On the logarithmic mean profile

Journal of Fluid Mechanics 638, 73-93 DOI: 10.1017/s002211200999084x

Citation Report

#	Article	IF	CITATIONS
1	Reynolds Number Dependence, Scaling, and Dynamics of Turbulent Boundary Layers. Journal of Fluids Engineering, Transactions of the ASME, 2010, 132, .	0.8	89
2	High–Reynolds Number Wall Turbulence. Annual Review of Fluid Mechanics, 2011, 43, 353-375.	10.8	690
3	Mean dynamics of transitional channel flow. Journal of Fluid Mechanics, 2011, 678, 451-481.	1.4	17
4	Mean dynamics of transitional boundary-layer flow. Journal of Fluid Mechanics, 2011, 682, 617-651.	1.4	27
5	Emergence of the four layer dynamical regime in turbulent pipe flow. Physics of Fluids, 2012, 24, 045107.	1.6	22
6	The Eddies and Scales of Wall Turbulence. , 0, , 176-220.		13
7	On the Singular Nature of Turbulent Boundary Layers. Procedia IUTAM, 2013, 9, 69-78.	1.2	7
8	A description of turbulent wall-flow vorticity consistent with mean dynamics. Journal of Fluid Mechanics, 2013, 737, 176-204.	1.4	35
9	Streamwise velocity statistics in turbulent boundary layers that spatially develop to high Reynolds number. Experiments in Fluids, 2013, 54, 1.	1.1	57
10	Mean force structure and its scaling in rough-wall turbulent boundary layers. Journal of Fluid Mechanics, 2013, 731, 682-712.	1.4	28
11	Self-similar mean dynamics in turbulent wallÂflows. Journal of Fluid Mechanics, 2013, 718, 596-621.	1.4	56
12	Influences of boundary layer scale separation on the vorticity transport contribution to turbulent inertia. Physics of Fluids, 2013, 25, 015108.	1.6	18
13	Generalized logarithmic law for high-order moments in turbulent boundary layers. Journal of Fluid Mechanics, 2013, 719, .	1.4	135
14	On the logarithmic region in wall turbulence. Journal of Fluid Mechanics, 2013, 716, .	1.4	486
15	Field evidence of the viscous sublayer in a tidally forced developing boundary layer. Geophysical Research Letters, 2014, 41, 5084-5090.	1.5	14
17	Self-similarity in the inertial region of wall turbulence. Physical Review E, 2014, 90, 063015.	0.8	22
18	Large-eddy simulation study of the logarithmic law for second- and higher-order moments in turbulent wall-bounded flow. Journal of Fluid Mechanics, 2014, 757, 888-907.	1.4	95
19	Estimating the value of von Kármán's constant in turbulent pipe flow. Journal of Fluid Mechanics, 2014, 749, 79-98.	1.4	84

#	Article	IF	CITATIONS
20	Scaling properties of the equation for passive scalar transport in wall-bounded turbulent flows. International Journal of Heat and Mass Transfer, 2014, 70, 779-792.	2.5	11
21	Role of data uncertainties in identifying the logarithmic region of turbulent boundary layers. Experiments in Fluids, 2014, 55, 1.	1.1	22
22	An idealised assessment of Townsend's outer-layer similarity hypothesis for wall turbulence. Journal of Fluid Mechanics, 2014, 742, .	1.4	35
23	Scaling of second- and higher-order structure functions in turbulent boundary layers. Journal of Fluid Mechanics, 2015, 769, 654-686.	1.4	65
24	Finite Reynolds number properties of a turbulent channel flow similarity solution. Physics of Fluids, 2015, 27, .	1.6	17
25	Temporally optimized spanwise vorticity sensor measurements in turbulent boundary layers. Experiments in Fluids, 2015, 56, 1.	1.1	24
26	Properties of the streamwise velocity fluctuations in the inertial layer of turbulent boundary layers and their connection to self-similar mean dynamics. International Journal of Heat and Fluid Flow, 2015, 51, 372-382.	1.1	12
27	On the universality of inertial energy in the log layer of turbulent boundary layer and pipe flows. Experiments in Fluids, 2015, 56, 1.	1.1	27
28	The wall-pressure spectrum of high-Reynolds-number turbulent boundary-layer flows over rough surfaces. Journal of Fluid Mechanics, 2015, 768, 261-293.	1.4	35
29	Spectral scaling in boundary layers and pipes at very high Reynolds numbers. Journal of Fluid Mechanics, 2015, 771, 303-326.	1.4	95
30	Analysis of the turbulent boundary layer in the vicinity of a self-excited cylindrical Helmholtz resonator. Journal of Turbulence, 2015, 16, 705-728.	0.5	9
31	Displaced logarithmic profile of the velocity distribution in the boundary layer of a turbulent flow over an unbounded flat surface. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 3102-3107.	0.9	1
32	Comparison of thermal scaling properties between turbulent pipe and channel flows via DNS. International Journal of Thermal Sciences, 2015, 89, 43-57.	2.6	12
33	Freeman Scholar Review: Passive and Active Skin-Friction Drag Reduction in Turbulent Boundary Layers. Journal of Fluids Engineering, Transactions of the ASME, 2016, 138, .	0.8	44
34	Comparison of turbulent boundary layers over smooth and rough surfaces up to high Reynolds numbers. Journal of Fluid Mechanics, 2016, 795, 210-240.	1.4	106
35	High-order generalisation of the diagnostic scaling for turbulent boundary layers. Journal of Turbulence, 2016, 17, 664-677.	0.5	18
37	An invariant representation of mean inertia: theoretical basis for a log law in turbulent boundary layers. Journal of Fluid Mechanics, 2017, 813, 594-617.	1.4	19
38	Fine structure of the production in low to medium Reynolds number wall turbulence. Computers and Fluids, 2017, 148, 82-102.	1.3	4

