Starvation Protects Germline Stem Cells and Extends R elegans</i>

Science 326, 954-958 DOI: 10.1126/science.1178343

Citation Report

#	Article	IF	CITATIONS
1	Strategies to Get Arrested. Science, 2009, 326, 944-945.	6.0	11
2	Mitochondrial dysfunction in Caenorhabditis elegans causes metabolic restructuring, but this is not linked to longevity. Mechanisms of Ageing and Development, 2010, 131, 554-561.	2.2	36
3	Stem Cell Dynamics in Response to Nutrient Availability. Current Biology, 2010, 20, 2100-2105.	1.8	170
4	Somaâ€germline interactions that influence germline proliferation in <i>Caenorhabditis elegans</i> . Developmental Dynamics, 2010, 239, 1449-1459.	0.8	28
5	<i>Caenorhabditis elegans</i> as a model for stem cell biology. Developmental Dynamics, 2010, 239, 1539-1554.	0.8	79
6	Dietary restriction enhances germline stem cell maintenance. Aging Cell, 2010, 9, 916-918.	3.0	43
7	Carbonylated proteins are eliminated during reproduction in <i>C.Âelegans</i> . Aging Cell, 2010, 9, 991-1003.	3.0	53
8	NPP-16/Nup50 Function and CDK-1 Inactivation Are Associated with Anoxia-induced Prophase Arrest in Caenorhabditis elegans. Molecular Biology of the Cell, 2010, 21, 712-724.	0.9	17
9	Progression from a stem cell–like state to early differentiation in the <i>C. elegans</i> germ line. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2048-2053.	3.3	100
10	Commentary: The Year in Nuclear Receptor Control of Metabolism. Molecular Endocrinology, 2010, 24, 2075-2080.	3.7	5
11	A diacetyl-induced quiescence in young Caenorhabditis elegans. Behavioural Brain Research, 2010, 214, 12-17.	1.2	2
12	TGF-β and Insulin Signaling Regulate Reproductive Aging via Oocyte and Germline Quality Maintenance. Cell, 2010, 143, 299-312.	13.5	238
13	Metabolic Regulation of Stem Cell Behavior and Implications for Aging. Cell Metabolism, 2010, 12, 561-565.	7.2	51
14	On the Streets of San Francisco: Highlights from the ISSCR Annual Meeting 2010. Cell Stem Cell, 2010, 7, 443-450.	5.2	1
15	The C. elegans adult male germline: Stem cells and sexual dimorphism. Developmental Biology, 2010, 346, 204-214.	0.9	54
16	Histone tales: echoes from the past, prospects for the future. Genome Biology, 2010, 11, 105.	13.9	9
17	Germline Stem Cells. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002642-a002642.	2.3	240
18	Shared developmental roles and transcriptional control of autophagy and apoptosis in <i>Caenorhabditis elegans</i> . Journal of Cell Science. 2011, 124, 1510-1518.	1.2	34

