Sequencing of 50 Human Exomes Reveals Adaptation to

Science 329, 75-78 DOI: 10.1126/science.1190371

Citation Report

#	Article	IF	CITATIONS
1	Essential roles of the bHLH transcription factor Hrt2 in repression of atrial gene expression and maintenance of postnatal cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7975-7980.	3.3	102
2	Contribution of Vascular and Neural Segments to Baroreflex Sensitivity in Response to Postural Stress. Journal of Vascular Research, 2009, 46, 469-477.	0.6	17
3	Exome sequencing: the sweet spot before whole genomes. Human Molecular Genetics, 2010, 19, R145-R151.	1.4	263
4	Evidence for a Genetic Basis for Altitude Illness: 2010 Update. High Altitude Medicine and Biology, 2010, 11, 349-368.	0.5	67
6	Seeing the forest through the geneâ€trees. Evolutionary Anthropology, 2010, 19, 210-221.	1.7	14
7	The role played by natural selection on Mendelian traits in humans. Annals of the New York Academy of Sciences, 2010, 1214, 1-17.	1.8	25
9	Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. Journal of Experimental Biology, 2010, 213, 4125-4136.	0.8	347
10	<i>EGLN1</i> involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18961-18966.	3.3	152
11	Genes for High Altitudes. Science, 2010, 329, 40-41.	6.0	83
12	Hypoxia-Inducible Factors and the Response to Hypoxic Stress. Molecular Cell, 2010, 40, 294-309.	4.5	1,930
13	Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biology, 2010, 11, R119.	13.9	499
15	Will Blood Tell? Three Recent Articles Demonstrate Genetic Selection in Tibetans. High Altitude Medicine and Biology, 2010, 11, 307-308.	0.5	6
16	High altitude hypoxia environment changes of the content of RAAS and right ventricular ACE2 activity in adult SD rats. , 2011, , .		0
17	Mitochondrial nt3010G-nt3970C haplotype is implicated in high-altitude adaptation of Tibetans. Mitochondrial DNA, 2011, 22, 181-190.	0.6	22
18	Genetic Changes in Tibet. High Altitude Medicine and Biology, 2011, 12, 101-102.	0.5	12
19	The effects of high altitude hypoxia environment on ultrastructure of the rat lung and heart. , 2011, , .		0
20	Giant sucking sound: can physiology fill the intellectual void left by the reductionists?. Journal of Applied Physiology, 2011, 111, 335-342.	1.2	34
21	Race and IQ in the postgenomic age: The microcephaly case. BioSocieties, 2011, 6, 420-446.	0.8	20

#	Article	IF	CITATIONS
22	Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nature Genetics, 2011, 43, 875-878.	9.4	638
23	The Human Microbiota as a Marker for Migrations of Individuals and Populations. Annual Review of Anthropology, 2011, 40, 451-474.	0.4	46
24	Targeted Massively Parallel Sequencing of Maternal Plasma DNA Permits Efficient and Unbiased Detection of Fetal Alleles. Clinical Chemistry, 2011, 57, 92-101.	1.5	111
25	SeqCene: a comprehensive software solution for mining exome- and transcriptome- sequencing data. BMC Bioinformatics, 2011, 12, 267.	1.2	41
26	Hypoxia: Adapting to High Altitude by Mutating <i>EPAS-1</i> , the Gene Encoding HIF-2α. High Altitude Medicine and Biology, 2011, 12, 157-167.	0.5	99
27	The Effects of High Altitude Hypoxia Environment on Ultrastructure and the Expression of HIF-11̂± in the Rat Lung. Applied Mechanics and Materials, 2011, 140, 68-73.	0.2	13
28	Oxygen Sensing, Homeostasis, and Disease. New England Journal of Medicine, 2011, 365, 537-547.	13.9	877
29	Next-generation sequencing applied to molecular diagnostics. Expert Review of Molecular Diagnostics, 2011, 11, 425-444.	1.5	33
30	Enhanced erythropoietin expression in the brainstem of newborn rats at high altitude. Neuroscience Letters, 2011, 502, 33-36.	1.0	8
31	Introduction and Historical Overview of DNA Sequencing. Current Protocols in Molecular Biology, 2011, 96, 7.0.1.	2.9	1
32	Museum genomics: lowâ€cost and highâ€accuracy genetic data from historical specimens. Molecular Ecology Resources, 2011, 11, 1082-1092.	2.2	122
33	Food of the dogs. Genome Biology, 2011, 12, 122.	13.9	0
34	The promise and limitations of population exomics for human evolution studies. Genome Biology, 2011, 12, 127.	13.9	20
35	The HIF Pathway and Erythrocytosis. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 165-192.	9.6	150
36	Neuroglobin-Deficiency Exacerbates Hif1A and c-FOS Response, but Does Not Affect Neuronal Survival during Severe Hypoxia In Vivo. PLoS ONE, 2011, 6, e28160.	1.1	45
37	The Genetics of Altitude Tolerance. Journal of Occupational and Environmental Medicine, 2011, 53, 159-168.	0.9	25
38	Genomic Analysis of High-Altitude Adaptation. Current Sports Medicine Reports, 2011, 10, 59-61.	0.5	9
39	High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood, 2011, 117, e207-e217.	0.6	623

#	Article	IF	CITATIONS
40	A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 2011, 43, 491-498.	9.4	10,018
41	Genotype and SNP calling from next-generation sequencing data. Nature Reviews Genetics, 2011, 12, 443-451.	7.7	1,238
42	Ten questions about systems biology. Journal of Physiology, 2011, 589, 1017-1030.	1.3	76
43	Initial impact of the sequencing of the human genome. Nature, 2011, 470, 187-197.	13.7	919
44	Ten questions for evolutionary studies of disease vulnerability. Evolutionary Applications, 2011, 4, 264-277.	1.5	60
45	Humans at high altitude: Hypoxia and fetal growth. Respiratory Physiology and Neurobiology, 2011, 178, 181-190.	0.7	204
46	Regulation of bone marrow hematopoietic stem cell is involved in high-altitude erythrocytosis. Experimental Hematology, 2011, 39, 37-46.	0.2	42
47	Next-generation sequencing and its applications in molecular diagnostics. Expert Review of Molecular Diagnostics, 2011, 11, 333-343.	1.5	146
48	Genome-wide Comparison of African-Ancestry Populations from CARe and Other Cohorts Reveals Signals of Natural Selection. American Journal of Human Genetics, 2011, 89, 368-381.	2.6	79
49	Hyperuricemia cosegregating with osteogenesis imperfecta is associated with a mutation in GPATCH8. Human Genetics, 2011, 130, 671-683.	1.8	8
50	High-performance single-chip exon capture allows accurate whole exome sequencing using the Illumina Genome Analyzer. Science China Life Sciences, 2011, 54, 945-952.	2.3	7
51	Cerebrovascular reactivity among native-raised high altitude residents: an fMRI study. BMC Neuroscience, 2011, 12, 94.	0.8	28
52	Transcriptional landscape of bone marrow-derived very small embryonic-like stem cells during hypoxia. Respiratory Research, 2011, 12, 63.	1.4	12
53	Lowland origin women raised at high altitude are not protected against lower uteroplacental O ₂ delivery during pregnancy or reduced birth weight. American Journal of Human Biology, 2011, 23, 509-516.	0.8	31
54	Linking genotypes, phenotypes, and fitness in wild primate populations. Evolutionary Anthropology, 2011, 20, 104-119.	1.7	47
55	Novel perspectives for investigating congenital anomalies of the kidney and urinary tract (CAKUT). Nephrology Dialysis Transplantation, 2011, 26, 3843-3851.	0.4	78
56	Peopling the Tibetan Plateau: Insights from Archaeology. High Altitude Medicine and Biology, 2011, 12, 141-147.	0.5	140
57	'ome on the Range: Altitude Adaptation, Positive Selection, and Himalayan Genomics. High Altitude Medicine and Biology, 2011, 12, 133-139.	0.5	24

#	Article	IF	CITATIONS
58	Demographic history and rare allele sharing among human populations. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11983-11988.	3.3	589
59	Matrix Metalloproteinase (MMP)-9 Induced by Wnt Signaling Increases the Proliferation and Migration of Embryonic Neural Stem Cells at Low O2 Levels. Journal of Biological Chemistry, 2011, 286, 17649-17657.	1.6	81
60	Genomics and Genetics in the Biology of Adaptation to Exercise. , 2011, 1, 1603-1648.		140
61	A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics, 2011, 27, 2987-2993.	1.8	5,467
62	Early life mammalian biology and later life physical performance: maximising physiological adaptation. British Journal of Sports Medicine, 2011, 45, 1000-1001.	3.1	6
63	vipR: variant identification in pooled DNA using R. Bioinformatics, 2011, 27, i77-i84.	1.8	35
64	Genetic Variations in Tibetan Populations and High-Altitude Adaptation at the Himalayas. Molecular Biology and Evolution, 2011, 28, 1075-1081.	3.5	327
65	The role of nitrogen oxides in human adaptation to hypoxia. Scientific Reports, 2011, 1, 109.	1.6	103
66	The western diet and lifestyle and diseases of civilization. Research Reports in Clinical Cardiology, 0, , 15.	0.2	156
67	A Genome-Wide Search for Signals of High-Altitude Adaptation in Tibetans. Molecular Biology and Evolution, 2011, 28, 1003-1011.	3.5	311
68	High Altitude Renal Syndrome (HARS). Journal of the American Society of Nephrology: JASN, 2011, 22, 1963-1968.	3.0	70
69	Molecular Adaptation of Modern Human Populations. International Journal of Evolutionary Biology, 2011, 2011, 1-8.	1.0	15
70	Evolutionary Models Accounting for Layers of Selection in Protein-Coding Genes and their Impact on the Inference of Positive Selection. Molecular Biology and Evolution, 2011, 28, 3297-3308.	3.5	54
71	Experimental selection of hypoxia-tolerant Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2349-2354.	3.3	105
72	Phyloepigenomic comparison of great apes reveals a correlation between somatic and germline methylation states. Genome Research, 2011, 21, 2049-2057.	2.4	43
73	Identification of Metabolic Modifiers That Underlie Phenotypic Variations in Energy-Balance Regulation. Diabetes, 2011, 60, 726-734.	0.3	13
74	Highland Plains People AVP Gene Polymorphism and the Relationship between Hypoxic Adaptation. Applied Mechanics and Materials, 0, 140, 63-67.	0.2	0
75	Adaptive selection of an incretin gene in Eurasian populations. Genome Research, 2011, 21, 21-32.	2.4	19

#	Article	IF	CITATIONS
76	Exciting Times in the Study of Permanent Residents of High Altitude. High Altitude Medicine and Biology, 2011, 12, 1-1.	0.5	6
77	Rapid Recent Human Evolution and the Accumulation of Balanced Genetic Polymorphisms. High Altitude Medicine and Biology, 2011, 12, 149-155.	0.5	13
78	B-type natriuretic peptide, vascular endothelial growth factor, endothelin-1, and nitric oxide synthase in chronic mountain sickness. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H1427-H1433.	1.5	30
79	Efficient SNP-sensitive alignment and database-assisted SNP calling for low coverage samples. , 2012, , .		0
80	Joint genotyping on the fly: Identifying variation among a sequenced panel of inbred lines. Genome Research, 2012, 22, 966-974.	2.4	24
81	Use of whole exome and genome sequencing in the identification of genetic causes of primary immunodeficiencies. Current Opinion in Allergy and Clinical Immunology, 2012, 12, 623-628.	1.1	65
82	Accelerating minor allele frequency computation with graphics processors. , 2012, , .		4
83	Oxygen levels and the regulation of cell adhesion in the nervous system. Cell Adhesion and Migration, 2012, 6, 49-58.	1.1	9
84	Cardiac adaptive mechanisms of Tibetan antelope (Pantholops hodgsonii) at high altitudes. American Journal of Veterinary Research, 2012, 73, 809-813.	0.3	17
85	Cardiovascular and renal effects of chronic exposure to high altitude. Nephrology Dialysis Transplantation, 2012, 27, iv11-iv16.	0.4	43
86	Mitochondrial DNA variant associated with Leber hereditary optic neuropathy and high-altitude Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7391-7396.	3.3	129
87	Genomic insights into adaptation to high-altitude environments. Heredity, 2012, 108, 354-361.	1.2	153
88	The chromosome 2p21 region harbors a complex genetic architecture for association with risk for renal cell carcinoma. Human Molecular Genetics, 2012, 21, 1190-1200.	1.4	37
90	Peopling the Tibetan plateau: migrants, genes, and genetic adaptations. , 2012, , 342-372.		2
91	An environmental analysis of genes associated with schizophrenia: hypoxia and vascular factors as interacting elements in the neurodevelopmental model. Molecular Psychiatry, 2012, 17, 1194-1205.	4.1	95
92	The simple fool's guide to population genomics via <scp>RNA</scp> â€5eq: an introduction to highâ€throughput sequencing data analysis. Molecular Ecology Resources, 2012, 12, 1058-1067.	2.2	229
93	A beginners guide to SNP calling from high-throughput DNA-sequencing data. Human Genetics, 2012, 131, 1541-1554.	1.8	92
94	Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biology, 2012, 13, R1.	13.9	327

	CITATION N	LEPORT	
# 95	ARTICLE The genetic landscape of mutations in Burkitt lymphoma. Nature Genetics, 2012, 44, 1321-1325.	IF 9.4	Citations 517
96	Ultrasound for High Altitude Research. Ultrasound in Medicine and Biology, 2012, 38, 1-12.	0.7	20
97	Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nature Genetics, 2012, 44, 1015-1019.	9.4	315
98	Genomic Variation in Seven Khoe-San Groups Reveals Adaptation and Complex African History. Science, 2012, 338, 374-379.	6.0	364
99	The evolution of gene expression and the transcriptome–phenotype relationship. Seminars in Cell and Developmental Biology, 2012, 23, 222-229.	2.3	89
100	Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Molecular Genetics and Metabolism, 2012, 106, 244-247.	0.5	68
101	Adaptive and Maladaptive Cardiorespiratory Responses to Continuous and Intermittent Hypoxia Mediated by Hypoxia-Inducible Factors 1 and 2. Physiological Reviews, 2012, 92, 967-1003.	13.1	502
102	Hypoxic Pulmonary Vasoconstriction. Physiological Reviews, 2012, 92, 367-520.	13.1	568
103	Genetic Adaptation of the Hypoxia-Inducible Factor Pathway to Oxygen Pressure among Eurasian Human Populations. Molecular Biology and Evolution, 2012, 29, 3359-3370.	3.5	29
104	Genetic explorations of recent human metabolic adaptations: hypotheses and evidence. Biological Reviews, 2012, 87, 838-855.	4.7	18
105	Amino acids and our genetic code: A highly adaptive and interacting defense system. Medical Hypotheses, 2012, 78, 450-453.	0.8	0
106	Expression of fetal hemoglobin in adult humans exposed to high altitude hypoxia. Blood Cells, Molecules, and Diseases, 2012, 48, 147-153.	0.6	22
107	Hypoxia-Inducible Factors in Physiology and Medicine. Cell, 2012, 148, 399-408.	13.5	2,540
108	Single-Cell Exome Sequencing Reveals Single-Nucleotide Mutation Characteristics of a Kidney Tumor. Cell, 2012, 148, 886-895.	13.5	622
109	Single-Cell Exome Sequencing and Monoclonal Evolution of a JAK2-Negative Myeloproliferative Neoplasm. Cell, 2012, 148, 873-885.	13.5	503
110	Differences in mtDNA whole sequence between Tibetan and Han populations suggesting adaptive selection to high altitude. Gene, 2012, 496, 37-44.	1.0	45
111	Frequency distribution of single nucleotide polymorphisms in P-selectin gene in Chinese Tibetan and Han populations. Gene, 2012, 499, 352-356.	1.0	4
112	Exome sequencing generates high quality data in non-target regions. BMC Genomics, 2012, 13, 194.	1.2	130

#	Article	IF	CITATIONS
113	Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genomics, 2012, 13, 403.	1.2	253
114	Toward understanding the genetic basis of adaptation to high-elevation life in poikilothermic species: A comparative transcriptomic analysis of two ranid frogs, Rana chensinensis and R. kukunoris. BMC Genomics, 2012, 13, 588.	1.2	55
115	Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. GigaScience, 2012, 1, 12.	3.3	99
116	High-Altitude Medicine. American Journal of Respiratory and Critical Care Medicine, 2012, 186, 1229-1237.	2.5	175
117	The genomics of adaptation. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 5024-5028.	1.2	45
120	EPAS1 and ECLN1 associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai–Tibetan Plateau. Blood Cells, Molecules, and Diseases, 2012, 49, 67-73.	0.6	54
121	What is needed for next-generation ecological and evolutionary genomics?. Trends in Ecology and Evolution, 2012, 27, 673-678.	4.2	77
122	The Genetic Architecture of Adaptations to High Altitude in Ethiopia. PLoS Genetics, 2012, 8, e1003110.	1.5	178
123	Genetic and Environmental Influences on Gas Exchange. , 2012, 2, 2595-2614.		8
124	Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics, 2012, 44, 803-807.	9.4	577
125	Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nature Biotechnology, 2012, 30, 105-111.	9.4	818
126	Witnessing Phenotypic and Molecular Evolution in the Fruit Fly. Evolution: Education and Outreach, 2012, 5, 629-634.	0.3	2
127	AKT3, ANGPTL4, eNOS3, and VEGFA associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau. International Journal of Hematology, 2012, 96, 200-213.	0.7	43
128	Red Blood Cell Volume and the Capacity for Exercise at Moderate to High Altitude. Sports Medicine, 2012, 42, 643-663.	3.1	10
129	Gene Polymorphisms and High-Altitude Pulmonary Edema Susceptibility: A 2011 Update. Respiration, 2012, 84, 155-162.	1.2	31
130	A Major Genome Region Underlying Artemisinin Resistance in Malaria. Science, 2012, 336, 79-82.	6.0	334
131	Characterization of the transcriptome of an ecologically important avian species, the Vinous-throated Parrotbill Paradoxornis webbianus bulomachus (Paradoxornithidae; Aves). BMC Genomics, 2012, 13, 149.	1.2	12
132	Transcriptome and Network Changes in Climbers at Extreme Altitudes. PLoS ONE, 2012, 7, e31645.	1.1	21

#	Article	IF	CITATIONS
133	Exome Sequencing of Only Seven Qataris Identifies Potentially Deleterious Variants in the Qatari Population. PLoS ONE, 2012, 7, e47614.	1.1	16
134	Protective Effect of Total Flavonoids of Seabuckthorn (Hippophae rhamnoides) in Simulated High-Altitude Polycythemia in Rats. Molecules, 2012, 17, 11585-11597.	1.7	14
135	Assessing the Accuracy and Power of Population Genetic Inference from Low-Pass Next-Generation Sequencing Data. Frontiers in Genetics, 2012, 3, 66.	1.1	47
136	Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes. Science, 2012, 337, 64-69.	6.0	1,535
137	An oxygen-regulated switch in the protein synthesis machinery. Nature, 2012, 486, 126-129.	13.7	266
138	A largeâ€scale replication study for the association of rs17039192 in HIFâ€2α with knee osteoarthritis. Journal of Orthopaedic Research, 2012, 30, 1244-1248.	1.2	14
139	<i>CYBA</i> and <i>GSTP1</i> variants associate with oxidative stress under hypobaric hypoxia as observed in high-altitude pulmonary oedema. Clinical Science, 2012, 122, 299-311.	1.8	24
140	Developmental and genetic components explain enhanced pulmonary volumes of female peruvian quechua. American Journal of Physical Anthropology, 2012, 148, 534-542.	2.1	21
141	Genetic determinants of Tibetan high-altitude adaptation. Human Genetics, 2012, 131, 527-533.	1.8	124
142	Exome Sequencing Identifies SLCO2A1 Mutations as a Cause of Primary Hypertrophic Osteoarthropathy. American Journal of Human Genetics, 2012, 90, 125-132.	2.6	157
143	Exome Sequencing Identifies PDE4D Mutations in Acrodysostosis. American Journal of Human Genetics, 2012, 90, 746-751.	2.6	128
144	What genomes have to say about the evolution of the Earth. Gondwana Research, 2012, 21, 483-494.	3.0	18
145	Human evolutionary genomics: ethical and interpretive issues. Trends in Genetics, 2012, 28, 137-145.	2.9	18
146	Evolutionary forces shaping genomic islands of population differentiation in humans. BMC Genomics, 2012, 13, 107.	1.2	51
147	Two new mutations in the <i>HIF2A</i> gene associated with erythrocytosis. American Journal of Hematology, 2012, 87, 439-442.	2.0	37
148	Identification of candidate genes in rice for resistance to sheath blight disease by whole genome sequencing. Theoretical and Applied Genetics, 2012, 124, 63-74.	1.8	58
149	High altitude adaptation in Daghestani populations from the Caucasus. Human Genetics, 2012, 131, 423-433.	1.8	31
150	GENETIC AND PHENOTYPIC DIVERGENCE BETWEEN LOW- AND HIGH-ALTITUDE POPULATIONS OF TWO RECENTLY DIVERGED CINNAMON TEAL SUBSPECIES. Evolution; International Journal of Organic Evolution, 2013, 67, 170-184.	1.1	36