#	Article	IF	Citations
40	Reynolds stress scaling in pipe flow turbulence—first results from CICLoPE. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160187.	1.6	47
41	Self-similarity of wall-attached turbulence in boundary layers. Journal of Fluid Mechanics, 2017, 823, .	1.4	82
42	Mean equation based scaling analysis of fully-developed turbulent channel flow with uniform heat generation. International Journal of Heat and Mass Transfer, 2017, 115, 50-61.	2.5	15
43	Two-dimensional energy spectra in high-Reynolds-number turbulent boundary layers. Journal of Fluid Mechanics, 2017, 826, .	1.4	43
44	Eddy viscosity and complete log-law for turbulent pipe flow at high Reynolds numbers. Journal of Hydraulic Research/De Recherches Hydrauliques, 2017, 55, 27-39.	0.7	11
45	On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number. Journal of Fluid Mechanics, 2018, 844, 635-668.	1.4	45
46	Properties of the mean momentum balance in polymer drag-reduced channel flow. Journal of Fluid Mechanics, 2018, 834, 409-433.	1.4	17
47	Contributions of Vortical/Non-Vortical Structures to Velocity–Vorticity Correlations and Net Force in Channel Flow. Journal of the Physical Society of Japan, 2018, 87, 094402.	0.7	1
48	On mean flow universality of turbulent wall flows. I. High Reynolds number flow analysis. Journal of Turbulence, 2018, 19, 929-958.	0.5	14
49	Fractality and the law of the wall. Physical Review E, 2018, 97, 053110.	0.8	7
50	Robust features of a turbulent boundary layerÂsubjected to high-intensity free-stream turbulence. Journal of Fluid Mechanics, 2018, 851, 416-435.	1.4	13
51	Attached Eddy Model of Wall Turbulence. Annual Review of Fluid Mechanics, 2019, 51, 49-74.	10.8	237
52	Mean dynamics and transition to turbulence in oscillatory channel flow. Journal of Fluid Mechanics, 2019, 880, 864-889.	1.4	4
53	Coherent large-scale structures from the linearized Navier–Stokes equations. Journal of Fluid Mechanics, 2019, 873, 89-109.	1.4	33
55	Literature Review and Background Theory. Springer Theses, 2019, , 7-39.	0.0	0
56	Wall-Normal Variation of Spanwise Streak Spacing in Turbulent Boundary Layer With Low-to-Moderate Reynolds Number. Entropy, 2019, 21, 24.	1.1	20
57	A uniform momentum zone–vortical fissure model of the turbulent boundary layer. Journal of Fluid Mechanics, 2019, 858, 609-633.	1.4	19
58	High-fidelity measurements in channel flow with polymer wall injection. Journal of Fluid Mechanics, 2019, 859, 851-886.	1.4	9