TION RE

#	Article	IF	CITATIONS
19	Insulin/IGF-1 Receptor Signaling Enhances Biosynthetic Activity and Fat Mobilization in the Initial Phase of Starvation in Adult Male C.Âelegans. Cell Metabolism, 2011, 14, 390-402.	7.2	27
20	Sterol Regulation of Metabolism, Homeostasis, and Development. Annual Review of Biochemistry, 2011, 80, 885-916.	5.0	122
21	Mitochondrial Function Is Required for Secretion of DAF-28/Insulin in C. elegans. PLoS ONE, 2011, 6, e14507.	1.1	21
22	Hormone Signaling and Phenotypic Plasticity in Nematode Development and Evolution. Current Biology, 2011, 21, R758-R766.	1.8	70
23	Extrinsic and intrinsic control of germ cell proliferation in <i>Caenorhabditis elegans</i> . Molecular Reproduction and Development, 2011, 78, 151-160.	1.0	13
24	<i>Caenorhabditis elegans</i> reproductive aging: Regulation and underlying mechanisms. Genesis, 2011, 49, 53-65.	0.8	40
25	Divergent and stereoselective synthesis of dafachronic acids. Tetrahedron, 2011, 67, 1924-1929.	1.0	17
26	Molecular Regulation of the Mitosis/Meiosis Decision in Multicellular Organisms. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002683-a002683.	2.3	82
27	No Evidence of Elevated Germline Mutation Accumulation Under Oxidative Stress in Caenorhabditis elegans. Genetics, 2011, 189, 1439-1447.	1.2	32
28	Regulation of adult stem cell behavior by nutrient signaling. Cell Cycle, 2011, 10, 2628-2634.	1.3	36
29	Sustained fertility from 22 to 41 years of age in women with polycystic ovarian syndrome. Human Reproduction, 2011, 26, 2499-2504.	0.4	38
30	Cenetic Dissection of Late-Life Fertility in Caenorhabditis elegans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 842-854.	1.7	28
31	Biology of the Mi-2/NuRD Complex in SLAC (Stemness, Longevity/Ageing, and Cancer). Gene Regulation and Systems Biology, 2011, 5, GRSB.S6510.	2.3	19
32	Somatic gonad sheath cells and Eph receptor signaling promote germ-cell death in C. elegans. Cell Death and Differentiation, 2012, 19, 1080-1089.	5.0	22
33	Suspended animation, diapause and quiescence. Cell Cycle, 2012, 11, 1672-1679.	1.3	44
34	Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling. Frontiers in Genetics, 2012, 3, 257.	1.1	11
35	Germline Stem Cells: Origin and Destiny. Cell Stem Cell, 2012, 10, 729-739.	5.2	98
36	<i>C. elegans</i> AMPKs promote survival and arrest germline development during nutrient stress. Biology Open, 2012, 1, 929-936.	0.6	87

#	Article	IF	CITATIONS
37	Caenorhabditis elegans Battling Starvation Stress: Low Levels of Ethanol Prolong Lifespan in L1 Larvae. PLoS ONE, 2012, 7, e29984.	1.1	37
38	What does the concept of the stem cell niche really mean today?. BMC Biology, 2012, 10, 19.	1.7	155
40	Characterization of human dental pulp cells-derived spheroids in serum-free medium: Stem cells in the core. Journal of Cellular Biochemistry, 2013, 114, 2624-2636.	1.2	48
41	The NHR-8 Nuclear Receptor Regulates Cholesterol and Bile Acid Homeostasis in C.Âelegans. Cell Metabolism, 2013, 18, 212-224.	7.2	86
42	To Grow or Not to Grow: Nutritional Control of Development During <i>Caenorhabditis elegans</i> L1 Arrest. Genetics, 2013, 194, 539-555.	1.2	207
43	Steroid Regulation of C. elegans Diapause, Developmental Timing, and Longevity. Current Topics in Developmental Biology, 2013, 105, 181-212.	1.0	46
44	Live imaging reveals active infiltration of mitotic zone by its stem cell niche. Integrative Biology (United Kingdom), 2013, 5, 976.	0.6	14
45	Stress response pathways protect germ cells from omega-6 polyunsaturated fatty acid-mediated toxicity in Caenorhabditis elegans. Developmental Biology, 2013, 373, 14-25.	0.9	36
46	Regulation of longevity by the reproductive system. Experimental Gerontology, 2013, 48, 596-602.	1.2	95
47	Diet and Genetics: Trp-ing Over Food Sensitivity. Current Biology, 2013, 23, R326-R327.	1.8	1
48	DAF-2 and ERK Couple Nutrient Availability to Meiotic Progression during Caenorhabditis elegans Oogenesis. Developmental Cell, 2013, 27, 227-240.	3.1	66
49	Fertility and Germline Stem Cell Maintenance under Different Diets Requires nhr-114/HNF4 in C.Âelegans. Current Biology, 2013, 23, 607-613.	1.8	99
50	Alternative Perspectives on Aging in <i>Caenorhabditis elegans</i> : Reactive Oxygen Species or Hyperfunction?. Antioxidants and Redox Signaling, 2013, 19, 321-329.	2.5	152
51	Control of Oocyte Growth and Meiotic Maturation in Caenorhabditis elegans. Advances in Experimental Medicine and Biology, 2013, 757, 277-320.	0.8	70
52	Germline Energetics, Aging, and Female Infertility. Cell Metabolism, 2013, 17, 838-850.	7.2	166
53	Mind the gut: Dietary impact on germline stem cells and fertility. Communicative and Integrative Biology, 2013, 6, e26004.	0.6	6
54	Conserved Translatome Remodeling in Nematode Species Executing a Shared Developmental Transition. PLoS Genetics, 2013, 9, e1003739.	1.5	42
55	Sex differences in body composition, fat storage, and gene expression profile in <i>Caenorhabditis elegans</i> in response to dietary restriction. Physiological Genomics, 2013, 45, 539-551.	1.0	9