#	Article	IF	CITATIONS
151	Applying systems biology methods to the study of human physiology in extreme environments. Extreme Physiology and Medicine, 2013, 2, 8.	2.5	26
152	Regulation of erythropoiesis by hypoxia-inducible factors. Blood Reviews, 2013, 27, 41-53.	2.8	522
153	Detecting Rare Variants for Psychiatric Disorders Using Next Generation Sequencing: A Methods Primer. Current Psychiatry Reports, 2013, 15, 333.	2.1	1
154	Predictive Risk Factors of Cardiorespiratory Abnormality for Upper Gastrointestinal Endoscopy in Tibet. Digestive Diseases and Sciences, 2013, 58, 1668-1675.	1.1	1
155	Finding the lost treasures in exome sequencing data. Trends in Genetics, 2013, 29, 593-599.	2.9	124
156	Selection and Adaptation in the Human Genome. Annual Review of Genomics and Human Genetics, 2013, 14, 467-489.	2.5	116
157	Whole-Genome Sequencing Uncovers the Genetic Basis of Chronic Mountain Sickness in Andean Highlanders. American Journal of Human Genetics, 2013, 93, 452-462.	2.6	115
158	NGSPE: A pipeline for end-to-end analysis of DNA sequencing data and comparison between different platforms. Computers in Biology and Medicine, 2013, 43, 1171-1176.	3.9	3
159	Genetic Analysis of Hypoxia Tolerance and Susceptibility in <i>Drosophila</i> and Humans. Annual Review of Genomics and Human Genetics, 2013, 14, 25-43.	2.5	45
160	Targeted sequence capture and resequencing implies a predominant role of regulatory regions in the divergence of a sympatric lake whitefish species pair (<i><scp>C</scp>oregonus clupeaformis</i>). Molecular Ecology, 2013, 22, 4896-4914.	2.0	37
161	Regulation of hypoxiaâ€inducible factor in kidney disease. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 148-157.	0.9	112
162	Next-Generation Sequencing (NGS): A Revolutionary Technology in Pharmacogenomics and Personalized Medicine. , 2013, , 39-61.		4
163	Wholeâ€genome sequencing of two <scp>N</scp> orth <scp>A</scp> merican <i><scp>D</scp>rosophila melanogaster</i> populations reveals genetic differentiation and positive selection. Molecular Ecology, 2013, 22, 5084-5097.	2.0	47
164	High-altitude physiology: lessons from Tibet. , 2013, , .		0
165	mtDNA Lineage Expansions in Sherpa Population Suggest Adaptive Evolution in Tibetan Highlands. Molecular Biology and Evolution, 2013, 30, 2579-2587.	3.5	52
166	Genetic Evidence of Paleolithic Colonization and Neolithic Expansion of Modern Humans on the Tibetan Plateau. Molecular Biology and Evolution, 2013, 30, 1761-1778.	3.5	194
169	Human adaptability studies at high altitude: Research designs and major concepts during fifty years of discovery. American Journal of Human Biology, 2013, 25, 141-147.	0.8	51
170	Efficient utilization of aerobic metabolism helps Tibetan locusts conquer hypoxia. BMC Genomics, 2013, 14, 631.	1.2	29

ARTICLE IF CITATIONS # Molecular footprints of domestication and improvement in soybean revealed by whole genome 171 1.2 186 re-sequencing. BMC Genomics, 2013, 14, 579. A genome wide study of genetic adaptation to high altitude in feral Andean Horses of the pÃjramo. BMC 3.2 Evolutionary Biology, 2013, 13, 273. Unlocking the vault: nextâ€generation museum population genomics. Molecular Ecology, 2013, 22, 173 2.0 329 6018-6032. Late Occupation of the Highâ€Elevation Northern Tibetan Plateau Based on Cosmogenic, Luminescence, 174 and Radiocarbon Ages. Geoarchaeology - an International Journal, 2013, 28, 413-431. Population Genomics of Human Adaptation. Annual Review of Ecology, Evolution, and Systematics, 175 3.8 81 2013, 44, 123-143. Recent human adaptation: genomic approaches, interpretation and insights. Nature Reviews Genetics, 2013, 14, 692-702 177 Robust Identification of Local Adaptation from Allele Frequencies. Genetics, 2013, 195, 205-220. 1.2 518 Genomics, bears, fruit. Nature Genetics, 2013, 45, 1-1. 178 9.4 179 Identifying Recent Adaptations in Large-Scale Genomic Data. Cell, 2013, 152, 703-713. 13.5 325 Detecting adaptive trait loci in nonmodel systems: divergence or admixture mapping?. Molecular Ecology, 2013, 22, 6131-6148. Endothelial PAS Domain Protein 1 Chr2:46441523(hg18) Polymorphism Is Associated With Susceptibility to High Altitude Pulmonary Edema in Han Chinese. Wilderness and Environmental Medicine, 2013, 24, 181 0.4 13 315-320. Signatures of natural selection on genetic variants affecting complex human traits. Applied & 2.1 Translational Genomics, 2013, 2, 78-94. Different evolutionary patterns of hypoxiaâ \in inducible factor \hat{I} (HIFâ $\in \hat{I}$) isoforms in the basal branches of 183 1.0 18 Actinopterygii and Sarcopterygii. FEBS Open Bio, 2013, 3, 479-483. Porcine colonization of the Americas: a 60k SNP story. Heredity, 2013, 110, 321-330. 184 1.2 58 Deletion of Iron Regulatory Protein 1 Causes Polycythemia and Pulmonary Hypertension in Mice 185 7.2 163 through Translational Derepression of HIF21±. Cell Metabolism, 2013, 17, 271-281. Stepwise colonization of the Andes by Ruddy Ducks and the evolution of novel $\hat{l}^2 \hat{a} \in g$ lobin variants. Molecular Ecology, 2013, 22, 1231-1249. Population genomics based on low coverage sequencing: how low should we go?. Molecular Ecology, 187 2.0181 2013, 22, 3028-3035. <i>De novo</i> transcriptomic analyses for nonâ€model organisms: an evaluation of methods across a 188 2.2 multiâ€species data set. Molecular Écology Resources, 2013, 13, 403-416.

#	Article	IF	CITATIONS
189	Detecting Signatures of Selection Through Haplotype Differentiation Among Hierarchically Structured Populations. Genetics, 2013, 193, 929-941.	1.2	340
190	Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics, 2013, 45, 67-71.	9.4	303
191	A novel VCP mutation as the cause of atypical IBMPFD in a Chinese family. Bone, 2013, 52, 9-16.	1.4	27
192	Quantifying Population Genetic Differentiation from Next-Generation Sequencing Data. Genetics, 2013, 195, 979-992.	1.2	187
193	Erythropoietin. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a011619-a011619.	2.9	198
194	RNA sequencing reveals the complex regulatory network in the maize kernel. Nature Communications, 2013, 4, 2832.	5.8	252
195	Stronger signal of recent selection for lactase persistence in Maasai than in Europeans. European Journal of Human Genetics, 2013, 21, 550-553.	1.4	34
196	East Asian Ethnolinguistic Phylogeography. Bulletin of Chinese Linguistics, 2013, 7, 135-188.	0.1	5
197	Graduated effects of high-altitude hypoxia and highland ancestry on birth size. Pediatric Research, 2013, 74, 633-638.	1.1	84
198	Differential Regulation of Pulmonary Vascular Cell Growth by Hypoxia-Inducible Transcription Factor–1α and Hypoxia-Inducible Transcription Factor–2α. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 78-85.	1.4	43
199	Rapid Intrahost Evolution of Human Cytomegalovirus Is Shaped by Demography and Positive Selection. PLoS Genetics, 2013, 9, e1003735.	1.5	144
200	Robust Demographic Inference from Genomic and SNP Data. PLoS Genetics, 2013, 9, e1003905.	1.5	1,185
201	Genomic Analysis of Natural Selection and Phenotypic Variation in High-Altitude Mongolians. PLoS Genetics, 2013, 9, e1003634.	1.5	48
202	Genetic Signatures Reveal High-Altitude Adaptation in a Set of Ethiopian Populations. Molecular Biology and Evolution, 2013, 30, 1877-1888.	3.5	173
203	Evaluating the Molecular Basis for Acute Mountain Sickness: Hypoxia Response Gene Expression Patterns in Warfighters and Murine Populations. Military Medicine, 2013, 178, 1256-1263.	0.4	6
204	The Effects of Rhodiola Tibetica on Lung Tissue of Rats with High Altitude Pulmonary Edema. Advanced Materials Research, 2013, 690-693, 1305-1309.	0.3	0
205	Inferring Selection Intensity and Allele Age from Multilocus Haplotype Structure. G3: Genes, Genomes, Genetics, 2013, 3, 1429-1442.	0.8	26
206	Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120267.	1.8	102

#	Article	IF	CITATIONS
207	Identification of a Tibetan-Specific Mutation in the Hypoxic Gene EGLN1 and Its Contribution to High-Altitude Adaptation. Molecular Biology and Evolution, 2013, 30, 1889-1898.	3.5	151
208	A Genome-Wide, Fine-Scale Map of Natural Pigmentation Variation in Drosophila melanogaster. PLoS Genetics, 2013, 9, e1003534.	1.5	146
209	HypoxiaDB: a database of hypoxia-regulated proteins. Database: the Journal of Biological Databases and Curation, 2013, 2013, bat074.	1.4	30
210	Inference of Natural Selection from Interspersed Genomic Elements Based on Polymorphism and Divergence. Molecular Biology and Evolution, 2013, 30, 1159-1171.	3.5	77
211	Genome sequence of ground tit Pseudopodoces humilis and its adaptation to high altitude. Genome Biology, 2013, 14, R29.	13.9	81
212	Incremental value of rare genetic variants for the prediction of multifactorial diseases. Genome Medicine, 2013, 5, 76.	3.6	10
213	Intercoalescence Time Distribution of Incomplete Gene Genealogies in Temporally Varying Populations, and Applications in Population Genetic Inference. Annals of Human Genetics, 2013, 77, 158-173.	0.3	7
214	Responses of Han Migrants Compared to Tibetans at High Altitude. American Journal of Human Biology, 2013, 25, 169-178.	0.8	12
215	GENETIC VARIATION IN HIF SIGNALING UNDERLIES QUANTITATIVE VARIATION IN PHYSIOLOGICAL AND LIFE-HISTORY TRAITS WITHIN LOWLAND BUTTERFLY POPULATIONS. Evolution; International Journal of Organic Evolution, 2013, 67, 1105-1115.	1.1	39
216	Draft genome sequence of the Tibetan antelope. Nature Communications, 2013, 4, 1858.	5.8	229
217	Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection. Molecular Ecology, 2013, 22, 5743-5764.	2.0	59
218	SUBFUNCTIONALIZATION OF CYPRINID HYPOXIA-INDUCIBLE FACTORS FOR ROLES IN DEVELOPMENT AND OXYGEN SENSING. Evolution; International Journal of Organic Evolution, 2013, 67, 873-882.	1.1	64
219	Andean and Tibetan patterns of adaptation to high altitude. American Journal of Human Biology, 2013, 25, 190-197.	0.8	115
220	The role of hypoxia in pulmonary vascular diseases: a perspective. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L457-L465.	1.3	56
221	Genetic heterogeneity of diffuse large B-cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1398-1403.	3.3	494
222	Widespread phenotypic and genetic divergence along altitudinal gradients in animals. Journal of Evolutionary Biology, 2013, 26, 2527-2543.	0.8	96
223	Galapagos III World Evolution Summit: why evolution matters. Evolution: Education and Outreach, 2013, 6, .	0.3	2
224	Calculation of Tajima's D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinformatics, 2013, 14, 289.	1.2	211

#	Article	IF	CITATIONS
225	Why It Is Hard to Find Genes Associated With Social Science Traits: Theoretical and Empirical Considerations. American Journal of Public Health, 2013, 103, S152-S166.	1.5	52
226	Systems biology approach to study the high altitude adaptation in tibetans. Brazilian Archives of Biology and Technology, 2013, 56, 53-60.	0.5	5
227	Hypoxia Inducible Factor 3α Plays a Critical Role in Alveolarization and Distal Epithelial Cell Differentiation during Mouse Lung Development. PLoS ONE, 2013, 8, e57695.	1.1	25
228	Differences in Platelet Indices between Healthy Han Population and Tibetans in China. PLoS ONE, 2013, 8, e67203.	1.1	8
229	Assessing the Effect of Sequencing Depth and Sample Size in Population Genetics Inferences. PLoS ONE, 2013, 8, e79667.	1.1	132
230	An horizon scan of biogeography. Frontiers of Biogeography, 2013, 5, .	0.8	5
232	V.3. Comparative Genomics. , 2013, , 380-386.		1
233	Pathways by which the Interplay of Organismic and Environmental Factors Lead to Phenotypic Variation within and across Generations. Advances in Child Development and Behavior, 2013, 44, 325-354.	0.7	0
234	Human Liver Cell Trafficking Mutants: Characterization and Whole Exome Sequencing. PLoS ONE, 2014, 9, e87043.	1.1	0
235	Genome-Wide Analysis of Cold Adaptation in Indigenous Siberian Populations. PLoS ONE, 2014, 9, e98076.	1.1	128
236	The role of PHD2 mutations in the pathogenesis of erythrocytosis. Hypoxia (Auckland, N Z), 2014, 2, 71.	1.9	39
237	The Hypoxia-Inducible Factor-1α Signaling Pathway and its Relation to Cancer and Immunology. American Journal of Immunology, 2014, 10, 215-224.	0.1	6
238	α1-A680T Variant in GUCY1A3 as a Candidate Conferring Protection From Pulmonary Hypertension Among Kyrgyz Highlanders. Circulation: Cardiovascular Genetics, 2014, 7, 920-929.	5.1	23
239	Genome-Scale Methods Converge on Key Mitochondrial Genes for the Survival of Human Cardiomyocytes in Hypoxia. Circulation: Cardiovascular Genetics, 2014, 7, 407-415.	5.1	7
240	Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species. Genome Biology, 2014, 15, 557.	3.8	83
241	Analysis of hypoxia-inducible factor alpha polyploidization reveals adaptation to Tibetan plateau in the evolution of schizothoracine fish. BMC Evolutionary Biology, 2014, 14, 192.	3.2	73
242	Defective Tibetan PHD2 Binding to p23 Links High Altitude Adaption to Altered Oxygen Sensing. Journal of Biological Chemistry, 2014, 289, 14656-14665.	1.6	66
243	Population history and genomic signatures for high-altitude adaptation in Tibetan pigs. BMC Genomics, 2014, 15, 834.	1.2	140

		CITATION R	EPORT	
# 244	ARTICLE Bridging Genomics and Phenomics. , 2014, , 299-333.		IF	Citations
245	The Genetic Basis of Chronic Mountain Sickness. Physiology, 2014, 29, 403-412.		1.6	27
246	Hypoxia Adaptations in the Grey Wolf (Canis lupus chanco) from Qinghai-Tibet Plateau 2014, 10, e1004466.	. PLoS Genetics,	1.5	169
247	High-Altitude Medicine: The Path from Genomic Insight to Clinical Applications. , 2014,	, 217-228.		1
248	High Altitude. , 2014, , .			23
250	Variants of the Low Oxygen Sensors EGLN1 and HIF-1AN Associated with Acute Mount International Journal of Molecular Sciences, 2014, 15, 21777-21787.	ain Sickness.	1.8	18
251	CanvasDB: a local database infrastructure for analysis of targeted- and whole genome r projects. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau		1.4	21
252	Oxidative stress at high altitude: genotype–phenotype correlations. Advances ir Genetics, 2014, , 29.	Genomics and	0.8	1
253	The study of biodiversity in the era of massive sequencing. Revista Mexicana De Biodive 1249-1264.	ersidad, 2014, 85,	0.4	8
254	Adaptation to High Altitude: Phenotypes and Genotypes. Annual Review of Anthropolo 251-272.	gy, 2014, 43,	0.4	118
255	To article: Diversity through duplication: Whole-genome sequencing reveals novel gene in the human population. Sandra R. Richardson, Carmen Salvador-Palomeque, Geoffrey BioEssays, 2014, 36, 538-539.	? retrocopies J. Faulkner.	1.2	0
257	King of the Mountains: Tibetan and Sherpa Physiological Adaptations for Life at High A Physiology, 2014, 29, 388-402.	titude.	1.6	119
258	Increased bloodâ€oxygen binding affinity in Tibetan and Han Chinese residents at 4200 Physiology, 2014, 99, 1624-1635.) m. Experimental	0.9	27
259	Diversity through duplication: Wholeâ€genome sequencing reveals novel gene retroco human population. BioEssays, 2014, 36, 475-481.	pies in the	1.2	36
261	Investigation of mtDNA control region sequences in a Tibetan population sample from Mitochondrial DNA, 2016, 27, 1-6.	China.	0.6	1
262	An EPAS1 Haplotype Is Associated With High Altitude Polycythemia in Male Han Chines Qinghai-Tibetan Plateau. Wilderness and Environmental Medicine, 2014, 25, 392-400.	se at the	0.4	16
263	Cognitive Impairments at High Altitudes and Adaptation. High Altitude Medicine and B 141-145.	ology, 2014, 15,	0.5	92
264	Decreased plasma soluble erythropoietin receptor in high-altitude excessive erythrocyt Chronic Mountain Sickness. Journal of Applied Physiology, 2014, 117, 1356-1362.	osis and	1.2	36

#	Article	IF	CITATIONS
265	High altitude medicine in China in the 21st century: opportunities and challenges. Military Medical Research, 2014, 1, 17.	1.9	4
266	Common Genetic Variants Associated with Resting Oxygenation in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 678-687.	1.4	19
267	Sampling strategies for frequency spectrum-based population genomic inference. BMC Evolutionary Biology, 2014, 14, 254.	3.2	69
268	Role of Hypoxia-Inducible Factors in Acute Kidney Injury. Nephron Clinical Practice, 2014, 127, 70-74.	2.3	19
269	Tibetans living at sea level have a hyporesponsive hypoxia-inducible factor system and blunted physiological responses to hypoxia. Journal of Applied Physiology, 2014, 116, 893-904.	1.2	97
270	Human Evolution at High Altitude. , 2014, , 357-377.		3
271	Genetic variability of VEGF pathway genes in six randomized phase III trials assessing the addition of bevacizumab to standard therapy. Angiogenesis, 2014, 17, 909-920.	3.7	40
272	Deciphering the Genetic Blueprint behind Holstein Milk Proteins and Production. Genome Biology and Evolution, 2014, 6, 1366-1374.	1.1	37
273	Improved Variant Calling Accuracy by Merging Replicates in Whole-Exome Sequencing Studies. BioMed Research International, 2014, 2014, 1-7.	0.9	12
274	Whole genome sequencing of Ethiopian highlanders reveals conserved hypoxia tolerance genes. Genome Biology, 2014, 15, R36.	13.9	71
275	Multi-perspective quality control of Illumina exome sequencing data using QC3. Genomics, 2014, 103, 323-328.	1.3	79
276	Genome-scale analysis of demographic history and adaptive selection. Protein and Cell, 2014, 5, 99-112.	4.8	10
277	The Human Condition—A Molecular Approach. Cell, 2014, 157, 216-226.	13.5	175
278	Genes, Evolution and Intelligence. Behavior Genetics, 2014, 44, 549-577.	1.4	59
279	On Detecting Incomplete Soft or Hard Selective Sweeps Using Haplotype Structure. Molecular Biology and Evolution, 2014, 31, 1275-1291.	3.5	335
280	Population Variation Revealed High-Altitude Adaptation of Tibetan Mastiffs. Molecular Biology and Evolution, 2014, 31, 1200-1205.	3.5	130
281	Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Research, 2014, 24, 1308-1315.	2.4	235
282	Population Genomics Reveal Recent Speciation and Rapid Evolutionary Adaptation in Polar Bears. Cell, 2014, 157, 785-794.	13.5	363

#	Article	IF	CITATIONS
283	Three-stage quality control strategies for DNA re-sequencing data. Briefings in Bioinformatics, 2014, 15, 879-889.	3.2	141
284	Genomic changes under rapid evolution: selection for parasitoid resistance. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132303.	1.2	41
285	Less is more: blunted responses to hypoxia revealed in sea-level Tibetans. Journal of Applied Physiology, 2014, 116, 711-712.	1.2	2
286	Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era. Journal of Applied Physiology, 2014, 116, 875-884.	1.2	91
287	Approaches in Integrative Bioinformatics. , 2014, , .		4
288	High Altitude Primates. , 2014, , .		8
289	Advances and limits of using population genetics to understand local adaptation. Trends in Ecology and Evolution, 2014, 29, 673-680.	4.2	329
290	Comprehensive analysis of common coding sequence variants in Taiwanese Han population. Biomarkers and Genomic Medicine, 2014, 6, 133-143.	0.2	1
291	The Crossroads of Iron with Hypoxia and Cellular Metabolism. Implications in the Pathobiology of Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2014, 51, 721-729.	1.4	33
292	Exercise Capacity and Selected Physiological Factors by Ancestry and Residential Altitude: Cross-Sectional Studies of 9–10-Year-Old Children in Tibet. High Altitude Medicine and Biology, 2014, 15, 162-169.	0.5	13
293	Genetic Convergence in the Adaptation of Dogs and Humans to the High-Altitude Environment of the Tibetan Plateau. Genome Biology and Evolution, 2014, 6, 2122-2128.	1.1	146
294	Human Evolution: Genomic Gifts from Archaic Hominins. Current Biology, 2014, 24, R845-R848.	1.8	8
295	Natural selection for the Duffy-null allele in the recently admixed people of Madagascar. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140930.	1.2	55
296	Cardiovascular function in healthy Himalayan high-altitude dwellers. Atherosclerosis, 2014, 236, 47-53.	0.4	30
297	Mining the pig genome to investigate the domestication process. Heredity, 2014, 113, 471-484.	1.2	30
298	PHENOTYPIC PLASTICITY AND EPIGENETIC MARKING: AN ASSESSMENT OF EVIDENCE FOR GENETIC ACCOMMODATION. Evolution; International Journal of Organic Evolution, 2014, 68, 656-672.	1.1	214
299	Adaptations to local environments in modern human populations. Current Opinion in Genetics and Development, 2014, 29, 1-8.	1.5	70
300	Genome Scans for Detecting Footprints of Local Adaptation Using a Bayesian Factor Model. Molecular Biology and Evolution, 2014, 31, 2483-2495.	3.5	94