#	Article	IF	CITATIONS
59	Influence of Langmuir circulations on turbulence in the bottom boundary layer ofÂshallow water. Journal of Fluid Mechanics, 2019, 861, 275-308.	1.4	16
60	Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 1. Energy spectra. Journal of Fluid Mechanics, 2020, 882, .	1.4	51
61	Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 2. Integrated energy and. Journal of Fluid Mechanics, 2020, 882, .	1.4	32
62	New power-law scaling for friction factor of extreme Reynolds number pipe flows. Physics of Fluids, 2020, 32, 095121.	1.6	10
63	Large-eddy simulations of turbulent flow in a channel with streamwise periodic constrictions. Journal of Fluid Mechanics, 2020, 900, .	1.4	11
64	Analyses of buoyancy-driven convection. Advances in Heat Transfer, 2020, , 1-93.	0.4	11
65	Communication between the buffer layer and the wall in a turbulent channel flow. International Journal of Heat and Fluid Flow, 2020, 82, 108564.	1.1	2
66	Uncovering Townsend's wall-attached eddies in low-Reynolds-number wall turbulence. Journal of Fluid Mechanics, 2020, 889, .	1.4	23
67	On the mixing length eddies and logarithmic mean velocity profile in wall turbulence. Journal of Fluid Mechanics, 2020, 887, .	1.4	19
68	Energy transfer structures associated with large-scale motions in a turbulent boundary layer. Journal of Fluid Mechanics, 2021, 906, .	1.4	15
69	Large-scale structures of wall-bounded turbulence in single- and two-phase flows: advancing understanding of the atmospheric surface layer during sandstorms. Flow, 2021, 1, .	1.0	18
70	Statistical properties of streamline geometry in turbulent wall-flows. Physical Review Fluids, 2021, 6, .	1.0	1
71	Properties of turbulent channel flow similarity solutions. Journal of Fluid Mechanics, 2021, 915, .	1.4	5
72	Off-wall boundary conditions for large-eddy simulation based on near-wall turbulence prediction. Physics of Fluids, 2021, 33, 045125.	1.6	6
73	Experimental analysis of the log law at adverse pressure gradient. Journal of Fluid Mechanics, 2021, 918, .	1.4	18
74	Dissipation scaling and structural order in turbulent channel flows. Physics of Fluids, 2021, 33, 055105.	1.6	3
75	Third-order structure function in the logarithmic layer of boundary-layer turbulence. Physical Review Fluids, 2021, 6, .	1.0	7
76	Complete and incomplete similarity for the mean velocity profile of turbulent pipe and channel flows at extreme Reynolds number. Physics of Fluids, 2021, 33, 085118.	1.6	3

#	Article	IF	CITATIONS
77	Origin of the Turbulence Structure in Wall-Bounded Flows, and Implications toward Computability. Fluids, 2021, 6, 333.	0.8	0
78	Velocity–vorticity correlations and the four-layer regime in turbulent channel flow of generalized Newtonian fluids. European Journal of Mechanics, B/Fluids, 2022, 91, 1-8.	1.2	3
79	Two-dimensional cross-spectrum of theÂstreamwise velocity in turbulent boundaryÂlayers. Journal of Fluid Mechanics, 2020, 890, .	1.4	18
80	Properties of the kinetic energy budgets in wall-bounded turbulent flows. Physical Review Fluids, 2016, 1, .	1.0	2
81	Mesolayer of attached eddies in turbulent channel flow. Physical Review Fluids, 2016, 1, .	1.0	35
82	Smooth- and rough-wall boundary layer structure from high spatial range particle image velocimetry. Physical Review Fluids, 2016, 1, .	1.0	14
83	Scaling of the streamwise turbulence intensity in the context of inner-outer interactions in wall turbulence. Physical Review Fluids, 2017, 2, .	1.0	78
84	Properties of the scalar variance transport equation in turbulent channel flow. Physical Review Fluids, 2019, 4, .	1.0	4
85	Interaction of forced Orr-Sommerfeld and Squire modes in a low-order representation of turbulent channel flow. Physical Review Fluids, 2020, 5, .	1.0	11
86	Spectral-scaling-based extension to the attached eddy model of wall turbulence. Physical Review Fluids, 2020, 5, .	1.0	16
87	Modified Hierarchy Structure of Rough-Wall Flows. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2010, , 135-141.	0.1	0
88	Data-driven enhancement of coherent structure-based models for predicting instantaneous wall turbulence. International Journal of Heat and Fluid Flow, 2021, 92, 108879.	1.1	9
89	On locally embedded two-scale solution for wall-bounded turbulent flows. Journal of Fluid Mechanics, 2022, 933, .	1.4	5
90	Properties of the inertial sublayer in adverse pressure-gradient turbulent boundary layers. Journal of Fluid Mechanics, 2022, 937, .	1.4	8
91	Entropy and Turbulence Structure. Entropy, 2022, 24, 11.	1.1	2
92	DNS of passive scalars in turbulent pipe flow. Journal of Fluid Mechanics, 2022, 940, .	1.4	13
93	An Empirical Wall Law for the Mean Velocity in an Adverse Pressure Gradient for RANS Turbulence Modelling. Flow, Turbulence and Combustion, 2022, 109, 571-601.	1.4	4
94	Energy transfer mechanisms in adverse pressure gradient turbulent boundary layers: production and inter-component redistribution. Journal of Fluid Mechanics, 2022, 948, .	1.4	5

IF

CITATIONS

ARTICLE

Energy dissipation rate in the inertial sublayer of turbulent channel flow at large but finite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Re</mml:mi><mml:mi>ï,,</mml:mi></mml:msub></mml:n Physical Review Fluids, 2023, 8, . 95

7