	C	CITATION REPORT	
#	Article	IF	CITATIONS
56	A novel classification system for evolutionary aging theories. Frontiers in Genetics, 2013, 4, 25.	1.1	40
57	Lifespan Extension in a Semelparous Chordate Occurs via Developmental Growth Arrest Just Prior to Meiotic Entry. PLoS ONE, 2014, 9, e93787.	1.1	10
58	Cell death, cavitation and spontaneous multiâ€differentiation of dental pulp stem cellsâ€derived spheroids <i>in vitro</i> : A journey to survival and organogenesis. Biology of the Cell, 2014, 106, 405-419.	0.7	23
59	Lipid Droplet Protein LID-1 Mediates ATGL-1-Dependent Lipolysis during Fasting in <i>Caenorhabditis elegans</i> . Molecular and Cellular Biology, 2014, 34, 4165-4176.	1.1	82
60	Germline Signals Deploy NHR-49 to Modulate Fatty-Acid β-Oxidation and Desaturation in Somatic Tis of C. elegans. PLoS Genetics, 2014, 10, e1004829.	sues 1.5	109
61	Identification of Late Larval Stage Developmental Checkpoints in Caenorhabditis elegans Regulated b Insulin/IGF and Steroid Hormone Signaling Pathways. PLoS Genetics, 2014, 10, e1004426.	y 1.5	76
62	Noncanonical Cell Death in the Nematode Caenorhabditis elegans. Methods in Enzymology, 2014, 54 157-180.	ŀ5, 0.4	6
63	LIN-35/Rb Causes Starvation-Induced Germ Cell Apoptosis via CED-9/Bcl2 Downregulation in <i>Caenorhabditis elegans</i> . Molecular and Cellular Biology, 2014, 34, 2499-2516.	1.1	21
64	Adaptive value of a predatory mouth-form in a dimorphic nematode. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141334.	/ 1.2	55
65	The root of reduced fertility in aged women and possible therapentic options: Current status and future perspects. Molecular Aspects of Medicine, 2014, 38, 54-85.	2.7	117
66	Hc-fau, a novel gene regulating diapause in the nematode parasite Haemonchus contortus. International Journal for Parasitology, 2014, 44, 775-786.	1.3	16
67	Chromatographic separation of free dafachronic acid epimers with a novel triazole click quinidine-based chiral stationary phase. Journal of Chromatography A, 2014, 1339, 96-102.	1.8	20
68	Prolonged Fasting Reduces IGF-1/PKA to Promote Hematopoietic-Stem-Cell-Based Regeneration and Reverse Immunosuppression. Cell Stem Cell, 2014, 14, 810-823.	5.2	369
69	Analysis of in vivo single cell behavior by high throughput, human-in-the-loop segmentation of three-dimensional images. BMC Bioinformatics, 2015, 16, 397.	1.2	10
70	<i>Caenorhabditis elegans glp-4</i> Encodes a Valyl Aminoacyl tRNA Synthetase. G3: Genes, Genome Genetics, 2015, 5, 2719-2728.	s, 0.8	25
71	Evolutionarily divergent thermal sensitivity of germline development and fertility in hermaphroditic <i>Caenorhabditis</i> nematodes. Evolution & Development, 2015, 17, 380-397.	1.1	35
72	High-Throughput Profiling of Caenorhabditis elegans Starvation-Responsive microRNAs. PLoS ONE, 2015, 10, e0142262.	1.1	16
73	Experience Modulates the Reproductive Response to Heat Stress in C. elegans via Multiple Physiological Processes. PLoS ONE, 2015, 10, e0145925.	1.1	23