#	Article	IF	CITATIONS
301	Short-term responses of the kidney to high altitude in mountain climbers. Nephrology Dialysis Transplantation, 2014, 29, 497-506.	0.4	71
302	Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes and Development, 2014, 28, 2189-2204.	2.7	271
303	Population-specific common SNPs reflect demographic histories and highlight regions of genomic plasticity with functional relevance. BMC Genomics, 2014, 15, 437.	1.2	40
304	The genetics of monarch butterfly migration and warning colouration. Nature, 2014, 514, 317-321.	13.7	264
305	Genetic Variation of EPAS1 Gene in Tibetan Pigs and Three Low-Altitude Pig Breeds in China. Journal of Integrative Agriculture, 2014, 13, 1990-1998.	1.7	5
306	The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells. Blood, 2014, 123, 2988-2996.	0.6	224
307	Exome capture from saliva produces high quality genomic and metagenomic data. BMC Genomics, 2014, 15, 262.	1.2	34
308	Extraction and annotation of human mitochondrial genomes from 1000 Genomes Whole Exome Sequencing data. BMC Genomics, 2014, 15, S2.	1.2	55
309	Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 2014, 512, 194-197.	13.7	904
310	A genetic mechanism for Tibetan high-altitude adaptation. Nature Genetics, 2014, 46, 951-956.	9.4	322
311	Widespread Signals of Convergent Adaptation to High Altitude in Asia and America. American Journal of Human Genetics, 2014, 95, 394-407.	2.6	131
312	Biased Gene Conversion Skews Allele Frequencies in Human Populations, Increasing the Disease Burden of Recessive Alleles. American Journal of Human Genetics, 2014, 95, 408-420.	2.6	57
313	High altitude genetic adaptation in Tibetans: No role of increased hemoglobin–oxygen affinity. Blood Cells, Molecules, and Diseases, 2014, 53, 27-29.	0.6	21
314	Admixture facilitates genetic adaptations to high altitude in Tibet. Nature Communications, 2014, 5, 3281.	5.8	172
315	Human genome variability, natural selection and infectious diseases. Current Opinion in Immunology, 2014, 30, 9-16.	2.4	57
316	East Asia: DNA. , 0, , 693-694.		0
317	Hepatitis B virus infection in Latin America: A genomic medicine approach. World Journal of Gastroenterology, 2014, 20, 7181.	1.4	62
318	Genetic and phenotypic differentiation of an Andean intermediate altitude population. Physiological Reports, 2015, 3, e12376.	0.7	18

#	Article	IF	CITATIONS
319	Adaptive genetic changes related to haemoglobin concentration in native highâ€eltitude Tibetans. Experimental Physiology, 2015, 100, 1263-1268.	0.9	31
320	Comparative analyses of fecal microbiota in Tibetan and Chinese Han living at low or high altitude by barcoded 454 pyrosequencing. Scientific Reports, 2015, 5, 14682.	1.6	107
322	Genetic adaptations of the plateau zokor in high-elevation burrows. Scientific Reports, 2015, 5, 17262.	1.6	48
323	Surprisingly Low Limits of Selection in Plant Domestication. Evolutionary Bioinformatics, 2015, 11s2, EBO.S33495.	0.6	12
324	Genetic variants of endothelial PAS domain protein 1 are associated with susceptibility to acute mountain sickness in individuals unaccustomed to high altitude: A nested case-control study. Experimental and Therapeutic Medicine, 2015, 10, 907-914.	0.8	14
325	Polymorphism profiling of nine high altitude relevant candidate gene loci in acclimatized sojourners and adapted natives. BMC Genetics, 2015, 16, 112.	2.7	19
326	Metabolic aspects of highâ€altitude adaptation in Tibetans. Experimental Physiology, 2015, 100, 1247-1255.	0.9	48
327	Iron, oxygen, and the pulmonary circulation. Journal of Applied Physiology, 2015, 119, 1421-1431.	1.2	22
328	Spatially varying selection shapes life history clines among populations of <i>Drosophila melanogaster</i> from subâ€Saharan Africa. Journal of Evolutionary Biology, 2015, 28, 826-840.	0.8	51
329	Low haemoglobin concentration in Tibetan males is associated with greater highâ€altitude exercise capacity. Journal of Physiology, 2015, 593, 3207-3218.	1.3	47
330	Wholeâ€genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Molecular Ecology, 2015, 24, 5616-5632.	2.0	73
331	High Altitude. Clinical Pulmonary Medicine, 2015, 22, 105-113.	0.3	1
332	Genetic polymorphisms in very important pharmacogenomic (VIP) variants in the Tibetan population. Genetics and Molecular Research, 2015, 14, 12497-12504.	0.3	6
333	Affect of Early Life Oxygen Exposure on Proper Lung Development and Response to Respiratory Viral Infections. Frontiers in Medicine, 2015, 2, 55.	1.2	18
334	A Novel Candidate Region for Genetic Adaptation to High Altitude in Andean Populations. PLoS ONE, 2015, 10, e0125444.	1.1	46
335	Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools. PLoS Genetics, 2015, 11, e1005306.	1.5	123
336	Predicting Carriers of Ongoing Selective Sweeps without Knowledge of the Favored Allele. PLoS Genetics, 2015, 11, e1005527.	1.5	19
337	The A Allele at rs13419896 of EPAS1 Is Associated with Enhanced Expression and Poor Prognosis for Non-Small Cell Lung Cancer. PLoS ONE, 2015, 10, e0134496.	1.1	33

#	Article	IF	CITATIONS
338	HIF2A Variants Were Associated with Different Levels of High-Altitude Hypoxia among Native Tibetans. PLoS ONE, 2015, 10, e0137956.	1.1	15
339	A Comprehensive MicroRNA Expression Profile Related to Hypoxia Adaptation in the Tibetan Pig. PLoS ONE, 2015, 10, e0143260.	1.1	26
340	Visionary leader of Chinaâ \in ${}^{\mathrm{M}}$ s genomics powerhouse steps down. Nature, 2015, , .	13.7	1
341	Alpin- und Höhenmedizin. , 2015, , .		3
342	Genetic differences and aberrant methylation in the apelin system predict the risk of high-altitude pulmonary edema. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6134-6139.	3.3	47
343	Revisiting classic clines in Drosophila melanogaster in the age of genomics. Trends in Genetics, 2015, 31, 434-444.	2.9	148
344	A 3.4-kb Copy-Number Deletion near EPAS1 Is Significantly Enriched in High-Altitude Tibetans but Absent from the Denisovan Sequence. American Journal of Human Genetics, 2015, 97, 54-66.	2.6	69
345	Yak Response to High-Altitude Hypoxic Stress by Altering mRNA Expression and DNA Methylation of Hypoxia-Inducible Factors. Animal Biotechnology, 2015, 26, 222-229.	0.7	30
346	High Twin Resemblance for Sensitivity to Hypoxia. Medicine and Science in Sports and Exercise, 2015, 47, 74-81.	0.2	12
347	Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of <i>Ficedula</i> flycatchers. Genome Research, 2015, 25, 1656-1665.	2.4	385
348	Anthropometric Measures of 9- to 10-Year-Old Native Tibetan Children Living at 3700 and 4300 m Above Sea Level and Han Chinese Living at 3700 m. Medicine (United States), 2015, 94, e1516.	0.4	14
349	Archaic inheritance: supporting high-altitude life in Tibet. Journal of Applied Physiology, 2015, 119, 1129-1134.	1.2	31
350	New genetic and physiological factors for excessive erythrocytosis and Chronic Mountain Sickness. Journal of Applied Physiology, 2015, 119, 1481-1486.	1.2	22
351	Oxidized Low Density Lipoprotein Among the Elderly in Qinghai-Tibet Plateau. Wilderness and Environmental Medicine, 2015, 26, 343-349.	0.4	5
352	A Preliminary Genome-Wide Association Study of Acute Mountain Sickness Susceptibility in a Group of Nepalese Pilgrims Ascending to 4380 m. High Altitude Medicine and Biology, 2015, 16, 290-297.	0.5	6
353	The Local HIF-2α/EPO Pathway in the Bone Marrow is Associated with Excessive Erythrocytosis and the Increase in Bone Marrow Microvessel Density in Chronic Mountain Sickness. High Altitude Medicine and Biology, 2015, 16, 318-330.	0.5	18
354	Epithelial Sodium Transport and Its Control by Aldosterone: The Story of Our Internal Environment Revisited. Physiological Reviews, 2015, 95, 297-340.	13.1	217
355	Comprehensive Transcriptome Analysis Reveals Accelerated Genic Evolution in a Tibet Fish, Gymnodiptychus pachycheilus. Genome Biology and Evolution, 2015, 7, 251-261.	1.1	112

#	Article	IF	CITATIONS
357	Pathophysiology and Treatment of High-Altitude Pulmonary Vascular Disease. Circulation, 2015, 131, 582-590.	1.6	108
358	Archaeogenomic insights into the adaptation of plants to the human environment: pushing plant–hominin co-evolution back to the Pliocene. Journal of Human Evolution, 2015, 79, 150-157.	1.3	28
359	Glucose Homeostasis During Short-term and Prolonged Exposure to High Altitudes. Endocrine Reviews, 2015, 36, 149-173.	8.9	84
360	Can systems biology help to separate evolutionary analogies (convergent homoplasies) from homologies?. Progress in Biophysics and Molecular Biology, 2015, 117, 19-29.	1.4	6
361	Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder. Molecular Psychiatry, 2015, 20, 563-572.	4.1	124
362	Fast and accurate site frequency spectrum estimation from low coverage sequence data. Bioinformatics, 2015, 31, 720-727.	1.8	12
363	A Genetic Predisposition Score Associates with Reduced Aerobic Capacity in Response to Acute Normobaric Hypoxia in Lowlanders. High Altitude Medicine and Biology, 2015, 16, 34-42.	0.5	6
364	Transcriptomic analysis provides insight into high-altitude acclimation in domestic goats. Gene, 2015, 567, 208-216.	1.0	26
365	Genetic approaches in comparative and evolutionary physiology. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R197-R214.	0.9	42
366	Human Population Movements. , 2015, , 219-233.		0
367	Genetics of autoimmune diseases: insights from population genetics. Journal of Human Genetics, 2015, 60, 657-664.	1.1	127
368	Haplotype Allele Frequency (HAF) Score: Predicting Carriers of Ongoing Selective Sweeps Without Knowledge of the Adaptive Allele. Lecture Notes in Computer Science, 2015, , 276-280.	1.0	1
369	Hypoxic Pulmonary Hypertension. , 2015, , 4169-4209.		1
370	Increased prevalence of EPAS1 variant in cattle with high-altitude pulmonary hypertension. Nature Communications, 2015, 6, 6863.	5.8	69
371	Establishment of a 100-seed weight quantitative trait locus–allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. Journal of Experimental Botany, 2015, 66, 6311-6325.	2.4	91
372	Humans In Hypoxia: A Conspiracy Of Maladaptation?!. Physiology, 2015, 30, 304-316.	1.6	67
373	Novel SNP of EPAS1 gene associated with higher hemoglobin concentration revealed the hypoxia adaptation of yak (Bos grunniens). Journal of Integrative Agriculture, 2015, 14, 741-748.	1.7	15
374	Lungs at high-altitude: genomic insights into hypoxic responses. Journal of Applied Physiology, 2015, 119, 1-15.	1.2	24

#	Article	IF	CITATIONS
375	Two functional loci in the promoter of EPAS1 gene involved in high-altitude adaptation of Tibetans. Scientific Reports, 2014, 4, 7465.	1.6	31
376	CYP17A1 and CYP2E1 variants associated with high altitude polycythemia in Tibetans at the Qinghai-Tibetan Plateau. Gene, 2015, 566, 257-263.	1.0	18
377	A genome-wide scan for signatures of directional selection in domesticated pigs. BMC Genomics, 2015, 16, 130.	1.2	67
378	Impacts of nucleotide fixation during soybean domestication and improvement. BMC Plant Biology, 2015, 15, 81.	1.6	22
379	Inferring positive selection in humans from genomic data. Investigative Genetics, 2015, 6, 5.	3.3	27
380	A Positive Correlation between Elevated Altitude and Frequency of Mutant Alleles at the EPAS1 and HBB Loci in Chinese Indigenous Dogs. Journal of Genetics and Genomics, 2015, 42, 173-177.	1.7	9
381	Association Between Serum Concentrations of Hypoxia Inducible Factor Responsive Proteins and Excessive Erythrocytosis in High Altitude Peru. High Altitude Medicine and Biology, 2015, 16, 26-33.	0.5	11
383	Evidence for archaic adaptive introgression in humans. Nature Reviews Genetics, 2015, 16, 359-371.	7.7	471
384	The Kalash Genetic Isolate: Ancient Divergence, Drift, and Selection. American Journal of Human Genetics, 2015, 96, 775-783.	2.6	46
385	Soft Shoulders Ahead: Spurious Signatures of Soft and Partial Selective Sweeps Result from Linked Hard Sweeps. Genetics, 2015, 200, 267-284.	1.2	98
386	Sun skink landscape genomics: assessing the roles of microâ€evolutionary processes in shaping genetic and phenotypic diversity across a heterogeneous and fragmented landscape. Molecular Ecology, 2015, 24, 1696-1712.	2.0	32
387	Transcriptome analysis of the plateau fish (Triplophysa dalaica): Implications for adaptation to hypoxia in fishes. Gene, 2015, 565, 211-220.	1.0	50
388	Genomic approaches to studying human-specific developmental traits. Development (Cambridge), 2015, 142, 3100-3112.	1.2	26
389	Positive selection of AS3MT to arsenic water in Andean populations. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 780, 97-102.	0.4	32
390	A global reference for human genetic variation. Nature, 2015, 526, 68-74.	13.7	13,998
391	Biogeographic history and high-elevation adaptations inferred from the mitochondrial genome of Glyptosternoid fishes (Sisoridae, Siluriformes) from the southeastern Tibetan Plateau. BMC Evolutionary Biology, 2015, 15, 233.	3.2	35
392	EPAS1 Gene Polymorphisms Are Associated With High Altitude Polycythemia in Tibetans at the Qinghai-Tibetan Plateau. Wilderness and Environmental Medicine, 2015, 26, 288-294.	0.4	18
393	Analysis of Human Triallelic SNPs by Nextâ€Generation Sequencing. Annals of Human Genetics, 2015, 79, 275-281.	0.3	23

#	Article	IF	CITATIONS
394	Convergent evolution of SOCS4 between yak and Tibetan antelope in response to high-altitude stress. Gene, 2015, 572, 298-302.	1.0	15
395	Altitude Adaptation: A Glimpse Through Various Lenses. High Altitude Medicine and Biology, 2015, 16, 125-137.	0.5	121
396	Genetic selection by high altitude: Beware of experiments at ambient conditions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10080-10081.	3.3	3
397	Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science, 2015, 349, 1343-1347.	6.0	397
398	Mathematical Models in Biology. , 2015, , .		3
399	Ancient population genomics and the study of evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130381.	1.8	18
400	A hidden Markov model for investigating recent positive selection through haplotype structure. Theoretical Population Biology, 2015, 99, 18-30.	0.5	41
401	Cenozoic vertebrate evolution and paleoenvironment in Tibetan Plateau: Progress and prospects. Gondwana Research, 2015, 27, 1335-1354.	3.0	54
402	Exonic versus intronic SNPs: contrasting roles in revealing the population genetic differentiation of a widespread bird species. Heredity, 2015, 114, 1-9.	1.2	32
403	Evidence of adaptive evolution of alpine pheasants to high-altitude environment from mitogenomic perspective. Mitochondrial DNA, 2016, 27, 455-462.	0.6	16
404	Lower mitochondrial DNA content relates to high-altitude adaptation in Tibetans. Mitochondrial DNA, 2016, 27, 753-757.	0.6	10
405	Clinical iron deficiency disturbs normal human responses to hypoxia. Journal of Clinical Investigation, 2016, 126, 2139-2150.	3.9	82
406	Characterizing Two Inter-specific Bin Maps for the Exploration of the QTLs/Genes that Confer Three Soybean Evolutionary Traits. Frontiers in Plant Science, 2016, 7, 1248.	1.7	18
407	Admixture into and within sub-Saharan Africa. ELife, 2016, 5, .	2.8	120
408	Identification of non-coding genetic variants in samples from hypoxemic respiratory disease patients that affect the transcriptional response to hypoxia. Nucleic Acids Research, 2016, 44, gkw811.	6.5	8
409	Identification of Multiple Loci Associated with Social Parasitism in Honeybees. PLoS Genetics, 2016, 12, e1006097.	1.5	31
410	Evidence of Recent Intricate Adaptation in Human Populations. PLoS ONE, 2016, 11, e0165870.	1.1	5
411	Elevation of Circulating miR-210-3p in High-Altitude Hypoxic Environment. Frontiers in Physiology, 2016, 7, 84.	1.3	28

#	Article	IF	CITATIONS
412	Genetic Adaptation of Giant Lobelias (Lobelia aberdarica and Lobelia telekii) to Different Altitudes in East African Mountains. Frontiers in Plant Science, 2016, 7, 488.	1.7	9
414	Exon capture optimization in amphibians with large genomes. Molecular Ecology Resources, 2016, 16, 1084-1094.	2.2	54
415	Genomic analysis of snub-nosed monkeys (Rhinopithecus) identifies genes and processes related to high-altitude adaptation. Nature Genetics, 2016, 48, 947-952.	9.4	109
416	Genetic evidence for natural selection in humans in the contemporary United States. Proceedings of the United States of America, 2016, 113, 7774-7779.	3.3	129
417	When genes and environment disagree: Making sense of trends in recent human evolution. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7693-7695.	3.3	27
418	<i>HMOX2</i> Functions as a Modifier Gene for High-Altitude Adaptation in Tibetans. Human Mutation, 2016, 37, 216-223.	1.1	40
419	Genomewide scan for adaptive differentiation along altitudinal gradient in the Andrew's toad <i>Bufo andrewsi</i> . Molecular Ecology, 2016, 25, 3884-3900.	2.0	38
420	A haplotype method detects diverse scenarios of local adaptation from genomic sequence variation. Molecular Ecology, 2016, 25, 3081-3100.	2.0	19
421	Cardiometabolic risk factors in native populations living at high altitudes. International Journal of Clinical Practice, 2016, 70, 113-118.	0.8	18
422	Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. , 2016, 6, 1345-1385.		97
423	Genomic evidence for polyphyletic origins and interlineage gene flow within complex taxa: a case study of <i>Picea brachytyla</i> in the Qinghaiâ€ībet Plateau. Molecular Ecology, 2016, 25, 2373-2386.	2.0	29
424	New insights into the generation and role of de novo mutations in health and disease. Genome Biology, 2016, 17, 241.	3.8	339
425	Independent at heart: persistent association of altitude with ischaemic heart disease mortality after consideration of climate, topography and built environment. Journal of Epidemiology and Community Health, 2016, 70, 798-806.	2.0	38
426	Glucose intolerance associated with hypoxia in people living at high altitudes in the Tibetan highland. BMJ Open, 2016, 6, e009728.	0.8	37
427	MtDNA analysis reveals enriched pathogenic mutations in Tibetan highlanders. Scientific Reports, 2016, 6, 31083.	1.6	22
428	The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science, 2016, 354, 1305-1308.	6.0	348
429	Understanding rare and common diseases in the context of human evolution. Genome Biology, 2016, 17, 225.	3.8	76
430	Archaic adaptive introgression in <i>TBX15/WARS2</i> . Molecular Biology and Evolution, 2017, 34, msw283.	3.5	101

