The New Chemical Biology of Nitrite Reactions with He Oxidative Denitrosylation, and Nitrite Reductase/Anhy

Accounts of Chemical Research 42, 157-167 DOI: 10.1021/ar800089j

Citation Report

#	Article	IF	CITATIONS
1	Cardiovascular Consequences When Nitric Oxide and Lipid Signaling Converge. Circulation Research, 2009, 105, 511-522.	2.0	40
3	Nitrite reduction: a ubiquitous function from a preâ€aerobic past. BioEssays, 2009, 31, 885-891.	1.2	13
4	Formation of Nitric Oxide from Nitrite by the Ferriheme b Protein Nitrophorin 7. Journal of the American Chemical Society, 2009, 131, 12042-12043.	6.6	35
5	Sodium nitrite therapy attenuates the hypertensive effects of HBOC-201 via nitrite reduction1. Biochemical Journal, 2009, 422, 423-432.	1.7	28
6	Reactivity of Glass-Embedded Met Hemoglobin Derivatives toward External NO: Implications for Nitrite-Mediated Production of Bioactive NO. Journal of the American Chemical Society, 2009, 131, 12273-12279.	6.6	24
7	New biomaterials for the sustained release of nitric oxide: past, present and future. Expert Opinion on Drug Delivery, 2009, 6, 1113-1122.	2.4	56
8	Six-Coordinate Nitro Complexes of Iron(III) Porphyrins with <i>trans</i> S-Donor Ligands. Oxo-Transfer Reactivity in the Solid State. Inorganic Chemistry, 2009, 48, 11236-11241.	1.9	27
9	Nitrite as undesirable substances in animal feed ―Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA Journal, 2009, 7, 1017.	0.9	8
10	Reviving Artificial Blood: Meeting the Challenge of Dealing with NO Scavenging by Hemoglobin. ChemBioChem, 2010, 11, 1816-1824.	1.3	11
11	Nitrite and nitroglycerin induce rapid release of the vasodilator ATP from erythrocytes: Relevance to the chemical physiology of local vasodilation. Journal of Inorganic Biochemistry, 2010, 104, 289-296.	1.5	20
12	Red cell substitutes from hemoglobin—Do we start all over again?. Current Opinion in Chemical Biology, 2010, 14, 538-543.	2.8	46
13	Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. Physiologia Plantarum, 2010, 138, 393-404.	2.6	99
14	What Part of NO Don't You Understand? Some Answers to the Cardinal Questions in Nitric Oxide Biology. Journal of Biological Chemistry, 2010, 285, 19699-19704.	1.6	269
15	NMR and EPR Spectroscopy of Paramagnetic Metalloporphyrins and Heme Proteins. Handbook of Porphyrin Science, 2010, , 1-337.	0.3	19
16	Reactions of NO and Nitrite with Heme Models and Proteins. Inorganic Chemistry, 2010, 49, 6226-6239.	1.9	121
17	Covalent Modifications of Hemoglobin by Nitrite Anion: Formation Kinetics and Properties of Nitrihemoglobin. Chemical Research in Toxicology, 2010, 23, 1786-1795.	1.7	14
18	Formation of the Complex of Nitrite with the Ferriheme <i>b</i> β-Barrel Proteins Nitrophorin 4 and Nitrophorin 7,. Biochemistry, 2010, 49, 5841-5851.	1.2	42
19	Nuclear Resonance Vibrational Spectroscopy Applied to [Fe(OEP)(NO)]: The Vibrational Assignments of Five-Coordinate Ferrous Hemeâ Nitrosyls and Implications for Electronic Structure. Inorganic Chemistry, 2010, 49, 4133-4148.	1.9	45

#	Article	IF	CITATIONS
20	Bioinspired Heme, Heme/Nonheme Diiron, Heme/Copper, and Inorganic NOx Chemistry: •NO _(g) Oxidation, Peroxynitriteâ^'Metal Chemistry, and •NO _(g) Reductive Coupling. Inorganic Chemistry, 2010, 49, 6267-6282.	1.9	95
21	Preface for the Inorganic Chemistry Forum: The Coordination Chemistry of Nitric Oxide and Its Significance for Metabolism, Signaling, and Toxicity in Biology. Inorganic Chemistry, 2010, 49, 6223-6225.	1.9	31
