Morphology and biomass production of prairie cordgras

GCB Bioenergy 1, 240-250 DOI: 10.1111/j.1757-1707.2009.01018.x

Citation Report

#	Article	IF	CITATIONS
1	Genome Size and Chromosome Analyses in Prairie Cordgrass. Crop Science, 2010, 50, 2277-2282.	1.8	26
2	The Effects of Stakeholder Values on Biofuel Feedstock Choices. ACS Symposium Series, 2012, , 29-67.	0.5	2
3	Cytogeographic Distribution and Genome Size Variation in Prairie Cordgrass (Spartina pectinata Bosc) Tj ETQqO	0 0 rgBT / 1.8	Overlock 10 T

CITATION REDODI

4	Seed Reduction in Prairie Cordgrass, Spartina pectinata Link., by the Floret-Feeding Caterpillar Aethes spartinana (Barnes and McDunnough). Bioenergy Research, 2012, 5, 189-196.	3.9	12
5	Salinity Effects on Germination and Plant Growth of Prairie Cordgrass and Switchgrass. Bioenergy Research, 2012, 5, 225-235.	3.9	69
6	Field analysis of photoprotection in coâ€occurring cool climate <scp>C</scp> ₃ and <scp>C</scp> ₄ grasses. Physiologia Plantarum, 2013, 147, 316-328.	5.2	9
7	Chloroplast DNA Intraspecific Phylogeography of Prairie Cordgrass (Spartina pectinata Bosc ex Link). Plant Molecular Biology Reporter, 2013, 31, 1376-1383.	1.8	12
8	Developments in crops and management systems to improve lignocellulosic feedstock production. Biofuels, Bioproducts and Biorefining, 2013, 7, 582-601.	3.7	10
9	Toward Cool C ₄ Crops. Annual Review of Plant Biology, 2013, 64, 701-722.	18.7	78
10	Fieldâ€scale potassium and phosphorus fluxes in the bioenergy crop switchgrass: Theoretical energy yields and management implications. Journal of Plant Nutrition and Soil Science, 2013, 176, 387-399.	1.9	7
11	Impact of land classification on potential warm season grass biomass production in Ontario, Canada. Canadian Journal of Plant Science, 2013, 93, 249-260.	0.9	22
12	Seed Set in Prairie Cordgrass. Crop Science, 2013, 53, 403-410.	1.8	5
13	Switchgrass and Prairie Cordgrass Response to Foliar- and Soil-Applied Herbicides. Weed Technology, 2014, 28, 633-645.	0.9	5
14	Establishment and early productivity of perennial biomass alley cropping systems in Minnesota, USA. Agroforestry Systems, 2014, 88, 75-85.	2.0	23
15	Growing Spartina pectinata in Previously Farmed Prairie Wetlands for Economic and Ecological Benefits. Wetlands, 2014, 34, 853-864.	1.5	6
16	Analysis of Active Nucleolus Organizing Regions in Polyploid Prairie Cordgrass (<i>Spartina) Tj ETQq1 1 0.784314</i>	rgBT /Ov	erlock 10 T
17	Sub-zero cold tolerance of <i>Spartina pectinata</i> (prairie cordgrass) and <i>Miscanthus × giganteus</i> : candidate bioenergy crops for cool temperate climates. Journal of Experimental Botany, 2015, 66, 4403-4413.	4.8	18
18	Effects of genetic variation and growing condition of prairie cordgrass on feedstock composition and ethanol yield. Bioresource Technology, 2015, 183, 70-77.	9.6	9

ARTICLE

3

Phenotypic and Biomass Yield Variations in Natural Populations of Prairie Cordgrass (Spartina) Tj ETQq0 0 0 rgBT /Qyerlock 10 Tf 50 742