#	Article	IF	CITATIONS
74	The regulated elimination of transit-amplifying cells preserves tissue homeostasis during protein starvation in <i>Drosophila</i> testis. Development (Cambridge), 2015, 142, 1756-1766.	1.2	43
75	Global Proteomics Analysis of the Response to Starvation in C. elegans*. Molecular and Cellular Proteomics, 2015, 14, 1989-2001.	2.5	32
76	Analysis of Germline Stem Cell Differentiation Following Loss of GLP-1 Notch Activity in Caenorhabditis elegans. Genetics, 2015, 201, 167-184.	1.2	54
77	<i>daf-18</i> /PTEN locally antagonizes insulin signalling to couple germline stem cell proliferation to oocyte needs in <i>C. elegans</i> . Development (Cambridge), 2015, 142, 4230-41.	1.2	20
78	The mysterious relationship between reproduction and longevity. Worm, 2015, 4, e1020276.	1.0	12
79	Tertiary siRNAs Mediate Paramutation in C. elegans. PLoS Genetics, 2015, 11, e1005078.	1.5	98
80	The Nuclear Receptor DAF-12 Regulates Nutrient Metabolism and Reproductive Growth in Nematodes. PLoS Genetics, 2015, 11, e1005027.	1.5	41
81	Oogonial stem cells as a model to study age-associated infertility in women. Reproduction, Fertility and Development, 2015, 27, 969.	0.1	13
82	Transgenerational Effects of Early Life Starvation on Growth, Reproduction, and Stress Resistance in <i>Caenorhabditis elegans</i> . Genetics, 2015, 201, 201-212.	1.2	136
83	Co-expressed Cyclin D variants cooperate to regulate proliferation of germline nuclei in a syncytium. Cell Cycle, 2015, 14, 2129-2141.	1.3	5
84	Omega-3 and -6 fatty acids allocate somatic and germline lipids to ensure fitness during nutrient and oxidative stress in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15378-15383.	3.3	73
85	The Controversy, Challenges, and Potential Benefits of Putative Female Germline Stem Cells Research in Mammals. Stem Cells International, 2016, 2016, 1-9.	1.2	9
86	Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line. PLoS Genetics, 2016, 12, e1005985.	1.5	21
87	Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct. PLoS ONE, 2016, 11, e0162708.	1.1	26
88	The Expensive Germline and the Evolution of Ageing. Current Biology, 2016, 26, R577-R586.	1.8	121
89	Reversible Age-Related Phenotypes Induced during Larval Quiescence in C. elegans. Cell Metabolism, 2016, 23, 1113-1126.	7.2	57
90	Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1193-R1211.	0.9	205
91	The Stress Granule RNA-Binding Protein TIAR-1 Protects Female Germ Cells from Heat Shock in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2016, 6, 1031-1047.	0.8	36

#	Article	IF	CITATIONS
92	Cell cycle features of C. elegans germline stem/progenitor cells vary temporally and spatially. Developmental Biology, 2016, 409, 261-271.	0.9	27
93	Nuclear hormone receptors as mediators of metabolic adaptability following reproductive perturbations. Worm, 2016, 5, e1151609.	1.0	8
94	Nucleotide levels regulate germline proliferation through modulating GLP-1/Notch signaling in <i>C. elegans</i> . Genes and Development, 2016, 30, 307-320.	2.7	39
95	Feeding the germline. Genes and Development, 2016, 30, 249-250.	2.7	1
96	A Systems Approach to Reverse Engineer Lifespan Extension by Dietary Restriction. Cell Metabolism, 2016, 23, 529-540.	7.2	67
97	Great migration: epigenetic reprogramming and germ cell-oocyte metamorphosis determine individual ovarian reserve. Hormone Molecular Biology and Clinical Investigation, 2016, 25, 45-63.	0.3	2
98	spict, a cyst cell-specific gene, regulates starvation-induced spermatogonial cell death in the Drosophila testis. Scientific Reports, 2017, 7, 40245.	1.6	14
99	Control of Germline Stem Cell Lineages by Diet and Physiology. Results and Problems in Cell Differentiation, 2017, 59, 67-99.	0.2	36
100	Small-molecule pheromones and hormones controlling nematode development. Nature Chemical Biology, 2017, 13, 577-586.	3.9	47
101	Molecular Determinants of the Regulation of Development and Metabolism by Neuronal elF2α Phosphorylation in Caenorhabditis elegans. Genetics, 2017, 206, 251-263.	1.2	11
102	Ageing: Lessons from C. elegans. Healthy Ageing and Longevity, 2017, , .	0.2	14
103	Reproductive Ageing. Healthy Ageing and Longevity, 2017, , 137-162.	0.2	0
104	Lipid Metabolism, Lipid Signalling and Longevity. Healthy Ageing and Longevity, 2017, , 307-329.	0.2	3
105	Dietary Restriction in C. elegans. Healthy Ageing and Longevity, 2017, , 355-391.	0.2	1
106	Stress Response Pathways. Healthy Ageing and Longevity, 2017, , 191-217.	0.2	2
107	Multi-omics Analyses of Starvation Responses Reveal a Central Role for Lipoprotein Metabolism in Acute Starvation Survival in C.Âelegans. Cell Systems, 2017, 5, 38-52.e4.	2.9	52
108	Antioxidant response is a protective mechanism against nutrient deprivation in C. elegans. Scientific Reports, 2017, 7, 43547.	1.6	34
109	The <i>Caenorhabditis elegans</i> Female-Like State: Decoupling the Transcriptomic Effects of Aging and Sperm Status. G3: Genes, Genomes, Genetics, 2017, 7, 2969-2977.	0.8	28

