response in HIV-1-infected patients. Aids, 2020, 34, 1467-1473.	2.2	14
2471	Rationale, design and baseline characteristics of the Microbiome and Insulin Longitudinal Evaluation Study (<scp>MILES</scp>). Diabetes, Obesity and Metabolism, 2020, 22, 1976-1984.	4.4	9
2472	The microbiome: An emerging key player in aging and longevity. Translational Medicine of Aging, 2020, 4, 103-116.	1.3	76
2473	Microbiome response to diet: focus on obesity and related diseases. Reviews in Endocrine and Metabolic Disorders, 2020, 21, 369-380.	5.7	28

Сіт	ATIO	NRF	PORT
		IN INCL	

#	Article	IF	CITATIONS
2474	Crocin-I alleviates the depression-like behaviors probably via modulating "microbiota-gut-brain―axis in mice exposed to chronic restraint stress. Journal of Affective Disorders, 2020, 276, 476-486.	4.1	58
2475	Nutrition and immune system: from the Mediterranean diet to dietary supplementary through the microbiota. Critical Reviews in Food Science and Nutrition, 2021, 61, 3066-3090.	10.3	83
2476	Metagenome analysis of gut microbial in both the caged and non-caged ducks. Journal of Physics: Conference Series, 2020, 1524, 012076.	0.4	0
2477	Longâ€term changes in the gut microbiota after 14â€day bismuth quadruple therapy in penicillinâ€allergic children. Helicobacter, 2020, 25, e12721.	3.5	23
2478	The gut microbiota attenuate neuroinflammation in manganese exposure by inhibiting cerebral NLRP3 inflammasome. Biomedicine and Pharmacotherapy, 2020, 129, 110449.	5.6	33
2479	A novel inulin-type fructan from Asparagus cochinchinensis and its beneficial impact on human intestinal microbiota. Carbohydrate Polymers, 2020, 247, 116761.	10.2	54
2480	Gut microbiome: Current development, challenges, and perspectives. , 2020, , 227-241.		1
2481	Gut Microbiota and Dietary Intake of Normal-Weight and Overweight Filipino Children. Microorganisms, 2020, 8, 1015.	3.6	19
2482	Interspecific comparison of the fecal microbiota structure in three Arctic migratory bird species. Ecology and Evolution, 2020, 10, 5582-5594.	1.9	15
2483	In Vitro Prebiotic Effects of Malto-Oligosaccharides Containing Water-Soluble Dietary Fiber. Molecules, 2020, 25, 5201.	3.8	10
2484	Effects of Antibiotics upon the Gut Microbiome: A Review of the Literature. Biomedicines, 2020, 8, 502.	3.2	70
2485	Macroalgal dietary glycans: potential source for human gut bacteria and enhancing immune system for better health. Critical Reviews in Food Science and Nutrition, 2022, 62, 1674-1695.	10.3	6
2486	The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea. Expert Opinion on Therapeutic Targets, 2020, 24, 1263-1282.	3.4	22
2487	Gut microbiome signature of Viliuisk encephalomyelitis in Yakuts includes an increase in microbes linked to lean body mass and eating behaviour. Orphanet Journal of Rare Diseases, 2020, 15, 327.	2.7	2
2488	Acetate Revisited: A Key Biomolecule at the Nexus of Metabolism, Epigenetics, and Oncogenesis – Part 2: Acetate and ACSS2 in Health and Disease. Frontiers in Physiology, 2020, 11, 580171.	2.8	38
2489	Oral microbial community analysis of the patients in the progression of liver cancer. Microbial Pathogenesis, 2020, 149, 104479.	2.9	28
2490	Distinct Stage Changes in Early-Life Colonization and Acquisition of the Gut Microbiota and Its Correlations With Volatile Fatty Acids in Goat Kids. Frontiers in Microbiology, 2020, 11, 584742.	3.5	19
2491	Reduced rotavirus vaccine efficacy in protein malnourished human-faecal-microbiota-transplanted gnotobiotic pig model is in part attributed to the gut microbiota. Beneficial Microbes, 2020, 11, 733-751.	2.4	9

#	Article	IF	CITATIONS
2492	Microbiotaâ€ i mmune alterations in adolescents following early life adversity: A proof of concept study. Developmental Psychobiology, 2021, 63, 851-863.	1.6	17
2493	The Intestinal Microbiota and Colorectal Cancer. Frontiers in Immunology, 2020, 11, 615056.	4.8	258
2494	Microbiota and Obesity: Where Are We Now?. Biology, 2020, 9, 415.	2.8	45
2495	Integrative and quantitative bioenergetics: Design of a study to assess the impact of the gut microbiome on host energy balance. Contemporary Clinical Trials Communications, 2020, 19, 100646.	1.1	15
2496	The role of the microbiota in human genetic adaptation. Science, 2020, 370, .	12.6	61
2497	The Effect of Xylooligosaccharide, Xylan, and Whole Wheat Bran on the Human Gut Bacteria. Frontiers in Microbiology, 2020, 11, 568457.	3.5	10
2498	Gut Microbiota of Young Children Living in Four Brazilian Cities. Frontiers in Pediatrics, 2020, 8, 573815.	1.9	2
2499	A multi-disciplinary comparison of great ape gut microbiota in a central African forest and European zoo. Scientific Reports, 2020, 10, 19107.	3.3	13
2500	Characteristics and differences of gut microbiota in patients with different Traditional Chinese Medicine Syndromes of Colorectal Cancer and normal population. Journal of Cancer, 2020, 11, 7357-7367.	2.5	17
2501	Dietary Components, Microbial Metabolites and Human Health: Reading between the Lines. Foods, 2020, 9, 1045.	4.3	7
2502	Discovery of Predictors of Mycoplasma hyopneumoniae Vaccine Response Efficiency in Pigs: 16S rRNA Gene Fecal Microbiota Analysis. Microorganisms, 2020, 8, 1151.	3.6	10
2503	Microbiome and pediatric obesity, malnutrition, and nutrition. , 2020, , 157-181.		5
2504	Gut dysbiosis and age-related neurological diseases; an innovative approach for therapeutic interventions. Translational Research, 2020, 226, 39-56.	5.0	29
2505	A period of 10 weeks of increased protein consumption does not alter faecal microbiota or volatile metabolites in healthy older men: a randomised controlled trial. Journal of Nutritional Science, 2020, 9, e25.	1.9	10
2506	The "Virtual Digital Twins―Concept in Precision Nutrition. Advances in Nutrition, 2020, 11, 1405-1413.	6.4	48
2507	Fermented Foods and the Gut Microbiome. Nutrition Today, 2020, 55, 163-167.	1.0	10
2508	Linking the westernised oropharyngeal microbiome to the immune response in Chinese immigrants. Allergy, Asthma and Clinical Immunology, 2020, 16, 67.	2.0	7
2509	Enhanced biodiversity of gut flora and feed efficiency in pond cultured tilapia under reduced frequency feeding strategies. PLoS ONE, 2020, 15, e0236100.	2.5	16

#	Article	IF	CITATIONS
2510	Ulcerative colitis: Gut microbiota, immunopathogenesis and application of natural products in animal models. Life Sciences, 2020, 258, 118129.	4.3	67
2511	Metabolic and functional interplay between gut microbiota and fat-soluble vitamins. Critical Reviews in Food Science and Nutrition, 2021, 61, 3211-3232.	10.3	43
2512	The Bacterial Gut Microbiota of Schoolchildren from High and Low Socioeconomic Status: A Study in an Urban Area of Makassar, Indonesia. Microorganisms, 2020, 8, 961.	3.6	13
2513	Baseline Gut Microbiota Composition Is Associated with Major Infections Early after Hematopoietic Cell Transplantation. Biology of Blood and Marrow Transplantation, 2020, 26, 2001-2010.	2.0	8
2514	The Effects of Urbanization on the Infant Gut Microbiota and Health Outcomes. Frontiers in Pediatrics, 2020, 8, 408.	1.9	10
2515	Dietary Adaptation of Microbiota in Drosophila Requires NF-ήB-Dependent Control of the Translational Regulator 4E-BP. Cell Reports, 2020, 31, 107736.	6.4	17
2516	Long-Term Consumption of 2- <i>O</i> -β- <scp>d</scp> -Glucopyranosyl- <scp>l</scp> -ascorbic Acid from the Fruits of <i>Lycium barbarum</i> Modulates Gut Microbiota in C57BL/6 Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 8863-8874.	5.2	18
2517	Our Evolving Understanding of Kawasaki Disease Pathogenesis: Role of the Gut Microbiota. Frontiers in Immunology, 2020, 11, 1616.	4.8	24
2518	Investigating the potential of fish oil as a nutraceutical in an animal model of early life stress. Nutritional Neuroscience, 2022, 25, 356-378.	3.1	20
2519	The Gut Microbiota Communities of Wild Arboreal and Ground-Feeding Tropical Primates Are Affected Differently by Habitat Disturbance. MSystems, 2020, 5, .	3.8	36
2520	Gut Microbiota during Dietary Restrictions: New Insights in Non-Communicable Diseases. Microorganisms, 2020, 8, 1140.	3.6	35
2521	Essential oils and microbiota: Implications for diet and weight control. Trends in Food Science and Technology, 2020, 104, 60-71.	15.1	14
2523	Effect of sulfate group on sulfated polysaccharides-induced improvement of metabolic syndrome and gut microbiota dysbiosis in high fat diet-fed mice. International Journal of Biological Macromolecules, 2020, 164, 2062-2072.	7.5	23
2524	Feeding Bugs to Bugs: Edible Insects Modify the Human Gut Microbiome in an in vitro Fermentation Model. Frontiers in Microbiology, 2020, 11, 1763.	3.5	15
2525	Modulating the Microbiome and Immune Responses Using Whole Plant Fibre in Synbiotic Combination with Fibre-Digesting Probiotic Attenuates Chronic Colonic Inflammation in Spontaneous Colitic Mice Model of IBD. Nutrients, 2020, 12, 2380.	4.1	19
2526	Associations between Diet, the Gut Microbiome, and Short-Chain Fatty Acid Production among Older Caribbean Latino Adults. Journal of the Academy of Nutrition and Dietetics, 2020, 120, 2047-2060.e6.	0.8	28
2527	Dietary Short-Term Fiber Interventions in Arthritis Patients Increase Systemic SCFA Levels and Regulate Inflammation. Nutrients, 2020, 12, 3207.	4.1	40
2528	The gut microbiome and potential implications for early-onset colorectal cancer. Colorectal Cancer, 2020, 9, .	0.8	9

#	Article	IF	CITATIONS
2529	Fiber and Prebiotic Interventions in Pediatric Inflammatory Bowel Disease: What Role Does the Gut Microbiome Play?. Nutrients, 2020, 12, 3204.	4.1	19
2530	Gut Microbiome in Obesity Management. , 0, , .		2
2531	Canola meal in nursery pig diets: growth performance and gut health. Journal of Animal Science, 2020, 98, .	0.5	12
2532	Colon Carcinogenesis: The Interplay Between Diet and Gut Microbiota. Frontiers in Cellular and Infection Microbiology, 2020, 10, 603086.	3.9	55
2533	The Influence of the Gut Microbiome on Obesity in Adults and the Role of Probiotics, Prebiotics, and Synbiotics for Weight Loss. Preventive Nutrition and Food Science, 2020, 25, 113-123.	1.6	157
2534	Microbial signature in IgE-mediated food allergies. Genome Medicine, 2020, 12, 92.	8.2	60
2535	The Gut Microbiome and Individual-Specific Responses to Diet. MSystems, 2020, 5, .	3.8	58
2536	Prevalent Human Gut Bacteria Hydrolyse and Metabolise Important Food-Derived Mycotoxins and Masked Mycotoxins. Toxins, 2020, 12, 654.	3.4	14
2537	Fecal Microbiota Transplantation for Ulcerative Colitis. Are We Ready for Primetime?. Gastroenterology Clinics of North America, 2020, 49, 739-752.	2.2	4
2538	Thermal processed Crassostrea gigas impact the mouse gut microbiota. Journal of Functional Foods, 2020, 75, 104254.	3.4	7
2539	A High-Fat Diet Increases Gut Microbiota Biodiversity and Energy Expenditure Due to Nutrient Difference. Nutrients, 2020, 12, 3197.	4.1	155
2540	Gut microbiome adaptation to extreme cold winter in wild plateau pika (<i>Ochotona curzoniae</i>) on the Qinghai-Tibet Plateau. FEMS Microbiology Letters, 2020, 367, .	1.8	14
2541	The Crosstalk between Prostate Cancer and Microbiota Inflammation: Nutraceutical Products Are Useful to Balance This Interplay?. Nutrients, 2020, 12, 2648.	4.1	42
2542	Self-Balance of Intestinal Flora in Spouses of Patients With Rheumatoid Arthritis. Frontiers in Medicine, 2020, 7, 538.	2.6	7
2543	Ascorbic Acid Derivative 2- <i>O</i> -Î ² - <scp>d</scp> -Glucopyranosyl- <scp>l</scp> -Ascorbic Acid from the Fruit of <i>Lycium barbarum</i> Modulates Microbiota in the Small Intestine and Colon and Exerts an Immunomodulatory Effect on Cyclophosphamide-Treated BALB/c Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 11128-11143.	5.2	44
2544	The role of probiotics on the roadmap to a healthy microbiota: a symposium report. Gut Microbiome, 2020, 1, .	3.2	2
2545	Multiple omics analysis reveals that high fiber diets promote gluconeogenesis and inhibit glycolysis in muscle. BMC Genomics, 2020, 21, 660.	2.8	10
2546	Dietary impact of a plant-derived microRNA on the gut microbiome. ExRNA, 2020, 2, .	1.0	18

ARTICLE IF CITATIONS Effects of Exogenous Dietary Advanced Glycation End Products on the Cross-Talk Mechanisms Linking 2547 4.1 40 Microbiota to Metabolic Inflammation. Nutrients, 2020, 12, 2497. Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter 2548 12.8 84 host behaviour. Nature Communications, 2020, 11, 4236. Does Fibre-fix provided to people with irritable bowel syndrome who are consuming a low FODMAP diet improve their gut health, gut microbiome, sleep and mental health? A double-blinded, randomised 2549 2.7 2 controlled trial. BMJ Open Gastroenterology, 2020, 7, e000448. The effects of dairy and dairy derivatives on the gut microbiota: a systematic literature review. Gut 9.8 79 Microbes, 2020, 12, 1799533. Targeting the gut microbiota by Asian and Western dietary constituents: a new avenue for diabetes. 2551 2.1 15 Toxicology Research, 2020, 9, 569-577. Dietary Energy Levels Affect Rumen Bacterial Populations that Influence the Intramuscular Fat Fatty 2.3 Acids of Fattening Yaks (Bos grunniens). Animals, 2020, 10, 1474. Obstacles against the Marketing of Curcumin as a Drug. International Journal of Molecular Sciences, 2554 4.1 62 2020, 21, 6619. Relative abundance of the Prevotella genus within the human gut microbiota of elderly volunteers determines the inter-individual responses to dietary supplementation with wheat bran 3.3 arabinoxylan-oligosaccharides. BMC Microbiology, 2020, 20, 283. The public health rationale for increasing dietary fibre: Health benefits with a focus on gut 2556 1.8 14 microbiota. Nutrition Bulletin, 2020, 45, 294-308. Highâ€sugar diet intake, physical activity, and gut microbiota crosstalk: Implications for obesity in rats. 3.4 Food Science and Nutrition, 2020, 8, 5683-5695. Of men in mice: the development and application of a humanized gnotobiotic mouse model for 2558 7.787 microbiome therapeutics. Experimental and Molecular Medicine, 2020, 52, 1383-1396. Obesity Measures and Dietary Parameters as Predictors of Gut Microbiota Phyla in Healthy Individuals. 2559 4.1 Nutrients, 2020, 12, 2695. The Effect of Intestinal Microbiome on the Effectiveness of Antitumor Immunotherapy. Biochemistry 2560 0.4 0 (Moscow) Supplement Series B: Biomedical Chemistry, 2020, 14, 241-251. Relationship between Diet, Microbiota, and Healthy Aging. Biomedicines, 2020, 8, 287. 3.2 Immunometabolism, Micronutrients, and Bariatric Surgery: The Use of Transcriptomics and 2562 3.03 Microbiota-Targeted Therapies. Mediators of Inflammation, 2020, 2020, 1-18. Resolving the Paradox of Colon Cancer Through the Integration of Genetics, Immunology, and the 4.8 43 Microbiota. Frontiers in Immunology, 2020, 11, 600886. High-Fat Diets Led to OTU-Level Shifts in Fecal Samples of Healthy Adult Dogs. Frontiers in 2564 3.59 Microbiology, 2020, 11, 564160. Inflammatory Bowel Disease: The Emergence of New Trends in Lifestyle and Nanomedicine as the 4.1 Modern Tool for Pharmacotherapy. Nanomaterials, 2020, 10, 2460.

#	Article	IF	CITATIONS
2566	The Protective Role of Probiotics against Colorectal Cancer. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-10.	4.0	21
2567	Tendencia epidemiológica de la enfermedad intestinal inflamatoria en pacientes pediátricos en América Latina: Grupo de Trabajo en Enfermedad Intestinal Inflamatoria, Sociedad Latinoamericana de GastroenterologÃa, HepatologÃa y Nutrición Pediátrica (SLACHNP). Revista De GastroenterologÃa De México. 2021. 86. 328-334.	0.2	1
2568	Associations between untargeted plasma metabolomic signatures and gut microbiota composition in the Milieu Intérieur population of healthy adults. British Journal of Nutrition, 2020, 126, 1-11.	2.3	4
2569	Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird. Scientific Reports, 2020, 10, 20783.	3.3	34
2570	Distinct Features of Gut Microbiota in High-Altitude Tibetan and Middle-Altitude Han Hypertensive Patients. Cardiology Research and Practice, 2020, 2020, 1-15.	1.1	6
2571	The Gut Microbiota: A Potential Gateway to Improved Health Outcomes in Breast Cancer Treatment and Survivorship. International Journal of Molecular Sciences, 2020, 21, 9239.	4.1	29
2572	Lignans and Gut Microbiota: An Interplay Revealing Potential Health Implications. Molecules, 2020, 25, 5709.	3.8	62
2574	Gut Microbiome and Its Interaction with Immune System in Spondyloarthritis. Microorganisms, 2020, 8, 1727.	3.6	18
2575	Comparison of the gut microbiota of short-term and long-term medical workers and non-medical controls: a cross-sectional analysis. Clinical Microbiology and Infection, 2021, 27, 1285-1292.	6.0	6
2576	The potential of human milk oligosaccharides to impact the microbiota-gut-brain axis through modulation of the gut microbiota. Journal of Functional Foods, 2020, 74, 104176.	3.4	31
2577	High-Dietary Fiber Intake Alleviates Antenatal Obesity-Induced Postpartum Depression: Roles of Gut Microbiota and Microbial Metabolite Short-chain Fatty Acid Involved. Journal of Agricultural and Food Chemistry, 2020, 68, 13697-13710.	5.2	62
2578	Gut microbiome profiling of a rural and urban South African cohort reveals biomarkers of a population in lifestyle transition. BMC Microbiology, 2020, 20, 330.	3.3	24
2579	Impact of Microbiota: A Paradigm for Evolving Herd Immunity against Viral Diseases. Viruses, 2020, 12, 1150.	3.3	7
2580	ErnÃ ¤ rung bei entzündlichen Darmerkrankungen. Karger Kompass Autoimmun, 2020, 2, 96-103.	0.0	Ο
2581	Nutrition, Microbiota and Role of Gut-Brain Axis in Subjects with Phenylketonuria (PKU): A Review. Nutrients, 2020, 12, 3319.	4.1	20
2582	The gut microbiome and frailty. Translational Research, 2020, 221, 23-43.	5.0	22
2583	Dietary Emulsifier Sodium Stearoyl Lactylate Alters Gut Microbiota in vitro and Inhibits Bacterial Butyrate Producers. Frontiers in Microbiology, 2020, 11, 892.	3.5	23
2584	The Relationship Between Gut Microbiota and Inflammatory Diseases: The Role of Macrophages. Frontiers in Microbiology, 2020, 11, 1065.	3.5	146

#	Article	IF	Citations
2585	Health impact of the Anthropocene: the complex relationship between gut microbiota, epigenetics, and human health, using obesity as an example. Global Health, Epidemiology and Genomics, 2020, 5, e2.	0.8	17
2586	The gut microbiome but not the resistome is associated with urogenital schistosomiasis in preschool-aged children. Communications Biology, 2020, 3, 155.	4.4	33
2587	The in vitro Effect of Fibers With Different Degrees of Polymerization on Human Gut Bacteria. Frontiers in Microbiology, 2020, 11, 819.	3.5	23
2588	The gut microbiota and Bergmann's rule in wild house mice. Molecular Ecology, 2020, 29, 2300-2311.	3.9	28
2589	Recipe for a Healthy Gut: Intake of Unpasteurised Milk Is Associated with Increased Lactobacillus Abundance in the Human Gut Microbiome. Nutrients, 2020, 12, 1468.	4.1	29
2590	The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients?. Nutrients, 2020, 12, 1474.	4.1	997
2591	Control of ecological outcomes through deliberate parameter changes in a model of the gut microbiome. Physical Review E, 2020, 101, 052402.	2.1	0
2592	Meal Regularity Plays a Role in Shaping the Saliva Microbiota. Frontiers in Microbiology, 2020, 11, 757.	3.5	5
2593	Microbiome and Schizophrenia: Current Evidence and Future Challenges. Current Behavioral Neuroscience Reports, 2020, 7, 51-61.	1.3	9
2594	Multi-proxy analyses of a mid-15th century Middle Iron Age Bantu-speaker palaeo-faecal specimen elucidates the configuration of the â€~ancestral' sub-Saharan African intestinal microbiome. Microbiome, 2020, 8, 62.	11.1	14
2595	The athletic gut microbiota. Journal of the International Society of Sports Nutrition, 2020, 17, 24.	3.9	157
2596	Traditional rice beer depletes butyric acid-producing gut bacteria Faecalibacterium and Roseburia along with fecal butyrate levels in the ethnic groups of Northeast India. 3 Biotech, 2020, 10, 283.	2.2	9
2597	Age-related changes in the gut microbiota and the core gut microbiome of healthy Thai humans. 3 Biotech, 2020, 10, 276.	2.2	24
2598	The composition and richness of the gut microbiota differentiate the top Polish endurance athletes from sedentary controls. Gut Microbes, 2020, 11, 1374-1384.	9.8	48
2599	Analysis of the Intestinal Flora in Male Versus Female Swamp Eels (Monopterus albus). Frontiers in Microbiology, 2020, 11, 699.	3.5	5
2600	Dietary Protein, Fiber and Coffee Are Associated with Small Intestine Microbiome Composition and Diversity in Patients with Liver Cirrhosis. Nutrients, 2020, 12, 1395.	4.1	14
2601	Friend or foe? Lactobacillus in the context of autoimmune disease. Advances in Immunology, 2020, 146, 29-56.	2.2	25
2602	Intestinal morphology, immunity and microbiota response to dietary fibers in largemouth bass, Micropterus salmoide. Fish and Shellfish Immunology, 2020, 103, 135-142.	3.6	55

		CITATION RE	PORT	
#	Article		IF	Citations
2603	Bamboo nutrients and microbiome affect gut microbiome of giant panda. Symbiosis, 2020,	80, 293-304.	2.3	12
2604	Dietary protein levels and amino acid supplementation patterns alter the composition and f of colonic microbiota in pigs. Animal Nutrition, 2020, 6, 143-151.	unctions	5.1	25
2605	Indonesian children fecal microbiome from birth until weaning was different from microbior their mothers. Gut Microbes, 2020, 12, 1761240.	nes of	9.8	16
2606	Resistant dextrin improves high-fat-high-fructose diet induced insulin resistance. Nutrition a Metabolism, 2020, 17, 36.	nd	3.0	16
2607	Identification of modifiable pre- and postnatal dietary and environmental exposures associa owner-reported canine atopic dermatitis in Finland using a web-based questionnaire. PLoS (15, e0225675.		2.5	8
2608	The dichotomous role of the gut microbiome in exacerbating and ameliorating neurodegen disorders. Expert Review of Neurotherapeutics, 2020, 20, 673-686.	erative	2.8	26
2609	Parkinson's disease-associated alterations of the gut microbiome predict disease-releva metabolic functions. BMC Biology, 2020, 18, 62.	nt changes in	3.8	122
2610	Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factor International Journal of Environmental Research and Public Health, 2020, 17, 4135.	S.	2.6	67
2611	Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Me Dysbiosis. International Journal of Molecular Sciences, 2020, 21, 4093.	tabolic	4.1	117
2612	Impact of sex and age on the bacterial composition in rumen of Tibetan sheep in Qinghai C Livestock Science, 2020, 238, 104030.	nina.	1.6	12
2613	Sleep fragmentation increases blood pressure and is associated with alterations in the gut microbiome and fecal metabolome in rats. Physiological Genomics, 2020, 52, 280-292.		2.3	61
2614	A prebiotic-enhanced lipid-based nutrient supplement (LNSp) increases Bifidobacterium rela abundance and enhances short-chain fatty acid production in simulated colonic microbiota undernourished infants. FEMS Microbiology Ecology, 2020, 96, .		2.7	10
2615	Fatâ€Shaped Microbiota Affects Lipid Metabolism, Liver Steatosis, and Intestinal Homeosta a Lowâ€Protein Diet. Molecular Nutrition and Food Research, 2020, 64, e1900835.	sis in Mice Fed	3.3	11
2616	The Impact of Diet on Microbiota Evolution and Human Health. Is Diet an Adequate Tool for Microbiota Modulation?. Nutrients, 2020, 12, 1654.		4.1	39
2617	Gut microbiome, diet, and conservation of endangered langurs in Sri Lanka. Biotropica, 202 981-990.	0, 52,	1.6	14
2618	Differences in Compositions of Gut Bacterial Populations and Bacteriophages in 5–11 Yes Preterm Compared to Full Term. Frontiers in Cellular and Infection Microbiology, 2020, 10,	ar-Olds Born 276.	3.9	9
2619	An Insight into the Changing Scenario of Gut Microbiome during Type 2 Diabetes. , 0, , .			0
2620	Comparative analysis of microbial community structure between healthy and Aeromonas veronii-infected Yangtze finless porpoise. Microbial Cell Factories, 2020, 19, 123.		4.0	28

~			~			
$C1^{-}$	ΓΔΤΙ	ON	L L	FD	ORT	1

#	Article	IF	CITATIONS
2621	Members of <i>Prevotella</i> Genus Distinctively Modulate Innate Immune and Barrier Functions in a Human Three-Dimensional Endometrial Epithelial Cell Model. Journal of Infectious Diseases, 2020, 222, 2082-2092.	4.0	21
2622	Different Roles of Environmental Selection, Dispersal, and Drift in the Assembly of Intestinal Microbial Communities of Freshwater Fish With and Without a Stomach. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	10
2623	Does an Apple a Day Also Keep the Microbes Away? The Interplay Between Diet, Microbiota, and Host Defense Peptides at the Intestinal Mucosal Barrier. Frontiers in Immunology, 2020, 11, 1164.	4.8	20
2624	Dominant gut Prevotella copri in gastrectomised non-obese diabetic Goto–Kakizaki rats improves glucose homeostasis through enhanced FXR signalling. Diabetologia, 2020, 63, 1223-1235.	6.3	37
2625	Host Genetic and Environmental Factors Shape the Composition and Function of Gut Microbiota in Populations Living at High Altitude. BioMed Research International, 2020, 2020, 1-10.	1.9	12
2626	Dynamic alterations in early intestinal development, microbiota and metabolome induced by in ovo feeding of L-arginine in a layer chick model. Journal of Animal Science and Biotechnology, 2020, 11, 19.	5.3	30
2627	Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments of Mongolian horses. MicrobiologyOpen, 2020, 9, 1085-1101.	3.0	23
2628	Targeting Gut Microbiota Dysbiosis: Potential Intervention Strategies for Neurological Disorders. Engineering, 2020, 6, 415-423.	6.7	26
2629	Crosstalk between gut microbiota and osteoarthritis: A critical view. Journal of Functional Foods, 2020, 68, 103904.	3.4	16
2630	Microbiota-Propelled T Helper 17 Cells in Inflammatory Diseases and Cancer. Microbiology and Molecular Biology Reviews, 2020, 84, .	6.6	37
2631	Long-term metal exposure changes gut microbiota of residents surrounding a mining and smelting area. Scientific Reports, 2020, 10, 4453.	3.3	52
2632	Dietary SCFAs Immunotherapy: Reshaping the Gut Microbiota in Diabetes. Advances in Experimental Medicine and Biology, 2020, 1307, 499-519.	1.6	12
2633	Race in the Microbiome. Science Technology and Human Values, 2020, 45, 877-902.	3.1	56
2634	Dietary Carbohydrate Constituents Related to Gut Dysbiosis and Health. Microorganisms, 2020, 8, 427.	3.6	33
2635	Probiotic-directed modulation of gut microbiota is basal microbiome dependent. Gut Microbes, 2020, 12, 1736974.	9.8	69
2636	Maternal carriage of Prevotella during pregnancy associates with protection against food allergy in the offspring. Nature Communications, 2020, 11, 1452.	12.8	84
2637	Non-Systematic Review of Diet and Nutritional Risk Factors of Cardiovascular Disease in Obesity. Nutrients, 2020, 12, 814.	4.1	27
2638	US nativity and dietary acculturation impact the gut microbiome in a diverse US population. ISME Journal, 2020, 14, 1639-1650.	9.8	29

#	Article	IF	CITATIONS
2639	Current explorations of nutrition and the gut microbiome: a comprehensive evaluation of the review literature. Nutrition Reviews, 2020, 78, 798-812.	5.8	71
2640	Gut Microbiome Profiles Are Associated With Type 2 Diabetes in Urban Africans. Frontiers in Cellular and Infection Microbiology, 2020, 10, 63.	3.9	95
2641	The gut microbiome in Parkinson's disease: A culprit or a bystander?. Progress in Brain Research, 2020, 252, 357-450.	1.4	70
2642	Role of diet in regulating the gut microbiota and multiple sclerosis. Clinical Immunology, 2022, 235, 108379.	3.2	19
2643	Time-restricted feeding is associated with changes in human gut microbiota related to nutrient intake. Nutrition, 2020, 78, 110797.	2.4	41
2644	The Influence of Nutrients on Inflammatory Bowel Diseases. Journal of Nutrition and Metabolism, 2020, 2020, 1-14.	1.8	25
2645	Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome, 2020, 8, 36.	11.1	213
2646	Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRIâ€mediated signaling. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1966-1978.	5.7	92
2647	The Computational Diet: A Review of Computational Methods Across Diet, Microbiome, and Health. Frontiers in Microbiology, 2020, 11, 393.	3.5	32
2648	Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease. Translational Research, 2020, 226, 1-11.	5.0	34
2649	Interindividual Variation in Dietary Carbohydrate Metabolism by Gut Bacteria Revealed with Droplet Microfluidic Culture. MSystems, 2020, 5, .	3.8	34
2650	Effects of diet, habitat, and phylogeny on the fecal microbiome of wild African savanna (<i>Loxodonta) Tj ETQq1</i>	1 0.78431 1.9	4 rgBT /Ove
2651	Development and Functions of the Infant Gut Microflora: Western <i>vs</i> . Indian Infants. International Journal of Pediatrics (United Kingdom), 2020, 2020, 1-10.	0.8	9
2652	Molecular and Microbial Signatures Predictive of Prebiotic Action of Neoagarotetraose in a Dextran Sulfate Sodium-Induced Murine Colitis Model. Microorganisms, 2020, 8, 995.	3.6	7
2653	Characterizing the postmortem human bone microbiome from surface-decomposed remains. PLoS ONE, 2020, 15, e0218636.	2.5	24
2654	Effects of prebiotic dietary fibers and probiotics on human health: With special focus on recent advancement in their encapsulated formulations. Trends in Food Science and Technology, 2020, 102, 178-192.	15.1	62
2655	Enhancement of the phytonutrient content of a gluten-free soup using a composite of vegetables. International Journal of Food Properties, 2020, 23, 1051-1065.	3.0	4
2656	Association between the body weight of growing pigs and the functional capacity of their gut microbiota. Animal Science Journal, 2020, 91, e13418.	1.4	27

#	Article	IF	CITATIONS
2657	Dysbiosis individualizes the fitness effect of antibiotic resistance in the mammalian gut. Nature Ecology and Evolution, 2020, 4, 1268-1278.	7.8	18
2658	Microbiome and health implications for ethnic minorities after enforced lifestyle changes. Nature Medicine, 2020, 26, 1089-1095.	30.7	48
2659	Highâ€Salt Dietâ€Induced Gastritis in C57BL/6 Mice is Associated with Microbial Dysbiosis and Alleviated by a Buckwheat Diet. Molecular Nutrition and Food Research, 2020, 64, e1900965.	3.3	13
2660	HIV, Sexual Orientation, and Gut Microbiome Interactions. Digestive Diseases and Sciences, 2020, 65, 800-817.	2.3	21
2661	Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity?. Gastroenterology, 2020, 158, 1881-1898.	1.3	123
2662	Gut microbiome of a porcine model of metabolic syndrome and HF-pEF. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H590-H603.	3.2	16
2663	Environmental exposures and child and maternal gut microbiota in rural Malawi. Paediatric and Perinatal Epidemiology, 2020, 34, 161-170.	1.7	11
2664	Gut Microbiota of Wild and Captive Alpine Musk Deer (Moschus chrysogaster). Frontiers in Microbiology, 2019, 10, 3156.	3.5	42
2665	The interplay between dietary factors, gut microbiome and colorectal cancer: a new era of colorectal cancer prevention. Future Oncology, 2020, 16, 293-306.	2.4	11
2666	Emerging Priorities for Microbiome Research. Frontiers in Microbiology, 2020, 11, 136.	3.5	113
2667	Conserved and variable responses of the gut microbiome to resistant starch type 2. Nutrition Research, 2020, 77, 12-28.	2.9	57
2668	Influence of Diet and Nutrition on Prostate Cancer. International Journal of Molecular Sciences, 2020, 21, 1447.	4.1	99
2669	Calcium Oxalate Nephrolithiasis and Gut Microbiota: Not just a Gut-Kidney Axis. A Nutritional Perspective. Nutrients, 2020, 12, 548.	4.1	50
2670	Targeting the gut microbiota with resveratrol: a demonstration of novel evidence for the management of hepatic steatosis. Journal of Nutritional Biochemistry, 2020, 81, 108363.	4.2	74
2671	Gut Microbiota as Important Mediator Between Diet and DNA Methylation and Histone Modifications in the Host. Nutrients, 2020, 12, 597.	4.1	30
2672	The metabolic effect of gut microbiota on drugs. Drug Metabolism Reviews, 2020, 52, 139-156.	3.6	44
2673	Gut-brain communication in demyelinating disorders. Current Opinion in Neurobiology, 2020, 62, 92-101.	4.2	11
2674	Genomic Determinants of Hypertension With a Focus on Metabolomics and the Gut Microbiome. American Journal of Hypertension, 2020, 33, 473-481.	2.0	16