#	Article	IF	Citations
431	Genomic Analysis Reveals Hypoxia Adaptation in the Tibetan Mastiff by Introgression of the Grey Wolf from the Tibetan Plateau. Molecular Biology and Evolution, 2017, 34, msw274.	3.5	75
432	Applications of the 1000 Genomes Project resources. Briefings in Functional Genomics, 2017, 16, elw027.	1.3	30
433	Comparison Between HDL-C Levels in Argentine Indigenous Children Living at High Altitudes and U.S. Children. Diabetes Technology and Therapeutics, 2016, 18, 233-239.	2.4	7
434	Determinants of ventilation and pulmonary artery pressure during early acclimatization to hypoxia in humans. Journal of Physiology, 2016, 594, 1197-1213.	1.3	19
435	Recurrent specialization on a toxic fruit in an island <i>Drosophila</i> population. Proceedings of the United States of America, 2016, 113, 4771-4776.	3.3	88
436	Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication. Molecular Ecology, 2016, 25, 5-23.	2.0	154
437	Positive Selection on a Regulatory Insertion–Deletion Polymorphism in <i>FADS2</i> Influences Apparent Endogenous Synthesis of Arachidonic Acid. Molecular Biology and Evolution, 2016, 33, 1726-1739.	3.5	76
438	Targeted capture in evolutionary and ecological genomics. Molecular Ecology, 2016, 25, 185-202.	2.0	295
439	Genomic resources and their influence on the detection of the signal of positive selection in genome scans. Molecular Ecology, 2016, 25, 170-184.	2.0	74
440	Detecting the QTL-allele system of seed isoflavone content in Chinese soybean landrace population for optimal cross design and gene system exploration. Theoretical and Applied Genetics, 2016, 129, 1557-1576.	1.8	70
441	The association of angiotensin-converting enzyme gene insertion/deletion polymorphisms with adaptation to high altitude: A meta-analysis. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2016, 17, 147032031562741.	1.0	14
442	The cultural context of biological adaptation to high elevation Tibet. Archaeological Research in Asia, 2016, 5, 4-11.	0.2	18
443	Genetic subdivision and candidate genes under selection in North American grey wolves. Molecular Ecology, 2016, 25, 380-402.	2.0	100
444	Methods to characterize selective sweeps using time serial samples: an ancient DNA perspective. Molecular Ecology, 2016, 25, 24-41.	2.0	67
445	Taste for poison reevolves in fruit flies. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4558-4560.	3.3	3
446	Shared Genetic Signals of Hypoxia Adaptation in <i>Drosophila</i> and in High-Altitude Human Populations. Molecular Biology and Evolution, 2016, 33, 501-517.	3.5	44
447	Sequence capture by hybridization to explore modern and ancient genomic diversity in model and nonmodel organisms. Nucleic Acids Research, 2016, 44, 4504-4518.	6.5	69
448	Human Phenotypic Diversity. Current Topics in Developmental Biology, 2016, 119, 349-390.	1.0	6

#	Article	IF	Citations
449	Detection of human adaptation during the past 2000 years. Science, 2016, 354, 760-764.	6.0	336
450	Investigation of hypoxia-inducible factor-1alpha (HIF-1α) gene polymorphisms in individuals with high levels of hemoglobin / Hemoglobin seviyesi yüksek bireylerde hipoksi ile indüklenen faktör-1 alfa (HIF-1α) gen polimorfizminin araştırılması. Turkish Journal of Biochemistry, 2016, 41, .	0.3	0
451	History and possible mechanisms of prehistoric human migration to the Tibetan Plateau. Science China Earth Sciences, 2016, 59, 1765-1778.	2.3	59
452	Genetics of human origin and evolution: high-altitude adaptations. Current Opinion in Genetics and Development, 2016, 41, 8-13.	1.5	80
453	Different gene expressions between cattle and yak provide insights into highâ€altitude adaptation. Animal Genetics, 2016, 47, 28-35.	0.6	31
454	Blood Pressure and Hypertension in Adults Permanently Living at High Altitude: A Systematic Review and Meta-Analysis. High Altitude Medicine and Biology, 2016, 17, 185-193.	0.5	44
455	Ancestral Origins and Genetic History of Tibetan Highlanders. American Journal of Human Genetics, 2016, 99, 580-594.	2.6	208
456	Positive selection of lactase persistence among people of Southern Arabia. American Journal of Physical Anthropology, 2016, 161, 676-684.	2.1	9
457	Parallel Evolution of Cold Tolerance Within <i>Drosophila melanogaster</i> . Molecular Biology and Evolution, 2017, 34, msw232.	3.5	47
458	A time transect of exomes from a Native American population before and after European contact. Nature Communications, 2016, 7, 13175.	5.8	134
459	Chad Genetic Diversity Reveals an African History Marked by Multiple Holocene Eurasian Migrations. American Journal of Human Genetics, 2016, 99, 1316-1324.	2.6	37
460	A genomic history of Aboriginal Australia. Nature, 2016, 538, 207-214.	13.7	439
461	Worldwide genetic and cultural change in human evolution. Current Opinion in Genetics and Development, 2016, 41, 85-92.	1.5	22
462	Pulmonary Vascular and Ventricular Dysfunction in the Susceptible Patient (2015 Grover Conference) Tj ETQq1 1	0,78431	4 rgBT /Over
463	Identifying molecular signatures of hypoxia adaptation from sex chromosomes: A case for Tibetan Mastiff based on analyses of X chromosome. Scientific Reports, 2016, 6, 35004.	1.6	12
464	Selective Sweeps. , 2016, , 23-32.		2
465	Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nature Communications, 2016, 7, 11693.	5.8	222
466	Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Human Molecular Genetics, 2016, 25, ddw346.	1.4	196

CITATION REPORT ARTICLE IF CITATIONS Effects of race and sex on cerebral hemodynamics, oxygen delivery and blood flow distribution in 1.6 14 response to high altitude. Scientific Reports, 2016, 6, 30500. Directional Selection and Adaptation., 2016, , 444-452. Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species 5.8 156 complex. Nature Communications, 2016, 7, 13195. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Scientific Reports, 2016, 6, 26770. Signatures of Archaic Adaptive Introgression in Present-Day Human Populations. Molecular Biology 3.5 146 and Evolution, 2017, 34, msw216. Population Structure of UK Biobank and Ancient Eurasians Reveals Adaptation at Genes Influencing 2.6 Blood Pressure. American Journal of Human Genetics, 2016, 99, 1130-1139. Genomic heterogeneity of multiple synchronous lung cancer. Nature Communications, 2016, 7, 13200. 5.8 132 Forkhead Transcription Factor 3a (FOXO3a) Modulates Hypoxia Signaling via Up-regulation of the von 1.6 Hippel-Lindau Gene (VHL). Journal of Biological Chemistry, 2016, 291, 25692-25705. Hypoxia, AMPK activation and uterine artery vasoreactivity. Journal of Physiology, 2016, 594, 1357-1369. 1.3 51 Perinatal Disruptions of Lung Development: Mechanisms and Implications for Chronic Lung Diseases., 0,,269-285. Evolutionary triangulation: informing genetic association studies with evolutionary evidence. 2.2 6 BioData Mining, 2016, 9, 12. The Zinc Finger of Prolyl Hydroxylase Domain Protein 2 Is Essential for Efficient Hydroxylation of Hypoxia-Inducible Factor α. Molecular and Cellular Biology, 2016, 36, 2328-2343. 1.1 Long-term genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc. Proceedings of the National Academy of Sciences of the United States of America, 3.3 151 2016, 113, 7485-7490. Wide distribution and altitude correlation of an archaic high-altitude-adaptive EPAS1 haplotype in the 1.8 Himalayas. Human Genetics, 2016, 135, 393-402. Characterization of obsidian from the Tibetan Plateau by XRF and NAA. Journal of Archaeological 0.2 6 Science: Reports, 2016, 5, 392-399. Multi-layered population structure in Island Southeast Asians. European Journal of Human Genetics, 50 2016, 24, 1605-1611.

484 Lung Circulation. , 2016, 6, 897-943.

Analysis of the erythropoietin of a Tibetan Plateau schizothoracine fish (Gymnocypris dobula) reveals enhanced cytoprotection function in hypoxic environments. BMC Evolutionary Biology, 2016, 16, 11. 3.2 44

90

467

469

471

473

474

475

478

479

480

482

#	Article	IF	CITATIONS
486	HIF prolyl hydroxylase inhibitors for the treatment of renal anaemia and beyond. Nature Reviews Nephrology, 2016, 12, 157-168.	4.1	234
487	Comprehensive Transcriptome Analysis of Six Catfish Species from an Altitude Gradient Reveals Adaptive Evolution in Tibetan Fishes. G3: Genes, Genomes, Genetics, 2016, 6, 141-148.	0.8	49
488	Testing for Ancient Selection Using Cross-population Allele Frequency Differentiation. Genetics, 2016, 202, 733-750.	1.2	101
489	A biogeographic perspective on early human colonization of the Tibetan Plateau. Archaeological Research in Asia, 2016, 5, 33-43.	0.2	16
490	Exome sequencing reveals genetic differentiation due to high-altitude adaptation in the Tibetan cashmere goat (Capra hircus). BMC Genomics, 2016, 17, 122.	1.2	87
491	Loci and candidate gene identification for resistance to Phytophthora sojae via association analysis in soybean [Glycine max (L.) Merr.]. Molecular Genetics and Genomics, 2016, 291, 1095-1103.	1.0	29
492	Conceptualizing the Tibetan Plateau: Environmental constraints on the peopling of the "Third Pole― Archaeological Research in Asia, 2016, 5, 24-32.	0.2	26
493	Fast Principal-Component Analysis Reveals Convergent Evolution of ADH1B in Europe and East Asia. American Journal of Human Genetics, 2016, 98, 456-472.	2.6	335
494	SENP1, but not fetal hemoglobin, differentiates Andean highlanders with chronic mountain sickness from healthy individuals among Andean highlanders. Experimental Hematology, 2016, 44, 483-490.e2.	0.2	13
495	Ancient DNA and the rewriting of human history: be sparing with Occam's razor. Genome Biology, 2016, 17, 1.	3.8	1,335
496	Chronology and subsistence strategy of Nuomuhong Culture in the Tibetan Plateau. Quaternary International, 2016, 426, 42-49.	0.7	61
497	Ethnically distinct populations of historical Tibet exhibit distinct autosomal STR compositions. Gene, 2016, 578, 74-84.	1.0	2
498	Waist Circumference Percentiles in Indigenous Argentinean School Children Living at High Altitudes. Childhood Obesity, 2016, 12, 77-85.	0.8	3
499	Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. Proceedings of the United States of America, 2016, 113, E440-9.	3.3	224
500	Deep History of East Asian Populations Revealed Through Genetic Analysis of the Ainu. Genetics, 2016, 202, 261-272.	1.2	28
501	Estimating the Ages of Selection Signals from Different Epochs in Human History. Molecular Biology and Evolution, 2016, 33, 657-669.	3.5	32
502	Interaction of CARD14, SENP1 and VEGFA polymorphisms on susceptibility to high altitude polycythemia in the Han Chinese population at the Qinghai–Tibetan Plateau. Blood Cells, Molecules, and Diseases, 2016, 57, 13-22.	0.6	9
503	Tracing the peopling of the world through genomics. Nature, 2017, 541, 302-310.	13.7	562

\sim			n	
C	ΙΤΑΤ	ION	RE	PORT

#	Article	IF	CITATIONS
504	Down-Regulation of <i>EPAS1</i> Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia. Molecular Biology and Evolution, 2017, 34, msw280.	3.5	87
505	Cortical Thickness of Native Tibetans in the Qinghai-Tibetan Plateau. American Journal of Neuroradiology, 2017, 38, 553-560.	1.2	13
506	Electrocardiography in people living at high altitude of Nepal. Heart Asia, 2017, 9, 48-53.	1.1	5
507	The origin of chow chows in the light of the East Asian breeds. BMC Genomics, 2017, 18, 174.	1.2	8
508	Genetic Adaptation of Schizothoracine Fish to the Phased Uplifting of the Qinghai–Tibetan Plateau. G3: Genes, Genomes, Genetics, 2017, 7, 1267-1276.	0.8	29
509	Population transcriptomes reveal synergistic responses of <scp>DNA</scp> polymorphism and <scp>RNA</scp> expression to extreme environments on the Qinghai–Tibetan Plateau in a predatory bird. Molecular Ecology, 2017, 26, 2993-3010.	2.0	39
510	Gain-of-function EGLN1 prolyl hydroxylase (PHD2 D4E:C127S) in combination with EPAS1 (HIF-2α) polymorphism lowers hemoglobin concentration in Tibetan highlanders. Journal of Molecular Medicine, 2017, 95, 665-670.	1.7	52
511	Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biology, 2017, 15, 16.	1.7	96
512	Gene sequence variations and expression patterns of mitochondrial genes are associated with the adaptive evolution of two Gynaephora species (Lepidoptera: Lymantriinae) living in different high-elevation environments. Gene, 2017, 610, 148-155.	1.0	31
513	Comparative genomics of canine hemoglobin genes reveals primacy of beta subunit delta in adult carnivores. BMC Genomics, 2017, 18, 141.	1.2	9
514	Genetic signature of natural selection in first Americans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2195-2199.	3.3	76
515	<scp>Clear</scp> : Composition of Likelihoods for Evolve and Resequence Experiments. Genetics, 2017, 206, 1011-1023.	1.2	32
516	Genome research elucidating environmental adaptation: Dark-fly project as a case study. Current Opinion in Genetics and Development, 2017, 45, 97-102.	1.5	2
517	Dispersals and genetic adaptation of Bantu-speaking populations in Africa and North America. Science, 2017, 356, 543-546.	6.0	188
518	Overexpression of the Cytokine BAFF and Autoimmunity Risk. New England Journal of Medicine, 2017, 376, 1615-1626.	13.9	301
519	Ancient genomic changes associated with domestication of the horse. Science, 2017, 356, 442-445.	6.0	185
520	Comparative transcriptomic and proteomic analyses provide insights into the key genes involved in high-altitude adaptation in the Tibetan pig. Scientific Reports, 2017, 7, 3654.	1.6	38
521	Habitat Variability and Ethnic Diversity in Northern Tibetan Plateau. Scientific Reports, 2017, 7, 918.	1.6	10

#	Article	IF	CITATIONS
522	Ethnically Tibetan women in Nepal with low hemoglobin concentration have better reproductive outcomes. Evolution, Medicine and Public Health, 2017, 2017, 82-96.	1.1	28
524	Crossâ€altitude analysis suggests a turning point at the elevation of 4,500 m for polycythemia prevalence in Tibetans. American Journal of Hematology, 2017, 92, E552-E554.	2.0	12
525	Wholeâ€genome patterns of linkage disequilibrium across flycatcher populations clarify the causes and consequences of fineâ€scale recombination rate variation in birds. Molecular Ecology, 2017, 26, 4158-4172.	2.0	87
526	Fast diffusion of domesticated maize to temperate zones. Scientific Reports, 2017, 7, 2077.	1.6	7
527	CPT1A Missense Mutation Associated With Fatty Acid Metabolism and Reduced Height in Greenlanders. Circulation: Cardiovascular Genetics, 2017, 10, .	5.1	37
528	Biological aspects of human migration and mobility. Annals of Human Biology, 2017, 44, 427-440.	0.4	12
529	Genetic signatures of high-altitude adaptation in Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4189-4194.	3.3	181
530	Adaptation to infectious disease exposure in indigenous Southern African populations. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170226.	1.2	13
531	Inheritance, fine-mapping, and candidate gene analyses of resistance to soybean mosaic virus strain SC5 in soybean. Molecular Genetics and Genomics, 2017, 292, 811-822.	1.0	35
532	Sequence and functional characterization of hypoxia-inducible factors, HIF1α, HIF2αa, and HIF3α, from the estuarine fish, <i>Fundulus heteroclitus</i> . American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R412-R425.	0.9	16
533	Living in an adaptive world: Genomic dissection of the genus Homo and its immune response. Journal of Experimental Medicine, 2017, 214, 877-894.	4.2	34
534	Revealing large metagenomic regions through long DNA fragment hybridization capture. Microbiome, 2017, 5, 33.	4.9	8
535	Genetics of the hypoxia-inducible factors in human cancers. Experimental Cell Research, 2017, 356, 166-172.	1.2	8
536	Human evolution: a tale from ancient genomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150484.	1.8	51
537	High-altitude adaptation in humans: from genomics to integrative physiology. Journal of Molecular Medicine, 2017, 95, 1269-1282.	1.7	76
538	Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans. American Journal of Human Genetics, 2017, 101, 752-767.	2.6	99
539	Selection of reference genes for <scp>qRT</scp> â€ <scp>PCR</scp> and expression analysis of highâ€eltitudeâ€related genes in grassland caterpillars (Lepidoptera: Erebidae: <i>Gynaephora</i>) along an altitude gradient. Ecology and Evolution, 2017, 7, 9054-9065.	0.8	32
540	Reconstructing Prehistoric African Population Structure. Cell, 2017, 171, 59-71.e21.	13.5	308

#	Article	IF	CITATIONS
541	Evidence of Early-Stage Selection on EPAS1 and GPR126 Genes in Andean High Altitude Populations. Scientific Reports, 2017, 7, 13042.	1.6	29
542	Genomics of natural populations: Evolutionary forces that establish and maintain gene arrangements in <i>Drosophila pseudoobscura</i> . Molecular Ecology, 2017, 26, 6539-6562.	2.0	37
543	Novel mutations of TCIRG1 cause a malignant and mild phenotype of autosomal recessive osteopetrosis (ARO) in four Chinese families. Acta Pharmacologica Sinica, 2017, 38, 1456-1465.	2.8	15
544	Measuring high-altitude adaptation. Journal of Applied Physiology, 2017, 123, 1371-1385.	1.2	125
546	Deep whole-genome sequencing of 90 Han Chinese genomes. GigaScience, 2017, 6, 1-7.	3.3	36
547	The genetic admixture in Tibetan‥i Corridor. American Journal of Physical Anthropology, 2017, 164, 522-532.	2.1	35
548	Epigenomics and human adaptation to high altitude. Journal of Applied Physiology, 2017, 123, 1362-1370.	1.2	47
549	Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure. Theoretical and Applied Genetics, 2017, 130, 2297-2314.	1.8	70
550	Comparative transcriptomic analysis of Tibetan Gynaephora to explore the genetic basis of insect adaptation to divergent altitude environments. Scientific Reports, 2017, 7, 16972.	1.6	15
551	An Unexpectedly Complex Architecture for Skin Pigmentation in Africans. Cell, 2017, 171, 1340-1353.e14.	13.5	134
552	An Unbiased Estimator of Gene Diversity with Improved Variance for Samples Containing Related and Inbred Individuals of any Ploidy. G3: Genes, Genomes, Genetics, 2017, 7, 671-691.	0.8	26
553	Fast and robust detection of ancestral selective sweeps. Molecular Ecology, 2017, 26, 6871-6891.	2.0	31
554	Genome-Wide Analysis of Colonization History and Concomitant Selection in Arabidopsis lyrata. Molecular Biology and Evolution, 2017, 34, 2665-2677.	3.5	31
555	Genome-Wide QTL Analysis Identified Significant Associations Between Hypoxia Tolerance and Mutations in the GPR132 and ABCG4 Genes in Nile Tilapia. Marine Biotechnology, 2017, 19, 441-453.	1.1	47
556	Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance. BMC Evolutionary Biology, 2017, 17, 51.	3.2	12
557	Differentiated demographic histories and local adaptations between Sherpas and Tibetans. Genome Biology, 2017, 18, 115.	3.8	67
558	"Like sugar in milk― reconstructing the genetic history of the Parsi population. Genome Biology, 2017, 18, 110.	3.8	29
559	Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Animal Genetics, 2017, 48, 55-66.	0.6	108

#	Article	IF	CITATIONS
560	Making sense of genomic islands of differentiation in light of speciation. Nature Reviews Genetics, 2017, 18, 87-100.	7.7	389
561	Plasma Proteomics of Ladakhi Natives Reveal Functional Regulation Between Renin–Angiotensin System and eNOS–cGMP Pathway. High Altitude Medicine and Biology, 2017, 18, 27-36.	0.5	6
562	Bee conservation in the age of genomics. Conservation Genetics, 2017, 18, 713-729.	0.8	50
563	Multiple across-strain and within-strain QTLs suggest highly complex genetic architecture for hypoxia tolerance in channel catfish. Molecular Genetics and Genomics, 2017, 292, 63-76.	1.0	61
564	Atlas of human diseases influenced by genetic variants with extreme allele frequency differences. Human Genetics, 2017, 136, 39-54.	1.8	15
565	Human genetic adaptation to high altitudes: Current status and future prospects. Quaternary International, 2017, 461, 4-13.	0.7	63
566	Sherpas share genetic variations with Tibetans for highâ€altitude adaptation. Molecular Genetics & Genomic Medicine, 2017, 5, 76-84.	0.6	17
567	Exome Sequencing Provides Evidence of Polygenic Adaptation to a Fat-Rich Animal Diet in Indigenous Siberian Populations. Molecular Biology and Evolution, 2017, 34, 2913-2926.	3.5	31
568	Interpreting differentiation landscapes in the light of long-term linked selection. Evolution Letters, 2017, 1, 118-131.	1.6	150
569	Ancestors' dietary patterns and environments could drive positive selection in genes involved in micronutrient metabolism—the case of cofactor transporters. Genes and Nutrition, 2017, 12, 28.	1.2	5
570	Leveraging Multiple Populations across Time Helps Define Accurate Models of Human Evolution: A Reanalysis of the Lactase Persistence Adaptation. Human Biology, 2017, 89, 81.	0.4	8
571	Whole-exome sequencing reveals genetic variants in ERC1 and KCNG4 associated with complete hydatidiform mole in Chinese Han women. Oncotarget, 2017, 8, 75264-75271.	0.8	3
572	Twin Resemblance in Muscle HIF-1α Responses to Hypoxia and Exercise. Frontiers in Physiology, 2016, 7, 676.	1.3	15
573	Fine Mapping of a Resistance Gene RpsHN that Controls Phytophthora sojae Using Recombinant Inbred Lines and Secondary Populations. Frontiers in Plant Science, 2017, 8, 538.	1.7	47
574	dCATCH-Seq: improved sequencing of large continuous genomic targets with double-hybridization. BMC Genomics, 2017, 18, 811.	1.2	4
575	Hypoxia Inducible Factor-2 Alpha and Prolinhydroxylase 2 Polymorphisms in Patients with Acute Respiratory Distress Syndrome (ARDS). International Journal of Molecular Sciences, 2017, 18, 1266.	1.8	10
576	Adaptive Evolution of Energy Metabolism-Related Genes in Hypoxia-Tolerant Mammals. Frontiers in Genetics, 2017, 8, 205.	1.1	34
577	Hypoxia-Inducible Factor-1α Target Genes Contribute to Retinal Neuroprotection. Frontiers in Cellular Neuroscience, 2017, 11, 20.	1.8	61