#	Article	IF	CITATIONS
110	MGL-1 on AIY neurons translates starvation to reproductive plasticity via neuropeptide signaling in Caenorhabditis elegans. Developmental Biology, 2017, 430, 80-89.	0.9	14
111	Dafachronic acid inhibits C. elegans germ cell proliferation in a DAF-12-dependent manner. Developmental Biology, 2017, 432, 215-221.	0.9	9
112	Analysis of the C. elegans Germline Stem Cell Pool. Methods in Molecular Biology, 2017, 1463, 1-33.	0.4	42
113	The Sexual Dimorphism of Dietary Restriction Responsiveness in Caenorhabditis elegans. Cell Reports, 2017, 21, 3646-3652.	2.9	30
114	daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival. ELife, 2017, 6, .	2.8	68
115	Aspirin increases metabolism through germline signalling to extend the lifespan of Caenorhabditis elegans. PLoS ONE, 2017, 12, e0184027.	1.1	21
116	Transgenerational Sterility of Piwi Mutants Represents a Dynamic Form of Adult Reproductive Diapause. Cell Reports, 2018, 23, 156-171.	2.9	67
117	Matricidal hatching can induce multi-generational effects in nematode Caenorhabditis elegans after dietary exposure to nanoparticles. Environmental Science and Pollution Research, 2018, 25, 36394-36402.	2.7	11
118	Nutrient-Driven O-GlcNAcylation at Promoters Impacts Genome-Wide RNA Pol II Distribution. Frontiers in Endocrinology, 2018, 9, 521.	1.5	13
119	Food-Dependent Plasticity in <i>Caenorhabditis elegans</i> Stress-Induced Sleep Is Mediated by TOR–FOXA and TGF-β Signaling. Genetics, 2018, 209, 1183-1195.	1.2	27
120	A sisRNA/miRNA Axis Prevents Loss of Germline Stem Cells during Starvation in Drosophila. Stem Cell Reports, 2018, 11, 4-12.	2.3	11
121	Dramatic evolution of body length due to postembryonic changes in cell size in a newly discovered close relative of <i>Caenorhabditis elegans</i> . Evolution Letters, 2018, 2, 427-441.	1.6	13
122	Transgenerational Effects of Extended Dauer Diapause on Starvation Survival and Gene Expression Plasticity in <i>Caenorhabditis elegans</i> . Genetics, 2018, 210, 263-274.	1.2	68
123	JNK signaling triggers spermatogonial dedifferentiation during chronic stress to maintain the germline stem cell pool in the Drosophila testis. ELife, 2018, 7, .	2.8	29
124	Hypodermal responses to protein synthesis inhibition induce systemic developmental arrest and AMPK-dependent survival in Caenorhabditis elegans. PLoS Genetics, 2018, 14, e1007520.	1.5	34
125	Nutritional Control of the Germline Development in Caenorhabditis elegans. Diversity and Commonality in Animals, 2018, , 69-101.	0.7	2
126	Downregulation of mTOR Signaling Increases Stem Cell Population Telomere Length during Starvation of Immortal Planarians. Stem Cell Reports, 2019, 13, 405-418.	2.3	18
127	Local and Physiological Control of Germline Stem Cell Lineages in <i>Drosophila melanogaster</i> . Genetics, 2019, 213, 9-26.	1.2	50