#	Article	IF	CITATIONS
2675	Gut microbiota composition during infancy and subsequent behavioural outcomes. EBioMedicine, 2020, 52, 102640.	6.1	72
2676	Comparative immunophenotyping of Saccharomyces cerevisiae and Candida spp. strains from Crohn's disease patients and their interactions with the gut microbiome. Journal of Translational Autoimmunity, 2020, 3, 100036.	4.0	24
2677	Muscadine grapes (Vitis rotundifolia) and dealcoholized muscadine wine alleviated symptoms of colitis and protected against dysbiosis in mice exposed to dextran sulfate sodium. Journal of Functional Foods, 2020, 65, 103746.	3.4	18
2678	Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. Npj Clean Water, 2020, 3, .	8.0	242
2679	Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 223-237.	17.8	893
2680	The role of a plant-based diet in the pathogenesis, etiology and management of the inflammatory bowel diseases. Expert Review of Gastroenterology and Hepatology, 2020, 14, 137-145.	3.0	22
2681	Variations in the gut microbiota of sympatric François' langurs and rhesus macaques living in limestone forests in southwest Guangxi, China. Global Ecology and Conservation, 2020, 22, e00929.	2.1	14
2682	Ultrasonic/microwave-assisted extraction, simulated digestion, and fermentation in vitro by human intestinal flora of polysaccharides from Porphyra haitanensis. International Journal of Biological Macromolecules, 2020, 152, 748-756.	7.5	65
2683	Enterotype identification and its influence on regulating the duodenum metabolism in chickens. Poultry Science, 2020, 99, 1515-1527.	3.4	22
2684	Strength of species interactions determines biodiversity and stability in microbial communities. Nature Ecology and Evolution, 2020, 4, 376-383.	7.8	287
2685	Gastrointestinal Tolerance and Microbiome Response to Snacks Fortified with Pea Hull Fiber: A Randomized Trial in Older Adults. Current Developments in Nutrition, 2020, 4, nzaa005.	0.3	8
2686	Nitrate from diet might fuel gut microbiota metabolism: Minding the gap between redox signaling and inter-kingdom communication. Free Radical Biology and Medicine, 2020, 149, 37-43.	2.9	28
2687	A Critical Mutualism – Competition Interplay Underlies the Loss of Microbial Diversity in Sedentary Lifestyle. Frontiers in Microbiology, 2019, 10, 3142.	3.5	39
2688	Gut Microbiota Plasticity Influences the Adaptability of Wild and Domestic Animals in Co-inhabited Areas. Frontiers in Microbiology, 2020, 11, 125.	3.5	23
2689	Diet and the Human Gut Microbiome: An International Review. Digestive Diseases and Sciences, 2020, 65, 723-740.	2.3	206
2690	Developing infant gut microflora and complementary nutrition. Journal of the Royal Society of New Zealand, 2020, 50, 384-396.	1.9	4
2691	Effects of high-fiber diets enriched with carbohydrate, protein, or unsaturated fat on circulating short chain fatty acids: results from the OmniHeart randomized trial. American Journal of Clinical Nutrition, 2020, 111, 545-554.	4.7	49
2692	Nutrition in Inflammatory Bowel Disease. Digestion, 2020, 101, 120-135.	2.3	59

#	Article	IF	CITATIONS
2693	Treatment of fresh produce with a <scp><i>Salmonella</i></scp> â€ŧargeted bacteriophage cocktail is compatible with chlorine or peracetic acid and more consistently preserves the microbial community on produce. Journal of Food Safety, 2020, 40, e12763.	2.3	12
2694	Microbiota in foods from Inuit traditional hunting. PLoS ONE, 2020, 15, e0227819.	2.5	12
2695	Pistachio Consumption Alleviates Inflammation and Improves Gut Microbiota Composition in Mice Fed a High-Fat Diet. International Journal of Molecular Sciences, 2020, 21, 365.	4.1	64
2696	Whole Food–Based Approaches to Modulating Gut Microbiota and Associated Diseases. Annual Review of Food Science and Technology, 2020, 11, 119-143.	9.9	58
2697	The Impact of Dietary Components on Regulatory T Cells and Disease. Frontiers in Immunology, 2020, 11, 253.	4.8	38
2698	Minocycline and Its Impact on Microbial Dysbiosis in the Skin and Gastrointestinal Tract of Acne Patients. Annals of Dermatology, 2020, 32, 21.	0.9	35
2699	Microbiome Composition in Pediatric Populations from Birth to Adolescence: Impact of Diet and Prebiotic and Probiotic Interventions. Digestive Diseases and Sciences, 2020, 65, 706-722.	2.3	73
2700	Biodiversity and richness shifts of mucosa-associated gut microbiota with progression of colorectal cancer. Research in Microbiology, 2020, 171, 107-114.	2.1	18
2701	Contribution of diet to gut microbiota and related host cardiometabolic health: diet-gut interaction in human health. Gut Microbes, 2020, 11, 603-609.	9.8	18
2702	Restitution of gut microbiota in Ugandan children administered with probiotics (<i>Lactobacillus) Tj ETQq1 1 0.7 severe acute malnutrition. Gut Microbes, 2020, 11, 855-867.</i>	84314 rgE 9.8	3T /Overlock 30
2703	The mutual interplay of gut microbiota, diet and human disease. FEBS Journal, 2020, 287, 833-855.	4.7	176
2704	Murine Genetic Background Overcomes Gut Microbiota Changes to Explain Metabolic Response to High-Fat Diet. Nutrients, 2020, 12, 287.	4.1	25
2705	Gut microbiota composition after diet and probiotics in overweight breast cancer survivors: a randomized open-label pilot intervention trial. Nutrition, 2020, 74, 110749.	2.4	38
2706			
	Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients, 2020, 12, 381.	4.1	265
2707		4.1 3.5	265
2707 2708	12, 381. Dietary Protein: Mechanisms Influencing Hypertension and Renal Disease. Current Hypertension		
	12, 381.Dietary Protein: Mechanisms Influencing Hypertension and Renal Disease. Current Hypertension Reports, 2020, 22, 13.Variation in gut bacterial composition is associated with Haemonchus contortus parasite infection of	3.5	10

#	Article	IF	CITATIONS
2711	A Diversified Dietary Pattern Is Associated With a Balanced Gut Microbial Composition of Faecalibacterium and Escherichia/Shigella in Patients With Crohn's Disease in Remission. Journal of Crohn's and Colitis, 2020, 14, 1547-1557.	1.3	43
2712	Impact of smoking cessation, coffee and bread consumption on the intestinal microbial composition among Saudis: A cross-sectional study. PLoS ONE, 2020, 15, e0230895.	2.5	19
2713	The what, how and why of archaeological coprolite analysis. Earth-Science Reviews, 2020, 207, 103196.	9.1	46
2714	An overview of addiction to sugar. , 2020, , 195-216.		6
2715	"Circadian misalignment and the gut microbiome. A bidirectional relationship triggering inflammation and metabolic disorders― a literature review. Sleep Medicine, 2020, 72, 93-108.	1.6	19
2716	Intestinal microbiota dysbiosis play a role in pathogenesis of patients with primary immune thrombocytopenia. Thrombosis Research, 2020, 190, 11-19.	1.7	30
2717	Gut, oral and skin microbiome of Indian patrilineal families reveal perceptible association with age. Scientific Reports, 2020, 10, 5685.	3.3	50
2718	Wheat Consumption Aggravates Colitis in Mice via Amylase Trypsin Inhibitor–mediated Dysbiosis. Gastroenterology, 2020, 159, 257-272.e17.	1.3	41
2719	Human behavior, not race or geography, is the strongest predictor of microbial succession in the gut bacteriome of infants. Gut Microbes, 2020, 11, 1143-1171.	9.8	23
2720	Gut enterotypes are stable during <i>Bifidobacterium</i> and <i>Lactobacillus</i> probiotic supplementation. Journal of Food Science, 2020, 85, 1596-1604.	3.1	8
2721	Synergy between Cell Surface Glycosidases and Glycan-Binding Proteins Dictates the Utilization of Specific Beta(1,3)-Glucans by Human Gut <i>Bacteroides</i> . MBio, 2020, 11, .	4.1	58
2722	The Gut Microbiota in Camellia Weevils Are Influenced by Plant Secondary Metabolites and Contribute to Saponin Degradation. MSystems, 2020, 5, .	3.8	44
2723	You Are What You Eat—The Relationship between Diet, Microbiota, and Metabolic Disorders—A Review. Nutrients, 2020, 12, 1096.	4.1	185
2724	Examination of food consumption in United States adults and the prevalence of inflammatory bowel disease using National Health Interview Survey 2015. PLoS ONE, 2020, 15, e0232157.	2.5	7
2725	The gut microbiota confers protection in the CNS against neurodegeneration induced by manganism. Biomedicine and Pharmacotherapy, 2020, 127, 110150.	5.6	23
2726	Gut microbiota profiles of autism spectrum disorder and attention deficit/hyperactivity disorder: A systematic literature review Gut Microbes, 2020, 11, 1172-1187.	9.8	57
2727	Impact of maternal dietary gut microbial metabolites on an offspring's systemic immune response in mouse models. Bioscience of Microbiota, Food and Health, 2020, 39, 33-38.	1.8	7
2728	Microbial Adaptation Due to Gastric Bypass Surgery: The Nutritional Impact. Nutrients, 2020, 12, 1199.	4.1	12

#	Article	IF	CITATIONS
2729	Interactions of probiotics and prebiotics with the gut microbiota. Progress in Molecular Biology and Translational Science, 2020, 171, 265-300.	1.7	40
2730	Development of qPCR platform with probes for quantifying prevalent and biomedically relevant human gut microbial taxa. Molecular and Cellular Probes, 2020, 52, 101570.	2.1	14
2731	Association of Short-Chain Fatty Acids in the Gut Microbiome With Clinical Response to Treatment With Nivolumab or Pembrolizumab in Patients With Solid Cancer Tumors. JAMA Network Open, 2020, 3, e202895.	5.9	192
2732	Insulin resistance and obesity. , 2020, , 1-70.		Ο
2733	Soluble arabinoxylans extracted from soft and hard wheat show a differential prebiotic effect in vitro and in vivo. Journal of Cereal Science, 2020, 93, 102956.	3.7	17
2734	Inflammatory bowel disease: A key role for microbiota?. Meta Gene, 2020, 25, 100713.	0.6	10
2735	Isotopic and genetic methods reveal the role of the gut microbiome in mammalian host essential amino acid metabolism. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192995.	2.6	32
2736	Rapid Reconstitution of the Fecal Microbiome after Extended Diet-Induced Changes Indicates a Stable Gut Microbiome in Healthy Adult Dogs. Applied and Environmental Microbiology, 2020, 86, .	3.1	25
2737	Multi-omic profiling reveals associations between the gut mucosal microbiome, the metabolome, and host DNA methylation associated gene expression in patients with colorectal cancer. BMC Microbiology, 2020, 20, 83.	3.3	36
2738	Effects of hydrolyzed fish protein and autolyzed yeast as substitutes of fishmeal in the gilthead sea bream (Sparus aurata) diet, on fish intestinal microbiome. BMC Veterinary Research, 2020, 16, 118.	1.9	33
2739	Metagenomics analysis reveals features unique to Indian distal gut microbiota. PLoS ONE, 2020, 15, e0231197.	2.5	24
2740	Oxidative Damage in Sporadic Colorectal Cancer: Molecular Mapping of Base Excision Repair Glycosylases in Colorectal Cancer Patients. International Journal of Molecular Sciences, 2020, 21, 2473.	4.1	28
2741	The Microbiota–Gut–Brain Axis Heart Shunt Part I: The French Paradox, Heart Disease and the Microbiota. Microorganisms, 2020, 8, 490.	3.6	17
2742	Differences in the gut microbiota between Cercopithecinae and Colobinae in captivity. Journal of Microbiology, 2020, 58, 367-376.	2.8	9
2743	Polysaccharides: bowel health and gut microbiota. Critical Reviews in Food Science and Nutrition, 2021, 61, 1212-1224.	10.3	91
2744	SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society, 2021, 80, 37-49.	1.0	498
2745	Deoxycholic Acid-Induced Gut Dysbiosis Disrupts Bile Acid Enterohepatic Circulation and Promotes Intestinal Inflammation. Digestive Diseases and Sciences, 2021, 66, 568-576.	2.3	61
2746	Quantifying technical confounders in microbiome studies. Cardiovascular Research, 2021, 117, 863-875.	3.8	40

	CITATION	Report	
# 2747	ARTICLE Human microbiome and homeostasis: insights into the key role of prebiotics, probiotics, and symbiotics. Critical Reviews in Food Science and Nutrition, 2021, 61, 1415-1428.	IF 10.3	Citations
2748	Synergetic responses of intestinal microbiota and epithelium to dietary inulin supplementation in pigs. European Journal of Nutrition, 2021, 60, 715-727.	3.9	10
2749	Metabolomics Mass Spectrometry Data Processing: Applications in Food Analysis. , 2021, , 339-352.		3
2750	Idiopathic nephrotic syndrome in children: role of regulatory T cells and gut microbiota. Pediatric Research, 2021, 89, 1185-1191.	2.3	19
2751	Nutritional Regulation of the Microbiota - Can One Meal Change a Trillion Lives?. , 2021, , 532-541.		0
2752	Diet-related gut microbial metabolites and sensing in hypertension. Journal of Human Hypertension, 2021, 35, 162-169.	2.2	27
2753	The effect of nut consumption (tree nuts and peanuts) on the gut microbiota of humans: a systematic review. British Journal of Nutrition, 2021, 125, 508-520.	2.3	36
2754	Gut microbiota signatures and clinical manifestations in celiac disease children at onset: a pilot study. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 446-454.	2.8	37
2755	Beneficial effects of mung bean seed coat on the prevention of high-fat diet-induced obesity and the modulation of gut microbiota in mice. European Journal of Nutrition, 2021, 60, 2029-2045.	3.9	17
2756	Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: towards preventive strategies against enteric infections. FEMS Microbiology Reviews, 2021, 45, .	8.6	27
2757	GPR43 regulates marginal zone B ell responses to foreign and endogenous antigens. Immunology and Cell Biology, 2021, 99, 234-243.	2.3	10
2758	Flavonoids as antiobesity agents: A review. Medicinal Research Reviews, 2021, 41, 556-585.	10.5	81
2759	The effect of different dietary structure on gastrointestinal dysfunction in children with cerebral palsy and epilepsy based on gut microbiota. Brain and Development, 2021, 43, 192-199.	1.1	14
2760	Effects of in vitro metabolism of a broccoli leachate, glucosinolates and S-methylcysteine sulphoxide on the human faecal microbiome. European Journal of Nutrition, 2021, 60, 2141-2154.	3.9	14
2761	Dietary Fructose Alters the Composition, Localization, and Metabolism of Gut Microbiota in Association With Worsening Colitis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 525-550.	4.5	58
2762	Chronic Liver Diseases and the Microbiome—Translating Our Knowledge of Gut Microbiota to Management of Chronic Liver Disease. Gastroenterology, 2021, 160, 556-572.	1.3	49
2763	Association between glycemic index and Helicobacter pylori infection risk among adults: A case-control study. Nutrition, 2021, 83, 111069.	2.4	3
2764	Gut microbiome changes induced by a diet rich in fruits and vegetables. International Journal of Food Sciences and Nutrition, 2021, 72, 665-669.	2.8	34

#	Article	IF	CITATIONS
2765	Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 2021, 140, 109858.	6.2	169
2766	Structure of a laminarin-type β-(1→3)-glucan from brown algae Sargassum henslowianum and its potential on regulating gut microbiota. Carbohydrate Polymers, 2021, 255, 117389.	10.2	34
2767	Regulation effects of indigestible dietary polysaccharides on intestinal microflora: An overview. Journal of Food Biochemistry, 2021, 45, e13564.	2.9	26
2768	Communal living: glycan utilization by the human gut microbiota. Environmental Microbiology, 2021, 23, 15-35.	3.8	42
2769	The impact of the microbiota-gut-brain axis on Alzheimer's disease pathophysiology. Pharmacological Research, 2021, 164, 105314.	7.1	144
2770	Behaviour of citrus pectin and modified citrus pectin in an azoxymethane/dextran sodium sulfate (AOM/DSS)-induced rat colorectal carcinogenesis model. International Journal of Biological Macromolecules, 2021, 167, 1349-1360.	7.5	12
2771	Interâ€individual Variability in Insulin Response after Grape Pomace Supplementation in Subjects at High Cardiometabolic Risk: Role of Microbiota and miRNA. Molecular Nutrition and Food Research, 2021, 65, 2000113.	3.3	16
2772	Dietary fibre in gastrointestinal health and disease. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 101-116.	17.8	367
2773	Gut Microbial Dysbiosis in the Pathogenesis of Gastrointestinal Dysmotility and Metabolic Disorders. Journal of Neurogastroenterology and Motility, 2021, 27, 19-34.	2.4	111
2774	Possible use of fermented foods in rehabilitation of anorexia nervosa: the gut microbiota as a modulator. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 107, 110201.	4.8	18
2775	Psychological comorbidity in gastrointestinal diseases: Update on the brain-gut-microbiome axis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 107, 110209.	4.8	40
2776	Review article: Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends in Food Science and Technology, 2021, 108, 187-196.	15.1	74
2777	The gut-brain axis and beyond: Microbiome control of spinal cord injury pain in humans and rodents. Neurobiology of Pain (Cambridge, Mass), 2021, 9, 100059.	2.5	16
2778	Altered Gut Microbiome under Antiretroviral Therapy: Impact of Efavirenz and Zidovudine. ACS Infectious Diseases, 2021, 7, 1104-1115.	3.8	19
2779	Modulating the Gut Microbiota of Humans by Dietary Intervention with Plant Glycans. Applied and Environmental Microbiology, 2021, 87, .	3.1	13
2780	Measuring attack on self: The need for fieldâ€friendly methods development and research on autoimmunity in human biology. American Journal of Human Biology, 2021, 33, .	1.6	6
2781	Chemical Oxygen Demand Can Be Converted to Gross Energy for Food Items Using a Linear Regression Model. Journal of Nutrition, 2021, 151, 445-453.	2.9	7
2782	Microbiome of the Aerodigestive Tract in Health and Esophageal Disease. Digestive Diseases and Sciences, 2021, 66, 12-18.	2.3	10

#	Article	IF	CITATIONS
2783	The gut microbiota in anxiety and depression – A systematic review. Clinical Psychology Review, 2021, 83, 101943.	11.4	375
2784	Alterations of the Treatment-Naive Gut Microbiome in Newly Diagnosed Hepatitis C Virus Infection. ACS Infectious Diseases, 2021, 7, 1059-1068.	3.8	17
2785	Associations of human milk oligosaccharides and bioactive proteins with infant growth and development among Malawian mother-infant dyads. American Journal of Clinical Nutrition, 2021, 113, 209-220.	4.7	32
2786	Gut microbiota associations with diet in irritable bowel syndrome and the effect of low FODMAP diet and probiotics. Clinical Nutrition, 2021, 40, 1861-1870.	5.0	44
2787	Effects of Urbanization and Landscape on Gut Microbiomes in White-Crowned Sparrows. Microbial Ecology, 2021, 81, 253-266.	2.8	24
2788	Food as medicine: targeting the uraemic phenotype in chronic kidney disease. Nature Reviews Nephrology, 2021, 17, 153-171.	9.6	126
2789	Diet in Treatment of Inflammatory Bowel Diseases. Clinical Gastroenterology and Hepatology, 2021, 19, 425-435.e3.	4.4	63
2790	Relationship Between Microbiome and Colorectal Cancer. , 2021, , 568-578.		1
2791	Darwinian Medicine: We Evolved to Require Continuing Contact with the Microbiota of the Natural Environment. Evolution Turns the Inevitable into a Necessity. Advances in Environmental Microbiology, 2021, , 327-364.	0.3	3
2792	Gut Microbiome and Diet. , 2021, , 12-12.		Ο
2793	The infant gut microbiota at 12Â‫months of age is associated with human milk exposure but not with maternal pre-pregnancy body mass index or infant BMI-for-age z-scores. Current Research in Physiology, 2021, 4, 94-102.	1.7	10
2794	Bariatric Procedures: Anatomical and Physiological Changes. , 2021, , 41-67.		0
2795	Effect of different types of diet patterns on the gut microbiota composition. , 2021, , 29-50.		1
2796	Signatures of landscape and captivity in the gut microbiota of Southern Hairy-nosed Wombats (Lasiorhinus latifrons). Animal Microbiome, 2021, 3, 4.	3.8	9
2797	The gut microbiota–brain axis and role of probiotics. , 2021, , 175-191.		1
2798	Seasonal dynamics of gut microbiota in a cohort of wild Tibetan macaques (Macaca thibetana) in western China. Global Ecology and Conservation, 2021, 25, e01409.	2.1	15
2799	Gut Microbiota and Short-Chain Fatty Acid Profile between Normal and Moderate Malnutrition Children in Yogyakarta, Indonesia. Microorganisms, 2021, 9, 127.	3.6	17
2800	Hologenomics: The Interaction Between Host, Microbiome and Diet. , 2021, , 212-228.		1

		CITATION REPO	DRT	
# 2801	ARTICLE Advancing and refining archaeological dental calculus research using multiomic frameworks. Science and Technology of Archaeological Research, 2021, 7, 13-30.	 2	F 2.4	CITATIONS
2802	Rectal microbiota diversity in Kenyan MSM is inversely associated with frequency of receptive ar sex, independent of HIV status. Aids, 2021, 35, 1091-1101.	al 2	2.2	5
2803	Gut Microbiota Dysbiosis and Chronic Intestinal Inflammation. , 2021, , 423-423.			0
2804	Soil microbial influences on "One Healthâ€: , 2021, , 681-700.			0
2805	Wheat cell walls and constituent polysaccharides induce similar microbiota profiles upon <i>in vitro</i> fermentation despite different short chain fatty acid end-product levels. Food and Funct 2021, 12, 1135-1146.	ion, 4	1.6	10
2806	Identification of the core rumen bacterial taxa and their population dynamics during the fattenir period in Japanese Black cattle. Animal Science Journal, 2021, 92, e13601.	g 1	.4	12
2807	Role of the Microbiome in Pancreatic Cancer. , 2021, , 267-285.			0
2808	Modelling the effect of birth and feeding modes on the development of human gut microbiota. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20201810.	2	2.6	9
2809	<i>In vitro</i> fecal fermentation profiles and microbiota responses of pulse cell wall polysaccharides: enterotype effect. Food and Function, 2021, 12, 8376-8385.	4	4.6	7
2810	Standardized hot water extract from the leaves of <i>Hydrangea serrata</i> (Thunb.) Ser. allevia obesity <i>via</i> the AMPK pathway and modulation of the gut microbiota composition in high diet-induced obese mice. Food and Function, 2021, 12, 2672-2685.	tes fat ₄	1.6	12
2811	Common nutrition and health issues of food in the Balkans. , 2021, , 279-297.			0
2812	Microbial Diversity and Classification. , 2021, , .			0
2813	The microbiota-gut-brain axis and bipolar disorder. , 2021, , 275-284.			0
2814	Gut microbiota of animals living in polluted environments are a potential resource of anticancer molecules. Journal of Applied Microbiology, 2021, 131, 1039-1055.	ŝ	3.1	2
2815	THE EFFECT OF MICROBIOTA ON DISEASES. Ankara Universitesi Eczacilik Fakultesi Dergisi, 0, , 9	6-108. ().1	1
2816	Polysaccharides from fermented <i>Momordica charantia</i> L. with <i>Lactobacillus plantarum</i> NCU116 ameliorate metabolic disorders and gut microbiota change in obese rats. and Function, 2021, 12, 2617-2630.	Food 4	1.6	37
2817	Differential response of digesta- and mucosa-associated intestinal microbiota to dietary insect n during the seawater phase of Atlantic salmon. Animal Microbiome, 2021, 3, 8.	ieal s	3.8	54
2818	Targeting the gut microbiome: A brief report on the awareness, practice, and readiness to engag clinical interventions in Qatar. Qatar Medical Journal, 2021, 2020, 47.	e in d).5	5

#	Article	IF	CITATIONS
2819	Changes in intestinal microbiota and correlation with TLRs in ulcerative colitis in the coastal area of northern China. Microbial Pathogenesis, 2021, 150, 104707.	2.9	29
2820	Early Life Microbiota—Impact of Delivery Mode and Infant Feeding. , 2022, , 25-38.		1
2821	High fat diet, gut microbiome and gastrointestinal cancer. Theranostics, 2021, 11, 5889-5910.	10.0	60
2822	Research Progress on the Relationship between Intestinal Flora Disorders and Functional Dyspepsia. Advances in Clinical Medicine, 2021, 11, 3225-3231.	0.0	0
2823	Gastrointestinal involvement of autism spectrum disorder: focus on gut microbiota. Expert Review of Gastroenterology and Hepatology, 2021, 15, 599-622.	3.0	41
2824	The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes, 2021, 13, 1-24.	9.8	259
2825	Iron Reshapes the Gut Microbiome and Host Metabolism. Journal of Lipid and Atherosclerosis, 2021, 10, 160.	3.5	14
2826	Gut microbiota as the key controllers of "healthy―aging of elderly people. Immunity and Ageing, 2021, 18, 2.	4.2	161
2827	Ethnic variability associating gut and oral microbiome with obesity in children. Gut Microbes, 2021, 13, 1-15.	9.8	19
2828	Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Advances in Nutrition, 2021, 12, 2190-2215.	6.4	57
2829	Methodological Approaches Frame Insights into Endophyte Richness and Community Composition. Microbial Ecology, 2021, 82, 21-34.	2.8	13
2830	From taxonomy to metabolic output: what factors define gut microbiome health?. Gut Microbes, 2021, 13, 1-20.	9.8	19
2831	Early Life Events With Microbiota Mediated Effects on Brain Functions. , 2021, , 39-39.		0
2832	Probiotics, Microbiome and the Concept of Cross-Feeding. , 2022, , 199-220.		2
2833	Assessment of Possible Link of Intestinal Microbiota and Type 2 Diabetes Mellitus. American Journal of Molecular Biology, 2021, 11, 63-72.	0.3	0
2834	Vitamin D and The Gut Microbiota: a Narrative Literature Review. Clinical Nutrition Research, 2021, 10, 181.	1.2	28
2835	Urban Greenspace, Transportation, and Health. , 2021, , 327-334.		1
2836	Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome, 2021, 9, 26.	11.1	105

#	Article	IF	CITATIONS
2837	The upper respiratory tract microbiome of indigenous Orang Asli in north-eastern Peninsular Malaysia. Npj Biofilms and Microbiomes, 2021, 7, 1.	6.4	49
2838	Contribution of microbiota in obesity and obesity-related chronic diseases. , 2021, , 207-219.		1
2839	The Impact of Migration on the Gut Metagenome of South Asian Canadians. Gut Microbes, 2021, 13, 1-29.	9.8	14
2840	Gut microbiota: Implications on human health and diseases. , 2021, , 1-27.		1
2841	The Gut Microbiome in Pediatrics. , 2021, , 32-39.e3.		1
2842	Genetic Variation in Holobionts. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 275-315.	0.6	0
2843	Beyond samples: A metric revealing more connections of gut microbiota between individuals. Computational and Structural Biotechnology Journal, 2021, 19, 3930-3937.	4.1	3
2844	The effects of fermented rye products on gut microbiota and their association with metabolic factors in Chinese adults – an explorative study. Food and Function, 2021, 12, 9141-9150.	4.6	10
2845	Myeloid cells, tissue homeostasis, and anatomical barriers as innate immune effectors in arterial hypertension. Journal of Molecular Medicine, 2021, 99, 315-326.	3.9	0
2847	Microbiome changes in aging. , 2021, , 367-389.		1
2848	A cross-sectional analysis from the Mykinso Cohort Study: establishing reference ranges for Japanese gut microbial indices. Bioscience of Microbiota, Food and Health, 2021, 40, 123-134.	1.8	14
2849	Revisiting the Hygiene Hypothesis in the Context of Autoimmunity. Frontiers in Immunology, 2020, 11, 615192.	4.8	26
2850	Dietary Organic Acids Modulate Gut Microbiota and Improve Growth Performance of Nursery Pigs. Microorganisms, 2021, 9, 110.	3.6	23
2851	Gut Microbiome Signatures in Health and Diseases. , 2022, , 344-353.		0
2853	Carbohydrates great and small, from dietary fiber to sialic acids: How glycans influence the gut microbiome and affect human health. Gut Microbes, 2021, 13, 1-18.	9.8	41
2854	Lifestyle modifications result in alterations in the gut microbiota in obese children. BMC Microbiology, 2021, 21, 10.	3.3	28
2856	Characterization of the gut DNA and RNA Viromes in a Cohort of Chinese Residents and Visiting Pakistanis. Virus Evolution, 2021, 7, veab022.	4.9	21
2857	Biogeography of the Relationship between the Child Gut Microbiome and Innate Immune System. MBio, 2021, 12, .	4.1	8

#	Article	IF	CITATIONS
2860	Association of Maternal Microbiota and Diet in Cord Blood Cytokine and Immunoglobulin Profiles. International Journal of Molecular Sciences, 2021, 22, 1778.	4.1	15
2861	Components of a Neanderthal gut microbiome recovered from fecal sediments from El Salt. Communications Biology, 2021, 4, 169.	4.4	28
2862	Can we modulate the breastfed infant gut microbiota through maternal diet?. FEMS Microbiology Reviews, 2021, 45, .	8.6	18
2863	Ramadan Fasting Leads to Shifts in Human Gut Microbiota Structured by Dietary Composition. Frontiers in Microbiology, 2021, 12, 642999.	3.5	32
2864	Role of Gut Microbiota, Probiotics and Prebiotics in the Cardiovascular Diseases. Molecules, 2021, 26, 1172.	3.8	105
2865	Gut Microbiota Signatures in Gestational Anemia. Frontiers in Cellular and Infection Microbiology, 2021, 11, 549678.	3.9	6
2867	Natural Bioactive Compounds Useful in Clinical Management of Metabolic Syndrome. Nutrients, 2021, 13, 630.	4.1	49
2868	Diet, adiposity, and the gut microbiota from infancy to adolescence: A systematic review. Obesity Reviews, 2021, 22, e13175.	6.5	14
2869	Evolution of the Gut Microbiota and Its Fermentation Characteristics of Ningxiang Pigs at the Young Stage. Animals, 2021, 11, 638.	2.3	24
2870	Conducting research on diet–microbiome interactions: A review of current challenges, essential methodological principles, and recommendations for best practice in study design. Journal of Human Nutrition and Dietetics, 2021, 34, 631-644.	2.5	23
2871	Diet- and sex-related changes of gut microbiota composition and functional profiles after 4Âmonths of weight loss intervention. European Journal of Nutrition, 2021, 60, 3279-3301.	3.9	9
2872	The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nature Medicine, 2021, 27, 333-343.	30.7	179
2873	Deficiency of Dietary Fiber Modulates Gut Microbiota Composition, Neutrophil Recruitment and Worsens Experimental Colitis. Frontiers in Immunology, 2021, 12, 619366.	4.8	16
2874	Progress in understanding of mechanism of dietary therapy for ulcerative colitis with regard to intestinal microbiota. World Chinese Journal of Digestology, 2021, 29, 146-151.	0.1	0
2875	Impact of Altered Gut Microbiota and Its Metabolites in Cystic Fibrosis. Metabolites, 2021, 11, 123.	2.9	33
2876	Effects of chitooligosaccharides on the rebalance of gut microorganisms and their metabolites in patients with nonalcoholic fatty liver disease. Journal of Functional Foods, 2021, 77, 104333.	3.4	12
2877	Effect of low-iron micronutrient powder (MNP) on the composition of gut microbiota of Bangladeshi children in a high-iron groundwater setting: a randomized controlled trial. European Journal of Nutrition, 2021, 60, 3423-3436.	3.9	11
2878	Viral Infections, the Microbiome, and Probiotics. Frontiers in Cellular and Infection Microbiology, 2020, 10, 596166.	3.9	70

#	Article	IF	CITATIONS
2879	Approaches to Investigate Selective Dietary Polysaccharide Utilization by Human Gut Microbiota at a Functional Level. Frontiers in Microbiology, 2021, 12, 632684.	3.5	12
2880	Gut microbiota development during infancy: Impact of introducing allergenic foods. Journal of Allergy and Clinical Immunology, 2021, 147, 613-621.e9.	2.9	43
2881	The Multifaceted Roles of Diet, Microbes, and Metabolites in Cancer. Cancers, 2021, 13, 767.	3.7	4
2882	Fiber-poor Western diets fuel inflammation. Nature Immunology, 2021, 22, 266-268.	14.5	4
2883	Lipocalin 13 enhances insulin secretion but is dispensable for systemic metabolic control. Life Science Alliance, 2021, 4, e202000898.	2.8	5
2884	Microbiota intestinal nos primeiros mil dias de vida e sua relação com a disbiose. Research, Society and Development, 2021, 10, e35910212687.	0.1	2
2885	Gut Microbiota-Derived Short-Chain Fatty Acids Facilitate Microbiota:Host Cross talk and Modulate Obesity and Hypertension. Current Hypertension Reports, 2021, 23, 8.	3.5	52
2886	Trans-ethnic gut microbial signatures of prediabetic subjects from India and Denmark. Genome Medicine, 2021, 13, 36.	8.2	31
2887	Microbiome, Immunosenescence, and Chronic Kidney Disease. Frontiers in Medicine, 2021, 8, 661203.	2.6	17
2888	ProgPerm: Progressive permutation for a dynamic representation of the robustness of microbiome discoveries. BMC Bioinformatics, 2021, 22, 126.	2.6	2
2889	Ancient grains as novel dietary carbohydrate sources in canine diets. Journal of Animal Science, 2021, 99, .	0.5	5
2890	Effects of domestication on the gut microbiota parallel those of human industrialization. ELife, 2021, 10, .	6.0	42
2891	Strategies to Combat Antimicrobial Resistance from Farm to Table. Food Reviews International, 2023, 39, 27-40.	8.4	10
2892	Modelling spatial patterns in hostâ€associated microbial communities. Environmental Microbiology, 2021, 23, 2374-2388.	3.8	12
2893	Neonatal Milk Fat Globule Membrane Supplementation During Breastfeeding Ameliorates the Deleterious Effects of Maternal High-Fat Diet on Metabolism and Modulates Gut Microbiota in Adult Mice Offspring in a Sex-Specific Way. Frontiers in Cellular and Infection Microbiology, 2021, 11, 621957.	3.9	8
2894	Environnement microbiologique, confinement et risque allergique. Revue Francaise D'allergologie, 2021, 61, 126-132.	0.2	1
2895	Associations of Habitual Dietary Intake With Fecal Short-Chain Fatty Acids and Bowel Functions in Irritable Bowel Syndrome. Journal of Clinical Gastroenterology, 2022, 56, 234-242.	2.2	5
2896	Limosilactobacillus fermentum CECT5716: Mechanisms and Therapeutic Insights. Nutrients, 2021, 13, 1016.	4.1	10

#	Article	IF	CITATIONS
2897	Forensic Microbiome Database: A Tool for Forensic Geolocation Meta-Analysis Using Publicly Available 16S rRNA Microbiome Sequencing. Frontiers in Microbiology, 2021, 12, 644861.	3.5	16
2898	Diet and the Microbiota–Gut–Brain Axis: Sowing the Seeds of Good Mental Health. Advances in Nutrition, 2021, 12, 1239-1285.	6.4	125
2899	A diet-specific microbiota drives Salmonella Typhimurium to adapt its in vivo response to plant-derived substrates. Animal Microbiome, 2021, 3, 24.	3.8	7
2900	The microbiome in obstructive sleep apnea. Sleep, 2021, 44, .	1.1	19
2901	Multi-omics approaches for revealing the complexity of cardiovascular disease. Briefings in Bioinformatics, 2021, 22, .	6.5	40
2902	Restraint Stress in Hypertensive Rats Activates the Intestinal Macrophages and Reduces Intestinal Barrier Accompanied by Intestinal Flora Dysbiosis. Journal of Inflammation Research, 2021, Volume 14, 1085-1110.	3.5	11
2903	Adaptation of the Gut Microbiota of Amur Tigers to a Special Diet. Current Microbiology, 2021, 78, 1628-1635.	2.2	3
2904	Impacts of Maternal Diet and Alcohol Consumption during Pregnancy on Maternal and Infant Gut Microbiota. Biomolecules, 2021, 11, 369.	4.0	15
2905	Maintaining Digestive Health in Diabetes: The Role of the Gut Microbiome and the Challenge of Functional Foods. Microorganisms, 2021, 9, 516.	3.6	15
2908	Dietary supplemental xylooligosaccharide modulates nutrient digestibility, intestinal morphology, and gut microbiota in laying hens. Animal Nutrition, 2021, 7, 152-162.	5.1	37
2909	Cecal Microbiota Modulates Fat Deposition in Muscovy Ducks. Frontiers in Veterinary Science, 2021, 8, 609348.	2.2	18
2910	Fecal microbiota signatures of insulin resistance, inflammation, and metabolic syndrome in youth with obesity: a pilot study. Acta Diabetologica, 2021, 58, 1009-1022.	2.5	32
2911	Microbiome analysis reveals gut microbiota alteration of early-weaned Yimeng black goats with the effect of milk replacer and age. Microbial Cell Factories, 2021, 20, 78.	4.0	29
2912	Gut Microbiome of a Multiethnic Community Possessed No Predominant Microbiota. Microorganisms, 2021, 9, 702.	3.6	3
2913	The Role of Immune Response and Microbiota on Campylobacteriosis. , 0, , .		1
2914	Host genetics exerts lifelong effects upon hindgut microbiota and its association with bovine growth and immunity. ISME Journal, 2021, 15, 2306-2321.	9.8	39
2915	Wastewater treatment works change the intestinal microbiomes of insectivorous bats. PLoS ONE, 2021, 16, e0247475.	2.5	6
2916	Manipulation of intestinal microbiome as potential treatment for insulin resistance and type 2 diabetes. European Journal of Nutrition, 2021, 60, 2361-2379.	3.9	25