ARTICLE IF CITATIONS Thin Air Resulting in High Pressure: Mountain Sickness and Hypoxia-Induced Pulmonary Hypertension. 578 0.8 32 Canadian Respiratory Journal, 2017, 2017, 1-17. The Contribution of Genetic Ancestry From Archaic Humans to Modern Humans., 2017, , 55-63. 579 580 Natural Selection Associated With Infectious Diseases., 2017, , 177-191. 2 EP300基å›é€šè;‡è°f控䀿°§åŒ–æ°®å•æ^å_®åŠ©è–æ–ë[∞]ç¾≇€,应é≪[°]原ä¹⁄2Žæ°§çŽ⁻å¢f. Zoological Resear**o**ty 2017, **ß**&, 163· 581 Genetic variation of world soybean maturity date and geographic distribution of maturity groups. 582 0.9 43 Breeding Science, 2017, 67, 221-232. Enzyme polymorphism, oxygen and injury: a lipidomic analysis of flight-induced oxidative damage in a 0.8 SDH-polymorphic insect. Journal of Experimental Biology, 2018, 221, . Variants of TLR1 associated with tuberculosis susceptibility in the Chinese Tibetan population but not 584 1.0 7 in Han Chinese. Infection, Genetics and Evolution, 2018, 61, 53-59. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease 5.8 risk of Japanese. Nature Communications, 2018, 9, 1631. Physiology and pathophysiology of renal erythropoietin-producing cells. Journal of the Formosan 586 0.8 67 Médical Association, 2018, 117, 955-963. PGG.Population: a database for understanding the genomic diversity and genetic ancestry of human 587 6.5 populations. Nucleic Acids Research, 2018, 46, D984-D993. Physiological and Genetic Adaptations to Diving in Sea Nomads. Cell, 2018, 173, 569-580.e15. 588 13.5129 Differentiation analysis for estimating individual ancestry from the Tibetan Plateau by an archaic altitude adaptation EPAS1 haplotype among East Asian populations. International Journal of Legal 1.2 Medicine, 2018, 132, 1527-1535 590 Detecting Polygenic Adaptation in Admixture Graphs. Genetics, 2018, 208, 1565-1584. 1.2 101 Reconstructing the demographic history of the Himalayan and adjoining populations. Human Genetics, 2018, 137, 129-139. 1.8 Ancient polymorphisms and divergence hitchhiking contribute to genomic islands of divergence 592 within a poplar species complex. Proceedings of the National Academy of Sciences of the United States 3.3 126 of America, 2018, 115, E236-E243. Combination of 247 Genome-Wide Association Studies Reveals High Cancer Risk as a Result of 43 Evolutionary Adaptation. Molecular Biology and Evolution, 2018, 35, 473-485. Oxygen-Sensitive Remodeling of Central Carbon Metabolism by Archaic eIF5B. Cell Reports, 2018, 22, 594 2.9 35 17-26. Overexpression of genes associated with hypoxia in cattle adapted to Trans Himalayan region of 595 1.4 Ladakh. Cell Biology International, 2018, 42, 1141-1148.

#	Article	IF	CITATIONS
596	Diagnosis and prophylaxis for high-altitude acclimatization: Adherence to molecular rationale to evade high-altitude illnesses. Life Sciences, 2018, 203, 171-176.	2.0	11
597	Detecting Signatures of Positive Selection along Defined Branches of a Population Tree Using LSD. Molecular Biology and Evolution, 2018, 35, 1520-1535.	3.5	25
598	Blunted nitric oxide regulation in Tibetans under high-altitude hypoxia. National Science Review, 2018, 5, 516-529.	4.6	30
599	A MYH3 mutation identified for the first time in a Chinese family with Sheldon-Hall syndrome (DA2B). Neuromuscular Disorders, 2018, 28, 456-462.	0.3	5
600	The uncertainty of population relationship and divergence time inferred by the multiple sequentially Markovian coalescent model. Journal of Human Genetics, 2018, 63, 775-777.	1.1	3
601	Adaptive Transcriptome Profiling of Subterranean Zokor, Myospalax baileyi, to High- Altitude Stresses in Tibet. Scientific Reports, 2018, 8, 4671.	1.6	10
602	Signatures of Long-Term Balancing Selection in Human Genomes. Genome Biology and Evolution, 2018, 10, 939-955.	1.1	100
603	A genomic perspective on HLA evolution. Immunogenetics, 2018, 70, 5-27.	1.2	139
604	Whole-Genome Sequencing of African Dogs Provides Insights into Adaptations against Tropical Parasites. Molecular Biology and Evolution, 2018, 35, 287-298.	3.5	41
605	Population Genomics of Herbicide Resistance: Adaptation via Evolutionary Rescue. Annual Review of Plant Biology, 2018, 69, 611-635.	8.6	80
606	Genetic polymorphisms of the drug-metabolizing enzyme CYP2J2 in a Tibetan population. Medicine (United States), 2018, 97, e12579.	0.4	4
607	Deciphering DMET genetic data: comprehensive assessment of Northwestern Han, Tibetan, Uyghur populations and their comparison to eleven 1000 genome populations. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, S1176-S1185.	1.9	1
608	Spatiotemporal Changes of Hazard Intensity-Adjusted Population Exposure to Multiple Hazards in Tibet During 1982–2015. International Journal of Disaster Risk Science, 2018, 9, 541-554.	1.3	5
610	The genetic prehistory of the Andean highlands 7000 years BP though European contact. Science Advances, 2018, 4, eaau4921.	4.7	115
611	Polygenic adaptation and convergent evolution on growth and cardiac genetic pathways in African and Asian rainforest hunter-gatherers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11256-E11263.	3.3	30
612	Genomes reveal marked differences in the adaptive evolution between orangutan species. Genome Biology, 2018, 19, 193.	3.8	18
613	Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts. Nature Communications, 2018, 9, 4991.	5.8	50
614	Towards Privacy Preserving IoT Environments: A Survey. Wireless Communications and Mobile Computing, 2018, 2018, 1-15.	0.8	64

#	Article	IF	CITATIONS
615	Whole-genome sequencing of 175 Mongolians uncovers population-specific genetic architecture and gene flow throughout North and East Asia. Nature Genetics, 2018, 50, 1696-1704.	9.4	38
616	Gene expression is implicated in the ability of pikas to occupy Himalayan elevational gradient. PLoS ONE, 2018, 13, e0207936.	1.1	9
617	The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation. Genome Biology and Evolution, 2019, 11, 72-85.	1.1	41
618	Genomic analyses of human European diversity at the southwestern edge: isolation, African influence and disease associations in the Canary Islands. Molecular Biology and Evolution, 2018, 35, 3010-3026.	3.5	17
619	Responses to Environmental Stressors in Developing Animals: Costs and Benefits of Phenotypic Plasticity. , 2018, , 97-113.		6
620	Genome-wide SNP-based association mapping of resistance to Phytophthora sojae in soybean (Glycine) Tj ETQq1	1 0.78431	4 ₉ rgBT /Ove
621	The genomic basis of environmental adaptation in house mice. PLoS Genetics, 2018, 14, e1007672.	1.5	65
623	Evidence of polygenic adaptation to high altitude from Tibetan and Sherpa genomes. Genome Biology and Evolution, 2018, 10, 2919-2930.	1.1	39
624	Hypoxia causes reductions in birth weight by altering maternal glucose and lipid metabolism. Scientific Reports, 2018, 8, 13583.	1.6	19
625	Detecting past and ongoing natural selection among ethnically Tibetan women at high altitude in Nepal. PLoS Genetics, 2018, 14, e1007650.	1.5	43
626	Different Erythrocyte MicroRNA Profiles in Low- and High-Altitude Individuals. Frontiers in Physiology, 2018, 9, 1099.	1.3	23
627	Population genomics of wild Chinese rhesus macaques reveals a dynamic demographic history and local adaptation, with implications for biomedical research. GigaScience, 2018, 7, .	3.3	27
628	Demographic History and Genetic Adaptation in the Himalayan Region Inferred from Genome-Wide SNP Genotypes of 49 Populations. Molecular Biology and Evolution, 2018, 35, 1916-1933.	3.5	36
629	Genetic-Driven Druggable Target Identification and Validation. Trends in Genetics, 2018, 34, 558-570.	2.9	44
630	Transcriptome Analysis of Circulating PBMCs to Understand Mechanism of High Altitude Adaptation in Native Cattle of Ladakh Region. Scientific Reports, 2018, 8, 7681.	1.6	42
631	Selection and environmental adaptation along a path to speciation in the Tibetan frog <i>Nanorana parkeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5056-E5065.	3.3	49
632	Evidence for positive selection on recent human transposable element insertions. Gene, 2018, 675, 69-79.	1.0	30
633	Comparative genomic investigation of high-elevation adaptation in ectothermic snakes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8406-8411.	3.3	119

0.			D	
	TAT	ON	Repc	דעו
\sim			INLI C	

#	Article	IF	CITATIONS
634	Ancestral polymorphisms explain the role of chromosomal inversions in speciation. PLoS Genetics, 2018, 14, e1007526.	1.5	67
635	Human adaptation to extreme environmental conditions. Current Opinion in Genetics and Development, 2018, 53, 77-82.	1.5	43
636	Gestational Hypoxia and Developmental Plasticity. Physiological Reviews, 2018, 98, 1241-1334.	13.1	123
637	Associations of high-altitude polycythemia with polymorphisms in PIK3CD and COL4A3 in Tibetan populations. Human Genomics, 2018, 12, 37.	1.4	16
638	Targeted resequencing of coding <scp>DNA</scp> sequences for <scp>SNP</scp> discovery in nonmodel species. Molecular Ecology Resources, 2018, 18, 1356-1373.	2.2	19
639	Analysis of QTL–allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure. Planta, 2018, 248, 947-962.	1.6	34
640	Homeologueâ€specific expression divergence in the recently formed tetraploid <i>Capsella bursaâ€pastoris</i> (Brassicaceae). New Phytologist, 2018, 220, 624-635.	3.5	10
641	Selection scan reveals three new loci related to high altitude adaptation in Native Andeans. Scientific Reports, 2018, 8, 12733.	1.6	21
642	Hypoxia Signaling in Vascular Homeostasis. Physiology, 2018, 33, 328-337.	1.6	20
643	Limited Evidence for Parallel Molecular Adaptations Associated with the Subterranean Niche in Mammals: A Comparative Study of Three Superorders. Molecular Biology and Evolution, 2018, 35, 2544-2559.	3.5	33
644	Evolution for extreme living: variation in mitochondrial cytochrome <i>c</i> oxidase genes correlated with elevation in pikas (genus <i>Ochotona</i>). Integrative Zoology, 2018, 13, 517-535.	1.3	8
645	Distance, elevation and environment as drivers of diversity and divergence in bumble bees across latitude and altitude. Molecular Ecology, 2018, 27, 2926-2942.	2.0	60
646	The inference of gray whale (Eschrichtius robustus) historical population attributes from whole-genome sequences. BMC Evolutionary Biology, 2018, 18, 87.	3.2	15
647	Development of the variant calling algorithm, ADIScan, and its use to estimate discordant sequences between monozygotic twins. Nucleic Acids Research, 2018, 46, e92-e92.	6.5	3
648	Population genomics of Mesolithic Scandinavia: Investigating early postglacial migration routes and high-latitude adaptation. PLoS Biology, 2018, 16, e2003703.	2.6	174
649	Genetic variability of hypoxiaâ€inducible factor alpha (<i>HIFA</i>) genes in familial erythrocytosis: Analysis of the literature and genome databases. European Journal of Haematology, 2019, 103, 287-299.	1.1	12
650	Adaptation to Extreme Environments in an Admixed Human Population from the Atacama Desert. Genome Biology and Evolution, 2019, 11, 2468-2479.	1.1	13
651	Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders. National Science Review, 2019, 6, 1201-1222.	4.6	30

#	Article	IF	CITATIONS
652	Population Genomics Analysis Revealed Origin and High-altitude Adaptation of Tibetan Pigs. Scientific Reports, 2019, 9, 11463.	1.6	44
653	The Genetic Architecture of Chronic Mountain Sickness in Peru. Frontiers in Genetics, 2019, 10, 690.	1.1	12
655	Identifying loci under positive selection in complex population histories. Genome Research, 2019, 29, 1506-1520.	2.4	36
656	Nonâ€highâ€density lipoprotein cholesterol curves in Argentinean indigenous children living at high altitude and US children. American Journal of Human Biology, 2019, 31, e23292.	0.8	0
657	Genetic architecture and adaptations of Nunavik Inuit. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16012-16017.	3.3	14
658	Genome-wide SNP analysis of Japanese Thoroughbred racehorses. PLoS ONE, 2019, 14, e0218407.	1.1	16
659	Natural selection contributed to immunological differences between hunter-gatherers and agriculturalists. Nature Ecology and Evolution, 2019, 3, 1253-1264.	3.4	28
660	Genomic Patterns of Local Adaptation under Gene Flow in Arabidopsis lyrata. Molecular Biology and Evolution, 2019, 36, 2557-2571.	3.5	61
661	Avian Genomics in Ecology and Evolution. , 2019, , .		4
662	The Contribution of Genomics to Bird Conservation. , 2019, , 295-330.		5
662 663	The Contribution of Genomics to Bird Conservation. , 2019, , 295-330. Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes. Science, 2019, 366, .	6.0	5 65
	Adaptive archaic introgression of copy number variants and the discovery of previously unknown	6.0 13.5	
663	Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes. Science, 2019, 366, . Large-Scale Whole-Genome Sequencing of Three Diverse Asian Populations in Singapore. Cell, 2019, 179,		65
663 664	Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes. Science, 2019, 366, . Large-Scale Whole-Genome Sequencing of Three Diverse Asian Populations in Singapore. Cell, 2019, 179, 736-749.e15.	13.5	65 126
663 664 665	Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes. Science, 2019, 366, . Large-Scale Whole-Genome Sequencing of Three Diverse Asian Populations in Singapore. Cell, 2019, 179, 736-749.e15. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice. PLoS Genetics, 2019, 15, e1008420. PGG.SNV: understanding the evolutionary and medical implications of human single nucleotide	13.5 1.5	65 126 52
663 664 665 666	Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes. Science, 2019, 366, . Large-Scale Whole-Genome Sequencing of Three Diverse Asian Populations in Singapore. Cell, 2019, 179, 736-749.e15. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice. PLoS Genetics, 2019, 15, e1008420. PGG.SNV: understanding the evolutionary and medical implications of human single nucleotide variations in diverse populations. Genome Biology, 2019, 20, 215. Pulmonary Vascular Pressure Response to Acute Cold Exposure in Kyrgyz Highlanders. High Altitude	13.5 1.5 3.8	65 126 52 30
663 664 665 666	Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes. Science, 2019, 366, . Large-Scale Whole-Genome Sequencing of Three Diverse Asian Populations in Singapore. Cell, 2019, 179, 736-749.e15. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice. PLoS Genetics, 2019, 15, e1008420. PGG.SNV: understanding the evolutionary and medical implications of human single nucleotide variations in diverse populations. Genome Biology, 2019, 20, 215. Pulmonary Vascular Pressure Response to Acute Cold Exposure in Kyrgyz Highlanders. High Altitude Medicine and Biology, 2019, 20, 375-382. Activity of Lipoprotein-Associated Enzymes in Indigenous Children Living at Different Altitudes.	13.5 1.5 3.8 0.5	 65 126 52 30 3

#	Article	IF	CITATIONS
671	Population History and Altitude-Related Adaptation in the Sherpa. Frontiers in Physiology, 2019, 10, 1116.	1.3	16
672	A GWAS in Latin Americans highlights the convergent evolution of lighter skin pigmentation in Eurasia. Nature Communications, 2019, 10, 358.	5.8	130
674	Thin Air, Thick Vessels: Historical and Current Perspectives on Hypoxic Pulmonary Hypertension. Frontiers in Medicine, 2019, 6, 93.	1.2	30
676	Parallel Molecular Evolution in Pathways, Genes, and Sites in High-Elevation Hummingbirds Revealed by Comparative Transcriptomics. Genome Biology and Evolution, 2019, 11, 1573-1585.	1.1	49
677	Whole-genome mapping identified novel "QTL hotspots regions―for seed storability in soybean (Glycine max L.). BMC Genomics, 2019, 20, 499.	1.2	30
678	Ancient introgression drives adaptation to cooler and drier mountain habitats in a cypress species complex. Communications Biology, 2019, 2, 213.	2.0	64
679	Comparative analysis of peripheral blood reveals transcriptomic adaptations to extreme environments on the Qinghai-Tibetan Plateau in the gray wolf (Canis lupus chanco). Organisms Diversity and Evolution, 2019, 19, 543-556.	0.7	5
680	Complement Receptor 1 availability on red blood cell surface modulates Plasmodium vivax invasion of human reticulocytes. Scientific Reports, 2019, 9, 8943.	1.6	14
681	Insights into hypoxic adaptation in Tibetan chicken embryos from comparative proteomics. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2019, 31, 100602.	0.4	9
682	Convergent evolution in human and domesticate adaptation to high-altitude environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180235.	1.8	90
683	Evolution of affiliation: patterns of convergence from genomes to behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180242.	1.8	38
684	Using the RTM-GWAS procedure to detect the drought tolerance QTL-allele system at the seedling stage under sand culture in a half-sib population of soybean [<i>Glycine max</i> (L) Merr.]. Canadian Journal of Plant Science, 2019, 99, 801-814.	0.3	7
685	Genetic structure and forensic characteristics of Tibeto-Burman-speaking Ü-Tsang and Kham Tibetan Highlanders revealed by 27 Y-chromosomal STRs. Scientific Reports, 2019, 9, 7739.	1.6	19
686	How well do we understand the basis of classic selective sweeps in humans?. FEBS Letters, 2019, 593, 1431-1448.	1.3	17
688	Congenital and evolutionary modulations of hypoxia sensing and their erythroid phenotype. Current Opinion in Physiology, 2019, 7, 27-32.	0.9	6
689	Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science, 2019, 364, 455-457.	6.0	184
690	Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics, 2019, 51, 857-864.	9.4	219
691	Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series. Cell, 2019, 177, 1419-1435.e31.	13.5	195

#	Article	IF	CITATIONS
692	Comparing signals of natural selection between three Indigenous North American populations. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9312-9317.	3.3	58
693	PAC, an evolutionarily conserved membrane protein, is a proton-activated chloride channel. Science, 2019, 364, 395-399.	6.0	91
694	Divergent Fine-Scale Recombination Landscapes between a Freshwater and Marine Population of Threespine Stickleback Fish. Genome Biology and Evolution, 2019, 11, 1552-1572.	1.1	44
695	UNVEILing connections between genotype, phenotype, and fitness in natural populations. Molecular Ecology, 2019, 28, 1866-1876.	2.0	14
696	Genetic signatures of gene flow and malaria-driven natural selection in sub-Saharan populations of the "endemic Burkitt Lymphoma belt". PLoS Genetics, 2019, 15, e1008027.	1.5	23
698	The "cancer–cold―hypothesis and possible extensions for the Nordic populations. Scandinavian Journal of Public Health, 2019, 47, 477-481.	1.2	13
699	Human Disease Variation in the Light of Population Genomics. Cell, 2019, 177, 115-131.	13.5	75
700	Revisiting the role of hypoxia-inducible factors in pulmonary hypertension. Current Opinion in Physiology, 2019, 7, 33-40.	0.9	14
701	Sharper eyes see shyer lizards: Collaboration with indigenous peoples can alter the outcomes of conservation research. Conservation Letters, 2019, 12, e12643.	2.8	29
702	Digging for the spiny rat and hutia phylogeny using a gene capture approach, with the description of a new mammal subfamily. Molecular Phylogenetics and Evolution, 2019, 136, 241-253.	1.2	32
703	Genome-wide DNA methylation profiles in Tibetan and Yorkshire pigs under high-altitude hypoxia. Journal of Animal Science and Biotechnology, 2019, 10, 25.	2.1	29
706	Evolution of Hominin Polyunsaturated Fatty Acid Metabolism: From Africa to the New World. Genome Biology and Evolution, 2019, 11, 1417-1430.	1.1	38
707	Genetic variants at the <i>EGLN1</i> locus associated with highâ€altitude adaptation in Tibetans are absent or found at low frequency in highland Andeans. Annals of Human Genetics, 2019, 83, 171-176.	0.3	19
708	The genomic basis of adaptation to highâ€altitude habitats in the eastern honey bee (<i>Apis cerana</i>). Molecular Ecology, 2019, 28, 746-760.	2.0	30
709	Detection of Selection Signatures Among Brazilian, Sri Lankan, and Egyptian Chicken Populations Under Different Environmental Conditions. Frontiers in Genetics, 2018, 9, 737.	1.1	46
710	The Australian dingo: untamed or feral?. Frontiers in Zoology, 2019, 16, 2.	0.9	22
711	Association Between Single Nucleotide Polymorphisms in PPARA and EPAS1 Genes and High-Altitude Appetite Loss in Chinese Young Men. Frontiers in Physiology, 2019, 10, 59.	1.3	10
712	Association of <i>EGLN1</i> gene with high aerobic capacity of Peruvian Quechua at high altitude. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24006-24011.	3.3	41