22	Oriented Single-Crystal Nuclear Resonance Vibrational Spectroscopy of [Fe(TPP)(MI)(NO)]: Quantitative Assessment of the <i>trans</i> Effect of NO. Inorganic Chemistry, 2010, 49, 7197-7215.	1.9	66
23	Reaction of nitrite with human fetal oxyhemoglobin: A model simulation study with implications for blood flow regulation in sickle cell disease (SCD). Blood Cells, Molecules, and Diseases, 2010, 44, 111-114.	0.6	10
24	NO reactions with sol–gel and solution phase samples of the ferric nitrite derivative of HbA. Nitric Oxide - Biology and Chemistry, 2010, 22, 180-190.	1.2	17
25	Electronic Structure of Heme-Nitrosyls and Its Significance for Nitric Oxide Reactivity, Sensing, Transport, and Toxicity in Biological Systems. Inorganic Chemistry, 2010, 49, 6293-6316.	1.9	191
26	Human Neuroglobin Functions as a Redox-regulated Nitrite Reductase. Journal of Biological Chemistry, 2011, 286, 18277-18289.	1.6	245
27	Breaking the Proximal Fell–NHisBond in Heme Proteins through Local Structural Tension: Lessons from the HemebProteins Nitrophorin 4, Nitrophorin 7, and Related Site-Directed Mutant Proteins. Biochemistry, 2011, 50, 8559-8575.	1.2	23
28	Density Functional Theory Modeling of the Proposed Nitrite Anhydrase Function of Hemoglobin in Hypoxia Sensing. Inorganic Chemistry, 2011, 50, 7361-7363.	1.9	13
29	Nitric Oxide during Altitude Acclimatization. New England Journal of Medicine, 2011, 365, 1942-1944.	13.9	51
30	Crystallographic Trapping of Heme Loss Intermediates during the Nitrite-Induced Degradation of Human Hemoglobin. Biochemistry, 2011, 50, 8323-8332.	1.2	23
31	63 The Role of Heme-Nitrosyls in the Biosynthesis, Transport, Sensing, and Detoxification of Nitric Oxide in Biological Systems: Enzymes and Model Complexes. Handbook of Porphyrin Science, 2011, , 1-247.	0.3	22
32	Nitrite-Generated Nitric Oxide to Protect Against Intimal Hyperplasia Formation. Trends in Cardiovascular Medicine, 2011, 21, 157-162.	2.3	15
33	Effects of T- and R-state stabilization on deoxyhemoglobin-nitrite reactions and stimulation of nitric oxide signaling. Nitric Oxide - Biology and Chemistry, 2011, 25, 59-69.	1.2	29
34	Plant and Cyanobacterial Hemoglobins Reduce Nitrite to Nitric Oxide under Anoxic Conditions. Biochemistry, 2011, 50, 3873-3878.	1.2	97
35	Current perspectives and challenges in understanding the role of nitrite as an integral player in nitric oxide biology and therapy. Free Radical Biology and Medicine, 2011, 51, 805-812.	1.3	50
36	Cytoglobin: biochemical, functional and clinical perspective of the newest member of the globin family. Cellular and Molecular Life Sciences, 2011, 68, 3869-3883.	2.4	68
37	Nitrophorins: Nitrite disproportionation reaction and other novel functionalities of insect hemeâ€based nitric oxide transport proteins. IUBMB Life, 2011, 63, 304-312.	1.5	40

#	Article	IF	CITATIONS
38	Structural and Functional Studies Indicating Altered Redox Properties of Hemoglobin E. Journal of Biological Chemistry, 2011, 286, 23452-23466.	1.6	20
39	The potential role of the red blood cell in nitrite-dependent regulation of blood flow. Cardiovascular Research, 2011, 89, 507-515.	1.8	60
40	An association between vasomotion and oxygen extraction. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H442-H449.	1.5	62
41	Is Endothelial Nitric Oxide Synthase a Moonlighting Protein Whose Day Job is Cholesterol Sulfate Synthesis? Implications for Cholesterol Transport, Diabetes and Cardiovascular Disease. Entropy, 2012, 14, 2492-2530.	1.1	16
42	Heme/Copper Assembly Mediated Nitrite and Nitric Oxide Interconversion. Journal of the American Chemical Society, 2012, 134, 18912-18915.	6.6	44