#	Article	IF	CITATIONS
2917	Effect of fecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis. Microbiome, 2021, 9, 59.	11.1	97
2919	Role of Short Chain Fatty Acids and Apolipoproteins in the Regulation of Eosinophilia-Associated Diseases. International Journal of Molecular Sciences, 2021, 22, 4377.	4.1	10
2920	Non-oral Prevotella stepping into the spotlight. Anaerobe, 2021, 68, 102321.	2.1	14
2921	The Association Between Intestinal Bacteria and Allergic Diseases—Cause or Consequence?. Frontiers in Cellular and Infection Microbiology, 2021, 11, 650893.	3.9	27
2922	Effect of Probiotic Consumption on Immune Response in Athletes: A Meta-analysis. International Journal of Sports Medicine, 2021, 42, 769-781.	1.7	5
2923	Gut Microbiota and Environment in Coronary Artery Disease. International Journal of Environmental Research and Public Health, 2021, 18, 4242.	2.6	15
2924	The role of gut dysbiosis in Parkinson's disease: mechanistic insights and therapeutic options. Brain, 2021, 144, 2571-2593.	7.6	119
2925	The Gut Microbiome in Hypertension. Circulation Research, 2021, 128, 934-950.	4.5	86
2926	Gut Microbiota Mediates the Preventive Effects of Dietary Capsaicin Against Depression-Like Behavior Induced by Lipopolysaccharide in Mice. Frontiers in Cellular and Infection Microbiology, 2021, 11, 627608.	3.9	27
2927	Gut microbiota in Immunoglobulin A Nephropathy: a Malaysian Perspective. BMC Nephrology, 2021, 22, 145.	1.8	14
2928	Dietary influences on the Dahl SS rat gut microbiota and its effects on saltâ€sensitive hypertension and renal damage. Acta Physiologica, 2021, 232, e13662.	3.8	24
2930	Regional Diets Targeting Gut Microbial Dynamics to Support Prolonged Healthspan. Frontiers in Microbiology, 2021, 12, 659465.	3.5	4
2931	Longitudinal Profiling of the Macaque Vaginal Microbiome Reveals Similarities to Diverse Human Vaginal Communities. MSystems, 2021, 6, .	3.8	15
2932	Effect of xylanase and xylo-oligosaccharide supplementation on growth performance and faecal bacterial community composition in growing pigs. Animal Feed Science and Technology, 2021, 274, 114822.	2.2	9
2933	Dietary conjugated linoleic acid links reduced intestinal inflammation to amelioration of CNS autoimmunity. Brain, 2021, 144, 1152-1166.	7.6	28
2934	Western-style diet impedes colonization and clearance of Citrobacter rodentium. PLoS Pathogens, 2021, 17, e1009497.	4.7	25
2935	The link among microbiota, epigenetics, and disease development. Environmental Science and Pollution Research, 2021, 28, 28926-28964.	5.3	19
2936	Experience counts in the malaria response. Nature Immunology, 2021, 22, 537-539.	14.5	1

#	Article	IF	CITATIONS
2937	Bovine Milk Oligosaccharides and Human Milk Oligosaccharides Modulate the Gut Microbiota Composition and Volatile Fatty Acid Concentrations in a Preclinical Neonatal Model. Microorganisms, 2021, 9, 884.	3.6	13
2938	Gut Microbiota and Bipolar Disorder: An Overview on a Novel Biomarker for Diagnosis and Treatment. International Journal of Molecular Sciences, 2021, 22, 3723.	4.1	31
2939	Non-additive microbial community responses to environmental complexity. Nature Communications, 2021, 12, 2365.	12.8	34
2940	Trans Fatty Acid Intake Induces Intestinal Inflammation and Impaired Glucose Tolerance. Frontiers in Immunology, 2021, 12, 669672.	4.8	22
2941	Butyrate: A Link between Early Life Nutrition and Gut Microbiome in the Development of Food Allergy. Life, 2021, 11, 384.	2.4	16
2942	Effects of Whole-Grain and Sugar Content in Infant Cereals on Gut Microbiota at Weaning: A Randomized Trial. Nutrients, 2021, 13, 1496.	4.1	10
2943	Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients, 2021, 13, 1389.	4.1	46
2944	A Healthy Gut for a Healthy Brain: Preclinical, Clinical and Regulatory Aspects. Current Neuropharmacology, 2021, 19, 610-628.	2.9	15
2945	Comparison of Argentinean microbiota with other geographical populations reveals different taxonomic and functional signatures associated with obesity. Scientific Reports, 2021, 11, 7762.	3.3	8
2946	A Comparative Pilot Study of Bacterial and Fungal Dysbiosis in Neurodevelopmental Disorders and Gastrointestinal Disorders: Commonalities, Specificities and Correlations with Lifestyle. Microorganisms, 2021, 9, 741.	3.6	4
2947	Gut-brain axis and immunoneuroendocrine modulation in neurological and psychiatric disorders: A systematic review. Research, Society and Development, 2021, 10, e28110414185.	0.1	1
2948	The role of probiotics and postbiotics in modulating the gut microbiome-immune system axis in the pediatric age. Minerva Pediatrics, 2021, 73, 115-127.	0.4	3
2949	Influence of Dietary Components and Traditional Chinese Medicine on Hypertension: A Potential Role for Gut Microbiota. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-10.	1.2	5
2950	Microbiota and Metabolites as Factors Influencing Blood Pressure Regulation. , 2021, 11, 1731-1757.		3
2951	Role of Gut Microbiota in Human Health and Diseases. Current Nutrition and Food Science, 2021, 17, 374-383.	0.6	3
2952	Crosstalk between gut microbiome and immunology in the management of ischemic brain injury. Journal of Neuroimmunology, 2021, 353, 577498.	2.3	17
2953	High-Fiber, Whole-Food Dietary Intervention Alters the Human Gut Microbiome but Not Fecal Short-Chain Fatty Acids. MSystems, 2021, 6, .	3.8	69
2954	Gut Microbiome of Indonesian Adults Associated with Obesity and Type 2 Diabetes: A Cross-Sectional Study in an Asian City, Yogyakarta. Microorganisms, 2021, 9, 897.	3.6	19

#	Article	IF	CITATIONS
2955	Microbiota's role in health and diseases. Environmental Science and Pollution Research, 2021, 28, 36967-36983.	5.3	43
2956	Experimental validation of small mammal gut microbiota sampling from faeces and from the caecum after death. Heredity, 2021, 127, 141-150.	2.6	9
2957	Modifying gut integrity and microbiome in children with severe acute malnutrition using legume-based feeds (MIMBLE): A pilot trial. Cell Reports Medicine, 2021, 2, 100280.	6.5	14
2958	Comparison of the composition and function of the gut microbiome in herdsmen from two pasture regions, Hongyuan and Xilingol. Food Science and Nutrition, 2021, 9, 3258-3268.	3.4	3
2959	Centering Microbes in the Emerging Role of Integrative Biology in Understanding Environmental Change. Integrative and Comparative Biology, 2022, 61, 2145-2153.	2.0	5
2960	Effects of short chain fatty acids on metabolic and inflammatory processes in human health. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2021, 1866, 158900.	2.4	54
2961	Impact of Environmental and Pharmacologic Changes on the Upper Gastrointestinal Microbiome. Biomedicines, 2021, 9, 617.	3.2	6
2962	Alzheimer's disease and gut microbiota: does trimethylamine N-oxide (TMAO) play a role?. Nutrition Reviews, 2022, 80, 271-281.	5.8	24
2963	Targeting the Gut Microbiota for Remediating Obesity and Related Metabolic Disorders. Journal of Nutrition, 2021, 151, 1703-1716.	2.9	7
2964	Influence of genetic background and dietary oleic acid on gut microbiota composition in Duroc and Iberian pigs. PLoS ONE, 2021, 16, e0251804.	2.5	4
2965	Dietary Fibre Modulates the Gut Microbiota. Nutrients, 2021, 13, 1655.	4.1	225
2966	Dietary Management in Pediatric Patients with Crohn's Disease. Nutrients, 2021, 13, 1611.	4.1	15
2967	Gut microbiota profiles of young South Indian children: Child sex-specific relations with growth. PLoS ONE, 2021, 16, e0251803.	2.5	6
2968	Implications of SCFAs on the Parameters of the Lipid and Hepatic Profile in Pregnant Women. Nutrients, 2021, 13, 1749.	4.1	20
2969	The Microbiota and the Gut–Brain Axis in Controlling Food Intake and Energy Homeostasis. International Journal of Molecular Sciences, 2021, 22, 5830.	4.1	37
2970	The relationship between gut microbiota, short-chain fatty acids and type 2 diabetes mellitus: the possible role of dietary fibre. Acta Diabetologica, 2021, 58, 1131-1138.	2.5	53
2971	Gut microbiota-mediated pesticide toxicity in humans: Methodological issues and challenges in the risk assessment of pesticides. Chemosphere, 2021, 271, 129817.	8.2	21
2972	Diet, habitat environment and lifestyle conversion affect the gut microbiomes of giant pandas. Science of the Total Environment, 2021, 770, 145316.	8.0	27

#	Article	IF	CITATIONS
2973	The gut microbiome in pancreatogenic diabetes differs from that of Type 1 and Type 2 diabetes. Scientific Reports, 2021, 11, 10978.	3.3	10
2975	Gut microbiome, prebiotics, intestinal permeability and diabetes complications. Best Practice and Research in Clinical Endocrinology and Metabolism, 2021, 35, 101507.	4.7	63
2976	Reconstruction of ancient microbial genomes from the human gut. Nature, 2021, 594, 234-239.	27.8	139
2977	Dietary Influence on the Dynamics of the Human Gut Microbiome: Prospective Implications in Interventional Therapies. ACS Food Science & Technology, 2021, 1, 717-736.	2.7	8
2978	Artificial Sweeteners Negatively Regulate Pathogenic Characteristics of Two Model Gut Bacteria, E. coli and E. faecalis. International Journal of Molecular Sciences, 2021, 22, 5228.	4.1	35
2979	Immunological Networks Defining the Heterogeneity of Inflammatory Bowel Diseases. Journal of Crohn's and Colitis, 2021, 15, 1959-1973.	1.3	6
2980	Diet, obesity, and the gut microbiome as determinants modulating metabolic outcomes in a non-human primate model. Microbiome, 2021, 9, 100.	11.1	56
2981	Biodiversity of Gut Microbiota: Impact of Various Host and Environmental Factors. BioMed Research International, 2021, 2021, 1-9.	1.9	30
2982	Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis. Pharmacological Research, 2021, 167, 105471.	7.1	43
2983	A single serving of mixed spices alters gut microflora composition: a dose–response randomised trial. Scientific Reports, 2021, 11, 11264.	3.3	7
2984	Non-alcoholic fatty liver disease in obese children and adolescents: a role for nutrition?. European Journal of Clinical Nutrition, 2022, 76, 28-39.	2.9	16
2985	The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Veterinary Clinics of North America - Small Animal Practice, 2021, 51, 605-621.	1.5	63
2986	A Systematic Review of Dietary Influences on Fecal Microbiota Composition and Function among Healthy Humans 1–20 Years of Age. Advances in Nutrition, 2021, 12, 1734-1750.	6.4	10
2987	Infant-Associated Bifidobacterial β-Galactosidases and Their Ability to Synthesize Galacto-Oligosaccharides. Frontiers in Microbiology, 2021, 12, 662959.	3.5	9
2988	Gut microbiota are associated with sex and age of host: Evidence from semiâ€provisioned rhesus macaques in southwest Guangxi, China. Ecology and Evolution, 2021, 11, 8096-8122.	1.9	14
2989	Comparison of fecal microbiota composition of blue sheep fed Lolium perenne versus Sorghum sudanense. Canadian Journal of Microbiology, 2021, 67, 372-380.	1.7	1
2991	The Infant Microbiome and Its Impact on Development of Food Allergy. Immunology and Allergy Clinics of North America, 2021, 41, 285-299.	1.9	10
2992	Gut dysbiosis is associated with poorer long-term prognosis in cirrhosis. World Journal of Hepatology, 2021, 13, 557-570.	2.0	24

#	Article	IF	CITATIONS
2993	Prevotella diversity, niches and interactions with the human host. Nature Reviews Microbiology, 2021, 19, 585-599.	28.6	248
2994	Short- and Branched-Chain Fatty Acids as Fecal Markers for Microbiota Activity in Vegans and Omnivores. Nutrients, 2021, 13, 1808.	4.1	27
2995	Alterations and Correlations of the Gut Microbiome, Performance, Egg Quality, and Serum Biochemical Indexes in Laying Hens with Low-Protein Amino Acid-Deficient Diets. ACS Omega, 2021, 6, 13094-13104.	3.5	11
2996	Modulation of immune responses to vaccination by the microbiota: implications and potential mechanisms. Nature Reviews Immunology, 2022, 22, 33-46.	22.7	124
2997	Soil exposure accelerates recovery of the gut microbiota in antibioticâ€ŧreated mice. Environmental Microbiology Reports, 2021, 13, 616-625.	2.4	7
2998	Characterization and description of Faecalibacterium butyricigenerans sp. nov. and F. longum sp. nov., isolated from human faeces. Scientific Reports, 2021, 11, 11340.	3.3	42
2999	Gut Microbiome Changes with Acute Diarrheal Disease in Urban Versus Rural Settings in Northern Ecuador. American Journal of Tropical Medicine and Hygiene, 2021, 104, 2275-2285.	1.4	7
3000	Chicken-eaters and pork-eaters have different gut microbiota and tryptophan metabolites. Scientific Reports, 2021, 11, 11934.	3.3	12
3001	A comprehensive review on the impact of β-glucan metabolism by Bacteroides and Bifidobacterium species as members of the gut microbiota. International Journal of Biological Macromolecules, 2021, 181, 877-889.	7.5	40
3002	Exploring the signature gut and oral microbiome in individuals of specific Ayurveda prakriti. Journal of Biosciences, 2021, 46, 1.	1.1	4
3003	Spatial and temporal key steps in earlyâ€life intestinal immune system development and education. FEBS Journal, 2022, 289, 4731-4757.	4.7	7
3004	Maternal cysteine intake influenced oxidative status and lipid-related gut microbiota and plasma metabolomics in male suckling piglets. Animal Feed Science and Technology, 2021, 276, 114947.	2.2	7
3005	Effect of Freezing on Gut Microbiota Composition and Functionality for In Vitro Fermentation Experiments. Nutrients, 2021, 13, 2207.	4.1	4
3006	The Modification of the Gut Microbiota via Selected Specific Diets in Patients with Crohn's Disease. Nutrients, 2021, 13, 2125.	4.1	18
3007	Dietary phytochemicals modulate intestinal epithelial barrier dysfunction and autoimmune diseases. Food Frontiers, 2021, 2, 357-382.	7.4	31
3008	Microbiota and Metabolite Modifications after Dietary Exclusion of Dairy Products and Reduced Consumption of Fermented Food in Young and Older Men. Nutrients, 2021, 13, 1905.	4.1	4
3009	Modulation of Gut-Brain Axis by Probiotics: A Promising Anti-depressant Approach. Current Neuropharmacology, 2021, 19, 990-1006.	2.9	11
3010	The influence of gut microbiome on bone health and related dietary strategies against bone dysfunctions. Food Research International, 2021, 144, 110331.	6.2	11

#	Article	IF	CITATIONS
3011	Effects of Bacillus Coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poultry Science, 2021, 100, 101168.	3.4	39
3012	Maternal fecal microbiome predicts gestational age, birth weight and neonatal growth in rural Zimbabwe EBioMedicine, 2021, 68, 103421.	6.1	34
3013	Effect of Fecal Microbiota Transplantation Combined With Mediterranean Diet on Insulin Sensitivity in Subjects With Metabolic Syndrome. Frontiers in Microbiology, 2021, 12, 662159.	3.5	22
3014	Sex- and age-specific variation of gut microbiota in Brandt's voles. PeerJ, 2021, 9, e11434.	2.0	12
3015	Cultivation of the gut bacterium <i>Prevotella copri</i> DSM 18205 ^T using glucose and xylose as carbon sources. MicrobiologyOpen, 2021, 10, e1213.	3.0	13
3016	Microbial dysbiosis and epigenetics modulation in cancer development – A chemopreventive approach. Seminars in Cancer Biology, 2022, 86, 666-681.	9.6	13
3017	Role of the Gut Microbiota in Regulating Non-alcoholic Fatty Liver Disease in Children and Adolescents. Frontiers in Nutrition, 2021, 8, 700058.	3.7	33
3018	Comparative Analysis of Fecal Microbiota of Grazing Mongolian Cattle from Different Regions in Inner Mongolia, China. Animals, 2021, 11, 1938.	2.3	10
3019	Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance. Frontiers in Nutrition, 2021, 8, 637010.	3.7	109
3020	Regulation of a New Type of Selenium-Rich Royal Jelly on Gut Microbiota Profile in Mice. Biological Trace Element Research, 2022, 200, 1763-1775.	3.5	9
3021	On pickles: biological and sociocultural links between fermented foods and the human gut microbiome. Journal of Ethnobiology and Ethnomedicine, 2021, 17, 39.	2.6	8
3022	Microbiome analysis reveals the alterations in gut microbiota in different intestinal segments of Yimeng black goats. Microbial Pathogenesis, 2021, 155, 104900.	2.9	8
3023	Bioactive Dietary Fibers Selectively Promote Gut Microbiota to Exert Antidiabetic Effects. Journal of Agricultural and Food Chemistry, 2021, 69, 7000-7015.	5.2	42
3024	An in vitro batch fermentation protocol for studying the contribution of food to gut microbiota composition and functionality. Nature Protocols, 2021, 16, 3186-3209.	12.0	83
3025	The human gut microbiome and health inequities. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	82
3026	The Young Age and Plant-Based Diet Hypothesis for Low SARS-CoV-2 Infection and COVID-19 Pandemic in Sub-Saharan Africa. Plant Foods for Human Nutrition, 2021, 76, 270-280.	3.2	15
3027	The role of the microbiome in gastrointestinal inflammation. Bioscience Reports, 2021, 41, .	2.4	27
3028	Distinctive Microbiome Type Distribution in a Young Adult Balinese Cohort May Reflect Environmental Changes Associated with Modernization. Microbial Ecology, 2021, , 1.	2.8	Ο

#	Article	IF	CITATIONS
3029	Examining developmental plasticity in the skeletal system through a sensitive developmental windows framework. American Journal of Physical Anthropology, 2021, 176, 163-178.	2.1	7
3030	Effect of sequentially fed high protein, hydrolyzed protein, and high fiber diets on the fecal microbiota of healthy dogs: a cross-over study. Animal Microbiome, 2021, 3, 42.	3.8	9
3031	Dietary fiber intake, the gut microbiome, and chronic systemic inflammation in a cohort of adult men. Genome Medicine, 2021, 13, 102.	8.2	62
3032	Probiotics Improve Eating Disorders in Mandarin Fish (Siniperca chuatsi) Induced by a Pellet Feed Diet via Stimulating Immunity and Regulating Gut Microbiota. Microorganisms, 2021, 9, 1288.	3.6	23
3033	Gut Microbiota: Critical Controller and Intervention Target in Brain Aging and Cognitive Impairment. Frontiers in Aging Neuroscience, 2021, 13, 671142.	3.4	20
3034	Functional differentiation related to decomposing complex carbohydrates of intestinal microbes between two wild zokor species based on 16SrRNA sequences. BMC Veterinary Research, 2021, 17, 216.	1.9	14
3035	A probiotic has differential effects on allergic airway inflammation in A/J and C57BL/6 mice and is correlated with the gut microbiome. Microbiome, 2021, 9, 134.	11.1	14
3036	The role of the intestinal microbiota in eating disorders – bulimia nervosa and binge eating disorder. Psychiatry Research, 2021, 300, 113923.	3.3	9
3037	Imbalanced dietary intake alters the colonic microbial profile in growing rats. PLoS ONE, 2021, 16, e0253959.	2.5	3
3038	Characterization of the gut microbiota in Chinese children with overweight and obesity using 16S rRNA gene sequencing. PeerJ, 2021, 9, e11439.	2.0	16
3039	Environmentâ€dependent alterations of immune mediators in urban and rural South African children with atopic dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 569-581.	5.7	14
3040	The Role of Dysbiosis in Critically III Patients With COVID-19 and Acute Respiratory Distress Syndrome. Frontiers in Medicine, 2021, 8, 671714.	2.6	17
3041	Mining genome traits that determine the different gut colonization potential of Lactobacillus and Bifidobacterium species. Microbial Genomics, 2021, 7, .	2.0	14
3042	Pathogenetic factors of ulcerative colitis: mainstream for 2020. Bulletin of Siberian Medicine, 2021, 20, 130-138.	0.3	1
3043	Sex- and Gender-related Issues of Gut Microbiota in Gastrointestinal Tract Diseases. Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi, The, 2021, 78, 9-23.	0.4	2
3044	The relationship between gut microbiota and behavior. Psychiatrie Pro Praxi, 2021, 22, 89-93.	0.1	0
3045	Host habitat is the major determinant of the gut microbiome of fish. Microbiome, 2021, 9, 166.	11.1	100
3046	The gut microbiota associated with highâ€Gleason prostate cancer. Cancer Science, 2021, 112, 3125-3135.	3.9	44

#	Article	IF	CITATIONS
3047	The Development of the Gut Microbiota and Short-Chain Fatty Acids of Layer Chickens in Different Growth Periods. Frontiers in Veterinary Science, 2021, 8, 666535.	2.2	28
3048	Review: Effect of Gut Microbiota and Its Metabolite SCFAs on Radiation-Induced Intestinal Injury. Frontiers in Cellular and Infection Microbiology, 2021, 11, 577236.	3.9	38
3049	Fibra dietaria y microbiota, revisión narrativa de un grupo de expertos de la Asociación Mexicana de GastroenterologÃa. Revista De GastroenterologÃa De México, 2021, 86, 287-304.	0.2	9
3050	Vegan Diet and the Gut Microbiota Composition in Healthy Adults. Nutrients, 2021, 13, 2402.	4.1	34
3051	Influence of low FODMAP-gluten free diet on gut microbiota alterations and symptom severity in Iranian patients with irritable bowel syndrome. BMC Gastroenterology, 2021, 21, 292.	2.0	23
3052	Caecal microbiota could effectively increase chicken growth performance by regulating fat metabolism. Microbial Biotechnology, 2022, 15, 844-861.	4.2	23
3053	Field evaluation of the gut microbiome composition of pre-school and school-aged children in Tha Song Yang, Thailand, following oral MDA for STH infections. PLoS Neglected Tropical Diseases, 2021, 15, e0009597.	3.0	9
3054	Effects of Differences in Resistant Starch Content of Rice on Intestinal Microbial Composition. Journal of Agricultural and Food Chemistry, 2021, 69, 8017-8027.	5.2	21
3055	Reduced stress-associated FKBP5 DNA methylation together with gut microbiota dysbiosis is linked with the progression of obese PCOS patients. Npj Biofilms and Microbiomes, 2021, 7, 60.	6.4	23
3056	A Crosstalk between Diet, Microbiome and microRNA in Epigenetic Regulation of Colorectal Cancer. Nutrients, 2021, 13, 2428.	4.1	18
3057	Dietary Selection Pressures and Their Impact on the Gut Microbiome. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 7-18.	4.5	32
3058	Hygiene hypothesis and autoimmune diseases: A narrative review of clinical evidences and mechanisms. Autoimmunity Reviews, 2021, 20, 102845.	5.8	24
3059	Nutritional Interventions and the Gut Microbiome in Children. Annual Review of Nutrition, 2021, 41, 479-510.	10.1	18
3060	Dry eye disease: an (in)convenient truth. Australasian journal of optometry, The, 2022, 105, 222-229.	1.3	6
3061	Roles of Sex Hormones and Gender in the Gut Microbiota. Journal of Neurogastroenterology and Motility, 2021, 27, 314-325.	2.4	98
3062	Low Dietary Fiber Intake Links Development of Obesity and Lupus Pathogenesis. Frontiers in Immunology, 2021, 12, 696810.	4.8	31
3063	Effect of different types of sugar on gut physiology and microbiota in overfed goose. Poultry Science, 2021, 100, 101208.	3.4	6
3064	Microbiota Signals during the Neonatal Period Forge Life-Long Immune Responses. International Journal of Molecular Sciences, 2021, 22, 8162.	4.1	9

#	Article	IF	CITATIONS
3065	Targeting the gut microbiome: An emerging trend in hematopoietic stem cell transplantation. Blood Reviews, 2021, 48, 100790.	5.7	28
3066	Influence of immunomodulatory drugs on the gut microbiota. Translational Research, 2021, 233, 144-161.	5.0	14
3067	Longitudinal Characterization of the Gut Bacterial and Fungal Communities in Yaks. Journal of Fungi (Basel, Switzerland), 2021, 7, 559.	3.5	12
3068	Bacterial and Fungal Gut Community Dynamics Over the First 5 Years of Life in Predominantly Rural Communities in Ghana. Frontiers in Microbiology, 2021, 12, 664407.	3.5	9
3069	Geographic differences in gut microbiota composition impact susceptibility to enteric infection. Cell Reports, 2021, 36, 109457.	6.4	33
3070	A homogeneous polysaccharide from Lycium barbarum: Structural characterizations, anti-obesity effects and impacts on gut microbiota. International Journal of Biological Macromolecules, 2021, 183, 2074-2087.	7.5	71
3071	Enhancing Checkpoint Inhibitor Therapy in Solid Tissue Cancers: The Role of Diet, the Microbiome & Microbiome-Derived Metabolites. Frontiers in Immunology, 2021, 12, 624434.	4.8	12
3072	Dietary fiber and the microbiota: A narrative review by a group of experts from the Asociación Mexicana de GastroenterologÃa. Revista De GastroenterologÃa De México (English Edition), 2021, 86, 287-304.	0.2	13
3073	Supplementation of a lacto-fermented rapeseed-seaweed blend promotes gut microbial- and gut immune-modulation in weaner piglets. Journal of Animal Science and Biotechnology, 2021, 12, 85.	5.3	16
3074	The anti-obesity effects exerted by different fractions of Artemisia sphaerocephala Krasch polysaccharide in diet-induced obese mice. International Journal of Biological Macromolecules, 2021, 182, 825-837.	7.5	16
3075	Feeding state greatly modulates the effect of xenobiotics on gut microbiome metabolism: A case study of tetracycline. Journal of Hazardous Materials, 2021, 413, 125441.	12.4	7
3076	Gut microbiome and its potential link to personalized nutrition. Current Opinion in Physiology, 2021, 22, 100439.	1.8	7
3077	Variation in Microbial Exposure at the Human-Animal Interface and the Implications for Microbiome-Mediated Health Outcome. MSystems, 2021, 6, e0056721.	3.8	1
3078	Contribution of gut microbiota to nonalcoholic fatty liver disease: Pathways of mechanisms. Clinical Nutrition ESPEN, 2021, 44, 61-68.	1.2	13
3079	Malnutrition and Gut Microbiota in Children. Nutrients, 2021, 13, 2727.	4.1	59
3080	Role of gut microbiota in functional constipation. Gastroenterology Report, 2021, 9, 392-401.	1.3	53
3081	Obese rats intervened with Rhizoma coptidis revealed differential gene expression and microbiota by serum metabolomics. BMC Complementary Medicine and Therapies, 2021, 21, 208.	2.7	6
3082	Paleomicrobiology of the human digestive tract: A review. Microbial Pathogenesis, 2021, 157, 104972.	2.9	1

#	Article	IF	CITATIONS
3083	Microbiota intestinal y salud. GastroenterologÃa Y HepatologÃa, 2021, 44, 519-535.	0.5	21
3084	The role of microbiome in pancreatic cancer. Cancer and Metastasis Reviews, 2021, 40, 777-789.	5.9	27
3085	Drivers of change and stability in the gut microbiota of an omnivorous avian migrant exposed to artificial food supplementation. Molecular Ecology, 2021, 30, 4723-4739.	3.9	16
3086	Adherence to Mediterranean diet impacts gastrointestinal microbial diversity throughout pregnancy. BMC Pregnancy and Childbirth, 2021, 21, 558.	2.4	10
3087	Integrated Bacterial and Fungal Diversity Analysis Reveals the Gut Microbial Alterations in Diarrheic Giraffes. Frontiers in Microbiology, 2021, 12, 712092.	3.5	17
3088	Lignan Intake and Risk of Coronary HeartÂDisease. Journal of the American College of Cardiology, 2021, 78, 666-678.	2.8	19
3089	Gut microbes and health. GastroenterologÃa Y HepatologÃa (English Edition), 2021, 44, 519-535.	0.1	8
3090	Crosstalk between sIgA-Coated Bacteria in Infant Gut and Early-Life Health. Trends in Microbiology, 2021, 29, 725-735.	7.7	22
3091	Seasonal Dietary Shifts Alter the Gut Microbiota of Avivorous Bats: Implication for Adaptation to Energy Harvest and Nutritional Utilization. MSphere, 2021, 6, e0046721.	2.9	16
3092	Influence of gut microbiome on the human physiology. Systems Microbiology and Biomanufacturing, 2022, 2, 217-231.	2.9	4
3093	Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients, 2021, 13, 2795.	4.1	183
3094	<i>A. Muciniphila</i> Suppresses Colorectal Tumorigenesis by Inducing TLR2/NLRP3-Mediated M1-Like TAMs. Cancer Immunology Research, 2021, 9, 1111-1124.	3.4	63
3095	The Gut-Brain Axis: Literature Overview and Psychiatric Applications. , 2021, 38, 356-362.		2
3096	Phosphorus availability increases pathobiome abundance and invasion of rhizosphere microbial networks by <i>Ralstonia</i> . Environmental Microbiology, 2021, 23, 5992-6003.	3.8	28
3097	Gut Microbiota Differences According to Ultra-Processed Food Consumption in a Spanish Population. Nutrients, 2021, 13, 2710.	4.1	45
3098	Gut Microbiota and Atherosclerosis—Focusing on the Plaque Stability. Frontiers in Cardiovascular Medicine, 2021, 8, 668532.	2.4	35
3099	Association between clinical and environmental factors and the gut microbiota profiles in young South African children. Scientific Reports, 2021, 11, 15895.	3.3	6
3100	919 Syrup Alleviates Postpartum Depression by Modulating the Structure and Metabolism of Gut Microbes and Affecting the Function of the Hippocampal GABA/Glutamate System. Frontiers in Cellular and Infection Microbiology, 2021, 11, 694443.	3.9	16

#	Article	IF	CITATIONS
3101	Red Wine High-Molecular-Weight Polyphenolic Complex: An Emerging Modulator of Human Metabolic Disease Risk and Gut Microbiota. Journal of Agricultural and Food Chemistry, 2021, 69, 10907-10919.	5.2	14
3102	Integrating Dietary Data into Microbiome Studies: A Step Forward for Nutri-Metaomics. Nutrients, 2021, 13, 2978.	4.1	7
3103	Seasonal Variation in the Faecal Microbiota of Mature Adult Horses Maintained on Pasture in New Zealand. Animals, 2021, 11, 2300.	2.3	5
3104	Topological Data Analysis Highlights Novel Geographical Signatures of the Human Gut Microbiome. Frontiers in Artificial Intelligence, 2021, 4, 680564.	3.4	3
3105	Minimal Associations between Short-Term Dietary Intake and Salivary Microbiome Composition. Microorganisms, 2021, 9, 1739.	3.6	2
3106	Gut-microbiota-targeted diets modulate human immune status. Cell, 2021, 184, 4137-4153.e14.	28.9	482
3107	Comprehensive Cultivation of the Swine Gut Microbiome Reveals High Bacterial Diversity and Guides Bacterial Isolation in Pigs. MSystems, 2021, 6, e0047721.	3.8	13
3108	Closely related Lak megaphages replicate in the microbiomes of diverse animals. IScience, 2021, 24, 102875.	4.1	20
3109	Estado nutricional, consumo alimentar e saúde intestinal em mulheres de uma academia da saúde. Revista Da Faculdade De Ciências Médicas De Sorocaba, 2021, 22, 59-64.	0.2	0
3110	Parasites and diet as main drivers of the Malagasy gut microbiome richness and function. Scientific Reports, 2021, 11, 17630.	3.3	3
3111	Effects of oral administration of timothy hay and psyllium on the growth performance and fecal microbiota of preweaning calves. Journal of Dairy Science, 2021, 104, 12472-12485.	3.4	3
3112	Leveraging diet to engineer the gut microbiome. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 885-902.	17.8	86
3113	Influence of the Diet on the Intestinal Microbiota. ESPOCH Congresses, 0, , .	0.0	0
3115	Gut Microbiome Composition and Metabolic Status Are Differently Affected by Early Exposure to Unhealthy Diets in a Rat Model. Nutrients, 2021, 13, 3236.	4.1	9
3116	Effects of red meat diet on gut microbiota in mice. Food Science and Technology, 0, , .	1.7	1
3117	Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovascular Research, 2022, 118, 2415-2427.	3.8	45
3118	Influence of Diet on the Effect of the Probiotic Lactobacillus paracasei in Rats Suffering From Allergic Asthma. Frontiers in Microbiology, 2021, 12, 737622.	3.5	6
3119	The Many Faces of Enterococcus spp.—Commensal, Probiotic and Opportunistic Pathogen. Microorganisms, 2021, 9, 1900.	3.6	113

#	Article	IF	CITATIONS
3120	The role of precision nutrition in the modulation of microbial composition and function in people with inflammatory bowel disease. The Lancet Gastroenterology and Hepatology, 2021, 6, 754-769.	8.1	27
3121	Metagenomic sequencing reveals altered gut microbiota of sojourners at high altitude: a longitudinal study. Journal of Proteins and Proteomics, 2021, 12, 271-288.	1.5	3
3122	Human Fecal Contamination Corresponds to Changes in the Freshwater Bacterial Communities of a Large River Basin. Microbiology Spectrum, 2021, 9, e0120021.	3.0	4
3123	Recent progress in research on the gut microbiota and highland adaptation on the Qinghaiâ€īibet Plateau. Journal of Evolutionary Biology, 2021, 34, 1514-1530.	1.7	20
3124	Gut Microbiome, Functional Food, Atherosclerosis, and Vascular Calcifications—Is There a Missing Link?. Microorganisms, 2021, 9, 1913.	3.6	12
3125	Promotion of pellet-feed feeding in mandarin fish (Siniperca chuatsi) by Bdellovibrio bacteriovorus is influenced by immune and intestinal flora. Aquaculture, 2021, 542, 736864.	3.5	15
3126	Type 2 Diabetes and Dietary Carbohydrate Intake of Adolescents and Young Adults: What Is the Impact of Different Choices?. Nutrients, 2021, 13, 3344.	4.1	11
3127	Gut region induces gastrointestinal microbiota community shift in Ujimqin sheep (<scp><i>Ovis) Tj ETQq1 1 0.78</i></scp>	4314 rgBT	/Overlock
3128	Diet and gut microbiota manipulation for the management of Crohn's disease and ulcerative colitis. Proceedings of the Nutrition Society, 2021, 80, 409-423.	1.0	7
3129	The gut microbiome in konzo. Nature Communications, 2021, 12, 5371.	12.8	8
3130	Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Research International, 2021, 150, 110716.	6.2	43
3131	The Effect of Dietary Interventions on Chronic Inflammatory Diseases in Relation to the Microbiome: A Systematic Review. Nutrients, 2021, 13, 3208.	4.1	28
3132	Effects of Adding Eubiotic Lignocellulose on the Growth Performance, Laying Performance, Gut Microbiota, and Short-Chain Fatty Acids of Two Breeds of Hens. Frontiers in Veterinary Science, 2021, 8, 668003.	2.2	10
3133	The Mediterranean Diets' effect on Gut Microbial Composition in comparison with the Western Diet: A literature review. Current Nutrition and Food Science, 2021, 17, .	0.6	0
3134	Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Frontiers in Physiology, 2021, 12, 715506.	2.8	56
3135	Arsenic bioaccumulation in the soil fauna alters its gut microbiome and microbial arsenic biotransformation capacity. Journal of Hazardous Materials, 2021, 417, 126018.	12.4	19
3136	Alteration of Gut Microbiota of a Food-Storing Hibernator, Siberian Chipmunk Tamias sibiricus. Microbial Ecology, 2022, 84, 603-612.	2.8	5
3137	Butyrate Production Pathway Abundances Are Similar in Human and Nonhuman Primate Gut Microbiomes. Molecular Biology and Evolution, 2022, 39, .	8.9	13