#	Article	IF	CITATIONS
713	Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude. PLoS Genetics, 2019, 15, e1008512.	1.5	22
714	An Aptitude for Altitude: Are Epigenomic Processes Involved?. Frontiers in Physiology, 2019, 10, 1397.	1.3	4
715	ImaGene: a convolutional neural network to quantify natural selection from genomic data. BMC Bioinformatics, 2019, 20, 337.	1.2	61
716	Identification of QTN and Candidate Gene for Seed-flooding Tolerance in Soybean [Glycine max (L.) Merr.] using Genome-Wide Association Study (GWAS). Genes, 2019, 10, 957.	1.0	32
717	The impact of genetic adaptation on chimpanzee subspecies differentiation. PLoS Genetics, 2019, 15, e1008485.	1.5	15
718	Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25172-25178.	3.3	71
719	Whole-Genome Sequencing Identifies the Egl Nine Homologue 3 (egln3/phd3) and Protein Phosphatase 1 Regulatory Inhibitor Subunit 2 (PPP1R2P1) Associated with High-Altitude Polycythemia in Tibetans at High Altitude. Disease Markers, 2019, 2019, 1-8.	0.6	4
720	Genetic Diversity and Signatures of Selection in 15 Chinese Indigenous Dog Breeds Revealed by Genome-Wide SNPs. Frontiers in Genetics, 2019, 10, 1174.	1.1	12
721	Sex chromosome inversions enforce reproductive isolation across an avian hybrid zone. Molecular Ecology, 2019, 28, 1246-1262.	2.0	75
722	The Genome Landscape of Tibetan Sheep Reveals Adaptive Introgression from Argali and the History of Early Human Settlements on the Qinghai–Tibetan Plateau. Molecular Biology and Evolution, 2019, 36, 283-303.	3.5	84
723	Genomic Evidence of Local Adaptation to Climate and Diet in Indigenous Siberians. Molecular Biology and Evolution, 2019, 36, 315-327.	3.5	41
724	Differentiations of geographic distribution and subsistence strategies between Tibetan and other major ethnic groups are determined by the physical environment in Hehuang Valley. Science China Earth Sciences, 2019, 62, 412-422.	2.3	10
725	Convergent evolution on the hypoxia-inducible factor (HIF) pathway genes EGLN1 and EPAS1 in high-altitude ducks. Heredity, 2019, 122, 819-832.	1.2	52
726	The Effects of High Altitude on Clucose Homeostasis, Metabolic Control, and Other Diabetes-Related Parameters: From Animal Studies to Real Life. High Altitude Medicine and Biology, 2019, 20, 1-11.	0.5	26
727	Forensic human identification with targeted microbiome markers using nearest neighbor classification. Forensic Science International: Genetics, 2019, 38, 130-139.	1.6	45
728	Novel insight into the genetic basis of high-altitude pulmonary hypertension in Kyrgyz highlanders. European Journal of Human Genetics, 2019, 27, 150-159.	1.4	14
729	Genetic and epigenetic polymorphisms of eNOS and CYP2D6 in mainland Chinese Tibetan, Mongolian, Uygur, and Han populations. Pharmacogenomics Journal, 2020, 20, 114-125.	0.9	13
730	<i>De novo</i> assembly of a Tibetan genome and identification of novel structural variants associated with high-altitude adaptation. National Science Review, 2020, 7, 391-402.	4.6	28

#	Article	IF	CITATIONS
731	The fineâ€scale genetic structure and selection signals of Chinese indigenous pigs. Evolutionary Applications, 2020, 13, 458-475.	1.5	30
732	Using coprophilous fungi to reconstruct the history of pastoralism in the Qinghai Lake Basin, Northeastern Qinghai-Tibetan Plateau. Progress in Physical Geography, 2020, 44, 70-93.	1.4	25
733	Ancestry informative DIP loci for dissecting genetic structure and ancestry proportions of Qinghai Tibetan and Tibet Tibetan groups. Molecular Biology Reports, 2020, 47, 1079-1087.	1.0	5
734	Identification of key HIF-1Î \pm target genes that regulate adaptation to hypoxic conditions in Tibetan chicken embryos. Gene, 2020, 729, 144321.	1.0	8
735	Comparison of Carotid Atherosclerosis between Patients at High Altitude and Sea Level: A Chinese Atherosclerosis Risk Evaluation Study. Journal of Stroke and Cerebrovascular Diseases, 2020, 29, 104448.	0.7	6
736	Convergent genomic signatures of high-altitude adaptation among domestic mammals. National Science Review, 2020, 7, 952-963.	4.6	52
737	Population History and Gene Divergence in Native Mexicans Inferred from 76 Human Exomes. Molecular Biology and Evolution, 2020, 37, 994-1006.	3.5	43
738	Geographic differentiation and phylogeographic relationships among world soybean populations. Crop Journal, 2020, 8, 260-272.	2.3	16
739	Recent population genomic insights into the genetic basis of arsenic tolerance in humans: the difficulties of identifying positively selected loci in strongly bottlenecked populations. Heredity, 2020, 124, 253-262.	1.2	8
740	Ancient Genomes Reveal Unexpected Horse Domestication and Management Dynamics. BioEssays, 2020, 42, e1900164.	1.2	31
741	Subsistence strategies of prehistoric hunter-gatherers on the Tibetan Plateau during the Last Deglaciation. Science China Earth Sciences, 2020, 63, 395-404.	2.3	26
742	Target Oxygen Levels and Critical Care of the Newborn. Current Pediatric Reviews, 2020, 16, 2-5.	0.4	3
743	Metabolic adaptation to high altitude. Current Opinion in Endocrine and Metabolic Research, 2020, 11, 33-41.	0.6	20
744	The mosaic genome of indigenous African cattle as a unique genetic resource for African pastoralism. Nature Genetics, 2020, 52, 1099-1110.	9.4	61
745	Transcriptomic Changes in Young Japanese Males After Exposure to Acute Hypobaric Hypoxia. Frontiers in Genetics, 2020, 11, 559074.	1.1	8
746	Hypoxia-inducible factors not only regulate but also are myeloid-cell treatment targets. Journal of Leukocyte Biology, 2021, 110, 61-75.	1.5	11
747	A Conceptual Framework for Designing Phylogeography and Landscape Genetic Studies. Critical Reviews in Plant Sciences, 2020, 39, 457-478.	2.7	1
748	Experimental study of hypoxia-induced changes in gene expression in an Asian pika, Ochotona dauurica. PLoS ONE, 2020, 15, e0240435.	1.1	5

ARTICLE IF CITATIONS # Genomic Analyses Reveal Genetic Adaptations to Tropical Climates in Chickens. IScience, 2020, 23, 749 1.9 28 101644. Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation. 5.8 Nature Communications, 2020, 11, 4928 Comprehensive Identification of Drought Tolerance QTL-Allele and Candidate Gene Systems in Chinese 751 1.8 14 Cultivated Soybean Population. International Journal of Molecular Sciences, 2020, 21, 4830. Effect of EGLN1 Genetic Polymorphisms on Hemoglobin Concentration in Andean Highlanders. BioMed 0.9 Research International, 2020, 2020, 1-16. Detecting the QTL-allele system controlling seed-flooding tolerance in a nested association mapping 753 2.3 19 population of soybean. Crop Journal, 2020, 8, 781-792. Vascular homeostasis at high $\hat{\epsilon}$ eltitude: role of genetic variants and transcription factors. Pulmonary 0.8 Circulation, 2020, 10, 1-11. 755 Cross-Species Insights Into Genomic Adaptations to Hypoxia. Frontiers in Genetics, 2020, 11, 743. 1.1 48 Proteinâ€"Protein Interactions Mediated by Intrinsically Disordered Protein Regions Are Enriched in 1.8 756 Missense Mutations. Biomolecules, 2020, 10, 1097. Evolutionary History of the Risk of SNPs for Diffuse-Type Gastric Cancer in the Japanese Population. 757 1.0 2 Genes, 2020, 11, 775. Iron deficiency is a possible risk factor causing right heart failure in Tibetan children living in high 0.4 altitude area. Medicine (United States), 2020, 99, e21133. EPAS1 and VEGFA gene variants are related to the symptoms of acute mountain sickness in Chinese Han 759 1.9 6 population: a cross-sectional study. Military Medical Research, 2020, 7, 35. Climate and Urbanization Drive Mosquito Preference for Humans. Current Biology, 2020, 30, 1.8 3570-3579.e6. Comparative transcriptome analysis reveals regulatory genes involved in cold tolerance and hypoxic adaptation of high-altitude Tibetan bumblebees. Apidologie, 2020, 51, 1166-1181. 761 0.9 6 Molecular characterization of QTL-allele system for drought tolerance at seedling stage and optimal genotype design using multi-locus multi-allele genome-wide association analysis in a half-sib population of soybean (Glycine max (L.) Merr.). Plant Genetic Resources: Characterisation and Utilisation, 2020, 18, 295-306. 0.4 High-depth African genomes inform human migration and health. Nature, 2020, 586, 741-748. 763 13.7 197 Gut microbiome adaptation to extreme cold winter in wild plateau pika (<i>Ochotona curzoniae</i>) 764 on the Qinghai-Tibet Plateau. FEMS Microbiology Letters, 2020, 367, . Identification of quantitative trait nucleotides and candidate genes for soybean seed weight by 765 1.6 28 multiple models of genome-wide association study. BMC Plant Biology, 2020, 20, 404. The Evolutionary and Historical Foundation of the Modern Horse: Lessons from Ancient Genomics. 3.2 Annual Review of Genetics, 2020, 54, 563-581.

#	Article	IF	CITATIONS
767	Blood Pressure in Andean Adults Living Permanently at Different Altitudes. High Altitude Medicine and Biology, 2020, 21, 360-369.	0.5	2
768	Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations. Cell, 2020, 182, 1198-1213.e14.	13.5	353
769	Adaptive selection drives TRPP3 loss-of-function in an Ethiopian population. Scientific Reports, 2020, 10, 20999.	1.6	2
770	Good vacation and job rotation systems were beneficial for the hemoglobin level of workers at high altitude, a cross-sectional study along the Qinghai Tibet railway, China. International Journal of Industrial Ergonomics, 2020, 80, 103055.	1.5	3
771	A Custom Genotyping Array Reveals Population-Level Heterogeneity for the Genetic Risks of Prostate Cancer and Other Cancers in Africa. Cancer Research, 2020, 80, 2956-2966.	0.4	25
772	<i>HSPA1A</i> gene polymorphism rs1008438 is associated with susceptibility to acute mountain sickness in Han Chinese individuals. Molecular Genetics & amp; Genomic Medicine, 2020, 8, e1322.	0.6	7
773	Tibetan <i>PHD2</i> , an allele with loss-of-function properties. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12230-12238.	3.3	20
774	Hypoxia-inducible factor-1α: A promising therapeutic target for vasculopathy in diabetic retinopathy. Pharmacological Research, 2020, 159, 104924.	3.1	39
775	Rapid local adaptation linked with phenotypic plasticity. Evolution Letters, 2020, 4, 345-359.	1.6	17
776	A high-coverage Neandertal genome from Chagyrskaya Cave. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15132-15136.	3.3	176
777	Population-Specific Genetic and Expression Differentiation in Europeans. Genome Biology and Evolution, 2020, 12, 358-369.	1.1	4
778	Seq-ing Higher Ground: Functional Investigation of Adaptive Variation Associated With High-Altitude Adaptation. Frontiers in Genetics, 2020, 11, 471.	1.1	10
779	Genomic signatures of domestication in Old World camels. Communications Biology, 2020, 3, 316.	2.0	32
780	Association of <i>EPAS1</i> and <i>PPARA</i> Gene Polymorphisms with High-Altitude Headache in Chinese Han Population. BioMed Research International, 2020, 2020, 1-11.	0.9	2
781	Allopatric divergence and hybridization within <i>Cupressus chengiana</i> (Cupressaceae), a threatened conifer in the northern Hengduan Mountains of western China. Molecular Ecology, 2020, 29, 1250-1266.	2.0	46
782	Limited Evidence for Selection at the FADS Locus in Native American Populations. Molecular Biology and Evolution, 2020, 37, 2029-2033.	3.5	24
783	Polygenic adaptation: a unifying framework to understand positive selection. Nature Reviews Genetics, 2020, 21, 769-781.	7.7	238
784	Genetic architecture, demographic history, and genomic differentiation of <i>Populus davidiana</i> revealed by wholeâ€genome resequencing. Evolutionary Applications, 2020, 13, 2582-2596.	1.5	10

# 785	ARTICLE Mitochondrial DNA genomes revealed different patterns of high-altitude adaptation in high-altitude Tajiks compared with Tibetans and Sherpas. Scientific Reports, 2020, 10, 10592.	IF 1.6	CITATIONS 8
786	Differences in the frequency of genetic variants associated with iron imbalance among global populations. PLoS ONE, 2020, 15, e0235141.	1.1	15
787	Genome scans for selection and introgression based on <i>k</i> â€nearest neighbour techniques. Molecular Ecology Resources, 2020, 20, 1597-1609.	2.2	13
788	Arctic-adapted dogs emerged at the Pleistocene–Holocene transition. Science, 2020, 368, 1495-1499.	6.0	60
790	Hybridization and introgression drive genome evolution of Dutch elm disease pathogens. Nature Ecology and Evolution, 2020, 4, 626-638.	3.4	44
791	Genetic investigation and phylogenetic analysis of three Chinese ethnic groups using 16 X chromosome STR loci. Annals of Human Biology, 2020, 47, 59-64.	0.4	6
792	2019 Nobel Prize in Physiology or Medicine. Physiology, 2020, 35, 81-83.	1.6	5
793	Genome-Wide Selection Scan in an Arabian Peninsula Population Identifies a TNKS Haplotype Linked to Metabolic Traits and Hypertension. Genome Biology and Evolution, 2020, 12, 77-87.	1.1	11
794	Himalayan wolf distribution and admixture based on multiple genetic markers. Journal of Biogeography, 2020, 47, 1272-1285.	1.4	19
795	Predicting the Landscape of Recombination Using Deep Learning. Molecular Biology and Evolution, 2020, 37, 1790-1808.	3.5	104
796	Gut microbiota of Tibetans and Tibetan pigs varies between high and low altitude environments. Microbiological Research, 2020, 235, 126447.	2.5	39
797	Frequent mutation of hypoxia-related genes in persistent pulmonary hypertension of the newborn. Respiratory Research, 2020, 21, 53.	1.4	5
798	From Summary Statistics to Gene Trees: Methods for Inferring Positive Selection. Trends in Genetics, 2020, 36, 243-258.	2.9	28
799	Neo-functionalization of a Teosinte branched 1 homologue mediates adaptations of upland rice. Nature Communications, 2020, 11, 725.	5.8	40
800	Genomic regions under selection in the feralization of the dingoes. Nature Communications, 2020, 11, 671.	5.8	49
801	Genetic dynamics of earlier maturity group emergence in south-to-north extension of Northeast China soybeans. Theoretical and Applied Genetics, 2020, 133, 1839-1857.	1.8	12
802	Exploring the QTL–allele constitution of main stem node number and its differentiation among maturity groups in a Northeast China soybean population. Crop Science, 2020, 60, 1223-1238.	0.8	12
803	Genetic Screen for Cell Fitness in High or Low Oxygen Highlights Mitochondrial and Lipid Metabolism. Cell, 2020, 181, 716-727.e11.	13.5	126

#	Article	IF	CITATIONS
804	Highâ€altitude adaptations mitigate risk for hypertension and diabetesâ€associated anemia. American Journal of Physical Anthropology, 2020, 172, 156-164.	2.1	6
805	Distinct Patterns of Selective Sweep and Polygenic Adaptation in Evolve and Resequence Studies. Genome Biology and Evolution, 2020, 12, 890-904.	1.1	29
806	Insights into phylogeny, age and evolution of Allium (Amaryllidaceae) based on the whole plastome sequences. Annals of Botany, 2020, 125, 1039-1055.	1.4	49
807	The Genomics of Human Local Adaptation. Trends in Genetics, 2020, 36, 415-428.	2.9	75
808	Adaptive Shifts in Gene Regulation Underlie a Developmental Delay in Thermogenesis in High-Altitude Deer Mice. Molecular Biology and Evolution, 2020, 37, 2309-2321.	3.5	18
809	How Natural Genetic Variation Shapes Behavior. Annual Review of Genomics and Human Genetics, 2020, 21, 437-463.	2.5	41
810	Investigation of the gene co-expression network and hub genes associated with acute mountain sickness. Hereditas, 2020, 157, 13.	0.5	3
811	The Genomics and Genetics of Oxygen Homeostasis. Annual Review of Genomics and Human Genetics, 2020, 21, 183-204.	2.5	71
812	Hypoxiaâ€induced pulmonary hypertension—Utilizing experiments of nature. British Journal of Pharmacology, 2021, 178, 121-131.	2.7	20
813	Identifying adaptive alleles in the human genome: from selection mapping to functional validation. Human Genetics, 2021, 140, 241-276.	1.8	13
814	Hematologic and spirometric characteristics of Tajik and Kyrgyz highlanders in the Pamir Mountains. American Journal of Human Biology, 2021, 33, e23459.	0.8	2
815	Population Genomics Reveals Incipient Speciation, Introgression, and Adaptation in the African Mona Monkey (<i>Cercopithecus mona</i>). Molecular Biology and Evolution, 2021, 38, 876-890.	3.5	15
816	Psychology as a Historical Science. Annual Review of Psychology, 2021, 72, 717-749.	9.9	78
817	Whole genome sequencing of silver carp (<i>Hypophthalmichthys molitrix</i>) and bighead carp (<i>Hypophthalmichthys nobilis</i>) provide novel insights into their evolution and speciation. Molecular Ecology Resources, 2021, 21, 912-923.	2.2	17
818	Comparative analyses of the <i>Pan</i> lineage reveal selection on gene pathways associated with diet and sociality in bonobos. Genes, Brain and Behavior, 2021, 20, e12715.	1.1	6
819	Physiological Genomics of Adaptation to High-Altitude Hypoxia. Annual Review of Animal Biosciences, 2021, 9, 149-171.	3.6	36
820	Genome-Wide Epigenetic Signatures of Adaptive Developmental Plasticity in the Andes. Genome Biology and Evolution, 2021, 13, .	1.1	14
821	Mulching: Boosting crop productivity and improving soil environment in herbal plants. Journal of Applied Research on Medicinal and Aromatic Plants, 2021, 20, 100287.	0.9	12

ARTICLE IF CITATIONS # Genomic adaptations to cerealâ€based diets contribute to mitigate metabolic risk in some human 822 1.5 9 populations of East Asian ancestry. Evolutionary Applications, 2021, 14, 297-313. Whole-Genome Sequence Data Suggest Environmental Adaptation of Ethiopian Sheep Populations. 1.1 Genome Biology and Evolution, 2021, 13, . Genomic diversity and post-admixture adaptation in the Uyghurs. National Science Review, 2022, 9, 824 4.6 20 nwab124. Population Genomics of High-Altitude Adaptation. Evolutionary Studies, 2021, , 67-100. 0.2 Rapid adaptation to malaria facilitated by admixture in the human population of Cabo Verde. ELife, 2021, 828 2.8 41 10. . Proton-activated chloride channel PAC regulates endosomal acidification and transferrin 829 receptor-mediated endocytosis. Cell Reports, 2021, 34, 108683. Gene expression plasticity and desert adaptation in house mice*. Evolution; International Journal of 830 1.1 23 Organic Evolution, 2021, 75, 1477-1491. Genome and population evolution and environmental adaptation of <i>Glyptosternon maculatum</i> on the Qinghai-Tibet Plateau. Zoological Research, 2021, 42, 502-513. Protective Effects from the Ischemic/Hypoxic Stress Induced by Labor in the High-Altitude Tibetan 832 1.1 5 Placenta. Reproductive Sciences, 2021, 28, 659-664. A GWAS in Latin Americans identifies novel face shape loci, implicating VPS13B and a Denisovan 4.7 introgressed region in facial variation. Science Advances, 2021, 7, . Signals of selection beyond bottlenecks between exotic populations of the bullâ€headed dung beetle, 834 1.1 0 Onthophagus taurus. Évolution & Development, 2021, 23, 86-99. A new <i>Cannabis</i> genome assembly associates elevated cannabidiol (CBD) with hemp introgressed into marijuana. New Phytologist, 2021, 230, 1665-1679. Recent Evolutionary History of Tigers Highlights Contrasting Roles of Genetic Drift and Selection. Molecular Biology and Evolution, 2021, 38, 2366-2379. 836 3.5 35 Creating artificial human genomes using generative neural networks. PLoS Genetics, 2021, 17, e1009303. 1.5 Improving Selection Detection with Population Branch Statistic on Admixed Populations. Genome 838 1.1 6 Biology and Evolution, 2021, 13, . Pervasive Genomic Signatures of Local Adaptation to Altitude Across Highland Specialist Andean 840 Hummingbird Populations. Journal of Heredity, 2021, 112, 229-240. Sexâ€linked genetic diversity and differentiation in a globally distributed avian species complex. 841 2.0 12 Molecular Ecology, 2021, 30, 2313-2332. 842 Effects of altitude on human oral microbes. AMB Express, 2021, 11, 41. 1.4