20	Growth responses and accumulation of cadmium in switchgrass (Panicumvirgatum L.) and prairie cordgrass (Spartinapectinata Link). RSC Advances, 2015, 5, 83700-83706.	3.6	11
21	Determining effects of sodicity and salinity on switchgrass and prairie cordgrass germination and plant growth. Industrial Crops and Products, 2015, 64, 79-87.	5.2	35
22	Species Pairing and Edge Effects on Biomass Yield and Nutrient Uptake in Perennial Alley Cropping Systems. Agronomy Journal, 2016, 108, 1020-1029.	1.8	9
23	Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress. PLoS ONE, 2016, 11, e0152294.	2.5	19
24	Validating DNA Polymorphisms Using KASP Assay in Prairie Cordgrass (Spartina pectinata Link) Populations in the U.S Frontiers in Plant Science, 2015, 6, 1271.	3.6	24
25	Linkage mapping in prairie cordgrass (Spartina pectinata Link) using genotyping-by-sequencing. Molecular Breeding, 2016, 36, 1.	2.1	10
26	Conversion of Prairie Cordgrass to Hydrocarbon Biofuel over Coâ€Mo/HZSMâ€5 Using a Twoâ€Stage Reactor System. Energy Technology, 2016, 4, 706-713.	3.8	33
27	Influence of fertilisation with sewage sludge-derived preparation on selected soil properties and prairie cordgrass yield. Environmental Research, 2017, 156, 775-780.	7.5	14
28	Genetics and Partitioning for Biomass of Prairie Cordgrass Compared to Switchgrass on Marginal Cropland. Bioenergy Research, 2017, 10, 864-875.	3.9	5
29	Biomass Yield and Feedstock Quality of Prairie Cordgrass in Response to Seeding Rate, Row Spacing, and Nitrogen Fertilization. Agronomy Journal, 2017, 109, 2474-2485.	1.8	9
30	Growth and Development of Two Perennial Grasses in Ambient Light Conditions during their Natural Dormant Period. Crop Science, 2017, 57, 2213-2225.	1.8	1
31	Landscape dependent changes in soil properties due to long-term cultivation and subsequent conversion to native grass agriculture. Catena, 2018, 160, 282-297.	5.0	10
32	Transcriptome Analysis of the Heritable Salt Tolerance of Prairie Cordgrass (Spartina pectinata Link). Bioenergy Research, 2018, 11, 106-114.	3.9	0
33	Cellulosic Ethanol Potential of Feedstocks Grown on Marginal Lands. Transactions of the ASABE, 2018, 61, 1775-1782.	1.1	1
34	Above- and Belowground Prairie Cordgrass Response to Applied Nitrogen on Marginal Land. Bioenergy Research, 2018, 11, 440-448.	3.9	4
35	Energy Crop at Heavy Metal-Contaminated Arable Land as an Alternative for Food and Feed Production: Biomass Quantity and Quality. , 2019, , 1-21.		10
36	The Genetics and Genome-Wide Screening of Regrowth Loci, a Key Component of Perennialism in <i>Zea diploperennis</i> . G3: Genes, Genomes, Genetics, 2019, 9, 1393-1403.	1.8	11

#	Article	IF	CITATIONS
37	Economic viability of perennial grass biomass feedstock in northern climates. Industrial Crops and Products, 2019, 128, 213-220.	5.2	10
38	Biomass Production of Prairie Cordgrass (Spartina pectinata Link.) Using Urea and Kura Clover (Trifolium ambiguum Bieb.) as a Source of Nitrogen. Bioenergy Research, 2020, 13, 1095-1107.	3.9	1
39	Alley cropping affects perennial bioenergy crop root distribution, carbon, and nutrient stocks. Agronomy Journal, 2020, 112, 3718-3732.	1.8	5
40	Different lifeâ€form strategies of perennial energy crops and related nutrient exports require a differentiating view specifically concerning a sustainable cultivation on marginal land. GCB Bioenergy, 2021, 13, 893-904.	5.6	8
41	Intercropping kura clover with prairie cordgrass grown on a marginal land enhanced soil carbon and nitrogen fractions. Soil Science Society of America Journal, 2021, 85, 1755-1767.	2.2	1
42	Genomic Variation Shaped by Environmental and Geographical Factors in Prairie Cordgrass Natural Populations Collected across Its Native Range in the USA. Genes, 2021, 12, 1240.	2.4	1
44	Potentiality of Four Cool Season Grasses and Miscanthus sinensis for Feedstock in the Cool Regions of Japan. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2011, 90, 59-65.	0.2	4
45	Directly catalytic upgrading bio-oil vapor produced by prairie cordgrass pyrolysis over Ni/HZSM-5 using a two stage reactor. AIMS Energy, 2015, 3, 227-240.	1.9	26
46	Effect of sewage sludge application on the growth, yield and chemical composition of prairie cordgrass (Spartina pectinata Link.). Journal of Elementology, 2014, , .	0.2	6
47	A Research Review for Establishing Effective Management Practices of the Highly Invasive Cordgrass (Spartina spp.). Weed & Turfgrass Science, 2016, 5, 111-125.	0.1	7
49	Third and fourth year biomass yields of Miscanthus x giganteus, switchgrass, big bluestem, and prairie cordgrass in southern Manitoba, Canada: Latitude of origin affects biomass yield among native grasses. Biomass and Bioenergy, 2022, 160, 106441.	5.7	2
50	Studying the Physiological Reactions of C4 Grasses in Order to Select Them for Cultivation on Marginal Lands. Sustainability, 2022, 14, 4512.	3.2	1
51	Effects of macrophyte species and biochar on the performance of treatment wetlands for the removal of glyphosate from agricultural runoff. Science of the Total Environment, 2022, 838, 156061.	8.0	4
52	Finding Promising Candidates for Wet Growing Conditions: The Effect of Two Row Spacings on Biomass Production of Four Bioenergy Prairie Cordgrass Populations in a Wet Marginal Land. Bioenergy Research, 0, , .	3.9	0

53 Chromium and arsenic bioaccumulation and biomass potential of pink morning glory (Ipomoea carnea) Tj ETQq0 0 0 rgBT /Overlock 10