\mathbf{C}	TAT	ON	Dr		DT
	TAT		IKE	PU.	I N

#	Article	IF	CITATIONS
3138	Evolution of human diet and microbiome-driven disease. Current Opinion in Physiology, 2021, 23, 100455.	1.8	1
3139	Deciphering the colonic fermentation characteristics of agavin and digestion-resistant maltodextrin in a simulated batch fermentation system. International Journal of Biological Macromolecules, 2021, 189, 151-159.	7.5	5
3140	Epidemiologic trend of pediatric inflammatory bowel disease in Latin America: The Latin American Society for Pediatric Gastroenterology, Hepatology and Nutrition (LASPGHAN) Working Group. Revista De GastroenterologÃa De MA©xico (English Edition), 2021, 86, 328-334.	0.2	1
3141	Gut microbiota of adults with different metabolic phenotypes. Nutrition, 2021, 90, 111293.	2.4	15
3142	Effect of arabinogalactan on the gut microbiome: A randomized, double-blind, placebo-controlled, crossover trial in healthy adults. Nutrition, 2021, 90, 111273.	2.4	12
3143	Probiotic, Lactobacillus pentosus BD6 boost the growth and health status of white shrimp, Litopenaeus vannamei via oral administration. Fish and Shellfish Immunology, 2021, 117, 124-135.	3.6	25
3144	The effects and benefits of arabinoxylans on human gut microbiota – A narrative review. Food Bioscience, 2021, 43, 101267.	4.4	13
3145	Flammulina velutipes mycorrhizae dietary fiber improves lipid metabolism disorders in obese mice through activating AMPK signaling pathway mediated by gut microbiota. Food Bioscience, 2021, 43, 101246.	4.4	13
3146	Gut microbiota response to sulfated sea cucumber polysaccharides in a differential manner using an in vitro fermentation model. Food Research International, 2021, 148, 110562.	6.2	30
3147	Fermentation outcomes of wheat cell wall related polysaccharides are driven by substrate effects as well as initial faecal inoculum. Food Hydrocolloids, 2021, 120, 106978.	10.7	7
3148	LC-MS based metabolomic approach for the efficient identification and relative quantification of bioavailable cocoa phenolics in human urine. Food Chemistry, 2021, 364, 130198.	8.2	6
3149	Chinese Torreya grandis cv. Merrillii seed oil affects obesity through accumulation of sciadonic acid and altering the composition of gut microbiota. Food Science and Human Wellness, 2022, 11, 58-67.	4.9	13
3150	Isolation, structural characterization and bioactivities of polysaccharides from Laminaria japonica: A review. Food Chemistry, 2022, 370, 131010.	8.2	33
3151	Diet-Induced Alterations in Gut Microbiota Composition and Function. , 2022, , .		1
3152	Development of a real-time quantitative PCR method for detection and quantification of Prevotella copri. BMC Microbiology, 2021, 21, 23.	3.3	6
3153	Gut Bacterial Dysbiosis and Its Clinical Implications. , 2021, , 1-27.		Ο
3154	Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. Frontiers in Immunology, 2020, 11, 594150.	4.8	182
3155	Gut microbiota and the immune system and inflammation. , 2021, , 311-333.		0

#	Article	IF	CITATIONS
3156	Gut microbiota in antiviral strategy from bats to humans: a missing link in COVID-19. Science China Life Sciences, 2021, 64, 942-956.	4.9	17
3157	A multi-omics approach for understanding the effects of moderate wine consumption on human intestinal health. Food and Function, 2021, 12, 4152-4164.	4.6	11
3158	<i>In vitro</i> colonic fermentation of red kidney beans depends on cotyledon cells integrity and microbiota adaptation. Food and Function, 2021, 12, 4983-4994.	4.6	2
3159	Emerging frontiers in human milk microbiome research and suggested primers for 16S rRNA gene analysis. Computational and Structural Biotechnology Journal, 2021, 19, 121-133.	4.1	16
3160	Urbanization and Its Effects on Microbiota. , 2021, , .		0
3161	Diet and Microbiota in Early Life. , 2021, , 30-30.		0
3162	Diet, Microbiota and the Gut-Brain Axis. , 2021, , .		4
3163	Propionate and Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 580001.	3.4	32
3164	The Sporobiota of the Human Gut. Gut Microbes, 2021, 13, 1-17.	9.8	34
3165	Emergence of the Human Gut Microbiota as an Influencer in Health and Disease. , 2021, , 43-51.		0
3166	The Microbiome as an Endocrine Organ. , 2021, , .		0
3167	Dysbiosis, Small Intestinal Bacterial Overgrowth, and Chronic Diseases. Advances in Medical Diagnosis, Treatment, and Care, 2021, , 334-362.	0.1	1
3169	The Human Microbiome. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 1-28.	0.6	1
3170	Development of the gut microbiota and dysbiosis in children. Bioscience of Microbiota, Food and Health, 2021, 40, 12-18.	1.8	10
3171	Effect of probiotic <i>Lactobacillus plantarum</i> Dad-13 powder consumption on the gut microbiota and intestinal health of overweight adults. World Journal of Gastroenterology, 2021, 27, 107-128.	3.3	47
3172	Microbiota-Gut-Brain Axis. , 2021, , 423-423.		0
3173	Polyphenols and their impacts on the host epigenome and the gut microbiome. , 2021, , 225-237.		1
3174	Dietary Fibers. , 2021, , 1431-1464.		0

#	Article	IF	CITATIONS
3176	Microbiomes in Medicine and Agriculture. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 353-412.	0.6	0
3177	Gut Microbial Dysbiosis and Cardiovascular Diseases. , 2021, , .		0
3178	Gut Microbiome and Nonalcoholic Fatty Liver Disease (NAFLD). Gastroenterology Nursing, 2021, 44, E18-E22.	0.4	0
3179	Functional hydrocolloids, gut microbiota and health: picking food additives for personalized nutrition. FEMS Microbiology Reviews, 2021, 45, .	8.6	13
3180	Taxonomic Composition and Diversity of the Gut Microbiota in Relation to Habitual Dietary Intake in Korean Adults. Nutrients, 2021, 13, 366.	4.1	19
3181	Pre- and postmenopausal women have different core urinary microbiota. Scientific Reports, 2021, 11, 2212.	3.3	23
3182	Analysis of global human gut metagenomes shows that metabolic resilience potential for short-chain fatty acid production is strongly influenced by lifestyle. Scientific Reports, 2021, 11, 1724.	3.3	11
3183	Linking the oral microbiome and salivary cytokine abundance to circadian oscillations. Scientific Reports, 2021, 11, 2658.	3.3	27
3184	PROCESSED FOOD AND FOOD ADDITIVES IN THE CONTEXT OF DYSBIOSIS AND ITS HEALTH CONSEQUENCES. Postepy Mikrobiologii, 2021, 60, 223-230.	0.1	0
3185	Gut microbiota mediates the effects of inulin on enhancing sulfomucin production and mucosal barrier function in a pig model. Food and Function, 2021, 12, 10967-10982.	4.6	9
3186	Can We Use Metabolomics to Understand Changes to Gut Microbiota Populations and Function? A Nutritional Perspective. Molecular and Integrative Toxicology, 2015, , 83-108.	0.5	6
3187	Recent Progress in Engineering Human-Associated Microbiomes. Methods in Molecular Biology, 2014, 1151, 3-25.	0.9	15
3188	Anti-inflammatory Effects of Probiotics and Their Metabolites: Possible Role for Epigenetic Effects. , 2014, , 127-150.		1
3189	Gut Microbiome and Obesity. , 2014, , 73-82.		2
3190	Gut Microbiome and Obesity. , 2014, , 73-82.		3
3191	Early Gut Microbiome: A Good Start in Nutrition and Growth May Have Lifelong Lasting Consequences. , 2019, , 239-258.		2
3192	Variability and Stability of the Human Gut Microbiome. Fascinating Life Sciences, 2020, , 63-79.	0.9	4
3193	Nutrition and Gastrointestinal Health as Modulators of Parkinson's Disease. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 213-242.	0.6	5

#	Article	IF	CITATIONS
3194	NMR-Based Metabolomics: The Foodome and the Assessment of Dietary Exposure as a Key Step to Evaluate the Effect of Diet on Health. , 2018, , 1687-1707.		1
3195	Nutrition, Macrobiotics, and the Brain's Neuroinflammatory Response. , 2016, , 157-167.		1
3196	Epigenetic Regulation of Early Nutrition on Immune System. , 2017, , 1-12.		3
3197	The Gut Microbiota and Inflammatory Bowel Disease. , 2017, , 45-54.		8
3198	Green Space and Health. , 2019, , 409-423.		25
3199	The Family Prevotellaceae. , 2014, , 825-827.		12
3200	Lactic Acid Bacteria and the Human Gastrointestinal Tract. , 2014, , 375-441.		3
3201	Gut Microbial Predictors of Type 2 Diabetes Remission Following Bariatric Surgery. Obesity Surgery, 2020, 30, 3536-3548.	2.1	25
3202	Comparison Between the Gut Microbiota in Different Gastrointestinal Segments of Large-Tailed Han and Small-Tailed Han Sheep Breeds with High-Throughput Sequencing. Indian Journal of Microbiology, 2020, 60, 436-450.	2.7	4
3203	Pathogenesis of Nonalcoholic Fatty Liver Disease. , 2018, , 369-390.e14.		2
3204	Concepts in Inflammatory Bowel Disease Management. , 2019, , 1888-1918.		1
3205	Mitochondria, the gut microbiome and ROS. Cellular Signalling, 2020, 75, 109737.	3.6	65
3206	Two novel polysaccharides from Solanum nigrum L. exert potential prebiotic effects in an in vitro fermentation model. International Journal of Biological Macromolecules, 2020, 159, 648-658.	7.5	18
3207	The impact of nutrition on intestinal bacterial communities. Current Opinion in Microbiology, 2017, 38, 59-65.	5.1	111
3208	Women's multisite microbial modulation during pregnancy. Microbial Pathogenesis, 2020, 147, 104230.	2.9	10
3209	Nutrition and gut health: the impact of specific dietary components – it's not just five-a-day. Proceedings of the Nutrition Society, 2021, 80, 9-18.	1.0	10
3210	Blood pressure management in an ecosystem context. Hypertension Research, 2020, 43, 989-994.	2.7	12
3211	LogMPIE, pan-India profiling of the human gut microbiome using 16S rRNA sequencing. Scientific Data, 2018, 5, 180232.	5.3	31

CITATION RE	PORT	
Article	IF	CITATIONS
A Review of the Role of Gut microbiome in Obesity. E3S Web of Conferences, 2020, 218, 03010.	0.5	1
The importance of the microbiome in pediatrics and pediatric infectious diseases. Current Opinion in Pediatrics, 2018, 30, 117-124.	2.0	45
Pantoea intestinalis sp. nov., isolated from the human gut. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3352-3358.	1.7	27
The intestinal proteome of diabetic and control children is enriched with different microbial and host proteins. Microbiology (United Kingdom), 2017, 163, 161-174.	1.8	46
From food to cell: nutrient exploitation strategies of enteropathogens. Microbiology (United) Tj ETQq0 0 0 rgBT /	Oyerlock I	10 ₆₃ f 50 582
Deciphering the Bifidobacterial Populations within the Canine and Feline Gut Microbiota. Applied and Environmental Microbiology, 2020, 86, .	3.1	30
A Darwinian View of the Hygiene or "Old Friends―Hypothesis. Microbe Magazine, 2012, 7, 173-180.	0.4	12
The Gut Microbiome, Its Metabolome, and Their Relationship to Health and Disease. Nestle Nutrition Institute Workshop Series, 2016, 84, 103-110.	0.1	20
Microbiome and Graves' Orbitopathy. European Thyroid Journal, 2020, 9, 78-86.	2.4	14
Microbial Peer Pressure. Hypertension, 2020, 76, 1674-1687.	2.7	77
	ARTICLE A Review of the Role of Gut microbiome in Obesity. E3S Web of Conferences, 2020, 218, 03010. The importance of the microbiome in pediatrics and pediatric infectious diseases. Current Opinion in Pediatrics, 2018, 30, 117-124. Pantoea intestinalis sp. nov., isolated from the human gut. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3352-3358. The intestinal proteome of diabetic and control children is enriched with different microbial and host proteins. Microbiology (United Kingdom), 2017, 163, 161-174. From food to cell: nutrient exploitation strategies of enteropathogens. Microbiology (United) Tj ETQq0 0 0 rgBT / Deciphering the Bifidobacterial Populations within the Canine and Feline Gut Microbiota. Applied and Environmental Microbiology, 2020, 86, . A Darwinian View of the Hygiene or "Old Friendsâ€Hypothesis. Microbe Magazine, 2012, 7, 173-180. The Gut Microbiome, Its Metabolome, and Their Relationship to Health and Disease. Nestle Nutrition Institute Workshop Series, 2016, 84, 103-110. Microbiome and Graves' Orbitopathy. European Thyroid Journal, 2020, 9, 78-86.	A Review of the Role of Gut microbiome in Obesity. E3S Web of Conferences, 2020, 218, 03010. 0.5 The importance of the microbiome in pediatrics and pediatric infectious diseases. Current Opinion in Pediatrics, 2018, 30, 117-124. 2.0 Pantoea intestinalis sp. nov., isolated from the human gut. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3352-3358. 1.7 The intestinal proteome of diabetic and control children is enriched with different microbial and host proteins. Microbiology (United Kingdom), 2017, 163, 161-174. 1.8 From food to cell: nutrient exploitation strategies of enteropathogens. Microbiology (United) Tj ETQq0 0 0 rgBT /OygBlock 30, 2020, 86, . 3.1 A Darwinian View of the Hygiene or â€cœOld Friendsâ€-Hypothesis. Microbe Magazine, 2012, 7, 173-180. 0.4 The Cut Microbiome, Its Metabolome, and Their Relationship to Health and Disease. Nestle Nutrition 0.1 Microbiome and Graves' Orbitopathy. European Thyroid Journal, 2020, 9, 78-86. 2.4

3255	Influences on allergic mechanisms through gut, lung, and skin microbiome exposures. Journal of Clinical Investigation, 2019, 129, 1483-1492.	8.2	50
3256	Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians. Genome Biology, 2020, 21, 122.	8.8	48
3258	Soil is a key factor influencing gut microbiota and its effect is comparable to that exerted by diet for mice. F1000Research, 0, 7, 1588.	1.6	20
3259	Gut microbiome-Mediterranean diet interactions in improving host health. F1000Research, 2019, 8, 699.	1.6	81
3260	Isoflavones and inflammatory bowel disease. World Journal of Clinical Cases, 2020, 8, 2081-2091.	0.8	18
3261	SteadyCom: Predicting microbial abundances while ensuring community stability. PLoS Computational Biology, 2017, 13, e1005539.	3.2	154
3262	Variation in Rural African Gut Microbiota Is Strongly Correlated with Colonization by Entamoeba and Subsistence. PLoS Genetics, 2015, 11, e1005658.	3.5	171
	Cut Minnshints in Children Hansitelingd with Ondersetous and New Ondersetous Course Asute		

3263Gut Microbiota in Children Hospitalized with Oedematous and Non-Oedematous Severe Acute
Malnutrition in Uganda. PLoS Neglected Tropical Diseases, 2016, 10, e0004369.3.040

#	Article	IF	CITATIONS
3264	Secretor Genotype (FUT2 gene) Is Strongly Associated with the Composition of Bifidobacteria in the Human Intestine. PLoS ONE, 2011, 6, e20113.	2.5	223
3265	The Active Human Gut Microbiota Differs from the Total Microbiota. PLoS ONE, 2011, 6, e22448.	2.5	90
3266	Proof of Concept of Microbiome-Metabolome Analysis and Delayed Gluten Exposure on Celiac Disease Autoimmunity in Genetically At-Risk Infants. PLoS ONE, 2012, 7, e33387.	2.5	219
3267	Faecal D/L Lactate Ratio Is a Metabolic Signature of Microbiota Imbalance in Patients with Short Bowel Syndrome. PLoS ONE, 2013, 8, e54335.	2.5	101
3268	Cellulose Supplementation Early in Life Ameliorates Colitis in Adult Mice. PLoS ONE, 2013, 8, e56685.	2.5	55
3269	454 Pyrosequencing Analysis on Faecal Samples from a Randomized DBPC Trial of Colicky Infants Treated with Lactobacillus reuteri DSM 17938. PLoS ONE, 2013, 8, e56710.	2.5	85
3270	Tannic Acid-Dependent Modulation of Selected Lactobacillus plantarum Traits Linked to Gastrointestinal Survival. PLoS ONE, 2013, 8, e66473.	2.5	28
3271	Bacterial Community Mapping of the Mouse Gastrointestinal Tract. PLoS ONE, 2013, 8, e74957.	2.5	363
3272	Patent Human Infections with the Whipworm, Trichuris trichiura, Are Not Associated with Alterations in the Faecal Microbiota. PLoS ONE, 2013, 8, e76573.	2.5	159
3273	MALDI-TOF Identification of the Human Gut Microbiome in People with and without Diarrhea in Senegal. PLoS ONE, 2014, 9, e87419.	2.5	50
3274	Characterisation of the Faecal Bacterial Community in Adult and Elderly Horses Fed a High Fibre, High Oil or High Starch Diet Using 454 Pyrosequencing. PLoS ONE, 2014, 9, e87424.	2.5	129
3275	Eukaryote Culturomics of the Gut Reveals New Species. PLoS ONE, 2014, 9, e106994.	2.5	69
3276	Rumen Bacterial Diversity of 80 to 110-Day-Old Goats Using 16S rRNA Sequencing. PLoS ONE, 2015, 10, e0117811.	2.5	98
3277	The Gut Microbiota of Wild Mice. PLoS ONE, 2015, 10, e0134643.	2.5	103
3278	Cloacal Microbiome Structure in a Long-Distance Migratory Bird Assessed Using Deep 16sRNA Pyrosequencing. PLoS ONE, 2015, 10, e0137401.	2.5	70
3279	Genome-Wide Association Studies of the Human Gut Microbiota. PLoS ONE, 2015, 10, e0140301.	2.5	228
3280	Whole Rye Consumption Improves Blood and Liver n-3 Fatty Acid Profile and Gut Microbiota Composition in Rats. PLoS ONE, 2016, 11, e0148118.	2.5	21
3281	Colonization of Beef Cattle by Shiga Toxin-Producing Escherichia coli during the First Year of Life: A Cohort Study. PLoS ONE, 2016, 11, e0148518.	2.5	43

#	Article	IF	CITATIONS
3282	Relative Importance and Additive Effects of Maternal and Infant Risk Factors on Childhood Asthma. PLoS ONE, 2016, 11, e0151705.	2.5	53
3283	Intestinal Microbiota and Microbial Metabolites Are Changed in a Pig Model Fed a High-Fat/Low-Fiber or a Low-Fat/High-Fiber Diet. PLoS ONE, 2016, 11, e0154329.	2.5	154
3284	Comparative Analysis of Gut Microbiota of Native Tibetan and Han Populations Living at Different Altitudes. PLoS ONE, 2016, 11, e0155863.	2.5	70
3285	Impact of Helminth Infections and Nutritional Constraints on the Small Intestine Microbiota. PLoS ONE, 2016, 11, e0159770.	2.5	60
3286	High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE, 2016, 11, e0160407.	2.5	22
3287	Comparison of the microbial population in rabbits and guinea pigs by next generation sequencing. PLoS ONE, 2017, 12, e0165779.	2.5	40
3288	Abundance profiling of specific gene groups using precomputed gut metagenomes yields novel biological hypotheses. PLoS ONE, 2017, 12, e0176154.	2.5	25
3289	Modulation of the gut microbiota by the mixture of fish oil and krill oil in high-fat diet-induced obesity mice. PLoS ONE, 2017, 12, e0186216.	2.5	55
3290	The abundance of health-associated bacteria is altered in PAH polluted soils—Implications for health in urban areas?. PLoS ONE, 2017, 12, e0187852.	2.5	52
3291	Impact of sanitary living environment on gut microbiota. Precision Medicine, 0, 3, .	0.5	2
3292	The Gut–Lung Axis in Respiratory Disease. Annals of the American Thoracic Society, 2015, 12, S150-S156.	3.2	416
3293	The Impact of Diet on Immunity and Respiratory Diseases. Annals of the American Thoracic Society, 2017, 14, S339-S347.	3.2	62
3294	Diet, Gut Microbiota and Obesity. Journal of Nutritional Health & Food Science, 2015, 3, 01-06.	0.3	4
3295	Correlation Between Stress, Immunity and Intestinal Microbiota. PediatriÄeskaâ Farmakologiâ, 2020, 17, 18-24.	0.4	12
3298	The temporal variations of gut microbiota composition in overwintering Hooded Crane (<i>Grus) Tj ETQq0 0 0 rg</i>	BT/Qverlc	ock 10 Tf 50 1
3300	Mental awareness improved mild cognitive impairment and modulated gut microbiome. Aging, 2020, 12, 24371-24393.	3.1	33
3301	Constructing personalized longitudinal holo'omes of colon cancer-prone humans and their modeling in flies and mice. Oncotarget, 2019, 10, 4224-4246.	1.8	9
3302	Gut Microbiota in Health and Diseases – A Review. International Journal of Current Microbiology and Applied Sciences, 2019, 8, 1586-1599.	0.1	15

#	Article	IF	CITATIONS
3304	Human microbial ecology and the rising new medicine. Annals of Translational Medicine, 2019, 7, 342-342.	1.7	18
3305	High relative abundance of firmicutes and increased TNF-α levels correlate with obesity in children. Salud Publica De Mexico, 2017, 60, 5.	0.4	29
3306	Bacterial Microbiota and Fatty Acids in the Faeces of Overweight and Obese Children. Polish Journal of Microbiology, 2018, 67, 339-345.	1.7	41
3307	The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome. Current Medicinal Chemistry, 2019, 26, 3567-3583.	2.4	74
3308	Impact of Prebiotics on Enteric Diseases and Oxidative Stress. Current Pharmaceutical Design, 2020, 26, 2630-2641.	1.9	11
3309	Alternative Therapy in the Prevention of Experimental and Clinical Inflammatory Bowel Disease. Impact of Regular Physical Activity, Intestinal Alkaline Phosphatase and Herbal Products. Current Pharmaceutical Design, 2020, 26, 2936-2950.	1.9	7
3310	Gastrointestinal Interaction between Dietary Amino Acids and Gut Microbiota: With Special Emphasis on Host Nutrition. Current Protein and Peptide Science, 2020, 21, 785-798.	1.4	26
3311	Reciprocity in Microbiome and Immune System Interactions and its Implications in Disease and Health. Inflammation and Allergy: Drug Targets, 2014, 13, 94-104.	1.8	25
3312	Fermented Foods: Patented Approaches and Formulations for Nutritional Supplementation and Health Promotion. Recent Patents on Food, Nutrition & Agriculture, 2012, 4, 134-140.	0.9	82
3313	The microbiome of urban waters. International Microbiology, 2015, 18, 141-9.	2.4	51
3314	Intestinal microbiota, obesity and prebiotics. Polish Journal of Microbiology, 2015, 64, 93-100.	1.7	35
3314 3315	Intestinal microbiota, obesity and prebiotics. Polish Journal of Microbiology, 2015, 64, 93-100. Changing Incidence of Inflammatory Bowel Disease: Environmental Influences and Lessons Learnt from the South Asian Population. Frontiers in Pediatrics, 2013, 1, 34.	1.7	35 26
	Changing Incidence of Inflammatory Bowel Disease: Environmental Influences and Lessons Learnt		
3315	Changing Incidence of Inflammatory Bowel Disease: Environmental Influences and Lessons Learnt from the South Asian Population. Frontiers in Pediatrics, 2013, 1, 34. Ethnic Differences Shape the Alpha but Not Beta Diversity of Gut Microbiota from School Children in	1.9	26
3315 3316	Changing Incidence of Inflammatory Bowel Disease: Environmental Influences and Lessons Learnt from the South Asian Population. Frontiers in Pediatrics, 2013, 1, 34. Ethnic Differences Shape the Alpha but Not Beta Diversity of Gut Microbiota from School Children in the Absence of Environmental Differences. Microorganisms, 2020, 8, 254. Sex-Specific Changes in Gut Microbiome Composition following Blueberry Consumption in C57BL/6J	1.9 3.6	26 17
3315 3316 3317	Changing Incidence of Inflammatory Bowel Disease: Environmental Influences and Lessons Learnt from the South Asian Population. Frontiers in Pediatrics, 2013, 1, 34. Ethnic Differences Shape the Alpha but Not Beta Diversity of Gut Microbiota from School Children in the Absence of Environmental Differences. Microorganisms, 2020, 8, 254. Sex-Specific Changes in Gut Microbiome Composition following Blueberry Consumption in C57BL/6J Mice. Nutrients, 2019, 11, 313.	1.9 3.6 4.1	26 17 27
3315 3316 3317 3318	Changing Incidence of Inflammatory Bowel Disease: Environmental Influences and Lessons Learnt from the South Asian Population. Frontiers in Pediatrics, 2013, 1, 34. Ethnic Differences Shape the Alpha but Not Beta Diversity of Gut Microbiota from School Children in the Absence of Environmental Differences. Microorganisms, 2020, 8, 254. Sex-Specific Changes in Gut Microbiome Composition following Blueberry Consumption in C57BL/6J Mice. Nutrients, 2019, 11, 313. Opportunities to assess factors contributing to the development of the intestinal microbiota in infants living in developing countries. Microbial Ecology in Health and Disease, 2015, 26, 28316.	1.9 3.6 4.1 3.5	26 17 27 15

#	Article	IF	CITATIONS
3322	Exploring the food-gut axis in immunotherapy response of cancer patients. World Journal of Gastroenterology, 2020, 26, 4919-4932.	3.3	17
3323	Gut microbiota related to Giardia duodenalis, Entamoeba spp. and Blastocystis hominis infections in humans from Côte d'Ivoire. Journal of Infection in Developing Countries, 2016, 10, 1035-1041.	1.2	89
3324	Diet, microbiota, and inflammatory bowel disease: lessons from Japanese foods. Korean Journal of Internal Medicine, 2014, 29, 409.	1.7	36
3325	Healthy effects of prebiotics and their metabolites against intestinal diseases and colorectal cancer. AIMS Microbiology, 2015, 1, 48-71.	2.2	30
3326	Metabolism of Rutin and Poncirin by Human Intestinal Microbiota and Cloning of Their Metabolizing ²i¿¼²-L-Rhamnosidase from Bifidobacterium dentium. Journal of Microbiology and Biotechnology, 2015, 25, 18-25.	2.1	78
3327	Gut Microbiota Community and Its Assembly Associated with Age and Diet in Chinese Centenarians. Journal of Microbiology and Biotechnology, 2015, 25, 1195-1204.	2.1	125
3328	Oral Administration of ¥ Glucan and Lactobacillus plantarum Alleviates Atopic Dermatitis-Like Symptoms. Journal of Microbiology and Biotechnology, 2019, 29, 1693-1706.	2.1	28
3329	Traditional African Foods and Their Potential to Contribute to Health and Nutrition. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 320-346.	0.4	5
3330	Cross Talk Between Functional Foods and Gut Health. Health Information Systems and the Advancement of Medical Practice in Developing Countries, 0, , 195-216.	0.1	1
3331	Structure elucidation and anti-tumor activities of water-soluble oligosaccharides from Lactarius deliciosus (L. ex Fr.) Gray. Pharmacognosy Magazine, 2015, 11, 716.	0.6	11
3332	Faecal microbiota of healthy adults in south India: Comparison of a tribal & a rural population. Indian Journal of Medical Research, 2017, 145, 237-246.	1.0	10
3333	Prebiotics and Probiotics within the Framework of the Hologenome Concept. Journal of Microbial & Biochemical Technology, 2011, s1, .	0.2	4
3334	Role of Gut-Brain Axis in the Aetiology of Neurodevelopmental Disorders with Reference to Autism. , 2012, 01, .		6
3335	Personalized Probiotics Based on Phenotypes and Dietary Habit: A Critical Evaluation. Journal of Probiotics & Health, 2018, 06, .	0.6	2
3336	Artificial Sweeteners as a Cause of Obesity: Weight Gain Mechanisms and Current Evidence. Health, 2018, 10, 700-717.	0.3	10
3337	Impact of Small Intestine Bacterial Overgrowth on Response to a Nutritional Intervention in Bangladeshi Children from an Urban Community. American Journal of Tropical Medicine and Hygiene, 2019, 100, 222-225.	1.4	5
3338	Interactions between Parasitic Infections and the Human Gut Microbiome in Odisha, India. American Journal of Tropical Medicine and Hygiene, 2019, 100, 1486-1489.	1.4	14
3339	Effect of Dietary Carbohydrate Restriction on an Obesity-Related Prevotella-Dominated Human Fecal Microbiota. Metagenomics (Cairo, Egypt), 2013, 2, 1-4.	1.2	19

		CITATION R	EPORT	
#	Article		IF	CITATIONS
3340	Dietary Factors: Major Regulators of the Gut's Microbiota. Gut and Liver, 2012, 6, 411-	416.	2.9	146
3341	Gastrointestinal tract microbiota modifications in systemic sclerosis. European Journal Rheumatology, 2020, 7, 228-236.	of	0.6	14
3342	Physiological, antimicrobial, intestine morphological, and immunological effects of fructooligosaccharides in pigs. Archives Animal Breeding, 2020, 63, 325-335.		1.4	20
3343	Role of Intestinal Microbiota in Inflammatory Bowel Diseases. Intestinal Research, 2013	, 11, 161.	2.6	3
3344	Relationship between diet and prevalence of depression among Korean adults: Korea N and Nutrition Examination Survey 2010. Journal of Agricultural Medicine and Communi 41, 75-84.	ational Health ty Health, 2016,	0.2	8
3346	Effects of husbandry systems and Chinese indigenous chicken strain on cecum microbi Asian-Australasian Journal of Animal Sciences, 2020, 33, 1610-1616.	al diversity.	2.4	3
3347	Effects of Different Modes of Delivery and Feeding on Intestinal Flora of Newborns and Different Ages. Iranian Journal of Pediatrics, 2019, 29, .	Infants with	0.3	5
3348	Differences in the Biodiversity of the Fecal Microbiota of Infants With Rotaviral Diarrhe. Infants. Jundishapur Journal of Microbiology, 2016, 9, e32356.	a and Healthy	0.5	7
3349	Enterotype Variations of the Healthy Human Gut Microbiome in Different Geographical Bioinformation, 2018, 14, 560-573.	Regions.	0.5	65
3350	Type 2 diabetes mellitus-related environmental factors and the gut microbiota: emergir challenges. Clinics, 2020, 75, e1277.	ng evidence and	1.5	25
3351	Child development, growth and microbiota: follow-up of a randomized education trial in Journal of Global Health, 2019, 9, 010431.	n Uganda.	2.7	15
3352	Child development, growth and microbiota: follow-up of a randomized education trial in Journal of Global Health, 2019, 9, .	n Uganda.	2.7	25
3353	Delivery by caesarean section and risk of childhood obesity: analysis of a Peruvian pros PeerJ, 2015, 3, e1046.	pective cohort.	2.0	19
3354	Distinct patterns in the gut microbiota after surgical or medical therapy in obese patier 5, e3443.	its. PeerJ, 2017,	2.0	85
3355	The microbes we eat: abundance and taxonomy of microbes consumed in a day's w three diet types. PeerJ, 2014, 2, e659.	orth of meals for	2.0	85
3356	Comparison of the fecal microbiota of two free-ranging Chinese subspecies of the leop (<i>Panthera pardus</i>) using high-throughput sequencing. PeerJ, 2019, 7, e6684.	ard	2.0	18
3357	Captivity causes taxonomic and functional convergence of gut microbial communities 2019, 7, e6844.	in bats. PeerJ,	2.0	21
3358	Host dietary specialization and neutral assembly shape gut bacterial communities of wi PeerJ, 2019, 7, e8058.	ld dragonflies.	2.0	19

#	Article	IF	CITATIONS
3359	Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing. PeerJ, 2020, 8, e8317.	2.0	74
3360	Altered gut microbiota associated with symptom severity in schizophrenia. PeerJ, 2020, 8, e9574.	2.0	59
3361	A clinical primer of the role of gut microbiome in health and disease. Tropical Gastroenterology: Official Journal of the Digestive Diseases Foundation, 2015, 36, 1-13.	0.0	9
3362	Overview on Human Gut Microbiome and its Role in Immunomodulation. , 2021, , 69-82.		2
3363	Multispecies probiotics alter fecal short-chain fatty acids and lactate levels in weaned pigs by modulating gut microbiota. Journal of Animal Science and Technology, 2021, 63, 1142-1158.	2.5	35
3364	Risk Factors for Gut Dysbiosis in Early Life. Microorganisms, 2021, 9, 2066.	3.6	25
3365	The East Asian gut microbiome is distinct from colocalized White subjects and connected to metabolic health. ELife, 2021, 10, .	6.0	25
3366	<i>Helicobacter pylori</i> and the intestinal microbiome among healthy schoolâ€age children. Helicobacter, 2021, 26, e12854.	3.5	14
3367	Bacterial metabolites and cardiovascular risk in children with chronic kidney disease. Molecular and Cellular Pediatrics, 2021, 8, 17.	1.8	3
3368	Migration effects on the intestinal microbiota of Tibetans. PeerJ, 2021, 9, e12036.	2.0	4
3369	The Role of Microbiota in Infant Health: From Early Life to Adulthood. Frontiers in Immunology, 2021, 12, 708472.	4.8	87
3370	The Native Dietary Habits of the Two Sympatric Bee Species and Their Effects on Shaping Midgut Microorganisms. Frontiers in Microbiology, 2021, 12, 738226.	3.5	3
3372			
	Dietary grape pomace – effects on growth performance, intestinal health, blood parameters, and breast muscle myopathies of broiler chickens. Poultry Science, 2022, 101, 101519.	3.4	22
3373	 Dietary grape pomace – effects on growth performance, intestinal health, blood parameters, and breast muscle myopathies of broiler chickens. Poultry Science, 2022, 101, 101519. Fecal biomarkers of environmental enteric dysfunction and the gut microbiota of rural Malawian children: An observational study. Heliyon, 2021, 7, e08194. 	3.4 3.2	22 6
3373 3374	breast muscle myopathies of broiler chickens. Poultry Science, 2022, 101, 101519. Fecal biomarkers of environmental enteric dysfunction and the gut microbiota of rural Malawian		
	breast muscle myopathies of broiler chickens. Poultry Science, 2022, 101, 101519. Fecal biomarkers of environmental enteric dysfunction and the gut microbiota of rural Malawian children: An observational study. Heliyon, 2021, 7, e08194. Effects of Lactic Acid Bacteria Isolated from Equine on Salmonella-Infected Gut Mouse Model.	3.2	6
3374	breast muscle myopathies of broiler chickens. Poultry Science, 2022, 101, 101519. Fecal biomarkers of environmental enteric dysfunction and the gut microbiota of rural Malawian children: An observational study. Heliyon, 2021, 7, e08194. Effects of Lactic Acid Bacteria Isolated from Equine on Salmonella-Infected Gut Mouse Model. Probiotics and Antimicrobial Proteins, 2023, 15, 469-478. A versatile genetic toolbox for <i>Prevotella copri</i>	3.2 3.9	6