#	Article	IF	CITATIONS
843	Exploring a Region on Chromosome 8p23.1 Displaying Positive Selection Signals in Brazilian Admixed Populations: Additional Insights Into Predisposition to Obesity and Related Disorders. Frontiers in Genetics, 2021, 12, 636542.	1.1	4
844	Scanning the human genome for "signatures―of positive selection: Transformative opportunities and ethical obligations. Evolutionary Anthropology, 2021, 30, 113-121.	1.7	6
845	The Counteracting Effects of Demography on Functional Genomic Variation: The Roma Paradigm. Molecular Biology and Evolution, 2021, 38, 2804-2817.	3.5	14
846	Understanding the Adaptive Evolutionary Histories of South American Ancient and Present-Day Populations via Genomics. Genes, 2021, 12, 360.	1.0	3
848	Impacts of Changes in Atmospheric O2 on Human Physiology. Is There a Basis for Concern?. Frontiers in Physiology, 2021, 12, 571137.	1.3	10
849	High-Altitude Adaptation: Mechanistic Insights from Integrated Genomics and Physiology. Molecular Biology and Evolution, 2021, 38, 2677-2691.	3.5	60
852	The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai–Tibet Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
853	Genetic Barriers to Historical Gene Flow between Cryptic Species of Alpine Bumblebees Revealed by Comparative Population Genomics. Molecular Biology and Evolution, 2021, 38, 3126-3143.	3.5	25
854	The distinct morphological phenotypes of Southeast Asian aborigines are shaped by novel mechanisms for adaptation to tropical rainforests. National Science Review, 2022, 9, nwab072.	4.6	3
855	Molecular mechanisms detected in yak lung tissue via transcriptome-wide analysis provide insights into adaptation to high altitudes. Scientific Reports, 2021, 11, 7786.	1.6	9
857	Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science, 2021, 372, .	6.0	358
858	Molecular Parallelism Underlies Convergent Highland Adaptation of Maize Landraces. Molecular Biology and Evolution, 2021, 38, 3567-3580.	3.5	35
859	Genetic substructure and complex demographic history of South African Bantu speakers. Nature Communications, 2021, 12, 2080.	5.8	47
860	Adaptive introgression of the beta-globin cluster in two Andean waterfowl. Heredity, 2021, 127, 107-123.	1.2	2
861	Whole genome variation in 27 Mexican indigenous populations, demographic and biomedical insights. PLoS ONE, 2021, 16, e0249773.	1.1	8
862	Genomic insights into the conservation status of the world's last remaining Sumatran rhinoceros populations. Nature Communications, 2021, 12, 2393.	5.8	39
863	To breathe or not to breathe: Understanding how oxygen sensing contributes to age-related phenotypes. Ageing Research Reviews, 2021, 67, 101267.	5.0	13
864	Application of a novel haplotype-based scan for local adaptation to study high-altitude adaptation in rhesus macaques. Evolution Letters, 2021, 5, 408-421.	1.6	35

#	Article	IF	CITATIONS
865	The demographic and ecological factors shaping diversification among rare <i>Astragalus</i> species. Diversity and Distributions, 2021, 27, 1407-1421.	1.9	11
866	Characterization of structural variation in Tibetans reveals new evidence of high-altitude adaptation and introgression. Genome Biology, 2021, 22, 159.	3.8	34
867	Evolution of the "world's only alpine parrot― Genomic adaptation or phenotypic plasticity, behaviour and ecology?. Molecular Ecology, 2021, 30, 6370-6386.	2.0	11
868	Broad Concordance in the Spatial Distribution of Adaptive and Neutral Genetic Variation across an Elevational Gradient in Deer Mice. Molecular Biology and Evolution, 2021, 38, 4286-4300.	3.5	13
869	The history and evolution of the Denisovan- <i>EPAS1</i> haplotype in Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	48
870	Genomic Analyses Unveil Helmeted Guinea Fowl (<i>Numida meleagris</i>) Domestication in West Africa. Genome Biology and Evolution, 2021, 13, .	1.1	6
874	Gain-of-function Tibetan PHD2D4E;C127S variant suppresses monocyte function: A lesson in inflammatory response to inspired hypoxia. EBioMedicine, 2021, 68, 103418.	2.7	8
877	Introgressive Hybridization and Hypoxia Adaptation in High-Altitude Vertebrates. Frontiers in Genetics, 2021, 12, 696484.	1.1	3
880	Genomic signatures of admixture and selection are shared among populations of <i>Zaprionus indianus</i> across the western hemisphere. Molecular Ecology, 2021, 30, 6193-6210.	2.0	4
881	Genomic signatures of natural selection at phenology-related genes in a widely distributed tree species Fagus sylvatica L. BMC Genomics, 2021, 22, 583.	1.2	6
882	Insights into invasive species from wholeâ€genome resequencing. Molecular Ecology, 2021, 30, 6289-6308.	2.0	56
883	Phenotypic differences between highlanders and lowlanders in Papua New Guinea. PLoS ONE, 2021, 16, e0253921.	1.1	4
884	Life in Deserts: The Genetic Basis of Mammalian Desert Adaptation. Trends in Ecology and Evolution, 2021, 36, 637-650.	4.2	35
885	Population Genetic Difference of Pharmacogenomic VIP Variants in the Tibetan Population. Pharmacogenomics and Personalized Medicine, 2021, Volume 14, 1027-1040.	0.4	1
887	Shaping the biology of citrus: II. Genomic determinants of domestication. Plant Genome, 2021, 14, e20133.	1.6	2
889	Fine-Scale Genetic Structure and Natural Selection Signatures of Southwestern Hans Inferred From Patterns of Genome-Wide Allele, Haplotype, and Haplogroup Lineages. Frontiers in Genetics, 2021, 12, 727821.	1.1	15
890	Putative pathogen-selected polymorphisms in the PKLR gene are associated with mycobacterial susceptibility in Brazilian and African populations. PLoS Neglected Tropical Diseases, 2021, 15, e0009434.	1.3	0
891	Hypoxia Inducible Factors as Central Players in the Pathogenesis and Pathophysiology of Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2021, 8, 709509.	1.1	14

#	Article	IF	CITATIONS
892	Hominin occupation of the Tibetan Plateau during the Last Interglacial Complex. Quaternary Science Reviews, 2021, 265, 107047.	1.4	14
893	Serum Inflammatory Factor Profiles in the Pathogenesis of High-Altitude Polycythemia and Mechanisms of Acclimation to High Altitudes. Mediators of Inflammation, 2021, 2021, 1-9.	1.4	12
894	OSL Chronology of the Siling Co Paleolithic Site in Central Tibetan Plateau. Frontiers in Earth Science, 2021, 9, .	0.8	10
895	Genomic and functional evidence reveals convergent evolution in fishes on the Tibetan Plateau. Molecular Ecology, 2021, 30, 5752-5764.	2.0	10
896	Detecting selection in low-coverage high-throughput sequencing data using principal component analysis. BMC Bioinformatics, 2021, 22, 470.	1.2	4
897	Evolutionary history of two rare endemic conifer species from the eastern Qinghai–Tibet Plateau. Annals of Botany, 2021, 128, 903-918.	1.4	5
898	Phenotypic and genomic adaptations to the extremely high elevation in plateau zokor (<i>Myospalax) Tj ETQq0 C</i>) 0 rgBT /C 2.0	Vverlock 10 T
899	Understanding population structure in an evolutionary context: population-specific <i>F</i> ST and pairwise <i>F</i> ST. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	18
901	Urinary Metabolites as Predictors of Acute Mountain Sickness Severity. Frontiers in Physiology, 2021, 12, 709804.	1.3	8
902	Recent progress in research on the gut microbiota and highland adaptation on the Qinghaiâ€īibet Plateau. Journal of Evolutionary Biology, 2021, 34, 1514-1530.	0.8	20
903	Fetal growth, high altitude, and evolutionary adaptation: a new perspective. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R279-R294.	0.9	6
904	Identification of a miRNA–mRNA Regulatory Networks in Placental Tissue Associated With Tibetan High Altitude Adaptation. Frontiers in Genetics, 2021, 12, 671119.	1.1	3
905	Genome-Wide Association Study to Map Genomic Regions Related to the Initiation Time of Four Growth Stage Traits in Soybean. Frontiers in Genetics, 2021, 12, 715529.	1.1	3
906	Local adaptation and archaic introgression shape global diversity at human structural variant loci. ELife, 2021, 10, .	2.8	33
907	Peopling History of the Tibetan Plateau and Multiple Waves of Admixture of Tibetans Inferred From Both Ancient and Modern Genome-Wide Data. Frontiers in Genetics, 2021, 12, 725243.	1.1	27
908	EPAS1 (Endothelial PAS Domain Protein 1) Orchestrates Transactivation of Endothelial ICAM1 (Intercellular Adhesion Molecule 1) by Small Nucleolar RNA Host Gene 5 (SNHG5) to Promote Hypoxic Pulmonary Hypertension. Hypertension, 2021, 78, 1080-1091.	1.3	9
909	The Theoretical Framework for the Panels of DNA Markers Formation in the Forensic Determination of an Individual Ancestral Origin. Russian Journal of Genetics, 2021, 57, 1-9.	0.2	1
910	Evolutionary genetics of skin pigmentation in African populations. Human Molecular Genetics, 2021, 30, R88-R97.	1.4	23

#	Article	IF	CITATIONS
911	Natural variation in the promoter of <i>GsERD15B</i> affects salt tolerance in soybean. Plant Biotechnology Journal, 2021, 19, 1155-1169.	4.1	34
912	Resistance to pirimiphos-methyl in West African Anopheles is spreading via duplication and introgression of the Ace1 locus. PLoS Genetics, 2021, 17, e1009253.	1.5	33
914	Modern Human Biological Adaptations to High-Altitude Environments in the Andean Archaeological Record. , 2014, , 285-324.		2
915	Functional Genomic Insights into Regulatory Mechanisms of High-Altitude Adaptation. Advances in Experimental Medicine and Biology, 2016, 903, 113-128.	0.8	19
916	Tibetan Plateau, Archaeology of. , 2018, , 1-14.		1
917	EPAS1 regulates proliferation of erythroblasts in chronic mountain sickness. Blood Cells, Molecules, and Diseases, 2020, 84, 102446.	0.6	13
918	The evolution of skin pigmentation-associated variation in West Eurasia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	50
919	The genetic structure and adaptation of Andean highlanders and Amazonians are influenced by the interplay between geography and culture. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32557-32565.	3.3	28
920	Chapter 10. Types of spread zones. Cognitive Linguistic Studies in Cultural Contexts, 2015, , 261-286.	0.4	7
955	The impact of natural selection on health and disease: uses of the population genetics approach in humans. Evolutionary Applications, 2013, 6, 596-607.	1.5	35
957	Characteristics of Cerebral Stroke in the Tibet Autonomous Region of China. Medical Science Monitor, 2020, 26, e919221.	0.5	9
958	Erythropoietin regulation of red blood cell production: from bench to bedside and back. F1000Research, 2020, 9, 1153.	0.8	37
959	Design and conduct of Xtreme Everest 2: An observational cohort study of Sherpa and lowlander responses to graduated hypobaric hypoxia. F1000Research, 2015, 4, 90.	0.8	16
960	Evolutionary history of Tibetans inferred from whole-genome sequencing. PLoS Genetics, 2017, 13, e1006675.	1.5	89
961	On the Origin of Tibetans and Their Genetic Basis in Adapting High-Altitude Environments. PLoS ONE, 2011, 6, e17002.	1.1	126
962	SNP Calling, Genotype Calling, and Sample Allele Frequency Estimation from New-Generation Sequencing Data. PLoS ONE, 2012, 7, e37558.	1.1	336
963	An Effort to Use Human-Based Exome Capture Methods to Analyze Chimpanzee and Macaque Exomes. PLoS ONE, 2012, 7, e40637.	1.1	28
964	Genetic Variants in EPAS1 Contribute to Adaptation to High-Altitude Hypoxia in Sherpas. PLoS ONE, 2012, 7, e50566.	1.1	63

#	Article	IF	CITATIONS
965	Phenotype and Genotype Analysis of Chinese Patients with Osteogenesis Imperfecta Type V. PLoS ONE, 2013, 8, e72337.	1.1	15
966	Shared and Unique Signals of High-Altitude Adaptation in Geographically Distinct Tibetan Populations. PLoS ONE, 2014, 9, e88252.	1.1	44
967	The Andean Adaptive Toolkit to Counteract High Altitude Maladaptation: Genome-Wide and Phenotypic Analysis of the Collas. PLoS ONE, 2014, 9, e93314.	1.1	55
968	Genome at Juncture of Early Human Migration: A Systematic Analysis of Two Whole Genomes and Thirteen Exomes from Kuwaiti Population Subgroup of Inferred Saudi Arabian Tribe Ancestry. PLoS ONE, 2014, 9, e99069.	1.1	41
969	Wnt Pathway Activation Increases Hypoxia Tolerance during Development. PLoS ONE, 2014, 9, e103292.	1.1	8
970	Genomic Scan Reveals Loci under Altitude Adaptation in Tibetan and Dahe Pigs. PLoS ONE, 2014, 9, e110520.	1.1	42
971	Exploring the Genetic Basis of Adaptation to High Elevations in Reptiles: A Comparative Transcriptome Analysis of Two Toad-Headed Agamas (Genus Phrynocephalus). PLoS ONE, 2014, 9, e112218.	1.1	27
972	Genome Scan for Selection in Structured Layer Chicken Populations Exploiting Linkage Disequilibrium Information. PLoS ONE, 2015, 10, e0130497.	1.1	19
973	Ultraconserved Elements Sequencing as a Low-Cost Source of Complete Mitochondrial Genomes and Microsatellite Markers in Non-Model Amniotes. PLoS ONE, 2015, 10, e0138446.	1.1	66
974	Gene Co-Expression Network Analysis Unraveling Transcriptional Regulation of High-Altitude Adaptation of Tibetan Pig. PLoS ONE, 2016, 11, e0168161.	1.1	32
975	Genomic variants reveal differential evolutionary constraints on human transglutaminases and point towards unrecognized significance of transglutaminase 2. PLoS ONE, 2017, 12, e0172189.	1.1	8
976	A non-synonymous SNP with the allele frequency correlated with the altitude may contribute to the hypoxia adaptation of Tibetan chicken. PLoS ONE, 2017, 12, e0172211.	1.1	10
977	A longitudinal cline characterizes the genetic structure of human populations in the Tibetan plateau. PLoS ONE, 2017, 12, e0175885.	1.1	15
978	Computational EPAS1 rSNP Analysis, Transcriptional Factor Binding Sites And High Altitude Sickness Or Adaptation. Journal of Proteomics and Genomics Research, 2014, 1, 31-59.	0.7	2
979	On the Distribution of Tract Lengths During Adaptive Introgression. G3: Genes, Genomes, Genetics, 2020, 10, 3663-3673.	0.8	23
980	Evolutionary selected Tibetan variants of HIF pathway and risk of lung cancer. Oncotarget, 2017, 8, 11739-11747.	0.8	15
981	Beluga whale pVHL enhances HIF-2α activity via inducing HIF-2α proteasomal degradation under hypoxia. Oncotarget, 2017, 8, 42272-42287.	0.8	18
982	Associations of high altitude polycythemia with polymorphisms in <i>EPAS1, ITGA6</i> and <i>ERBB4</i> in Chinese Han and Tibetan populations. Oncotarget, 2017, 8, 86736-86746.	0.8	13

#	Article	IF	CITATIONS
983	Red Blood Cell Volume and the Capacity for Exercise at Moderate to High Altitude. Sports Medicine, 2012, , 1.	3.1	3
984	GCH1基å›åœ¨è—æ—é«~̃原é€,应ä¸å'挥ä¼2œç"¨. Zoological Research, 2017, 38, 155-162.	0.9	14
985	Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys. Zoological Research, 2020, 41, 3-19.	0.9	19
986	The Proteome of a Healthy Human during Physical Activity under Extreme Conditions. Acta Naturae, 2014, 6, 66-75.	1.7	8
987	Evolution of Hemoglobin Genes in a Subterranean Rodent Species (Lasiopodomys mandarinus). Biology, 2020, 9, 106.	1.3	4
989	The evolutionary history and genomics of European blackcap migration. ELife, 2020, 9, .	2.8	57
990	A variant-centric perspective on geographic patterns of human allele frequency variation. ELife, 2020, 9, .	2.8	33
991	A sex-specific evolutionary interaction between ADCY9 and CETP. ELife, 2021, 10, .	2.8	8
993	Lifespan Extension in Long-Lived Vertebrates Rooted in Ecological Adaptation. Frontiers in Cell and Developmental Biology, 2021, 9, 704966.	1.8	16
994	Detecting Selection in Multiple Populations by Modeling Ancestral Admixture Components. Molecular Biology and Evolution, 2022, 39, .	3.5	24
995	Analysis of whole exome sequencing in severe mental illness hints at selection of brain development and immune related genes. Scientific Reports, 2021, 11, 21088.	1.6	1
996	Gene flow, linked selection, and divergent sorting of ancient polymorphism shape genomic divergence landscape in a group of edaphic specialists. Molecular Ecology, 2022, 31, 104-118.	2.0	10
997	Allele and genotype frequencies of CYP3A4 , CYP3A5 , CYP3A7 , and GSTP1 gene polymorphisms among mainland Tibetan, Mongolian, Uyghur, and Han Chinese populations. Clinical and Experimental Pharmacology and Physiology, 2021, , .	0.9	4
998	Selective sorting of ancestral introgression in maize and teosinte along an elevational cline. PLoS Genetics, 2021, 17, e1009810.	1.5	50
999	Genomic analysis of distinct bleaching tolerances among cryptic coral species. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210678.	1.2	20
1001	Some Inconvenient Implications. The International Library of Environmental, Agricultural and Food Ethics, 2012, , 309-348.	0.1	Ο
1002	Integrating GPU-Accelerated Sequence Alignment and SNP Detection for Genome Resequencing Analysis. Lecture Notes in Computer Science, 2012, , 124-140.	1.0	4
1005	Population Genetics in the Genomic Era. , 0, , .		0

CITATION REPORT ARTICLE IF CITATIONS Women at altitude., 2012,, 404-407. 1006 0 Role of Controlled Breathing in Adaptation to High Altitude. American Journal of BioScience, 2013, 1, 0.3 16. Homo sapiens under Neutral Evolution. Genes and Environment, 2014, 36, 99-102. 0.9 1010 1 HIF-1 and EGLN1 Under Hypobaric Hypoxia: Regulation of Master Regulator Paradigm., 2014, , 81-91. 1011 Hypoxic Pulmonary Hypertension., 2014, , 1-49. 1012 0 EPAS1 (Endothelial PAS Domain Protein 1). Atlas of Genetics and Cytogenetics in Oncology and 0.1 Haematology, 2014, , . Targeted Re-sequencing in Psychiatric Disorders. Neuromethods, 2015, , 121-135. 1016 0.2 0 First Application of a Distance-Based Outlier Approach to Detect Highly Differentiated Genomic Region's Across Human Populations. , 2015, , 133-144. Human Adaptation to Life at High Altitude., 2016, , 109-126. 0 1021 ERITROPOYETINA EN CICLISTAS CON ENTRENAMIENTO EN DIFERENTE ALTURA SOBRE EL NIVEL DEL MAR. Movimiento CientÃfico, 2016, 10, 8-18. Domiciliary Oxygen: Facts and fallacies. Clinical Research and Trials, 2017, 3, . 1028 0.1 0 1029 Molecular exercise physiology., 2017,,. UneÂperspective génétique surÂnotre histoireÂ: migrations humaines etÂadaptation ÃÂl'environnement., 1034 0 2017, , 33-60. Respiratorische Farbstoffe unter Hypoxiebedingungen., 2019, , 367-382. 1044 Molecular Approaches to Explore Coastal Benthic Metazoan Diversityâ€"Success and Constraints. 1045 1.4 0 Sustainable Development and Biodiversity, 2019, , 43-53. Navigating the temporal continuum of effective population size. Methods in Ecology and Evolution, 2.2 34 2022, 13, 22-41. Ion permeation controlled by hydrophobic residues and proton binding in the proton-activated 1059 1.9 4 chloride channel. IScience, 2021, 24, 103395. Levels of Protein and the Main Protein Fractions in Human Blood during a Year-long Exposure to 0.1 Hypobaric Hypoxia, Hypokinesia, and Isolation. Human Physiology, 2020, 46, 811-816.