#	Article	IF	CITATIONS
128	Apoptosis contributes to protect germ cells from the oogenic germline starvation response but is not essential for the gonad shrinking or recovery observed during adult reproductive diapause in C. elegans. PLoS ONE, 2019, 14, e0218265.	1.1	8
129	Learning and Memory: Mind over Matter in C.Âelegans. Current Biology, 2019, 29, R365-R367.	1.8	6
130	Actin: Post-translational Modification of Actin Linked to Formin Inhibition. Current Biology, 2019, 29, R367-R370.	1.8	3
131	Germline stem cell homeostasis. Current Topics in Developmental Biology, 2019, 135, 203-244.	1.0	9
132	Shortâ€ŧerm starvation stress at young adult stages enhances meiotic activity of germ cells to maintain spermatogenesis in aged male <i>Caenorhabditis elegans</i> . Aging Cell, 2019, 18, e12930.	3.0	11
133	Developmental Control of the Cell Cycle: Insights from <i>Caenorhabditis elegans</i> . Genetics, 2019, 211, 797-829.	1.2	33
134	Rapid, population-wide declines in stem cell number and activity during reproductive aging in <i>C. elegans</i> . Development (Cambridge), 2019, 146, .	1.2	44
135	Population Selection and Sequencing of <i>Caenorhabditis elegans</i> Wild Isolates Identifies a Region on Chromosome III Affecting Starvation Resistance. G3: Genes, Genomes, Genetics, 2019, 9, 3477-3488.	0.8	21
136	DNA damage responses in ageing. Open Biology, 2019, 9, 190168.	1.5	46
137	Biology of the <i>Caenorhabditis elegans</i> Germline Stem Cell System. Genetics, 2019, 213, 1145-1188.	1.2	94
138	A PUF Hub Drives Self-Renewal in <i>Caenorhabditis elegans</i> Germline Stem Cells. Genetics, 2020, 214, 147-161.	1.2	26
139	Upregulated TNF/Eiger signaling mediates stem cell recovery and tissue homeostasis during nutrient resupply in Drosophila testis. Scientific Reports, 2020, 10, 11674.	1.6	3
140	Starvation Responses Throughout the <i>Caenorhabditis</i> Â <i>elegans</i> Life Cycle. Genetics, 2020, 216, 837-878.	1.2	75
141	Lifespanâ€extending interventions enhance lipidâ€supported mitochondrial respiration in <i>Caenorhabditis elegans</i> . FASEB Journal, 2020, 34, 9972-9981.	0.2	8
142	The Phenotypic and Transcriptomic Response of the Caenorhabditis elegans Nematode to Background and Below-Background Radiation Levels. Frontiers in Public Health, 2020, 8, 581796.	1.3	14
143	NFYB-1 regulates mitochondrial function and longevity via lysosomal prosaposin. Nature Metabolism, 2020, 2, 387-396.	5.1	35
144	Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos. Science Advances, 2020, 6, eaaz0298.	4.7	44
145	A metabolic switch regulates the transition between growth and diapause in C. elegans. BMC Biology, 2020, 18, 31.	1.7	47