#	Article	IF	CITATIONS
3378	Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnology and Genetic Engineering Reviews, 2021, 37, 105-153.	6.2	18
3379	Nurturing the Early Life Gut Microbiome and Immune Maturation for Long Term Health. Microorganisms, 2021, 9, 2110.	3.6	34
3380	Western and non-western gut microbiomes reveal new roles of Prevotella in carbohydrate metabolism and mouth–gut axis. Npj Biofilms and Microbiomes, 2021, 7, 77.	6.4	28
3381	Inverse associations between food diversity in the second year of life and allergic diseases. Annals of Allergy, Asthma and Immunology, 2022, 128, 39-45.	1.0	13
3382	Effect of Fiber and Fecal Microbiota Transplantation Donor on Recipient Mice Gut Microbiota. Frontiers in Microbiology, 2021, 12, 757372.	3.5	6
3383	Ecology impacts the decrease of Spirochaetes and Prevotella in the fecal gut microbiota of urban humans. BMC Microbiology, 2021, 21, 276.	3.3	16
3384	An Intervention With Michigan-Grown Wheat in Healthy Adult Humans to Determine Effect on Gut Microbiota: Protocol for a Crossover Trial. JMIR Research Protocols, 2021, 10, e29046.	1.0	0
3385	FiberGrowth Pipeline: A Framework Toward Predicting Fiber-Specific Growth From Human Gut Bacteroidetes Genomes. Frontiers in Microbiology, 2021, 12, 632567.	3.5	1
3386	Treponema peruense sp. nov., a commensal spirochaete isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	10
3387	Gut microbiota: a potential target for traditional Chinese medicine intervention in coronary heart disease. Chinese Medicine, 2021, 16, 108.	4.0	10
3388	Shaping the gut microbiota by bioactive phytochemicals: An emerging approach for the prevention and treatment of human diseases. Biochimie, 2022, 193, 38-63.	2.6	18
3389	Vegetarian diet duration's influence on women's gut environment. Genes and Nutrition, 2021, 16, 16.	2.5	3
3390	Effect of Electroacupuncture on Gut Microbiota in Participants With Knee Osteoarthritis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 597431.	3.9	14
3391	The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist – from fundamentals to future challenges. Free Radical Biology and Medicine, 2021, 176, 265-285.	2.9	27
3392	Efficacy and safety of a gut health product (Actbiome) prepared by incorporation of asafoetida-curcumin complex onto the turmeric dietary fiber in the management of gut health and intestinal microflora in healthy subjects: A randomized, double-blind, placebo controlled study. Bioactive Carbohydrates and Dietary Fibre, 2021, 26, 100280.	2.7	3
3393	Impact of Intestinal Microbial Communities upon Health. , 2012, , 243-252.		2
3394	A Role for Bacteria in the Development of Autoimmunity for Type 1 Diabetes. , 2012, , 231-242.		0
3395	Gut Microbiota - "Lost in Immune Tolerance― , 0, , .		0

	CITATION RE	PORT	
#	Article	IF	CITATIONS
3396	Gut bacteria and skin health. Human Health Handbooks, 2012, , 26-43.	0.1	0
3397	The Effect of Diet on Gut Microbiota in Humans Living in Different Environments: A Metagenomic Approach. Advances in Microbial Ecology, 2012, , 279-294.	0.1	0
3398	Immune Homeostasis of the Gut. , 2012, , 125-147.		0
3399	Comparison of broiler performance, carcass yields and intestinal microflora when fed diets containing transgenic (Mon-40-3-2) and conventional soybean meal. African Journal of Biotechnology, 2012, 11, .	0.6	2
3400	Use of Cellulose and Recent Research into Butyrate. Journal of Life Science, 2012, 22, 1571-1586.	0.2	7
3401	Prebiotics, Probiotics, Synbiotics, and Phage Therapy. , 2013, , 151-167.		0
3402	Factors That Affect Amino Acid Metabolism in Pigs. , 2013, , 123-140.		0
3404	Where Environmental Policy Is Social Policy: Nature, Food, Society, and Metabolic Processes. , 2013, , 11-22.		0
3405	Microbial Exposures and Other Early Childhood Influences on the Subsequent Function of the Immune System. , 2013, , 331-362.		1
3406	Insights into the Roles of Prebiotics and Probiotics in the Large Intestine. Journal of Life Science, 2013, 23, 1295-1303.	0.2	2
3407	The Role of Diet and Nutrition in Ulcerative Colitis. , 2014, , 405-411.		0
3408	Intestinal Microbiota: A Big World of Evolving Knowledge. Clinical Microbiology (Los Angeles, Calif), 2014, 03, .	0.2	0
3410	FEATURES OF THE INTESTINAL MICROBIOTA IN PATIENTS WITH CHRONIC OBSTRUCTIVE PULMONARY DISEASE. Bulletin of Siberian Medicine, 2014, 13, 55-61.	0.3	1
3411	The Microbiome and Diet: Friend or Foe in the Future Treatment of Inflammatory Bowel Disease?. Clinical Microbiology (Los Angeles, Calif), 2015, 04, .	0.2	0
3412	Gut Microbiome, Obesity and Metabolic Syndrome. , 2015, , 1-14.		2
3413	Gut Microbiome in the Critically Ill. , 2015, , 169-184.		0
3417	Nutrition Management in Childhood Kidney Disease: An Integrative and Lifecourse Approach. , 2016, , 341-360.		1
3418	The Gut-Brain Axis: The Role of the Gut in Brain Health. , 2015, , 15-30.		0

#	Article	IF	Citations
3419	Modulation of Gut Microbiota: Potential Mechanism of Diabetes Remission after Bariatric/Metabolic Surgery. Journal of Metabolic and Bariatric Surgery, 2015, 4, 29-34.	0.6	0
3420	Interaction between the Microbiome and Diet: The Hologenome Concept. Journal of Nutrition & Food Sciences, 2016, 06, .	1.0	3
3421	The Interaction of Diet, Microbiota, and Antimicrobial Peptides in the Gastrointestinal Ecosystem. Niche Journal, 2016, 3, 28-32.	0.4	1
3422	Mutations by Next Generation Sequencing in Stool DNA from Colorectal Carcinoma Patients – A Literature Review and our Experience with this Methodology. Journal of Analytical Oncology, 2016, 5, 24-32.	0.1	1
3423	Nutritional Supports in Patients with Inflammatory Bowel Disease. Journal of Clinical Nutrition, 2016, 8, 11-18.	0.2	2
3426	Chronic kidney disease: pathophysiological role of dysbiosis of intestine and renoprotective effectiveness of interventions concerning its modulation. Rossiiskii Meditsinskii Zhurnal: Organ Ministerstva Zdravookhraneniia RSFSR, 2016, 22, 157-162.	0.1	1
3427	GI Disease Nutrition Management: Inflammatory Bowel Disease. , 2016, , 43-55.		0
3429	Chapter 8 Nondigestible Carbohydrates Nutritional Aspects. , 2016, , 333-376.		0
3430	Digestive System Dysfunction: Dietary Interventions. Functional Foods & Nutraceuticals Series, 2016, , 118-132.	0.1	0
3431	Diet-Induced Alteration of the Murine Intestinal Microbiome Following Antibiotic Ablation. Advances in Microbiology, 2017, 07, 545-564.	0.6	3
3432	Hirschsprung-Associated Enterocolitis. , 2017, , 1-13.		0
3433	NMR-Based Metabolomics: The Foodome and the Assessment of Dietary Exposure as a Key Step to Evaluate the Effect of Diet on Health. , 2017, , 1-21.		1
3434	Dietary Therapies for Inflammatory Bowel Disease. , 2017, , 473-483.		1
3436	Dynamism and diversity of human gut microbial community . Japanese Journal of Lactic Acid Bacteria, 2017, 28, 74-83.	0.1	0
3438	Targeting the Gut Microbiome to Ameliorate Cardiovascular Diseases. Biomedical Science Letters, 2017, 23, 166-174.	0.3	0
3439	24. Heart health and microorganisms: the unexpected beat. Human Health Handbooks, 2017, , 511-531.	0.1	0
3440	Gut Microbiota in Elderly's Health. , 2018, , 1-32.		0
3443	The Microbiota and Energy Balance. Endocrinology, 2018, , 1-18.	0.1	0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
3444	Gut Microbiome and Its Potential Role in Obesity. Journal of Restorative Medicine, 201	7, 6, 46-52.	0.6	0
3445	The state of gut microbiota and clinical-metabolic features in children with overweight Russian Journal of Evidence-Based Gastroenterology, 2018, 7, 4.	and obesity.	0.4	2
3446	A Case Study on the Relationship between Fitness Intensity and Dietary Pattern to Inte Health, 2018, 10, 1037-1043.	estinal Flora.	0.3	0
3449	Study of the Gut Enterotypes in Egyptian Children with Autism Spectrum Disorder. Mic Research Journal International, 2018, 23, 1-9.	crobiology	0.2	0
3450	Possibilities of therapeutic manipulation of the gut microbiota. Vnitrni Lekarstvi, 2018	, 64, 665-671.	0.2	4
3452	Role of Dietary Pattern on the Microbial Diversity in the Gut of the Experimental Mice. of Engineering and Applied Technology, 2018, 7, 106-109.	Asian Journal	0.1	0
3454	Altered Profile of Fecal Microbiota of Patients with Colon Diverticulitis. Juntendo Medio 2019, 65, 378-384.	cal Journal,	0.1	1
3456	Gut Microbiota in Elderly's Health. , 2019, , 2607-2638.			0
3457	A Review of the Relationship Between Gut Microbiota and Memory. , 2019, , 151-165.			1
3458	The Disappearing Microbiota: Diseases of the Western Civilization. , 2019, , 325-347.			1
3459	Gut Microbiota and Health: Understanding the Role of Diet. Food and Nutrition Scienc 10, 1344-1373.	es (Print), 2019,	0.4	4
3460	Diet, Gut Microbiome and Multiple Sclerosis. RSC Drug Discovery Series, 2019, , 302-3	26.	0.3	0
3461	"We Are What We Eat― How Diet Impacts the Gut Microbiota in Adulthood. , 20.	19, , 259-283.		1
3462	Cross Talk Between Functional Foods and Gut Health. , 2019, , 330-351.			0
3465	Human microbiome as a source of folate modifiable by nutritional and non-nutritional Pomeranian Journal of Life Sciences, 2019, 65, 69-77.	factors.	0.1	0
3469	Aşılar ve Mikrobiyota. Turkish Journal of Pediatric Disease, 0, , 1-14.		0.0	0
3472	Helminths and intestinal microbiota interaction: role in the development of noncommu diseases. Bulletin of Siberian Medicine, 2019, 18, 214-225.	unicable	0.3	1
3475	Pets and Immunomodulation. , 2020, , 209-243.			0

# 3476	ARTICLE Dietary Considerations in Myositis. , 2020, , 335-344.	IF	Citations 0
3477	Intestinal microbiome and 2 type diabetes mellitus. Ukrainian Therapeutical Journal, 2019, .	0.0	0
3478	Microbiome and Cellular Players in Type 1 Diabetes: From Pathogenesis to Protection. , 2020, , 161-227.		0
3480	Influence of diet on the gut microbiota. Journal of Education, Health and Sport, 2020, 10, 33.	0.1	1
3482	Polifenollerin Bağırsak Mikrobiyota Kompozisyonunu Düzenleyici ve Nöroprotektif Etkileri. Akademik Gıda, 0, , 190-208.	0.8	2
3483	Intestinal microbiota and allergic diseases. Jurnal Infektologii, 2020, 12, 19-29.	0.3	0
3484	Intestinal microbiota in children with obesity. Role of probiotics. Meditsinskiy Sovet, 2020, , 134-142.	0.5	1
3486	Nutritional Management of Paediatric Crohn's Disease. European Medical Journal (Chelmsford,) Tj ETQq1 1 (0.784314	rgBT /Overloc
3487	Positive Influence of a Probiotic Mixture on the Intestinal Morphology and Microbiota of Farmed Guinea Fowls (Numida meleagris). Frontiers in Veterinary Science, 2021, 8, 743899.	2.2	1
3488	Effect of Gut Microbial Enterotypes on the Association between Habitual Dietary Fiber Intake and Insulin Resistance Markers in Mexican Children and Adults. Nutrients, 2021, 13, 3892.	4.1	6
3489	Dietary Fat Effect on the Gut Microbiome, and Its Role in the Modulation of Gastrointestinal Disorders in Children with Autism Spectrum Disorder. Nutrients, 2021, 13, 3818.	4.1	6
3490	Gut Microbiota, Glucose, Lipid, and Water-Electrolyte Metabolism in Children With Nonalcoholic Fatty Liver Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 683743.	3.9	30
3491	Characterization of the gut microbiome in a porcine model of thoracic spinal cord injury. BMC Genomics, 2021, 22, 775.	2.8	12
3492	Modulation of human gut microbiota composition and metabolites by arabinogalactan and Bifidobacterium longum subsp. longum BB536 in the Simulator of the Human Intestinal Microbial Ecosystem (SHIMEÄ®). Journal of Functional Foods, 2021, 87, 104820.	3.4	8
3493	The Gut Microbiome: Human Health and Inflammatory Skin Diseases. Annals of Dermatology, 2020, 32, 265.	0.9	11
3494	Biobased Materials for Medical Applications. , 2021, , 139-193.		1
3495	Sámi Gastronomy: the Role of Traditional Knowledge. Journal of Gastronomy and Tourism, 2020, 5, 33-49.	0.8	4
3496	The gut microbiota in the common kestrel (<i>Falco tinnunculus</i>): a report from the Beijing Raptor Rescue Center. PeerJ, 2020, 8, e9970.	2.0	9

	CITATIO	on Report	
#	Article	IF	CITATIONS
3499	Ulcerative colitis in the postpartum period. Autopsy and Case Reports, 2020, 10, e2020187.	0.6	3
3500	Hirschsprung-Associated Enterocolitis. , 2020, , 1031-1043.		0
3501	Gut Microbiota and Health. , 2020, , 31-79.		0
3502	Harnessing Soil Microbiomes for Creating Healthy and Functional Urban Landscapes. , 2020, , 325-338.		1
3503	Etiopathogenesis of NAFLD: Diet, Gut, and NASH. , 2020, , 73-95.		0
3504	Gut Microbiome and Its Role in Enteric Infections with Microbial Pathogens. , 2020, , 187-208.		0
3505	Biome depletion hypothesis and ulcerative colitis $\hat{a} \in$ " is there connection?. Profilakticheskaya Meditsina, 2020, 23, 52.	0.6	0
3506	Determinants of the Gut Microbiota. , 2020, , 19-62.		0
3507	Allergie, Mikrobiom und weitere epigenetische Faktoren. , 2020, , 47-118.		0
3508	Gut Microbiota enabled Goitered Gazelle (Gazella subgutturosa) to Adapt to Seasonal Changes. Pakistan Journal of Zoology, 2020, 52, .	0.2	3
3509	The Microbiome in Liver Diseases. , 2020, , 205-210.		0
3510	Traditional African Foods and Their Potential to Contribute to Health and Nutrition. , 2020, , 268-294.		0
3514	Interactions between fecal gut microbiome, enteric pathogens, and energy regulating hormones among acutely malnourished rural Gambian children. EBioMedicine, 2021, 73, 103644.	6.1	12
3515	The Potential Utility of Prebiotics to Modulate Alzheimer's Disease: A Review of the Evidence. Microorganisms, 2021, 9, 2310.	3.6	15
3516	The Interplay between the Host Microbiome and Pathogenic Viral Infections. MBio, 2021, 12, e0249621.	4.1	11
3517	Prevalence of Chronic Diseases and Alterations of Gut Microbiome in People of Ningxia China During Urbanization: An Epidemiological Survey. Frontiers in Cellular and Infection Microbiology, 2021, 11, 707402.	3.9	9
3518	Targeting DNA Methylation in the Adult Brain through Diet. Nutrients, 2021, 13, 3979.	4.1	25
3520	Exploration of Relationships among Clinical Gastrointestinal Indicators and Social and Sensory Symptom Severity in Children with Autism Spectrum Disorder. Pediatric Reports, 2021, 13, 594-604.	1.3	1

#	Article	IF	CITATIONS
3524	Prebiotics, Probiotics, Synbiotics, and Phage Therapy. , 2013, , 151-167.		0
3525	Abundance and Diversity of Microbiota. , 2013, , 23-40.		1
3526	Variation in Holobionts. , 2013, , 81-94.		1
3527	Dietary intake of tyrosine and phenylalanine, and p-cresyl sulfate plasma levels in non-dialyzed patients with chronic kidney disease. Jornal Brasileiro De Nefrologia: Orgao Oficial De Sociedades Brasileira E Latino-Americana De Nefrologia, 2020, 42, 307-314.	0.9	2
3529	Composition and metabolic activity of the gut microbiota in obese children and adolescents. Sibirskij žurnal KliniÄeskoj I Ã~ksperimentalʹnoj Mediciny, 2020, 35, 38-46.	0.4	2
3530	Gut Microbiome: The Third Musketeer in the Cancer-Immune System Cross-Talk. Journal of Pancreatology, 2020, 3, 181-187.	0.9	3
3531	Gut microbiota and metabolic syndrome. Eksperimental'naya I Klinicheskaya Gastroenterologiya, 2020, 183, 11-19.	0.4	4
3532	Shaping the (auto)immune response in the gut: the role of intestinal immune regulation in the prevention of type 1 diabetes. American Journal of Clinical and Experimental Immunology, 2013, 2, 156-71.	0.2	24
3533	Traditional food & modern lifestyle: impact of probiotics. Indian Journal of Medical Research, 2014, 140, 333-5.	1.0	7
3536	Ancient Diet: Gut Microbiota, Immunity, and Health. Yale Journal of Biology and Medicine, 2018, 91, 177-184.	0.2	11
3537	The microbiome: an emerging key player in aging and longevity. Translational Medicine of Aging, 2020, 4, 103-116.	1.3	23
3538	A Complementary Approach in the Analysis of the Human Gut Microbiome Applying Self-organizing Maps and Random Forest. Communications in Computer and Information Science, 2021, , 97-110.	0.5	0
3539	Riddle of Herd Immunity in SARS-CoV-2-Induced Viral Terrorism: Science to Society. , 2022, , 51-71.		0
3540	Biodiversity of the intestinal microbiota of black tiger prawn, Penaeus monodon, increases with age and is only transiently impacted by major ingredient replacement in the diet. Aquaculture Reports, 2022, 22, 100948.	1.7	0
3541	Role of <i>Bifidobacterium</i> spp. intake in improving depressive mood and well-being and its link to kynurenine blood level: an interventional study. Journal of Complementary and Integrative Medicine, 2023, 20, 223-232.	0.9	5
3542	The Spanish gut microbiome reveals links between microorganisms and Mediterranean diet. Scientific Reports, 2021, 11, 21602.	3.3	12
3543	Gut–Lung Axis: Microbial Crosstalk in Pediatric Respiratory Tract Infections. Frontiers in Immunology, 2021, 12, 741233.	4.8	13
3544	Is Colectomy Associated with the Risk of Type 2 Diabetes in Patients without Colorectal Cancer? A Population-Based Cohort Study. Journal of Clinical Medicine, 2021, 10, 5313.	2.4	3

#	Article	IF	CITATIONS
3545	Thyroid and Gut Microbiome. International Journal of Thyroidology, 2021, 14, 117-126.	0.1	0
3546	Fatty acid metabolism and acyl-CoA synthetases in the <i>liver-gut axis</i> . World Journal of Hepatology, 2021, 13, 1512-1533.	2.0	12
3547	Seasonal diets supersede host species in shaping the distal gut microbiota of Yaks and Tibetan sheep. Scientific Reports, 2021, 11, 22626.	3.3	5
3548	The Use of Ascophyllum nodosum and Bacillus subtilis C-3102 in the Management of Canine Chronic Inflammatory Enteropathy: A Pilot Study. Animals, 2021, 11, 3417.	2.3	5
3549	Effects of Management, Dietary Intake, and Genotype on Rumen Morphology, Fermentation, and Microbiota, and on Meat Quality in Yaks and Cattle. Frontiers in Nutrition, 2021, 8, 755255.	3.7	17
3550	Which Microbes Like My Diet and What Does It Mean for My Heart?. Nutrients, 2021, 13, 4146.	4.1	3
3551	A calorie-restricted diet enriched with tree nuts and peanuts reduces the expression of CX3CR1 in peripheral blood mononuclear cells in patients with coronary artery disease. International Journal for Vitamin and Nutrition Research, 2021, , .	1.5	0
3552	The Microbiota in Systemic Lupus Erythematosus: An Update on the Potential Function of Probiotics. Frontiers in Pharmacology, 2021, 12, 759095.	3.5	12
3553	Gut microbiome status of urban and rural Filipino adults in relation to diet and metabolic disorders. FEMS Microbiology Letters, 2021, 368, .	1.8	3
3554	Microbiota, Bacterial Carbonic Anhydrases, and Modulators of Their Activity: Links to Human Diseases?. Mediators of Inflammation, 2021, 2021, 1-13.	3.0	15
3555	Dietary Regulation of Gut-Brain Axis in Alzheimer's Disease: Importance of Microbiota Metabolites. Frontiers in Neuroscience, 2021, 15, 736814.	2.8	24
3556	Mars: new insights and unresolved questions. International Journal of Astrobiology, 2021, 20, 394-426.	1.6	19
3557	On the Verge of a Catastrophic Collapse? The Need for a Multi-Ecosystem Approach to Microbiome Studies. Frontiers in Microbiology, 2021, 12, 784797.	3.5	15
3558	Effects of florfenicol exposure during early life on toxicity, gut microbiota, and fecal metabolome in SD rats. Ecotoxicology and Environmental Safety, 2021, 228, 113038.	6.0	3
3559	Fungal allergic sensitisation in young rural Zimbabwean children: Gut mycobiome and seroreactivity characteristics. Current Research in Microbial Sciences, 2021, 2, 100082.	2.3	2
3560	Bacterial Gut Microbiota and Infections During Early Childhood. Frontiers in Microbiology, 2021, 12, 793050.	3.5	11
3561	Intestinal Taxa Abundance and Diversity in Inflammatory Bowel Disease Patients: An Analysis including Covariates and Confounders. Nutrients, 2022, 14, 260.	4.1	21
3562	Plant polysaccharides utilized by gut microbiota: New players in ameliorating cognitive impairment. Journal of Traditional and Complementary Medicine, 2023, 13, 128-134.	2.7	8

#	Article	IF	CITATIONS
3563	Strategies for the treatment of colorectal cancer caused by gut microbiota. Life Sciences, 2022, 290, 120202.	4.3	6
3564	Food obesogens as emerging metabolic disruptors; A toxicological insight. Journal of Steroid Biochemistry and Molecular Biology, 2022, 217, 106042.	2.5	3
3565	Intestinal microbiota at functional intestinal disorders and celiac disease. Modern Gastroenterology, 2020, .	0.1	0
3568	Electroacupuncture improves metabolic and ovarian function in a rat model of polycystic ovary syndrome by decreasing white adipose tissue, increasing brown adipose tissue, and modulating the gut microbiota. Acupuncture in Medicine, 2022, 40, 347-359.	1.0	7
3569	Alterations in the Gut Microbial Composition and Diversity of Tibetan Sheep Infected With Echinococcus granulosus. Frontiers in Veterinary Science, 2021, 8, 778789.	2.2	8
3570	Dyspepsia and Gut Microbiota in Female Patients with Postcholecystectomy Syndrome. International Journal of Women's Health, 2022, Volume 14, 41-56.	2.6	8
3571	Fecal and soil microbiota composition of gardening and non-gardening families. Scientific Reports, 2022, 12, 1595.	3.3	8
3572	Vegan Diet Is Associated With Favorable Effects on the Metabolic Performance of Intestinal Microbiota: A Cross-Sectional Multi-Omics Study. Frontiers in Nutrition, 2021, 8, 783302.	3.7	14
3573	Stress responses of the intestinal digestion, antioxidant status, microbiota and non-specific immunity in Songpu mirror carp (Cyprinus carpio L.) under starvation. Fish and Shellfish Immunology, 2022, 120, 411-420.	3.6	10
3574	Farklı Beslenme Şekilleri ve İntestinal Mikrobiyota. , 0, , 164-170.		0
3575	Butyl-fructooligosaccharides modulate gut microbiota in healthy mice and ameliorate ulcerative colitis in a DSS-induced model. Food and Function, 2022, 13, 1834-1845.	4.6	7
3576	Gut microbiome profiles in Thai healthy pregnant women and its association with types of foods. BMC Pregnancy and Childbirth, 2022, 22, 79.	2.4	4
3577	Intestinal Inflammation and Alterations in the Gut Microbiota in Cystic Fibrosis: A Review of the Current Evidence, Pathophysiology and Future Directions. Journal of Clinical Medicine, 2022, 11, 649.	2.4	20
3578	Geosocial Features and Loss of Biodiversity Underlie Variable Rates of Inflammatory Bowel Disease in a Large Developing Country: A Population-Based Study. Inflammatory Bowel Diseases, 2022, 28, 1696-1708.	1.9	8
3579	Comparative metagenomics analysis reveals how the diet shapes the gut microbiota in several small mammals. Ecology and Evolution, 2022, 12, e8470.	1.9	8
3580	Altered stress responses in adults born by Caesarean section. Neurobiology of Stress, 2022, 16, 100425.	4.0	10
3581	Opioid Use, Gut Dysbiosis, Inflammation, and the Nervous System. Journal of NeuroImmune Pharmacology, 2022, 17, 76-93.	4.1	16
3582	Dietary intervention of prebiotics and vitamins on gut health of children. Nutrition and Food Science, 2022, ahead-of-print, .	0.9	1

#	Article	IF	CITATIONS
3583	Pharmacomicrobiomics: Exploiting the Drug-Microbiota Interactions in Antihypertensive Treatment. Frontiers in Medicine, 2021, 8, 742394.	2.6	21
3584	<i>Saccharomyces boulardii</i> alleviates DSS-induced intestinal barrier dysfunction and inflammation in humanized mice. Food and Function, 2022, 13, 102-112.	4.6	20
3585	Incorporating genomeâ€based phylogeny and functional similarity into diversity assessments helps to resolve a global collection of human gut metagenomes. Environmental Microbiology, 2022, 24, 3966-3984.	3.8	2
3586	Comparative Profiling of Survival, Growth, and Intestinal Microbial Community of Pearl Oyster Pinctada maxima Juvenile in the Industrial Farming: The Feasibility of Using Spray-Dried Microalgae Powder. Frontiers in Marine Science, 2022, 8, .	2.5	4
3587	Associations between Gut Microbiota and Intestinal Inflammation, Permeability and Damage in Young Malawian Children. Journal of Tropical Pediatrics, 2022, 68, .	1.5	5
3588	Nutraceuticals in digestive therapy. , 2022, , 477-500.		0
3590	Lactic Acid Bacteria Mixture Isolated From Wild Pig Alleviated the Gut Inflammation of Mice Challenged by Escherichia coli. Frontiers in Immunology, 2022, 13, 822754.	4.8	7
3591	The effect of oral iron supplementation on the gut microbiota, gut inflammation, and iron status in iron-depleted South African school-age children with virally suppressed HIV and without HIV. European Journal of Nutrition, 2022, 61, 2067-2078.	3.9	3
3593	Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International Journal of Molecular Sciences, 2022, 23, 1105.	4.1	215
3594	Effects of antibiotic treatment on microbiota, viral transmission and viral pathogenesis of MoMuLV ts1 infected BALB/c mice. PLoS ONE, 2022, 17, e0261689.	2.5	0
3595	Dietary Intake and Nutritional Status of the adult Kheria Sabar males of West Bengal, India. Ecology of Food and Nutrition, 2022, , 1-18.	1.6	0
3597	Berberine Relieves Metabolic Syndrome in Mice by Inhibiting Liver Inflammation Caused by a High-Fat Diet and Potential Association With Gut Microbiota. Frontiers in Microbiology, 2021, 12, 752512.	3.5	16
3598	Metagenomic Comparisons between Soft and Hard Feces of Plateau Pikas (Ochotona curzoniae). Animals, 2022, 12, 149.	2.3	1
3599	Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases. Biomedicines, 2022, 10, 289.	3.2	81
3600	The Relationships between Gut Microbiota and Diabetes Mellitus, and Treatments for Diabetes Mellitus. Biomedicines, 2022, 10, 308.	3.2	18
3601	Alterations of the Gut Microbiome Associated to Methane Metabolism in Mexican Children with Obesity. Children, 2022, 9, 148.	1.5	7
3602	Implications of the Gut Microbiome in Sports. Sports Health, 2022, 14, 894-898.	2.7	11
3603	Comparative analysis of gut microbial composition and potential functions in captive forest and alpine musk deer. Applied Microbiology and Biotechnology, 2022, 106, 1325-1339.	3.6	15

#	Article	IF	CITATIONS
3604	Sesquiterpene glycoside isolated from loquat leaf targets gut microbiota to prevent type 2 diabetes mellitus in db/db mice. Food and Function, 2022, 13, 1519-1534.	4.6	14
3605	Fecal Microbiota Transplantation Donor and Dietary Fiber Intervention Collectively Contribute to Gut Health in a Mouse Model. Frontiers in Immunology, 2022, 13, 842669.	4.8	2
3607	A comprehensive review on lotus seeds (Nelumbo nucifera Gaertn.): Nutritional composition, health-related bioactive properties, and industrial applications. Journal of Functional Foods, 2022, 89, 104937.	3.4	24
3608	Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Molecular and Cellular Endocrinology, 2022, 546, 111572.	3.2	117
3609	Absolute abundance values reveal microbial shifts and co-occurrence patterns during gut microbiota fermentation of dietary fibres in vitro. Food Hydrocolloids, 2022, 127, 107422.	10.7	9
3610	Gut microbiota modulation by jabuticaba peel and its effect on glucose metabolism via inflammatory signaling. Current Research in Food Science, 2022, 5, 382-391.	5.8	14
3611	Crisis of the Asian gut: associations among diet, microbiota, and metabolic diseases. Bioscience of Microbiota, Food and Health, 2022, , .	1.8	1
3612	Performance determinants of unsupervised clustering methods for microbiome data. Microbiome, 2022, 10, 25.	11.1	15
3613	Gastrointestinal Autonomic Neuropathy Exacerbates Gut Microbiota Dysbiosis in Adult Patients With Type 2 Diabetes Mellitus. Frontiers in Cellular and Infection Microbiology, 2021, 11, 804733.	3.9	11
3614	Dietary macronutrients and the gut microbiome: a precision nutrition approach to improve cardiometabolic health. Gut, 2022, 71, 1214-1226.	12.1	50
3615	Antibiotic Disruption of the Gut Microbiota Enhances the Murine Hepatic Dysfunction Associated With a High-Salt Diet. Frontiers in Pharmacology, 2022, 13, 829686.	3.5	3
3616	Pine (Pinus massoniana Lamb.) Needle Extract Supplementation Improves Performance, Egg Quality, Serum Parameters, and the Gut Microbiome in Laying Hens. Frontiers in Nutrition, 2022, 9, 810462.	3.7	7
3617	Influence of Geographical Location on Maternal-Infant Microbiota: Study in Two Populations From Asia and Europe. Frontiers in Cellular and Infection Microbiology, 2021, 11, 663513.	3.9	6
3618	Deprivation of Dietary Fiber Enhances Susceptibility of Piglets to Lung Immune Stress. Frontiers in Nutrition, 2022, 9, 827509.	3.7	3
3619	The gut microbiome and antibiotic resistome of chronic diarrhea rhesus macaques (Macaca mulatta) and its similarity to the human gut microbiome. Microbiome, 2022, 10, 29.	11.1	24
3621	Microbiota and body weight control: Weight watchers within?. Molecular Metabolism, 2022, 57, 101427.	6.5	25
3622	The links between gut microbiota and obesity and obesity related diseases. Biomedicine and Pharmacotherapy, 2022, 147, 112678.	5.6	86
3623	Potential prebiotic effects of nonabsorptive components of Keemun and Dianhong black tea: an in vitro study. Food Science and Human Wellness, 2022, 11, 648-659.	4.9	4

#	Article	IF	CITATIONS
3624	Role of the microbiota in hypertension and antihypertensive drug metabolism. Hypertension Research, 2022, 45, 246-253.	2.7	26
3625	Human microbiota research in Africa: a systematic review reveals gaps and priorities for future research. Microbiome, 2021, 9, 241.	11.1	21
3626	Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines, 2022, 10, 83.	3.2	71
3628	Factors influencing the gut microbiome in children: from infancy to childhood. Journal of Biosciences, 2019, 44, .	1.1	21
3629	Homeostasis and dysbiosis of the gut microbiome in health and disease. Journal of Biosciences, 2019, 44, .	1.1	29
3630	The Gut Microbiome. , 2022, , .		0
3632	Gut microbiota-derived metabolites in host physiology. , 2022, , 515-534.		1
3633	Intestinal microbiota profile in healthy Saudi children: The bacterial domain. Saudi Journal of Gastroenterology, 2022, 28, 312.	1.1	3
3634	Intestinal microbiota research from a global perspective. Gastroenterology Report, 2022, 10, goac010.	1.3	13
3635	A compendium of predicted growths and derived symbiotic relationships between 803 gut microbes in 13 different diets. Current Research in Microbial Sciences, 2022, 3, 100127.	2.3	1
3638	A microbiome record for life. , 2022, , 189-213.		0
3639	The Human Microbiome: An Acquired Organ?. Resonance, 2022, 27, 247-272.	0.3	3
3640	Microbial biogeography of the wombat gastrointestinal tract. PeerJ, 2022, 10, e12982.	2.0	2
3641	Probiotic normalization of systemic inflammation in siblings of type 1 diabetes patients: an open-label pilot study. Scientific Reports, 2022, 12, 3306.	3.3	14
3642	Development of the gut microbiota in healthy children in the first ten years of life: associations with internalizing and externalizing behavior. Gut Microbes, 2022, 14, 2038853.	9.8	21
3643	Microbiome Resilience and Health Implications for People in Half-Year Travel. Frontiers in Immunology, 2022, 13, 848994.	4.8	2
3644	Evaluation of a Zingiber officinale and Bixa orellana Supplement on the Gut Microbiota of Male Athletes: A Randomized Placebo-Controlled Trial. Planta Medica, 2022, , .	1.3	0
3645	Short- and long-read metagenomics of urban and rural South African gut microbiomes reveal a transitional composition and undescribed taxa. Nature Communications, 2022, 13, 926.	12.8	26

#	Article	IF	CITATIONS
3646	Mycobiome-Host Coevolution? The Mycobiome of Ancestral Human Populations Seems to Be Different and Less Diverse Than Those of Extant Native and Urban-Industrialized Populations. Microorganisms, 2022, 10, 459.	3.6	3
3647	Gut microbiota and BMI throughout childhood: the role of firmicutes, bacteroidetes, and short-chain fatty acid producers. Scientific Reports, 2022, 12, 3140.	3.3	65
3648	Investigations into the stability of 17 psychoactive drugs in a "simulated postmortem blood―model. Drug Testing and Analysis, 2022, , .	2.6	2
3649	Possible Interactions between Malaria, Helminthiases and the Gut Microbiota: A Short Review. Microorganisms, 2022, 10, 721.	3.6	4
3650	Obesity is associated with a distinct brain-gut microbiome signature that connects Prevotella and Bacteroides to the brain's reward center. Gut Microbes, 2022, 14, 2051999.	9.8	28
3651	Gut microbiota and allergic diseases in children. Allergology International, 2022, 71, 301-309.	3.3	20
3652	Increasing the diversity of dietary fibers in a daily-consumed bread modifies gut microbiota and metabolic profile in subjects at cardiometabolic risk. Gut Microbes, 2022, 14, 2044722.	9.8	28
3653	Microbiome and metabolome profiles of high screen time in a cohort of healthy college students. Scientific Reports, 2022, 12, 3452.	3.3	8
3654	Variation in the intestinal microbiota at different developmental stages of <i>Hynobius maoershanensis</i> . Ecology and Evolution, 2022, 12, e8712.	1.9	1
3656	A proposal for the reference intervals of the Italian microbiota "scaffold―in healthy adults. Scientific Reports, 2022, 12, 3952.	3.3	5
3657	Food as Treatment of Inflammatory Bowel Diseases. Infection and Immunity, 2022, 90, e0058321.	2.2	8
3658	Multi-Omics Analyses Characterize the Gut Microbiome and Metabolome Signatures of Soldiers Under Sustained Military Training. Frontiers in Microbiology, 2022, 13, 827071.	3.5	2
3660	The effects of the Green-Mediterranean diet on cardiometabolic health are linked to gut microbiome modifications: a randomized controlled trial. Genome Medicine, 2022, 14, 29.	8.2	46
3661	Proposal of a health gut microbiome index based on a meta-analysis of Korean and global population datasets. Journal of Microbiology, 2022, 60, 533-549.	2.8	7
3662	The Gut Microbiome May Help Address Mental Health Disparities in Hispanics: A Narrative Review. Microorganisms, 2022, 10, 763.	3.6	3
3663	Captivity and Animal Microbiomes: Potential Roles of Microbiota for Influencing Animal Conservation. Microbial Ecology, 2023, 85, 820-838.	2.8	36
3664	Effects of Growth Stage and Rearing Pattern on Pig Gut Microbiota. Current Microbiology, 2022, 79, 136.	2.2	8
3665	The gut–liver axis: host microbiota interactions shape hepatocarcinogenesis. Trends in Cancer, 2022, 8, 583-597.	7.4	22