#	Article	IF	CITATIONS
1061	Tibetan Plateau, Archaeology of. , 2020, , 10597-10609.		0
1063	RETSAT Mutation Selected for Hypoxia Adaptation Inhibits Tumor Growth. Frontiers in Cell and Developmental Biology, 2021, 9, 744992.	1.8	4
1067	An horizon scan of biogeography. Frontiers of Biogeography, 2013, 5, .	0.8	3
1068	The Proteome of a Healthy Human during Physical Activity under Extreme Conditions. Acta Naturae, 2014, 6, 66-75.	1.7	4
1069	Population genetic studies in the genomic sequencing era. Zoological Research, 2015, 36, 223-32.	0.6	6
1070	Association between IL-1 gene polymorphisms and tuberculosis susceptibility in the Chinese Tibetan population. International Journal of Clinical and Experimental Pathology, 2018, 11, 5441-5449.	0.5	2
1071	Lung transcriptome analysis for the identification of genes involved in the hypoxic adaptation of plateau pika (Ochotona curzoniae). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 2022, 41, 100943.	0.4	3
1072	Vegetation change and human-environment interactions in the Qinghai Lake Basin, northeastern Tibetan Plateau, since the last deglaciation. Catena, 2022, 210, 105892.	2.2	14
1073	Population-specific adaptation in malaria-endemic regions of asia. Journal of Bioinformatics and Computational Biology, 2021, 19, 2140006.	0.3	3
1074	Mutation saturation for fitness effects at human CpG sites. ELife, 2021, 10, .	2.8	23
1076	Landscape genomics of the streamside salamander: Implications for species management in the face of environmental change. Evolutionary Applications, 2022, 15, 220-236.	1.5	4
1077	Adaptation of mammals to hypoxia. Animal Models and Experimental Medicine, 2021, 4, 311-318.	1.3	12
1079	High-altitude adaptation: Role of genetic and epigenetic factors. Journal of Biosciences, 2021, 46, 1.	0.5	4
1080	Linked selection, ancient polymorphism, and ecological adaptation shape the genomic landscape of divergence in <i>Quercus dentata</i> . Journal of Systematics and Evolution, 2022, 60, 1344-1357.	1.6	6
1081	Denisovans and Homo sapiens on the Tibetan Plateau: dispersals and adaptations. Trends in Ecology and Evolution, 2022, 37, 257-267.	4.2	17
1083	Evolution of polygenic traits under global <i>vs</i> local adaptation. Genetics, 2022, 220, .	1.2	42
1084	The evolutionary pathways for local adaptation in mountain hares. Molecular Ecology, 2022, 31, 1487-1503.	2.0	8
1085	High-Altitude Erythrocytosis: Mechanisms of Adaptive and Maladaptive Responses. Physiology, 2022, 37, 175-186.	1.6	12

ARTICLE

IF CITATIONS

1086 Comparative Transcriptome Analyses of Gayal (Bos frontalis), Yak (Bos grunniens), and Cattle (Bos) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

1087	An Indian lineage of Histoplasma with strong signatures of differentiation and selection. Fungal Genetics and Biology, 2022, 158, 103654.	0.9	5
1088	Exploring geneâ€culture coevolution in humans by inferring neuroendophenotypes: A case study of the oxytocin receptor gene and cultural tightness. Genes, Brain and Behavior, 2022, 21, e12783.	1.1	6
1089	Genomic Insights Into the Population History and Biological Adaptation of Southwestern Chinese Hmong–Mien People. Frontiers in Genetics, 2021, 12, 815160.	1.1	18
1090	Prediction of High-Altitude Cardiorespiratory Fitness Impairment Using a Combination of Physiological Parameters During Exercise at Sea Level and Genetic Information in an Integrated Risk Model. Frontiers in Cardiovascular Medicine, 2021, 8, 719776.	1.1	3
1091	Longâ€distance migration is a major factor driving local adaptation at continental scale in Coho salmon. Molecular Ecology, 2023, 32, 542-559.	2.0	14
1092	The evolution of larger size in high-altitude <i>Drosophila melanogaster</i> has a variable genetic architecture. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	4
1093	Adaptive eQTLs reveal the evolutionary impacts of pleiotropy and tissue-specificity while contributing to health and disease. Human Genetics and Genomics Advances, 2022, 3, 100083.	1.0	9
1094	Putative variants, genetic diversity and population structure among Soybean cultivars bred at different ages in Huang-Huai-Hai region. Scientific Reports, 2022, 12, 2372.	1.6	1
1096	Identification of Novel Genomic Regions for Bacterial Leaf Pustule (BLP) Resistance in Soybean (Glycine max L.) via Integrating Linkage Mapping and Association Analysis. International Journal of Molecular Sciences, 2022, 23, 2113.	1.8	2
1099	Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors. Nature Communications, 2022, 13, 1203.	5.8	25
1101	Consecutive chorioangiomas in the same pregnancy: A clinical case and review of literature. Health Science Reports, 2022, 5, e566.	0.6	3
1102	Novel mutations in EPO-R and oxygen-dependent degradation (ODD) domain of EPAS1 genes-a causative reason for Congenital Erythrocytosis. European Journal of Medical Genetics, 2022, , 104493.	0.7	2
1103	Genetic variants underlying differences in facial morphology in East Asian and European populations. Nature Genetics, 2022, 54, 403-411.	9.4	20
1105	Whole-Genome Resequencing of Worldwide Wild and Domestic Sheep Elucidates Genetic Diversity, Introgression, and Agronomically Important Loci. Molecular Biology and Evolution, 2022, 39, .	3.5	50
1106	Targeted Genotyping of a Whole-Gene Repertoire by an Ultrahigh-Multiplex and Flexible HD-Marker Approach. Engineering, 2021, , .	3.2	0
1108	The genomic basis of high-elevation adaptation in wild house mice (<i>Mus musculus domesticus</i>) from South America. Genetics, 2022, 220, .	1.2	7
1109	Is Hypoxic/Altitude Training an Important Topic in the Field of Hypoxia?. Journal of Science in Sport and Exercise, 0, , .	0.4	4

#	Article	IF	CITATIONS
1111	A Population Genomic Assessment of Three Decades of Evolution in a Natural <i>Drosophila</i> Population. Molecular Biology and Evolution, 2022, 39, .	3.5	26
1112	Disentangling Signatures of Selection Before and After European Colonization in Latin Americans. Molecular Biology and Evolution, 2022, 39, .	3.5	16
1113	Dysregulation of the Nitric Oxide/Dimethylarginine Pathway in Hypoxic Pulmonary Vasoconstriction—Molecular Mechanisms and Clinical Significance. Frontiers in Medicine, 2022, 9, 835481.	1.2	8
1114	Cross-continental admixture in the Kho population from northwest Pakistan. European Journal of Human Genetics, 2022, , .	1.4	1
1115	Genome-wide investigations reveal the population structure and selection signatures of Nigerian cattle adaptation in the sub-Saharan tropics. BMC Genomics, 2022, 23, 306.	1.2	4
1116	Apportioning archaic variants among modern populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200411.	1.8	11
1141	Grasping the genetic determinants of human adaptations: the "Kings of the Mountains" (Sherpa) case study. Journal of Anthropological Sciences, 2019, 96, 1-7.	0.4	1
1142	The Tibetan-Yi region is both a corridor and a barrier for human gene flow. Cell Reports, 2022, 39, 110720.	2.9	8
1143	Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science, 2022, 376, eabk0639.	6.0	77
1144	Clinicopathological characteristics of high-altitude polycythemia-related kidney disease in Tibetan inhabitants. Kidney International, 2022, 102, 196-206.	2.6	13
1145	Fast and accurate estimation of multidimensional site frequency spectra from low-coverage high-throughput sequencing data. GigaScience, 2022, 11, .	3.3	4
1146	Intrapopulation adaptive variance supports thermal tolerance in a reef-building coral. Communications Biology, 2022, 5, 486.	2.0	18
1147	Genetic differentiation in East African ethnicities and its relationship with endurance running success. PLoS ONE, 2022, 17, e0265625.	1.1	3
1148	Evolutionary Conservation Genomics Reveals Recent Speciation and Local Adaptation in Threatened Takins. Molecular Biology and Evolution, 2022, 39, .	3.5	7
1150	How Placenta Promotes the Successful Reproduction in High-Altitude Populations: A Transcriptome Comparison between Adaptation and Acclimatization. Molecular Biology and Evolution, 2022, 39, .	3.5	8
1151	Spatial Differentiation Characteristics of Human Settlements and Their Responses to Natural and Socioeconomic Conditions in the Marginal Zone of an Uninhabited Area, Changtang Plateau, China. Chinese Geographical Science, 2022, 32, 506-520.	1.2	5
1154	The evolutionary history and mechanistic basis of female ornamentation in a tropical songbird. Evolution; International Journal of Organic Evolution, 0, , .	1.1	11
1155	RDscan: A New Method for Improving Germline and Somatic Variant Calling Based on Read Depth Distribution. Journal of Computational Biology, 0, , .	0.8	0

#	Article	IF	CITATIONS
1156	An adaptive teosinte <i>mexicana</i> introgression modulates phosphatidylcholine levels and is associated with maize flowering time. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	21
1157	Uncovering the enigmatic evolution of bears in greater depth: The hybrid origin of the Asiatic black bear. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
1158	Genetic variation in HIFâ€2α attenuates ventilatory sensitivity and carotid body growth in chronic hypoxia in highâ€altitude deer mice. Journal of Physiology, 2022, 600, 4207-4225.	1.3	5
1159	Human adaptation to high altitude: a review of convergence between genomic and proteomic signatures. Human Genomics, 2022, 16, .	1.4	19
1161	Chronology of natural selection in Oceanian genomes. IScience, 2022, 25, 104583.	1.9	3
1162	Genetic evidence of tri-genealogy hypothesis on the origin of ethnic minorities in Yunnan. BMC Biology, 2022, 20, .	1.7	5
1163	Genomic divergence of <i>Stellera chamaejasme</i> through local selection across the Qinghai–Tibet plateau and northern China. Molecular Ecology, 2022, 31, 4782-4796.	2.0	15
1165	Uncovering Signals of Positive Selection in Peruvian Populations from Three Ecological Regions. Molecular Biology and Evolution, 2022, 39, .	3.5	4
1166	Analysis of Common SNPs across Continents Reveals Major Genomic Differences between Human Populations. Genes, 2022, 13, 1472.	1.0	5
1167	Genome-wide signatures of the geographic expansion and breeding of soybean. Science China Life Sciences, 2023, 66, 350-365.	2.3	19
1168	Repeated genetic adaptation to altitude in two tropical butterflies. Nature Communications, 2022, 13, .	5.8	17
1170	The blunted vascular endothelial growth factor-A (VEGF-A) response to high-altitude hypoxia and genetic variants in the promoter region of the <i>VEGFA</i> gene in Sherpa highlanders. PeerJ, 0, 10, e13893.	0.9	2
1171	Identifying signatures of natural selection in Indian populations. PLoS ONE, 2022, 17, e0271767.	1.1	0
1172	The immunogenetic impact of European colonization in the Americas. Frontiers in Genetics, 0, 13, .	1.1	4
1173	Rates of convergence in the two-island and isolation-with-migration models. Theoretical Population Biology, 2022, 147, 16-27.	0.5	3
1174	The impact of COVID-19 on populations living at high altitude: Role of hypoxia-inducible factors (HIFs) signaling pathway in SARS-CoV-2 infection and replication. Frontiers in Physiology, 0, 13, .	1.3	5
1175	Genetic characterization of the highlander Tibetan population from Qinghai-Tibet Plateau revealed by X chromosomal STRs. PLoS ONE, 2022, 17, e0271769.	1.1	4
1176	Genomic investigation of the Chinese alligator reveals wildâ€extinct genetic diversity and genomic consequences of their continuous decline. Molecular Ecology Resources, 2023, 23, 294-311.	2.2	4

		REPORT	
#	Article	IF	CITATIONS
1177	Time Domains of Hypoxia Responses and -Omics Insights. Frontiers in Physiology, 0, 13, .	1.3	10
1178	Integrating cultural evolution and behavioral genetics. Behavioral and Brain Sciences, 2022, 45, .	0.4	0
1179	Adaptive cardiorespiratory changes to chronic continuous and intermittent hypoxia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2022, , 103-123.	1.0	6
1180	The Adaptations That Have Made Us Human: The Genome. Evolutionary Studies, 2022, , 137-150.	0.2	0
1181	Physiological and pathophysiological aspects of short-term middle-altitude adaptation in humans. Cardiovascular Therapy and Prevention (Russian Federation), 2022, 21, 3306.	0.4	0
1182	Physiological and pathophysiological aspects of short-term middle-altitude adaptation in humans. Cardiovascular Therapy and Prevention (Russian Federation), 2022, 21, 3306.	0.4	0
1183	The human brain in a high altitude natural environment: A review. Frontiers in Human Neuroscience, 0, 16, .	1.0	11
1184	Genetic adaptation of skin pigmentation in highland Tibetans. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	9
1185	Tracing Bai-Yue Ancestry in Aboriginal Li People on Hainan Island. Molecular Biology and Evolution, 2022, 39, .	3.5	13
1187	Evolutionary gain and loss of a pathological immune response to parasitism. Science, 2022, 377, 1206-1211.	6.0	17
1189	Assessing the performance of historical skins and bones for museomics using wolf specimens as a case study. Frontiers in Ecology and Evolution, 0, 10, .	1.1	4
1192	Parallel evolution in human populations: A biocultural perspective. Evolutionary Anthropology, 2022, 31, 302-316.	1.7	3
1193	Genomic insights into the evolutionary history and diversification of bulb traits in garlic. Genome Biology, 2022, 23, .	3.8	6
1194	A unique Toxoplasma gondii haplotype accompanied the global expansion of cats. Nature Communications, 2022, 13, .	5.8	16
1195	Genetic and immune changes in Tibetan high-altitude populations contribute to biological adaptation to hypoxia. Environmental Health and Preventive Medicine, 2022, 27, 39-39.	1.4	7
1197	Selection on embryonic haemoglobin in an elevational generalist songbird. Biology Letters, 2022, 18, .	1.0	0
1198	Microevolutionary mechanism of highâ€altitude adaptation in Tibetan chicken populations from an elevation gradient. Evolutionary Applications, 2022, 15, 2100-2112.	1.5	3
1199	Evolutionary Responses of a Reef-building Coral to Climate Change at the End of the Last Glacial Maximum. Molecular Biology and Evolution, 2022, 39, .	3.5	6

#	Article	IF	Citations
1200	The interplay between prior selection, mild intermittent exposure, and acute severe exposure in phenotypic and transcriptional response to hypoxia. Ecology and Evolution, 2022, 12, .	0.8	7
1201	Arctic introgression and chromatin regulation facilitated rapid Qinghai-Tibet Plateau colonization by an avian predator. Nature Communications, 2022, 13, .	5.8	9
1202	Expression and Variations in EPAS1 Associated with Oxygen Metabolism in Sheep. Genes, 2022, 13, 1871.	1.0	1
1203	Real-world outcomes of anti-vascular endothelial growth factor therapy for retinal vascular vein occlusion in Tibet, China. International Journal of Ophthalmology, 2022, 15, 1814-1820.	0.5	0
1204	Plasma exosomal microRNA expression profiles in patients with high-altitude polycythemia. Blood Cells, Molecules, and Diseases, 2023, 98, 102707.	0.6	0
1205	Archaic introgression contributed to the pre-agriculture adaptation of vitamin B1 metabolism in East Asia. IScience, 2022, 25, 105614.	1.9	3
1206	Joint Analysis of Phenotypic and Genomic Diversity Sheds Light on the Evolution of Xenobiotic Metabolism in Humans. Genome Biology and Evolution, 2022, 14, .	1.1	1
1207	Unraveling Signatures of Local Adaptation among Indigenous Groups from Mexico. Genes, 2022, 13, 2251.	1.0	0
1208	A pleiotropic hypoxia-sensitive <i>EPAS1</i> enhancer is disrupted by adaptive alleles in Tibetans. Science Advances, 2022, 8, .	4.7	7
1211	Cultural and demic co-diffusion of Tubo Empire on Tibetan Plateau. IScience, 2022, 25, 105636.	1.9	6
1212	Genomic adaptation of Ethiopian indigenous cattle to high altitude. Frontiers in Genetics, 0, 13, .	1.1	4
1213	Going the distance to test local adaptation in Coho salmon. Molecular Ecology, 0, , .	2.0	0
1216	Mimicking Gene–Environment Interaction of Higher Altitude Dwellers by Intermittent Hypoxia Training: COVID-19 Preventive Strategies. Biology, 2023, 12, 6.	1.3	0
1217	Population-specific positive selection on low CR1 expression in malaria-endemic regions. PLoS ONE, 2023, 18, e0280282.	1.1	0
1221	Natural selection of immune and metabolic genes associated with health in two lowland Bolivian populations. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
1224	A sheep pangenome reveals the spectrum of structural variations and their effects on tail phenotypes. Genome Research, 2023, 33, 463-477.	2.4	19
1225	Recurrent selection and reduction in recombination shape the genomic landscape of divergence across multiple population pairs of Green-backed Tit. Evolution Letters, 2023, 7, 99-111.	1.6	1
1226	The study of selection signature and its applications on identification of candidate genes using whole genome sequencing data in chicken—a review. Poultry Science, 2023, 102, 102657.	1.5	0

#	Article	IF	CITATIONS
1227	<i>RNA‣eqâ€Pop</i> : Exploiting the sequence in <scp>RNA</scp> sequencing—A Snakemake workflow reveals patterns of insecticide resistance in the malaria vector <i>Anopheles gambiae</i> . Molecular Ecology Resources, 2023, 23, 946-961.	2.2	4
1228	Whole-Exome Sequencing Indicated New Candidate Genes Associated with Unilateral Cryptorchidism in Pigs. Sexual Development, 2023, 17, 56-66.	1.1	1
1229	The idiosyncratic genome of Korean long-tailed chicken as a valuable genetic resource. IScience, 2023, 26, 106236.	1.9	0
1230	The genetic and evolutionary basis of gene expression variation in East Africans. Genome Biology, 2023, 24, .	3.8	3
1232	Comparative Genomic and Transcriptomic Analyses Reveal the Impacts of Genetic Admixture in Kazaks, Uyghurs, and Huis. Molecular Biology and Evolution, 2023, 40, .	3.5	4
1233	"What We Know and What We Do Not Know about Evolutionary Genetic Adaptation to High Altitude Hypoxia in Andean Aymarasâ€: Genes, 2023, 14, 640.	1.0	0
1234	Indigenous people from Amazon show genetic signatures of pathogen-driven selection. Science Advances, 2023, 9, .	4.7	2
1235	Integrating in vivo and in silico approaches to investigate the potential of Zingiber roseum rhizome extract against pyrexia, inflammation and pain. Saudi Journal of Biological Sciences, 2023, 30, 103624.	1.8	2
1236	Research Progress of Plateau Red Blood Cell Increase. Advances in Clinical Medicine, 2023, 13, 3241-3245.	0.0	0
1237	Divergent contributions of coding and noncoding sequences to initial highâ€altitude adaptation in passerine birds endemic to the Qinghai–Tibet Plateau. Molecular Ecology, 2023, 32, 3524-3540.	2.0	3
1238	How predictable is adaptation from standing genetic variation? Experimental evolution in <i>Drosophila</i> highlights the central role of redundancy and linkage disequilibrium. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	6
1239	Uncoiling the Scroll of High-altitude Population Imaging: Native Brains in Tibet. Neuroscience, 2023, , .	1.1	0
1240	Paleoproteomic evidence reveals dairying supported prehistoric occupation of the highland Tibetan Plateau. Science Advances, 2023, 9, .	4.7	8
1241	Large-scale genome sequencing redefines the genetic footprints of high-altitude adaptation in Tibetans. Genome Biology, 2023, 24, .	3.8	13
1242	Bioinformatics Analysis Identifies EPAS1 as a Novel Prognostic Marker Correlated with Immune Infiltration in Acute Myeloid Leukemia. Disease Markers, 2023, 2023, 1-19.	0.6	0
1243	Clobal dispersal and adaptive evolution of domestic cattle: a genomic perspective. Stress Biology, 2023, 3, .	1.5	3
1244	Gene regulatory changes underlie developmental plasticity in respiration and aerobic performance in highland deer mice. Molecular Ecology, 0, , .	2.0	1
1245	Transgressive Potential Prediction and Optimal Cross Design of Seed Protein Content in the Northeast China Soybean Population Based on Full Exploration of the QTL-Allele System. Frontiers in Plant Science, 0, 13, .	1.7	3

#	Article	IF	CITATIONS
1281	Chronic Mountain Sickness (Monge's Disease). , 2023, , 83-97.		0
1282	More than a decade of genetic research on the Denisovans. Nature Reviews Genetics, 0, , .	7.7	1
1307	Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	2