43	Nitrite Reductase Activity of Nonsymbiotic Hemoglobins from <i>Arabidopsis thaliana</i> . Biochemistry, 2012, 51, 5285-5292.	1.2	62
44	High-order tunneling processes in single-porphyrin transistors. Chemical Communications, 2012, 48, 4420.	2.2	5
45	Sodium nitrite protects against kidney injury induced by brain death and improves post-transplant function. Kidney International, 2012, 82, 304-313.	2.6	26
46	Low NO Concentration Dependence of Reductive Nitrosylation Reaction of Hemoglobin. Journal of Biological Chemistry, 2012, 287, 18262-18274.	1.6	38
47	Normoxic cyclic GMP-independent oxidative signaling by nitrite enhances airway epithelial cell proliferation and wound healing. Nitric Oxide - Biology and Chemistry, 2012, 26, 203-210.	1.2	19
48	Insertion of an H-Bonding Residue into the Distal Pocket of the Ferriheme Protein Nitrophorin 4: Effect on NitriteIron Coordination and Nitrite Disproportionation. Chemistry and Biodiversity, 2012, 9, 1761-1775.	1.0	11
49	Small Molecule Signaling Agents: The Integrated Chemistry and Biochemistry of Nitrogen Oxides, Oxides of Carbon, Dioxygen, Hydrogen Sulfide, and Their Derived Species. Chemical Research in Toxicology, 2012, 25, 769-793.	1.7	330
50	Nitric oxide in adaptation to altitude. Free Radical Biology and Medicine, 2012, 52, 1123-1134.	1.3	116
51	A detailed investigation into the electronic structures of macrocyclic iron(II)-nitrosyl compounds and their similarities to ferrous heme-nitrosyls. Inorganica Chimica Acta, 2012, 380, 148-160.	1.2	9
52	Nitrite reduction by Coll and MnII substituted myoglobins. Journal of Inorganic Biochemistry, 2012, 107, 47-53.	1.5	32
53	Redox-mediated mechanisms and biological responses of copper-catalyzed reduction of the nitrite ion in vitro. Nitric Oxide - Biology and Chemistry, 2013, 35, 152-164.	1.2	8
54	Structure and Bonding in Heme–Nitrosyl Complexes and Implications for Biology. Structure and Bonding, 2013, , 155-223.	1.0	48
55	The Globins of Cyanobacteria and Algae. Advances in Microbial Physiology, 2013, 63, 195-272.	1.0	15

		LFORT	
#	Article	IF	CITATIONS
56	Generating S-Nitrosothiols from Hemoglobin. Journal of Biological Chemistry, 2013, 288, 22408-22425.	1.6	28
57	<scp><scp>Crp</scp></scp> â€dependent cytochrome <i>bd</i> oxidase confers nitrite resistance to <i><scp>S</scp>hewanella oneidensis</i> . Environmental Microbiology, 2013, 15, 2198-2212.	1.8	81
58	Reactivity of the human hemoglobin "Dark side― IUBMB Life, 2013, 65, 121-126.	1.5	5
59	Modulating hemoglobin nitrite reductase activity through allostery: A mathematical model. Nitric Oxide - Biology and Chemistry, 2013, 35, 193-198.	1.2	3
60	Redox Control of Inflammation in Macrophages. Antioxidants and Redox Signaling, 2013, 19, 595-637.	2.5	303
61	The oxidative denitrosylation mechanism and nitric oxide release from human fetal and adult hemoglobin, an experimentally based model simulation study. Blood Cells, Molecules, and Diseases, 2013, 50, 8-19.	0.6	16
62	A model for the nitric oxide producing nitrite reductase activity of hemoglobin as a function of oxygen saturation. Nitric Oxide - Biology and Chemistry, 2013, 33, 74-80.	1.2	14
63	Quantitative Systems Pharmacology Model of NO Metabolome and Methemoglobin Following Longâ€Term Infusion of Sodium Nitrite in Humans. CPT: Pharmacometrics and Systems Pharmacology, 2013, 2, 1-10.	1.3	7
64	Blood Substitutes. ASAIO Journal, 2013, 59, 337-354.	0.9	66
65	Nitrite Signaling in Pulmonary Hypertension: Mechanisms of Bioactivation, Signaling, and Therapeutics. Antioxidants and Redox Signaling, 2013, 18, 1797-1809.	2.5	66