#	Article	IF	CITATIONS
3666	Retrorsine Cooperates with Gut Microbiota to Promote Hepatic Sinusoidal Obstruction Syndrome by Disrupting the Gut Barrier. Journal of Clinical and Translational Hepatology, 2022, 000, 000-000.	1.4	2
3667	Identifying biomarkers of the gut bacteria, bacteriophages and serum metabolites associated with three weaning periods in piglets. BMC Veterinary Research, 2022, 18, 104.	1.9	7
3668	Effect of 6-Methoxybenzoxazolinone on the Cecal Microbiota of Adult Male Brandt's Vole. Frontiers in Microbiology, 2022, 13, 847073.	3.5	3
3669	Bachu Mushroom Polysaccharide Alleviates Colonic Injury by Modulating the Gut Microbiota. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-12.	1.3	7
3670	Socioeconomic disparities and household crowding in association with the fecal microbiome of school-age children. Npj Biofilms and Microbiomes, 2022, 8, 10.	6.4	7
3671	Changes in the gut microbiota of Nigerian infants within the first year of life. PLoS ONE, 2022, 17, e0265123.	2.5	11
3672	Plant-Based Diets and Peritoneal Dialysis: A Review. Nutrients, 2022, 14, 1304.	4.1	3
3673	Changes in Gut Microbiota by the Lactobacillus casei Anchoring the K88 Fimbrial Protein Prevented Newborn Piglets From Clinical Diarrhea. Frontiers in Cellular and Infection Microbiology, 2022, 12, 842007.	3.9	12
3674	Serving Up a Mediterranean Remission in Severe Ulcerative Colitis. Digestive Diseases and Sciences, 2022, 67, 1205-1208.	2.3	0
3675	Breath Testing and Small Bowel Organisms in Clinical Practice. JPGN Reports, 2022, 3, e186.	0.4	0
3677	Microbiome Modulation as a Novel Strategy to Treat and Prevent Respiratory Infections. Antibiotics, 2022, 11, 474.	3.7	15
3678	Characterization of microbial intolerances and ruminal dysbiosis towards different dietary carbohydrate sources using an in vitro model. Journal of Applied Microbiology, 2022, 133, 458-476.	3.1	4
3679	Altered fecal microbiota, IgA, and fermentative end-products in adult dogs fed prebiotics and a nonviable <i>Lactobacillus acidophilus</i> . Journal of Animal Science, 2021, 99, .	0.5	7
3680	Dietary Fiber Influences Bacterial Community Assembly Processes in the Gut Microbiota of Durco × Bamei Crossbred Pig. Frontiers in Microbiology, 2021, 12, 688554.	3.5	11
3681	Microbiome assembly in The Gambia. Nature Microbiology, 2022, 7, 18-19.	13.3	1
3682	Reducing Disease Activity of Inflammatory Bowel Disease by Consumption of Plant-Based Foods and Nutrients. Frontiers in Nutrition, 2021, 8, 733433.	3.7	19
3683	Imbalance of the Gut Microbiota May Be Associated with Missed Abortions: A Perspective Study from a General Hospital of Hunan Province. Journal of Immunology Research, 2021, 2021, 1-13.	2.2	3
3684	Preliminary Investigation of Microbiome and Dietary Differences in Patients with Phenylketonuria on Enzyme Substitution Therapy Compared to Traditional Therapies. Journal of the Academy of Nutrition and Dietetics, 2022, 122, 1283-1295.e3.	0.8	6

#	Article	IF	CITATIONS
3685	Gut Microbiome Profiles in Colonizations with the Enteric Protozoa Blastocystis in Korean Populations. Microorganisms, 2022, 10, 34.	3.6	17
3686	Could Modifying the Skin Microbiome, Diet, and Lifestyle Help with the Adverse Skin Effects after Stopping Long-Term Topical Steroid Use?. Allergies, 2022, 2, 1-15.	0.8	0
3687	Microbial co-occurrence complicates associations of gut microbiome with US immigration, dietary intake and obesity. Genome Biology, 2021, 22, 336.	8.8	18
3689	Plant-Based Diet, GutÂMicrobiota, and Bioavailability of Lignans. Journal of the American College of Cardiology, 2021, 78, e311.	2.8	4
3690	Human Gut Microbiota in Health and Selected Cancers. International Journal of Molecular Sciences, 2021, 22, 13440.	4.1	23
3691	Effect of dietary selenium intake on gut microbiota in older population in Enshi region. Genes and Environment, 2021, 43, 56.	2.1	5
3692	Fecal microbiota relationships with childhood obesity: A scoping comprehensive review. Obesity Reviews, 2022, 23, e13394.	6.5	16
3693	Gut dysbiosis and systemic inflammation promote cardiomyocyte abnormalities in an experimental model of steatohepatitis. World Journal of Hepatology, 2021, 13, 2052-2070.	2.0	7
3694	Naturally Acquired Lactic Acid Bacteria from Fermented Cassava Improves Nutrient and Anti-dysbiosis Activity of Soy Tempeh. Open Access Macedonian Journal of Medical Sciences, 2021, 9, 1148-1155.	0.2	0
3695	Oral and Gut Microbial Carbohydrate-Active Enzymes Landscape in Health and Disease. Frontiers in Microbiology, 2021, 12, 653448.	3.5	11
3696	Gut microbiomes from Gambian infants reveal the development of a non-industrialized Prevotella-based trophic network. Nature Microbiology, 2022, 7, 132-144.	13.3	30
3697	Reductions in Intestinal Taurine-Conjugated Bile Acids and Short-Chain Fatty Acid-Producing Bacteria Might be Novel Mechanisms of Type 2 Diabetes Mellitus in Otsuka Long-Evans Tokushima Fatty Rats. Experimental and Clinical Endocrinology and Diabetes, 2022, 130, 237-247.	1.2	4
3698	Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends in Food Science and Technology, 2021, 118, 905-919.	15.1	13
3699	Valuing the Diversity of Research Methods to Advance Nutrition Science. Advances in Nutrition, 2022, 13, 1324-1393.	6.4	16
3700	Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. International Journal of Molecular Sciences, 2022, 23, 3464.	4.1	73
3701	Succession of the Gut Microbiome in the Tibetan Population of Minjiang River Basin. Frontiers in Microbiology, 2022, 13, 834335.	3.5	2
3702	Early Life Nutrition and the Role of Complementary Feeding on Later Adherence to the Mediterranean Diet in Children up to 3 Years of Age. Nutrients, 2022, 14, 1664.	4.1	2
3703	Pediatric Aspects of Nutrition Interventions for Disorders of Gut-Brain Interaction. American Journal of Gastroenterology, 2022, 117, 995-1009.	0.4	9

#	Article	IF	CITATIONS
3704	Irritable bowel syndrome and microbiome; Switching from conventional diagnosis and therapies to personalized interventions. Journal of Translational Medicine, 2022, 20, 173.	4.4	19
3706	Administration of xyloâ€oligosaccharides improves depressiveâ€like behaviour in mice caused by chronic unpredictable mild stress by altering microbiota composition. International Journal of Food Science and Technology, 2022, 57, 4222-4233.	2.7	2
3707	Dietary inflammatory potential mediated gut microbiota and metabolite alterations in Crohn's disease: A fire-new perspective. Clinical Nutrition, 2022, 41, 1260-1271.	5.0	14
3708	Mechanistic Insights into the Link between Gut Dysbiosis and Major Depression: An Extensive Review. Cells, 2022, 11, 1362.	4.1	40
3709	Effect of gluten-free diet and antibiotics on murine gut microbiota and immune response to tetanus vaccination. PLoS ONE, 2022, 17, e0266719.	2.5	3
3710	Omega-3 Fatty Acids and Balanced Gut Microbiota on Chronic Inflammatory Diseases: A Close Look at Ulcerative Colitis and Rheumatoid Arthritis Pathogenesis. Journal of Medicinal Food, 2022, 25, 341-354.	1.5	3
3711	The fecal microbiota of Thai school-aged children associated with demographic factors and diet. PeerJ, 2022, 10, e13325.	2.0	1
3712	Immunonutrition and SARS-CoV-2 Infection in Children with Obesity. Nutrients, 2022, 14, 1701.	4.1	6
3713	Insights into the composition of gut microbiota in response to environmental temperature: The case of the Mongolia racerunner (Eremias argus). Global Ecology and Conservation, 2022, 36, e02125.	2.1	12
3886	Association of dietary patterns with gut microbiota in kidney stone and non-kidney stone individuals. Urolithiasis, 2022, 50, 389-399.	2.0	12
3888	The role of diet and physical activity in influencing the microbiota/microbiome. , 2022, , 693-745.		0
3889	Bee bread and gut microbiota. , 2022, , 315-345.		2
3890	Role of Short-Chain Fatty Acids Produced by Gut Microbiota in Innate Lung Immunity and Pathogenesis of the Heterogeneous Course of Chronic Obstructive Pulmonary Disease. International Journal of Molecular Sciences, 2022, 23, 4768.	4.1	22
3891	Changing Dietary Habits: The Impact of Urbanization and Rising Socio-Economic Status in Families from Burkina Faso in Sub-Saharan Africa. Nutrients, 2022, 14, 1782.	4.1	16
3893	The contribution of gastrointestinal microbiota in the existence of Type 2 diabetes in Saudi Arabia: Current information and perspectives. Saudi Journal of Biological Sciences, 2022, , 103286.	3.8	0
3894	HDHL-INTIMIC: A European Knowledge Platform on Food, Diet, Intestinal Microbiomics, and Human Health. Nutrients, 2022, 14, 1881.	4.1	4
3895	Global, distinctive, and personal changes in molecular and microbial profiles by specific fibers in humans. Cell Host and Microbe, 2022, 30, 848-862.e7.	11.0	48
3896	Intestinal Microbiota-Derived Short Chain Fatty Acids in Host Health and Disease. Nutrients, 2022, 14, 1977.	4.1	65

#	Article	IF	CITATIONS
3897	Metabolites of Gut Microbiota and Possible Implication in Development of Diabetes Mellitus. Journal of Agricultural and Food Chemistry, 2022, 70, 5945-5960.	5.2	19
3898	Impact of Food-Based Weight Loss Interventions on Gut Microbiome in Individuals with Obesity: A Systematic Review. Nutrients, 2022, 14, 1953.	4.1	9
3899	Geographically diverse canid sampling provides novel insights into pre-industrial microbiomes. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220052.	2.6	3
3900	Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants. Cell Host and Microbe, 2022, 30, 696-711.e5.	11.0	63
3901	Iron Supplementation at the Crossroads of Nutrition and Gut Microbiota: The State of the Art. Nutrients, 2022, 14, 1926.	4.1	12
3902	Microbiome Profiling of Enterotoxigenic Escherichia coli (ETEC) Carriers Highlights Signature Differences between Symptomatic and Asymptomatic Individuals. MBio, 2022, 13, e0015722.	4.1	10
3903	Microbiota and the Response to Vaccines Against Respiratory Virus. Frontiers in Immunology, 2022, 13, .	4.8	10
3904	Host phylogeny, habitat, and diet are main drivers of the cephalopod and mollusk gut microbiome. Animal Microbiome, 2022, 4, 30.	3.8	11
3905	A Freeze-Dried Cranberry Powder Consistently Enhances SCFA Production and Lowers Abundance of Opportunistic Pathogens In Vitro. BioTech, 2022, 11, 14.	2.6	3
3906	The impact of the gut microbiome on extra-intestinal autoimmune diseases. Nature Reviews Immunology, 2023, 23, 9-23.	22.7	99
3907	Associations of Blautia Genus With Early-Life Events and Later Phenotype in the NutriHS. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	6
3908	The metabolites derived from lipids and their effects on human health. , 2022, , 211-223.		0
3909	Pediatric Inflammatory Bowel Disease: A Multicenter Study of Changing Trends in Argentina Over the Past 30 Years. Pediatric Gastroenterology, Hepatology and Nutrition, 2022, 25, 218.	1.2	1
3910	Microbiota Composition and Diversity in Weight Loss Population After the Intake of IQP-AE-103 in a Double-Blind, Randomized, Placebo-Controlled Study. Frontiers in Nutrition, 2022, 9, 790045.	3.7	0
3911	Effect of acupuncture on gut microbiota in participants with subjective cognitive decline. Medicine (United States), 2022, 101, e27743.	1.0	5
3912	Association of the gut microbiome with cancer immunotherapy. International Journal of Clinical Oncology, 2022, , 1.	2.2	0
3913	Human Gut Microbiome Across Different Lifestyles: From Hunter-Gatherers to Urban Populations. Frontiers in Microbiology, 2022, 13, 843170.	3.5	19
3914	Sex Difference of Gut Microbiota. , 2022, , 363-377.		14

#	Article	IF	CITATIONS
3916	Gut Microbiota Associated with Clinical Relapse in Patients with Quiescent Ulcerative Colitis. Microorganisms, 2022, 10, 1044.	3.6	1
3917	Steryl ferulates composition in twenty-two millet samples: Do "microwave popping―and fermentation affect their content?. Food Chemistry, 2022, 391, 133222.	8.2	1
3918	Response of Gut Microbiota, Digestive Enzyme Ability, and Immune Function to Starvation in the Oriental River Prawn Macrobrachium nipponense. Aquaculture Nutrition, 2022, 2022, 1-15.	2.7	1
3919	Human microbiota: a crucial gatekeeper in lung cancer initiation, progression, and treatment. Medicine in Microecology, 2022, , 100055.	1.6	2
3920	Comparative Analysis of Original and Replaced Gut Microbiomes within Same Individuals Identified the Intestinal Microbes Associated with Weight Gaining. Microorganisms, 2022, 10, 1062.	3.6	4
3921	Bidirectional effects of intestinal microbiota and antibiotics: a new strategy for colorectal cancer treatment and prevention. Journal of Cancer Research and Clinical Oncology, 2022, 148, 2387-2404.	2.5	6
3923	Analysis of interactions of immune checkpoint inhibitors with antibiotics in cancer therapy. Frontiers of Medicine, 2022, 16, 307-321.	3.4	6
3924	Interaction between Dietary Factors and Gut Microbiota in Ulcerative Colitis. Journal of Digestive Cancer Reports, 2022, 10, 31-38.	0.0	0
3929	Probiotics and human gut microbiota modulation. , 2022, , 199-230.		0
3930	Comparison of Gut Microbiota Diversity Between Captive and Wild Tokay Gecko (Gekko gecko). Frontiers in Microbiology, 0, 13, .	3.5	4
3931	The Association of Dietary Fiber Intake in Three Meals with All-Cause and Disease-Specific Mortality among Adults: The U.S. National Health and Nutrition Examination Survey, 2003–2014. Nutrients, 2022, 14, 2521.	4.1	4
3932	Lipids from gut microbiota: pursuing a personalized treatment. Trends in Molecular Medicine, 2022, 28, 631-643.	6.7	2
3933	Clinical-social and psychological-pedagogical approaches in the prevention and treatment of obesity and metabolic syndrome in children. Kazan Medical Journal, 2022, 103, 492-503.	0.2	1
3934	A multiâ€omics analysis for the prediction of neurocognitive disorders risk among the elderly in Macao. Clinical and Translational Medicine, 2022, 12, .	4.0	7
3935	Mediterranean Diet in Developmental Age: A Narrative Review of Current Evidences and Research Gaps. Children, 2022, 9, 906.	1.5	4
3936	Food, Medicine, and Function. Physical Medicine and Rehabilitation Clinics of North America, 2022, 33, 553-570.	1.3	2
3937	A weight-loss model based on baseline microbiota and genetic scores for selection of dietary treatments in overweight and obese population. Clinical Nutrition, 2022, 41, 1712-1723.	5.0	10
3938	Evolutionary Insights Into Microbiota Transplantation in Inflammatory Bowel Disease. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3

#	Article	IF	CITATIONS
3939	Relapse-Free Course in Nearly Half of Crohn's Disease Patients With Infliximab and Plant-Based Diet as First-Line Therapy: A Single-Group Trial. , 2022, 26, 40-53.		8
3940	The Interaction Between Dietary Fructose and Gut Microbiota in Hyperuricemia and Gout. Frontiers in Nutrition, 0, 9, .	3.7	13
3941	Vegetarianism, microbiota, and cardiovascular health: looking back, and forward. European Journal of Preventive Cardiology, 2022, 29, 1895-1910.	1.8	11
3942	The Role of the Gut Microbiota in the Effects of Early-Life Stress and Dietary Fatty Acids on Later-Life Central and Metabolic Outcomes in Mice. MSystems, 2022, 7, .	3.8	4
3943	Simiao Wan modulates the gut microbiota and bile acid metabolism during improving type 2 diabetes mellitus in mice. Phytomedicine, 2022, 104, 154264.	5.3	9
3944	Higher dietary total antioxidant capacity is inversely associated with Helicobacter pylori infection among adults: A case–control study. Indian Journal of Gastroenterology, 2022, 41, 258-265.	1.4	3
3945	Fat Absorption, Metabolism, and Global Regulation. Food Chemistry, Function and Analysis, 2022, , 68-85.	0.2	0
3946	Advances in fermented foods and therapeutics. , 2022, , 341-358.		0
3947	Beneficial health effects of polyphenols metabolized by fermentation. Food Science and Biotechnology, 2022, 31, 1027-1040.	2.6	2
3948	Early Introduction of Plant Polysaccharides Drives the Establishment of Rabbit Gut Bacterial Ecosystems and the Acquisition of Microbial Functions. MSystems, 2022, 7, .	3.8	2
3949	Exploring the Differences in the Gut Microbiome in Atopic Dermatitis According to the Presence of Gastrointestinal Symptoms. Journal of Clinical Medicine, 2022, 11, 3690.	2.4	5
3950	Integrated Bacteria-Fungi Diversity Analysis Reveals the Gut Microbial Changes in Buffalo With Mastitis. Frontiers in Veterinary Science, 0, 9, .	2.2	1
3951	Inflammatory bowel disease in sub-Saharan Africa: epidemiology, risk factors, and challenges in diagnosis. The Lancet Gastroenterology and Hepatology, 2022, 7, 952-961.	8.1	11
3952	Host and Microbiome Interplay Shapes the Vaginal Microenvironment. Frontiers in Immunology, 0, 13, .	4.8	19
3953	Semantics of Dairy Fermented Foods: A Microbiologist's Perspective. Foods, 2022, 11, 1939.	4.3	2
3954	Obesity and Gut Microbiota. , 0, , .		1
3955	Ethnic disparities attributed to the manifestation in and response to type 2 diabetes: insights from metabolomics. Metabolomics, 2022, 18, .	3.0	11
3956	The impact of mass drug administration of antibiotics on the gut microbiota of target populations. Infectious Diseases of Poverty, 2022, 11, .	3.7	8

#	Article	IF	CITATIONS
3957	Microbiome-based personalized nutrition as a result of the 4.0 technological revolution: A mini literature review. Process Biochemistry, 2022, 121, 257-262.	3.7	17
3958	Dietary Utilization Drives the Differentiation of Gut Bacterial Communities between Specialist and Generalist Drosophilid Flies. Microbiology Spectrum, 2022, 10, .	3.0	4
3959	Differential Overlap in Human and Animal Fecal Microbiomes and Resistomes in Rural versus Urban Bangladesh. Applied and Environmental Microbiology, 2022, 88, .	3.1	3
3960	Seasonal and Soil Microbiota Effects on the Adaptive Strategies of Wild Goitered Gazelles Based on the Gut Microbiota. Frontiers in Microbiology, 0, 13, .	3.5	1
3961	The interplay between PCOS pathology and diet on gut microbiota in a mouse model. Gut Microbes, 2022, 14, .	9.8	9
3962	The First 1000 Days: Assembly of the Neonatal Microbiome and Its Impact on Health Outcomes. , 2022, 1, 219-226.		6
3963	Oyster (Crassostrea gigas) polysaccharide ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat diet fed mice. International Journal of Biological Macromolecules, 2022, 216, 916-926.	7.5	24
3964	Taxonomic and Functional Shifts in the Perinatal Gut Microbiome of Rhesus Macaques. Microbiology Spectrum, 2022, 10, .	3.0	3
3965	Sugary vs salty food industry leftovers in postweaning piglets: effects on gut microbiota and intestinal volatile fatty acid production. Animal, 2022, 16, 100584.	3.3	4
3966	Host Species Influence the Gut Microbiota of Endemic Cold-Water Fish in Upper Yangtze River. Frontiers in Microbiology, 0, 13, .	3.5	5
3967	The Core Human Microbiome: Does It Exist and How Can We Find It? A Critical Review of the Concept. Nutrients, 2022, 14, 2872.	4.1	16
3968	Quinoa bran soluble dietary fiber ameliorates dextran sodium sulfate induced ulcerative colitis in BALB/c mice by maintaining intestinal barrier function and modulating gut microbiota. International Journal of Biological Macromolecules, 2022, 216, 75-85.	7.5	25
3969	Combined effects of micro-/nano-plastics and oxytetracycline on the intestinal histopathology and microbiome in zebrafish (Danio rerio). Science of the Total Environment, 2022, 843, 156917.	8.0	23
3970	Microbiota in anorexia nervosa: potential for treatment. Nutrition Research Reviews, 2023, 36, 372-391.	4.1	4
3971	Conserved developmental trajectories of the cecal microbiota of broiler chickens in a field study. FEMS Microbiology Ecology, 2022, 98, .	2.7	2
3973	Mediterranean Diet on Sleep: A Health Alliance. Nutrients, 2022, 14, 2998.	4.1	33
3974	The role of the microbiome in pancreatic oncogenesis. International Immunology, 2022, 34, 447-454.	4.0	5
3975	Seasonal variations in the composition and diversity of gut microbiota in white-lipped deer (<i>Cervus) Tj ETQq1</i>	1 9.78431	14 rgBT /Over

#	Article	IF	CITATIONS
3976	Effects of adding eubiotic lignocellulose on the performance, the gut microbiota, and short-chain fatty acids of layer chickens. Brazilian Journal of Microbiology, 2022, 53, 2205-2213.	2.0	1
3979	Gestational weight gain and visceral adiposity in adult offspring: Is there a link with the fecal abundance of Acidaminococcus genus?. European Journal of Clinical Nutrition, 2022, 76, 1705-1712.	2.9	4
3980	Dietary Inulin Supplementation Affects Specific Plasmalogen Species in the Brain. Nutrients, 2022, 14, 3097.	4.1	3
3981	Transcriptional programming in a Bacteroides consortium. Nature Communications, 2022, 13, .	12.8	14
3982	Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	44
3983	The Potential of Honey as a Prebiotic Food to Re-engineer the Gut Microbiome Toward a Healthy State. Frontiers in Nutrition, 0, 9, .	3.7	16
3984	The impact of dietary nutrient intake on gut microbiota in the progression and complications of chronic kidney disease. Kidney International, 2022, 102, 728-739.	5.2	8
3985	Effect of a reduced fat and sugar maternal dietary intervention during lactation on the infant gut microbiome. Frontiers in Microbiology, 0, 13, .	3.5	6
3986	Longitudinal fecal microbiome and metabolite data demonstrate rapid shifts and subsequent stabilization after an abrupt dietary change in healthy adult dogs. Animal Microbiome, 2022, 4, .	3.8	17
3987	Repetitive transcranial direct current stimulation modulates theÂbrain–gut–microbiome axis in obese rodents. Pharmacological Reports, 2022, 74, 871-889.	3.3	6
3989	Impact of a probiotic chewable tablet on stool habits and microbial profile in children with functional constipation: A randomized controlled clinical trial. Frontiers in Microbiology, 0, 13, .	3.5	4
3990	The putative role of gut microbiota in cancer: Cysteine is a pivotal coin. , 0, 1, .		2
3991	Effect of Weaning at 21 Days of Age on the Content of Bile Acids in Chyme of Cecum. Animals, 2022, 12, 2138.	2.3	2
3992	Composition and diversity of gut microbiota in diabetic retinopathy. Frontiers in Microbiology, 0, 13, .	3.5	21
3994	The role and molecular mechanism of gut microbiota in Graves' orbitopathy. Journal of Endocrinological Investigation, 2023, 46, 305-317.	3.3	5
3995	Higher pathogen load in children from Mozambique vs. USA revealed by comparative fecal microbiome profiling. ISME Communications, 2022, 2, .	4.2	4
3996	Evaluating the clinical relevance of the enterotypes in the Estonian microbiome cohort. Frontiers in Genetics, 0, 13, .	2.3	1
3997	Influenza: Toward understanding the immune response in the young. Frontiers in Pediatrics, 0, 10, .	1.9	6

#	Article	IF	CITATIONS
3998	Representativeness of Fecal Microbiota Is Limited to Cecum and Colon in Domestic Yak. Sustainability, 2022, 14, 10263.	3.2	0
3999	Host-microbiota interactions shaping T-cell response and tolerance in type 1 diabetes. Frontiers in Immunology, 0, 13, .	4.8	4
4000	Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota. Nature Communications, 2022, 13, .	12.8	84
4001	Individuality and ethnicity eclipse a short-term dietary intervention in shaping microbiomes and viromes. PLoS Biology, 2022, 20, e3001758.	5.6	8
4002	Dietary interventions, the gut microbiome, and aggressive behavior: Review of research evidence and potential next steps. Aggressive Behavior, 2023, 49, 15-32.	2.4	6
4003	Fecal microbial signatures of healthy Han individuals from three bio-geographical zones in Guangdong. Frontiers in Microbiology, 0, 13, .	3.5	0
4004	Different Intestinal Microbiota with Growth Stages of Three-Breed Hybrid Pig. BioMed Research International, 2022, 2022, 1-9.	1.9	2
4005	Individual Nutrition Is Associated with Altered Gut Microbiome Composition for Adults with Food Insecurity. Nutrients, 2022, 14, 3407.	4.1	5
4006	Machine Learning Data Analysis Highlights the Role of Parasutterella and Alloprevotella in Autism Spectrum Disorders. Biomedicines, 2022, 10, 2028.	3.2	10
4007	Impacts of Gut Microbiota on the Immune System and Fecal Microbiota Transplantation as a Re-Emerging Therapy for Autoimmune Diseases. Antibiotics, 2022, 11, 1093.	3.7	4
4008	Exposure to outdoor and indoor air pollution and risk of overweight and obesity across different life periods: A review. Ecotoxicology and Environmental Safety, 2022, 242, 113893.	6.0	21
4009	The Burden of Carbohydrates in Health and Disease. Nutrients, 2022, 14, 3809.	4.1	29
4010	Stability and volatility shape the gut bacteriome and Kazachstania slooffiae dynamics in preweaning, nursery and adult pigs. Scientific Reports, 2022, 12, .	3.3	4
4011	Characteristics of the Gut Bacterial Composition in People of Different Nationalities and Religions. Microorganisms, 2022, 10, 1866.	3.6	15
4012	Egg Protein Transferrin-Derived Peptides Irw (Lle-Arg-Trp) and Iqw (Lle-Gln-Trp) Prevent Obesity Mouse Model Induced by a High-Fat Diet via Reducing Lipid Deposition and Reprogramming Gut Microbiota. International Journal of Molecular Sciences, 2022, 23, 11227.	4.1	4
4013	Fruit bioactive compounds: Effect on lactic acid bacteria and on intestinal microbiota. Food Research International, 2022, 161, 111809.	6.2	14
4014	Dynamics of microbial communities during inulin fermentation associated with the temporal response in SCFA production. Carbohydrate Polymers, 2022, 298, 120057.	10.2	8
4015	Gut microbiome dysbiosis in malnutrition. Progress in Molecular Biology and Translational Science, 2022, , 205-229.	1.7	5

ARTICLE IF CITATIONS Aging: Impact of Gut Microbiota., 2022,, 71-82. 0 4016 An introduction to human microbiome. Progress in Molecular Biology and Translational Science, 1.7 2022,,. A signature of Prevotella copri and Faecalibacterium prausnitzii depletion, and a link with bacterial 4018 glutamate degradation in the Kenyan colorectal cancer patients. Journal of Gastrointestinal 1.4 5 Öncology, 2022, 13, 2282-2292. Role of gut microbiome in obesity., 2022, , 95-106. 4019 4020 Dietary influence on human microbiome., 2022, , 59-80. 0 Structure, functions, and diversity of the healthy human microbiome. Progress in Molecular Biology and Translational Science, 2022, , 53-82. 4021 1.7 Recent insights into the role of microbiome in the pathogenesis of obesity. Therapeutic Advances in 4022 3.2 6 Gastroenterology, 2022, 15, 175628482211153. Polypharmacology in Clinical Applications: Gastrointestinal Polypharmacology., 2022, , 301-321. 4024 Healthy gut microbiome in the prevention of colorectal cancer., 2022, , 315-328. 0 The Intestine Microbiota Community and Enzyme Activity in Trachinotus ovatus After Short-Time Antibiotic Bath Administration., 2022, 195-207 Impact of early nutrition on gut microbiota: Effects on immunity and long-term health. , 2022, , 4026 0 229-256. Planting Health: Analyzing The Role and Accessibility of Plant-Based Diets in the U.S.. SSRN Electronic 0.4 Journal, 0, , . Gut mutualists can persist in host populations despite low fidelity of vertical transmission. 4028 1.7 2 Evolutionary Human Sciences, 2022, 4, . Management of obesity and related inflammatory disorders., 2023, , 233-262. Perspective: Assessing Tolerance to Nondigestible Carbohydrate Consumption. Advances in Nutrition, 4030 6.4 6 2022, 13, 2084-2097. Shared and Non-Shared sIgA-Coated and -Uncoated Bacteria in Intestine of Mother–Infant Pairs. International Journal of Molecular Sciences, 2022, 23, 9873. Gut Microbiota across Normal Gestation and Gestational Diabetes Mellitus: A Cohort Analysis. 4032 2.9 7 Metabolites, 2022, 12, 796. Comparison of Bacterial and Fungal Community Structure and Potential Function Analysis of Yak Feces before and after Weaning. BioMed Research International, 2022, 2022, 1-17.

#	Article	IF	CITATIONS
4034	Plant-Derived (Poly)phenols and Their Metabolic Outcomes: The Pursuit of a Role for the Gut Microbiota. Nutrients, 2022, 14, 3510.	4.1	8
4035	The Role of the Microbiome in Pancreatic Cancer. Cancers, 2022, 14, 4479.	3.7	12
4036	High throughput genome scale modeling predicts microbial vitamin requirements contribute to gut microbiome community structure. Gut Microbes, 2022, 14, .	9.8	7
4037	Potential associations between alterations in gut microbiome and obesityâ€related traits after the bariatric surgery. Journal of Human Nutrition and Dietetics, 2023, 36, 981-996.	2.5	1
4039	Food and Gut Microbiota-Derived Metabolites in Nonalcoholic Fatty Liver Disease. Foods, 2022, 11, 2703.	4.3	3
4040	Different oral and gut microbial profiles in those with Alzheimer's disease consuming anti-inflammatory diets. Frontiers in Nutrition, 0, 9, .	3.7	4
4041	Neonatal Morphine Results in Long-Lasting Alterations to the Gut Microbiome in Adolescence and Adulthood in a Murine Model. Pharmaceutics, 2022, 14, 1879.	4.5	5
4042	Changes in the gut microbiota of forest musk deer (Moschus berezovskii) during ex situ conservation. Frontiers in Microbiology, 0, 13, .	3.5	1
4043	Bacteroides thetaiotaomicron Outer Membrane Vesicles Modulate Virulence of Shigella flexneri. MBio, 2022, 13, .	4.1	4
4044	Comparative study of the function and structure of the gut microbiota in Siberian musk deer and Forest musk deer. Applied Microbiology and Biotechnology, 2022, 106, 6799-6817.	3.6	3
4045	Comparison of rectum fecal bacterial community of finishing bulls fed high-concentrate diets with active dry yeast and yeast culture supplementation. Animal Bioscience, 0, , .	2.0	0
4046	Etiology of Ulcerative Colitis. , 0, , .		0
4047	Replacing saturated fatty acids with polyunsaturated fatty acids increases the abundance of Lachnospiraceae and is associated with reduced total cholesterol levels—a randomized controlled trial in healthy individuals. Lipids in Health and Disease, 2022, 21, .	3.0	11
4048	Onset of Ulcerative Colitis in a Patient with Type 2 Diabetes: Efficacy of a Plant-Based Diet for Both Diseases. Gastrointestinal Disorders, 2022, 4, 223-229.	0.8	1
4049	Limited microbiome differences in captive and semi-wild primate populations consuming similar diets. FEMS Microbiology Ecology, 2022, 98, .	2.7	6
4050	Correlation of attention deficit hyperactivity disorder with gut microbiota according to the dietary intake of Korean elementary school students. PLoS ONE, 2022, 17, e0275520.	2.5	3
4051	Impact of enteric bacterial infections at and beyond the epithelial barrier. Nature Reviews Microbiology, 2023, 21, 260-274.	28.6	26
4052	Zinc Supplementation Partially Decreases the Harmful Effects of a Cafeteria Diet in Rats but Does Not Prevent Intestinal Dysbiosis. Nutrients, 2022, 14, 3921.	4.1	8

#	Article	IF	CITATIONS
4054	Signals triggering prophage induction in the gut microbiota. Molecular Microbiology, 2022, 118, 494-502.	2.5	16
4055	Seasonal variations in gut microbiota of semiprovisioned rhesus macaques (Macaca mulatta) living in a limestone forest of Guangxi, China. Frontiers in Microbiology, 0, 13, .	3.5	8
4056	Postinfective bowel dysfunction following <i>Campylobacter enteritis</i> is characterised by reduced microbiota recovery. Gut, 2023, 72, 451-459.	12.1	6
4061	Fermented Brewers' Spent Grain Containing Dextran and Oligosaccharides as Ingredient for Composite Wheat Bread and Its Impact on Gut Metabolome In Vitro. Fermentation, 2022, 8, 487.	3.0	5
4062	The influence of different dietary patterns on changes in the intestinal microbiota and human body weight. Medical Alphabet, 2022, , 29-39.	0.2	0
4063	Understanding the role of glycation in the pathology of various non-communicable diseases along with novel therapeutic strategies. Glycobiology, 2022, 32, 1068-1088.	2.5	8
4064	Altered gut microbiome diversity and function in patients with propionic acidemia. Molecular Genetics and Metabolism, 2022, 137, 308-322.	1.1	2
4065	The effects of fermented vegetable consumption on the composition of the intestinal microbiota and levels of inflammatory markers in women: A pilot and feasibility study. PLoS ONE, 2022, 17, e0275275.	2.5	8
4066	Possible role of gut microbes and host's immune response in gut–lung homeostasis. Frontiers in Immunology, 0, 13, .	4.8	21
4067	The gut microbiome in health and disease: Inflammatory bowel diseases. Advances in Ecological Research, 2022, , .	2.7	0
4068	Gut microbiota profiling in aged dogs after feeding pet food contained Hericium erinaceus. Journal of Animal Science and Technology, 2022, 64, 937-949.	2.5	6
4069	Gut Microbiota in Nutrition and Health with a Special Focus on Specific Bacterial Clusters. Cells, 2022, 11, 3091.	4.1	9
4070	Dietary Interventions in Inflammatory Bowel Disease. Nutrients, 2022, 14, 4261.	4.1	14
4071	Anthocyanins from Opuntia ficus-indica Modulate Gut Microbiota Composition and Improve Short-Chain Fatty Acid Production. Biology, 2022, 11, 1505.	2.8	7
4072	Intestinal Microbiota Influence Doxorubicin Responsiveness in Triple-Negative Breast Cancer. Cancers, 2022, 14, 4849.	3.7	15
4073	Dietary xenobiotics, (poly)phenols and fibers: Exploring associations with gut microbiota in socially vulnerable individuals. Frontiers in Nutrition, 0, 9, .	3.7	3
4074	The dietary treatment of histamine intolerance reduces the abundance of some histamine-secreting bacteria of the gut microbiota in histamine intolerant women. A pilot study. Frontiers in Nutrition, 0, 9, .	3.7	7
4075	Butyrate: Connecting the gut-lung axis to the management of pulmonary disorders. Frontiers in Nutrition, 0, 9, .	3.7	14

