Evaluation of Glycofurol-Based Gel as a New Vehicle for

AAPS PharmSciTech 11, 1138-1146

DOI: 10.1208/s12249-010-9485-x

Citation Report

#	Article	IF	CITATIONS
1	Application of hydroxyapatite nanoparticles in development of an enhanced formulation for delivering sustained release of triamcinolone acetonide. International Journal of Nanomedicine, 2011, 6, 825.	6.7	6
3	Rapid pain relief using transdermal film forming polymeric solution of ketorolac. Pharmaceutical Development and Technology, 2013, 18, 1005-1016.	2.4	32
4	Deproteinized natural rubber film forming polymeric solutions for nicotine transdermal delivery. Pharmaceutical Development and Technology, 2013, 18, 1111-1121.	2.4	33
5	Preparation of a Pseudolatex-Membrane for Ketoprofen Transdermal Drug Delivery Systems. Industrial & Lamp; Engineering Chemistry Research, 2013, 52, 15847-15854.	3.7	15
6	Protein Encapsulation into PLGA Nanoparticles by a Novel Phase Separation Method Using Non-Toxic Solvents. Journal of Nanomedicine & Nanotechnology, 2014, 05, .	1.1	10
7	Role of different biodegradable polymers on the permeability of ciprofloxacin. Journal of Advanced Pharmaceutical Technology and Research, 2014, 5, 140.	1.0	11
8	Evaluation of topical antimicrobial ointment formulations of essential oil of <i>Lippia multiflora</i> moldenke. Tropical Journal of Obstetrics and Gynaecology, 2015, 12, 135.	0.3	2
9	Evaluation of cationic polyamidoamine dendrimers' dermal toxicity in the rat skin model. Drug Design, Development and Therapy, 2015, 9, 1367.	4.3	27
10	Synergy Between Chemical Penetration Enhancers. , 2015, , 373-385.		2
11	Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement., 2015,,.		36
12	Application of quality by design (QbD) to formulation and processing of naproxen pellets by extrusion–spheronization. Pharmaceutical Development and Technology, 2015, 20, 246-256.	2.4	29
12	Application of quality by design (QbD) to formulation and processing of naproxen pellets by extrusion–spheronization. Pharmaceutical Development and Technology, 2015, 20, 246-256. Transdermal nicotine mixed natural rubber-hydroxypropylmethylcellulose film forming systems for smoking cessation: ⟨i⟩in vitro ⟨i⟩evaluations. Pharmaceutical Development and Technology, 2015, 20, 966-975.	2.4	29
	extrusion–spheronization. Pharmaceutical Development and Technology, 2015, 20, 246-256. Transdermal nicotine mixed natural rubber-hydroxypropylmethylcellulose film forming systems for smoking cessation:⟨i⟩in vitro⟨/i⟩evaluations. Pharmaceutical Development and Technology, 2015, 20,		
13	extrusion–spheronization. Pharmaceutical Development and Technology, 2015, 20, 246-256. Transdermal nicotine mixed natural rubber-hydroxypropylmethylcellulose film forming systems for smoking cessation: ⟨i⟩ in vitro ⟨ i⟩ evaluations. Pharmaceutical Development and Technology, 2015, 20, 966-975. Effect of different polymers on in vitro and ex vivo permeability of Ofloxacin from its mucoadhesive	2.4	19
13 14	extrusion–spheronization. Pharmaceutical Development and Technology, 2015, 20, 246-256. Transdermal nicotine mixed natural rubber-hydroxypropylmethylcellulose film forming systems for smoking cessation: ⟨i⟩ in vitro ⟨li⟩ evaluations. Pharmaceutical Development and Technology, 2015, 20, 966-975. Effect of different polymers on in vitro and ex vivo permeability of Ofloxacin from its mucoadhesive suspensions. Saudi Pharmaceutical Journal, 2015, 23, 195-201. Potential of Piperazinylalkylester Prodrugs of 6-Methoxy-2-Naphthylacetic Acid (6-MNA) for	2.4	19
13 14 15	extrusion–spheronization. Pharmaceutical Development and Technology, 2015, 20, 246-256. Transdermal nicotine mixed natural rubber-hydroxypropylmethylcellulose film forming systems for smoking cessation: ⟨i⟩ in vitro ⟨li⟩ evaluations. Pharmaceutical Development and Technology, 2015, 20, 966-975. Effect of different polymers on in vitro and ex vivo permeability of Ofloxacin from its mucoadhesive suspensions. Saudi Pharmaceutical Journal, 2015, 23, 195-201. Potential of Piperazinylalkylester Prodrugs of 6-Methoxy-2-Naphthylacetic Acid (6-MNA) for Percutaneous Drug Delivery. AAPS PharmSciTech, 2015, 16, 518-527. Physical characterization and antimicrobial evaluation of glycerol monolaurate organogels.	2.4 2.7 3.3	19 16 3
13 14 15 16	extrusion–spheronization. Pharmaceutical Development and Technology, 2015, 20, 246-256. Transdermal nicotine mixed natural rubber-hydroxypropylmethylcellulose film forming systems for smoking cessation: ⟨i⟩ in vitro ⟨li⟩ evaluations. Pharmaceutical Development and Technology, 2015, 20, 966-975. Effect of different polymers on in vitro and ex vivo permeability of Ofloxacin from its mucoadhesive suspensions. Saudi Pharmaceutical Journal, 2015, 23, 195-201. Potential of Piperazinylalkylester Prodrugs of 6-Methoxy-2-Naphthylacetic Acid (6-MNA) for Percutaneous Drug Delivery. AAPS PharmSciTech, 2015, 16, 518-527. Physical characterization and antimicrobial evaluation of glycerol monolaurate organogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 502, 19-25. Empty nano and microâ€structured lipid carriers of virgin coconut oil for skin moisturisation. IET	2.4 2.7 3.3 4.7	19 16 3 15