66	Mechanisms of Nitric Oxide Reactions Mediated by Biologically Relevant Metal Centers. Structure and Bonding, 2013, , 99-135.	1.0	13
67	Generation of HNO and HSNO from Nitrite by Hemeâ€Ironâ€Catalyzed Metabolism with H ₂ S. Angewandte Chemie - International Edition, 2013, 52, 12061-12064.	7.2	124
68	Properties of {FeNO}8 and {CoNO}9 Metal Nitrosyls in Relation to Nitroxyl Coordination Chemistry. Structure and Bonding, 2013, , 57-88.	1.0	6
69	Generation of HNO and HSNO from Nitrite by Hemeâ€Ironâ€Catalyzed Metabolism with H ₂ S. Angewandte Chemie, 2013, 125, 12283-12286.	1.6	15
70	Red blood cell storage increases hypoxiaâ€induced nitric oxide bioavailability and methemoglobin formation in vitro and in vivo. Transfusion, 2014, 54, 3178-3185.	0.8	23
71	The significant blood resistance to lung nitric oxide transfer lies within the red cell. Journal of Applied Physiology, 2014, 116, 32-41.	1.2	34
72	Involvement of ferryl in the reaction between nitrite and the oxy forms of globins. Journal of Biological Inorganic Chemistry, 2014, 19, 1233-1239.	1.1	10
73	Formation of nitri- and nitrosylhemoglobin in systems modeling the Maillard reaction. Clinical Chemistry and Laboratory Medicine, 2014, 52, 161-8.	1.4	12

C		~ ~ ~	D -		
	ΑΠ	()N	K -	P()	ו או

#	Article	IF	CITATIONS
74	Low-Dose Nitrite Alleviates Early Effects of an X-ray Contrast Medium on Renal Hemodynamics and Oxygenation in Rats. Investigative Radiology, 2014, 49, 70-77.	3.5	21
75	Heme versus Non-Heme Iron-Nitroxyl {FeN(H)O} ⁸ Complexes: Electronic Structure and Biologically Relevant Reactivity. Accounts of Chemical Research, 2014, 47, 1106-1116.	7.6	71
76	Six-Coordinate Nitrito and Nitrato Complexes of Manganese Porphyrin. Inorganic Chemistry, 2014, 53, 11948-11959.	1.9	15
77	Sensitive electrochemical measurement of hydroxyl radical generation induced by the xanthine–xanthine oxidase system. Analytical Biochemistry, 2014, 467, 22-27.	1.1	5
78	Nitrite reduction mediated by the complex Ru ^{III} (EDTA). Dalton Transactions, 2014, 43, 13596.	1.6	14
79	Sodium nitrite in patients with peripheral artery disease and diabetes mellitus: Safety, walking distance and endothelial function. Vascular Medicine, 2014, 19, 9-17.	0.8	37
80	NO ₂ [–] Activation and Reduction to NO by a Nonheme Fe(NO ₂) ₂ Complex. Journal of the American Chemical Society, 2014, 136, 10230-10233.	6.6	34
81	Pharmacology and therapeutic role of inorganic nitrite and nitrate in vasodilatation. , 2014, 144, 303-320.		47
82	Speckle Correlometry. , 2014, , 584-609.		0
83	On the role of HNS and HSN as light-sensitive NO-donors for delivery in biological media. Journal of Chemical Physics, 2015, 143, 134301.	1.2	8
84	Gaseous O ₂ , NO, and CO in Signal Transduction: Structure and Function Relationships of Heme-Based Gas Sensors and Heme-Redox Sensors. Chemical Reviews, 2015, 115, 6491-6533.	23.0	150
85	Exploring the Mechanisms of the Reductase Activity of Neuroglobin by Site-Directed Mutagenesis of the Heme Distal Pocket. Biochemistry, 2015, 54, 722-733.	1.2	55
86	Evaluating the Capacity to Generate and Preserve Nitric Oxide Bioactivity in Highly Purified Earthworm Erythrocruorin. Journal of Biological Chemistry, 2015, 290, 99-117.	1.6	12
87	Resonance Raman detection of the myoglobin nitrito heme Fe–O–Nî€O/2-nitrovinyl species: implications for helix E-helix F interactions. Physical Chemistry Chemical Physics, 2015, 17, 3841-3849.	1.3	18
88	Xenobiotics. , 2015, , 95-110.		1