#	Article	IF	CITATIONS
4077	Progress in research on gut microbiota in ethnic minorities in China and consideration of intervention strategies based on ethnic medicine: A review. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	1
4078	Diet Influences Immunotherapy Outcomes in Cancer Patients: A Literature Review. Nutrition and Cancer, 2023, 75, 415-429.	2.0	1
4079	Elucidating the gut microbiome alterations of tribal community of Arunachal Pradesh: perspectives on their lifestyle or food habits. Scientific Reports, 2022, 12, .	3.3	4
4081	Nutrition, Gut Microbiota, and Allergy Development in Infants. Nutrients, 2022, 14, 4316.	4.1	8
4082	Gut Microbiota Profiles in Children and Adolescents with Psychiatric Disorders. Microorganisms, 2022, 10, 2009.	3.6	13
4083	Manipulating the microbiome to enhance oral tolerance in food allergy. Cellular Immunology, 2022, 382, 104633.	3.0	4
4084	11. Food microbiology. , 2022, , 215-245.		0
4086	Genetic Aspects of Micronutrients Important for Inflammatory Bowel Disease. Life, 2022, 12, 1623.	2.4	3
4087	FABP4 in Paneth cells regulates antimicrobial protein expression to reprogram gut microbiota. Gut Microbes, 2022, 14, .	9.8	3
4088	Escherichia coli Isolated from Vegans, Vegetarians and Omnivores: Antibiotic Resistance, Virulence Factors, Pathogenicity Islands and Phylogenetic Classification. Microbiology Research, 2022, 13, 825-835.	1.9	0
4089	Microbiome Applications for Sustainable Food Systems. , 2023, , 243-273.		0
4090	Fermented grape seed meal promotes broiler growth and reduces abdominal fat deposition through intestinal microorganisms. Frontiers in Microbiology, 0, 13, .	3.5	7
4091	Oral polio revaccination is associated with changes in gut and upper respiratory microbiomes of infants. Frontiers in Microbiology, 0, 13, .	3.5	2
4092	Effect of 30 days of ketogenic Mediterranean diet with phytoextracts on athletes' gut microbiome composition. Frontiers in Nutrition, 0, 9, .	3.7	1
4093	Tumor microbiome links cellular programs and immunity in pancreatic cancer. Cancer Cell, 2022, 40, 1240-1253.e5.	16.8	44
4094	Lacticaseibacillus rhamnosus HN001 alters the microbiota composition in the cecum but not the feces in a piglet model. Frontiers in Nutrition, 0, 9, .	3.7	3
4095	Lacticaseibacillus rhamnosus-Derived Exopolysaccharide Attenuates D-Galactose-Induced Oxidative Stress and Inflammatory Brain Injury and Modulates Gut Microbiota in a Mouse Model. Microorganisms, 2022, 10, 2046.	3.6	9
4096	Measuring food insecurity: An introduction to tools for human biologists and ecologists. American Journal of Human Biology, 2023, 35, .	1.6	4

#	Article	IF	CITATIONS
4097	Helminths and Bacterial Microbiota: The Interactions of Two of Humans' "Old Friends― International Journal of Molecular Sciences, 2022, 23, 13358.	4.1	9
4098	Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature, 2022, 611, 578-584.	27.8	50
4099	Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metabolism, 2022, 34, 1700-1718.	16.2	118
4100	Gut-Immune-Kidney Axis: Influence of Dietary Protein in Salt-Sensitive Hypertension. Hypertension, 2022, 79, 2397-2408.	2.7	11
4101	A Mechanistic Overview on Impact of Dietary Fibres on Gut Microbiota and Its Association with Colon Cancer. Dietetics, 2022, 1, 182-202.	1.3	5
4102	Diet containing sulfur shifted hydrogen metabolism from methanogenesis to alternative sink and influenced fermentation and gut microbial ecosystem of goats. Animal Feed Science and Technology, 2022, 294, 115480.	2.2	0
4103	Maternal anxiety, depression and stress affects offspring gut microbiome diversity and bifidobacterial abundances. Brain, Behavior, and Immunity, 2023, 107, 253-264.	4.1	30
4104	Fiber-like Action of d-Fagomine on the Gut Microbiota and Body Weight of Healthy Rats. Nutrients, 2022, 14, 4656.	4.1	0
4105	Host diet shapes functionally differentiated gut microbiomes in sympatric speciation of blind mole rats in Upper Galilee, Israel. Frontiers in Microbiology, 0, 13, .	3.5	2
4106	Cronobacter sakazakii Cue for the Attraction and Its Impact on the Immunity of Caenorhabditis elegans. Infection and Immunity, 2022, 90, .	2.2	2
4107	Research on the Gut Microbiota of Hainan Black Goat. Animals, 2022, 12, 3129.	2.3	1
4108	The Role of the Gut Microbiota in the Relationship Between Diet and Human Health. Annual Review of Physiology, 2023, 85, 449-468.	13.1	44
4109	Dietary supplementation with Tolypocladium sinense mycelium prevents dyslipidemia inflammation in high fat diet mice by modulation of gut microbiota in mice. Frontiers in Immunology, 0, 13, .	4.8	4
4110	The Role of Dietary Fibers in the Management of IBD Symptoms. Nutrients, 2022, 14, 4775.	4.1	7
4111	Following the Indian Immigrant: adoption of westernization results in a western gut microbiome and an increased risk of inflammatory bowel diseases. FEMS Microbiology Ecology, 0, , .	2.7	1
4112	Butyrate-producing colonic clostridia: picky glycan utilization specialists. Essays in Biochemistry, 2023, 67, 415-428.	4.7	12
4113	Role of the intestinal microbiota in the pathogenesis of multiple sclerosis. Part 1. Clinical and experimental evidence for the involvement of the gut microbiota in the development of multiple sclerosis. Meditsinskii Akademicheskii Zhurnal, 2022, 2, 9-36.	0.2	1
4114	Effect of Homo-Fermentative Lactic Acid Bacteria Inoculants on Fermentation Characteristics and Bacterial and Fungal Communities in Alfalfa Silage. Fermentation, 2022, 8, 621.	3.0	2

#	Article	IF	CITATIONS
4115	Short-Term Tomato Consumption Alters the Pig Gut Microbiome toward a More Favorable Profile. Microbiology Spectrum, 2022, 10, .	3.0	1
4116	Effects of vegetation type differences induced by human disturbance on the nutrition strategy and gut microbiota of Siberian roe deer. Molecular Ecology, 2023, 32, 2534-2550.	3.9	2
4117	Is There a Universal Endurance Microbiota?. Microorganisms, 2022, 10, 2213.	3.6	2
4118	Garlic (Allium sativum) polysaccharides ameliorates hepatic injury and fat accumulation in mice with metabolic associated fatty liver disease (MAFLD). Journal of Functional Foods, 2022, 99, 105342.	3.4	0
4119	Personalized Diets based on the Gut Microbiome as a Target for Health Maintenance: from Current Evidence to Future Possibilities. Journal of Microbiology and Biotechnology, 2022, 32, 1497-1505.	2.1	4
4120	Structural, in vitro digestion, and fermentation characteristics of lotus leaf flavonoids. Food Chemistry, 2023, 406, 135007.	8.2	6
4121	Dietary metabolizable energy and crude protein levels affect pectoral muscle composition and gut microbiota in native growing chickens. Poultry Science, 2023, 102, 102353.	3.4	3
4122	The role of the gut microbiome in paediatric irritable bowel syndrome. AIMS Microbiology, 2022, 8, 454-469.	2.2	3
4123	Interplay of dietary antioxidants and gut microbiome in human health: What has been learnt thus far?. Journal of Functional Foods, 2023, 100, 105365.	3.4	18
4124	Medicinal value of edible mushroom polysaccharides: a review. Journal of Future Foods, 2023, 3, 16-23.	4.7	11
4125	Alteration of oral microbiome composition in children living with pesticide-exposed farm workers. International Journal of Hygiene and Environmental Health, 2023, 248, 114090.	4.3	0
4126	Interplay of broccoli/broccoli sprout bioactives with gut microbiota in reducing inflammation in in inflammatory bowel diseases. Journal of Nutritional Biochemistry, 2023, 113, 109238.	4.2	6
4127	Comparison of fermentable carbohydrate consumption in plant-based vs western-style diet groups. Human Nutrition and Metabolism, 2023, 31, 200177.	1.7	0
4128	Prediction of functional proteins associated with the gut microbiome of an adult population in Lagos State, Nigeria. Scientific African, 2023, 19, e01445.	1.5	0
4129	Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. International Journal of Clinical and Health Psychology, 2023, 23, 100349.	5.1	6
4130	Gut Microbiota and Cardiovascular System: An Intricate Balance of Health and the Diseased State. Life, 2022, 12, 1986.	2.4	8
4131	Exploring the relationship between novel Coronavirus pneumonia and Parkinson's disease. Medicine (United States), 2022, 101, e31813.	1.0	1
4132	Moderate and transient impact of antibiotic use on the gut microbiota in a rural Vietnamese cohort. Scientific Reports, 2022, 12, .	3.3	1

#	Article	IF	CITATIONS
4134	Research status of the effects of natural oligosaccharides on glucose metabolism. EFood, 2022, 3, .	3.1	6
4135	A Study on the Relationship among Dietary Fiber Intake, Type 2 Diabetes, Microbiota and Immune System. , 0, 19, 51-57.		0
4136	Analysis of the gut microbiome in obese native Tibetan children living at different altitudes: A case–control study. Frontiers in Public Health, 0, 10, .	2.7	4
4137	Ancient oral microbiomes support gradual Neolithic dietary shifts towards agriculture. Nature Communications, 2022, 13, .	12.8	13
4138	Different maturation of gut microbiome in Korean children. Frontiers in Microbiology, 0, 13, .	3.5	0
4139	The Relationship between Brachionus calyciflorus-Associated Bacterial and Bacterioplankton Communities in a Subtropical Freshwater Lake. Animals, 2022, 12, 3201.	2.3	0
4140	Alterations of the gut microbiota and short chain fatty acids in necrotizing enterocolitis and food protein-induced allergic protocolitis infants: A prospective cohort study. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	1
4141	Hymenolepis diminuta Reduce Lactic Acid Bacterial Load and Induce Dysbiosis in the Early Infection of the Probiotic Colonization of Swiss Albino Rat. Microorganisms, 2022, 10, 2328.	3.6	4
4142	Healthy microbiome – a mere idea or a sound concept?. Physiological Research, 2022, 71, 719-738.	0.9	6
4143	Predicting Personalized Responses to Dietary Fiber Interventions: Opportunities for Modulation of the Gut Microbiome to Improve Health. Annual Review of Food Science and Technology, 2023, 14, 157-182.	9.9	6
4144	Spice-Derived Bioactive Compounds Confer Colorectal Cancer Prevention via Modulation of Gut Microbiota. Cancers, 2022, 14, 5682.	3.7	5
4146	Impact of diet on human nutrition, immune response, gut microbiome, and cognition in an isolated and confined mission environment. Scientific Reports, 2022, 12, .	3.3	7
4147	The History of the Intestinal Microbiota and the Gut-Brain Axis. Pathogens, 2022, 11, 1540.	2.8	5
4148	Spinal Cord–Gut–Immune Axis and Its Implications Regarding Therapeutic Development for Spinal Cord Injury. Journal of Neurotrauma, 2023, 40, 793-806.	3.4	2
4149	Crosstalk between Resveratrol and Gut Barrier: A Review. International Journal of Molecular Sciences, 2022, 23, 15279.	4.1	3
4150	Effects of Lactobacillus plantarum and Pediococcus acidilactici co-fermented feed on growth performance and gut microbiota of nursery pigs. Frontiers in Veterinary Science, 0, 9, .	2.2	5
4151	Microbiome Therapeutics for Food Allergy. Nutrients, 2022, 14, 5155.	4.1	7
4152	Human microbiome and microbiota identification for preventing and controlling healthcare-associated infections: A systematic review. Frontiers in Public Health, 0, 10, .	2.7	6

#	Article	IF	CITATIONS
4153	Stool multi-omics for the study of host–microbe interactions in inflammatory bowel disease. Gut Microbes, 2022, 14, .	9.8	10
4154	Meat Consumption and Gut Microbiota: a Scoping Review of Literature and Systematic Review of Randomized Controlled Trials in Adults. Advances in Nutrition, 2023, 14, 215-237.	6.4	10
4155	Homeostasis and Dysbiosis of the Intestinal Microbiota: Comparing Hallmarks of a Healthy State with Changes in Inflammatory Bowel Disease. Microorganisms, 2022, 10, 2405.	3.6	11
4156	Kombuchas from Green and Black Tea Modulate the Gut Microbiota and Improve the Intestinal Health of Wistar Rats Fed a High-Fat High-Fructose Diet. Nutrients, 2022, 14, 5234.	4.1	2
4157	Cognitive, Emotional, Behavioral and Physiological Evaluation of the Relationship Between Brain and Gut Microbiota. Current Approaches in Psychiatry, 2022, 14, 446-459.	0.4	0
4158	Miao sour soup influences serum lipid via regulation of highâ€fat dietâ€induced intestinal flora in obese rats. Food Science and Nutrition, 2023, 11, 2232-2242.	3.4	3
4159	Foods may modify responsiveness to cancer immune checkpoint blockers by altering both the gut microbiota and activation of estrogen receptors in immune cells. , 0, 1, .		2
4160	Sugar-sweetened beverages exacerbate high-fat diet-induced inflammatory bowel disease by altering the gut microbiome. Journal of Nutritional Biochemistry, 2023, 113, 109254.	4.2	4
4161	Stochastic variational variable selection for high-dimensional microbiome data. Microbiome, 2022, 10,	11.1	2
4162	Human matters in asthma: Considering the microbiome in pulmonary health. Frontiers in Pharmacology, 0, 13, .	3.5	3
4164	The protective effect of Buzhong Yiqi decoction on ischemic stroke mice and the mechanism of gut microbiota. Frontiers in Neuroscience, 0, 16, .	2.8	2
4165	Effects of autumn diurnal freeze–thaw cycles on soil bacteria and greenhouse gases in the permafrost regions. Frontiers in Microbiology, 0, 13, .	3.5	2
4166	Fecal microbiota transplantation in non-communicable diseases: Recent advances and protocols. Frontiers in Medicine, 0, 9, .	2.6	11
4167	Evaluating a potential model to analyze the function of the gut microbiota of the giant panda. Frontiers in Microbiology, 0, 13, .	3.5	1
4168	Latilactobacillus sakei Furu2019 and stachyose as probiotics, prebiotics, and synbiotics alleviate constipation in mice. Frontiers in Nutrition, 0, 9, .	3.7	3
4169	Diabetes Mellitus and Microbiota: Knowledge and Perspectives. Healthy Ageing and Longevity, 2023, , 131-151.	0.2	0
4170	Dietary fiber as a wide pillar of colorectal cancer prevention and adjuvant therapy. Critical Reviews in Food Science and Nutrition, 0, , 1-21.	10.3	3
4171	The Microbiome in Neurogastroenterology. , 2022, , 73-93.		0

#	Article	IF	Citations
4172	Behavior in the Middle Pleistocene. , 2022, , 461-494.		0
4173	Diet-induced gut dysbiosis and inflammation: Key drivers of obesity-driven NASH. IScience, 2023, 26, 105905.	4.1	9
4174	Understanding the development of Th2 cell-driven allergic airway disease in early life. Frontiers in Allergy, 0, 3, .	2.8	5
4175	Carbohydrate complexity limits microbial growth and reduces the sensitivity of human gut communities to perturbations. Nature Ecology and Evolution, 2023, 7, 127-142.	7.8	6
4176	MAFLD and Celiac Disease in Children. International Journal of Molecular Sciences, 2023, 24, 1764.	4.1	3
4177	Genomic repertoires linked with pathogenic potency of arthritogenic <i>Prevotella copri</i> isolated from the gut of patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 2023, 82, 621-629.	0.9	12
4178	Fecal microbiota and inflammatory and antioxidant status of obese and lean dogs, and the effect of caloric restriction. Frontiers in Microbiology, 0, 13, .	3.5	2
4179	Diet and Gut Microbiome in Gastrointestinal Cancer. , 2023, , 119-129.		1
4180	Microbiome and Asthma: Microbial Dysbiosis and the Origins, Phenotypes, Persistence, and Severity of Asthma. Nutrients, 2023, 15, 486.	4.1	16
4181	Gut bacterial species in late trimester of pregnant sows influence the occurrence of stillborn piglet through pro-inflammation response. Frontiers in Immunology, 0, 13, .	4.8	2
4182	Ancient pathogens provide a window into health and well-being. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	6
4183	Competitive ability of <i>Escherichia coli</i> strains in the intestinal microbiota of patients with Crohn's disease and healthy volunteers: physiological, biochemical and genetic characteristics. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2023, 99, 669-681.	1.0	1
4184	Bağırsak ve Akciğer Mikrobiyotaları Arasındaki İlişki. Ankara Sağlık Bilimleri Dergisi, 2021, 10, 120-	-1 ô. k	1
4185	Gut Microbiota Signature of Obese Adults Across Different Classifications. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 0, Volume 15, 3933-3947.	2.4	17
4187	Distinct Gut Microbiome Induced by Different Feeding Regimes in Weaned Piglets. Genes, 2023, 14, 49.	2.4	1
4188	Intestinal dysbiosis, obesity and metabolic syndrome: how to quit this tricky triangle?. Modern Gastroenterology, 2019, , 45-56.	0.1	0
4189	A Human and Animal Based Study Reveals That a Traditionally Fermented Rice Beverage Alters Gut Microbiota and Fecal Metabolites for Better Gut Health. Fermentation, 2023, 9, 126.	3.0	2
4190	Exercise Changes Gut Microbiota: A New Idea to Explain that Exercise Improves Autism. International Journal of Sports Medicine, 2023, 44, 473-483.	1.7	2

		CITATION REPORT		
#	Article		IF	CITATIONS
4191	Nutritional status in tuberculosis: A comprehensive problem to be addressed. , 2023, ,	525-545.		0
4192	Gut Microbiome Associated With Graves Disease and Graves Orbitopathy: The INDIGO European Study. Journal of Clinical Endocrinology and Metabolism, 2023, 108, 2065-2		3.6	14
4193	Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut, 2 772-786.	2023, 72,	12.1	23
4194	Dietary Intake and Systemic Inflammation: Can We Use Food as Medicine?. Current Nu , .	ıtrition Reports, O,	4.3	4
4195	Understanding the role of the gut microbiome in gastrointestinal cancer: A review. Fro Pharmacology, 0, 14, .	ntiers in	3.5	55
4196	Esophageal dysbiosis and esophageal squamous cell carcinoma. , 2023, , 91-114.			0
4197	Nurturing by nutrition: On the future of gut microbiota management strategies for aut disease. Frontiers in Nutrition, 0, 9, .	toimmune	3.7	1
4198	Gut microbiota of skywalker hoolock gibbons (Hoolock tianxing) from different habita captivity:Âlmplications for gibbon health. American Journal of Primatology, 0, , .	ts and in	1.7	0
4199	The Impact of Low Socioeconomic Status on Progression of Chronic Kidney Disease in Middle-Income Countries. Seminars in Nephrology, 2022, 42, 151338.	Low- and Lower	1.6	2
4200	Rheumatic diseases: The microbiota-immunity axis in development and treatment. , 20	23, , 83-111.		0
4202	The Microbiome and Uveitis. American Journal of Pathology, 2023, 193, 1638-1647.		3.8	2
4203	Dysbiosis—An Etiological Factor for Cardiovascular Diseases and the Therapeutic Ber Microflora. , 2023, 2023, 1-8.	nefits of Gut		1
4204	The digestive fate of beef versus plant-based burgers from bolus to stool. Food Researd International, 2023, 167, 112688.	ch	6.2	3
4205	Understanding the ecological effects of the fungicide difenoconazole on soil and Ench crypticus gut microbiome. Environmental Pollution, 2023, 326, 121518.	ytraeus	7.5	2
4206	Effects of in vitro simulated digestion and fecal fermentation of polysaccharides from s mushroom (Volvariella volvacea) on its physicochemical properties and human gut mic International Journal of Biological Macromolecules, 2023, 239, 124188.	straw probiota.	7.5	11
4207	Future foods, dietary factors and healthspan. Journal of Future Foods, 2023, 3, 75-98.		4.7	2
4208	Effects of in vitro digestion and fecal fermentation on physico-chemical properties and behavior of polysaccharides from Clitocybe squamulosa. Food Chemistry: X, 2023, 18,		4.3	2
4209	The modulation effect of lotus (Nelumbo nucifera Gaertn.) seeds oligosaccharides with structures on intestinal flora and action mode of growth effects on Bifidobacterium in vitro. Food Chemistry, 2023, 419, 136057.	n different vivo and in	8.2	0

#	Article	IF	CITATIONS
4210	A review on Impact of dietary interventions, drugs, and traditional herbal supplements on the gut microbiome. Microbiological Research, 2023, 271, 127346.	5.3	3
4212	Microorganisms in the Pathogenesis and Management of Crohn's Disease (CD). , 2022, , 255-269.		0
4213	Age-Dependent Prebiotic Effects of Soluble Corn Fiber in M-SHIME® Gut Microbial Ecosystems. Plant Foods for Human Nutrition, 2023, 78, 213-220.	3.2	3
4214	Increased intestinal-fatty acid binding protein in obesity-associated type 2 diabetes mellitus. PLoS ONE, 2023, 18, e0279915.	2.5	3
4215	Early response of the gut microbiome and serum metabolites to Cheonggukjang intake in healthy Korean subjects. Journal of Functional Foods, 2023, 101, 105420.	3.4	1
4216	Gut microbiota variation between climatic zones and due to migration strategy in passerine birds. Frontiers in Microbiology, 0, 14, .	3.5	2
4217	Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. Advances in Predictive, Preventive and Personalised Medicine, 2023, , 133-196.	0.6	3
4218	Diet and depression: A systematic review of whole dietary interventions as treatment in patients with depression. Journal of Affective Disorders, 2023, 327, 270-278.	4.1	8
4220	Effects of Saccharina japonica Holdfast Powder on Microbiota in the Caecum of Mice Fed a High-Sucrose and Low-Fibre Diet and in Human Faecal Cultures. Waste and Biomass Valorization, 2023, 14, 3539-3552.	3.4	2
4221	The Human Gut Game. American Biology Teacher, 2023, 85, 106-110.	0.2	0
4222	Sparse tree-based clustering of microbiome data to characterize microbiome heterogeneity in pancreatic cancer. Journal of the Royal Statistical Society Series C: Applied Statistics, 2023, 72, 20-36.	1.0	0
4223	Effects of Dietary Ferulic Acid on Intestinal Health and Ileal Microbiota of Tianfu Broilers Challenged with Lipopolysaccharide. Molecules, 2023, 28, 1720.	3.8	4
4224	Gut microbiota of white-headed black langurs (Trachypithecus leucocephalus) in responses to habitat fragmentation. Frontiers in Microbiology, 0, 14, .	3.5	3
4225	Gut-Microbiota, and Multiple Sclerosis: Background, Evidence, and Perspectives. Nutrients, 2023, 15, 942.	4.1	10
4227	Exploring the causal effects of the gut microbiome on serum lipid levels: A two-sample Mendelian randomization analysis. Frontiers in Microbiology, 0, 14, .	3.5	11
4229	Plant-based diets in gastrointestinal diseases: Which evidence?. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2023, 62-63, 101829.	2.4	3
4230	Assessment of Energy and Nutrient Intake and the Intestinal Microbiome (ErNst Study): Protocol and Methods of a Cross-sectional Human Observational Study. JMIR Research Protocols, 0, 12, e42529.	1.0	1
4231	Seasonal variations in the gut microbiota of white-headed black langur (Trachypithecus) Tj ETQq1 1 0.784314 rg Evolution, 0, 11, .	BT /Overlo 2.2	ock 10 Tf 50 (0

#	Article	IF	Citations
4232	The Rise of Gastrointestinal Cancers as a Global Phenomenon: Unhealthy Behavior or Progress?. International Journal of Environmental Research and Public Health, 2023, 20, 3640.	2.6	12
4233	The role of diet in shaping human gut microbiota. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2023, 62-63, 101828.	2.4	14
4234	A special polysaccharide hydrogel coated on <i>Brasenia schreberi</i> : preventive effects against ulcerative colitis <i>via</i> modulation of gut microbiota. Food and Function, 2023, 14, 3564-3575.	4.6	3
4235	Diet Quality and the Fecal Microbiota in Adults in the American Gut Project. Journal of Nutrition, 2023, 153, 2004-2015.	2.9	4
4236	Diet and high altitude strongly drive convergent adaptation of gut microbiota in wild macaques, humans, and dogs to high altitude environments. Frontiers in Microbiology, 0, 14, .	3.5	3
4237	Incorporation of Plant-Based Diet Surpasses Current Standards in Therapeutic Outcomes in Inflammatory Bowel Disease. Metabolites, 2023, 13, 332.	2.9	2
4238	Caloric restriction for the immunometabolic control of human health. Cardiovascular Research, 2024, 119, 2787-2800.	3.8	6
4239	Allergic sensitization to foods in India and other Low–Middleâ€income countries. Clinical and Experimental Allergy, 0, , .	2.9	3
4240	Phytomolecules as an Alternative Medicine to Combat Antimicrobial Resistance. , 2023, , 1-18.		0
4241	A major mechanism for immunomodulation: Dietary fibres and acid metabolites. Seminars in Immunology, 2023, 66, 101737.	5.6	15
4242	Dietary Therapies for Inflammatory Bowel Disease. , 2023, , 521-537.		0
4243	The Gut Microbiota and Inflammatory Bowel Disease. , 2023, , 49-59.		0
4244	Complex regulatoryÂeffects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. , 2023, 20, 341-350.		20
4245	Omega-3-Rich Fish-Oil-Influenced Mouse Gut Microbiome Shaped by Intermittent Consumption of Beef. Current Microbiology, 2023, 80, .	2.2	0
4246	Diets, Gut Microbiota and Metabolites. Phenomics, 2023, 3, 268-284.	2.9	4
4247	Fine-scale spatial variation shape fecal microbiome diversity and composition in black-tailed prairie dogs (Cynomys ludovicianus). BMC Microbiology, 2023, 23, .	3.3	1
4248	Cinnamic acid regulates the intestinal microbiome and short-chain fatty acids to treat slow transit constipation. World Journal of Gastrointestinal Pharmacology and Therapeutics, 0, 14, 4-21.	1.1	1
4249	Epigenetic Modifications Induced by the Gut Microbiota May Result from What We Eat: Should We Talk about Precision Diet in Health and Disease?. Metabolites, 2023, 13, 375.	2.9	3

#	Article	IF	CITATIONS
4251	Effects of Extruded Corn with Different Gelatinization Degrees on Feed Preference, Growth Performance, Nutrient Digestibility, and Fecal Microbiota of Weaning Piglets. Animals, 2023, 13, 922.	2.3	1
4256	The impact of diet and ethnicity on gut microbiota variation in irritable bowel syndrome: A multiâ€center study. Journal of Gastroenterology and Hepatology (Australia), 2023, 38, 1259-1268.	2.8	2
4257	Effects of milk, milk replacer, and milk replacer plus ethoxyquin on the growth performance, weaning stress, and the fecal microbiota of Holstein dairy calves. Frontiers in Microbiology, 0, 14, .	3.5	3
4258	Gut microbiome variation in pulmonary TB patients with diabetes or HIV comorbidities. , 0, 2, .		0
4259	Abundance and absence: Human-microbial co-evolution in the Anthropocene. Infrastructure Asset Management, 2024, 11, 26-48.	1.6	1
4260	Toxin-linked mobile genetic elements in major enteric bacterial pathogens. Gut Microbiome, 2023, 4, .	3.2	0
4261	Amino Acids Drive the Deterministic Assembly Process of Fungal Community and Affect the Flavor Metabolites in <i>Baijiu</i> Fermentation. Microbiology Spectrum, 2023, 11, .	3.0	5
4262	The Effect of a Diet Enriched with Jerusalem artichoke, Inulin, and Fluoxetine on Cognitive Functions, Neurogenesis, and the Composition of the Intestinal Microbiota in Mice. Current Issues in Molecular Biology, 2023, 45, 2561-2579.	2.4	2
4264	Intestinal Microbiomics in Physiological and Pathological Conditions. , 0, , .		1
4265	Current perspectives on pediatric inflammatory bowel disease focusing on transitional care management. What should we consider?. GastroenterologÃa Y HepatologÃa (English Edition), 2023, 46, 139-147.	0.1	0
4266	Dysbiosis of gut microbiota due to diet, alcohol intake, body mass index, and gastrointestinal diseases in India. Applied Microbiology and Biotechnology, 2023, 107, 2547-2560.	3.6	0
4267	Gut Microbiota and Its Role in Anti-aging Phenomenon: Evidence-Based Review. Applied Biochemistry and Biotechnology, 2023, 195, 6809-6823.	2.9	1
4268	Assessment of cecal microbiota modulation from piglet dietary supplementation with copper. BMC Microbiology, 2023, 23, .	3.3	0
4269	Schizophrenia and obesity: May the gut microbiota serve as a link for the pathogenesis?. , 2023, 2, .		2
4270	Clostridium butyricum Strain MIYAIRI 588 (CBM588) as a Precision Probiotic Therapy in the Ketogenic Diet: A Possible Application?. Microbiology Research, 2023, 14, 492-506.	1.9	2
4271	Effects of antibiotics on childhood gut microbiota. The Journal of Kansai Medical University, 2022, 73, 7-12.	0.3	0
4272	Editorial of Special Issue "Human Pathogenic Fungi: Host–Pathogen Interactions and Virulence― Microorganisms, 2023, 11, 963.	3.6	1
4273	Gut Microbiota Dysbiosis in Suspected Food Protein Induced Proctocolitis—A Prospective Comparative Cohort Trial. Journal of Pediatric Gastroenterology and Nutrition, 2023, 77, 31-38.	1.8	2

#	Article	IF	CITATIONS
4274	Alterations of the gut microbiota in type 2 diabetics with or without subclinical hypothyroidism. PeerJ, 0, 11, e15193.	2.0	2
4276	Health benefits of anthocyanin-containing foods, beverages, and supplements have unpredictable relation to gastrointestinal microbiota: A systematic review and meta-analysis of random clinical trials. Nutrition Research, 2023, 116, 48-59.	2.9	3
4277	In vitro simulated digestion and fecal fermentation of exopolysaccharide from Lacticaseibacillus paracasei GL1. Food and Function, 0, , .	4.6	1
4278	Total Zn of foods and bioaccesible fractions in the small and large intestine after in vitro digestion and fermentation with fecal material of healthy adults and children: Influence of culinary techniques. Food Research International, 2023, 169, 112817.	6.2	0
4280	Network analysis of polymicrobial chronic wound infections in Masanga, Sierra Leone. BMC Infectious Diseases, 2023, 23, .	2.9	2
4282	Prospects of using biologically active substances to prevent depression. , 2023, , 23-44.		0
4283	Nutritional and Lifestyle Therapy for NAFLD in People with HIV. Nutrients, 2023, 15, 1990.	4.1	1
4284	Berberine is a potential alternative for metformin with good regulatory effect on lipids in treating metabolic diseases. Biomedicine and Pharmacotherapy, 2023, 163, 114754.	5.6	4
4287	Time series cluster analysis reveals individual assignment of microbiota in captive tiger (<i>Panthera) Tj ETQq0 C</i>	001ggBT /O	verlock 10 T
4288	High conservation of the dental plaque microbiome across populations with differing subsistence strategies and levels of market integration. Molecular Ecology, 0, , .	3.9	1
4289	Understanding the Relationship of the Human Bacteriome with COVID-19 Severity and Recovery. Cells, 2023, 12, 1213.	4.1	0
4290	TFOS Lifestyle: Impact of nutrition on the ocular surface. Ocular Surface, 2023, 29, 226-271.	4.4	14
4291	Regular Consumption of Biovalorized Okaraâ€Containing Biscuit Improves Circulating Shortâ€Chain Fatty Acids and Fecal Bile Acids Concentrations by Modulating the Gut Microbiome: A Randomized Controlled Crossover Trial. Molecular Nutrition and Food Research, 2023, 67, .	3.3	1
4292	Dietary Polyphenol Intake and Risk of Hypertension: An 18-y Nationwide Cohort Study in China. American Journal of Clinical Nutrition, 2023, 118, 264-272.	4.7	2
4293	Gut microbiome transitions across generations in different ethnicities in an urban setting—the HELIUS study. Microbiome, 2023, 11, .	11.1	1
4294	Obesity, Gut Microbiota, and Metabolome: From Pathophysiology to Nutritional Interventions. Nutrients, 2023, 15, 2236.	4.1	7
4295	Changes in the microbiota of the upper airways and intestine in the treatment of acute respiratory infections in preschool children. Russian Pediatric Journal, 2023, 23, 95-101.	0.2	0

4296Comparative Analysis of Gut Microbiota between Wild and Captive Golden Snub-Nosed Monkeys.2.32Animals, 2023, 13, 1625.