#	Article	IF	CITATIONS
146	Insights Into the Hypometabolic Stage Caused by Prolonged Starvation in L4-Adult Caenorhabditis elegans Hermaphrodites. Frontiers in Cell and Developmental Biology, 2020, 8, 124.	1.8	8
147	<i>APP</i> -Induced Patterned Neurodegeneration Is Exacerbated by <i>APOE4</i> in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2020, 10, 2851-2861.	0.8	4
148	Chronic exposure to methylmercury induces puncta formation in cephalic dopaminergic neurons in Caenorhabditis elegans. NeuroToxicology, 2020, 77, 105-113.	1.4	25
149	Nutrient Sensing and Response Drive Developmental Progression in <i>Caenorhabditis elegans</i> . BioEssays, 2020, 42, e1900194.	1.2	12
150	HLH-30/TFEB Is a Master Regulator of Reproductive Quiescence. Developmental Cell, 2020, 53, 316-329.e5.	3.1	32
151	Maternally inherited intron coordinates primordial germ cell homeostasis during Drosophila embryogenesis. Cell Death and Differentiation, 2021, 28, 1208-1221.	5.0	5
152	Metabolism and Sex Differentiation in Animals from a Starvation Perspective. Sexual Development, 2021, 15, 168-178.	1.1	7
153	C. elegans electrotaxis behavior is modulated by heat shock response and unfolded protein response signaling pathways. Scientific Reports, 2021, 11, 3115.	1.6	16
154	Germ granule dysfunction is a hallmark and mirror of Piwi mutant sterility. Nature Communications, 2021, 12, 1420.	5.8	16
155	Biological Model : Caenorhabditis elegans. International Journal of Current Microbiology and Applied Sciences, 2021, 10, 230-235.	0.0	0
156	The Emerging Roles of JNK Signaling in Drosophila Stem Cell Homeostasis. International Journal of Molecular Sciences, 2021, 22, 5519.	1.8	18
158	Germline Stem and Progenitor Cell Aging in C. elegans. Frontiers in Cell and Developmental Biology, 2021, 9, 699671.	1.8	12
159	The FMRFamide Neuropeptide FLP-20 Acts as a Systemic Signal for Starvation Responses in Caenorhabditis elegans. Molecules and Cells, 2021, 44, 529-537.	1.0	4
160	Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans. PLoS Genetics, 2021, 17, e1009635.	1.5	10
161	Developmental plasticity and the response to nutrient stress in Caenorhabditis elegans. Developmental Biology, 2021, 475, 265-276.	0.9	15
162	Combinatorial Assembly of Modular Glucosides via Carboxylesterases Regulates <i>C. elegans</i> Starvation Survival. Journal of the American Chemical Society, 2021, 143, 14676-14683.	6.6	12
163	Strength of Cu-efflux response in Escherichia coli coordinates metal resistance in Caenorhabditis elegans and contributes to the severity of environmental toxicity. Journal of Biological Chemistry, 2021, 297, 101060.	1.6	3
164	Introduction to Germ Cell Development in Caenorhabditis elegans. Advances in Experimental Medicine and Biology, 2013, 757, 1-16.	0.8	66

#	Article	IF	CITATIONS
165	Physiological Control of Germline Development. Advances in Experimental Medicine and Biology, 2013, 757, 101-131.	0.8	53
166	Germ Cell Apoptosis and DNA Damage Responses. Advances in Experimental Medicine and Biology, 2013, 757, 249-276.	0.8	55
167	Germline Stem Cells and Their Regulation in the Nematode Caenorhabditis elegans. Advances in Experimental Medicine and Biology, 2013, 786, 29-46.	0.8	44
168	A Multicellular Network Mechanism for Temperature-Robust Food Sensing. Cell Reports, 2020, 33, 108521.	2.9	2
169	Patterns and processes of human life history evolution. , 2011, , 153-168.		24
172	Nuclear receptors: emerging drug targets for parasitic diseases. Journal of Clinical Investigation, 2017, 127, 1165-1171.	3.9	20
173	Maternal Diet and Insulin-Like Signaling Control Intergenerational Plasticity of Progeny Size and Starvation Resistance. PLoS Genetics, 2016, 12, e1006396.	1.5	71
174	Larval crowding accelerates C. elegans development and reduces lifespan. PLoS Genetics, 2017, 13, e1006717.	1.5	60
175	The Oogenic Germline Starvation Response in C. elegans. PLoS ONE, 2011, 6, e28074.	1.1	94
176	Dietary Restriction during Development Enlarges Intestinal and Hypodermal Lipid Droplets in Caenorhabditis elegans. PLoS ONE, 2012, 7, e46198.	1.1	40
177	Shifts in the Distribution of Mass Densities Is a Signature of Caloric Restriction in Caenorhabditis elegans. PLoS ONE, 2013, 8, e69651.	1.1	17
178	A DTC Niche Plexus Surrounds the Germline Stem Cell Pool in Caenorhabditis elegans. PLoS ONE, 2014, 9, e88372.	1.1	59
179	A Model of the Effect of Uncertainty on the C elegans L2/L2d Decision. PLoS ONE, 2014, 9, e100580.	1.1	13
180	Intermediate metabolites of the pyrimidine metabolism pathway extend the lifespan of C. elegans through regulating reproductive signals. Aging, 2019, 11, 3993-4010.	1.4	29
181	Run-on of germline apoptosis promotes gonad senescence in <i>C. elegans</i> . Oncotarget, 2016, 7, 39082-39096.	0.8	46
182	Remodeling of Proteostasis Upon Transition to Adulthood is Linked to Reproduction Onset. Current Genomics, 2014, 15, 122-129.	0.7	22
183	C. elegans germline stem cells and their niche. Stembook, 2014, , .	0.3	20
184	A systematic mRNA control mechanism for germline stem cell homeostasis and cell fate specification. BMB Reports, 2016, 49, 93-98.	1.1	4