89	Oxo Transfer from Nitrogen Dioxide to Nitrito Group in a Copper(II) Complex. Inorganic Chemistry, 2015, 54, 4799-4805.	1.9	3
90	Nitrogen Oxide Atom-Transfer Redox Chemistry; Mechanism of NO _(g) to Nitrite Conversion Utilizing μ-oxo Heme-Fe ^{III} –O–Cu ^{II} (L) Constructs. Journal of the American Chemical Society, 2015, 137, 6602-6615.	6.6	27
91	The Haemoglobins of Algae. Advances in Microbial Physiology, 2015, 67, 177-234.	1.0	4

#	Article	IF	CITATIONS
92	Free Radicals in Mycobacterial Disease. ACS Symposium Series, 2015, , 503-539.	0.5	0
93	New Insights on {FeNO}n (n=7, 8) Systems as Enzyme Models and HNO Donors. Advances in Inorganic Chemistry, 2015, , 243-263.	0.4	5
94	The structure of a ferrous heme-nitro species in the binuclear heme a ₃ /Cu _B center of ba ₃ -cytochrome c oxidase as determined by resonance Raman spectroscopy. Chemical Communications, 2015, 51, 286-289.	2.2	12
95	Recent Trends on the Use of Nanoparticles for Nitric Oxide Delivery in Antimicrobial Applications. Drug Delivery Letters, 2016, 6, 3-10.	0.2	4
96	Nitric Oxide–Releasing Nanoparticles as an Antimicrobial Therapeutic. , 2016, , 127-134.		3
97	Residues in the Distal Heme Pocket of Arabidopsis Non-Symbiotic Hemoglobins: Implication for Nitrite Reductase Activity. International Journal of Molecular Sciences, 2016, 17, 640.	1.8	11
98	3D Motions of Iron in Sixâ€Coordinate {FeNO} ⁷ Hemes by Nuclear Resonance Vibration Spectroscopy. Chemistry - A European Journal, 2016, 22, 6323-6332.	1.7	4
99	HNS+ and HSN+ cations: Electronic states, spin-rovibronic spectroscopy with planetary and biological implications. Journal of Chemical Physics, 2016, 145, 084307.	1.2	11
100	Kinetics of Nitrite Reduction and Peroxynitrite Formation by Ferrous Heme in Human Cystathionine β-Synthase. Journal of Biological Chemistry, 2016, 291, 8004-8013.	1.6	22
101	Formation of [Ru ^{III} (edta)(SNO)] ^{2–} in Ru ^{III} (edta)-Mediated S-Nitrosylation of Bisulfide Ion. Inorganic Chemistry, 2016, 55, 5037-5040.	1.9	15
102	New Features of the NO/H2S Cross Talk: A Chemical Basis. Signaling and Communication in Plants, 2016, , 289-327.	0.5	2
103	Spin Crossover in Nitritoâ€Myoglobin as Revealed by Resonance Raman Spectroscopy. Chemistry - A European Journal, 2016, 22, 12176-12180.	1.7	10
104	A mathematical model for the role of N 2 O 3 in enhancing nitric oxide bioavailability following nitrite infusion. Nitric Oxide - Biology and Chemistry, 2016, 60, 1-9.	1.2	10
106	NapB in excess inhibits growth of Shewanella oneidensis by dissipating electrons of the quinol pool. Scientific Reports, 2016, 6, 37456.	1.6	17
107	Elucidation of the heme active site electronic structure affecting the unprecedented nitrite dismutase activity of the ferriheme b proteins, the nitrophorins. Chemical Science, 2016, 7, 5332-5340.	3.7	10
108	Nitrobindin: An Ubiquitous Family of All <i>β</i> â€Barrel Hemeâ€proteins. IUBMB Life, 2016, 68, 423-428.	1.5	20
109	Photoinitiated Reactivity of a Thiolate-Ligated, Spin-Crossover Nonheme {FeNO} ⁷ Complex with Dioxygen. Journal of the American Chemical Society, 2016, 138, 3107-3117.	6.6	25
110	Stepwise Deoxygenation of Nitrite as a Route to Two Families of Ruthenium Corroles: Group 8 Periodic Trends and Relativistic Effects. Inorganic Chemistry, 2017, 56, 5285-5294.	1.9	29

#	Article	IF	CITATIONS
111	Hidden Antioxidative Functions of Reduced Nicotinamide Adenine Dinucleotide Coexisting with Hemoglobin. ACS Chemical Biology, 2017, 12, 1820-1829.	1.6	9