#	Article	IF	Citations
4297	Mechanistic Insights into Immune-Microbiota Interactions and Preventive Role of Probiotics Against Autoimmune Diabetes Mellitus. Probiotics and Antimicrobial Proteins, 0, , .	3.9	0
4298	Children and adolescents with attention deficit hyperactivity disorder and autism spectrum disorder share distinct microbiota compositions. Gut Microbes, 2023, 15, .	9.8	8
4299	Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship. International Journal of Molecular Sciences, 2023, 24, 9087.	4.1	13
4300	Human gut microbiome: A primer for the clinician. JGH Open, 2023, 7, 337-350.	1.6	1
4301	Serological markers of rheumatoid arthritis in patients with primary biliary cholangitis and the vice versa: A Tunisian study. Immunobiology, 2023, 228, 152398.	1.9	0
4302	Gut Microbiota Modulation of Short Bowel Syndrome and the Gut–Brain Axis. Nutrients, 2023, 15, 2581.	4.1	1
4303	Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. International Journal of Molecular Sciences, 2023, 24, 9577.	4.1	15
4304	Could Microbiota Edit Oxalate Nephrolithiasis' Story?. Current Nutrition and Food Science, 2024, 20, 271-282.	0.6	0
4306	Effects of weaning American glass eels (Anguilla rostrata) with the formula diet on intestinal microbiota and inflammatory cytokines genes expression. Heliyon, 2023, 9, e16965.	3.2	0
4307	Gut bacterial metabolism contributes to host global purine homeostasis. Cell Host and Microbe, 2023, 31, 1038-1053.e10.	11.0	13
4308	Use of fiber-containing enteral formula in pediatric clinical practice: an expert opinion review. Expert Review of Gastroenterology and Hepatology, 2023, 17, 665-675.	3.0	0
4310	Food System Transformation and Gut Microbiota Transition: Evidence on Advancing Obesity, Cardiovascular Diseases, and Cancers—A Narrative Review. Foods, 2023, 12, 2286.	4.3	4
4311	A perspective on green, blue, and grey spaces, biodiversity, microbiota, and human health. Science of the Total Environment, 2023, 892, 164772.	8.0	5
4312	Effects of urbanization and lifestyle habits on the intestinal microbiota of adolescents in eastern China. Frontiers in Microbiology, 0, 14, .	3.5	0
4313	Correlation analysis of breast fibroadenoma and the intestinal flora based on 16S rRNA sequencing. , 2021, , 269-274.		1
4314	Gut Bacteria and Nutritional Status of Nigerian Children at an Internally Displaced Persons' Camp in Benue State, Nigeria: A Pilot Study. Journal of Biosciences and Medicines, 2023, 11, 118-134.	0.2	0
4315	Gut microbiota characteristics in children with cerebral palsy. , 2023, , 321-334.		0
4316	Confounder or Confederate? The Interactions Between Drugs and the Gut Microbiome in Psychiatric and Neurological Diseases. Biological Psychiatry, 2024, 95, 361-369.	1.3	3

#	Article	IF	CITATIONS
4317	Assessment of in vitro digestion of reduced sugar biscuits with extruded brewers' spent grain. Food Research International, 2023, 172, 113160.	6.2	0
4318	Crosstalk between dietary pomegranate and gut microbiota: evidence of health benefits. Critical Reviews in Food Science and Nutrition, 0, , 1-27.	10.3	1
4319	Dietary Patterns, Gut Microbiota Remodeling, and Cardiometabolic Disease. Metabolites, 2023, 13, 760.	2.9	1
4320	Gut microbiome dysbiosis is associated with host genetics in the Norwegian Lundehund. Frontiers in Microbiology, 0, 14, .	3.5	0
4321	Introduction to the Gut Microbiome and Its Impact on Health and Disease. Topics in Clinical Nutrition, 2023, 38, 183-195.	0.4	1
4322	Similar connectivity of gut microbiota and brain activity networks is mediated by animal protein and lipid intake in children from a Mexican indigenous population. PLoS ONE, 2023, 18, e0281385.	2.5	2
4323	Molecular weight of dissolved organic matter determines its interactions with microbes and its assembly processes in soils. Soil Biology and Biochemistry, 2023, 184, 109117.	8.8	2
4324	Diet-microbiota interaction in irritable bowel syndrome: looking beyond the low-FODMAP approach. Scandinavian Journal of Gastroenterology, 2023, 58, 1366-1377.	1.5	1
4325	Gut Microbiota Enterotypes Mediate the Effects of Dietary Patterns on Colorectal Neoplasm Risk in a Chinese Population. Nutrients, 2023, 15, 2940.	4.1	1
4326	Maternal and food microbial sources shape the infant microbiome of a rural Ethiopian population. Current Biology, 2023, 33, 1939-1950.e4.	3.9	5
4327	A Scoping Review of the Relationship between Intermittent Fasting and the Human Gut Microbiota: Current Knowledge and Future Directions. Nutrients, 2023, 15, 2095.	4.1	1
4328	Meal-Based Intervention on Health Promotion in Middle-Aged Women: A Pilot Study. Nutrients, 2023, 15, 2108.	4.1	0
4329	Patients with Diverticular Disease Have Different Dietary Habits Compared to Control Subjects: Results from an Observational Italian Study. Nutrients, 2023, 15, 2119.	4.1	2
4330	Employing pigs to decipher the host genetic effect on gut microbiome: advantages, challenges, and perspectives. Gut Microbes, 2023, 15, .	9.8	1
4331	Red Wine High-Molecular-Weight Polyphenolic Complex Ameliorates High-Fat Diet-Induced Metabolic Dysregulation and Perturbation in Gut Microbiota in Mice. Journal of Agricultural and Food Chemistry, 2023, 71, 6882-6893.	5.2	2
4332	The global research of microbiota in colorectal cancer screening: a bibliometric and visualization analysis. Frontiers in Oncology, 0, 13, .	2.8	0
4333	Importance of Bacteroidetes in host–microbe interactions and ecosystem functioning. Trends in Microbiology, 2023, 31, 959-971.	7.7	11
4334	Effects of rye inclusion in dog food on fecal microbiota and short-chain fatty acids. BMC Veterinary Research, 2023, 19, .	1.9	1

#	Article	IF	Citations
4335	The Antioxidant Effect of Dietary Bioactives Arises from the Interplay between the Physiology of the Host and the Gut Microbiota: Involvement of Short-Chain Fatty Acids. Antioxidants, 2023, 12, 1073.	5.1	3
4336	Nutrition and the Gut Microbiome: Insights into New Dietary Strategies for Health. , 2023, , 307-322.		0
4337	Comprehensive insights from composition to functional microbe-based biodiversity of the infant human gut microbiota. Npj Biofilms and Microbiomes, 2023, 9, .	6.4	7
4338	Maternal and infant microbiome: next-generation indicators and targets for intergenerational health and nutrition care. Protein and Cell, 2023, 14, 807-823.	11.0	2
4339	Comparative Analysis of Fecal Microbiota in Vegetarians and Omnivores. Nutrients, 2023, 15, 2358.	4.1	0
4340	The effects of helminth infections on the human gut microbiome: a systematic review and meta-analysis. , 0, 2, .		2
4341	Exploring the Relationship between the Gut Microbiota and Ageing: A Possible Age Modulator. International Journal of Environmental Research and Public Health, 2023, 20, 5845.	2.6	3
4342	Potential long consequences from internal and external ecology: loss of gut microbiota antifragility in children from an industrialized population compared with an indigenous rural lifestyle. Journal of Developmental Origins of Health and Disease, 0, , 1-12.	1.4	0
4345	Effects of a wholegrain-rich diet on markers of colonic fermentation and bowel function and their associations with the gut microbiome: a randomised controlled cross-over trial. Frontiers in Nutrition, 0, 10, .	3.7	1
4346	Exploring the Impact of the Gut Microbiome on Obesity and Weight Loss: A Review Article. Cureus, 2023, , .	0.5	2
4347	A diabetes mellitus és a bélmikrobiom. Orvosi Hetilap, 2023, 164, 981-987.	0.4	0
4348	Exploring the potential links between gut microbiota composition and natural populations management in wild boar (Sus scrofa). Microbiological Research, 2023, 274, 127444.	5.3	0
4349	Maternal microbiome disturbance induces deficits in the offspring's behaviors: a systematic review and meta-analysis. Gut Microbes, 2023, 15, .	9.8	2
4350	Synergistic effects of low-dose arsenic and N-methyl-N′-nitro-N-nitrosoguanidine co-exposure by altering gut microbiota and intestinal metabolic profile in rats. Ecotoxicology and Environmental Safety, 2023, 263, 115195.	6.0	1
4351	Advances in personalized gastroenterology and hepatology 2016. Russian Journal of Gastroenterology Hepatology Coloproctology, 2016, 26, 4-10.	1.1	0
4352	Host, Genetic, and Environmental Influences on the Gut Microbiota. , 2023, , 83-104.		0
4353	Gut Microbial Mechanisms in Nutrition and Health. , 2023, , 147-177.		0
4354	Enantioselective effect of the chiral fungicide tebuconazole on the microbiota community and antibiotic resistance genes in the soil and earthworm gut. Science of the Total Environment, 2023, 897, 165381.	8.0	2

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
4355	The Gut Microbiota: a Novel Player in the Pathogenesis of Uterine Fibroids. Reproductive Sc	iences, 0, , .	2.5	1
4356	The Relationship between the Source of Dietary Animal Fats and Proteins and the Gut Micro Condition and Obesity in Humans. Nutrients, 2023, 15, 3082.	bbiota	4.1	0
4357	Dietary Protein, Chronic Salt-Sensitive Hypertension, and Kidney Damage. Kidney360, 2023	·, , •	2.1	0
4358	Intestinal mucus and their glycans: A habitat for thriving microbiota. Cell Host and Microbe 1087-1100.	2023, 31,	11.0	27
4359	Association of Habitual Intake of Probiotic Supplements and Yogurt with Characteristics of Microbiome in the Multiethnic Cohort Adiposity Phenotype Study. Gut Microbiome, 0, , 1-2	the Gut 7.	3.2	0
4360	Effects of soluble glucomannan and insoluble cellulose treatment on mucin secretion and n glycosylationâ€related gene expression in the colons of mice. Journal of the Science of Food Agriculture, 0, , .		3.5	0
4361	Influence of gut-microbiota on breast cancer development and management. , 2022, , 129-	175.		0
4362	Oral Postbiotics as a Therapeutic Strategy for Atopic Dermatitis: A Systematic Review of Ra Controlled Trials. , 0, , 1-8.	ndomized		1
4363	Phytomolecules as an Alternative Medicine to Combat Antimicrobial Resistance. , 2023, , 94	17-964.		0
4364	Human-influenced diets affect the gut microbiome of wild baboons. Scientific Reports, 202	3,13,.	3.3	3
4365	Plant-Based Nutrition: Exploring Health Benefits for Atherosclerosis, Chronic Diseases, and Metabolic Syndrome—A Comprehensive Review. Nutrients, 2023, 15, 3244.		4.1	15
4366	Gut microbes predominantly act as living beneficial partners rather than raw nutrients. Scie Reports, 2023, 13, .	ntific	3.3	0
4367	Liposomal Epigallocatechin-3-Gallate for the Treatment of Intestinal Dysbiosis in Children w Spectrum Disorder: A Comprehensive Review. Nutrients, 2023, 15, 3265.	ith Autism	4.1	0
4369	Gut Microbial Intersections with Human Ecology and Evolution. Annual Review of Anthropo 2023, 52, .	logy,	1.5	2
4370	Long-term effects on liver metabolism induced by ceftriaxone sodium pretreatment. Enviror Pollution, 2023, 335, 122238.	ımental	7.5	2
4372	Profiles and diagnostic value of intestinal microbiota in schizophrenia patients with metabo syndrome. Frontiers in Endocrinology, 0, 14, .	lic	3.5	0
4373	Gut Microbiota and Obesity. Endocrinology, 2023, , 1-29.		0.1	0
4374	Effect of Dietary Patterns on Inflammatory Bowel Disease: A Machine Learning Bibliometric Visualization Analysis. Nutrients, 2023, 15, 3442.	and	4.1	0

#	Article	IF	CITATIONS
4375	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2023, , 1-12.		0
4376	Challenges and priorities for researching the gut microbiota in individuals living with anorexia nervosa. International Journal of Eating Disorders, 0, , .	4.0	0
4377	Dietary protein levels modulate the gut microbiome composition through fecal samples derived from lactating ewes. Frontiers in Endocrinology, 0, 14, .	3.5	1
4378	The effect of novel antimicrobial agents on the normal functioning of human intestinal microbiota: a systematic review. , 0, 2, .		1
4379	The Effect of COVID-19 on Gut Microbiota: Exploring the Complex Interplay and Implications for Human Health. Gastrointestinal Disorders, 2023, 5, 340-355.	0.8	1
4380	The effects of Ascophyllum nodosum, Camellia sinensis-leaf extract, and their joint interventions on glycolipid and energy metabolism in obese mice. Frontiers in Nutrition, 0, 10, .	3.7	0
4381	Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study. Nature Communications, 2023, 14, .	12.8	10
4382	Impact of Diet on Colorectal Cancer Progression and Prevention: From Nutrients to Neoplasms. Korean journal of gastroenterology = Taehan Sohwagi Hakhoe chi, The, 2023, 82, 73-83.	0.4	1
4383	The Hatching Time of Broiler Chickens Modifies Not Only the Production Traits but Also the Early Bacteriota Development of the Ceca. Animals, 2023, 13, 2712.	2.3	0
4384	Effects of Ramadan intermittent fasting on gut microbiome: is the diet key?. Frontiers in Microbiology, 0, 14, .	3.5	1
4385	Household environment and animal fecal contamination are critical modifiers of the gut microbiome and resistome in young children from rural Nicaragua. Microbiome, 2023, 11, .	11.1	0
4386	Dietary Interventions in Ulcerative Colitis: A Systematic Review of the Evidence with Meta-Analysis. Nutrients, 2023, 15, 4194.	4.1	0
4387	Gut Phageome—An Insight into the Role and Impact of Gut Microbiome and Their Correlation with Mammal Health and Diseases. Microorganisms, 2023, 11, 2454.	3.6	3
4388	Associations between the Gut Microbiota, Race, and Ethnicity of Patients with Colorectal Cancer: A Pilot and Feasibility Study. Cancers, 2023, 15, 4546.	3.7	0
4389	Effects of Concentrate Feeding Sequence on Growth Performance, Nutrient Digestibility, VFA Production, and Fecal Microbiota of Weaned Donkeys. Animals, 2023, 13, 2893.	2.3	0
4390	Microbiota-accessible carbohydrates (MACs) as novel gut microbiome modulators in noncommunicable diseases. Heliyon, 2023, 9, e19888.	3.2	1
4391	Characterization, health benefits, and food applications of enzymatic digestion- resistant dextrin: A review. International Journal of Biological Macromolecules, 2023, 253, 126970.	7.5	3
4392	Microbiome ownership for Indigenous peoples. Nature Microbiology, 2023, 8, 1777-1786.	13.3	1

		CITATION RE	PORT	
#	Article		IF	Citations
4393	How important is food structure when cats eat mice?. British Journal of Nutrition, 2024	4, 131, 369-383.	2.3	0
4395	Effects of Physical Activity and Nutrition Education on the Gut Microbiota in Overweig Children. Children, 2023, 10, 1242.	ht and Obese	1.5	1
4396	Lifestyle patterns influence the composition of the gut microbiome in a healthy Chines Scientific Reports, 2023, 13, .	e population.	3.3	2
4397	Plant fructans: Recent advances in metabolism, evolution aspects and applications for Current Research in Food Science, 2023, 7, 100595.	human health.	5.8	1
4398	Fecal Metagenomics Study Reveals That a Low-Fiber Diet Drives the Migration of Wild in Xishuangbanna, China. Animals, 2023, 13, 3193.	Asian Elephants	2.3	0
4399	Intestinal Microbiome in Dogs with Chronic Hepatobiliary Disease: Can We Talk about Axis?. Animals, 2023, 13, 3174.	the Gut–Liver	2.3	1
4400	Characterisation of Indian gut microbiome for B-vitamin production and its comparisor cohort. British Journal of Nutrition, 0, , 1-12.	ו with Chinese	2.3	0
4401	A Multi-Omics and Human Biomonitoring Approach to Assessing the Effectiveness of F Balanced Energy–Protein Supplementation on Maternal and Newborn Health in Burk Protocol. Nutrients, 2023, 15, 4056.	ortified ina Faso: A Study	4.1	2
4402	Edible flora in pre-Columbian Caribbean coprolites: Expected and unexpected data. PLc e0292077.	S ONE, 2023, 18,	2.5	0
4404	Nutritional programming in Nile tilapia (Oreochromis niloticus): Effect of low dietary pr growth and the intestinal microbiome and transcriptome. PLoS ONE, 2023, 18, e02924		2.5	2
4405	Gut microbiota and childhood malnutrition: Understanding the link and exploring thera interventions. Engineering in Life Sciences, 0, , .	apeutic	3.6	0
4406	Migration Spurs Changes in the Human Microbiome: a Review. Journal of Racial and Eth Disparities, 0, , .	nnic Health	3.2	0
4407	Comparative analysis of gut microbiota between common (Macaca fascicularis fascicu Burmese (M. f. aurea) long-tailed macaques in different habitats. Scientific Reports, 20		3.3	2
4408	The potential of dietary fiber in building immunity against gastrointestinal and respirat Critical Reviews in Food Science and Nutrition, 0, , 1-19.	ory disorders.	10.3	0
4409	The eukaryome of African children is influenced by geographic location, gut biogeographic location, gut biogeograp	phy, and	2.1	0
4410	Discovery of a novel small molecule with efficacy in protecting against inflammation in vivo by enhancing macrophages activation. Biomedicine and Pharmacotherapy, 2023,	vitro and in 165, 115273.	5.6	0
4411	Experimental Capacity of Human Fecal Microbiota to Degrade Fiber and Produce Short Acids Is Associated with Diet Quality and Anthropometric Parameters. Journal of Nutrit 2827-2841.	-Chain Fatty ion, 2023, 153,	2.9	0
4412	Infant gut microbiota colonization: influence of prenatal and postnatal factors, focusin Frontiers in Microbiology, 0, 14, .	g on diet.	3.5	6

#	Article	IF	CITATIONS
4413	Soil microbiome influences human health in the context of climate change. Future Microbiology, 2023, 18, 845-859.	2.0	0
4414	Chronic Exposure to Environmentally Relevant Concentrations of Tetracycline Perturbs Gut Homeostasis in Zebrafish. , 2023, 1, 258-269.		1
4415	The potential modulation of gut microbiota and oxidative stress by dietary carotenoid pigments. Critical Reviews in Food Science and Nutrition, 0, , 1-19.	10.3	1
4416	Physicochemical characterization, digestion profile and gut microbiota regulation activity of intracellular polysaccharides from Chlorella zofingiensis. International Journal of Biological Macromolecules, 2023, 253, 126881.	7.5	0
4417	Distinctive patterns of sulfide- and butyrate-metabolizing bacteria after bariatric surgery: potential implications for colorectal cancer risk. Gut Microbes, 2023, 15, .	9.8	0
4418	Combination of galacto-oligosaccharides and wheat peptides synergistically relieved constipation via regulating water transport, gut barrier, inflammation and gut microbiota. Food Bioscience, 2023, 56, 103208.	4.4	0
4419	Investigating the cecal microbiota of broilers raised in extensive and intensive production systems. Microbiology Spectrum, 2023, 11, .	3.0	0
4420	Gut Microbiota and Specific Response to Diet. Endocrinology, 2023, , 1-29.	0.1	0
4421	The role of diet in modulating the intestinal microbiota in healthy adults: Is the evidence enough?. Acta Marisiensis - Seria Medica, 2023, 69, 147-152.	0.2	0
4422	Effect of olive cake supplementation on faecal microbiota profile of Holstein and Modicana dairy cattle. Microbiological Research, 2023, 277, 127510.	5.3	0
4423	Fecal Microbial Composition and Predicted Functional Profile in Irritable Bowel Syndrome Differ between Subtypes and Geographical Locations. Microorganisms, 2023, 11, 2493.	3.6	0
4424	Diet and Hypertension. , 2024, , 17-48.		0
4426	Exploring the gut microbiota: lifestyle choices, disease associations, and personal genomics. Frontiers in Nutrition, 0, 10, .	3.7	4
4427	Gut microbiome supplementation as therapy for metabolic syndrome. World Journal of Diabetes, 0, 14, 1502-1513.	3.5	3
4428	A Potential Role for Gut Microbes in Mediating Effects of Omega-3 Fatty Acids in Inflammatory Bowel Diseases: A Comprehensive Review. Current Microbiology, 2023, 80, .	2.2	2
4429	Human Gut Microbiome: Its Role in Health and Development. Sustainable Development Goals Series, 2023, , 107-115.	0.4	0
4431	Factors Influencing Neonatal Gut Microbiome and Health with a Focus on Necrotizing Enterocolitis. Microorganisms, 2023, 11, 2528.	3.6	1
4432	Creation of a non-Western humanized gnotobiotic mouse model through the transplantation of rural African fecal microbiota. Microbiology Spectrum, 2023, 11, .	3.0	1

#	Article	IF	CITATIONS
4433	High-fructose corn syrup aggravates colitis via microbiota dysbiosis-mediated Th17/Treg imbalance. Clinical Science, 2023, 137, 1619-1635.	4.3	2
4434	The short-term and long-term effects of Dendrobium officinale leaves polysaccharides on the gut microbiota differ. Journal of Functional Foods, 2023, 110, 105807.	3.4	0
4436	Temporal and spatial variations in body mass and thermogenic capacity associated with alterations in the gut microbiota and host transcriptome in mammalian herbivores. Science of the Total Environment, 2024, 907, 167776.	8.0	0
4437	Sterile soil mitigates the intergenerational loss of gut microbial diversity and anxiety-like behavior induced by antibiotics in mice. Brain, Behavior, and Immunity, 2024, 115, 179-190.	4.1	0
4438	The gut microbiome in the fight against obesity: The potential of dietary factors. FASEB Journal, 2023, 37, .	0.5	2
4439	Maternal vitamin D in pregnancy and infant's gut microbiota: a systematic review. Frontiers in Pediatrics, 0, 11, .	1.9	0
4440	Gut-Brain Axis a Key Player to Control Gut Dysbiosis in Neurological Diseases. Molecular Neurobiology, 0, , .	4.0	3
4441	Nutrition and microbiota. Nutricion Hospitalaria, 2023, , .	0.3	0
4443	Effects of probiotic supplementation on the gut microbiota composition of adults: a systematic review of randomized clinical trials. Anais Da Academia Brasileira De Ciencias, 2023, 95, .	0.8	2
4444	Tumor Microbial Communities and Thyroid Cancer Development—The Protective Role of Antioxidant Nutrients: Application Strategies and Future Directions. Antioxidants, 2023, 12, 1898.	5.1	0
4445	Extension of the Segatella copri complex to 13 species with distinct large extrachromosomal elements and associations with host conditions. Cell Host and Microbe, 2023, 31, 1804-1819.e9.	11.0	3
4446	Structurally Orientated Rheological and Gut Microbiota Fermentation Property of Mannans Polysaccharides and Oligosaccharides. Foods, 2023, 12, 4002.	4.3	0
4447	RNA-seq transcriptome analysis provides new insights into the negative effects of tannic acid on the intestinal function of Brandt's voles (Lasiopodomys brandtii). Gene, 2024, 893, 147944.	2.2	0
4449	A review on the hypoglycemic effect, mechanism and application development of natural dietary polysaccharides. International Journal of Biological Macromolecules, 2023, 253, 127267.	7.5	3
4450	Fermentation technology as a driver of human brain expansion. Communications Biology, 2023, 6, .	4.4	0
4451	A Network Pharmacology and Molecular-Docking-Based Approach to Identify the Probable Targets of Short-Chain Fatty-Acid-Producing Microbial Metabolites against Kidney Cancer and Inflammation. Biomolecules, 2023, 13, 1678.	4.0	0
4452	Hadza Prevotella require diet-derived microbiota-accessible carbohydrates to persist in mice. Cell Reports, 2023, 42, 113233.	6.4	1
4453	Exploring the influences of geographical variation on sequence signatures in the human gut microbiome. Journal of Genetics, 2023, 102, .	0.7	Ο

		REPORT	
# 4454	ARTICLE A Catastrophic Biodiversity Loss in the Environment Is Being Replicated on the Skin Microbiome: Is This a Major Contributor to the Chronic Disease Epidemic?. Microorganisms, 2023, 11, 2784.	IF 3.6	Citations 0
4455	Immunomodulatory action of synbiotic comprising of newly isolated lactic acid producing bacterial strains against allergic asthma in mice. Cellular Immunology, 2023, 393-394, 104786.	3.0	0
4456	Influence of Sex and a High-Fiber Diet on the Gut Microbiome of Alentejano Pigs Raised to Heavy Weights. Veterinary Sciences, 2023, 10, 641.	1.7	0
4457	Seasonal Effects on the Fecal Microbial Composition of Wild Greater Thick-Tailed Galagos (Otolemur) Tj ETQq1	1 0.78431 1.9	4 rgBT /Over
4458	The Microbiome, Metabolism, and Networks in Precision Nutrition. , 2024, , 91-142.		0
4459	Gut microbiomes of agropastoral children from the Adadle region of Ethiopia reflect their unique dietary habits. Scientific Reports, 2023, 13, .	3.3	0
4460	Short-chain fatty acids are potential goalkeepers of atherosclerosis. Frontiers in Pharmacology, 0, 14,	3.5	1
4461	Gut microbiome in healthy aging versus those associated with frailty. Gut Microbes, 2023, 15, .	9.8	2
4462	Optimizing the Gut Microbiota for Individualized Performance Development in Elite Athletes. Biology, 2023, 12, 1491.	2.8	0
4463	Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nature Reviews Gastroenterology and Hepatology, 2024, 21, 164-183.	17.8	1
4464	Probiotic Clostridium butyricum ameliorates cognitive impairment in obesity via the microbiota-gut-brain axis. Brain, Behavior, and Immunity, 2024, 115, 565-587.	4.1	1
4465	Mothers' Breast Milk Composition and Their Respective Infant's Gut Microbiota Differ between Five Distinct Rural and Urban Regions in Vietnam. Nutrients, 2023, 15, 4802.	4.1	2
4466	The Role of Gut Microbiota in Gestational Diabetes Mellitus Affecting Intergenerational Glucose Metabolism: Possible Mechanisms and Interventions. Nutrients, 2023, 15, 4551.	4.1	0
4468	Probiotics attenuate valproate-induced liver steatosis and oxidative stress in mice. PLoS ONE, 2023, 18, e0294363.	2.5	0
4469	Statin therapy and gut microbiota. , 0, , .		0
4471	Why are so many enteric pathogen infections asymptomatic? Pathogen and gut microbiome characteristics associated with diarrhea symptoms and carriage of diarrheagenic <i>E. coli</i> in northern Ecuador. Gut Microbes, 2023, 15, .	9.8	1
4472	Divergent microbial structure still results in convergent microbial function during arrested anaerobic digestion of food waste at different hydraulic retention times. Bioresource Technology, 2024, 393, 130069.	9.6	0
4473	Gut Microbiota and Specific Response to Diet. Endocrinology, 2024, , 1-29.	0.1	0

#	Article	IF	CITATIONS
4474	The relationship between atrial fibrillation and NLRP3 inflammasome: a gut microbiota perspective. Frontiers in Immunology, 0, 14, .	4.8	0
4477	Systematic review and meta-analysis of habitual intake of fermentable oligo-, di-, mono- saccharides and polyols in the general population and revisiting the low FODMAP diet concept. Journal of Functional Foods, 2024, 112, 105914.	3.4	1
4478	Pathways linking microbiota-gut-brain axis with neuroinflammatory mechanisms in Alzheimer's pathophysiology. , 0, 3, .		1
4479	Systematic Review and Meta-Analysis of Dietary Interventions and Microbiome in Phenylketonuria. International Journal of Molecular Sciences, 2023, 24, 17428.	4.1	0
4480	Decoding the role of the gut microbiome in gut-brain axis, stress-resilience, or stress-susceptibility: A review. Asian Journal of Psychiatry, 2024, 91, 103861.	2.0	0
4481	Opioid trail: Tracking contributions to opioid use disorder from host genetics to the gut microbiome. Neuroscience and Biobehavioral Reviews, 2024, 156, 105487.	6.1	0
4482	The Emerging Role of the Gut Microbiome in Hematopoietic Stem Cell Transplantation. , 2023, , .		0
4483	Postprandial Dysmetabolism and Its Medical Implications. Life, 2023, 13, 2317.	2.4	0
4484	Gut microbiota in relationship to diabetes mellitus and its late complications with a focus on diabetic foot syndrome: A review. Folia Microbiologica, 0, , .	2.3	1
4485	A single dietary factor, daily consumption of a fermented beverage, can modulate the gut bacteria and fecal metabolites within the same ethnic community. MSystems, 2023, 8, .	3.8	0
4486	Plasma Metabolome Analysis Suggests That L-Arginine Supplementation Affects Microbial Activity Resulting in a Decrease in Trimethylamine N-oxide—A Randomized Controlled Trial in Healthy Overweight Adults with Cardiometabolic Risk Factors. Current Developments in Nutrition, 2023, 7, 102038.	0.3	0
4487	Gut Microbiome Profiling of the Endangered Southern Greater Glider (Petauroides volans) after the 2019–2020 Australian Megafire. Animals, 2023, 13, 3583.	2.3	0
4488	The potential role of early life feeding patterns in shaping the infant fecal metabolome: implications for neurodevelopmental outcomes. , 2023, 1, .		1
4489	Fermented Chinese Herbs Improve the Growth and Immunity of Growing Pigs through Regulating Colon Microbiota and Metabolites. Animals, 2023, 13, 3867.	2.3	0
4490	The role of the gut microbiome in gastrointestinal cancers. Cellular Signalling, 2024, 115, 111013.	3.6	1
4491	Gut diazotrophs in lagomorphs are associated with season but not altitude and host phylogeny. FEMS Microbiology Letters, 2024, 371, .	1.8	0
4492	Influence of the Gut Microbiome on Cardiovascular Health and Hypertension. , 2023, , 335-359.		0
4493	An Insight on Gut Flora, Colorectal Cancer Mechanism, and Treatment Strategies. , 2023, 2023, 1-16.		0

	CITATION REPORT		
Article		IF	CITATIONS
Understanding the gut microbiota by considering human evolution: a story of fire, cere molecular ingenuity, and functional cooperation. Microbiology and Molecular Biology 88, .	eals, cooking, Reviews, 2024,	6.6	0
Biodiversity of intestinal Lactobacillus in relation to dietary habits and health status in of China. Food Bioscience, 2024, 57, 103492.	Mongolians	4.4	0
Red Cabbage Modulates Composition and Co-Occurrence Networks of Gut Microbiota Diet-Induced Obesity Model. Foods, 2024, 13, 85.	a in a Rodent	4.3	0
Mikrobiyota Kaynaklı Kısa Zincirli Yağ Asitleri ve Hastalıklar Üzerine Etkileri. A Dergisi, 2023, 32, 246-253.	rsiv Kaynak Tarama	0.1	0
The Gut Microbiome: A Primer for the Clinician. American Journal of Gastroenterology, S2-S6.	2024, 119,	0.4	0

4498	The Gut Microbiome: A Primer for the Clinician. American Journal of Gastroenterology, 2024, 119, S2-S6.	0.4	0
4499	Analysis of microbial colonies from the first-pass meconium of healthy neonates: Comparison of vaginally and cesarean section born. , 2023, 17, 76-84.		0
4500	Dynamic nature of viral and bacterial communities in human faeces. IScience, 2024, 27, 108778.	4.1	0
4501	Infant diarrheal disease in rhesus macaques impedes microbiome maturation and is linked to uncultured Campylobacter species. Communications Biology, 2024, 7, .	4.4	0
4502	Viral Liver Disease and Intestinal Gut–Liver Axis. Gastrointestinal Disorders, 2024, 6, 64-93.	0.8	0
4503	Nutritional regulation of microbiota-derived metabolites: Implications for immunity and inflammation. Immunity, 2024, 57, 14-27.	14.3	2
4504	Comparison of Intestinal Microbiota of Blue Fox before and after Weaning. Animals, 2024, 14, 210.	2.3	0
4505	Swine Gastrointestinal Microbiota and the Effects of Dietary Amino Acids on Its Composition and Metabolism. International Journal of Molecular Sciences, 2024, 25, 1237.	4.1	0
4506	The role of gut microbiota in human metabolism and inflammatory diseases: a focus on elderly individuals. Annals of Microbiology, 2024, 74, .	2.6	0
4507	Differences in bacterial taxa between treatment-naive patients with major depressive disorder and non-affected controls may be related to a proinflammatory profile. BMC Psychiatry, 2024, 24, .	2.6	0
4508	Characterizing alterations in the gut microbiota following postpartum weight change. MSystems, 2023, 8, .	3.8	0
4509	Me, Myself and My Microbiota. , 2024, , 9-27.		0
4510	Influence of perinatal and childhood exposure to tobacco and mercury in children's gut microbiota. Frontiers in Microbiology, 0, 14, .	3.5	1
4511	Low-density polyethylene enhances the disturbance of microbiome and antibiotic resistance genes transfer in soil-earthworm system induced by pyraclostrobin. Journal of Hazardous Materials, 2024,	12.4	0

465, 133459.

#

4494

4495

4496

4497

#	Article	IF	CITATIONS
4512	Gut microbiota variations in wild yellow baboons (Papio cynocephalus) are associated with sex and habitat disturbance. Scientific Reports, 2024, 14, .	3.3	0
4513	Microbiome analysis reveals the intestinal microbiota characteristics and potential impact of Procambarus clarkii. Applied Microbiology and Biotechnology, 2024, 108, .	3.6	0
4514	A fascinating finding: The application of traditional Chinese medicine in aquaculture prevents the spread and diffusion of antibiotic resistance genes among gut microbes. Aquaculture, 2024, 583, 740573.	3.5	0
4515	Effects of acetyl groups on the prebiotic properties of glucomannan extracted from Artemisia sphaerocephala Krasch seeds. Carbohydrate Polymers, 2024, 330, 121805.	10.2	0
4516	Ascomycetes yeasts: The hidden part of human microbiome. WIREs Mechanisms of Disease, 0, , .	3.3	0
4517	Pathogenesis and precision medicine for predicting response in inflammatory bowel disease: advances and future directions. , 2024, 2, e100006.		0
4518	<i>Prevotella copri</i> variants among a single host diverge in sphingolipid production. MBio, 2024, 15, .	4.1	0
4519	Feeding the Globe Nutritious Food in 2050: Obligations and Ethical Choices. , 2024, , 649-668.		0
4520	Gut microbiota and metabolic syndrome: What's new?. , 2024, , 527-541.		0
4521	Daily Cashew and Brazil Nut Consumption Modifies Intestinal Health in Overweight Women on Energy-Restricted Intervention: A Randomized Controlled Trial (Brazilian Nuts Study). Journal of Nutrition, 2024, 154, 962-977.	2.9	0
4522	Gut microbiome derived short chain fatty acids: Promising strategies in necrotising enterocolitis. Current Research in Microbial Sciences, 2024, 6, 100219.	2.3	0
4523	Nourishing the gut: the impact of diet on host–gut microbiota interaction. Current Opinion in Clinical Nutrition and Metabolic Care, 0, , .	2.5	0
4524	Moderate variations in the human diet impact the gut microbiota in humanized mice. Acta Physiologica, 2024, 240, .	3.8	0
4525	Differential peripheral immune signatures elicited by vegan versus ketogenic diets in humans. Nature Medicine, 2024, 30, 560-572.	30.7	0
4526	Gut Microbiome, Obesity, and Metabolic Syndrome. , 2023, , 373-384.		0
4527	Gut Microbiota and Specific Response to Diet. Endocrinology, 2024, , 431-459.	0.1	0
4528	Gut Microbiota and Obesity. Endocrinology, 2024, , 129-156.	0.1	0
4529	Anti-obesity effect of butyrate links to modulation of gut microbiome and epigenetic regulation of muscular circadian clock. Journal of Nutritional Biochemistry, 2024, 127, 109590.	4.2	0

#	Article	IF	Citations
4530	Differential effects of antiretroviral treatment on immunity and gut microbiome composition in people living with HIV in rural versus urban Zimbabwe. Microbiome, 2024, 12, .	11.1	0
4531	HIV-associated gut microbial alterations are dependent on host and geographic context. Nature Communications, 2024, 15, .	12.8	0
4532	Oral bacteria induce IgA autoantibodies against a mesangial protein in IgA nephropathy model mice. Life Science Alliance, 2024, 7, e202402588.	2.8	0
4533	The Potential of Clostridium butyricum to Preserve Gut Health, and to Mitigate Non-AIDS Comorbidities in People Living with HIV. Probiotics and Antimicrobial Proteins, 0, , .	3.9	0
4534	The gut microbiome of Baka forager-horticulturalists from Cameroon is optimized for wild plant foods. IScience, 2024, 27, 109211.	4.1	0
4535	Complex insoluble dietary fiber alleviates obesity and liver steatosis, and modulates the gut microbiota in <scp>C57BL</scp> / <scp>6J</scp> mice fed a highâ€fat diet. Journal of the Science of Food and Agriculture, 0, , .	3.5	0
4536	Anti-obesity effect of fucoidan from Laminaria japonica and its hydrothermal degradation product. Food Bioscience, 2024, 58, 103749.	4.4	0
4537	Establishment of a non-Westernized gut microbiota in men who have sex with men is associated with sexual practices. Cell Reports Medicine, 2024, 5, 101426.	6.5	0
4538	Longitudinal analysis of microbiome composition in Ghanaians living with HIV-1. Frontiers in Microbiology, 0, 15, .	3.5	0
4539	Changes in the Gut Microbiome as Seen in Diabetes and Obesity. , 2023, , 61-81.		0
4540	Impact of bread diet on intestinal dysbiosis and irritable bowel syndrome symptoms in quiescent ulcerative colitis: A pilot study. PLoS ONE, 2024, 19, e0297836.	2.5	0
4541	Prevotella and succinate treatments altered gut microbiota, increased laying performance, and suppressed hepatic lipid accumulation in laying hens. Journal of Animal Science and Biotechnology, 2024, 15, .	5.3	0
4542	Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. Journal of Personalized Medicine, 2024, 14, 217.	2.5	0
4543	The association of dietary nitrates/nitrites intake and the gut microbial metabolite trimethylamine N-oxide and kynurenine in adults: a population-based study. Frontiers in Nutrition, 0, 11, .	3.7	0
4544	Impact of Whey Protein Corona Formation around TiO ₂ Nanoparticles on Their Physiochemical Properties and Gastrointestinal Fate. Journal of Agricultural and Food Chemistry, 2024, 72, 4958-4976.	5.2	0
4545	Host-pathogen interactions with special reference to microbiota analysis and integration of systems biology approaches. , 2024, , 191-211.		0
4546	What is a healthy microbiome?. , 2024, , 17-43.		0
4547	The Gut Microbiota and NDG: What Is the Interplay. , 2024, , 1-34.		0

ARTICLE IF CITATIONS Gluten-Free Diet Alters the Gut Microbiome in Women with Autoimmune Thyroiditis. Nutrients, 2024, 4548 4.1 0 16,685. Gut microbiota-gonadal axis: the impact of gut microbiota on reproductive functions. Frontiers in 4549 4.8 Immunology, 0, 15, . Microbiota, Tryptophan and Aryl Hydrocarbon Receptors as the Target Triad in Parkinson's Diseaseâ€"A 4550 4.1 0 Narrative Review. International Journal of Molecular Sciences, 2024, 25, 2915. Taxonomic and metabolic development of the human gut microbiome across life stages: a worldwide 3.8 metagenomic investigation. MSystems, 2024, 9, . Gut Microbiota Metabolites: Unveiling Their Role in Inflammatory Bowel Diseases and Fibrosis. 4552 3.8 0 Pharmaceuticals, 2024, 17, 347. Western diet consumption impairs memory function via dysregulated hippocampus acetylcholine signaling. Brain, Behavior, and Immunity, 2024, 118, 408-422. 4.1 4554 Digestive Tract and Salivary Glands., 2024, , 1-148. 0 Diet Mediate the Impact of Host Habitat on Gut Microbiome and Influence Clinical Indexes by 11.2 Modulating Gut Microbes and Serum Metabolites. Advanced Science, 0, , . The individual response to antibiotics and diet $\hat{a} \in$ ⁿ insights into gut microbial resilience and host 4556 9.6 0 metabolism. Nature Reviews Endocrinology, 0, , . Impact of evolution on lifestyle in microbiome. Advances in Genetics, 2024, , . 1.8 Association between gut microbiota and pan-dermatological diseases: a bidirectional Mendelian 4558 3.9 0 randomization research. Frontiers in Cellular and Infection Microbiology, 0, 14, . An Increase in Prominent Probiotics Represents the Major Change in the Gut Microbiota in Morbidly 0.8 Obese Female Patients upon Bariatric Surgery. Women, 2024, 4, 86-104.

CITATION REPORT

0

4561 Regulatory functions and mechanisms of human microbiota in infectious diseases. , 2024, , .