#	Article	IF	CITATIONS
185	Cell-cycle quiescence maintains Caenorhabditis elegans germline stem cells independent of GLP-1/Notch. ELife, 2015, 4, .	2.8	73
186	Reactivation of RNA metabolism underlies somatic restoration after adult reproductive diapause in C. elegans. ELife, 2018, 7, .	2.8	12
187	Nutrient status shapes selfish mitochondrial genome dynamics across different levels of selection. ELife, 2020, 9, .	2.8	23
188	Gap junctions deliver malonyl-CoA from soma to germline to support embryogenesis in Caenorhabditis elegans. ELife, 2020, 9, .	2.8	13
189	Functional recovery of the germ line following splicing collapse. Cell Death and Differentiation, 2022, 29, 772-787.	5.0	3
202	Reflections on plant and soil nematode ecology: past, present and future. Journal of Nematology, 2012, 44, 115-26.	0.4	34
203	Live-cell Imaging and Analysis of Germline Stem Cell Mitosis in Caenorhabditis elegans. Bio-protocol, 2022, 12, e4272.	0.2	0
205	First observations of ovary regeneration in an amphipod, <i>Ampelisca eschrichtii</i> KrÃ,yer, 1842. PeerJ, 2022, 10, e12950.	0.9	0
206	The SNAPc complex mediates starvation-induced trans-splicing in Caenorhabditis elegans. Journal of Genetics and Genomics, 2022, 49, 952-964.	1.7	2
207	Germ cell apoptosis is critical to maintain Caenorhabditis elegans offspring viability in stressful environments. PLoS ONE, 2021, 16, e0260573.	1.1	12
208	A Simple Protocol to Analyze the Effects of Simulated Microgravity on Nematodes. Biology Bulletin, 2021, 48, S22-S33.	0.1	1
214	Reproductive Span of <i>Caenorhabditis elegans</i> Is Extended by <i>Microbacterium</i> sp Journal of Nematology, 2022, 54, .	0.4	3
215	An antagonistic pleiotropic gene regulates the reproduction and longevity tradeoff. Proceedings of the United States of America, 2022, 119, e2120311119.	3.3	11
216	Decreased spliceosome fidelity and egl-8 intron retention inhibit mTORC1 signaling to promote longevity. Nature Aging, 2022, 2, 796-808.	5.3	7
217	Nutrient sensing pathways regulating adult reproductive diapause in C. elegans. PLoS ONE, 2022, 17, e0274076.	1.1	6
218	Mechanisms of germ cell survival and plasticity in <i>Caenorhabditis elegans</i> . Biochemical Society Transactions, 2022, 50, 1517-1526.	1.6	2
220	Quantification of Intra Embryonic Motions Through Label Free and Fast Imaging Of Yolk Granules. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-8.	1.9	1
221	From ecology to oncology: To understand cancer stem cell dormancy, ask a Brine shrimp (Artemia). Advances in Cancer Research, 2023, , 199-231.	1.9	1

#	Article	IF	CITATIONS
222	Genetic and Chemical Controls of Sperm Fate and Spermatocyte Dedifferentiation via PUF-8 and MPK-1 in Caenorhabditis elegans. Cells, 2023, 12, 434.	1.8	0
223	Knockdown of phosphatases of regenerating liverâ€1 prolongs the lifespan of <i>Caenorhabditis elegans</i> via activating <scp>DAF</scp> â€16/ <scp>FOXO</scp> . FASEB Journal, 2023, 37, .	0.2	0
226	Analysis of the C. elegans Germline Stem Cell Pool. Methods in Molecular Biology, 2023, , 1-36.	0.4	0
235	Simplified Quantification of Progenitor Zone Size, an Indicator of Germ Stem Cell Niche Activity, in the Nematode Caenorhabditis elegans. Methods in Molecular Biology, 2024, , .	0.4	0