112	Polyamidoamine dendrimer-armed fluorescent magnetic nanoparticles for sensitive and selective determination of nitrite in beverages. Sensors and Actuators B: Chemical, 2017, 247, 774-779.	4.0	10
113	Rulll(EDTA) mediated activation of redox signalling molecules. Coordination Chemistry Reviews, 2017, 349, 129-138.	9.5	5
114	Low dose nitrite improves reoxygenation following renal ischemia in rats. Scientific Reports, 2017, 7, 14597.	1.6	12
115	Nitrogen dioxide reactivity of a Nickel(II) complex of tetraazacyclotetradecane ligand. Inorganica Chimica Acta, 2017, 466, 285-290.	1.2	3
116	How are nitrosothiols formed de novo inÂvivo ?. Archives of Biochemistry and Biophysics, 2017, 617, 137-144.	1.4	34
117	HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics. Antioxidants and Redox Signaling, 2017, 26, 794-813.	2.5	27
118	Macrophage NOS2 in Tumor Leukocytes. Antioxidants and Redox Signaling, 2017, 26, 1023-1043.	2.5	17
119	Nitrite-Mediated Hypoxic Vasodilation Predicted from Mathematical Modeling and Quantified from in Vivo Studies in Rat Mesentery. Frontiers in Physiology, 2017, 8, 1053.	1.3	4
120	The Biocoordination Chemistry of Nitric Oxide With Heme and Nonheme Iron Centers. , 2017, , .		3
121	Differential mitochondrial dinitrosyliron complex formation by nitrite and nitric oxide. Redox Biology, 2018, 15, 277-283.	3.9	14
122	Alternate and Additional Functions of Erythrocyte Hemoglobin. Biochemistry (Moscow), 2018, 83, 1575-1593.	0.7	21
123	Application of Si/SiC ceramic filters as support for structural palladium catalysts for the reductive decomposition of aqueous nitrite. Journal of the Ceramic Society of Japan, 2018, 126, 714-718.	0.5	3
124	Iron-catalysed carbene-transfer reactions of diazo acetonitrile. Organic and Biomolecular Chemistry, 2018, 16, 7129-7133.	1.5	24
125	Reductive Decomposition of Nitrite in a Continuous-Flow Reactor Using Fixed-Bed Structural Pd Catalysts. Journal of Chemical Engineering of Japan, 2018, 51, 83-88.	0.3	1
126	Cytochromes <i>c</i> Constitute a Layer of Protection against Nitric Oxide but Not Nitrite. Applied and Environmental Microbiology, 2018, 84, .	1.4	14
127	Nitrosyl Myoglobins and Their Nitrite Precursors: Crystal Structural and Quantum Mechanics and Molecular Mechanics Theoretical Investigations of Preferred Fe <i>–</i> NO Ligand Orientations in Myoglobin Distal Pockets. Biochemistry, 2018, 57, 4788-4802.	1.2	14
128	The Reaction of Oxy Hemoglobin with Nitrite: Mechanism, Antioxidant-Modulated Effect, and Implications for Blood Substitute Evaluation. Molecules, 2018, 23, 350.	1.7	20

#	Article	IF	CITATIONS
129	Non-heme High-Spin {FeNO} ^{6–8} Complexes: One Ligand Platform Can Do It All. Journal of the American Chemical Society, 2018, 140, 11341-11359.	6.6	34
130	The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration. Antioxidants and Redox Signaling, 2019, 30, 1553-1598.	2.5	82
131	Nitrite and nitrate chemical biology and signalling. British Journal of Pharmacology, 2019, 176, 228-245.	2.7	94
132	Rulll(edta)-mediated interaction of nitrite and sulphide: formation of an N-bonded thionitrous acid (HSNO) complex of RullI(edta) in aqueous solution. New Journal of Chemistry, 2019, 43, 15311-15315.	1.4	3
133	cGMP modulation therapeutics for sickle cell disease. Experimental Biology and Medicine, 2019, 244, 132-146.	1.1	21
134	Inorganic nitrite bioactivation and role in physiological signaling and therapeutics. Biological Chemistry, 2019, 401, 201-211.	1.2	23
135	Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiological Reviews, 2019, 99, 311-379.	13.1	323