#	Article	IF	Citations
20	Design and Evaluation of Topical Diclofenac Sodium Gel Using Hot Melt Extrusion Technology as a Continuous Manufacturing Process with Kolliphor® P407. AAPS PharmSciTech, 2017, 18, 2303-2315.	3.3	28
21	Skin Penetration and Permeation Properties of Transcutol®—Neat or Diluted Mixtures. AAPS PharmSciTech, 2018, 19, 3512-3533.	3.3	101
22	Resveratrol-loaded nanoemulsion gel system to ameliorate UV-induced oxidative skin damage: from in vitro to in vivo investigation of antioxidant activity enhancement. Archives of Dermatological Research, 2019, 311, 773-793.	1.9	35
23	Porous poly(ε-caprolactone) implants: A novel strategy for efficient intraocular drug delivery. Journal of Controlled Release, 2019, 316, 331-348.	9.9	50
24	Preparation and evaluation of transdermal naproxen niosomes: formulation optimization to preclinical anti-inflammatory assessment on murine model. Journal of Liposome Research, 2020, 30, 377-387.	3.3	29
25	Grewia asiatica Mucilage: A Smart Gelling Polymeric Material for Pharmaceutical Applications In Vitro Studies. Current Materials Science, 2020, 12, 117-126.	0.4	1
26	Exploring Microfluidic Platform Technique for Continuous Production of Pharmaceutical Microemulsions. Journal of Pharmaceutical Innovation, 2021, 16, 441-453.	2.4	1
27	Rabbit Ear Membranes as an Interesting Alternative for Permeability Tests in the Preformulation Stages of Cosmetic Products. Cosmetics, 2020, 7, 35.	3.3	2
28	Design of novel orotransmucosal vaccine-delivery platforms using artificial intelligence. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159, 36-43.	4.3	11
29	Emulgel-Novel Trend in Topical Drug Delivery System - Review Article. Research Journal of Pharmacy and Technology, 2021, , 2903-2906.	0.8	7
30	Eugenol significantly affects the flow of its nanodroplet gel. International Journal of Pharmaceutical Investigation, 2015, 5, 200.	0.3	1
31	Preparation of itraconazole nanoparticles and its topical nanogel: Physicochemical properties and stability studies. International Journal of Pharmaceutical Sciences and Developmental Research, 0, , 001-008.	0.1	0
32	High-Payload Nanosuspension of Centella asiatica Extract for Improved Skin Delivery with No Irritation. International Journal of Nanomedicine, 2021, Volume 16, 7417-7432.	6.7	12
33	Formulation and In-vitro, In-vivo Evaluation of Itraconazole and Itraconazole Co-Crystals Loaded Glyceryl Monooleate Based Liquid Crystalline Gel. Research Journal of Pharmacy and Technology, 2022, , 3273-3279.	0.8	1
34	The effects of <i>Lavandula angustifolia</i> essential oil on analgesic effects and percutaneous absorption of naproxen sodium gel; an in vivo and in vitro study. Clinical and Experimental Pharmacology and Physiology, 2023, 50, 298-306.	1.9	0
35	Recent Progress in Gels for Neuropathic Pain. Gels, 2023, 9, 417.	4.5	3
36	Locust bean gum hydrogels are bioadhesive and improve indole-3-carbinol cutaneous permeation: influence of the polysaccharide concentration. Brazilian Journal of Pharmaceutical Sciences, 0, 59, .	1.2	0
37	Moxifloxacin HCl-Incorporated Aqueous-Induced Nitrocellulose-Based In Situ Gel for Periodontal Pocket Delivery. Gels, 2023, 9, 572.	4.5	1

ARTICLE IF CITATIONS

38 Drug Delivery through Epidermal Tissue Cells by Functionalized Biosilica from Diatom Microalgae. 4.6 3