136	Near-infrared photoactivatable nitric oxide donors with photoacoustic readout. Methods in Enzymology, 2020, 641, 113-147.	0.4	3
137	The role of hemoglobin in nitric oxide transport in vascular system. Medicine in Novel Technology and Devices, 2020, 5, 100034.	0.9	11
138	Essential Role of Hemoglobin βCys93 in Cardiovascular Physiology. Physiology, 2020, 35, 234-243.	1.6	13
139	Mycobacterial and Human Ferrous Nitrobindins: Spectroscopic and Reactivity Properties. International Journal of Molecular Sciences, 2021, 22, 1674.	1.8	10
140	Physiological Roles of Nitrite and Nitric Oxide in Bacteria: Similar Consequences from Distinct Cell Targets, Protection, and Sensing Systems. Advanced Biology, 2021, 5, e2100773.	1.4	9
141	Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Inorganic Chemistry, 2021, 60, 15918-15940.	1.9	16
142	Reaction mechanisms relevant to the formation and utilization of [Ru(edta)(NO)] complexes in aqueous media. Journal of Inorganic Biochemistry, 2021, 225, 111595.	1.5	6
143	Pigments. , 2021, , 383-431.		0
145	Modeling O2-Dependent Effects of Nitrite Reductase Activity in Blood and Tissue on Coupled NO and O2 Transport around Arterioles. Advances in Experimental Medicine and Biology, 2011, 701, 271-276.	0.8	10
146	HBOC Vasoactivity: Interplay Between Nitric Oxide Scavenging and Capacity to Generate Bioactive Nitric Oxide Species. Antioxidants and Redox Signaling, 2013, 18, 2284-2297.	2.5	16
147	HBOC Vasoactivity: Interplay Between Nitric Oxide Scavenging and Capacity to Generate Bioactive Nitric Oxide Species. Antioxidants and Redox Signaling, 2013, 18, 2284-2297.	2.5	31

#	Article	IF	CITATIONS
148	The Capacity of Red Blood Cells to Reduce Nitrite Determines Nitric Oxide Generation under Hypoxic Conditions. PLoS ONE, 2014, 9, e101626.	1.1	28
149	Nitric Oxide Signaling in the Microcirculation. Critical Reviews in Biomedical Engineering, 2011, 39, 397-433.	0.5	31
150	Bio-inspired nitrogen oxide (NOx) interconversion reactivities of synthetic heme Compound-I and Compound-II intermediates. Journal of Inorganic Biochemistry, 2022, 226, 111633.	1.5	3
153	Biochemistry of Hemoglobin. , 2013, , 55-73.		1
154	AMELIORATIVE EFFECT OF LIPOXIN A4 ON TESTICULAR DAMAGE INDUCED BY HIND LIMB ISCHEMIA/REPERFUSION INJURY IN RATS: ROLE OF HMGB-1. Ain Shams Medical Journal, 2019, 70, 259-270.	0.0	0
157	Complex Interplay of Heme-Copper Oxidases with Nitrite and Nitric Oxide. International Journal of Molecular Sciences, 2022, 23, 979.	1.8	6
158	The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chemical Reviews, 2021, 121, 14682-14905.	23.0	109
159	Redox and spectroscopic properties of mammalian nitrite reductase-like hemoproteins. Journal of Inorganic Biochemistry, 2022, 237, 111982.	1.5	4
160	Application of Ru(edta) complexes in biomimetic activation of small molecules. Kinetic and mechanistic impact. Advances in Inorganic Chemistry, 2023, , 389-431.	0.4	2
161	Nitric Oxide and its Derivatives Containing Nasal Spray and Inhalation Therapy for the Treatment of COVID-19. Current Pharmaceutical Design, 2022, 28, 3658-3670.	0.9	3
162	Hemoglobin is an oxygen-dependent glutathione buffer adapting the intracellular reduced glutathione levels to oxygen availability. Redox Biology, 2022, 58, 102535.	3.9	8
163	A Common Target of Nitrite and Nitric Oxide for Respiration Inhibition in Bacteria. International Journal of Molecular Sciences, 2022, 23, 13841.	1.8	3
164	Reversible thermally induced spin crossover in the myoglobin–nitrito adduct directly monitored by resonance Raman spectroscopy. RSC Advances, 2023, 13, 9020-9025.	1.7	1